WorldWideScience

Sample records for sounding rocket launch

  1. EUROLAUNCH - a cooperation between DLR, German Aerospace Center and SSC, Swedish Space Corporation in sounding rocket launches

    Science.gov (United States)

    Kemi, S.; Turner, P.; Norberg, O.

    Sounding rocket and balloon launches have been conducted since more than 30 years at ESRANGE - the European Sounding Rocket Launching Range of SSC, the Swedish Space Corporation of Kiruna in North-Sweden. MORABA - the Mobile Rocket Base of DLR German Aerospace Center at München-Oberpfaffenhofen, Germany, has planned and implemented sounding rocket and balloon launches on occasions throughout the globe during more than 30 years. An evolutionary step of sounding rocket launches is undertaken with the creation of EuroLaunch. EuroLaunch has recently been formed by SSC, the Swedish Space Corporation, and DLR, the German Aerospace Center. With EuroLaunch the long-lasting co-operation of the two complementary technical centers ESRANGE and MORABA is being enhanced and intensified, and this co-operation may also be the start of a future European Network of Center for sounding rockets. The comprehensive competence within the scope of the Network of Centers in Europa will be presented. The consolidation of competencies and work distribution among the partners shall be detailed. The managerial structure of EuroLaunch and the embedding in the mother organizations SSC and DLR respectively will be explained. The newly organized EuroLaunch is expected to provide improved services to experimenters in Europe and worldwide with improved competence, capability and efficiency.

  2. The Spanish national programme of balloons and sounding rockets

    International Nuclear Information System (INIS)

    Casas, J.; Pueyo, L.

    1978-01-01

    The main points of the Spanish scientific programme are briefly described: CONIE/NASA cooperative project on meteorological sounding rocket launchings; ozonospheric programme; CONIE/NASA/CNES cooperative ionospheric sounding rocket project; D-layer research; rocket infrared dayglow measurements; ultraviolet astronomy research; cosmic ray research. The schedule of sounding rocket launchings at El Arenosillo station during 1977 is given

  3. The Rocket Electric Field Sounding (REFS) Program: Prototype Design and Successful First Launch

    Science.gov (United States)

    1992-01-15

    insulators surrounding the stators, and stator edges themselves, are fully covered by the rotor , so that any effects of charge on the insulators are...Jumper performed a separate analysis of the aerodynamics (primarily the " Magnus effect ") induced by the relative rotation of rocket body and shell. The...significant advantages over an aircraft in simplicity and calibration. A single cylindrical rotor covering most of the payload acts as the shutter for all

  4. EUVS Sounding Rocket Payload

    Science.gov (United States)

    Stern, Alan S.

    1996-01-01

    During the first half of this year (CY 1996), the EUVS project began preparations of the EUVS payload for the upcoming NASA sounding rocket flight 36.148CL, slated for launch on July 26, 1996 to observe and record a high-resolution (approx. 2 A FWHM) EUV spectrum of the planet Venus. These preparations were designed to improve the spectral resolution and sensitivity performance of the EUVS payload as well as prepare the payload for this upcoming mission. The following is a list of the EUVS project activities that have taken place since the beginning of this CY: (1) Applied a fresh, new SiC optical coating to our existing 2400 groove/mm grating to boost its reflectivity; (2) modified the Ranicon science detector to boost its detective quantum efficiency with the addition of a repeller grid; (3) constructed a new entrance slit plane to achieve 2 A FWHM spectral resolution; (4) prepared and held the Payload Initiation Conference (PIC) with the assigned NASA support team from Wallops Island for the upcoming 36.148CL flight (PIC held on March 8, 1996; see Attachment A); (5) began wavelength calibration activities of EUVS in the laboratory; (6) made arrangements for travel to WSMR to begin integration activities in preparation for the July 1996 launch; (7) paper detailing our previous EUVS Venus mission (NASA flight 36.117CL) published in Icarus (see Attachment B); and (8) continued data analysis of the previous EUVS mission 36.137CL (Spica occultation flight).

  5. Lymphocytes on sounding rocket flights.

    Science.gov (United States)

    Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A

    1994-05-01

    Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.

  6. NASA rocket launches student project into space

    OpenAIRE

    Crumbley, Liz

    2005-01-01

    A project that began in 2002 will culminate at sunrise on Tuesday, March 15, when a team of Virginia Tech engineering students watch a payload section they designed lift off aboard a sounding rocket from a launch pad at NASA's Wallops Island Flight Facility and travel 59 miles into space.

  7. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  8. Introduction to the Special Issue on Sounding Rockets and Instrumentation

    OpenAIRE

    Christe, Steven; Zeiger, Ben; Pfaff, Rob; Garcia, Michael

    2016-01-01

    Rocket technology, originally developed for military applications, has provided a low-cost observing platform to carry critical and rapid-response scientific investigations for over 70 years. Even with the development of launch vehicles that could put satellites into orbit, high altitude sounding rockets have remained relevant. In addition to science observations, sounding rockets provide a unique technology test platform and a valuable training ground for scientists and engineers. Most impor...

  9. The Swedish sounding rocket programme

    International Nuclear Information System (INIS)

    Bostroem, R.

    1980-01-01

    Within the Swedish Sounding Rocket Program the scientific groups perform experimental studies of magnetospheric and ionospheric physics, upper atmosphere physics, astrophysics, and material sciences in zero g. New projects are planned for studies of auroral electrodynamics using high altitude rockets, investigations of noctilucent clouds, and active release experiments. These will require increased technical capabilities with respect to payload design, rocket performance and ground support as compared with the current program. Coordination with EISCAT and the planned Viking satellite is essential for the future projects. (Auth.)

  10. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  11. Ceremony celebrates 50 years of rocket launches

    Science.gov (United States)

    2000-01-01

    Ceremony celebrates 50 years of rocket launches PL00C-10364.12 At the 50th anniversary ceremony celebrating the first rocket launch from pad 3 on what is now Cape Canaveral Air Force Station, Norris Gray waves to the audience. Gray was part of the team who successfully launched the first rocket, known as Bumper 8. The ceremony was hosted by the Air Force Space & Missile Museum Foundation, Inc. , and included launch of a Bumper 8 model rocket, presentation of a Bumper Award to Florida Sen. George Kirkpatrick by the National Space Club; plus remarks by Sen. Kirkpatrick, KSC's Center Director Roy Bridges, and the Commander of the 45th Space Wing, Brig. Gen. Donald Pettit. Also attending the ceremony were other members of the original Bumper 8 team. A reception followed at Hangar C. Since 1950 there have been a total of 3,245 launches from Cape Canaveral.

  12. Sounding rocket study of auroral electron precipitation

    International Nuclear Information System (INIS)

    McFadden, J.P.

    1985-01-01

    Measurement of energetic electrons in the auroral zone have proved to be one of the most useful tools in investigating the phenomena of auroral arc formation. This dissertation presents a detailed analysis of the electron data from two sounding rocket campaigns and interprets the measurements in terms of existing auroral models. The Polar Cusp campaign consisted of a single rocket launched from Cape Parry, Canada into the afternoon auroral zone at 1:31:13 UT on January 21, 1982. The results include the measurement of a narrow, magnetic field aligned electron flux at the edge of an arc. This electron precipitation was found to have a remarkably constant 1.2 eV temperature perpendicular to the magnetic field over a 200 to 900 eV energy range. The payload also made simultaneous measurements of both energetic electrons and 3-MHz plasma waves in an auroral arc. Analysis has shown that the waves are propagating in the upper hybrid band and should be generated by a positive slope in the parallel electron distribution. A correlation was found between the 3-MHz waves and small positive slopes in the parallel electron distribution but experimental uncertainties in the electron measurement were large enough to influence the analysis. The BIDARCA campaign consisted of two sounding rockets launched from Poker Flat and Fort Yukon, Alaska at 9:09:00 UT and 9:10:40 UT on February 7, 1984

  13. The Norwegian sounding rocket programme 1978-81

    International Nuclear Information System (INIS)

    Landmark, B.

    1978-01-01

    The Norwegian sounding rocket programme is reasonably well defined up to and including the winter of 1981/82. All the projects have been planned and will be carried out in international cooperation. Norwegian scientists so far plan to participate in a number of 24 rocket payloads over the period. Out of these 18 will be launched from the Andoya rocket range, 3 from Esrange and 3 from the siple station in the antarctic. (author)

  14. NASA Sounding Rocket Program Educational Outreach

    Science.gov (United States)

    Rosanova, G.

    2013-01-01

    Educational and public outreach is a major focus area for the National Aeronautics and Space Administration (NASA). The NASA Sounding Rocket Program (NSRP) shares in the belief that NASA plays a unique and vital role in inspiring future generations to pursue careers in science, mathematics, and technology. To fulfill this vision, the NSRP engages in a variety of educator training workshops and student flight projects that provide unique and exciting hands-on rocketry and space flight experiences. Specifically, the Wallops Rocket Academy for Teachers and Students (WRATS) is a one-week tutorial laboratory experience for high school teachers to learn the basics of rocketry, as well as build an instrumented model rocket for launch and data processing. The teachers are thus armed with the knowledge and experience to subsequently inspire the students at their home institution. Additionally, the NSRP has partnered with the Colorado Space Grant Consortium (COSGC) to provide a "pipeline" of space flight opportunities to university students and professors. Participants begin by enrolling in the RockOn! Workshop, which guides fledgling rocketeers through the construction and functional testing of an instrumentation kit. This is then integrated into a sealed canister and flown on a sounding rocket payload, which is recovered for the students to retrieve and process their data post flight. The next step in the "pipeline" involves unique, user-defined RockSat-C experiments in a sealed canister that allow participants more independence in developing, constructing, and testing spaceflight hardware. These experiments are flown and recovered on the same payload as the RockOn! Workshop kits. Ultimately, the "pipeline" culminates in the development of an advanced, user-defined RockSat-X experiment that is flown on a payload which provides full exposure to the space environment (not in a sealed canister), and includes telemetry and attitude control capability. The RockOn! and Rock

  15. Contamination-free sounding rocket Langmuir probe

    Science.gov (United States)

    Amatucci, W. E.; Schuck, P. W.; Walker, D. N.; Kintner, P. M.; Powell, S.; Holback, B.; Leonhardt, D.

    2001-04-01

    A technique for removing surface contaminants from a sounding rocket spherical Langmuir probe is presented. Contamination layers present on probe surfaces can skew the collected data, resulting in the incorrect determination of plasma parameters. Despite following the usual probe cleaning techniques that are used prior to a launch, the probe surface can become coated with layers of adsorbed neutral gas in less than a second when exposed to atmosphere. The laboratory tests reported here show that by heating the probe from the interior using a small halogen lamp, adsorbed neutral particles can be removed from the probe surface, allowing accurate plasma parameter measurements to be made.

  16. Launch Excitement with Water Rockets

    Science.gov (United States)

    Sanchez, Juan Carlos; Penick, John

    2007-01-01

    Explosions and fires--these are what many students are waiting for in science classes. And when they do occur, students pay attention. While we can't entertain our students with continual mayhem, we can catch their attention and cater to their desires for excitement by saying, "Let's make rockets." In this activity, students make simple, reusable…

  17. The NASA Sounding Rocket Program and space sciences

    Science.gov (United States)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  18. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  19. 78 FR 40196 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2013-07-03

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... Sounding Rockets Program (SRP) at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... government agencies, and educational institutions have conducted suborbital rocket launches from the PFRR...

  20. National Report on the NASA Sounding Rocket and Balloon Programs

    Science.gov (United States)

    Eberspeaker, Philip; Fairbrother, Debora

    2013-01-01

    The U. S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 30 to 40 missions per year in support of the NASA scientific community and other users. The NASA Sounding Rockets Program supports the science community by integrating their experiments into the sounding rocket payloads, and providing both the rocket vehicle and launch operations services. Activities since 2011 have included two flights from Andoya Rocket Range, more than eight flights from White Sands Missile Range, approximately sixteen flights from Wallops Flight Facility, two flights from Poker Flat Research Range, and four flights from Kwajalein Atoll. Other activities included the final developmental flight of the Terrier-Improved Malemute launch vehicle, a test flight of the Talos-Terrier-Oriole launch vehicle, and a host of smaller activities to improve program support capabilities. Several operational missions have utilized the new Terrier-Malemute vehicle. The NASA Sounding Rockets Program is currently engaged in the development of a new sustainer motor known as the Peregrine. The Peregrine development effort will involve one static firing and three flight tests with a target completion data of August 2014. The NASA Balloon Program supported numerous scientific and developmental missions since its last report. The program conducted flights from the U.S., Sweden, Australia, and Antarctica utilizing standard and experimental vehicles. Of particular note are the successful test flights of the Wallops Arc Second Pointer (WASP), the successful demonstration of a medium-size Super Pressure Balloon (SPB), and most recently, three simultaneous missions aloft over Antarctica. NASA continues its successful incremental design qualification program and will support a science mission aboard WASP in late 2013 and a science mission aboard the SPB in early 2015. NASA has also embarked on an intra-agency collaboration to launch a rocket from a balloon to

  1. Development and Performance of the 10 kN Hybrid Rocket Motor for the Stratos II Sounding Rocket

    NARCIS (Netherlands)

    Werner, R.M.; Knop, T.R.; Wink, J; Ehlen, J; Huijsman, R; Powell, S; Florea, R.; Wieling, W; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper presents the development work of the 10 kN hybrid rocket motor DHX-200 Aurora. The DHX-200 Aurora was developed by Delft Aerospace Rocket Engineering (DARE) to power the Stratos II and Stratos II+ sounding rocket, with the later one being launched in October 2015. Stratos II and Stratos

  2. Experimental investigation of solid rocket motors for small sounding rockets

    Science.gov (United States)

    Suksila, Thada

    2018-01-01

    Experimentation and research of solid rocket motors are important subjects for aerospace engineering students. However, many institutes in Thailand rarely include experiments on solid rocket motors in research projects of aerospace engineering students, mainly because of the complexity of mixing the explosive propellants. This paper focuses on the design and construction of a solid rocket motor for total impulse in the class I-J that can be utilised as a small sounding rocket by researchers in the near future. Initially, the test stands intended for measuring the pressure in the combustion chamber and the thrust of the solid rocket motor were designed and constructed. The basic design of the propellant configuration was evaluated. Several formulas and ratios of solid propellants were compared for achieving the maximum thrust. The convenience of manufacturing and casting of the fabricated solid rocket motors were a critical consideration. The motor structural analysis such as the combustion chamber wall thickness was also discussed. Several types of nozzles were compared and evaluated for ensuring the maximum thrust of the solid rocket motors during the experiments. The theory of heat transfer analysis in the combustion chamber was discussed and compared with the experimental data.

  3. The UK sounding rocket and balloon programme

    International Nuclear Information System (INIS)

    Delury, J.T.

    1980-01-01

    The UK civil science balloon and rocket programmes for 1979/80/81 are summarised and the areas of scientific interest for the period 1981/85 mentioned. In the main the facilities available are 10 in number balloons up to 40 m cu ft launched from USA or Australia and up to 10 in number 7 1/2'' diameter Petrel rockets. This paper outlines the 1979 and 1980 programmes and explains the longer term plans covering the next 5 years. (Auth.)

  4. Improved Background Removal in Sounding Rocket Neutral Atom Imaging Data

    Science.gov (United States)

    Smith, M. R.; Rowland, D. E.

    2017-12-01

    The VISIONS sounding rocket, launched into a substorm on Feb 7, 2013 from Poker Flat, Alaska had a novel miniaturized energetic neutral atom (ENA) imager onboard. We present further analysis of the ENA data from this rocket flight, including improved removal of ultraviolet and electron contamination. In particular, the relative error source contributions due to geocoronal, auroral, and airglow UV, as well as energetic electrons from 10 eV to 3 keV were assessed. The resulting data provide a more clear understanding of the spatial and temporal variations of the ion populations that are energized to tens or hundreds of eV.

  5. Software for Collaborative Engineering of Launch Rockets

    Science.gov (United States)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  6. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  7. Plasma waves observed by sounding rockets

    International Nuclear Information System (INIS)

    Kimura, I.

    1977-01-01

    Observations of plasma wave phenomena have been conducted with several rockets launched at Kagoshima Space Center, Kyushu, Japan, and at Showa Base, Antarctica. This report presents some results of the observations in anticipation of having valuable comments from other plasma physicists, especially from those who are concerned with laboratory plasma. In the K-9M-41 rocket experiment, VLF plasma waves were observed. In this experiment, the electron beam of several tens of uA was emitted from a hot cathode when a positive dc bias changing from 0 to 10V at 1V interval each second was applied to a receiving dipole antenna. The discrete emissions with 'U' shaped frequency spectrum were observed for the dc bias over 3 volts. The U emissions appeared twice per spin period of the rocket. Similar rocket experiment was performed at Showa Base using a loop and dipole antenna and without hot cathode. Emissions were observed with varying conditions. At present, the authors postulate that such emissions may be produced just in the vicinity of a rocket due to a kind of wake effect. (Aoki, K.)

  8. VSB-30 sounding rocket: history of flight performance

    Directory of Open Access Journals (Sweden)

    Wolfgang Jung

    2011-09-01

    Full Text Available The VSB-30 vehicle is a two-stage, unguided, rail launched sounding rocket, consisting of two solid propellant motors, payload, with recovery and service system. By the end of 2010, ten vehicles had already been launched, three from Brazil (Alcântara and seven from Sweden (Esrange. The objective of this paper is to give an overview of the main characteristics of the first ten flights of the VSB-30, with emphasis on performance and trajectory data. The circular 3σ dispersion area for payload impact point has around 50 km of radius. In most launchings of such vehicle, the impact of the payload fell within 2 sigma. This provides the possibility for further studies to decrease the area of dispersion from the impact point.

  9. A new sounding rocket payload for solar plasma studies

    Science.gov (United States)

    Bruner, Marilyn E.; Brown, William A.; Appert, Kevin L.

    1989-01-01

    A sounding rocket payload developed for studies of high-temperature plasmas associated with solar active regions and flares is described. The payload instruments will record both spectra and images in the UV, EUV, and soft X-ray regions of the spectrum. The instruments, including the Dual Range Spectrograph, the Flat Field Soft X-ray Spectrograph, the Normal Incidence Soft X-ray Imager, the UV Filtergraph, and the H-alpha Imaging system, are described. Attention is also given to the new structural system of the payload, based on a large optical table suspended within the payload cavity, which will support the optical elements in their correct positions and orientations and will maintain these alignments throughout the rocket launch environment.

  10. A new sounding rocket payload for solar plasma studies

    International Nuclear Information System (INIS)

    Bruner, M.E.; Brown, W.A.; Appert, K.L.

    1989-01-01

    A sounding rocket payload developed for studies of high-temperature plasmas associated with solar active regions and flares is described. The payload instruments will record both spectra and images in the UV, EUV, and soft X-ray regions of the spectrum. The instruments, including the Dual Range Spectrograph, the Flat Field Soft X-ray Spectrograph, the Normal Incidence Soft X-ray Imager, the UV Filtergraph, and the H-alpha Imaging system, are described. Attention is also given to the new structural system of the payload, based on a large optical table suspended within the payload cavity, which will support the optical elements in their correct positions and orientations and will maintain these alignments throughout the rocket launch environment. 8 refs

  11. SCORE - Sounding-rocket Coronagraphic Experiment

    Science.gov (United States)

    Fineschi, Silvano; Moses, Dan; Romoli, Marco

    The Sounding-rocket Coronagraphic Experiment - SCORE - is a The Sounding-rocket Coronagraphic Experiment - SCORE - is a coronagraph for multi-wavelength imaging of the coronal Lyman-alpha lines, HeII 30.4 nm and HI 121.6 nm, and for the broad.band visible-light emission of the polarized K-corona. SCORE has flown successfully in 2009 acquiring the first images of the HeII line-emission from the extended corona. The simultaneous observation of the coronal Lyman-alpha HI 121.6 nm, has allowed the first determination of the absolute helium abundance in the extended corona. This presentation will describe the lesson learned from the first flight and will illustrate the preparations and the science perspectives for the second re-flight approved by NASA and scheduled for 2016. The SCORE optical design is flexible enough to be able to accommodate different experimental configurations with minor modifications. This presentation will describe one of such configurations that could include a polarimeter for the observation the expected Hanle effect in the coronal Lyman-alpha HI line. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV) can be modified by magnetic fields through the Hanle effect. Thus, space-based UV spectro-polarimetry would provide an additional new tool for the diagnostics of coronal magnetism.

  12. Sounding rocket flight report, MUMP 9 and MUMP 10

    Science.gov (United States)

    Grassl, H. J.

    1971-01-01

    The results of the launching of two-Marshall-University of Michigan Probes (MUMP 9 and MUMP 10), Nike-Tomahawk sounding rocket payloads, are summarized. The MUMP is similar to the thermosphere probe, an ejectable instrument package for studying the variability of the earth's atmospheric parameters. The MUMP 9 payload included an omegatron mass analyzer, a molecular fluorescence densitometer, a mini-tilty filter, and a lunar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature in the altitude range from approximately 143 to 297 km over Wallops Island, Virginia, during January 1971. The MUMP 10 payload included an omegatron mass analyzer, an electron temperature probe, a cryogenic densitometer, and a solar position sensor. These instruments permitted the determination of the molecular nitrogen density and temperature and the charged particle density and temperature in the altitude range from approximately 145 to 290 km over Wallops Island during the afternoon preceding the MUMP 9 launch.

  13. Infrasound from the 2009 and 2017 DPRK rocket launches

    Science.gov (United States)

    Evers, L. G.; Assink, J. D.; Smets, P. SM

    2018-06-01

    Supersonic rockets generate low-frequency acoustic waves, that is, infrasound, during the launch and re-entry. Infrasound is routinely observed at infrasound arrays from the International Monitoring System, in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty. Association and source identification are key elements of the verification system. The moving nature of a rocket is a defining criterion in order to distinguish it from an isolated explosion. Here, it is shown how infrasound recordings can be associated, which leads to identification of the rocket. Propagation modelling is included to further constrain the source identification. Four rocket launches by the Democratic People's Republic of Korea in 2009 and 2017 are analysed in which multiple arrays detected the infrasound. Source identification in this region is important for verification purposes. It is concluded that with a passive monitoring technique such as infrasound, characteristics can be remotely obtained on sources of interest, that is, infrasonic intelligence, over 4500+ km.

  14. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array

    Science.gov (United States)

    Panda, Jayanta; Mosher, Robert N.; Porter, Barry J.

    2013-01-01

    A 70 microphone, 10-foot by 10-foot, microphone phased array was built for use in the harsh environment of rocket launches. The array was setup at NASA Wallops launch pad 0A during a static test firing of Orbital Sciences' Antares engines, and again during the first launch of the Antares vehicle. It was placed 400 feet away from the pad, and was hoisted on a scissor lift 40 feet above ground. The data sets provided unprecedented insight into rocket noise sources. The duct exit was found to be the primary source during the static test firing; the large amount of water injected beneath the nozzle exit and inside the plume duct quenched all other sources. The maps of the noise sources during launch were found to be time-dependent. As the engines came to full power and became louder, the primary source switched from the duct inlet to the duct exit. Further elevation of the vehicle caused spilling of the hot plume, resulting in a distributed noise map covering most of the pad. As the entire plume emerged from the duct, and the ondeck water system came to full power, the plume itself became the loudest noise source. These maps of the noise sources provide vital insight for optimization of sound suppression systems for future Antares launches.

  15. Sounding rocket experiments during the IMS period at Syowa Station, Antarctica

    International Nuclear Information System (INIS)

    Hirasawa, T.; Nagata, T.

    1979-01-01

    During IMS Period, 19 sounding rockets were launched into auroras at various stages of polar substorms from Syowa Station (Geomag. lat. = -69.6 0 , Geomag. log. = 77.1 0 ), Antarctica. Through the successful rocket flights, the significant physical quantities in auroras were obtained: 19 profiles of electron density and temperature, 11 energy spectra of precipitating electrons, 15 frequency spectra of VLF and HF plasma waves and 4 vertical profiles of electric and magnetic fields. These rocket data have been analyzed and compared with the coordinated ground-based observation data for studies of polar substorms. (author)

  16. Three-Axis Gasless Sounding Rocket Payload Attitude Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas released by current sounding rocket payload attitude control systems (ACS) has the potential to interfere with some types of science instruments. A single-axis...

  17. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    Science.gov (United States)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  18. Sounding rocket flight report: MUMP 9 and MUMP 10

    Science.gov (United States)

    Grassl, H. J.

    1971-01-01

    The results of the launching of two Marshall-University of Michigan Probes (MUMP 9 and MUMP 10), Nike-Tomahawk sounding rocket payloads, are summarized. The MUMP 9 paylaod included an omegatron mass analyzer, a molecular fluorescence densitometer, a mini-tilty filter, and a lunar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature in the altitude range from approximately 143 to 297 km over Wallops Island, Virginia, during January 1971. The MUMP 10 payload included an omegatron mass analyzer, an electron temperature probe (Spencer, Brace, and Carignan, 1962), a cryogenic densitometer, and a solar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature and the charged particle density and temperature in the altitude range from approximately 145 to 290 km over Wallops Island, Virginia, during the afternoon preceding the MUMP 9 launch in January 1971. A general description of the payload kinematics, orientation analysis, and the technique for the reduction and analysis of the data is given.

  19. An X-ray Experiment with Two-Stage Korean Sounding Rocket

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    1998-12-01

    Full Text Available The test result of the X-ray observation system is presented which have been developed at Korea Astronomy Observatory for 3 years (1995-1997. The instrument, which is composed of detector and signal processing parts, is designed for the future observations of compact X-ray sources. The performance of the instrument was tested by mounting on the two-stage Korean Sounding Rocket, which was launched from Taean rocket flight center on June 11 at 10:00 KST 1998. Telemetry data were received from individual parts of the instrument for 32 and 55.7 sec, respectively, since the launch of the rocket. In this paper, the result of the data analysis based on the telemetry data and discussion about the performance of the instrument is reported.

  20. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    Science.gov (United States)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  1. The German scientific balloon and sounding rocket projects

    International Nuclear Information System (INIS)

    Dalh, A.F.

    1978-01-01

    This report contains information on the sounding rocket projects: experiment preparation for spacelab (astronomy), aeronomy, magnetosphere, and material science. Except for material science the scientific balloon projects are performed in the some scientific fields, but with a strong emphasis on astronomical research. It is tried to provide by means of tables a survey as complete as possible of the projects for the time since the last symposium in Elmau and of the plans for the future until 1981. The scientific balloon and sounding rocket projects form a small succesful part of the German space research programme. (author)

  2. The German scientific balloon and sounding rocket programme

    International Nuclear Information System (INIS)

    Dahl, A.F.

    1980-01-01

    This report contains information on sounding rocket projects in the scientific field of astronomy, aeronomy, magnetosphere, and material science under microgravity. The scientific balloon projects are performed with emphasis on astronomical research. By means of tables it is attempted to give a survey, as complete as possible, of the projects the time since the last symposium in Ajaccio, Corsica, and of preparations and plans for the future until 1983. The scientific balloon and sounding rocket projects form a small successful part of the German space research programme. (Auth.)

  3. DAQ: Software Architecture for Data Acquisition in Sounding Rockets

    Science.gov (United States)

    Ahmad, Mohammad; Tran, Thanh; Nichols, Heidi; Bowles-Martinez, Jessica N.

    2011-01-01

    A multithreaded software application was developed by Jet Propulsion Lab (JPL) to collect a set of correlated imagery, Inertial Measurement Unit (IMU) and GPS data for a Wallops Flight Facility (WFF) sounding rocket flight. The data set will be used to advance Terrain Relative Navigation (TRN) technology algorithms being researched at JPL. This paper describes the software architecture and the tests used to meet the timing and data rate requirements for the software used to collect the dataset. Also discussed are the challenges of using commercial off the shelf (COTS) flight hardware and open source software. This includes multiple Camera Link (C-link) based cameras, a Pentium-M based computer, and Linux Fedora 11 operating system. Additionally, the paper talks about the history of the software architecture's usage in other JPL projects and its applicability for future missions, such as cubesats, UAVs, and research planes/balloons. Also talked about will be the human aspect of project especially JPL's Phaeton program and the results of the launch.

  4. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    Science.gov (United States)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  5. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    International Nuclear Information System (INIS)

    Porter, F.S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T.

    2000-01-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight

  6. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  7. Polar 5, a Norwegian US electron accelerator sounding rocket

    International Nuclear Information System (INIS)

    Jacobsen, T.A.; Maehlum, B.N.; Troeim, J.

    1976-01-01

    A technical description of a mother daughter experiment including an electron gun is given. The payload was launched by a Nike/Tomahawk rocket from Andenes, North-Norway near 2030 local time on February 1, 1976. A few preliminary observations obtained by the HF-wave propagation experiment, the retarding potential analyzer and the energetic electron counters are be presented

  8. 76 FR 20715 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2011-04-13

    ...; Sounding Rockets Program; Poker Flat Research Range AGENCY: National Aeronautics and Space Administration... continuing sounding rocket operations at Poker Flat Research Range (PFRR), Alaska. SUMMARY: Pursuant to the... information about NASA's Sounding Rocket Program (SRP) and the University of Alaska-Fairbanks' PFRR may be...

  9. Physico-Chemical Research on the Sounding Rocket Maser 13

    Science.gov (United States)

    Lockowandt, Christian; Kemi, Stig; Abrahamsson, Mattias; Florin, Gunnar

    MASER is a sounding rocket platform for short-duration microgravity experiments, providing the scientific community with an excellent microgravity tool. The MASER programme has been running by SSC from 1987 and has up to 2012 provided twelve successful flights for microgravity missions with 6-7 minutes of microgravity, the g-level is normally below 1x10-5 g. The MASER 13 is planned to be launched in spring 2015 from Esrange Space Center in Northern Sweden. The rocket will carry four ESA financed experiment modules. The MASER 13 vehicle will be propelled by the 2-stage solid fuel VSB-30 rocket motor, which provided the 390 kg payload with an apogee of 260 km and 6 and a half minutes of microgravity. Swedish Space Corporation carries out the MASER missions for ESA and the program is also available for other customers. The payload comprise four different experiment modules of which three could be defined as physic-chemical research; XRMON-SOL, CDIC-3, MEDI. It also comprises the Maser Service Module and the recovery system. The Service Module provided real-time 5 Mbps down-link of compressed experiment digital video data from the on-board cameras, as well as high-speed housekeeping telemetry data. XRMON-SOL In this experiment the influence of gravity on the formation of an equiaxed microstructure will be investigated. Special attention will be put on the aspect of nucleation, segregation and impingement. The experiment scope is to melt and solidify an AlCu-alloy sample in microgravity. The solidification will be performed in an isothermal environment. The solidification process will be monitored and recorded with X-ray image during the whole flight, images will also be down-linked to ground for real-time monitoring and possible interaction. CDIC-3 The goal is to study in migrogravity the spatio-temporal dynamics of a chemical front travelling in a thin solution layer open to the air and specifically the respective role of Marangoni and density-related hydrodynamic

  10. Development of small solid rocket boosters for the ILR-33 sounding rocket

    Science.gov (United States)

    Nowakowski, Pawel; Okninski, Adam; Pakosz, Michal; Cieslinski, Dawid; Bartkowiak, Bartosz; Wolanski, Piotr

    2017-09-01

    This paper gives an overview of the development of a 6000 Newton-class solid rocket motor for suborbital applications. The design configuration and results of interior ballistics calculations are given. The initial use of the motor as the main propulsion system of the H1 experimental in-flight test platform, within the Polish Small Sounding Rocket Program, is presented. Comparisons of theoretical and experimental performance are shown. Both on-ground and in-flight tests are discussed. A novel composite-case manufacturing technology, which enabled to reach high propellant mass fractions, was validated and significant cost-reductions were achieved. This paper focuses on the process of adapting the design for use as the booster stage of the ILR-33 sounding rocket, under development at the Institute of Aviation in Warsaw, Poland. Parallel use of two of the flight-proven rocket motors along with the main stage is planned. The process of adapting the rocket motor for booster application consists of stage integration, aerothermodynamics and reliability analyses. The separation mechanism and environmental impact are also discussed within this paper. Detailed performance analysis with focus on propellant grain geometry is provided. The evolution of the design since the first flights of the H1 rocket is covered and modifications of the manufacturing process are described. Issues of simultaneous ignition of two motors and their non-identical performance are discussed. Further applications and potential for future development are outlined. The presented results are based on the initial work done by the Rocketry Group of the Warsaw University of Technology Students' Space Association. The continuation of the Polish Small Sounding Rocket Program on a larger scale at the Institute of Aviation proves the value of the outcomes of the initial educational project.

  11. A Real Time Differential GPS Tracking System for NASA Sounding Rockets

    Science.gov (United States)

    Bull, Barton; Bauer, Frank (Technical Monitor)

    2000-01-01

    Sounding rockets are suborbital launch vehicles capable of carrying scientific payloads to several hundred miles in altitude. These missions return a variety of scientific data including: chemical makeup and physical processes taking place in the atmosphere, natural radiation surrounding the Earth, data on the Sun, stars, galaxies and many other phenomena. In addition, sounding rockets provide a reasonably economical means of conducting engineering tests for instruments and devices to be used on satellites and other spacecraft prior to their use in these more expensive missions. Typically around thirty of these rockets are launched each year, from established ranges at Wallops Island, Virginia; Poker Flat Research Range, Alaska; White Sands Missile Range, New Mexico and from a number of ranges outside the United States. Many times launches are conducted from temporary launch ranges in remote parts of the world requiring considerable expense to transport and operate tracking radars. In order to support these missions, an inverse differential GPS system has been developed. The flight system consists of a small, inexpensive receiver, a preamplifier and a wrap-around antenna. A rugged, compact, portable ground station extracts GPS data from the raw payload telemetry stream, performs a real time differential solution and graphically displays the rocket's path relative to a predicted trajectory plot. In addition to generating a real time navigation solution, the system has been used for payload recovery, timing, data timetagging, precise tracking of multiple payloads and slaving of optical tracking systems for over the horizon acquisition. This paper discusses, in detail, the flight and ground hardware, as well as data processing and operational aspects of the system, and provides evidence of the system accuracy.

  12. Radiophysical and geomagnetic effects of rocket burn and launch in the near-the-earth environment

    CERN Document Server

    Chernogor, Leonid F

    2013-01-01

    Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment describes experimental and theoretical studies on the effects of rocket burns and launchings on the near-the-Earth environment and geomagnetic fields. It illuminates the main geophysical and radiophysical effects on the ionosphere and magnetosphere surrounding the Earth that accompany rocket or cosmic apparatus burns and launchings from 1,000 to 10,000 kilometers.The book analyzes the disturbances of plasma and the ambient magnetic and electric fields in the near-Earth environment from rocket burn

  13. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    Science.gov (United States)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  14. Description and Flight Performance Results of the WASP Sounding Rocket

    Science.gov (United States)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  15. Design and qualification of an UHV system for operation on sounding rockets

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Jens, E-mail: jens.grosse@dlr.de; Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Bremen, 28359, Germany and German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Seidel, Stephan Tobias; Becker, Dennis; Lachmann, Maike Diana [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167 (Germany); Scharringhausen, Marco [German Aerospace Center (DLR) Bremen, Bremen, 28359 (Germany); Rasel, Ernst Maria [Institute of Quantum Optics, Leibniz University Hanover, Hanover, 30167, Bremen (Germany)

    2016-05-15

    The sounding rocket mission MAIUS-1 has the objective to create the first Bose–Einstein condensate in space; therefore, its scientific payload is a complete cold atom experiment built to be launched on a VSB-30 sounding rocket. An essential part of the setup is an ultrahigh vacuum system needed in order to sufficiently suppress interactions of the cooled atoms with the residual background gas. Contrary to vacuum systems on missions aboard satellites or the international space station, the required vacuum environment has to be reached within 47 s after motor burn-out. This paper contains a detailed description of the MAIUS-1 vacuum system, as well as a description of its qualification process for the operation under vibrational loads of up to 8.1 g{sub RMS} (where RMS is root mean square). Even though a pressure rise dependent on the level of vibration was observed, the design presented herein is capable of regaining a pressure of below 5 × 10{sup −10} mbar in less than 40 s when tested at 5.4 g{sub RMS}. To the authors' best knowledge, it is the first UHV system qualified for operation on a sounding rocket.

  16. Simultaneous observations of E- and B-ULF waves aboard a sounding rocket payload

    International Nuclear Information System (INIS)

    Kloecker, N.; Luehr, H.; Grabowski, R.

    1980-01-01

    Magnetic and electric field variations in the frequency range of 0.5 to 4 Hz were made on a payload flown within the IMS sounding rocket campaign 'Substormphenomena'. The payload was launched into an auroral break-up. The waves show amplitudes up to 100 nT in B and 100 mV/m in E. Mutual correlation of B and E as well as correlation with electron precipitation are observed. The energy flux of the waves and the particles are equally directed and of the same order of magnitude. (Auth.)

  17. Design Methodology and Performance Evaluation of New Generation Sounding Rockets

    Directory of Open Access Journals (Sweden)

    Marco Pallone

    2018-01-01

    Full Text Available Sounding rockets are currently deployed for the purpose of providing experimental data of the upper atmosphere, as well as for microgravity experiments. This work provides a methodology in order to design, model, and evaluate the performance of new sounding rockets. A general configuration composed of a rocket with four canards and four tail wings is sized and optimized, assuming different payload masses and microgravity durations. The aerodynamic forces are modeled with high fidelity using the interpolation of available data. Three different guidance algorithms are used for the trajectory integration: constant attitude, near radial, and sun-pointing. The sun-pointing guidance is used to obtain the best microgravity performance while maintaining a specified attitude with respect to the sun, allowing for experiments which are temperature sensitive. Near radial guidance has instead the main purpose of reaching high altitudes, thus maximizing the microgravity duration. The results prove that the methodology at hand is straightforward to implement and capable of providing satisfactory performance in term of microgravity duration.

  18. Development of the Hawk/Nike Hawk sounding rocket vehicles

    Science.gov (United States)

    Flowers, B. J.

    1976-01-01

    A new sounding rocket family, the Hawk and Nike-Hawk Vehicles, have been developed, flight tested and added to the NASA Sounding Rocket Vehicle Stable. The Hawk is a single-stage vehicle that will carry 35.6 cm diameter payloads weighing 45.5 kg to 91 kg to altitudes of 78 km to 56 km, respectively. The two-stage Nike-Hawk will carry payloads weighing 68 kg to 136 kg to altitudes of 118 km to 113 km, respectively. Both vehicles utilize the XM22E8 Hawk rocket motor which is available in large numbers as a surplus item from the U.S. Army. The Hawk fin and tail can hardware were designed in-house. The Nike tail can and fin hardware are surplus Nike-Ajax booster hardware. Development objectives were to provide a vehicle family with a larger diameter, larger volume payload capability than the Nike-Apache and Nike-Tomahawk vehicles at comparable cost. Both vehicles performed nominally in flight tests.

  19. Review of the British scientific sounding rocket and balloon programmes

    International Nuclear Information System (INIS)

    Delury, J.T.

    1978-01-01

    This review describes the UK scientific sounding rocket programmes which have utilised Skylarks for 21 years, Petrels for 10 years and Fulmars for 2 years. The SRC's ongoing programme is now based on the Petrel and Fulmar rockets, and approved proposals by 5 UK scientific groups covering 1978 and 1979 are outlined. The British scientific balloon programme, which serves 14 scientific groups within UK universities, involves a planned 10 flights per annum using balloons of 3 M cu ft to 31 M cu ft capacity and payloads up to 2 tons in weight. The review outlines the balloon programme of flights planned mainly from Palestine in Texas and Alice Springs/Mildura in Australia. (author)

  20. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  1. Development of the Astrobee F sounding rocket system.

    Science.gov (United States)

    Jenkins, R. B.; Taylor, J. P.; Honecker, H. J., Jr.

    1973-01-01

    The development of the Astrobee F sounding rocket vehicle through the first flight test at NASA-Wallops Station is described. Design and development of a 15 in. diameter, dual thrust, solid propellant motor demonstrating several new technology features provided the basis for the flight vehicle. The 'F' motor test program described demonstrated the following advanced propulsion technology: tandem dual grain configuration, low burning rate HTPB case-bonded propellant, and molded plastic nozzle. The resultant motor integrated into a flight vehicle was successfully flown with extensive diagnostic instrumentation.-

  2. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  3. Modeling of "Stripe" Wave Phenomena Seen by the CHARM II and ACES Sounding Rockets

    Science.gov (United States)

    Dombrowski, M. P.; Labelle, J. W.

    2010-12-01

    Two recent sounding-rocket missions—CHARM II and ACES—have been launched from Poker Flat Research Range, carrying the Dartmouth High-Frequency Experiment (HFE) among their primary instruments. The HFE is a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz. The CHARM II sounding rocket was launched 9:49 UT on 15 February 2010 into a substorm, while the ACES mission consisted of two rockets, launched into quiet aurora at 9:49 and 9:50 UT on 29 January 2009. At approximately 350 km on CHARM II and the ACES High-Flyer, the HFE detected short (~2s) bursts of broadband (200-500 kHz) noise with a 'stripe' pattern of nulls imposed on it. These nulls have 10 to 20 kHz width and spacing, and many show a regular, non-linear frequency-time relation. These events are different from the 'stripes' discussed by Samara and LaBelle [2006] and Colpitts et al. [2010], because of the density of the stripes, the non-linearity, and the appearance of being an absorptive rather than emissive phenomenon. These events are similar to 'stripe' features reported by Brittain et al. [1983] in the VLF range, explained as an interference pattern between a downward-traveling whistler-mode wave and its reflection off the bottom of the ionosphere. Following their analysis method, we modeled our stripes as higher-frequency interfering whistlers reflecting off of a density gradient. This model predicts the near-hyperbolic frequency-time curves and high density of the nulls, and therefore shows promise at explaining the new observations.

  4. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  5. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  6. Experimental reslts from the HERO project: In situ measurements of ionospheric modifications using sounding rockets

    International Nuclear Information System (INIS)

    Rose, G.; Grandal, B.; Neske, E.; Ott, W.; Spenner, K.; Maseide, K.; Troim, J.

    1985-01-01

    The Heating Rocket project HERO comprised the first in situ experiments to measure artifical ionospheric modifications at F layer heights set up by radio waves transmitted from the Heating facility at Ramfjord near Tromso in Northern Norway. Four instrumented payloads were launched on sounding rockets from Andoya Rocket Range during the autumn of 1982 into a sunlit ionosphere with the sun close to the horizon. The payloads recorded modifications, in particular, the presence of electron plasma waves near the reflection level of the heating wave. The amplitude and phase of the three components of the electric and magnetic fields of the heating wave were measured simultaneously as a function of altitude. Coherent spectra of the three electric field components of the locally generated electron plasma waves were obtained in a 50-kHz-wide band. At the same time quasi-continuous measurements were made on several fixed frequencies from 4 kHz to 16 kHz below the heating frequency and in the VLF-range using linear dipole antennas. Moreover, measurements were made of electron temperature, suprathermal electrons and local electron density along the rocket trajectory. The experimental results will be presented and discussed

  7. The Extended Duration Sounding Rocket (EDSR): Low Cost Science and Technology Missions

    Science.gov (United States)

    Cruddace, R. G.; Chakrabarti, S.; Cash, W.; Eberspeaker, P.; Figer, D.; Figueroa, O.; Harris, W.; Kowalski, M.; Maddox, R.; Martin, C.; McCammon, D.; Nordsieck, K.; Polidan, R.; Sanders, W.; Wilkinson, E.; Asrat

    2011-12-01

    The 50-year old NASA sounding rocket (SR) program has been successful in launching scientific payloads into space frequently and at low cost with a 85% success rate. In 2008 the NASA Astrophysics Sounding Rocket Assessment Team (ASRAT), set up to review the future course of the SR program, made four major recommendations, one of which now called Extended Duration Sounding Rocket (EDSR). ASRAT recommended a system capable of launching science payloads (up to 420 kg) into low Earth orbit frequently (1/yr) at low cost, with a mission duration of approximately 30 days. Payload selection would be based on meritorious high-value science that can be performed by migrating sub-orbital payloads to orbit. Establishment of this capability is a essential for NASA as it strives to advance technical readiness and lower costs for risk averse Explorers and flagship missions in its pursuit of a balanced and sustainable program and achieve big science goals within a limited fiscal environment. The development of a new generation of small, low-cost launch vehicles (SLV), primarily the SpaceX Falcon 1 and the Orbital Sciences Minotaur I has made this concept conceivable. The NASA Wallops Flight Facility (WFF)conducted a detailed engineering concept study, aimed at defining the technical characteristics of all phases of a mission, from design, procurement, assembly, test, integration and mission operations. The work was led by Dr. Raymond Cruddace, a veteran of the SR program and the prime mover of the EDSR concept. The team investigated details such as, the "FAA licensed contract" for launch service procurement, with WFF and NASA SMD being responsible for mission assurance which results in a factor of two cost savings over the current approach. These and other creative solutions resulted in a proof-of-concept Class D mission design that could have a sustained launch rate of at least 1/yr, a mission duration of up to about 3 months, and a total cost of $25-30 million for each mission

  8. Scientific Experiences Using Argentinean Sounding Rockets in Antarctica

    Science.gov (United States)

    Sánchez-Peña, Miguel

    2000-07-01

    Argentina in the sixties and seventies, had experience for developing and for using sounding rockets and payloads to perform scientific space experiments. Besides they have several bases in Antarctica with adequate premises and installations, also duly equipped aircrafts and trained crews to flight to the white continent. In February 1965, scientists and technical people from the "Instituto de Investigacion Aeronáutica y Espacial" (I.I.A.E.) with the cooperation of the Air Force and the Tucuman University, conducted the "Matienzo Operation" to measure X radiation and temperature in the upper atmosphere, using the Gamma Centauro rocket and also using big balloons. The people involved in the experience, the launcher, other material and equipment flew from the south tip of Argentina to the Matienzo base in Antarctica, in a C-47 aircraft equipped with skies an additional jet engine Marbore 2-C. Other experience was performed in 1975 in the "Marambio" Antartic Base, using the two stages solid propellent sounding rocket Castor, developed in Argentina. The payload was developed in cooperation with the Max Planck Institute of Germany. It consist of a special mixture including a shape charge to form a ionized cloud producing a jet of electrons travelling from Marambio base to the conjugate point in the Northern hemisphere. The cloud was observed by several ground stations in Argentina and also by a NASA aircraft with TV cameras, flying at East of New York. The objective of this experience was to study the electric and magnetic fields in altitude, the neutral points, the temperature and electrons profile. The objectives of both experiments were accomplished satisfactorily.

  9. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket

    Science.gov (United States)

    Heitkotter, Robert H

    1956-01-01

    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  10. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    Science.gov (United States)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  11. Measurements of auroral particles by means of sounding rockets of mother-daughter type

    International Nuclear Information System (INIS)

    Falck, A.

    1985-11-01

    The scientific objective of the S17 payloads was to study the ionosphere during auroral situations and especially with regards to the local fine structure and a possible separation of spatial and temporal variations of auroral phenomena. The intensities of 8 keV and 2 keV electrons have been measured from one sounding rocket launched into a breakup aurora of moderate activity and from another rocket launched into a very active substorm situation. Both the rockets were of mother-daughter type i.e. had two separated payloads. The general features in the data of different particle energies were very similar over the whole flight time of the rockets. Special events and gradients and well identifiable shapes in the particle intensities were studied to see if the intensity fluctuations obtained from two detectors in one payload or from detectors into separate payloads were time delayed. Such time delays in the particle flux intensities were obvious in both of the rocket measurements and most of these time shifts could be understood as caused by spatial variations in the particle precipitation. In parts of the rocket flights the particle intensity variations were true temporal changes. The time lags between 8 keV and 2 keV electron intensities detected in the same payload, which could be observed and were obtained by crosscorrelation analyses, were in the range less than 0.3 s and most of them less than 0.1 s. If the time differences are assumed to be caused by the velocity dispersion of the particles, the particle data reported here placed the modulation source at a distance of less than 10 000 km from the rocket position. Measurements at the S17-1 mother payload of the electric field have been compared with data of precipitating electrons and low-light-level-TV-recording of the auroral situation. An inverted-V precipitation event was observed and was associated with auroral arcs and with reversals of the measured electric field components implicating the possibility of

  12. Data Analysis of the TK-1G Sounding Rocket Installed with a Satellite Navigation System

    Directory of Open Access Journals (Sweden)

    Lesong Zhou

    2017-10-01

    Full Text Available This article gives an in-depth analysis of the experimental data of the TK-1G sounding rocket installed with the satellite navigation system. It turns out that the data acquisition rate of the rocket sonde is high, making the collection of complete trajectory and meteorological data possible. By comparing the rocket sonde measurements with those obtained by virtue of other methods, we find that the rocket sonde can be relatively precise in measuring atmospheric parameters within the scope of 20–60 km above the ground. This establishes the fact that the TK-1G sounding rocket system is effective in detecting near-space atmospheric environment.

  13. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  14. Relationship of Worldwide Rocket Launch Crashes with Geophysical Parameters

    Directory of Open Access Journals (Sweden)

    N. Romanova

    2013-01-01

    Full Text Available A statistical comparison of launch crashes at different worldwide space ports with geophysical factors has been performed. A comprehensive database has been compiled, which includes 50 years of information from the beginning of the space age in 1957 about launch crashes occurring world-wide. Special attention has been paid to statistics concerning launches at the largest space ports: Plesetsk, Baikonur, Cape Canaveral, and Vandenberg. In search of a possible influence of geophysical factors on launch failures, such parameters as the vehicle type, local time, season, sunspot number, high-energy electron fluxes, and solar proton events have been examined. Also, we have analyzed correlations with the geomagnetic indices as indirect indicators of the space weather condition. Regularities found in this study suggest that further detailed studies of space weather effects on launcher systems, especially in the high-latitude regions, should be performed.

  15. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    Science.gov (United States)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  16. Propulsion and launching analysis of variable-mass rockets by analytical methods

    Directory of Open Access Journals (Sweden)

    D.D. Ganji

    2013-09-01

    Full Text Available In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM, homotopy perturbation method (HPM and least square method (LSM were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a parametric study is performed here which includes the effect of exhaust velocity (Ce, burn rate (BR of fuel and diameter of cylindrical rocket (d on the motion of a sample rocket, and contours for showing the sensitivity of these parameters are plotted. The main results indicate that the rocket velocity and altitude are increased with increasing the Ce and BR and decreased with increasing the rocket diameter and drag coefficient.

  17. JOKARUS - design of a compact optical iodine frequency reference for a sounding rocket mission

    Energy Technology Data Exchange (ETDEWEB)

    Schkolnik, Vladimir; Doeringshoff, Klaus; Gutsch, Franz Balthasar; Krutzik, Markus [Humboldt-Universitaet zu Berlin, Berlin (Germany); Oswald, Markus [Universitaet Bremen, Zentrum fuer angewandte Raumfahrttechnologie und Mikrogravitation (ZARM), Bremen (Germany); Schuldt, Thilo [Institut fuer Raumfahrtsysteme, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Bremen (Germany); Braxmaier, Claus [Universitaet Bremen, Zentrum fuer angewandte Raumfahrttechnologie und Mikrogravitation (ZARM), Bremen (Germany); Institut fuer Raumfahrtsysteme, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Bremen (Germany); Lezius, Matthias; Holzwarth, Ronald [Menlo Systems GmbH, Martinsried (Germany); Kuerbis, Christian; Bawamia, Ahmad [Leibniz-Institut fuer Hoechstfrequenztechnik, Ferdinand-Braun-Institut, Berlin (Germany); Peters, Achim [Humboldt-Universitaet zu Berlin, Berlin (Germany); Leibniz-Institut fuer Hoechstfrequenztechnik, Ferdinand-Braun-Institut, Berlin (Germany)

    2017-12-15

    We present the design of a compact absolute optical frequency reference for space applications based on hyperfine transitions in molecular iodine with a targeted fractional frequency instability of better than 3 x 10{sup -14} after 1 s. It is based on a micro-integrated extended cavity diode laser with integrated optical amplifier, fiber pigtailed second harmonic generation wave-guide modules, and a quasi-monolithic spectroscopy setup with operating electronics. The instrument described here is scheduled for launch end of 2017 aboard the TEXUS 54 sounding rocket as an important qualification step towards space application of iodine frequency references and related technologies. The payload will operate autonomously and its optical frequency will be compared to an optical frequency comb during its space flight. (orig.)

  18. Ionospheric E–F valley observed by a sounding rocket at the low-latitude station Hainan

    Directory of Open Access Journals (Sweden)

    J. K. Shi

    2013-08-01

    Full Text Available According to the sounding rocket experiment conducted at Hainan ionospheric observatory (19.5° N, 109.1° E, a valley between the E layer and F layer in the ionospheric electron density profile is observed and presented. The sounding rocket was launched in the morning (06:15 LT on 7 May 2011, and the observed electron density profile outside the valley agrees with the simultaneous observation by the DPS-4 digisonde at the same station. The width of the observed valley was about 42 km, the depth almost 50%, and the altitude of the electron density minimum 123.5 km. This is the first observation of the E–F valley in the low-latitude region in the East Asian sector. The results are also compared with models, and the physical mechanism of the observed valley is discussed in this paper.

  19. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    Science.gov (United States)

    Yamamoto, M.; Yokoyama, T.; Saito, A.; Otsuka, Y.; Yamamoto, M.; Abe, T.; Watanabe, S.; Ishisaka, K.; Saito, S.; Larsen, M.; Pfaff, R. F.; Bernhardt, P. A.

    2012-12-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA while ground-based instruments measure waves in the ionosphere. It is scheduled in July/August 2013. The main purpose of the experiment is to reveal generation mechanism of Medium-Scale Traveling Ionospheric Disturbance (MSTID). The MSTID is the ionospheric wave with 1-2 hour periodicity, 100-200 km horizontal wavelength, and southwestward propagation. It is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple atmospheric-wave modulation of the ionosphere, but shows similarity to characteristics of the Perkins instability. A problem is that growth rate of the Perkins instability is too small to explain the phenomena. We now hypothesize a generation mechanism that electromagnetic coupling of the F- and E-regions help rapid growth of the MSTID especially at its initial stage. In the observation campaign, we will use the sounding rocket S-520-27 for in-situ measurement of ionospheric parameters, i.e., electron density and electric fields. Wind velocity measurements in both F- and E-regions are very important as well. For the F-region winds, we will conduct Lithium-release experiment under the full-moon condition. This is a big technical challenge. Another rocket S-310-42 will be used for the E-region wind measurement with the TMA release. On the ground, we will use GEONET (Japanese vast GPS receiver network) to monitor horizontal distribution of GPS-TEC on the realtime bases. In the presentation we will show MSTID characteristics and the proposed generation mechanism, and discuss plan and current status of the project.

  20. The Isinglass Auroral Sounding Rocket Campaign: data synthesis incorporating remote sensing, in situ observations, and modelling

    Science.gov (United States)

    Lynch, K. A.; Clayton, R.; Roberts, T. M.; Hampton, D. L.; Conde, M.; Zettergren, M. D.; Burleigh, M.; Samara, M.; Michell, R.; Grubbs, G. A., II; Lessard, M.; Hysell, D. L.; Varney, R. H.; Reimer, A.

    2017-12-01

    The NASA auroral sounding rocket mission Isinglass was launched from Poker Flat Alaska in winter 2017. This mission consists of two separate multi-payload sounding rockets, over an array of groundbased observations, including radars and filtered cameras. The science goal is to collect two case studies, in two different auroral events, of the gradient scale sizes of auroral disturbances in the ionosphere. Data from the in situ payloads and the groundbased observations will be synthesized and fed into an ionospheric model, and the results will be studied to learn about which scale sizes of ionospheric structuring have significance for magnetosphere-ionosphere auroral coupling. The in situ instrumentation includes thermal ion sensors (at 5 points on the second flight), thermal electron sensors (at 2 points), DC magnetic fields (2 point), DC electric fields (one point, plus the 4 low-resource thermal ion RPA observations of drift on the second flight), and an auroral precipitation sensor (one point). The groundbased array includes filtered auroral imagers, the PFISR and SuperDarn radars, a coherent scatter radar, and a Fabry-Perot interferometer array. The ionospheric model to be used is a 3d electrostatic model including the effects of ionospheric chemistry. One observational and modelling goal for the mission is to move both observations and models of auroral arc systems into the third (along-arc) dimension. Modern assimilative tools combined with multipoint but low-resource observations allow a new view of the auroral ionosphere, that should allow us to learn more about the auroral zone as a coupled system. Conjugate case studies such as the Isinglass rocket flights allow for a test of the models' intepretation by comparing to in situ data. We aim to develop and improve ionospheric models to the point where they can be used to interpret remote sensing data with confidence without the checkpoint of in situ comparison.

  1. Motor actuated vacuum door. [for photography from sounding rockets

    Science.gov (United States)

    Hanagud, A. V.

    1986-01-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  2. Wavefront sensing in space: flight demonstration II of the PICTURE sounding rocket payload

    Science.gov (United States)

    Douglas, Ewan S.; Mendillo, Christopher B.; Cook, Timothy A.; Cahoy, Kerri L.; Chakrabarti, Supriya

    2018-01-01

    A NASA sounding rocket for high-contrast imaging with a visible nulling coronagraph, the Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) payload, has made two suborbital attempts to observe the warm dust disk inferred around Epsilon Eridani. The first flight in 2011 demonstrated a 5 mas fine pointing system in space. The reduced flight data from the second launch, on November 25, 2015, presented herein, demonstrate active sensing of wavefront phase in space. Despite several anomalies in flight, postfacto reduction phase stepping interferometer data provide insight into the wavefront sensing precision and the system stability for a portion of the pupil. These measurements show the actuation of a 32 × 32-actuator microelectromechanical system deformable mirror. The wavefront sensor reached a median precision of 1.4 nm per pixel, with 95% of samples between 0.8 and 12.0 nm per pixel. The median system stability, including telescope and coronagraph wavefront errors other than tip, tilt, and piston, was 3.6 nm per pixel, with 95% of samples between 1.2 and 23.7 nm per pixel.

  3. THE ADIABATIC DEMAGNETIZATION REFRIGERATOR FOR THE MICRO-X SOUNDING ROCKET TELESCOPE

    International Nuclear Information System (INIS)

    Wikus, P.; Bagdasarova, Y.; Figueroa-Feliciano, E.; Leman, S. W.; Rutherford, J. M.; Trowbridge, S. N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Doriese, W. B.; McCammon, D.

    2010-01-01

    The Micro-X Imaging X-ray Spectrometer is a sounding rocket payload slated for launch in 2011. An array of Transition Edge Sensors, which is operated at a bath temperature of 50 mK, will be used to obtain a high resolution spectrum of the Puppis-A supernova remnant. An Adiabatic Demagnetization Refrigerator (ADR) with a 75 gram Ferric Ammonium Alum (FAA) salt pill in the bore of a 4 T superconducting magnet provides a stable heat sink for the detector array only a few seconds after burnout of the rocket motors. This requires a cold stage design with very short thermal time constants. A suspension made from Kevlar strings holds the 255 gram cold stage in place. It is capable of withstanding loads in excess of 200 g. Stable operation of the TES array in proximity to the ADR magnet is ensured by a three-stage magnetic shielding system which consists of a superconducting can, a high-permeability shield and a bucking coil. The development and testing of the Micro-X payload is well underway.

  4. Examination of Cross-Scale Coupling During Auroral Events using RENU2 and ISINGLASS Sounding Rocket Data.

    Science.gov (United States)

    Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.

    2017-12-01

    The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.

  5. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  6. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand

    Science.gov (United States)

    Chaparro, Javier

    2013-01-01

    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of

  7. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket

    Science.gov (United States)

    Lin, Charles C. H.; Shen, Ming-Hsueh; Chou, Min-Yang; Chen, Chia-Hung; Yue, Jia; Chen, Po-Cheng; Matsumura, Mitsuru

    2017-08-01

    We report the first observation of concentric traveling ionospheric disturbances (CTIDs) triggered by the launch of a SpaceX Falcon 9 rocket on 17 January 2016. The rocket-triggered ionospheric disturbances show shock acoustic wave signature in the time rate change (time derivative) of total electron content (TEC), followed by CTIDs in the 8-15 min band-pass filtering of TEC. The CTIDs propagated northward with phase velocity of 241-617 m/s and reached distances more than 1000 km away from the source on the rocket trajectory. The wave characteristics of CTIDs with periods of 10.5-12.7 min and wavelength 200-400 km agree well with the gravity wave dispersion relation. The optimal wave source searching and gravity wave ray tracing technique suggested that the CTIDs have multiple sources which are originated from 38-120 km altitude before and after the ignition of the second-stage rocket, 200 s after the rocket was launched.

  8. Kinetic modeling of auroral ion outflows observed by the VISIONS sounding rocket

    Science.gov (United States)

    Albarran, R. M.; Zettergren, M. D.

    2017-12-01

    The VISIONS (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the ion outflow below 1000km. Energetic ion data from the VISIONS polar cap boundary crossing show evidence of an ion "pressure cooker" effect whereby ions energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an energetic neutral atom (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing ions. Hence, inferences about ion outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling energetic outflowing ion distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of ion distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of ion cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of ions. The model is initiated with a steady-state ion density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.

  9. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  10. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    Science.gov (United States)

    Olds, John R.; Walberg, Gerald D.

    1993-01-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  11. Convection measurement package for space processing sounding rocket flights. [low gravity manufacturing - fluid dynamics

    Science.gov (United States)

    Spradley, L. W.

    1975-01-01

    The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.

  12. Modeling of Mutiscale Electromagnetic Magnetosphere-Ionosphere Interactions near Discrete Auroral Arcs Observed by the MICA Sounding Rocket

    Science.gov (United States)

    Streltsov, A. V.; Lynch, K. A.; Fernandes, P. A.; Miceli, R.; Hampton, D. L.; Michell, R. G.; Samara, M.

    2012-12-01

    The MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) sounding rocket was launched from Poker Flat on February 19, 2012. The rocket was aimed into the system of discrete auroral arcs and during its flight it detected small-scale electromagnetic disturbances with characteristic features of dispersive Alfvén waves. We report results from numerical modeling of these observations. Our simulations are based on a two-fluid MHD model describing multi-scale interactions between magnetic field-aligned currents carried by shear Alfven waves and the ionosphere. The results from our simulations suggest that the small-scale electromagnetic structures measured by MICA indeed can be interpreted as dispersive Alfvén waves generated by the active ionospheric response (ionopspheric feedback instability) inside the large-scale downward magnetic field-aligned current interacting with the ionosphere.

  13. The Norwegian sounding rocket programme 1980-83

    International Nuclear Information System (INIS)

    Egeland, A.; Gundersen, A.

    1980-01-01

    As illustrated by the rocket program presented and discussed in this paper, exploration of the polar ionosphere still plays a central part in the Norwegian research program in science. A cornerstone in the Norwegian space program is the Andoeya Rocket Range. It will be shown that advanced radio installations in northern Scandinavia together with the new optical site at Svalbard will stimulate towards further in situ measurements and theoretical work of the polar ionosphere. (Auth.)

  14. Propulsion and launching analysis of variable-mass rockets by analytical methods

    OpenAIRE

    D.D. Ganji; M. Gorji; M. Hatami; A. Hasanpour; N. Khademzadeh

    2013-01-01

    In this study, applications of some analytical methods on nonlinear equation of the launching of a rocket with variable mass are investigated. Differential transformation method (DTM), homotopy perturbation method (HPM) and least square method (LSM) were applied and their results are compared with numerical solution. An excellent agreement with analytical methods and numerical ones is observed in the results and this reveals that analytical methods are effective and convenient. Also a paramet...

  15. Performance analysis of an IMU-augmented GNSS tracking system on board the MAIUS-1 sounding rocket

    Science.gov (United States)

    Braun, Benjamin; Grillenberger, Andreas; Markgraf, Markus

    2018-05-01

    Satellite navigation receivers are adequate tracking sensors for range safety of both orbital launch vehicles and suborbital sounding rockets. Due to high accuracy and its low system complexity, satellite navigation is seen as well-suited supplement or replacement of conventional tracking systems like radar. Having the well-known shortcomings of satellite navigation like deliberate or unintentional interferences in mind, it is proposed to augment the satellite navigation receiver by an inertial measurement unit (IMU) to enhance continuity and availability of localization. The augmented receiver is thus enabled to output at least an inertial position solution in case of signal outages. In a previous study, it was shown by means of simulation using the example of Ariane 5 that the performance of a low-grade microelectromechanical IMU is sufficient to bridge expected outages of some ten seconds, and still meeting the range safety requirements in effect. In this publication, these theoretical findings shall be substantiated by real flight data that were recorded on MAIUS-1, a sounding rocket launched from Esrange, Sweden, in early 2017. The analysis reveals that the chosen representative of a microelectromechanical IMU is suitable to bridge outages of up to thirty seconds.

  16. Study of medium-scale traveling ionospheric disturbances (MSTID) with sounding rockets and ground observations

    Science.gov (United States)

    Yamamoto, Mamoru; Abe, Takumi; Kumamoto, Atsushi; Yokoyama, Tatsuhiro; Bernhardt, Paul; Watanabe, Shigeto; Yamamoto, Masa-yuki; Larsen, Miguel; Saito, Susumu; Tsugawa, Takuya; Ishisaka, Keigo; Iwagami, Naomoto; Nishioka, Michi; Kato, Tomohiro; Takahashi, Takao; Tanaka, Makoto; Mr

    Medium-scale traveling ionospheric disturbance (MSTID) is an interesting phenomenon in the F-region. The MSTID is frequent in summer nighttime over Japan, showing wave structures with wavelengths of 100-200 km, periodicity of about 1 hour, and propagation toward the southwest. The phenomena are observed by the total electron content (TEC) from GEONET, Japanese dense network of GPS receivers, and 630 nm airglow imagers as horizontal pattern. It was also measured as Spread-F events of ionograms or as field-aligned echoes of the MU radar. MSTID was, in the past, explained by Perkins instability (Perkins, 1973) while its low growth rate was a problem. Recently 3D simulation study by Yokoyama et al (2009) hypothesized a generation mechanism of the MSTID, which stands on electromagnetic E/F-region coupling of the ionosphere. The hypothesis is that the MSTID first grows with polarization electric fields from sporadic-E, then show spatial structures resembling to the Perkins instability. We recently conducted a observation campaign to check this hypothesis. We launched JASA ISAS sounding rockets S-310-42 and S-520-27 at 23:00 JST and 23:57JST on July 20, 2013 while an MSTID event was monitored in real-time by the GPS-TEC from GEONET. We found 1-5mV/m northeastward/eastward electric fields during the flight. Variation of electric fileds were associated with horizontal distribution of plasma density. Wind velocity was measured by the TME and Lithium releases from S-310-42 and S-520-27 rockets, respectively, showing southward wind near the sporadic-E layer heights. These results are consistent to the expected generation mechanism shown above. In the presentation we will discuss electric-field results and its relationship with plasma density variability together with preliminary results from the neutral-wind observations.

  17. Ramjet Application Possibilities for Increasing Fire Range of the Multiple Launch Rocket Systems Ammunition

    Directory of Open Access Journals (Sweden)

    V. N. Zubov

    2015-01-01

    Full Text Available The article considers a possibility to increase a flying range of the perspective rockets equipped with the control unit with aerodynamic controllers for the multiple launch rocket systems “Smerch”.To increase a flying range and reduce a starting mass of the rocket, the paper studies a possibility to replace the single-mode rocket engine used in the solid-fuel rocket motor for the direct-flow propulsion jet engine (DFPJE with not head sector air intakes. The DFPJE is implemented according to the classical scheme with a fuel charged in the combustion chamber. A separated solid propellant starting accelerator provides the rocket acceleration to reach a speed necessary for the DFPJE to run.When designing the DFPJE a proper choice of not head air intake parameters is one of the most difficult points. For this purpose a COSMOS Flow Simulation software package and analytical dependences were used to define the following: a boundary layer thickness where an air intake is set, maximum permissible and appropriate angles of attack and deviation angles of controllers at the section where the DFPJE works, and some other parameters as well.Calculation of DFPJE characteristics consisted in determining parameters of an air-gas path of the propulsion system, geometrical sizes of the pipeline flow area, sizes of a fuel charge, and dependence of the propulsion system impulse on the flight height and speed. Calculations were performed both in thermodynamic statement of problem and in using software package of COSMOS Flow Simulation.As a result of calculations and design engineering activities the air intake profile is created and mass-dimensional characteristics of DFPJE are defined. Besides, calculations of the starting solid fuel accelerator were carried out. Further design allowed us to create the rocket shape, estimate its mass-dimensional characteristics, and perform ballistic calculations, which proved that achieving a range of 120 km for the rocket is

  18. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    Science.gov (United States)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  19. Making Ultraviolet Spectro-Polarimetry Polarization Measurements with the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    Science.gov (United States)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program. This paper will concentrate on SUMI's VUV optics, and discuss their spectral, spatial and polarization characteristics. While SUMI's first flight (7/30/2010) met all of its mission success criteria, there are several areas that will be improved for its second and third flights. This paper will emphasize the MgII linear polarization measurements and describe the changes that will be made to the sounding rocket and how those changes will improve the scientific data acquired by SUMI.

  20. Stage separation study of Nike-Black Brant V Sounding Rocket System

    Science.gov (United States)

    Ferragut, N. J.

    1976-01-01

    A new Sounding Rocket System has been developed. It consists of a Nike Booster and a Black Brant V Sustainer with slanted fins which extend beyond its nozzle exit plane. A cursory look was taken at different factors which must be considered when studying a passive separation system. That is, one separation system without mechanical constraints in the axial direction and which will allow separation due to drag differential accelerations between the Booster and the Sustainer. The equations of motion were derived for rigid body motions and exact solutions were obtained. The analysis developed could be applied to any other staging problem of a Sounding Rocket System.

  1. CLASP: A UV Spectropolarimeter on a Sounding Rocket for Probing theChromosphere-Corona Transition Regio

    Science.gov (United States)

    Ishikawa, Ryohko; Kano, Ryouhei; Winebarger, Amy; Auchere, Frederic; Trujillo Bueno, Javier; Bando, Takamasa; Narukage, Noriyuki; Kobayashi, Ken; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Giono, Gabriel; Tsuneta, Saku; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Ichimoto, Kiyoshi; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca

    2015-08-01

    The wish to understand the energetic phenomena of the outer solar atmosphere makes it increasingly important to achieve quantitative information on the magnetic field in the chromosphere-corona transition region. To this end, we need to measure and model the linear polarization produced by scattering processes and the Hanle effect in strong UV resonance lines, such as the hydrogen Lyman-alpha line. A team consisting of Japan, USA, Spain, France, and Norway has been developing a sounding rocket experiment called the Chromospheric Lyman-alpha Spectro-Polarimeter (CLASP). The aim is to detect the scattering polarization produced by anisotropic radiation pumping in the hydrogen Lyman-alpha line (121.6 nm), and via the Hanle effect to try to constrain the magnetic field vector in the upper chromosphere and transition region. In this talk, we will present an overview of our CLASP mission, its scientific objectives, ground tests made, and the latest information on the launch planned for the Summer of 2015.

  2. Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm

    Science.gov (United States)

    Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru

    The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.

  3. Engineering aspect of the microwave ionosphere nonlinear interaction experiment (MINIX) with a sounding rocket

    Science.gov (United States)

    Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi

    The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.

  4. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    Science.gov (United States)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  5. Studies of small-scale plasma inhomogeneities in the cusp ionosphere using sounding rocket data

    Science.gov (United States)

    Chernyshov, Alexander A.; Spicher, Andres; Ilyasov, Askar A.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Saito, Yoshifumi; Jin, Yaqi; Moen, Jøran I.

    2018-04-01

    Microprocesses associated with plasma inhomogeneities are studied on the basis of data from the Investigation of Cusp Irregularities (ICI-3) sounding rocket. The ICI-3 rocket is devoted to investigating a reverse flow event in the cusp F region ionosphere. By numerical stability analysis, it is demonstrated that inhomogeneous-energy-density-driven (IEDD) instability can be a mechanism for the excitation of small-scale plasma inhomogeneities. The Local Intermittency Measure (LIM) method also applied the rocket data to analyze irregular structures of the electric field during rocket flight in the cusp. A qualitative agreement between high values of the growth rates of the IEDD instability and the regions with enhanced LIM is observed. This suggests that IEDD instability is connected to turbulent non-Gaussian processes.

  6. ADEPT Sounding Rocket One (SR-1)Flight Experiment Overview

    Science.gov (United States)

    Wercinski, Paul; Smith, B.; Yount, B.; Cassell, A.; Kruger, C.; Brivkalns, C.; Makino, A.; Duttta, S.; Ghassemieh, S.; Wu, S.; hide

    2017-01-01

    The SR-1 flight experiment will demonstrate most of the primary end-to-end mission stages including: launch in a stowed configuration, separation and deployment in exo-atmospheric conditions, and passive ballistic re-entry of a 70-degree half-angle faceted cone geometry.

  7. DC Electric Field measurement in the Mid-latitude Ionosphere during MSTID by S-520-27 Sounding Rocket Experiments

    Science.gov (United States)

    Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Tanaka, M.; Abe, T.; Kumamoto, A.

    2015-12-01

    In the middle latitude ionospheric F region, mainly in summer, wave structures of electron density that have wave length of 100-200 km and period of one hour are observed. This phenomena is called Medium Scale Traveling Ionosphiric Disturbance; MSTID. MSTID has been observed by GPS receiving network, and its characteristic were studied. In the past, MSTID was thought to be generated by the Perkins instability, but its growth ratio was too small to be effective so far smaller than the real. Recently coupling process between ionospheric E and F regions are studied by using two radars and by computer simulations. Through these studies, we now have hypothesis that MSTID is generated by the combination of E-F region coupling and Perkins instability. The S-520-27 sounding rocket experiment on E-layer and F-layer was planned in order to verify this hypothesis. S-520-27 sounding rocket was launched at 23:57 JST on 20th July, 2013 from JAXA Uchinoura Space Center. S-520-27 sounding rocket reached 316km height. The S-520-27 payload was equipped with Electric Field Detector (EFD) with a two set of orthogonal double probes to measure DC electric field in the spin plane of the payload. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifier using the floating (unbiased) double probe technique. As a results of measurements of DC electric fields by the EFD, the natural electric field was about +/-5mV/m, and varied the direction from southeast to east. Then the electric field was mapped to the horizontal plane at 280km height along the geomagnetic field line. In this presentation, we show the detail result of DC electric field measurement by S-520-27 sounding rocket and then we discuss about the correlation between the natural electric field and TEC variation by using the GPS-TEC.

  8. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  9. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket

    International Nuclear Information System (INIS)

    Kubelka-Lange, André; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus; Rasel, Ernst M.; Braxmaier, Claus

    2016-01-01

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10"5 "8"7Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

  10. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka-Lange, André, E-mail: andre.kubelka@zarm.uni-bremen.de; Herrmann, Sven; Grosse, Jens; Lämmerzahl, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm, 28359 Bremen (Germany); Rasel, Ernst M. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover (Germany); Braxmaier, Claus [Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm, 28359 Bremen (Germany); DLR Institute for Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany)

    2016-06-15

    Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10{sup 5} {sup 87}Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

  11. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  12. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    Science.gov (United States)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  13. Analysis of In Situ Thermal Ion Measurements from the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2014-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. Initial analysis of the in situ thermal ion data indicate possible measurement of an ion conic at low altitude (< 325 km). In the low-energy regime, the response of the instrument varies from the ideal because the measured thermal ion population is sensitive to the presence of the instrument. The plasma is accelerated in the frame of the instrument due to flows, ram, and acceleration through the sheath which forms around the spacecraft. The energies associated with these processes are large compared to the thermal energy. Correct interpretation of thermal plasma measurements requires accounting for all of these plasma processes and the non-ideal response of the instrument in the low-energy regime. This is an experimental and modeling project which involves thorough analysis of ionospheric thermal ion data from the MICA campaign. Analysis includes modeling and measuring the instrument response in the low-energy regime as well as accounting for the complex sheath formed around the instrument. This results in a forward model in which plasma parameters of the thermal plasma are propagated through the sheath and instrument models, resulting in an output which matches the in situ measurement. In the case of MICA, we are working toward answering the question of the initiating source processes that result, at higher altitudes, in well-developed conics and outflow on auroral field lines.

  14. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    Science.gov (United States)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  15. A two-channel wave analyser for sounding rockets and satellites

    International Nuclear Information System (INIS)

    Brondz, E.

    1989-04-01

    Studies of low frequency electromagnetic waves, produced originally by lightning discharges penetrating the ionosphere, provide an important source of valuable information about the earth's surrounding plasma. Use of rockets and satellites supported by ground-based observations implies, unique opportunity for measuring in situ a number of parameters simultaneously in order to correlate data from various measurements. However, every rocket experiment has to be designed bearing in mind telemetry limitations and/or short flight duration. Typical flight duration for Norwegian rockets launched from Andoeya Rocket Range is 500 to 600 s. Therefore, the most desired way to use a rocket or satellite is to carry out data analyses on board in real time. Recent achievements in Digital Signal Processing (DSP) technology have made it possible to undertake very complex on board data manipulation. As a part of rocket instrumentation, a DSP based unit able to carry out on board analyses of low frequency electromagnetic waves in the ionosphere has been designed. The unit can be seen as a general purpose computer built on the basis of a fixed-point 16 bit signal processor. The unit is supplied with a program code in order to perform wave analyses on two independent channels simultaneously. The analyser is able to perform 256 point complex fast fourier transformations, and it produce a spectral power desity estimate on both channels every 85 ms. The design and construction of the DSP based unit is described and results from the tests are presented

  16. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang

    2013-01-01

    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  17. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    Science.gov (United States)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2002-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.

  18. Sounding-rocket experiments for detailed studies of magnetospheric substorm phenomena

    International Nuclear Information System (INIS)

    Stuedemann, W.; Wilhelm, K.

    1975-01-01

    Many of the substorm effects occur at or near the auroral oval in the upper atmosphere and can thus be studied by sounding-rocket experiments. As emphasis should be laid on understanding the physical processes, close co-ordination with other study programmes is of great importance. This co-ordination can best be accomplished within the framework of the ''International Magnetospheric Study 1976-1978''

  19. Aerodynamic study of sounding rocket flows using Chimera and patched multiblock meshes

    Directory of Open Access Journals (Sweden)

    João Alves de Oliveira Neto

    2011-01-01

    Full Text Available Aerodynamic flow simulations over a typical sounding rocket are presented in this paper. The work is inserted in the effort of developing computational tools necessary to simulate aerodynamic flows over configurations of interest for Instituto de Aeronáutica e Espaço of Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket configurations usually require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the present paper presents a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the computational domain. The flows of interest are modeled using the 3-D Euler equations and the work describes the details of discretization procedure, which uses a finite difference approach for structure, body-conforming, multiblock grids. The method is used to calculate the aerodynamics of a sounding rocket vehicle. The results indicate that the present approach can be a powerful aerodynamic analysis and design tool.

  20. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  1. Rocket observations

    Science.gov (United States)

    1984-05-01

    The Institute of Space and Astronautical Science (ISAS) sounding rocket experiments were carried out during the periods of August to September, 1982, January to February and August to September, 1983 and January to February, 1984 with sounding rockets. Among 9 rockets, 3 were K-9M, 1 was S-210, 3 were S-310 and 2 were S-520. Two scientific satellites were launched on February 20, 1983 for solar physics and on February 14, 1984 for X-ray astronomy. These satellites were named as TENMA and OHZORA and designated as 1983-011A and 1984-015A, respectively. Their initial orbital elements are also described. A payload recovery was successfully carried out by S-520-6 rocket as a part of MINIX (Microwave Ionosphere Non-linear Interaction Experiment) which is a scientific study of nonlinear plasma phenomena in conjunction with the environmental assessment study for the future SPS project. Near IR observation of the background sky shows a more intense flux than expected possibly coming from some extragalactic origin and this may be related to the evolution of the universe. US-Japan cooperative program of Tether Experiment was done on board US rocket.

  2. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  3. Flight performance summary for three NASA Terrier-Malemute II sounding rockets

    Science.gov (United States)

    Patterson, R. A.

    1982-01-01

    The subject of this paper is the presentation of flight data for three Terrier-Malemute II sounding rocket vehicles. The Malemute motor was modified by adding insulation and using a propellant that produced less Al2O3 agglomerate in the chamber. This modification, designated Malemute II, reduced the sensitivity of the motor to the roll rate induced motor case burnthrough experienced on some earlier Malemute flights. Two flight tests, including a single stage Malemute II and a Terrier-Malemute II, were made by Sandia to qualify this modification. The three NASA operational flights that are the subject of this paper were made using the modified Malemute II motors.

  4. The second stage of a Titan II rocket is lifted for mating at the launch tower, Vandenberg AFB

    Science.gov (United States)

    2000-01-01

    At the launch tower, Vandenberg Air Force Base, Calif., the second stage of a Titan II rocket is lifted to vertical. The Titan will power the launch of a National Oceanic and Atmospheric Administration (NOAA-L) satellite scheduled no earlier than Sept. 12. NOAA-L is part of the Polar-Orbiting Operational Environmental Satellite (POES) program that provides atmospheric measurements of temperature, humidity, ozone and cloud images, tracking weather patterns that affect the global weather and climate. A Model for the Sounding Rocket Measurement on an Ionospheric E-F Valley at the Hainan Low Latitude Station

    International Nuclear Information System (INIS)

    Wang Zheng; Shi Jiankui; Guan Yibing; Liu Chao; Zhu Guangwu; Torkar Klaus; Fredrich Martin

    2014-01-01

    To understand the physics of an ionospheric E-F valley, a new overlapping three-Chapman-layer model is developed to interpret the sounding rocket measurement in the morning (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, respectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid development of the photochemical process in the ionosphere should be the underlying reason. (astrophysics and space plasma)

  5. Multicamera High Dynamic Range High-Speed Video of Rocket Engine Tests and Launches

    Data.gov (United States)

    National Aeronautics and Space Administration — High-speed video recording of rocket engine tests has several challenges. The scenes that are imaged have both bright and dark regions associated with plume emission...

  6. A sounding rocket payload for X-ray astronomy employing high-resolution microcalorimeters

    International Nuclear Information System (INIS)

    McCammon, D.; Almy, R.; Deiker, S.; Morgenthaler, J.; Kelley, R.L.; Marshall, F.J.; Moseley, S.H.; Stahle, C.K.; Szymkowiak, A.E.

    1996-01-01

    We have completed a sounding rocket payload that will use a 36 element array of microcalorimeters to obtain a high-resolution spectrum of the diffuse X-ray background between 0.1 and 1 keV. This experiment uses only mechanical collimation of the incoming X-rays, but the cryostat and detector assembly have been designed to be placed at the focus of a conical foil imaging mirror which will be employed on subsequent flights to do spatially resolved spectroscopy of supernova remnants and other extended objects. The detector system is a monolithic array of silicon calorimeters with ion-implanted thermometers and HgTe X-ray absorbers. The 1 mm 2 pixels achieve a resolution of about 8 eV FWHM operating at 60 mK. (orig.)

  7. The interaction of bubbles with solidification interfaces. [during coasting phase of sounding rocket flight

    Science.gov (United States)

    Papazian, J. M.; Wilcox, W. R.

    1977-01-01

    The behavior of bubbles at a dendritic solidification interface was studied during the coasting phase of a sounding rocket flight. Sequential photographs of the gradient freeze experiment showed nucleation, growth and coalescence of bubbles at the moving interface during both the low-gravity and one-gravity tests. In the one-gravity test the bubbles were observed to detach from the interface and float to the top of the melt. However, in the low-gravity tests no bubble detachment from the interface or steady state bubble motion occurred and large voids were grown into the crystal. These observations are discussed in terms of the current theory of thermal migration of bubbles and in terms of their implications on the space processing of metals.

  8. A quick test of the WEP enabled by a sounding rocket

    Energy Technology Data Exchange (ETDEWEB)

    Reasenberg, Robert D; Patla, Biju R; Phillips, James D; Popescu, Eugeniu E; Rocco, Emanuele; Thapa, Rajesh [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Lorenzini, Enrico C, E-mail: reasenberg@cfa.harvard.edu [Faculty of Engineering, Universita di Padova, Padova I-35122 (Italy)

    2011-05-07

    We describe SR-POEM, a Galilean test of the weak equivalence principle (WEP), which is to be conducted during the free fall portion of a sounding rocket flight. This test of a single pair of substances is aimed at a measurement uncertainty of {sigma}({eta}) < 10{sup -16} after averaging the results of eight separate drops, each of 40 s duration. The WEP measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz{sup -1/2}. We address the two sources of systematic error that are currently of greatest concern: magnetic force and electrostatic (patch effect) force on the test mass assemblies. The discovery of a violation ({eta} {ne} 0) would have profound implications for physics, astrophysics and cosmology.

  9. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    Science.gov (United States)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  10. Astro 4 - a sounding rocket programme of the X-ray astronomy

    International Nuclear Information System (INIS)

    Henkel, R.; Pechstein, H.

    1980-01-01

    The 'Astro 4' program is part of the German Astronomy Sounding Rocket Program and was divided into two different tasks. The 'Astro 4/1' project had the task to perform X-ray spectroscopic investigations and imaging of solar coronal active regions by means of zone-plate cameras, a Rowland spectrograph and a KAP crystal spectrometer aboard of a three-axis stabilized payload. The 'Astro 4/2' project had the task to take investigations of the X-ray sources Puppis A and the Crab Nebula by means of a Wolter Telescope, equipped with a position-sensitive proportional counter. Up to now the three-axis stabilized payload 'Astro 4/2' has been the longest Skylark payload. (Auth.)

  11. Assessment of the transition strip effect in the transonic flow over the sounding rocket Sonda III

    International Nuclear Information System (INIS)

    Filho, J B P Falcão; Reis, M L C C; Francisco, C P F; Silva, L M

    2016-01-01

    Measurements of normalized pressure distribution are carried out over a 1:8 scale half-model of the Sonda III sounding rocket. The objective is to analyze the effect of the implementation of transition devices on the flow over the vehicle. Measurements show that the presence of the transition devices affect pressure distributions in different Mach numbers around the inter-stage region of Sonda III depending on its location and independently of the turbulent transition method employed. The study of these effects plays a significant role for future developments, since transition phenomena and the modification of the boundary layer behaviour due to the expansion can alter the load distributions and the turbulent structures of the flow. Furthermore, the experimental verification of such phenomena is crucial for the correct implementation of computational fluid dynamics calculations, as they might be able to capture the correct flow behaviour in these regions. (paper)

  12. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    Science.gov (United States)

    Kubo, M.; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N.; Ishikawa, R.; Tsuneta, S.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Goto, M.; Holloway, T.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchère, F.; Trujillo Bueno, J.; Manso Sainz, R.; Belluzzi, L.; Asensio Ramos, A.; Štěpán, J.; Carlsson, M.

    2014-10-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles in the hydrogen Lyman-alpha (Lyα) line at 121.567 nm. CLASP is a vacuum-UV (VUV) spectropolarimeter to aim for first detection of the linear polarizations caused by scattering processes and the Hanle effect in the Lyα line with high accuracy (0.1%). This is a fist step for exploration of magnetic fields in the upper chromosphere and transition region of the Sun. Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect in strong UV lines like Lyα are essential to explore with future solar telescopes the strength and structures of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP proposal has been accepted by NASA in 2012, and the flight is planned in 2015.

  13. Heat Transfer by Thermo-Capillary Convection. Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael

    2009-08-01

    This paper describes the results of a sounding rocket experiment which was partly dedicated to study the heat transfer from a hot wall to a cold liquid with a free surface. Natural or buoyancy-driven convection does not occur in the compensated gravity environment of a ballistic phase. Thermo-capillary convection driven by a temperature gradient along the free surface always occurs if a non-condensable gas is present. This convection increases the heat transfer compared to a pure conductive case. Heat transfer correlations are needed to predict temperature distributions in the tanks of cryogenic upper stages. Future upper stages of the European Ariane V rocket have mission scenarios with multiple ballistic phases. The aims of this paper and of the COMPERE group (French-German research group on propellant behavior in rocket tanks) in general are to provide basic knowledge, correlations and computer models to predict the thermo-fluid behavior of cryogenic propellants for future mission scenarios. Temperature and surface location data from the flight have been compared with numerical calculations to get the heat flux from the wall to the liquid. Since the heat flux measurements along the walls of the transparent test cell were not possible, the analysis of the heat transfer coefficient relies therefore on the numerical modeling which was validated with the flight data. The coincidence between experiment and simulation is fairly good and allows presenting the data in form of a Nusselt number which depends on a characteristic Reynolds number and the Prandtl number. The results are useful for further benchmarking of Computational Fluid Dynamics (CFD) codes such as FLOW-3D and FLUENT, and for the design of future upper stage propellant tanks.

  14. Water-cooled spacecraft : DART to be launched by Russian Volna (Stingray) rocket

    NARCIS (Netherlands)

    Van Baten, T.; Buursink, J.; Hartmann, L.

    2002-01-01

    A25 September 2005, Barents Sea, near Murmansk.Ten metres under the surface of the sea, the launch tube of the Mstislav, a Rostropovich class nuclear submarine, grinds open. The countdown for the launch of a Volna R-29R slbm (Submarine-Launched Ballistic Missile) starts: For many years, satellites

  15. PICTURE: a sounding rocket experiment for direct imaging of an extrasolar planetary environment

    Science.gov (United States)

    Mendillo, Christopher B.; Hicks, Brian A.; Cook, Timothy A.; Bifano, Thomas G.; Content, David A.; Lane, Benjamin F.; Levine, B. Martin; Rabin, Douglas; Rao, Shanti R.; Samuele, Rocco; Schmidtlin, Edouard; Shao, Michael; Wallace, J. Kent; Chakrabarti, Supriya

    2012-09-01

    The Planetary Imaging Concept Testbed Using a Rocket Experiment (PICTURE 36.225 UG) was designed to directly image the exozodiacal dust disk of ǫ Eridani (K2V, 3.22 pc) down to an inner radius of 1.5 AU. PICTURE carried four key enabling technologies on board a NASA sounding rocket at 4:25 MDT on October 8th, 2011: a 0.5 m light-weight primary mirror (4.5 kg), a visible nulling coronagraph (VNC) (600-750 nm), a 32x32 element MEMS deformable mirror and a milliarcsecond-class fine pointing system. Unfortunately, due to a telemetry failure, the PICTURE mission did not achieve scientific success. Nonetheless, this flight validated the flight-worthiness of the lightweight primary and the VNC. The fine pointing system, a key requirement for future planet-imaging missions, demonstrated 5.1 mas RMS in-flight pointing stability. We describe the experiment, its subsystems and flight results. We outline the challenges we faced in developing this complex payload and our technical approaches.

  16. Use of O2 airglow for calibrating direct atomic oxygen measurements from sounding rockets

    Directory of Open Access Journals (Sweden)

    G. Witt

    2009-12-01

    Full Text Available Accurate knowledge about the distribution of atomic oxygen is crucial for many studies of the mesosphere and lower thermosphere. Direct measurements of atomic oxygen by the resonance fluorescence technique at 130 nm have been made from many sounding rocket payloads in the past. This measurement technique yields atomic oxygen profiles with good sensitivity and altitude resolution. However, accuracy is a problem as calibration and aerodynamics make the quantitative analysis challenging. Most often, accuracies better than a factor 2 are not to be expected from direct atomic oxygen measurements. As an example, we present results from the NLTE (Non Local Thermodynamic Equilibrium sounding rocket campaign at Esrange, Sweden, in 1998, with simultaneous O2 airglow and O resonance fluorescence measurements. O number densities are found to be consistent with the nightglow analysis, but only within the uncertainty limits of the resonance fluorescence technique. Based on these results, we here describe how better atomic oxygen number densities can be obtained by calibrating direct techniques with complementary airglow photometer measurements and detailed aerodynamic analysis. Night-time direct O measurements can be complemented by photometric detection of the O2 (b1∑g+−X3∑g- Atmospheric Band at 762 nm, while during daytime the O2 (a1Δg−X3∑g- Infrared Atmospheric Band at 1.27 μm can be used. The combination of a photometer and a rather simple resonance fluorescence probe can provide atomic oxygen profiles with both good accuracy and good height resolution.

  17. Improving of technical characteristics of launch vehicles with liquid rocket engines using active onboard de-orbiting systems

    Science.gov (United States)

    Trushlyakov, V.; Shatrov, Ya.

    2017-09-01

    In this paper, the analysis of technical requirements (TR) for the development of modern space launch vehicles (LV) with main liquid rocket engines (LRE) is fulfilled in relation to the anthropogenic impact decreasing. Factual technical characteristics on the example of a promising type of rocket ;Soyuz-2.1.v.; are analyzed. Meeting the TR in relation to anthropogenic impact decrease based on the conventional design approach and the content of the onboard system does not prove to be efficient and leads to depreciation of the initial technical characteristics obtained at the first design stage if these requirements are not included. In this concern, it is shown that the implementation of additional active onboard de-orbiting system (AODS) of worked-off stages (WS) into the onboard LV stages systems allows to meet the TR related to the LV environmental characteristics, including fire-explosion safety. In some cases, the orbital payload mass increases.

  18. A rapid compensation method for launch data of long-range rockets under influence of the Earth's disturbing gravity field

    Directory of Open Access Journals (Sweden)

    Baolin MA

    2017-06-01

    Full Text Available Regarding the rapid compensation of the influence of the Earth’ s disturbing gravity field upon trajectory calculation, the key point lies in how to derive the analytical solutions to the partial derivatives of the state of burnout point with respect to the launch data. In view of this, this paper mainly expounds on two issues: one is based on the approximate analytical solution to the motion equation for the vacuum flight section of a long-range rocket, deriving the analytical solutions to the partial derivatives of the state of burnout point with respect to the changing rate of the final-stage pitch program; the other is based on the initial positioning and orientation error propagation mechanism, proposing the analytical calculation formula for the partial derivatives of the state of burnout point with respect to the launch azimuth. The calculation results of correction data are simulated and verified under different circumstances. The simulation results are as follows: (1 the accuracy of approximation between the analytical solutions and the results attained via the difference method is higher than 90%, and the ratio of calculation time between them is lower than 0.2%, thus demonstrating the accuracy of calculation of data corrections and advantages in calculation speed; (2 after the analytical solutions are compensated, the longitudinal landing deviation of the rocket is less than 20 m and the lateral landing deviation of the rocket is less than 10 m, demonstrating that the corrected data can meet the requirements for the hit accuracy of a long-range rocket.

  19. Rocket Flight.

    Science.gov (United States)

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  1. Far-ultraviolet observations of comet C/2012 S1 (ISON) with a sounding-rocket-borne instrument

    Science.gov (United States)

    Feldman, P.; McCandliss, S.; Weaver, H.; Fleming, B.; Redwine, K.; Li, M.; Kutyrev, A.; Moseley, S.

    2014-07-01

    We report on a far-ultraviolet observation of comet C/2012 S1 (ISON) made from a Black Brant IX sounding rocket that was launched on 20 November 2013 at 04:40 MST from the White Sands Missile Range, New Mexico, when the comet was 0.44 au from the Sun, 0.86 au from the Earth, and at a solar elongation of 26.3 degrees pre-perihelion. At the time of launch the comet was 0.1 degrees below ground horizon. The payload reached an apogee of 279 km and the total time pointed at the comet was 353 s. The sounding rocket borne instrument was our wide-field multi-object spectro-telescope called FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy), which is a Gregorian telescope (concave primary and secondary optics) with a triaxial figured diffractive secondary that provides an on-axis imaging channel and two off-axis spectral channels in a common focal plane. A multi-object spectroscopic capability is provided by an array of microshutters placed at the prime focus of the telescope. Our microshutter array (MSA) is based on prototype devices of the large area arrays developed at Goddard Space Flight Center (GSFC) for use in the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST). The imaging channel on FORTIS has a field-of-view (FOV) of 0.5 degrees square. The MSA allows selection of up to 43 individual regions, each with a solid angle of 12.4'' × 36.9'', for spectral acquisition over the 800--1950 Ångstroms bandpass at a resolution of 6 Ångstroms. However a problem with addressing the MSA prevented the acquisition of spectra through individual slits. Nonetheless spectrally confused images, dominated by Lyman-alpha emission from the comet, were acquired in both off-axis spectral channels. The imaging channel uses a CaF_2/MgF_2 cylindrical doublet to correct for astigmatism introduced by the triaxial secondary, which restricts the bandpass to wavelengths longward of 1280 Ångstroms. The corrected imaging resolution is

  2. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    Science.gov (United States)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  3. Echo 2: a study of electron beams injected into the high-latitude ionosphere from a large sounding rocket

    International Nuclear Information System (INIS)

    Winckler, J.R.; Arnoldy, R.L.; Hendrickson, R.A.

    1975-01-01

    The Black Brant V-C Echo 2 rocket was launched at Fort Churchill on September 25, 1972, and it injected 64-ms pulses of electron beams of 80-mA current and 45-keV voltage into the ionosphere. This paper studies the responses of on-board electrostatic deflection and solid state detectors to injected electrons after motion in the near ionosphere and atmosphere. It is shown that it was only through some form of scattering that the detectors could sense the injected beam electrons. By means of 'phase maps' of injection and detection pitch angles a number of distinct regions are found corresponding to a rocket scattering halo, an atmospheric scattering halo, a region of weak responses, and a source of strong scattering above the rocket. The atmospheric scattering has been compared with the theoretical and experimental results of the Echo 1 experiment, and it is found to be in reasonable agreement. The rocket halo is discussed qualitatively; but no explanation is found for the backscatter from above the rocket, which may be associated with an occasional violent beam instability. This analysis has been carried out to better understand the complexities of electron motion observed near large rockets carrying artifical electron accelerators as a guide in the planning of future experiments

  4. Advanced Design and Manufacture of Cryogenic Propellant Tanks for Air Launched Liquid Rockets

    Data.gov (United States)

    National Aeronautics and Space Administration — Generation Orbit (GO) is developing a sub-orbital system to enable rapid and inexpensive hypersonic flight regime test capabilities. To keep the cost of their launch...

  5. Calibration of the hard x-ray detectors for the FOXSI solar sounding rocket

    Science.gov (United States)

    Athiray, P. S.; Buitrago-Casas, Juan Camilo; Bergstedt, Kendra; Vievering, Juliana; Musset, Sophie; Ishikawa, Shin-nosuke; Glesener, Lindsay; Takahashi, Tadayuki; Watanabe, Shin; Courtade, Sasha; Christe, Steven; Krucker, Säm.; Goetz, Keith; Monson, Steven

    2017-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment conducts direct imaging and spectral observation of the Sun in hard X-rays, in the energy range 4 to 20 keV. These high-sensitivity observations are used to study particle acceleration and coronal heating. FOXSI is designed with seven grazing incidence optics modules that focus X-rays onto seven focal plane detectors kept at a 2m distance. FOXSI-1 was flown with seven Double-sided Si Strip Detectors (DSSD), and two of them were replaced with CdTe detectors for FOXSI-2. The upcoming FOXSI-3 flight will carry DSSD and CdTe detectors with upgraded optics for enhanced sensitivity. The detectors are calibrated using various radioactive sources. The detector's spectral response matrix was constructed with diagonal elements using a Gaussian approximation with a spread (sigma) that accounts for the energy resolution of the detector. Spectroscopic studies of past FOXSI flight data suggest that the inclusion of lower energy X-rays could better constrain the spectral modeling to yield a more precise temperature estimation of the hot plasma. This motivates us to carry out an improved calibration to better understand the finer-order effects on the spectral response, especially at lower energies. Here we report our improved calibration of FOXSI detectors using experiments and Monte-Carlo simulations.

  6. Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign

    International Nuclear Information System (INIS)

    Creatini, F; Guidi, G M; Belfi, F; Cicero, G; Fioriti, D; Di Prizio, D; Piacquadio, S; Becatti, G; Orlandini, G; Frigerio, A; Fontanesi, S; Nannipieri, P; Rognini, M; Morganti, N; Filippeschi, S; Di Marco, P; Fanucci, L; Baronti, F; Mameli, M; Manzoni, M

    2015-01-01

    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described. (paper)

  7. Harmonic H+ gyrofrequency structures in auroral hiss observed by high-altitude auroral sounding rockets

    International Nuclear Information System (INIS)

    Kintner, P.M.; Vago, J.; Scales, W.; Yau, A.; Whalen, B.; Arnoldy, R.; Moore, T.

    1991-01-01

    Two recent sounding rocket experiments have yielded VLF wave data with spectral structures ordered by the hydrogen gyrofrequency. The spectral structures occur near and above the lower hybrid frequency in association with auroral hiss. These structures are observed within and near regions of auroral electron precipitation and transverse ion acceleration. They are accompanied by auroral hiss but are anticorrelated with spectral peaks at the lower hybrid frequency. They are typically found above 500 km altitude, have no measureable magnetic component, and are at least occasionally short wavelength (kρ i ≥1). Because the spectral structures appear to be electrostatic, are ordered by the hydrogen gyrofrequency, and are short wavelength, the authors interpret the structures as modes which connect the lower hybrid mode with the hydrogen Bernstein modes. A study of the plasma wave mode structure in the vicinity of the lower hybrid frequency is presented to substantiate this interpretation. The results imply that these waves are a common feature of the auroral zone ionosphere above 500 km altitude and exist any time that auroral hiss exists. The absence of previous satellite abservations of this phenomenon can be explained by Doppler broadening

  8. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  9. Computing Analysis of Bearing Elements of Launch Complex Aggregates for Space Rocket "Soyuz-2.1v"

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2014-01-01

    Full Text Available The research is devoted to the computational analysis of bearing structures of launch system aggregates, which are designed for the prelaunch preparation and launch security of space rocket (SR "SOYUZ-2" of 1B stage. The bearing structures taken under consideration are the following: supporting trusses (ST, bearing arms (BA, the upper cable girder (UCG, the umbilical mast (UM. The SR “SOYUZ-2" of 1B stage has the characteristics of the propulsion unit (PU thrust, different from those of the "Soyuz" family space rockets exploited before.The paper presents basic modeling principles to calculate units and their operating loadings. The body self-weight and the influence of a gas-dynamic jet of "SOYUZ-2.1B" propulsion unit have been considered as a load of units. Parameters of this influence are determined on the basis of impulse stream fields and of deceleration temperatures calculated for various SR positions according to the specified path of its ascent and demolition.Physical models of the aggregates and calculations are based on the finite elements method and super-elements method using “SADAS” software package developed at the chair SM8 of Bauman Moscow State Technical University.Fields of nodal temperatures distribution in the ST, BA, UCG, UM models, and fields of tension in finite elements as well represent the calculation results.Obtained results revealed the most vulnerable of considered starting system aggregates, namely UM, which was taken for local durability calculation. As an example, this research considers calculation of local durability in the truss branches junction of UM rotary part, for which the constructive strengthening has been offered. For this node a detailed finite-element model built in the model of UM rotary part has been created. Calculation results of local durability testify that the strengthened node meets durability conditions.SR developers used calculation results of launch system aggregates for the space

  10. 33 CFR 334.770 - Gulf of Mexico and St. Andrew Sound, south of East Bay, Fla., Tyndall Drone Launch Corridor...

    Science.gov (United States)

    2010-07-01

    ... Sound, south of East Bay, Fla., Tyndall Drone Launch Corridor, Tyndall Air Force Base, Fla.; restricted.... Andrew Sound, south of East Bay, Fla., Tyndall Drone Launch Corridor, Tyndall Air Force Base, Fla... referred to as the “Tyndall Drone Launch Corridor.” (b) The regulations. (1) Military usage of areas is...

  11. The issue of ensuring the safe explosion of the spent orbital stages of a launch vehicle with propulsion rocket engine

    Directory of Open Access Journals (Sweden)

    Trushlyakov Valeriy I.

    2017-01-01

    Full Text Available A method for increasing the safe explosion of the spent orbital stages of a space launch vehicle (SLV with a propulsion rocket engine (PRE based on the gasification of unusable residues propellant and venting fuel tanks. For gasification and ventilation the hot gases used produced by combustion of the specially selected gas generating composition (GGC with a set of physical and chemical properties. Excluding the freezing of the drainage system on reset gasified products (residues propellant+pressurization gas+hot gases in the near-Earth space is achieved by selecting the physical-chemical characteristics of the GGC. Proposed steps to ensure rotation of gasified products due to dumping through the drainage system to ensure the most favorable conditions for propellant gasification residues. For example, a tank with liquid oxygen stays with the orbital spent second stage of the SLV “Zenit”, which shows the effectiveness of the proposed method.

  12. Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing

    Science.gov (United States)

    Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath

    2017-08-01

    Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.

  13. Intermediate layer observed by the impedance probe on board the S-310-3 sounding rocket

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y; Obayashi, T [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1977-08-01

    The intermediate layer (or M layer) was detected at the height of 150-170 km in the nighttime ionospheric electron density profile measured by impedance probe on board the S-310-3 sounding rocket. This M layer was interpreted to be generated by the convergence effect of the ionization due to the west-east component of the solar tidal wind as suggested by K.Fujitaka. The altitude variation of the M layer during the course of a night is studied at three other locations with different latitudes. At Boulder (40/sup 0/N, 105/sup 0/W) and Wallops Island (38/sup 0/N, 75/sup 0/W) which have higher latitude than that of KSC(31/sup 0/N, 131/sup 0/E), the altitude of the observed M layers seems to be determined by the north-south component of the wind above about 150 km, by the west-east component of the wind below about 130 km in agreement with the drift theory. The altitude of the observed M layers at Arecibo (19/sup 0/N, 67/sup 0/W) located at lower latitude than that of KSC also coincides with the theoretical estimate when the direction of the north-south wind is assumed to be opposite to that prevailing in middle latitudes. Thus, M layer observations at these stations are consistent with the view that around the latitude range of KSC the north-south wind reverses direction and the west-east component of the wind has the dominant effect on the formation of the M layer.

  14. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    Science.gov (United States)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  15. ROCOZ-A (improved rocket launched ozone sensor) for middle atmosphere ozone measurements

    International Nuclear Information System (INIS)

    Lee, H.S.; Parsons, C.L.

    1987-01-01

    An improved interference filter based ultraviolet photometer (ROCOZ-A) for measuring stratospheric ozone is discussed. The payload is launched aboard a Super-Loki to a typical apogee of 70 km. The instrument measures the solar ultraviolet irradiance as it descends on a parachute. The total cumulative ozone is then calculated based on the Beer-Lambert law. The cumulative ozone precision measured in this way is 2.0% to 2.5% over an altitude range of 20 and 55 km. Results of the intercomparison with the SBUV overpass data and ROCOZ-A data are also discussed

  16. Ionospheric hole made by a North Korean rocket launched in 2012 December: Observation with the Russian GNSS

    Science.gov (United States)

    Nakashima, Y.; Heki, K.

    2013-12-01

    The Unha-3 rocket was launched due southward at 00:49:46UT on Dec. 12, 2012, from the Tongchang-ri.launch pad on the Yellow Sea side of North Korea. We converted the RINEX format GPS data of the launch day to TEC, and looked for the ionospheric hole signatures. We could not find clear electron depletion signals simply because no GPS satellites were available in the northwestern skies. GPS is the American GNSS system, and other systems are becoming operational. GEONET receivers have been replaced with the new models capable of receiving multiple GNSS, and about 10 percent of them could observe GLONASS and QZSS, the Russian and the Japanese GNSS, respectively, at the time of the Unha-3 launch. More than 20 GLONASS satellites are already in operation, and we used the number 13 satellite to detect the ionospheric hole formation above the Yellow Sea (see Figure). We modified the software to convert RINEX file into TEC time series [Heki et al., JGSJ 2010] in order to handle RINEX v.2.12 files including GLONASS/QZSS data. The broadcast orbits of the GLONASS satellites are given in the geocentric Cartesian coordinates instead of the Keplerian elements like GPS and QZSS. GLONASS uses different microwave frequencies for different satellites, which also required the modification for the original software to calculate TEC. Ozeki & Heki [2010] compared the thrust of the 1998 and 2009 Taepodong missiles by comparing the sizes/depths of the ionospheric holes, and here we compare the hole made by the 2012 December Unha-3 launch with the past cases. The onset times of the depletion are the same, suggesting similar ascending speeds of the three rockets (missiles). Depth of the hole depends both on the amount of water vapor in the exhaust and the background TEC. The hole of the Unha-3 is similar to the 2009 case (or somewhat deeper/larger), which would reflect the vertical TEC in the 2012 case about 1/3 larger than that in 2009. The hole seems to last longer in the 2012 case possibly

  17. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 to 80 km altitude

    Science.gov (United States)

    Dickson, Shannon; Gausa, Michael; Robertson, Scott; Sternovsky, Zoltan

    2013-04-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 80 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on two sounding rockets to the mesosphere. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void behind (relative to the direction of motion) an aft-facing surface. An enclosure containing the CEM was placed forward of an aft-facing deck and a valve was opened during flight to expose the CEM to the aerodynamically evacuated region behind it. The CEM operated successfully from apogee down to ∼80 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  18. Chinese modify CZ-2/3 rocket boosters, focus on commercial launch market

    Science.gov (United States)

    Covault, C.

    1985-07-01

    A program underway in the People's Republic of China to modify the Titan-class CZ-2/3 satellite-launch and ICBM boosters is described on the basis of a recent visit to the manufacturing plant in Shanghai. The present two-stage CZ-2 and three-stage CZ-3 can place 5000 lbs in LEO or 3080 lbs in GEO, respectively, and are produced on a custom basis with a delivery time of about 2 yrs. Modifications introduced include 4 x 6-ft fins and a pogo-suppression system for the four-engine first stage and a steel support band for the combustion chamber of the 80-ton-thrust second-stage main engine.

  19. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    Science.gov (United States)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  20. Convection and dendrite crystallization. [during coasting phase of sounding rocket flight

    Science.gov (United States)

    Grodzka, P. G.; Johnston, M. H.; Griner, C. S.

    1977-01-01

    The convection and thermal conditions in aqueous and metallic liquid systems under conditions of the Dendrite Remelting Rocket Experiment were assessed to help establish the relevance of the rocket experiment to the metals casting phenomena. The results of the study indicate that aqueous or metallic convection velocities in the cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the rocket experiment, therefore, may be indicative of how metals will solidify in low-g. The influence of possibly differing thermal fields, however, remains to be assessed. The rocket experiment may also be relevant to how metals solidify on the ground at temperature differences and in cell configurations such that the flow velocities are not high enough to break or bend delicate dendrite arms. Again, however, the influence of the thermal fields must be assessed.

  1. 77 FR 61642 - National Environmental Policy Act; Sounding Rockets Program; Poker Flat Research Range

    Science.gov (United States)

    2012-10-10

    ... the sun-earth connection. Related Environmental Documents In recent years, concerns raised by agencies... these lands. BLM and USFWS are currently considering if and how future authorizations for rocket landing...

  2. Infrared Imagery of Solid Rocket Exhaust Plumes

    Science.gov (United States)

    Moran, Robert P.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.

  3. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  4. First results of the Auroral Turbulance II rocket experiment

    DEFF Research Database (Denmark)

    Danielides, M.A.; Ranta, A.; Ivchenco, N.

    1999-01-01

    The Auroral Turbulance II sounding rocket was launched on February 11, 1997 into moderately active nightside aurora from the Poker Flat Research Range, Alaska, US. The experiment consisted of three independent, completely instrumented payloads launched by a single vehicle. The aim of the experiment...

  5. Preliminary Results of the VLFE Quadrupole Instrumentation From The PARX Sounding Rocket

    Science.gov (United States)

    Reinleitner, L. A.; Holzworth, R. H.; Meadows, A. L.

    2003-12-01

    The NASA Pulsating Auroral Rocket eXperiment (PARX - March '97 from Poker Flat, AK) was equipped with 4 electric field probes oriented (X and Y) perpendicular to the ambient magnetic field, and one probe (along the Z axis) to obtain the parallel electric field. The rocket also included a three-axis VLF search coil magnetometer. The VLF measurements for both instruments were from 100 Hz - 8 KHz. Additionally, the electric field information was used onboard the rocket to obtain the "quadrupole" electric field, defined to be {(V1+V2) - (V3+V4)}/2d, which shows significant response only to short wavelength waves. This instrumentation clearly shows the long wavelength nature of features tentatively described as auroral hiss, and the shorter wavelength nature of the electrostatic and/or quasi-electrostatic waves.

  6. Pre-Launch Calibration and Performance Study of the Polarcube 3u Temperature Sounding Radiometer Mission

    Science.gov (United States)

    Periasamy, L.; Gasiewski, A. J.; Sanders, B. T.; Rouw, C.; Alvarenga, G.; Gallaher, D. W.

    2016-12-01

    The positive impact of passive microwave observations of tropospheric temperature, water vapor and surface variables on short-term weather forecasts has been clearly demonstrated in recent forecast anomaly growth studies. The development of a fleet of such passive microwave sensors especially at V-band and higher frequencies in low earth orbit using 3U and 6U CubeSats could help accomplish the aforementioned objectives at low system cost and risk as well as provide for regularly updated radiometer technology. The University of Colorado's 3U CubeSat, PolarCube is intended to serve as a demonstrator for such a fleet of passive sounders and imagers. PolarCube supports MiniRad, an eight channel, double sideband 118.7503 GHz passive microwave sounder. The mission is focused primarily on sounding in Arctic and Antarctic regions with the following key remote sensing science and engineering objectives: (i) Collect coincident tropospheric temperature profiles above sea ice, open polar ocean, and partially open areas to develop joint sea ice concentration and lower tropospheric temperature mapping capabilities in clear and cloudy atmospheric conditions. This goal will be accomplished in conjunction with data from existing passive microwave sensors operating at complementary bands; and (ii) Assess the capabilities of small passive microwave satellite sensors for environmental monitoring in support of the future development of inexpensive Earth science missions. Performance data of the payload/spacecraft from pre-launch calibration will be presented. This will include- (i) characterization of the antenna sub-system comprising of an offset 3D printed feedhorn and spinning parabolic reflector and impact of the antenna efficiencies on radiometer performance, (ii) characterization of MiniRad's RF front-end and IF back-end with respect to temperature fluctuations and their impact on atmospheric temperature weighting functions and receiver sensitivity, (iii) results from roof

  7. Characterization of the Ignition Over-Pressure/Sound Suppression Water in the Space Launch System Mobile Launcher Using Volume of Fluid Modeling

    Science.gov (United States)

    West, Jeff

    2015-01-01

    The Space Launch System (SLS) Vehicle consists of a Core Stage with four RS-25 engines and two Solid Rocket Boosters (SRBs). This vehicle is launched from the Launchpad using a Mobile Launcher (ML) which supports the SLS vehicle until its liftoff from the ML under its own power. The combination of the four RS-25 engines and two SRBs generate a significant Ignition Over-Pressure (IOP) and Acoustic Sound environment. One of the mitigations of these environments is the Ignition Over-Pressure/Sound Suppression (IOP/SS) subsystem installed on the ML. This system consists of six water nozzles located parallel to and 24 inches downstream of each SRB nozzle exit plane as well as 16 water nozzles located parallel to and 53 inches downstream of the RS-25 nozzle exit plane. During launch of the SLS vehicle, water is ejected through each water nozzle to reduce the intensity of the transient pressure environment imposed upon the SLS vehicle. While required for the mitigation of the transient pressure environment on the SLS vehicle, the IOP/SS subsystem interacts (possibly adversely) with other systems located on the Launch Pad. One of the other systems that the IOP/SS water is anticipated to interact with is the Hydrogen Burn-Off Igniter System (HBOI). The HBOI system's purpose is to ignite the unburned hydrogen/air mixture that develops in and around the nozzle of the RS-25 engines during engine start. Due to the close proximity of the water system to the HBOI system, the presence of the IOP/SS may degrade the effectiveness of the HBOI system. Another system that the IOP/SS water may interact with adversely is the RS-25 engine nozzles and the SRB nozzles. The adverse interaction anticipated is the wetting, to a significant degree, of the RS-25 nozzles resulting in substantial weight of ice forming and water present to a significant degree upstream of the SRB nozzle exit plane inside the nozzle itself, posing significant additional blockage of the effluent that exits the nozzle

  8. Cracking Codes & Launching Rockets

    Science.gov (United States)

    Paoletti, Teo J.

    2013-01-01

    To engage students, many teachers wish to connect the mathematics they are teaching to other branches of mathematics or to real-world applications. The lesson presented in this article, which uses the algebraic skill of finding the equation of a line between two points and the geometric axiom that any two points define a line, does both. A…

  9. Fertilization and development of eggs of the South African clawed toad, Xenopus laevis, on sounding rockets in space.

    Science.gov (United States)

    Ubbels, G A; Berendsen, W; Kerkvliet, S; Narraway, J

    1992-01-01

    Egg rotation and centrifugation experiments strongly suggest a role for gravity in the determination of the spatial structure of amphibian embryos. Decisive experiments can only be made in Space. Eggs of Xenopus laevis, the South African clawed toad, were the first vertebrate eggs which were successfully fertilized on Sounding Rockets in Space. Unfixed, newly fertilized eggs survived reentry, and a reasonable number showed a seemingly normal gastrulation but died between gastrulation and neurulation. Only a few reached the larval stage, but these developed abnormally. In the future, we intend to test whether this abnormal morphogenesis is due to reentry perturbations, or due to a real microgravity effect, through perturbation of the reinitiation of meiosis and other processes, or started by later sperm penetration.

  10. X-Ray Radiographic Observation of Directional Solidification Under Microgravity: XRMON-GF Experiments on MASER12 Sounding Rocket Mission

    Science.gov (United States)

    Reinhart, G.; NguyenThi, H.; Bogno, A.; Billia, B.; Houltz, Y.; Loth, K.; Voss, D.; Verga, A.; dePascale, F.; Mathiesen, R. H.; hide

    2012-01-01

    The European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled XRMON (In situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions) aims to develop and perform in situ X-ray radiography observations of metallurgical processes in microgravity and terrestrial environments. The use of X-ray imaging methods makes it possible to study alloy solidification processes with spatio-temporal resolutions at the scales of relevance for microstructure formation. XRMON has been selected for MASER 12 sounding rocket experiment, scheduled in autumn 2011. Although the microgravity duration is typically six minutes, this short time is sufficient to investigate a solidification experiment with X-ray radiography. This communication will report on the preliminary results obtained with the experimental set-up developed by SSC (Swedish Space Corporation). Presented results dealing with directional solidification of Al-Cu confirm the great interest of performing in situ characterization to analyse dynamical phenomena during solidification processes.

  11. Flight test of a spin parachute for use with a Super Arcas sounding rocket

    Science.gov (United States)

    Silbert, M. N.

    1975-01-01

    The development and flight testing of a specially configured 16.6 ft Disc Band Gap (DBG) Spin Parachute is discussed. The parachute is integrated with a modified Super Arcas launch vehicle. Total payload weight was 17.6 lbs including the Spin Parachute and a scientific payload, and lift-off weight was 100.3 lbs. The Super Arcas vehicle was despun from 18.4 cps. After payload separation at 244,170 ft the Spin Parachute and its payload attained a maximum spin rate of 2.4 cps. Total suspended weight of the Spin Parachute and its payload was 14.64 lbs.

  12. Pre-launch simulation experiment of microwave-ionosphere nonlinear interaction rocket experiment in the space plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N. (Kobe University, Kobe, Japan); Tsutsui, M. (Kyoto University, Uji, Japan); Matsumoto, H. (Kyoto University, Kyoto, Japan)

    1980-09-01

    A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.

  13. Aeronomy report no. 73: analysis of sounding rocket data from Punta Chilca, Peru

    International Nuclear Information System (INIS)

    Fillinger, R.W. Jr; Mechtly, E.A.; Walton, E.K.

    1976-01-01

    A technique is described for measuring electron concentrations in the lower portion of the ionosphere above Punta Chilca. A radio-propagation experiment for measuring Faraday rotation is combined with a dc/Langmuir probe experiment for measuring electron current. The results obtained from the analysis of radio and probe data from Nike Apache 14.532, which was launched at 20:26 UT on May 28, 1975, at a solar zenith angle of 60 deg are presented. A comparison of the profiles of electron concentration indicates that the value of the maximum ionization in the D region under quiet conditions is proportional to the square of the cosine of the solar zenith angle

  14. Development of instrumentation with application to sounding rocket electric and magnetic field measurements above thunderstorms

    Science.gov (United States)

    Baker, Steven D.

    1999-06-01

    The thunderstorm campaigns led by Cornell University in 1981 and 1988 both measured large-amplitude (10 to 40 mV/m), long duration (1 ms) electric-field pulses parallel to the earth's magnetic field. To investigate the mechanism responsible for these pulses, the instrumentation bandwidth was increased from the VLF range to MF frequencies. The design for a Helmholtz coil developed to calibrate magnetometers from DC to 10 MHz is given in Chapter 3. This coil generates a spatially uniform field with for frequencies up to at least 10 MHz with amplitudes of up to 1.1 mA/m. Coincident with the need for higher bandwidth sensors, a burst-memory data acquisition system was developed to intelligently select the 1.25% of the available data to send to the telemetry encoder. This system uses the optical flash of the lightning as a trigger and has a back-up mode to ensure data is transmitted in the event no triggers occur. The higher-frequency instruments allowed the first rocket-borne measurement of nose- whistlers caused by the plasma frequency resonance (as opposed to the more common electron cyclotron frequency resonance), and what may have been the first observation of a TIPP at MF frequencies. Triggered emission from the second campaign, Thunderstorm-II, are identified as lower hybrid emissions. These emissions enhanced the whistler by several decibels in the lower hybrid frequency band and in bands above the emission. No emissions seen above the lower hybrid frequency. The Thunderstorm-III payloads also measured triggered emissions and long-duration pulses. The former were found in several altitude-independent frequency bands for which the source could not be identified. The long duration pulses, while of interest, have not been studied in sufficient depth for inclusion in this work.

  15. Safety Practices Followed in ISRO Launch Complex- An Overview

    Science.gov (United States)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems

  16. Design and performance of an experiment for the investigation of open capillary channel flows. Sounding rocket experiment TEXUS-41

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Uwe; Dreyer, Michael E. [University of Bremen, Sounding Rocket Experiment TEXUS-41 Center of Applied Space Technology and Microgravity (ZARM), Bremen (Germany)

    2007-05-15

    In this paper we report on the set-up and the performance of an experiment for the investigation of flow-rate limitations in open capillary channels under low-gravity conditions (microgravity). The channels consist of two parallel plates bounded by free liquid surfaces along the open sides. In the case of steady flow the capillary pressure of the free surface balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. A maximum flow rate is achieved when the adjusted volumetric flow rate exceeds a certain limit leading to a collapse of the free surfaces. The flow is convective (inertia) dominated, since the viscous forces are negligibly small compared to the convective forces. In order to investigate this type of flow an experiment aboard the sounding rocket TEXUS-41 was performed. The aim of the investigation was to achieve the profiles of the free liquid surfaces and to determine the maximum flow rate of the steady flow. For this purpose a new approach to the critical flow condition by enlarging the channel length was applied. The paper is focussed on the technical details of the experiment and gives a review of the set-up, the preparation of the flight procedures and the performance. Additionally the typical appearance of the flow indicated by the surface profiles is presented as a basis for a separate continuative discussion of the experimental results. (orig.)

  17. Distinguishing Alfven waves from quasi-static field structures associated with the discrete aurora: Sounding rocket and HILAT satellite measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Earle, G.D.; Vickrey, J.F.; Boehm, M.

    1990-01-01

    The authors present and analyze sounding rocket and HILAT satellite measurements of the low frequency ( 0 in the auroral oval. By examining the time-domain field data it is often difficult to distinguish temporal fluctuations from static structures which are Doppler shifted to a non-zero frequency in the spacecraft frame. However, they show that such a distinction can be made by constructing the impedance function Z(f). Using Z(f) they find agreement with the static field interpretation below about 0.1 Hz in the spacecraft frame, i.e. Z(f) = Σ p -1 where Σ p is the height-integrated Pedersen conductivity of the ionosphere. About 0.1 Hz the authors find Z(f) > Σ p -1 , which they argue to be due to the presence of Alfven waves incident from the magnetosphere and reflecting from the lower ionosphere, forming a standing wave pattern. These waves may represent an electromagnetic coupling mechanism between the auroral acceleration region and the ionosphere

  18. High-Reflectivity Multi-Layer Coatings for the CLASP Sounding Rocket Project

    Science.gov (United States)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; Giono, Gabriel; Auchere, Frederic; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman alpha line (Ly alpha line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly alpha lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approximately 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly alpha line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly alpha line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (greater than 50%) in Ly alpha line, visible light is a multilayer coating be kept to a low reflectance (less than 5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al

  19. Preliminary Observations of Ionospheric Response to an Auroral Driver from the MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) Sounding Rocket Campaign

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Hysell, D. L.; Powell, S.; Miceli, R.; Hampton, D. L.; Ahrns, J.; Lessard, M.; Cohen, I. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    The nightside sounding rocket MICA (Magnetosphere-Ionosphere Coupling in the Alfvén Resonator) launched from Poker Flat, AK, on February 19, 2012, and reached an apogee of 325km. MICA was launched into several discrete, localized arcs in the wake of a westward traveling surge. The MICA instrumentation included both in situ and ground based instruments, and was designed to measure the response of the ionosphere to an auroral driver. More specifically, the science goal was to measure response of the ionosphere to a feedback instability in the ionospheric Alfvén resonator. The MICA payload included in situ particle, electric and magnetic field, and GPS instruments. The ground-based array consisted of a multitude of imagers, coherent and incoherent scatter radars, and a Fabry-Perot interferometer. We present observational characteristics of the response of the ionospheric plasma to the auroral drivers inferred from inverting camera data. We compare the measured precipitating electron population to inversions of camera images, which use a transport model to infer a 2D map of the precipitation. Comparisons show that as the payload passes through what appears to be an Alfvénic auroral arc, the in situ electron instrument shows dispersions indicative of Alfvénic activity. We then introduce measurements of the thermal ion distribution, to examine how the auroral arcs drive a response in the ionosphere. The thermal ion data show that the payload potential strengthens as the payload passes through the arc. When including electron density, temperature, and electric field data, we observe times in which the ionospheric environment changes as the precipitation changes, and times during which there is no measured response by the ionosphere. Future work will compare how the ion bulk flow as measured by the thermal ion instrument compares to the ExB drift as measured by the electric field instrument and to the neutral wind measurements from the Fabry-Perot interferometer

  20. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hyper-g, and to simulated and sounding rocket micro-g

    Science.gov (United States)

    Hampp, R.; Babbick, M.

    Previous microarray studies with cell cultures of Arabidopsis thaliana cv Columbia have shown responses in gene expression which were partly specific to exposure to microgravity sounding rocket experiment TEXUS In order to get access to early responses upon changes in gravitational fields we used exposure times as short as 2 min For this purpose we selected a range of genes which code for different groups of transcription factors WRKY ERF MYB MADS Samples were taken in 5-min clinorotation 2- and 3-dimensional hypergravity 8g and 2-min intervals sounding rocket experiment Amounts of transcripts were determined by quantitative RT PCR Most transcripts showed a significant transient change in content within a time frame of up to 30 min after changing the external gravitational field strength They could be grouped into 1 basic stress responses which occurred under all conditions 2 clinorotation-related effects which were either identical or opposite between 2D 60 rpm 4x10 -2 g and 3D clinorotation random positioning machine and 3 alterations specific to the microgravity exposure under sounding rocket conditions MAXUS The data are discussed in relation to gravitation-dependent signalling chains and with regard to the simulation of microgravity by means of clinorotation Supported by a grant from the Deutsches Zentrum f u r Luft- und Raumfahrt e V grant no 50 WB 0143

  1. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    Science.gov (United States)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  2. Direct observation of spatially isothermal equiaxed solidification of an Al-Cu alloy in microgravity on board the MASER 13 sounding rocket

    Science.gov (United States)

    Murphy, A. G.; Mathiesen, R. H.; Houltz, Y.; Li, J.; Lockowandt, C.; Henriksson, K.; Melville, N.; Browne, D. J.

    2016-11-01

    For the first time, isothermal equiaxed solidification of a metallic alloy has been observed in situ in space, providing unique benchmark experimental data. The experiment was completed on board the MASER 13 sounding rocket, launched in December 2015, using a newly developed isothermal solidification furnace. A grain-refined Al-20 wt%Cu sample was fully melted and solidified during 360 s of microgravity and the solidification sequence was recorded using time-resolved X-radiography. Equiaxed nucleation, dendritic growth, solutal impingement, and eutectic transformation were thus observed in a gravity-free environment. Equiaxed nucleation was promoted through application of a controlled cooling rate of -0.05 K/s producing a 1D grain density of 6.5 mm-1, uniformly distributed throughout the field of view (FOV). Primary growth slowed to a visually imperceptible level at an estimated undercooling of 7 K, after which the cooling rate was increased to -1.0 K/s for the remainder of solidification and eutectic transformation, ensuring the sample was fully solidified inside the microgravity time window. The eutectic transformation commenced at the centre of the FOV proceeding radially outwards covering the entire FOV in 3 s Microgravity-based solidification is compared to an identical pre-flight ground-based experiment using the same sample and experiment timeline. The ground experiment was designed to minimise gravity effects, by choice of a horizontal orientation for the sample, so that any differences would be subtle. The first equiaxed nucleation occurred at an apparent undercooling of 0.6 K less than the equivalent event during microgravity. During primary equiaxed solidification, as expected, no buoyant grain motion was observed during microgravity, compared to modest grain rotation and reorientation observed during terrestrial-based solidification. However, when the cooling rate was increased from -0.05 K/s to -1.0 K/s during the latter stages of solidification, in

  3. Studies of the system-environment interaction by electron-beam emission from a sounding rocket payload in the ionosphere

    International Nuclear Information System (INIS)

    Myers, N.B.

    1989-01-01

    The CHARGE-2 sounding rocket payload was designed to measure the transient and steady-state electrical charging of a space vehicle a low-Earth-orbit altitudes during the emission of a low-power electron beam from the vehicle. In addition to the electron gun, the payload contained several diagnostics to monitor plasma and waves resulting from the beam/space/vehicle interaction. The payload was separated into two sections, the larger section carried a 1-keV electron gun and was referred to as the mother vehicle. The smaller section, referred to as the daughter, was connected to the mother by an insulated, conducting tether and was deployed to a distance of up to 426 m across the geomagnetic field. Payload stabilization was obtained using thrusters that released cold nitrogen gas. In addition to performing electron beam experiments, the mother vehicle contained a high-voltage power supply capable of applying up to +450 V and 28 mA to the daughter through the tether. The 1-keV electron beam was generated at beam currents of 1 mA to 48 mA, measured at the exit aperture of the electron gun. Steady-state potentials of up to 560 V were measured for the mother vehicle. The daughter attained potentials of up to 1,000 V relative to the background ionosphere and collected currents up to 6.5 mA. Thruster firings increased the current collection to the vehicle firing the thrusters and resulted in neutralization of the payload. The CHARGE-2 experiment was unique in that for the first time a comparison was made of the current collection between an electron beam-emitting vehicle and a non-emitting vehicle at high potential (400 V to 1,000 V). The daughter current collection agreed well with the Parker-Murphy model, while the mother current collection always exceeded the Parker-Murphy limit and even exceeded the Langmuir-Blodgett predicted current below 240 km

  4. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  5. Observed and modelled effects of auroral precipitation on the thermal ionospheric plasma: comparing the MICA and Cascades2 sounding rocket events

    Science.gov (United States)

    Lynch, K. A.; Gayetsky, L.; Fernandes, P. A.; Zettergren, M. D.; Lessard, M.; Cohen, I. J.; Hampton, D. L.; Ahrns, J.; Hysell, D. L.; Powell, S.; Miceli, R. J.; Moen, J. I.; Bekkeng, T.

    2012-12-01

    Auroral precipitation can modify the ionospheric thermal plasma through a variety of processes. We examine and compare the events seen by two recent auroral sounding rockets carrying in situ thermal plasma instrumentation. The Cascades2 sounding rocket (March 2009, Poker Flat Research Range) traversed a pre-midnight poleward boundary intensification (PBI) event distinguished by a stationary Alfvenic curtain of field-aligned precipitation. The MICA sounding rocket (February 2012, Poker Flat Research Range) traveled through irregular precipitation following the passage of a strong westward-travelling surge. Previous modelling of the ionospheric effects of auroral precipitation used a one-dimensional model, TRANSCAR, which had a simplified treatment of electric fields and did not have the benefit of in situ thermal plasma data. This new study uses a new two-dimensional model which self-consistently calculates electric fields to explore both spatial and temporal effects, and compares to thermal plasma observations. A rigorous understanding of the ambient thermal plasma parameters and their effects on the local spacecraft sheath and charging, is required for quantitative interpretation of in situ thermal plasma observations. To complement this TRANSCAR analysis we therefore require a reliable means of interpreting in situ thermal plasma observation. This interpretation depends upon a rigorous plasma sheath model since the ambient ion energy is on the order of the spacecraft's sheath energy. A self-consistent PIC model is used to model the spacecraft sheath, and a test-particle approach then predicts the detector response for a given plasma environment. The model parameters are then modified until agreement is found with the in situ data. We find that for some situations, the thermal plasma parameters are strongly driven by the precipitation at the observation time. For other situations, the previous history of the precipitation at that position can have a stronger

  6. The Rocket Investigation of Current Closure in the Ionosphere (RICCI) mission: A novel application of CubeSats from a sounding rocket platform

    Science.gov (United States)

    Cohen, I. J.; Anderson, B. J.; Lessard, M.; Bonnell, J. W.; Bounds, S. R.; Lysak, R. L.; Erlandson, R. E.

    2017-12-01

    The transfer of energy and momentum between the terrestrial magnetosphere and ionosphere is substantially mediated by large-scale field-aligned currents (FACs), driven by magnetopause dynamics and magnetospheric pressures and closing through the ionosphere where the dissipation and drag are governed. While significant insight into ionospheric electrodynamics and the nature of magnetosphere-ionosphere (M-I) coupling have been gained by rocket and satellite measurements, in situ measurement of these ionospheric closure currents remains challenging. To date the best estimates of ionospheric current densities are inferred from ground-based radar observations combining electric fields calculated from drifts with conductivities derived from densities. RICCI aims to observe the structure of the ionospheric currents in situ to determine how the altitude structure of these currents is related to precipitation and density cavities, electromagnetic dynamics, and governs energy dissipation in the ionosphere. In situ measurement of the current density using multi-point measurements of the magnetic field requires precise attitude knowledge for which the only demonstrated technique is the use of star camera systems. The low vehicle rotation rates required for miniature commercial off-the-shelf (COTS) star cameras prohibit the use of available rocket sub-payload technologies at Wallops Flight Facility (WFF) which use high rates of spin to stabilize attitude. However, CubeSat attitude systems are already designed to achieve low vehicle rotation rates, so RICCI will use a set of three CubeSat sub-payloads deployed from a main low altitude payload with apogee of 160 km to provide precise current density measurement through the ionospheric closure altitude regime, together with a second rocket with apogee near 320 km to measure the incident input energy flux and convection electric field. The two rocket payloads and CubeSate sub-payloads are all instrumented with star cameras and

  7. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers

    Science.gov (United States)

    MacConochie, Ian O.; Stnaley, Douglas O.

    1991-01-01

    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  8. Micro-Rockets for the Classroom.

    Science.gov (United States)

    Huebner, Jay S.; Fletcher, Alice S.; Cato, Julia A.; Barrett, Jennifer A.

    1999-01-01

    Compares micro-rockets to commercial models and water rockets. Finds that micro-rockets are more advantageous because they are constructed with inexpensive and readily available materials and can be safely launched indoors. (CCM)

  9. History of Solid Rockets

    Science.gov (United States)

    Green, Rebecca

    2017-01-01

    Solid rockets are of interest to the space program because they are commonly used as boosters that provide the additional thrust needed for the space launch vehicle to escape the gravitational pull of the Earth. Larger, more advanced solid rockets allow for space launch vehicles with larger payload capacities, enabling mankind to reach new depths of space. This presentation will discuss, in detail, the history of solid rockets. The history begins with the invention and origin of the solid rocket, and then goes into the early uses and design of the solid rocket. The evolution of solid rockets is depicted by a description of how solid rockets changed and improved and how they were used throughout the 16th, 17th, 18th, and 19th centuries. Modern uses of the solid rocket include the Solid Rocket Boosters (SRBs) on the Space Shuttle and the solid rockets used on current space launch vehicles. The functions and design of the SRB and the advancements in solid rocket technology since the use of the SRB are discussed as well. Common failure modes and design difficulties are discussed as well.

  10. Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign

    Directory of Open Access Journals (Sweden)

    B. Strelnikov

    2017-04-01

    Full Text Available In summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS in northern Norway (69° N, 16° E. Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work.

  11. Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-α line profile observations

    International Nuclear Information System (INIS)

    Argo, H.V.

    1981-01-01

    A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-α (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya

  12. On the coordination of EISCAT measurements with rocket and satellite observations

    International Nuclear Information System (INIS)

    Hultqvist, B.

    1977-01-01

    The scientific interest of combining EISCAT measurements of the thermal ionospheric plasma with sounding rocket and/or satellite measurements of the hot plasma distribution function and other variables is discussed briefly. Some examples are presented where such coordinated measurements are of great interest. The importance of being able to launch rockets through, or at least quite close to, the radar beam is emphasized. (Auth.)

  13. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  14. Rockets two classic papers

    CERN Document Server

    Goddard, Robert

    2002-01-01

    Rockets, in the primitive form of fireworks, have existed since the Chinese invented them around the thirteenth century. But it was the work of American Robert Hutchings Goddard (1882-1945) and his development of liquid-fueled rockets that first produced a controlled rocket flight. Fascinated by rocketry since boyhood, Goddard designed, built, and launched the world's first liquid-fueled rocket in 1926. Ridiculed by the press for suggesting that rockets could be flown to the moon, he continued his experiments, supported partly by the Smithsonian Institution and defended by Charles Lindbergh. T

  15. A digital-type fluxgate magnetometer using a sigma-delta digital-to-analog converter for a sounding rocket experiment

    International Nuclear Information System (INIS)

    Iguchi, Kyosuke; Matsuoka, Ayako

    2014-01-01

    One of the design challenges for future magnetospheric satellite missions is optimizing the mass, size, and power consumption of the instruments to meet the mission requirements. We have developed a digital-type fluxgate (DFG) magnetometer that is anticipated to have significantly less mass and volume than the conventional analog-type. Hitherto, the lack of a space-grade digital-to-analog converter (DAC) with good accuracy has prevented the development of a high-performance DFG. To solve this problem, we developed a high-resolution DAC using parts whose performance was equivalent to existing space-grade parts. The developed DAC consists of a 1-bit second-order sigma-delta modulator and a fourth-order analog low-pass filter. We tested the performance of the DAC experimentally and found that it had better than 17-bits resolution in 80% of the measurement range, and the linearity error was 2 −13.3  of the measurement range. We built a DFG flight model (in which this DAC was embedded) for a sounding rocket experiment as an interim step in the development of a future satellite mission. The noise of this DFG was 0.79 nT rms  at 0.1–10 Hz, which corresponds to a roughly 17-bit resolution. The results show that the sigma-delta DAC and the DFG had a performance that is consistent with our optimized design, and the noise was as expected from the noise simulation. Finally, we have confirmed that the DFG worked successfully during the flight of the sounding rocket. (paper)

  16. A digital-type fluxgate magnetometer using a sigma-delta digital-to-analog converter for a sounding rocket experiment

    Science.gov (United States)

    Iguchi, Kyosuke; Matsuoka, Ayako

    2014-07-01

    One of the design challenges for future magnetospheric satellite missions is optimizing the mass, size, and power consumption of the instruments to meet the mission requirements. We have developed a digital-type fluxgate (DFG) magnetometer that is anticipated to have significantly less mass and volume than the conventional analog-type. Hitherto, the lack of a space-grade digital-to-analog converter (DAC) with good accuracy has prevented the development of a high-performance DFG. To solve this problem, we developed a high-resolution DAC using parts whose performance was equivalent to existing space-grade parts. The developed DAC consists of a 1-bit second-order sigma-delta modulator and a fourth-order analog low-pass filter. We tested the performance of the DAC experimentally and found that it had better than 17-bits resolution in 80% of the measurement range, and the linearity error was 2-13.3 of the measurement range. We built a DFG flight model (in which this DAC was embedded) for a sounding rocket experiment as an interim step in the development of a future satellite mission. The noise of this DFG was 0.79 nTrms at 0.1-10 Hz, which corresponds to a roughly 17-bit resolution. The results show that the sigma-delta DAC and the DFG had a performance that is consistent with our optimized design, and the noise was as expected from the noise simulation. Finally, we have confirmed that the DFG worked successfully during the flight of the sounding rocket.

  17. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  18. An Analysis of Ionospheric Thermal Ions Using a SIMION-based Forward Instrument Model: In Situ Observations of Vertical Thermal Ion Flows as Measured by the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2013-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. In this presentation we focus on in situ measurements of the thermal ion distribution. We observe thermal ions flowing both up and down the auroral field line, with upflows concentrated in Alfvénic and downward current regions. The in situ data are compared with recent ionospheric modeling efforts (Zettergren et al., this session) which show structured patterns of ion upflow and downflow consistent with these observations. In the low-energy thermal plasma regime, instrument response to the measured thermal ion population is very sensitive to the presence of the instrument. The plasma is shifted and accelerated in the frame of the instrument due to flows, ram, and acceleration through the payload sheath. The energies associated with these processes are large compared to the thermal energy. Rigorous quantitative analysis of the instrument response is necessary to extract the plasma properties which describe the full 3D distribution function at the instrument aperture. We introduce an instrument model, developed in the commercial software package SIMION, to characterize instrument response at low energies. The instrument model provides important insight into how we would modify our instrument for future missions, including fine-tuning parameters such as the analyzer sweep curve, the geometry factor, and the aperture size. We use the results from the instrument model to develop a forward model, from which we can extract anisotropic ion temperatures, flows, and density of the thermal plasma at the aperture. Because this plasma has transited a sheath to reach the aperture, we must account for the acceleration due to the sheath. Modeling of this complex sheath is being conducted by co-author Fisher, using a PIC code

  19. Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP

    Science.gov (United States)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shinnosuke; Hara, Hiroshi; Suematsu, Yoshinori; Giono, Gabriel; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman a line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Lya line, visible light is a multilayer coating be kept to a low reflectance (Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included).

  20. Efficiency calibration of the first multilayer-coated holographic ion-etched flight grating for a sounding rocket high-resolution spectrometer.

    Science.gov (United States)

    Kowalski, M P; Barbee, T W; Heidemann, K F; Gursky, H; Rife, J C; Hunter, W R; Fritz, G G; Cruddace, R G

    1999-11-01

    We have fabricated the four flight gratings for a sounding rocket high-resolution spectrometer using a holographic ion-etching technique. The gratings are spherical (4000-mm radius of curvature), large (160 mm x 90 mm), and have a laminar groove profile of high density (3600 grooves/mm). They have been coated with a high-reflectance multilayer of Mo/Si. Using an atomic force microscope, we examined the surface characteristics of the first grating before and after multilayer coating. The average roughness is approximately 3 A rms after coating. Using synchrotron radiation, we completed an efficiency calibration map over the wavelength range 225-245 A. At an angle of incidence of 5 degrees and a wavelength of 234 A, the average efficiency in the first inside order is 10.4 +/- 0.5%, and the derived groove efficiency is 34.8 +/- 1.6%. These values exceed all previously published results for a high-density grating.

  1. Investigation of Energy Release in Microflares Observed by the Second Sounding Rocket Flight of the Focusing Optics X-ray Solar Imager (FOXSI-2)

    Science.gov (United States)

    Vievering, J. T.; Glesener, L.; Panchapakesan, S. A.; Ryan, D.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Inglis, A. R.; Musset, S.

    2017-12-01

    Observations of the Sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. RHESSI is the only solar-dedicated imager currently operating in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the indirect imaging method of rotating collimating optics is fundamentally limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Here we present current imaging and spectral analyses of these microflares, exploring the nature of energy release and comparing to observations from other instruments. Additionally, we feature the first analysis of data from the FOXSI-2 CdTe strip detectors, which provide improved efficiency above 10 keV. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.

  2. Pegasus Rocket Model

    Science.gov (United States)

    1996-01-01

    A small, desk-top model of Orbital Sciences Corporation's Pegasus winged rocket booster. Pegasus is an air-launched space booster produced by Orbital Sciences Corporation and Hercules Aerospace Company (initially; later, Alliant Tech Systems) to provide small satellite users with a cost-effective, flexible, and reliable method for placing payloads into low earth orbit. Pegasus has been used to launch a number of satellites and the PHYSX experiment. That experiment consisted of a smooth glove installed on the first-stage delta wing of the Pegasus. The glove was used to gather data at speeds of up to Mach 8 and at altitudes approaching 200,000 feet. The flight took place on October 22, 1998. The PHYSX experiment focused on determining where boundary-layer transition occurs on the glove and on identifying the flow mechanism causing transition over the glove. Data from this flight-research effort included temperature, heat transfer, pressure measurements, airflow, and trajectory reconstruction. Hypersonic flight-research programs are an approach to validate design methods for hypersonic vehicles (those that fly more than five times the speed of sound, or Mach 5). Dryden Flight Research Center, Edwards, California, provided overall management of the glove experiment, glove design, and buildup. Dryden also was responsible for conducting the flight tests. Langley Research Center, Hampton, Virginia, was responsible for the design of the aerodynamic glove as well as development of sensor and instrumentation systems for the glove. Other participating NASA centers included Ames Research Center, Mountain View, California; Goddard Space Flight Center, Greenbelt, Maryland; and Kennedy Space Center, Florida. Orbital Sciences Corporation, Dulles, Virginia, is the manufacturer of the Pegasus vehicle, while Vandenberg Air Force Base served as a pre-launch assembly facility for the launch that included the PHYSX experiment. NASA used data from Pegasus launches to obtain considerable

  3. South Pole rockets, (1)

    International Nuclear Information System (INIS)

    Kimura, Iwane

    1977-01-01

    Wave-particle interaction was observed, using three rockets, S-210 JA-20, -21 and S-310 JA-2, launched from the South Pole into aurora. Electron density and temperature were measured with these rockets. Simultaneous observations of waves were also made from a satellite (ISIS-II) and at two ground bases (Showa base and Mizuho base). Observed data are presented in this paper. These include electron density and temperature in relation to altitude; variation of electron (60 - 80 keV) count rate with altitude; VLF spectra measured by the PWL of S-210 JA-20 and -21 rockets and the corresponding VLF spectra at the ground bases; low-energy (<10 keV) electron flux measured by S-310 JA-2 rocket; and VLF spectrum measured with S-310 JA-2 rocket. Scheduled measurements for the next project are also briefly described. (Aoki, K.)

  4. Investigation of Electron Density Profile in the ionospheric D and E region by Kagoshima rocket experiment

    Science.gov (United States)

    Ashihara, Y.; Ishisaka, K.; Miyake, T.; Okada, T.; Nagano, I.; Abe, T.; Ono, T.

    2007-12-01

    The radio wave propagation characteristic in the lower ionosphere is important because of its effect on commercial radio communication, navigation, and broadcast services. The electron density is of primary interest in this region because the high ion-neutral collision frequencies result in radio wave absorption. In order to investigate the ionization structure in the ionospheric D and E region by using the propagation characteristics of MF-band and LF-band radio waves, S-310-37 and S-520-23 sounding rocket experiments have been carried out at Uchinoura Space Center (USC). S-310-37 sounding rocket was launched at 11:20 LT on January 16, 2007. The apex of rocket trajectory was about 138 km. Then S-520-23 sounding rocket was launched at 19:20 LT on September 2, 2007. The apex was about 279 km. As a common measurement, these sounding rockets measure the fields intensities and the waveform of radio waves from NHK Kumamoto broadcasting station (873kHz, 500kW) and JJY signals from Haganeyama LF radio station (60kHz, 50kW). The approximate electron density profile can be determined from the comparison between these experimental results and propagation characteristics calculated by the full wave method. We will get the most probable electron density profile in the ionosphere. In presentation, we will show the propagation characteristic of LF/MF radio waves measured by two sounding rocket experiments. Then we will discuss the analysis method and the estimated electron density profile in the ionosphere.

  5. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  6. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  7. Liquid Rocket Engine Testing Overview

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.

  8. Russian Meteorological and Geophysical Rockets of New Generation

    Science.gov (United States)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  9. Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign

    Science.gov (United States)

    Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao

    2006-09-01

    The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.

  10. Reusable Military Launch Systems (RMLS)

    Science.gov (United States)

    2008-02-01

    shown in Figure 11. The second configuration is an axisymmetric, rocket-based combined cycle (RBCC) powered, SSTO vehicle, similar to the GTX...McCormick, D., and Sorensen, K., “Hyperion: An SSTO Vision Vehicle Concept Utilizing Rocket-Based Combined Cycle Propulsion”, AIAA paper 99-4944...there have been several failedattempts at the development of reusable rocket or air-breathing launch vehicle systems. Single-stage-to-orbit ( SSTO

  11. Feasibility of a low-cost sounding rockoon platform

    Science.gov (United States)

    Okninski, Adam; Raurell, Daniel Sors; Mitre, Alberto Rodriguez

    2016-10-01

    This paper presents the results of analyses and simulations for the design of a small sounding platform, dedicated to conducting scientific atmospheric research and capable of reaching the von Kármán line by means of a rocket launched from it. While recent private initiatives have opted for the air launch concept to send small payloads to Low Earth Orbit, several historical projects considered the use of balloons as the first stage of orbital and suborbital platforms, known as rockoons. Both of these approaches enable the minimization of drag losses. This paper addresses the issue of utilizing stratospheric balloons as launch platforms to conduct sub-orbital rocket flights. Research and simulations have been conducted to demonstrate these capabilities and feasibility. A small sounding solid propulsion rocket using commercially-off-the-shelf hardware is proposed. Its configuration and design are analyzed with special attention given to the propulsion system and its possible mission-orientated optimization. The cost effectiveness of this approach is discussed. Performance calculation outcomes are shown. Additionally, sensitivity study results for different design parameters are given. Minimum mass rocket configurations for various payload requirements are presented. The ultimate aim is to enhance low-cost experimentation maintaining high mobility of the system and simplicity of operations. An easier and more affordable access to a space-like environment can be achieved with this system, thus allowing for widespread outreach of space science and technology knowledge. This project is based on earlier experience of the authors in LEEM Association of the Technical University of Madrid and the Polish Small Sounding Rocket Program developed at the Institute of Aviation and Warsaw University of Technology in Poland.

  12. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  13. Rocket science

    International Nuclear Information System (INIS)

    Upson Sandra

    2011-01-01

    Expanding across the Solar System will require more than a simple blast off, a range of promising new propulsion technologies are being investigated by ex- NASA shuttle astronaut Chang Diaz. He is developing an alternative to chemical rockets, called VASIMR -Variable Specific Impulse Magnetoplasm Rocket. In 2012 Ad Astra plans to test a prototype, using solar power rather than nuclear, on the International Space Station. Development of this rocket for human space travel is discussed. The nuclear reactor's heat would be converted into electricity in an electric rocket such as VASIMR, and at the peak of nuclear rocket research thrust levels of almost one million newtons were reached.

  14. Rocket observation of electron density irregularities in the lower E region

    International Nuclear Information System (INIS)

    Watanabe, Yuzo; Nakamura, Yoshiharu; Amemiya, Hiroshi.

    1990-01-01

    Local ionospheric electron density irregularities in the scale size of 3 m to 300 m have been measured on the ascending path from 74 km to 93 km by a fix biased Langmuir probe on board the S-310-16 sounding rocket. The rocket was launched at 22:40:00 on February 1, 1986 from Kagoshima Space Center in Japan. It is found from frequency analysis of the data that the spectral index of the irregularities is 0.9 to 1.8 and the irregularity amplitude is 1 to 15 %. The altitude where the amplitude reaches its maximum is 88 km. The generation mechanism of these irregularities is explained by the neutral turbulence theory, which indicates that the spectral index is 5/3 and has been confirmed by a chemical release experiment using rockets over India to be valid up to about 110 km. From frequency analysis of the data observed during the descent in the lower E region, we have found that the rocket-wake effect becomes larger when the probe is situated near the edge of the rocket-wake, and that this is also the case even when the rocket-wake effect does not clearly appear in the DC current signal which approximately changes in proportion to the electron density, where the probe is completely situated inside the rocket-wake region. (author)

  15. Assessment of exposure-response functions for rocket-emission toxicants

    National Research Council Canada - National Science Library

    Subcommittee on Rocket-Emission Toxicants, National Research Council

    ... aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants...

  16. COSMOS Launch Services

    Science.gov (United States)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  17. An introduction to the water recovery x-ray rocket

    Science.gov (United States)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  18. The Rocket Balloon (Rocketball): Applications to Science, Technology, and Education

    Science.gov (United States)

    Esper, Jaime

    2009-01-01

    Originally envisioned to study upper atmospheric phenomena, the Rocket Balloon system (or Rocketball for short) has utility in a range of applications, including sprite detection and in-situ measurements, near-space measurements and calibration correlation with orbital assets, hurricane observation and characterization, technology testing and validation, ground observation, and education. A salient feature includes the need to reach space and near-space within a critical time-frame and in adverse local meteorological conditions. It can also provide for the execution of technology validation and operational demonstrations at a fraction of the cost of a space flight. In particular, planetary entry probe proof-of-concepts can be examined. A typical Rocketball operational scenario consists of a sounding rocket launch and subsequent deployment of a balloon above a desired location. An obvious advantage of this combination is the additional mission 'hang-time' rendered by the balloon once the sounding rocket flight is completed. The system leverages current and emergent technologies at the NASA Goddard Space Flight Center and other organizations.

  19. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    Science.gov (United States)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  20. European souding-rocket, balloon and related research, with emphasis on experiments at high latitudes. Proceedings

    International Nuclear Information System (INIS)

    Halvorsen, T.; Battrick, B.; Rowley, C.

    1978-06-01

    The document contains 75 papers presented at the fourth symposium held within the framework of the ESA programme advisory committee on the special project concerning the launching of sounding rockets (PAC), which took place at Ajaccio, Corsica, from 24-29 April 1978. The symposium, organised jointly by the PAC and the Centre national d'etudes spaciales (CNES), was divided into 8 sessions embracing, respectively, a review of the national programmes, magnetospheric physics, launch range presentations, middle-atmosphere physics, astrophysic, material sciences, subsatellites and technology, as relevant to souding-rocket and balloon research. Working groups formed during the symposium formulated proposals to the PAC for new or intensified studies based on coordination of other experiments with EISCAT, optical experiments in connection with range and other experiment, middle-atmosphere programme experiments, and subsatellite experiments

  1. Rocket + Science = Dialogue

    Science.gov (United States)

    Morris,Bruce; Sullivan, Greg; Burkey, Martin

    2010-01-01

    It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.

  2. Design of a simple Gerdien condenser for ionospheric D-region charged particle density and mobility measurements. [for Arcas rocket sounding

    Science.gov (United States)

    Farrokh, H.

    1975-01-01

    The theory of a Gerdien condenser operating in a collision controlled medium is reviewed. Design and electronics of a Gerdien condenser probe suitable for flying on the Arcas rocket is presented. Aerodynamics properties of the instrument in continuous flow are discussed. The method of data reduction and experimental results of one successful flight at White Sands Missile Range (WSMR), New Mexico, on 11 January 1974 are reported. This investigation shows positive ions in two relatively distinct mobility groups between 47 and 65 km and a more continuous distribution of mobilities between 38 and 47 km.

  3. Infrared signature modelling of a rocket jet plume - comparison with flight measurements

    International Nuclear Information System (INIS)

    Rialland, V; Perez, P; Roblin, A; Guy, A; Gueyffier, D; Smithson, T

    2016-01-01

    The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm -1 with a step of 5 cm -1 . The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed. (paper)

  4. On use of hybrid rocket propulsion for suborbital vehicles

    Science.gov (United States)

    Okninski, Adam

    2018-04-01

    While the majority of operating suborbital rockets use solid rocket propulsion, recent advancements in the field of hybrid rocket motors lead to renewed interest in their use in sounding rockets. This paper presents results of optimisation of sounding rockets using hybrid propulsion. An overview of vehicles under development during the last decade, as well as heritage systems is provided. Different propellant combinations are discussed and their performance assessment is given. While Liquid Oxygen, Nitrous Oxide and Nitric Acid have been widely tested with various solid fuels in flight, Hydrogen Peroxide remains an oxidiser with very limited sounding rocket applications. The benefits of hybrid propulsion for sounding rockets are given. In case of hybrid rocket motors the thrust curve can be optimised for each flight, using a flow regulator, depending on the payload and mission. Results of studies concerning the optimal burn duration and nozzle selection are given. Specific considerations are provided for the Polish ILR-33 "Amber" sounding rocket. Low regression rates, which up to date were viewed as a drawback of hybrid propulsion may be used to the benefit of maximising rocket performance if small solid rocket boosters are used during the initial flight period. While increased interest in hybrid propulsion is present, no up-to-date reference concerning use of hybrid rocket propulsion for sounding rockets is available. The ultimate goal of the paper is to provide insight into the sensitivity of different design parameters on performance of hybrid sounding rockets and delve into the potential and challenges of using hybrid rocket technology for expendable suborbital applications.

  5. Space Power Experiments Aboard Rockets SPEAR-3

    National Research Council Canada - National Science Library

    Raitt, W. J

    1997-01-01

    The SPEAR-3 program was a sounding rocket payload designed to study the interaction of a charged body with the Earth's upper atmosphere with particular reference to the discharging ability of selected...

  6. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  7. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  8. Nuclear rockets

    International Nuclear Information System (INIS)

    Sarram, M.

    1972-01-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine call NERVA by heating liquid hydrogen, in a nuclear reactor, from 420F to 4000 0 F. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight

  9. Nuclear rockets

    Energy Technology Data Exchange (ETDEWEB)

    Sarram, M [Teheran Univ. (Iran). Inst. of Nuclear Science and Technology

    1972-02-01

    Nuclear energy has found many applications in space projects. This article deals with these applications. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear energy for propulsion purposes in space flight. The main objective is to develop a 75000 pound thrust flight engine called NERVA by heating liquid hydrogen in a nuclear reactor. The paper describes in detail the salient features of the NERVA rocket as well as its comparison with the conventional chemical rockets. It is shown that a nuclear rocket using liquid hydrogen as medium is at least 85% more efficient as compared with the chemical rockets such as those used for the APOLLO moon flight.

  10. Determination of the availability of appropriate aged flight rocket motors. [captive tests to determine case bond separation and grain bore cracking

    Science.gov (United States)

    Martin, P. J.

    1974-01-01

    A program to identify surplus solid rocket propellant engines which would be available for a program of functional integrity testing was conducted. The engines are classified as: (1) upper stage and apogee engines, (2) sounding rocket and launch vehicle engines, and (3) jato, sled, and tactical engines. Nearly all the engines were available because their age exceeds the warranted shelf life. The preference for testing included tests at nominal flight conditions, at design limits, and to establish margin limits. The principal failure modes of interest were case bond separation and grain bore cracking. Data concerning the identification and characteristics of each engine are tabulated. Methods for conducting the tests are described.

  11. National Security Space Launch at a Crossroads

    Science.gov (United States)

    2016-05-13

    appropriations measure expire (i.e., at the start of FY2017). Rocket Engines: Goods or Services37 In the Commercial Space Act of 1998 (CSA),38...procured from commercial sources or whether the government may independently develop and manufacture rocket engines. The resolution to this question may...Space Act of 1998 ...) the DoD procures commercial launch services rather than rockets or engines used in those services.”43 Notably, the view

  12. Air Launch from a Towed Glider

    Data.gov (United States)

    National Aeronautics and Space Administration — This research effort is exploring the concept of launching a rocket from a glider that is towed by an aircraft. The idea is to build a relatively inexpensive...

  13. Pressure-Equalizing Cradle for Booster Rocket Mounting

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  14. Rocket and radar investigation of background electrodynamics and bottom-type scattering layers at the onset of equatorial spread F

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2006-07-01

    Full Text Available Sounding rocket experiments were conducted during the NASA EQUIS II campaign on Kwajalein Atoll designed to elucidate the electrodynamics and layer structure of the postsunset equatorial F region ionosphere prior to the onset of equatorial spread F (ESF. Experiments took place on 7 and 15 August 2004, each comprised of the launch of an instrumented and two chemical release sounding rockets. The instrumented rockets measured plasma number density, vector electric fields, and other parameters to an apogee of about 450 km. The chemical release rockets deployed trails of trimethyl aluminum (TMA which yielded wind profile measurements. The Altair radar was used to monitor coherent and incoherent scatter in UHF and VHF bands. Electron density profiles were also measured with rocket beacons and an ionosonde. Strong plasma shear flow was evident in both experiments. Bottom-type scattering layers were observed mainly in the valley region, below the shear nodes, in westward-drifting plasma strata. The layers were likely produced by wind-driven interchange instabilities as proposed by Kudeki and Bhattacharyya (1999. In both experiments, the layers were patchy and distributed periodically in space. Their horizontal structure was similar to that of the large-scale plasma depletions that formed later at higher altitude during ESF conditions. We argue that the bottom-type layers were modulated by the same large-scale waves that seeded the ESF. A scenario where the large-scale waves were themselves produced by collisional shear instabilities is described.

  15. Rocket measurements of electron density irregularities during MAC/SINE

    Science.gov (United States)

    Ulwick, J. C.

    1989-01-01

    Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.

  16. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    Science.gov (United States)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  17. Launch Environmental Test for KITSAT-3 FM

    Directory of Open Access Journals (Sweden)

    Sang-Hyun Lee

    1999-06-01

    Full Text Available The satellite experiences the severe launch environment such as vibration, acceleration, shock, and acoustics induced by rocket. Therefore, the satellite should be designed and manufactured to endure such severe launch environments. In this paper, we describe the structure of the KITSAT-3 FM(Flight Model and the processes and results of the launch environmental test to ensure the reliability during launch period.

  18. Rocket Ozone Data Recovery for Digital Archival

    Science.gov (United States)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  19. Aerodynamic Problems of Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Kyong Chol Chou

    1984-09-01

    Full Text Available The airflow along the surface of a launch vehicle together with vase flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  20. National Security Space Launch Report

    Science.gov (United States)

    2006-01-01

    Company Clayton Mowry, President, Arianespace Inc., North American—“Launch Solutions” Elon Musk , CEO and CTO, Space Exploration Technologies (SpaceX...technologies to the NASA Exploration Initiative (“…Moon, Mars and Beyond.”).1 EELV Technology Needs The Atlas V and Delta IV vehicles incorporate current... Mars and other destinations.” 46 National Security Space Launch Report Figure 6.1 U.S. Government Liquid Propulsion Rocket Investment, 1991–2005

  1. Overview of GX launch services by GALEX

    Science.gov (United States)

    Sato, Koji; Kondou, Yoshirou

    2006-07-01

    Galaxy Express Corporation (GALEX) is a launch service company in Japan to develop a medium size rocket, GX rocket and to provide commercial launch services for medium/small low Earth orbit (LEO) and Sun synchronous orbit (SSO) payloads with a future potential for small geo-stationary transfer orbit (GTO). It is GALEX's view that small/medium LEO/SSO payloads compose of medium scaled but stable launch market due to the nature of the missions. GX rocket is a two-stage rocket of well flight proven liquid oxygen (LOX)/kerosene booster and LOX/liquid natural gas (LNG) upper stage. This LOX/LNG propulsion under development by Japan's Aerospace Exploration Agency (JAXA), is robust with comparable performance as other propulsions and have future potential for wider application such as exploration programs. GX rocket is being developed through a joint work between the industries and GX rocket is applying a business oriented approach in order to realize competitive launch services for which well flight proven hardware and necessary new technology are to be introduced as much as possible. It is GALEX's goal to offer “Easy Access to Space”, a highly reliable and user-friendly launch services with a competitive price. GX commercial launch will start in Japanese fiscal year (JFY) 2007 2008.

  2. Air-Powered Rockets.

    Science.gov (United States)

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  3. Two-dimensional motions of rockets

    International Nuclear Information System (INIS)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the descending parts of the trajectories tend to be gentler and straighter slopes than the ascending parts for relatively large launching angles due to the non-vanishing thrusts. We discuss the ranges, the maximum altitudes and the engine performances of the rockets. It seems that the exponential fuel exhaustion can be the most potent engine for the longest and highest flights

  4. Nonlinear acoustic propagation of launch vehicle and military jet aircraft noise

    Science.gov (United States)

    Gee, Kent L.

    2010-10-01

    The noise from launch vehicles and high-performance military jet aircraft has been shown to travel nonlinearly as a result of an amplitude-dependent speed of sound. Because acoustic pressure compressions travel faster than rarefactions, the waveform steepens and shocks form. This process results in a very different (and readily audible) noise signature and spectrum than predicted by linear models. On-going efforts to characterize the nonlinearity using statistical and spectral measures are described with examples from recent static tests of solid rocket boosters and the F-22 Raptor.

  5. Ionospheric shock waves triggered by rockets

    Directory of Open Access Journals (Sweden)

    C. H. Lin

    2014-09-01

    Full Text Available This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK Taepodong-2 and 2013 South Korea (SK Korea Space Launch Vehicle-II (KSLV-II rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100–600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800–1200 m s−1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800–1200 m s−1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  6. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  7. Rocket Tablet,

    Science.gov (United States)

    1984-09-12

    not accustomed to Chinese food, he ran off directly to the home of the Mayor of Beijing and requested two Western cuisine cooks from a hotel. At the...played out by our Chinese sons and daughters of ancient times. The famous Han dynasty general Li Guang was quickly cured of disease and led an army...Union) of China. This place was about to become the birthplace of the Chinese people’s first rocket baby. Section One In this eternal wasteland called

  8. Flight demonstration of flight termination system and solid rocket motor ignition using semiconductor laser initiated ordnance

    Science.gov (United States)

    Schulze, Norman R.; Maxfield, B.; Boucher, C.

    1995-01-01

    Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.

  9. Subsonic Glideback Rocket Demonstrator Flight Testing

    Science.gov (United States)

    DeTurris, Dianne J.; Foster, Trevor J.; Barthel, Paul E.; Macy, Daniel J.; Droney, Christopher K.; Talay, Theodore A. (Technical Monitor)

    2001-01-01

    For the past two years, Cal Poly's rocket program has been aggressively exploring the concept of remotely controlled, fixed wing, flyable rocket boosters. This program, embodied by a group of student engineers known as Cal Poly Space Systems, has successfully demonstrated the idea of a rocket design that incorporates a vertical launch pattern followed by a horizontal return flight and landing. Though the design is meant for supersonic flight, CPSS demonstrators are deployed at a subsonic speed. Many steps have been taken by the club that allowed the evolution of the StarBooster prototype to reach its current size: a ten-foot tall, one-foot diameter, composite material rocket. Progress is currently being made that involves multiple boosters along with a second stage, third rocket.

  10. The Potential for Ozone Depletion in Solid Rocket Motor Plumes by Heterogeneous Chemistry

    National Research Council Canada - National Science Library

    Hanning-Lee, M

    1996-01-01

    ... (hydroxylated alumina), respectively, over the temperature range -60 to 200 degrees C. This work addresses the potential for stratospheric ozone depletion by launch vehicle solid rocket motor exhaust...

  11. Investigation Regarding Assertions Made by Former United Launch Alliance Executive (REDACTED)

    Science.gov (United States)

    2016-12-05

    reviewed documents and contract awards. First, did ULA improperly transfer five RD-180 rocket engines from NSS launch missions to commercial ...distinguish between commercial and government missions and uses a “first in, first out” asset management method for its RD-180 rocket engines. The...improperly transfer five RD-180 rocket engines from NSS launch missions to commercial launch missions to influence congressional legislation? 2. Did

  12. Design of a rocket-borne radiometer for stratospheric ozone measurements

    International Nuclear Information System (INIS)

    Barnes, R.A.; Simeth, P.G.

    1989-01-01

    A four-filter ultraviolet radiometer for measuring stratospheric ozone is described. The payload is launched aboard a Super-Loki rocket to an apogee of 70 km. The instrument measures the solar ultraviolet irradiance over its filter wavelengths as it descends on a parachute. The amount of ozone in the path between the radiometer and the sun is calculated from the attenuation of solar flux using the Beer-Lambert law. Radar at the launch site measures the height of the instrument throughout its flight. The fundamental ozone value measured by the ROCOZ-A radiometer is the vertical ozone overburden as a function of geometric altitude. Ozone measurements are obtained for altitudes from 55 to 20 km, extending well above the altitude range of balloon-borne ozone-measuring instruments. The optics and electronics in the radiometer have been designed within relatively severe size and weight limitations imposed by the launch vehicle. The electronics in the improved rocket ozonesonde (ROCOZ-A) provide essentially drift-free outputs throughout 40-min ozone soundings at stratospheric temperatures. The modest cost of the payload precludes recovery and makes the instrument a versatile tool compared to larger ozonesondes

  13. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  14. Project Stratos; reaching space with a student-built rocket

    NARCIS (Netherlands)

    Haneveer, M.

    2013-01-01

    In the spring of 2009 a team of 15 TU Delft students travelled to Kiruna, Sweden with only one goal: to launch the rocket Stratos I they had been working on for 2 years to an altitude of over 12km, thereby claiming the European Amateur Rocket Altitude record. These students were part of Delft

  15. Four Decades of Space-Borne Radio Sounding

    Science.gov (United States)

    Benson, Robert F.

    2010-01-01

    A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.

  16. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    Science.gov (United States)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  17. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    Science.gov (United States)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  18. How High? How Fast? How Long? Modeling Water Rocket Flight with Calculus

    Science.gov (United States)

    Ashline, George; Ellis-Monaghan, Joanna

    2006-01-01

    We describe an easy and fun project using water rockets to demonstrate applications of single variable calculus concepts. We provide procedures and a supplies list for launching and videotaping a water rocket flight to provide the experimental data. Because of factors such as fuel expulsion and wind effects, the water rocket does not follow the…

  19. 14 CFR 437.95 - Inspection of additional reusable suborbital rockets.

    Science.gov (United States)

    2010-01-01

    ... suborbital rockets. 437.95 Section 437.95 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL... of an Experimental Permit § 437.95 Inspection of additional reusable suborbital rockets. A permittee may launch or reenter additional reusable suborbital rockets of the same design under the permit after...

  20. Modeling and validation of Ku-band signal attenuation through rocket plumes

    NARCIS (Netherlands)

    Veek, van der B.J.; Chintalapati, S.; Kirk, D.R.; Gutierrez, H.; Bun, R.F.

    2013-01-01

    Communications to and from a launch vehicle during ascent are of critical importance to the success of rocket-launch operations. During ascent, the rocket's exhaust plume causes significant interference in the radio communications between the vehicle and ground station. This paper presents an

  1. Launch Pad in a Box

    Science.gov (United States)

    Mantovani, James; Tamasy, Gabor; Mueller, Rob; Townsend, Van; Sampson, Jeff; Lane, Mike

    2016-01-01

    NASA Kennedy Space Center (KSC) is developing a new deployable launch system capability to support a small class of launch vehicles for NASA and commercial space companies to test and launch their vehicles. The deployable launch pad concept was first demonstrated on a smaller scale at KSC in 2012 in support of NASA Johnson Space Center's Morpheus Lander Project. The main objective of the Morpheus Project was to test a prototype planetary lander as a vertical takeoff and landing test-bed for advanced spacecraft technologies using a hazard field that KSC had constructed at the Shuttle Landing Facility (SLF). A steel pad for launch or landing was constructed using a modular design that allowed it to be reconfigurable and expandable. A steel flame trench was designed as an optional module that could be easily inserted in place of any modular steel plate component. The concept of a transportable modular launch and landing pad may also be applicable to planetary surfaces where the effects of rocket exhaust plume on surface regolith is problematic for hardware on the surface that may either be damaged by direct impact of high speed dust particles, or impaired by the accumulation of dust (e.g., solar array panels and thermal radiators). During the Morpheus free flight campaign in 2013-14, KSC performed two studies related to rocket plume effects. One study compared four different thermal ablatives that were applied to the interior of a steel flame trench that KSC had designed and built. The second study monitored the erosion of a concrete landing pad following each landing of the Morpheus vehicle on the same pad located in the hazard field. All surfaces of a portable flame trench that could be directly exposed to hot gas during launch of the Morpheus vehicle were coated with four types of ablatives. All ablative products had been tested by NASA KSC and/or the manufacturer. The ablative thicknesses were measured periodically following the twelve Morpheus free flight tests

  2. Wave-particle interaction phenomena observed by antarctic rockets

    International Nuclear Information System (INIS)

    Kimura, I.; Hirasawa, T.

    1979-01-01

    Rocket measurements of wave and particles activities made at Syowa Station in Antarctica during IMS period are reviewed. Nine rockets were used for such observations, out of which 6 rockets were launched in the auroral sky. In the VLF frequency range, 0 - 10 KHz, wideband spectra of wave electric and magnetic fields, Poynting flux and the direction of propagation vector were measured for chorus, ELF and VLF hiss, and for electrostatic noises. In the MF and HF range, the dynamic frequency spectra of 0.1 - 10 MHz were measured. The relationship of these wave phenomena with energetic particle activities measured by the same rockets are discussed. (author)

  3. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  4. Reusable Launch Vehicle Technology Program

    Science.gov (United States)

    Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene

    1997-01-01

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight test. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost effective, reusable launch vehicle systems.

  5. Preliminary Report: DESiGN and Test Result of KSR-3 Rocket Magnetometers

    Directory of Open Access Journals (Sweden)

    Hyo-Min Kim

    2000-12-01

    Full Text Available The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for a scientific purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field. The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  6. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    Science.gov (United States)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  7. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  8. Rocket center Peenemünde — Personal memories

    Science.gov (United States)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  9. Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  10. Hydrocarbon Rocket Technology Impact Forecasting

    Science.gov (United States)

    Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.

  11. Technology Innovations from NASA's Next Generation Launch Technology Program

    Science.gov (United States)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  12. High Altitude Launch for a Practical SSTO

    Science.gov (United States)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  13. Eddie Rocket's Franchise

    OpenAIRE

    Vahter, Jenni

    2008-01-01

    Eddie Rocket's Franchise - Setting up a franchise restaurant in Helsinki. TIIVISTELMÄ: Eddie Rocket's on menestynyt amerikkalaistyylinen 1950-luvun ”diner” franchiseravintolaketju Irlannista. Ravintoloita on perustettu viimeisen 18 vuoden aikana 28 kappaletta Irlantiin ja Isoon Britanniaan sekä yksi Espanjaan. Tämän tutkimuksen tarkoitus on tutkia onko Eddie Rocket'silla potentiaalia menestyä Helsingissä, Suomessa. Tutkimuskysymystä on lähestytty toimiala-analyysin, markkinatutkimuksen j...

  14. Liquid Rocket Engine Testing

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 17 October 2016 – 26 October 2016 4. TITLE AND SUBTITLE Liquid Rocket Engine Testing 5a. CONTRACT NUMBER...298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Liquid Rocket Engine Testing SFTE Symposium 21 October 2016 Jake Robertson, Capt USAF AFRL...Distribution Unlimited. PA Clearance 16493 Liquid Rocket Engine Testing • Engines and their components are extensively static-tested in development • This

  15. Using Virtual Reality in K-12 Education: A Simulation of Shooting Bottle Rockets for Distance

    Directory of Open Access Journals (Sweden)

    Charles Nippert

    2012-10-01

    Full Text Available Typically, it is often more challenging to shoot bottle rockets for distance instead of shooting them straight up and measuring altitude, as is often done.Using a device made from pipe and wood to launch bottle rockets and control the launch angle creates a much more interesting problem for students who are attempting to optimize launch conditions.Plans are presented for a launcher that allow students to adjust the launch angle. To help embellish the exercise, we supplement the bottle rocket with a model using virtual reality and a photorealistic simulation of the launch that allows the students to appreciate the optimization problems associated with water and air pressure and launch angle. Our usage data indicates that students easily adapt to the virtual reality simulation and use our simulation for intuitive experiments on their own to optimize launch conditions.

  16. Method for Producing Launch/Landing Pads and Structures Project

    Science.gov (United States)

    Mueller, Robert P. (Compiler)

    2015-01-01

    Current plans for deep space exploration include building landing-launch pads capable of withstanding the rocket blast of much larger spacecraft that that of the Apollo days. The proposed concept will develop lightweight launch and landing pad materials from in-situ materials, utilizing regolith to produce controllable porous cast metallic foam brickstiles shapes. These shapes can be utilized to lay a landing launch platform, as a construction material or as more complex parts of mechanical assemblies.

  17. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  18. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  19. Rocket Based Combined Cycle (RBCC) Engine

    Science.gov (United States)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  20. Design options for advanced manned launch systems

    Science.gov (United States)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  1. Field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.

    2006-01-01

    It was developed a physical model, which allowed calculating a field of infrasound wave on the earth from blast wave, produced by supersonic flight of a rocket. For space launching site Baikonur it is shown that the nearest horizontal distance from launching site of rocket up to which arrive infrasound waves, produced by supersonic flight of a rocket, is 56 km. Amplitude of acoustic impulse decreases in 5 times on distance of 600 km. Duration of acoustic impulse increases from 1.5 to 3 s on the same distance. Values of acoustic field parameters on the earth surface, practically, do not depend from season of launching of rocket. (author)

  2. MASERATI: a new rocket-borne diode laser absorption spectrometer for in-situ measurement of trace gases in the middle and upper atmosphere; MASERATI: Ein neues raketengetragenes Diodenlaser-Absorptionsspektrometer zur in situ-Messung von Spurengasen in der mittleren und oberen Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Lucke, H. von

    1999-09-01

    MASERATI (middle atmosphere spectrometric experiment on Rockets for the analysis of trace gas influences) is the first rocket-borne tunable diode laser absorption spectrometer (TDLAS). It was developed to measure water vapor and carbon dioxide in the altitude range from 50 to 90 km and 120 km, respectively. Infrared absorption spectroscopy using two laser diodes is applied to measure both trace gases simultaneously. The laser beams are sent into an open multiple-pass absorption setup mounted on top of the sounding rocket. High sensitivity is achieved by means of frequency modulation and lock-in techniques. The results of several tests performed in the laboratory demonstrate that the instrument is capable of detecting relative absorbances down to 10{sup -4} - 10{sup -5} when integrating spectra for 1 s. Two almost identical MASERATI instruments have been built and launched on sounding rockets from the Andoeya rocket range (69 N, 16 E) in northern Norway during winter 1997/98. The results of these flights demonstrate that MASERATI is a new suitable tool for in situ studies of the mesosphere and lower thermosphere. (orig.)

  3. Low-Cost Propellant Launch to Earth Orbit from a Tethered Balloon

    Science.gov (United States)

    Wilcox, Brian H.

    2006-01-01

    Propellant will be more than 85% of the mass that needs to be lofted into Low Earth Orbit (LEO) in the planned program of Exploration of the Moon, Mars, and beyond. This paper describes a possible means for launching thousands of tons of propellant per year into LEO at a cost 15 to 30 times less than the current launch cost per kilogram. The basic idea is to mass-produce very simple, small and relatively low-performance rockets at a cost per kilogram comparable to automobiles, instead of the 25X greater cost that is customary for current launch vehicles that are produced in small quantities and which are manufactured with performance near the limits of what is possible. These small, simple rockets can reach orbit because they are launched above 95% of the atmosphere, where the drag losses even on a small rocket are acceptable, and because they can be launched nearly horizontally with very simple guidance based primarily on spin-stabilization. Launching above most of the atmosphere is accomplished by winching the rocket up a tether to a balloon. A fuel depot in equatorial orbit passes over the launch site on every orbit (approximately every 90 minutes). One or more rockets can be launched each time the fuel depot passes overhead, so the launch rate can be any multiple of 6000 small rockets per year, a number that is sufficient to reap the benefits of mass production.

  4. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  5. Turbulent energy dissipation rates observed by Doppler MST Radar and by rocket-borne instruments during the MIDAS/MaCWAVE campaign 2002

    Directory of Open Access Journals (Sweden)

    N. Engler

    2005-06-01

    Full Text Available During the MIDAS/MaCWAVE campaign in summer 2002 we have observed turbulence using Doppler beam steering measurements obtained from the ALWIN VHF radar at Andøya/Northern Norway. This radar was operated in the Doppler beam steering mode for turbulence investigations during the campaign, as well as in spaced antenna mode, for continuously measuring the background wind field. The real-time data analysis of the Doppler radar backscattering provided the launch conditions for the sounding rockets. The spectral width data observed during the occurrence of PMSE were corrected for beam and shear broadening caused by the background wind field to obtain the turbulent part of the spectral width. The turbulent energy dissipation rates determined from the turbulent spectral width vary between 5 and 100mW kg-1 in the altitude range of 80-92km and increase with altitude. These estimations agree well with the in-situ measurements using the CONE sensor which was launched on 3 sounding rockets during the campaign.

  6. Rocket Detection of Argon in Comet Hale-Bopp

    Science.gov (United States)

    Stern, S. A.; Festou, M. C.; Parker, J. Wm.; Slater, D. C.; Gladstone, G. R.; A'Hearn, M. F.

    1998-12-01

    The EUVS planetary sounding rocket spectrograph was flown on 30.2 March 1997 (UT) from White Sands, New Mexico to observe comet Hale-Bopp in the bandpass from 830--1120 A. At the time of launch the comet was near perihelion, 0.915 AU from the Sun, 1.340 AU from Earth, and traveling at a heliocentric radial velocity of +0.70 km/s. EUVS obtained its primary spectra of the comet at resolution near 12 A, collecting 9340 counts over approximately 330 seconds of integration time. To our knowledge, the resulting dataset is both the most sensitive and the highest spectral resolution probe of a comet in the UV below 1200 A as yet achieved, and contains signatures of both the 1048.2 A and 1066.7 A Ar I resonance lines. These features represent the first-ever detections of any noble gas in a comet. The spectrum also includes significant detections which we tentatively attribute to due to 834 A 0 II, 972 A Lyman gamma, 989 A O I, the 1026 A H I Lyman beta/O I. We will discuss the Ar features, retrieve the Ar column in the coma, and discuss the implications of the total Ar/O abundance ratio in Hale-Bopp for the comet's origin.

  7. Rocket-borne time-of-flight mass spectrometry

    Science.gov (United States)

    Reiter, R. F.

    1976-01-01

    Theoretical and numerical analyses are made of planar, cylindrical and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km.

  8. Rocket-borne time-of-flight mass spectrometry

    International Nuclear Information System (INIS)

    Reiter, R.F.

    1976-08-01

    Theoretical and numerical analyses are made of planar-, cylindrical- and spherical-electrode two-field time-of-flight mass spectrometers in order to optimize their operating conditions. A method is introduced which can improve the resolving power of these instruments by a factor of 7.5. Potential barrier gating in time-of-flight mass spectrometers is also analyzed. Experimental studies of a miniature cylindrical-electrode and a hemispherical-electrode time-of-flight mass spectrometer are presented. Their sensitivity and ability to operate at D-region pressures with an open source make them ideal instruments for D-region ion composition measurements. A sounding rocket experiment package carrying a cylindrical electrode time-of-flight mass spectrometer was launched. The data indicate that essentially 100% of the positive electric charge on positive ions is carried by ions with mass-to-charge ratios greater than 500 below an altitude of 92 km. These heavy charge carriers were present at altitudes up to about 100 km

  9. The Role of CFD Simulation in Rocket Propulsion Support Activities

    Science.gov (United States)

    West, Jeff

    2011-01-01

    Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications

  10. SSTO rockets. A practical possibility

    Science.gov (United States)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  11. Technology Maturation and Flight Validation for Air Launched Liquid Rockets

    Data.gov (United States)

    National Aeronautics and Space Administration — Generation Orbit is partnering with NASA-AFRC to conduct a flight test campaign for GOLauncher 1 (GO1) Inert Test Article (ITA), to include aircraft integration...

  12. Assessment of Multiple Launch Rocket System (MLRS) Training Strategy

    Science.gov (United States)

    1992-04-01

    Unclassified Unclassified Unlimited NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89) i Precribed by AN % Std Z39-18296-102? ARI Research Report 1614 13...Chiefs reported that they can get to be monotonous for the troops and produce " burn out"(9o 12 14)* 33 Post Number 2 reported success with Best-by

  13. Soyuz Spacecraft Transported to Launch Pad

    Science.gov (United States)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  14. A Suborbital Spaceship for Short Duration Space and Microsat Launch

    OpenAIRE

    Bahn, Pat

    2005-01-01

    The TGV Rockets corporation is working on a small Vertical Takeoff Vertical Landing Suborbital Rocketship capable of carrying 1000 kg to 100 km for low cost. This provides unique and interesting capabilities for payload test and qualification, development and short duration experimentation. Theoretical possibilities include micro-sat launch. TGV Rockets was founded in 1997 on a desire to commercialize the Delta Clipper-Experimental (DC-X)1,5,8. Subsequently TGV has been working towards th...

  15. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  16. The Effect of Atmospheric Scattering as Inferred from the Rocket-Borne UV Radiometer Measurements

    Directory of Open Access Journals (Sweden)

    Jhoon Kim

    1997-06-01

    Full Text Available Radiometers in UV and visible wavelengths were onboard the Korean Sounding Rocket(KSR-1 and 2 which were launched on June 4th and September 1st, 1993. These radiometers were designed to capture the solar radiation during the ascending period of the rocket flight. The purpose of the instrument was to measure the vertical profiles of stratospheric ozone densities. Since the instrument measured the solar radiation from the ground to its apogee, it is possible to investigate the altitude variation of the measured intensity and to estimate the effect of atmospheric scattering by comparing the UV and visible intensity. The visible channel was a reference because the 450-nm wavelength is in the atmospheric window region, where the solar radiation is transmitted through the atmosphere without being absorbed by other atmospheric gases. The use of 450-nm channel intensity as a reference should be limited to the altitude ranges above the certain altitudes, say 20 to 25§° where the signals are not perturbed by atmospheric scattering effects.

  17. Guided Multiple Launch Rocket System/Guided Multiple Launch Rocket System Alternative Warhead (GMLRS/GMLRS AW)

    Science.gov (United States)

    2015-12-01

    Physical Configuration Audit for the GMLRS AW was completed at the system level in March 2015. ​Director of Operational Test and Evaluation Assessment...Confidence Level Confidence Level of cost estimate for current APB: 50% The confidence level used in establishing the cost estimate for GMLRS/GMLRS AW...PAUC Development Estimate Changes PAUC Production Estimate Econ Qty Sch Eng Est Oth Spt Total 0.039 -0.003 0.001 0.001 0.009 0.037 0.000 0.000 0.045

  18. Additive Manufacturing for Affordable Rocket Engines

    Science.gov (United States)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  19. Game Changing: NASA's Space Launch System and Science Mission Design

    Science.gov (United States)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  20. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    OpenAIRE

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-01-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit...

  1. Another Look at Rocket Thrust

    Science.gov (United States)

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  2. NASA Space Rocket Logistics Challenges

    Science.gov (United States)

    Neeley, James R.; Jones, James V.; Watson, Michael D.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine

    2014-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discreet programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as commonality especially problematic. Additionally, a very low manifest rate of one flight every four years makes logistics comparatively expensive. That, along with the SLS architecture being developed using a block upgrade evolutionary approach, exacerbates long-range planning for supportability considerations. These common and unique logistics challenges must be clearly identified and tackled to allow SLS to have a successful program. This paper will address the common and unique challenges facing the SLS programs, along with the analysis and decisions the NASA Logistics engineers are making to mitigate the threats posed by each.

  3. The History of Rockets.

    Science.gov (United States)

    Newby, J. C.

    1988-01-01

    Discusses the origins and development of rockets mainly from the perspective of warfare. Includes some early enthusiasts, such as Congreve, Tsiolkovosky, Goddard, and Oberth. Describes developments from World War II, and during satellite development. (YP)

  4. STS-91 Launch of Discovery from Launch Pad 39-A

    Science.gov (United States)

    1998-01-01

    Searing the early evening sky with its near sun-like rocket exhaust, the Space Shuttle Discovery lifts off from Launch Pad 39A at 6:06:24 p.m. EDT June 2 on its way to the Mir space station. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as a STS-91 crew member after living more than four months aboard Mir.

  5. Study on Alternative Cargo Launch Options from the Lunar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl A. Blomberg; Zamir A. Zulkefli; Spencer W. Rich; Steven D. Howe

    2013-07-01

    In the future, there will be a need for constant cargo launches from Earth to Mars in order to build, and then sustain, a Martian base. Currently, chemical rockets are used for space launches. These are expensive and heavy due to the amount of necessary propellant. Nuclear thermal rockets (NTRs) are the next step in rocket design. Another alternative is to create a launcher on the lunar surface that uses magnetic levitation to launch cargo to Mars in order to minimize the amount of necessary propellant per mission. This paper investigates using nuclear power for six different cargo launching alternatives, as well as the orbital mechanics involved in launching cargo to a Martian base from the moon. Each alternative is compared to the other alternative launchers, as well as compared to using an NTR instead. This comparison is done on the basis of mass that must be shipped from Earth, the amount of necessary propellant, and the number of equivalent NTR launches. Of the options, a lunar coil launcher had a ship mass that is 12.7% less than the next best option and 17 NTR equivalent launches, making it the best of the presented six options.

  6. Scaled Rocket Testing in Hypersonic Flow

    Science.gov (United States)

    Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish

    2015-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.

  7. Magnetic field measurements on board of altitude-research rockets

    International Nuclear Information System (INIS)

    Theile, B.; Luehr, H.

    1976-01-01

    Electric currents within the Earth's magneto- and ionosphere can be probed by measuring their magnetic fields. Different payloads of the national sounding rocket programme will carry magnetometers of high resolution and dynamic range. Thorough test procedures are necessary to evaluate the instrument's properties and possible interference problems. (orig.) [de

  8. Potential climate impact of black carbon emitted by rockets

    Science.gov (United States)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  9. Comet mission is blown off course by faulty rocket

    CERN Multimedia

    Henderson, M

    2003-01-01

    ESA has announced that the launch of the Rosetta probe, has been delayed indefinitely because of problems with the unreliable Ariane-5 rocket on which it was to fly. The project will now have to be redesigned completely to target a different comet at a later date (1/2 page).

  10. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  11. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1989-01-01

    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  12. NASA's Space Launch Transitions: From Design to Production

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing

  13. Rocket measurements of relativistic electrons: New features in fluxes, spectra and pitch angle distributions

    International Nuclear Information System (INIS)

    Herrero, F.A.; Baker, D.N.; Goldberg, R.A.

    1991-01-01

    The authors report new features of precipitating relativistic electron fluxes measured on a spinning sounding rocket payload at midday between altitudes of 70 and 130 km in the auroral region (Poker Flat, Alaska, 65.1 degree N, 147.5 degree W, and L = 5.5). The sounding rocket (NASA 33.059) was launched at 21:29 UT on May 13, 1990 during a relativistic electron enhancement event of modest intensity. Electron fluxes were measured for a total of about 210 seconds at energies from 0.1 to 3.8 MeV, while pitch angle was sampled from 0 degree to 90 degree every spin cycle. Flux levels during the initial 90 seconds were about 5 to 8 times higher than in the next 120 seconds, revealing a time scale of more than 100 seconds for large amplitude intensity variations. A shorter time scale appeared for downward electron bursts lasting 10 to 20 seconds. Electrons with energies below about 0.2 MeV showed isotropic pitch angle distributions during most of the first 90 seconds of data, while at higher energies the electrons had highest fluxes near the mirroring angle (90 degree); when they occurred, the noted downward bursts were seen at all energies. Data obtained during the second half of the flight showed little variation in the shape of the pitch angle distribution for energies greater than 0.5 MeV; the flux at 90 degree was about 100 times the flux at 0 degree. They have compared the low altitude fluxes with those measured at geostationary orbit (L = 6.6), and find that the low altitude fluxes are much higher than expected from a simple mapping of a pancake distribution at high altitudes (at the equator). Energy deposition of this modest event is estimated to increase rapidly above 45 km, already exceeding the cosmic ray background at 45 km

  14. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  15. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  16. Telemetry Boards Interpret Rocket, Airplane Engine Data

    Science.gov (United States)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  17. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    1995-01-01

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  18. The reusable launch vehicle technology program

    Science.gov (United States)

    Cook, S.

    Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).

  19. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  20. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  1. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  2. Solid Rocket Testing at AFRL (Briefing Charts)

    Science.gov (United States)

    2016-10-21

    Distribution Unlimited. PA#16492 2 Agenda • Solid Rocket Motors • History of Sea Level Testing • Small Component Testing • Full-scale Testing • Altitude...Facility • History of Testing • Questions -Distribution A: Approved for Public Release; Distribution Unlimited. PA#16492 3 RQ-West • AFRL/RQ...INTEGRATION FACILITY NATIONAL HOVER TEST FACILITY TITAN SRM TEST FACILITY TS-1C1-125 LARGE ENGINE/COMPONENT TEST FACILITY TS-1A 1-120 1-115 X-33 LAUNCH

  3. Tabletop Experimental Track for Magnetic Launch Assist

    Science.gov (United States)

    2000-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  4. US Rocket Propulsion Industrial Base Health Metrics

    Science.gov (United States)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  5. Advanced Launch System Complex

    Data.gov (United States)

    Federal Laboratory Consortium — Description: Area 1-120 consists of three liquid rocket stands, with five firing positions, a control center and various support facilities. Vertical Stand 1A is a...

  6. Iraq Radiosonde Launch Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Iraqi upper air records loaned to NCDC from the Air Force 14th Weather Squadron. Scanned notebooks containing upper air radiosonde launch records and data. Launches...

  7. Launching technological innovations

    DEFF Research Database (Denmark)

    Talke, Katrin; Salomo, Søren

    2009-01-01

    have received less attention. This study considers the interdependencies between strategic, internally and externally, directed tactical launch activities and investigates both direct and indirect performance effects. The analysis is based upon data from 113 technological innovations launched...

  8. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  9. This Is Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-09-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical than that offered by Estes Industries, but more basic than the analysis of Nelson et al. In particular, drag is neglected until the very end of the exercise, which allows the concept of conservation of energy to be shown when predicting the rocket's flight. Also, the variable mass of the rocket motor is assumed to decrease linearly during the flight (while the propulsion charge and recovery delay charge are burning) and handled simplistically by using an average mass value. These changes greatly simplify the equations needed to predict the times and heights at various stages of flight, making it more useful as a review of basic physics. Details about model rocket motors, range safety, and other supplemental information may be found online at Apogee Components4 and the National Association of Rocketry.5

  10. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  11. This "Is" Rocket Science!

    Science.gov (United States)

    Keith, Wayne; Martin, Cynthia; Veltkamp, Pamela

    2013-01-01

    Using model rockets to teach physics can be an effective way to engage students in learning. In this paper, we present a curriculum developed in response to an expressed need for helping high school students review physics equations in preparation for a state-mandated exam. This required a mode of teaching that was more advanced and analytical…

  12. ROCKETS: Soar to Success

    Science.gov (United States)

    Brett, Christine E. W.; O'Merle, Mary Jane; White, Gene

    2017-01-01

    This article describes ROCKETS, an after-school program for at-risk youth, and how the university students became involved in this service-learning project. The article discusses the steps that were taken to start the program, what is being done to continue the program, and the challenges that faculty have faced. This program is an authentic…

  13. Liquid Rocket Engine Testing

    Science.gov (United States)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  14. Baking Soda and Vinegar Rockets

    Science.gov (United States)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  15. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  16. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    Science.gov (United States)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  17. Ly-alpha polarimeter design for CLASP rocket experiment

    Science.gov (United States)

    Kubo, M.; Watanabe, H.; Narukage, N.; Ishikawa, R.; Bando, T.; Kano, R.; Tsuneta, S.; Kobayashi, K.; Ichimoto, K.; Trujillo Bueno, J.; Song, D.

    2011-12-01

    A sounding-rocket program called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is proposed to be launched in the Summer of 2014. CLASP will observe the upper solar chromosphere in Ly-alpha (121.567 nm), aiming to detect the linear polarization signal produced by scattering processes and the Hanle effect for the first time. The CLASP needs a rotating half-waveplate and a polarization analyzer working at the Ly-alpha wavelength to measure the linear polarization signal. We select Magnesium Fluoride (MgF2) as a material of the optical components because of its birefringent property and high transparency at UV wavelength. We have confirmed that the reflection at the Brewster's Angle of MgF2 plate is a good polarization analyzer for the Ly-alpha line by deriving its ordinary refractive index and extinction coefficient along the ordinary and extraordinary axes. These optical parameters are calculated with a least-square fitting in such a way that the reflectance and transmittance satisfy the Kramers-Kronig relation. The reflectance and transmittance against oblique incident angles for the s-polarized and the p-polarized light are measured using the synchrotron beamline at the Ultraviolet Synchrotron Orbital Radiation Facility (UVSOR). We have also measured a retardation of a zeroth-order waveplate made of MgF2. The thickness difference of the waveplate is 14.57 um.This waveplate works as a half-waveplate at 121.74 nm. From this measurement, we estimate that a waveplate with the thickness difference of 15.71 um will work as a half-waveplate at the Ly-alpha wavelength. We have developed a rotating waveplate - polarization analyzer system called a prototype of CLASP polarimeter, and input the perfect Stokes Q and U signals. The modulation patterns that are consistent with the theoretical prediction are successfully obtained in both cases.

  18. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  19. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  20. NASA's Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  1. Water Rockets. Get Funny With Newton's Laws

    Directory of Open Access Journals (Sweden)

    Manuel Roca Vicent

    2017-01-01

    Full Text Available The study of the movement of the rocket has been used for decades to encourage students in the study of physics. This system has an undeniable interest to introduce concepts such as properties of gases, laws of Newton,  exchange  between  different  types  of  energy  and  its  conservation  or fluid  mechanics.  Our  works has  been  to  build  and  launch  these  rockets  in  different  educational  levels  and  in  each  of  these  ones  have introduced  the  part  of  Physics  more  suited  to  the  knowledge  of  our  students.  The  aim  of  the  learning experience  is  to  launch  the  rocket  as  far  as  possible  and  learn  to  predict  the  travelled  distance,  using Newton's  laws  and fluid  mechanics.  After  experimentation  we  demonstrated  to  be  able  to  control  the parameters that improve the performance of our rocket, such as the  fill factor, the volume and mass of the empty  bottle,  liquid  density,  launch  angle,  pressure  prior  air  release.  In addition, it is a fun experience can be attached to all levels of education in primary and high school.

  2. Design, construction, test and field support of a containerless payload package for rocket flight. [electromagnetic heating and confinement

    Science.gov (United States)

    1977-01-01

    The performance of a device for electromagnetically heating and positioning containerless melts during space processing was evaluated during a 360 second 0-g suborbital sounding rocket flight. Components of the electromagnetic containerless processing package (ECPP), its operation, and interface with the rocket are described along with flight and qualification tests results.

  3. Performance of a RBCC Engine in Rocket-Operation

    Science.gov (United States)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  4. Rationales for the Lightning Launch Commit Criteria

    Science.gov (United States)

    Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.

    2016-01-01

    Since natural and triggered lightning are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the Lightning Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were developed to prevent future instances of a rocket intercepting natural lightning or triggering a lightning flash during launch from a Federal Range. NASA and DoD utilize the Lightning Advisory Panel (LAP) to establish and develop robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed Lightning Flight Commit Criteria in G417.

  5. 'RCHX-1-STORM' first Slovenian meteorological rocket program

    Science.gov (United States)

    Kerstein, Aleksander; Matko, Drago; Trauner, Amalija; Britovšek, Zvone

    2004-08-01

    Astronautic and Rocket Society Celje (ARSC) formed a special working team for research and development of a small meteorological hail suppression rocket in the 70th. The hail suppression system was established in former Yugoslavia in the late 60th as an attempt to protect important agricultural regions from one of the summer's most vicious storm. In this time Slovenia was a part of Yugoslavia as one of the federal republic with relative high developed agricultural region production. The Rocket program 'RCHX-STORM' was a second attempt, for Slovenia indigenously developed in the production of meteorological hail suppression rocket. ARSC has designed a family of small sounding rocket that were based on highly promising hybrid propellant propulsion. Hybrid propulsion was selected for this family because it was offering low cost, save production and operation and simple logistics. Conventional sounding rockets use solid propellant motor for their propulsion. The introduction of hybrid motors has enabled a considerable decrease in overall cost. The transportation handling and storage procedures were greatly simplified due to the fact that a hybrid motor was not considered as explosive matter. A hybrid motor may also be designed to stand a severe environment without resorting to conditioning arrangements. The program started in the late 70th when the team ARSC was integrated in the Research and Development Institute in Celje (RDIC). The development program aimed to produce three types of meteorological rockets with diameters 76, 120 and 160 mm. Development of the RCHX-76 engine and rocket vehicle including flight certification has been undertaken by a joint team comprising of the ARCS, RDIC and the company Cestno podjetje Celje (CPC), Road building company Celje. Many new techniques and methods were used in this program such as computer simulation of external and internal ballistics, composite materials for rocket construction, intensive static testing of models and

  6. INTELSAT III LIFTS OFF FROM LC 17A ABOARD A DELTA LAUNCH VEHICLE

    Science.gov (United States)

    1968-01-01

    A Delta launch vehicle carrying the Intelsat III spacecraft was launched from Complex 17 at 8:09 p.m. EDT. A malfunction in flight resulted in the rocket breaking up some 102 seconds into the mission. Destruct action was initiated by the Air Force East Test Range some six seconds later when it was apparent that the mission could not succeed.

  7. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  8. Launch Pad Escape System Design (Human Spaceflight)

    Science.gov (United States)

    Maloney, Kelli

    2011-01-01

    A launch pad escape system for human spaceflight is one of those things that everyone hopes they will never need but is critical for every manned space program. Since men were first put into space in the early 1960s, the need for such an Emergency Escape System (EES) has become apparent. The National Aeronautics and Space Administration (NASA) has made use of various types of these EESs over the past 50 years. Early programs, like Mercury and Gemini, did not have an official launch pad escape system. Rather, they relied on a Launch Escape System (LES) of a separate solid rocket motor attached to the manned capsule that could pull the astronauts to safety in the event of an emergency. This could only occur after hatch closure at the launch pad or during the first stage of flight. A version of a LES, now called a Launch Abort System (LAS) is still used today for all manned capsule type launch vehicles. However, this system is very limited in that it can only be used after hatch closure and it is for flight crew only. In addition, the forces necessary for the LES/LAS to get the capsule away from a rocket during the first stage of flight are quite high and can cause injury to the crew. These shortcomings led to the development of a ground based EES for the flight crew and ground support personnel as well. This way, a much less dangerous mode of egress is available for any flight or ground personnel up to a few seconds before launch. The early EESs were fairly simple, gravity-powered systems to use when thing's go bad. And things can go bad very quickly and catastrophically when dealing with a flight vehicle fueled with millions of pounds of hazardous propellant. With this in mind, early EES designers saw such a passive/unpowered system as a must for last minute escapes. This and other design requirements had to be derived for an EES, and this section will take a look at the safety design requirements had to be derived for an EES, and this section will take a look at

  9. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    Science.gov (United States)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  10. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  11. Low-Cost Propellant Launch From a Tethered Balloon

    Science.gov (United States)

    Wilcox, Brian

    2006-01-01

    A document presents a concept for relatively inexpensive delivery of propellant to a large fuel depot in low orbit around the Earth, for use in rockets destined for higher orbits, the Moon, and for remote planets. The propellant is expected to be at least 85 percent of the mass needed in low Earth orbit to support the NASA Exploration Vision. The concept calls for the use of many small ( 10 ton) spin-stabilized, multistage, solid-fuel rockets to each deliver 250 kg of propellant. Each rocket would be winched up to a balloon tethered above most of the atmospheric mass (optimal altitude 26 2 km). There, the rocket would be aimed slightly above the horizon, spun, dropped, and fired at a time chosen so that the rocket would arrive in orbit near the depot. Small thrusters on the payload (powered, for example, by boil-off gases from cryogenic propellants that make up the payload) would precess the spinning rocket, using data from a low-cost inertial sensor to correct for small aerodynamic and solid rocket nozzle misalignment torques on the spinning rocket; would manage the angle of attack and the final orbit insertion burn; and would be fired on command from the depot in response to observations of the trajectory of the payload so as to make small corrections to bring the payload into a rendezvous orbit and despin it for capture by the depot. The system is low-cost because the small rockets can be mass-produced using the same techniques as those to produce automobiles and low-cost munitions, and one or more can be launched from a U.S. territory on the equator (Baker or Jarvis Islands in the mid-Pacific) to the fuel depot on each orbit (every 90 minutes, e.g., any multiple of 6,000 per year).

  12. Fluid Sounds

    DEFF Research Database (Denmark)

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  13. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  14. Nuclear sound

    International Nuclear Information System (INIS)

    Wambach, J.

    1991-01-01

    Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)

  15. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    Science.gov (United States)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  16. Transient Acoustic Environment Prediction Tool for Launch Vehicles in Motion during Early Lift-Off, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch vehicles experience extreme acoustic loads dominated by rocket exhaust plume interactions with ground structures during lift-off, which can produce damaging...

  17. EISCAT observation on plasma drifts connected with the Aureld-VIP rocket and the Viking satellite

    International Nuclear Information System (INIS)

    Pellinen-Wannberg, A.; Sandahl, I.; Wannberg, G.; Opgenoorth, H.; Soeraas, F.; Murphree, J.S.

    1990-01-01

    Coordinated simultaneous measurements with the EISCAT incoherent scatter radar, Aureld-VIP sounding rocket, and Viking satellite are described. Background measurements from EISCAT provide us with the development of global plasma convection during the rocket night. The observed convection pattern is very distorted, with the eveningside reversal occurring at unusually low latitudes. On the morningside it withdraws back poleward from the measurement area. Viking particle measurements over the oval indicate a very complicated auroral topology with two sectors of boundary plasma sheet (BPS) and central plasma sheet (CPS) particles. The situation is interpreted as an intrusion of the evening side BPS into the morningside, which is also consistent with the convection pattern measured by EISCAT. Local measurements with the sounding rocket and radar indicate that the rocket flew in the northern part of the evening BPS area, approaching the inner transition region from BPS to CPS in its northward motion, thus confirming the existence of such a boundary

  18. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    Science.gov (United States)

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-03-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.

  19. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  20. Second Sound

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...

  1. British sounding-rocket programme and the Esrange Special Project

    International Nuclear Information System (INIS)

    Eastwood, G.W.

    1975-01-01

    British participation in the Esrange Special Project has developed very satisfactorily since the programme was reviewed at the last Esrange Symposium [Eastwood, 1973; Acton, 1973]. Two campaigns have been undertaken at Andoya and several more are projected

  2. German national scientific balloon and sounding-rocket programme

    International Nuclear Information System (INIS)

    Joneleit, D.

    1975-01-01

    An attempt will be made to present both the technical and organisational aspects of currently planned programmes, with an indication of the scientific aims. Only projects above a certain magnitude are considered

  3. Foreign launch competition growing

    Science.gov (United States)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.

    1986-07-01

    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  4. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  5. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    Science.gov (United States)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  6. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  7. Nuclear thermal rockets using indigenous extraterrestrial propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS

  8. THE STERN PROJECT–HANDS ON ROCKETS SCIENCE FOR UNIVERSITY STUDENT

    OpenAIRE

    Schüttauf, Katharina; Stamminger, Andreas; Lappöhn, Karsten

    2017-01-01

    In April 2012, the German Aerospace Center DLR initiated a sponsorship program for university students to develop, build and launch their own rockets over a period of three years. The program designation STERN was abbreviated from the German “STudentische Experimental-RaketeN”, which translates to Student- Experimental-Rockets. The primary goal of the STERN program is to inspire students in the subject of space transportation through hands-on activities within a pro...

  9. Demand-type gas supply system for rocket borne thin-window proportional counters

    Science.gov (United States)

    Acton, L. W.; Caravalho, R.; Catura, R. C.; Joki, E. G.

    1977-01-01

    A simple closed loop control system has been developed to maintain the gas pressure in thin-window proportional counters during rocket flights. This system permits convenient external control of detector pressure and system flushing rate. The control system is activated at launch with the sealing of a reference volume at the existing system pressure. Inflight control to plus or minus 2 torr at a working pressure of 760 torr has been achieved on six rocket flights.

  10. X-ray scanning of overhead aurorae from rockets

    International Nuclear Information System (INIS)

    Barcus, J.R.; Goldberg, R.A.

    1981-01-01

    Two Nike Tomahawk rocket payloads were launched into energetic auroral events to investigate their structure and effects on the atmosphere. The instrument complement included X-ray scintillation detectors with energy discrimination in four ranges to measure the deposition of bremsstrahlung produced X-rays within the stratosphere and mesosphere. For this purpose, each instrument was designed for wide angle viewing; however, properties of the rocket motion have permitted coarse observation of distinct spatial X-ray structure. The detectors were mounted at a 45 0 angle with respect to the payload axis to permit scanning of the upper hemisphere, with rocket spin rates near 5 c/s during the upleg portion of each flight. Here, atmospheric shielding reduced energetic particle contamination effects to insignificant values below 65 to 75 km. Iterative computer techniques were used to reconstruct X-ray source maps at 100 km, taking atmospheric absorption effects into account. Payload 18.178 was launched on 21 September (0302 LMT) into an aurora observed to have two distinct azimuthal regions of optical brightness. Payload 18.179 (23 September, 0147 LMT) was launched into an aurora of more diffuse character. The presence of a two component spectrum is indicated for each event with the hard component originating in the more diffuse, optically faint regions. (author)

  11. Rhenium Rocket Manufacturing Technology

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  12. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    Science.gov (United States)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  13. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  14. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  15. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    Science.gov (United States)

    Rose, Michael Benjamin

    formulations that are discussed are applicable to ascent on Earth or other planets as well as other rocket-powered systems such as sounding rockets and ballistic missiles.

  16. Sound Visualisation

    OpenAIRE

    Dolenc, Peter

    2013-01-01

    This thesis contains a description of a construction of subwoofer case that has an extra functionality of being able to produce special visual effects and display visualizations that match the currently playing sound. For this reason, multiple lighting elements made out of LED (Light Emitting Diode) diodes were installed onto the subwoofer case. The lighting elements are controlled by dedicated software that was also developed. The software runs on STM32F4-Discovery evaluation board inside a ...

  17. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  18. Genomic Data Commons launches

    Science.gov (United States)

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  19. Big Bang launch

    CERN Multimedia

    2008-01-01

    Physicists from the University, along with scientists and engineers around the world, watched with fevered anticipation as the world's biggest scientific experiment was launched in September. (1/1 page)

  20. Lunar mission design using nuclear thermal rockets

    International Nuclear Information System (INIS)

    Stancati, M.L.; Collins, J.T.; Borowski, S.K.

    1991-01-01

    The NERVA-class Nuclear Thermal Rocket (NTR), with performance nearly double that of advanced chemical engines, has long been considered an enabling technology for human missions to Mars. NTR engines address the demanding trip time and payload delivery needs of both cargo-only and piloted flights. But NTR can also reduce the Earth launch requirements for manned lunar missions. First use of NTR for the Moon would be less demanding and would provide a test-bed for early operations experience with this powerful technology. Study of application and design options indicates that NTR propulsion can be integrated with the Space Exploration Initiative scenarios to deliver performance gains while managing controlled, long-term disposal of spent reactors to highly stable orbits

  1. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  2. STS-37 Breakfast / Ingress / Launch & ISO Camera Views

    Science.gov (United States)

    1991-01-01

    The primary objective of the STS-37 mission was to deploy the Gamma Ray Observatory. The mission was launched at 9:22:44 am on April 5, 1991, onboard the space shuttle Atlantis. The mission was led by Commander Steven Nagel. The crew was Pilot Kenneth Cameron and Mission Specialists Jerry Ross, Jay Apt, and Linda Godwing. This videotape shows the crew having breakfast on the launch day, with the narrator introducing them. It then shows the crew's final preparations and the entry into the shuttle, while the narrator gives information about each of the crew members. The countdown and launch is shown including the shuttle separation from the solid rocket boosters. The launch is reshown from 17 different camera views. Some of the other camera views were in black and white.

  3. The Off-plane Grating Rocket Experiment

    Science.gov (United States)

    Donovan, Benjamin

    2018-01-01

    The next generation of X-ray spectrometers necessitate significant increases in both resolution and effective area to achieve the science goals set forth in the 2010 Decadal Survey and the 2013 Astrophysics Roadmap. The Off-plane Grating Rocket Experiment (OGRE), an X-ray spectroscopy suborbital rocket payload currently scheduled for launch in Q3 2020, will serve as a testbed for several key technologies which can help achieve the desired performance increases of future spectrometers. OGRE will be the first instrument to fly mono-crystalline silicon X-ray mirrors developed at NASA Goddard Space Flight Center. The payload will also utilize an array of off-plane gratings manufactured at The Pennsylvania State University. Additionally, the focal plane will be populated with an array of four electron-multiplying CCDs developed by the Open University and XCAM Ltd. With these key technologies, OGRE hopes to achieve the highest resolution on-sky soft X-ray spectrum to date. We discuss the optical design, expected performance, and the current status of the payload.

  4. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  5. Mean Flow Augmented Acoustics in Rocket Systems

    Science.gov (United States)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  6. Hearing Aids and Personal Sound Amplifiers: Know the Difference

    Science.gov (United States)

    ... Products For Consumers Home For Consumers Consumer Updates Hearing Aids and Personal Sound Amplifiers: Know the Difference ... that FDA launched today. Signs of Loss of Hearing Mann says that consumers who suspect they suffer ...

  7. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  8. Rocket propulsion elements - An introduction to the engineering of rockets (6th revised and enlarged edition)

    Science.gov (United States)

    Sutton, George P.

    The subject of rocket propulsion is treated with emphasis on the basic technology, performance, and design rationale. Attention is given to definitions and fundamentals, nozzle theory and thermodynamic relations, heat transfer, flight performance, chemical rocket propellant performance analysis, and liquid propellant rocket engine fundamentals. The discussion also covers solid propellant rocket fundamentals, hybrid propellant rockets, thrust vector control, selection of rocket propulsion systems, electric propulsion, and rocket testing.

  9. Two-Rockets Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    Let n>=2 be identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1, v2, ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. Let's focus on two arbitrary rockets Ri and Rjfrom the previous n rockets. Let's suppose, without loss of generality, that their speeds verify virocket Rj is contracted with the factor C(vj -vi) , i.e. Lj =Lj' C(vj -vi) .(2) But in the reference frame of the astronaut in Rjit is like rocket Rjis stationary andRi moves with the speed vj -vi in opposite direction. Therefore, similarly, the non-proper time interval as measured by the astronaut inRj with respect to the event inRi is dilated with the same factor D(vj -vi) , i.e. Δtj . i = Δt' D(vj -vi) , and rocketRi is contracted with the factor C(vj -vi) , i.e. Li =Li' C(vj -vi) .But it is a contradiction to have time dilations in both rockets. (3) Varying i, j in {1, 2, ..., n} in this Thought Experiment we get again other multiple contradictions about time dilations. Similarly about length contractions, because we get for a rocket Rj, n-2 different length contraction factors: C(vj -v1) , C(vj -v2) , ..., C(vj -vj - 1) , C(vj -vj + 1) , ..., C(vj -vn) simultaneously! Which is abnormal.

  10. Small Payload Launch Integrated Testing Services (SPLITS) - SPSDL

    Science.gov (United States)

    Plotner, Benjamin

    2013-01-01

    My experience working on the Small Payload Launch Integrated Testing Services project has been both educational and rewarding. I have been given the opportunity to work on and experiment with a number of exciting projects and initiatives, each offering different challenges and opportunities for teamwork and collaboration. One of my assignments is to aid in the design and construction of a small-scale two stage rocket as part of a Rocket University initiative. My duties include programming a microcontroller to control the various sensors on the rocket as well as process and transmit data. Additionally, I am writing a graphical user interface application for the ground station that will receive the transmitted data from the rocket and display the information on screen along with a 3D rendering displaying the rocket orientation. Another project I am working on is to design and develop the avionics that will be used to control a high altitude balloon flight that will test a sensor called a Micro Dosimeter that will measure the total ionizing dose absorbed by electrical components during a flight. This includes assembling and soldering the various sensors and components, programming a microcontroller to input and process data from the Micro Dosimeter, and transmitting the data down to a ground station as well as save the data to an on-board SD card. Additionally, I am aiding in the setup and development of ITOS (Integrated Test and Operations System) capability in the SPSDL (Spaceport Processing System Development Lab).

  11. Scex 3 and Electron Echo 7, a Comparison of Data from Two Rocket Experiments.

    Science.gov (United States)

    Bale, Stuart Douglas

    Results from two separate active sounding rocket experiments are presented and discussed. The SCEX III sounding rocket (NASA 39.002 UE) and Electron Echo 7 (NASA 36.015) were both launched from the Poker Flat Research Range (65.1^circ N, 147.5^circ W) near Fairbanks, Alaska, on 1 February, 1990 and 9 February, 1988, respectively. Each payload was equipped with an electron accelerator to study both natural and beam-related plasma phenomena. Data from the SCEX III retarding potential analyzer (RPA) and 3805 A and 3914 A photometers show evidence of a plasma discharge process occurring concomitant with operation of the electron gun. This appears as an enhanced electron current, nonlinear with gun injection current, in the RPA. The photometers register a sharp increase in luminosity during full current electron injection. This luminosity is an indicator of the ionizing electron-neutral collisions which liberate electrons and lead to the cascade-type discharge process. These observations are used to attempt to infer the mechanism of electron acceleration which leads to the discharge process. Before the electron gun was activated, the SCEX III payload flew through a region of auroral activity as evidenced by ground-based all-sky TV and energetic particle flux in the forward payload RPA. During this time, low frequency (10 Hz) electrostatic waves were observed in the DC receivers and Langmuir probe instrument. This data is analyzed, with a cross-spectral technique, and an approximate wave number is inferred. Comparison with theory suggests that the observed wave is the electrostatic ion cyclotron mode (EIC) operating on a heavy ion species (NO or O _2). The Echo 7 nose payload, carrying a plasma wave receiver, was ejected upfield of the main electron gun -equipped payload. Data from the swept frequency analyzer experiment provide wave amplitudes, at frequencies up to 15 MHz, as a function of separation of the main and nose payloads. These observations, and the wave modes

  12. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    Science.gov (United States)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  13. Designing on-Board Data Handling for EDF (Electric Ducted Fan) Rocket

    Science.gov (United States)

    Mulyana, A.; Faiz, L. A. A.

    2018-02-01

    The EDF (Electric Ducted Fan) rocket to launch requires a system of monitoring, tracking and controlling to allow the rocket to glide properly. One of the important components in the rocket is OBDH (On-Board Data Handling) which serves as a medium to perform commands and data processing. However, TTC (Telemetry, Tracking, and Command) are required to communicate between GCS (Ground Control Station) and OBDH on EDF rockets. So the design control system of EDF rockets and GCS for telemetry and telecommand needs to be made. In the design of integrated OBDH controller uses a lot of electronics modules, to know the behavior of rocket used IMU sensor (Inertial Measurement Unit) in which consist of 3-axis gyroscope sensor and Accelerometer 3-axis. To do tracking using GPS, compass sensor as a determinant of the direction of the rocket as well as a reference point on the z-axis of gyroscope sensor processing and used barometer sensors to measure the height of the rocket at the time of glide. The data can be known in real-time by sending data through radio modules at 2.4 GHz frequency using XBee-Pro S2B to GCS. By using windows filter, noises can be reduced, and it used to guarantee monitoring and controlling system can work properly.

  14. The international trade in launch services : the effects of U.S. laws, policies and practices on its development

    NARCIS (Netherlands)

    Fenema, van H.P.

    1999-01-01

    Rockets or launch vehicles, though sharing the same technology, have both military and civil applications: they can be used as missiles or as 'ordinary' transportation vehicles. As a consequence, national security and foreign policy considerations stand in the way of the international launch

  15. CONTOUR investigation launched

    Science.gov (United States)

    Showstack, Randy

    On 27 August, NASA Administrator Sean O'Keefe appointed a team to investigate the apparent loss of the Comet Nucleus Tour (CONTOUR) spacecraft, which stopped communicating with the mission control operations on 15 August.On that date, CONTOUR failed to communicate following the firing of its main engine that would take it out of its orbit around the Earth. Shortly afterwards, the mission team received telescope images from several observatories showing two objects traveling along the spacecraft's predicted path. Those objects could be CONTOUR, and part of the spacecraft that may have separated from it when the spacecraft's solid rocket motor fired.

  16. Theodore von Karman - Rocket Scientist

    Indian Academy of Sciences (India)

    seminal contributions to several areas of fluid and solid mechanics, as the first head of ... nent position in Aeronautics research, as a pioneer of rocket science in America ... toral work, however, was on the theory of buckling of large structures.

  17. Not just rocket science

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Anderson, R. [Celan Energy Systems, Rancho Cordova, CA (United States)

    2007-10-15

    The paper explains a different take on oxyfuel combustion. Clean Energy Systems (CES) has integrated aerospace technology into conventional power systems, creating a zero-emission power generation technology that has some advantages over other similar approaches. When using coal as a feedstock, the CES process burns syngas rather than raw coal. The process uses recycled water and steam to moderate the temperature, instead of recycled CO{sub 2}. With no air ingress, the CES process produces very pure CO{sub 2}. This makes it possible to capture over 99% of the CO{sub 2} resulting from combustion. CES uses the combustion products to drive the turbines, rather than indirectly raising steam for steam turbines, as in the oxyfuel process used by companies such as Vattenfall. The core of the process is a high-pressure oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include natural gas, coal or coke-derived synthesis gas, landfill and biodigester gases, glycerine solutions and oil/water emulsion. 2 figs.

  18. Nuclear rocket engine reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, Anatoly

    2013-07-01

    Covers a new technology of nuclear reactors and the related materials aspects. Integrates physics, materials science and engineering Serves as a basic book for nuclear engineers and nuclear physicists. The development of a nuclear rocket engine reactor (NRER) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  19. Sound knowledge

    DEFF Research Database (Denmark)

    Kauffmann, Lene Teglhus

    as knowledge based on reflexive practices. I chose ‘health promotion’ as the field for my research as it utilises knowledge produced in several research disciplines, among these both quantitative and qualitative. I mapped out the institutions, actors, events, and documents that constituted the field of health...... of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... result of a rigorous and standardized research method. However, this anthropological analysis shows that evidence and evidence-based is a hegemonic ‘way of knowing’ that sometimes transposes everyday reasoning into an epistemological form. However, the empirical material shows a variety of understandings...

  20. Easier Analysis With Rocket Science

    Science.gov (United States)

    2003-01-01

    Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications

  1. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  2. Rocket measurements of positive ions during polar mesosphere winter echo conditions

    Directory of Open Access Journals (Sweden)

    A. Brattli

    2006-01-01

    Full Text Available On 18 January 2005, two small, instrumented rockets were launched from Andøya Rocket Range (69.3° N, 16° E during conditions with Polar Mesosphere Winter Echoes (PMWE. Each of the rockets was equipped with a Positive Ion Probe (PIP and a Faraday rotation/differential absorption experiment, and was launched as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected between 55 and 77 km by the 53.5 MHz ALWIN radar. The rockets were launched during a solar proton event, and measured extremely high ion densities, of order 1010 m−3, in the region where PMWE were observed. The density measurements were analyzed with the wavelet transform technique. At large length scales, ~103 m, the power spectral density can be fitted with a k−3 wave number dependence, consistent with saturated gravity waves. Outside the PMWE layers the k−3 spectrum extends down to approximately 102 m where the fluctuations are quickly damped and disappear into the instrumental noise. Inside the PMWE layers the spectrum at smaller length scales is well fitted with a k−5/3 dependence over two decades of scales. The PMWE are therefore clearly indicative of turbulence, and the data are consistent with the turbulent dissipation of breaking gravity waves. We estimate a lower limit for the turbulent energy dissipation rate of about 10−2 W/kg in the upper (72 km layer.

  3. Commercial suborbital reusable launch vehicles: ushering in a new era for turbopause exploration (Invited)

    Science.gov (United States)

    Smith, H. T.

    2013-12-01

    Multiple companies are in the process of developing commercial suborbital reusable launch vehicles (sRLV's). While these companies originally targeted space tourism as the primary customer base, it is rapidly becoming apparent that this dramatic increase in low cost access to space could provide revolutionary opportunities for scientific research, engineering/instrument development and STEM education. These burgeoning capabilities will offer unprecedented opportunities regarding access to space with frequent low-cost access to the region of space from the ground to the boundary of near-Earth space at ~100 km. In situ research of this region is difficult because it is too high for aircraft and balloons and yet too low for orbital satellites and spacecraft. However, this region is very significant because it represents the tenuous boundary of Earth's Atmosphere and Space. It contains a critical portion of the atmosphere where the regime transitions from collisional to non-collisional physics and includes complex charged and neutral particle interactions. These new launch vehicles are currently designed for manned and unmanned flights that reach altitudes up to 110 km for 5K-500K per flight with payload capacity exceeding 600 kg. Considering the much higher cost per flight for a sounding rocket with similar capabilities, high flight cadence, and guaranteed return of payload, commercial spacecraft has the potential to revolutionize access to near space. This unprecedented access to space allows participation at all levels of research, engineering, education and the public at large. For example, one can envision a model where students can conduct complete end to end projects where they design, build, fly and analyze data from individual research projects for thousands of dollars instead of hundreds of thousands. Our community is only beginning to grasp the opportunities and impactions of these new capabilities but with operational flights anticipated in 2014, it is

  4. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  5. NanoLaunch

    Science.gov (United States)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  6. The electromagnetic rocket gun - a means to reach ultrahigh velocities

    International Nuclear Information System (INIS)

    Winterberg, F.

    1983-01-01

    A novel kind of electromagnetic launcher for the acceleration of multigram-size macroparticles, up to velocities required for impact fusion, is proposed. The novel launcher concept combines the efficiency of a gun with the much higher velocities attainable by a rocket. In the proposed concept a rocket-like projectile is launched inside a gun barrel, drawing its energy from a travelling magnetic wave. The travelling magnetic wave heats and ionizes the exhaust jet of the rocket. As a result, the projectile i propelled both by the recoil from the jet and the magnetic pressure of the travelling magnetic wave. In comparison to magnetic linear accelerators, accelerating either superconducting or ferromagnetic projectiles, the proposed concept has several important advantages. First, the exhaust jet is much longer than the rocket-like projectile and which permits a much longer switching time to turn on the travelling magnetic wave. Second, the proposed concept does not require superconducting projectiles, or projectiles made from expensive ferromagnetic material. Third, unlike in railgun accelerators, the projectile can be kept away from the wall, and thereby can reach much larger velocities. (orig.)

  7. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    Science.gov (United States)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  8. A Shuttle Derived Vehicle launch system

    Science.gov (United States)

    Tewell, J. R.; Buell, D. N.; Ewing, E. S.

    1982-01-01

    This paper describes a Shuttle Derived Vehicle (SDV) launch system presently being studied for the NASA by Martin Marietta Aerospace which capitalizes on existing Shuttle hardware elements to provide increased accommodations for payload weight, payload volume, or both. The SDV configuration utilizes the existing solid rocket boosters, external tank and the Space Shuttle main engines but replaces the manned orbiter with an unmanned, remotely controlled cargo carrier. This cargo carrier substitution more than doubles the performance capability of the orbiter system and is realistically achievable for minimal cost. The advantages of the SDV are presented in terms of performance and economics. Based on these considerations, it is concluded that an unmanned SDV offers a most attractive complement to the present Space Transportation System.

  9. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  10. NASA's Space Launch System Takes Shape

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  11. From A-4 to Explorer 1. [U.S. rocket and missile technology historical review

    Science.gov (United States)

    Debus, K. H.

    1973-01-01

    Historical review of the development of rocket and missile technology in the United States over the period from 1945 to 1958. Attention is given to the organization of activities, the launch facilities, and the scope of test rocket firings at the White Sands Proving Ground area during the initial phase of research with captured German V2 rockets. The development of the Redstone missiles is outlined by discussing aspects of military involvement, cooperation with industrial suppliers, details of ground support equipment, and results of initial test firings. Subsequent development of the Jupiter missiles is examined in a similar manner, and attention is given to activities involved in the launching of the Explorer 1 satellite.

  12. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  13. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    Science.gov (United States)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  14. STS-27 Atlantis, Orbiter Vehicle (OV) 104, at KSC Launch Complex (LC) pad 39B

    Science.gov (United States)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, sits atop the mobile launcher platform at Kennedy Space Center (KSC) Launch Complex (LC) pad 39B. Profile of OV-104 mounted on external tank and flanked by solid rocket boosters (SRBs) is obscured by a flock of seagulls in the foreground. The fixed service structure (FSS) with rotating service structure (RSS) retracted appears in the background. Water resevoir is visible at the base of the launch pad concrete structure.

  15. Level II Documentation of Launch Complex 31/32, Cape Canaveral Air Force Station, Florida

    Science.gov (United States)

    2008-12-01

    Navigational Satellite Time and Ranging (NAVSTAR) Global Positioning System (GPS) program. Most of the above satellites have been launched from Cape...rocket, put together from existing hardware: an Honest John first stage, topped with two Nike stages, then a Recruit fourth stage, and finally, a T-55...a ground power oscillograph, exhaust fans, a sump pump, the dehydrator and humidity recorder, launch/perimeter and TV cameras, an Ampex- brand

  16. Response of Launch Pad Structures to Random Acoustic Excitation

    Directory of Open Access Journals (Sweden)

    Ravi N. Margasahayam

    1994-01-01

    Full Text Available The design of launch pad structures, particularly those having a large area-to-mass ratio, is governed by launch-induced acoustics, a relatively short transient with random pressure amplitudes having a non-Gaussian distribution. The factors influencing the acoustic excitation and resulting structural responses are numerous and cannot be predicted precisely. Two solutions (probabilistic and deterministic for the random vibration problem are presented in this article from the standpoint of their applicability to predict the response of ground structures exposed to rocket noise. Deficiencies of the probabilistic method, especially to predict response in the low-frequency range of launch transients (below 20 Hz, prompted the development of the deterministic analysis. The relationship between the two solutions is clarified for future implementation in a finite element method (FEM code.

  17. Internet Based Simulations of Debris Dispersion of Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.

  18. Launch of Zoological Letters.

    Science.gov (United States)

    Fukatsu, Takema; Kuratani, Shigeru

    2016-02-01

    A new open-access journal, Zoological Letters, was launched as a sister journal to Zoological Science, in January 2015. The new journal aims at publishing topical papers of high quality from a wide range of basic zoological research fields. This review highlights the notable reviews and research articles that have been published in the first year of Zoological Letters, providing an overview on the current achievements and future directions of the journal.

  19. Space Logistics: Launch Capabilities

    Science.gov (United States)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  20. Space Shuttle Endeavour launch

    Science.gov (United States)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  1. Launch Control Network Engineer

    Science.gov (United States)

    Medeiros, Samantha

    2017-01-01

    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  2. Yes--This is Rocket Science: MMCs for Liquid Rocket Engines

    National Research Council Canada - National Science Library

    Shelley, J

    2001-01-01

    The Air Force's Integrated High-Payoff Rocket Propulsion Technologies (IHPRPT) Program has established aggressive goals for both improved performance and reduced cost of rocket engines and components...

  3. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  4. Multi-Rocket Thought Experiment

    Science.gov (United States)

    Smarandache, Florentin

    2014-03-01

    We consider n>=2 identical rockets: R1 ,R2 , ..., Rn. Each of them moving at constant different velocities respectively v1 ,v2 , ..., vn on parallel directions in the same sense. In each rocket there is a light clock, the observer on earth also has a light clock. All n + 1 light clocks are identical and synchronized. The proper time Δt' in each rocket is the same. (1) If we consider the observer on earth and the first rocket R1, then the non-proper time Δt of the observer on earth is dilated with the factor D(v1) : or Δt = Δt' D(v1) (1) But if we consider the observer on earth and the second rocket R2 , then the non-proper time Δt of the observer on earth is dilated with a different factor D(v2) : or Δt = Δt' D(v2) And so on. Therefore simultaneously Δt is dilated with different factors D(v1) , D(v2), ..., D(vn) , which is a multiple contradiction.

  5. Intense auroral field-aligned currents and electrojets detected by rocket-borne fluxgate magnetometer

    International Nuclear Information System (INIS)

    Tohyama, Fumio; Fukunishi, Hiroshi; Takahashi, Takao; Kokubun, Susumu; Fujii, Ryoichi; Yamagishi, Hisao.

    1988-01-01

    The S-310JA-11 and S-310JA-12 rockets, having a vector magnetometer with high sensitivity (1.8 nT) and high sampling frequency (100 Hz), were launched into the aurora on May 29 and July 12, 1985, from Syowa Station, Antarctica. The S-310JA-11 rocket penetrated twice quiet arcs, while the S-310JA-12 rocket traversed across intense and active auroral arcs during a large magnetic substorm. In the S-310JA-12 rocket experiment, intense field-aligned currents of 400 - 600 nT were observed when the rocket penetrated an active arc during the descending flight. The magnetometer on board the S-310JA-12 rocket also detected intense electrojet currents with a center at 110 km on the upward leg and at 108 km on the downward leg. The magnetometer data of the S-310JA-11 rocket showed no distinguished magnetic field variation due to field-aligned current and electrojet. (author)

  6. A weak equivalence principle test on a suborbital rocket

    Energy Technology Data Exchange (ETDEWEB)

    Reasenberg, Robert D; Phillips, James D, E-mail: reasenberg@cfa.harvard.ed [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2010-05-07

    We describe a Galilean test of the weak equivalence principle, to be conducted during the free fall portion of a sounding rocket flight. The test of a single pair of substances is aimed at a measurement uncertainty of sigma(eta) < 10{sup -16} after averaging the results of eight separate drops. The weak equivalence principle measurement is made with a set of four laser gauges that are expected to achieve 0.1 pm Hz{sup -1/2}. The discovery of a violation (eta not = 0) would have profound implications for physics, astrophysics and cosmology.

  7. The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18

    Science.gov (United States)

    Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; hide

    1999-01-01

    This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.

  8. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  9. Computational study of variable area ejector rocket flowfields

    Science.gov (United States)

    Etele, Jason

    Access to space has always been a scientific priority for countries which can afford the prohibitive costs associated with launch. However, the large scale exploitation of space by the business community will require the cost of placing payloads into orbit be dramatically reduced for space to become a truly profitable commodity. To this end, this work focuses on a next generation propulsive technology called the Rocket Based Combined Cycle (RBCC) engine in which rocket, ejector, ramjet, and scramjet cycles operate within the same engine environment. Using an in house numerical code solving the axisymmetric version of the Favre averaged Navier Stokes equations (including the Wilcox ko turbulence model with dilatational dissipation) a systematic study of various ejector designs within an RBCC engine is undertaken. It is shown that by using a central rocket placed along the axisymmetric axis in combination with an annular rocket placed along the outer wall of the ejector, one can obtain compression ratios of approximately 2.5 for the case where both the entrained air and rocket exhaust mass flows are equal. Further, it is shown that constricting the exit area, and the manner in which this constriction is performed, has a significant positive impact on the compression ratio. For a decrease in area of 25% a purely conical ejector can increase the compression ratio by an additional 23% compared to an equal length unconstricted ejector. The use of a more sharply angled conical section followed by a cylindrical section to maintain equivalent ejector lengths can further increase the compression ratio by 5--7% for a total increase of approximately 30%.

  10. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  11. Rocket Science at the Nanoscale.

    Science.gov (United States)

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  12. Next Generation Launch Technology Program Lessons Learned

    Science.gov (United States)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  13. Rocket measurement of auroral partial parallel distribution functions

    Science.gov (United States)

    Lin, C.-A.

    1980-01-01

    The auroral partial parallel distribution functions are obtained by using the observed energy spectra of electrons. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska over a bright auroral band and covered an altitude range of up to 180 km. Calculated partial distribution functions are presented with emphasis on their slopes. The implications of the slopes are discussed. It should be pointed out that the slope of the partial parallel distribution function obtained from one energy spectra will be changed by superposing another energy spectra on it.

  14. NASA Lewis Launch Collision Probability Model Developed and Analyzed

    Science.gov (United States)

    Bollenbacher, Gary; Guptill, James D

    1999-01-01

    There are nearly 10,000 tracked objects orbiting the earth. These objects encompass manned objects, active and decommissioned satellites, spent rocket bodies, and debris. They range from a few centimeters across to the size of the MIR space station. Anytime a new satellite is launched, the launch vehicle with its payload attached passes through an area of space in which these objects orbit. Although the population density of these objects is low, there always is a small but finite probability of collision between the launch vehicle and one or more of these space objects. Even though the probability of collision is very low, for some payloads even this small risk is unacceptable. To mitigate the small risk of collision associated with launching at an arbitrary time within the daily launch window, NASA performs a prelaunch mission assurance Collision Avoidance Analysis (or COLA). For the COLA of the Cassini spacecraft, the NASA Lewis Research Center conducted an in-house development and analysis of a model for launch collision probability. The model allows a minimum clearance criteria to be used with the COLA analysis to ensure an acceptably low probability of collision. If, for any given liftoff time, the nominal launch vehicle trajectory would pass a space object with less than the minimum required clearance, launch would not be attempted at that time. The model assumes that the nominal positions of the orbiting objects and of the launch vehicle can be predicted as a function of time, and therefore, that any tracked object that comes within close proximity of the launch vehicle can be identified. For any such pair, these nominal positions can be used to calculate a nominal miss distance. The actual miss distances may differ substantially from the nominal miss distance, due, in part, to the statistical uncertainty of the knowledge of the objects positions. The model further assumes that these position uncertainties can be described with position covariance matrices

  15. NASA's Space Launch System: Affordability for Sustainability

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  16. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  17. Launching Garbage-Bag Balloons.

    Science.gov (United States)

    Kim, Hy

    1997-01-01

    Presents a modification of a procedure for making and launching hot air balloons made out of garbage bags. Student instructions for balloon construction, launching instructions, and scale diagrams are included. (DDR)

  18. Expendable launch vehicle studies

    Science.gov (United States)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to

  19. Launch team training system

    Science.gov (United States)

    Webb, J. T.

    1988-01-01

    A new approach to the training, certification, recertification, and proficiency maintenance of the Shuttle launch team is proposed. Previous training approaches are first reviewed. Short term program goals include expanding current training methods, improving the existing simulation capability, and scheduling training exercises with the same priority as hardware tests. Long-term goals include developing user requirements which would take advantage of state-of-the-art tools and techniques. Training requirements for the different groups of people to be trained are identified, and future goals are outlined.

  20. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  1. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  2. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  3. Evolved Expendable Launch Vehicle (EELV)

    Science.gov (United States)

    2015-12-15

    FY13+ Phase I Buy Contractor: United Launch Services, LLC Contractor Location: 9501 East Panorama Circle Centennial , CO 80112 Contract Number...Contract Name: FY13+ Phase I Buy Contractor: United Launch Services, LLC Contractor Location: 9501 East Panorama Circle Centennial , CO 80112 Contract...FY12 EELV Launch Services (ELS5) Contractor: United Launch Services, LLC. Contractor Location: 9501 East Panorama Circle Centennial , CO 80112

  4. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  5. Balloon launching station, Mildura, Victoria

    International Nuclear Information System (INIS)

    The Mildura Balloon Launching Station was established in 1960 by the Department of Supply (now the Department of Manufacturing Industry) on behalf of the United States Atomic Energy Commission (USAEC) to determine the content of radioactive material in the upper atmosphere over Australia. The Station location and layout, staffing, balloon launching equipment, launching, tracking and recovery are described. (R.L.)

  6. Little Sounds

    Directory of Open Access Journals (Sweden)

    Baker M. Bani-Khair

    2017-10-01

    Full Text Available The Spider and the Fly   You little spider, To death you aspire... Or seeking a web wider, To death all walking, No escape you all fighters… Weak and fragile in shape and might, Whatever you see in the horizon, That is destiny whatever sight. And tomorrow the spring comes, And the flowers bloom, And the grasshopper leaps high, And the frogs happily cry, And the flies smile nearby, To that end, The spider has a plot, To catch the flies by his net, A mosquito has fallen down in his net, Begging him to set her free, Out of that prison, To her freedom she aspires, Begging...Imploring...crying,  That is all what she requires, But the spider vows never let her free, His power he admires, Turning blind to light, And with his teeth he shall bite, Leaving her in desperate might, Unable to move from site to site, Tied up with strings in white, Wrapped up like a dead man, Waiting for his grave at night,   The mosquito says, Oh little spider, A stronger you are than me in power, But listen to my words before death hour, Today is mine and tomorrow is yours, No escape from death... Whatever the color of your flower…     Little sounds The Ant The ant is a little creature with a ferocious soul, Looking and looking for more and more, You can simply crush it like dead mold, Or you can simply leave it alone, I wonder how strong and strong they are! Working day and night in a small hole, Their motto is work or whatever you call… A big boon they have and joy in fall, Because they found what they store, A lesson to learn and memorize all in all, Work is something that you should not ignore!   The butterfly: I’m the butterfly Beautiful like a blue clear sky, Or sometimes look like snow, Different in colors, shapes and might, But something to know that we always die, So fragile, weak and thin, Lighter than a glimpse and delicate as light, Something to know for sure… Whatever you have in life and all these fields, You are not happier than a butterfly

  7. Launch Pad Coatings for Smart Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  8. New Product Launching Ideas

    Science.gov (United States)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  9. Bantam: A Systematic Approach to Reusable Launch Vehicle Technology Development

    Science.gov (United States)

    Griner, Carolyn; Lyles, Garry

    1999-01-01

    capability to expand the capability of a reusable first stage, including ground launch, powered return to the launch site, and a fully reusable rocket propulsion system. A Bantam technology goal is to demonstrate twenty-five flights with no unplanned rocket engine maintenance and only minor planned maintenance or inspections. The design goal of the propulsion system is a mission life of one hundred.

  10. Ricardo Dyrgalla (1910-1970), pioneer of rocket development in Argentina

    Science.gov (United States)

    de León, Pablo

    2009-12-01

    One of the most important developers of liquid propellant rocket engines in Argentina was Polish-born Ricardo Dyrgalla. Dyrgalla immigrated to Argentina from the United Kingdom in 1946, where he had been studying German weapons development at the end of the Second World War. A trained pilot and aeronautical engineer, he understood the intricacies of rocket propulsion and was eager to find practical applications to his recently gained knowledge. Dyrgalla arrived in Argentina during Juan Perón's first presidency, a time when technicians from all over Europe were being recruited to work in various projects for the recently created Argentine Air Force. Shortly after immigrating, Dyrgalla proposed to develop an advanced air-launched weapon, the Tábano, based on a rocket engine of his design, the AN-1. After a successful development program, the Tábano was tested between 1949 and 1951; however, the project was canceled by the government shortly after. Today, the AN-1 rocket engine is recognized as the first liquid propellant rocket to be developed in South America. Besides the AN-1, Dyrgalla also developed several other rockets systems in Argentina, including the PROSON, a solid-propellant rocket launcher developed by the Argentine Institute of Science and Technology for the Armed Forces (CITEFA). In the late 1960s, Dyrgalla and his family relocated to Brazil due mostly to the lack of continuation of rocket development in Argentina. There, he worked for the Institute of Aerospace Technology (ITA) until his untimely death in 1970. Ricardo Dyrgalla deserves to be recognized among the world's rocket pioneers and his contribution to the science and engineering of rocketry deserves a special place in the history of South America's rocketry and space flight advocacy programs.

  11. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  12. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    Science.gov (United States)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  13. Measuring Model Rocket Engine Thrust Curves

    Science.gov (United States)

    Penn, Kim; Slaton, William V.

    2010-01-01

    This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…

  14. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    International Nuclear Information System (INIS)

    Labib, Satira; King, Jeffrey

    2015-01-01

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort

  15. Design and analysis of a single stage to orbit nuclear thermal rocket reactor engine

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Graphical abstract: - Highlights: • Three NTR reactors are optimized for the single stage launch of 1–15 MT payloads. • The proposed rocket engines have specific impulses in excess of 700 s. • Reactivity and submersion criticality requirements are satisfied for each reactor. - Abstract: Recent advances in the development of high power density fuel materials have renewed interest in nuclear thermal rockets (NTRs) as a viable propulsion technology for future space exploration. This paper describes the design of three NTR reactor engines designed for the single stage to orbit launch of payloads from 1 to 15 metric tons. Thermal hydraulic and rocket engine analyses indicate that the proposed rocket engines are able to reach specific impulses in excess of 800 s. Neutronics analyses performed using MCNP5 demonstrate that the hot excess reactivity, shutdown margin, and submersion criticality requirements are satisfied for each NTR reactor. The reactors each consist of a 40 cm diameter core packed with hexagonal tungsten cermet fuel elements. The core is surrounded by radial and axial beryllium reflectors and eight boron carbide control drums. The 40 cm long reactor meets the submersion criticality requirements (a shutdown margin of at least $1 subcritical in all submersion scenarios) with no further modifications. The 80 and 120 cm long reactors include small amounts of gadolinium nitride as a spectral shift absorber to keep them subcritical upon submersion in seawater or wet sand following a launch abort.

  16. Design optimization of space launch vehicles using a genetic algorithm

    Science.gov (United States)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  17. Deep Impact Delta II Launch Vehicle Cracked Thick Film Coating on Electronic Packages Technical Consultation Report

    Science.gov (United States)

    Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.

    2009-01-01

    The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.

  18. Low-Cost Propellant Launch to LEO from a Tethered Balloon - 'Propulsion Depots' Not 'Propellant Depots'

    Science.gov (United States)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau

    2011-01-01

    As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.

  19. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    Science.gov (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  20. Launch vehicle selection model

    Science.gov (United States)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  1. Increased efficiency of mammalian somatic cell hybrid production under microgravity conditions during ballistic rocket flight

    Science.gov (United States)

    Schnettler, R.; Gessner, P.; Zimmermann, U.; Neil, G. A.; Urnovitz, H. B.

    1989-01-01

    The electrofusion of hybridoma cell lines under short-duration microgravity during a flight of the TEXUS 18 Black Brand ballistic sounding rocket at Kiruna, Sweden is reported. The fusion partners, growth medium, cell fusion medium, cell fusion, cell viability in the fusion medium, and postfusion cell culture are described, and the rocket, cell fusion chamber, apparatus, and module are examined. The experimental timeline, the effects of fusion medium and incubation time on cell viability and hybrid yields, and the effect of microgravity on hybrid yields are considered.

  2. Hard X-ray Vela supernova observation on rocket experiment WRX-R

    Science.gov (United States)

    Stehlikova, V.; Urban, M.; Nentvich, O.; Daniel, V.; Sieger, L.; Tutt, J.

    2017-07-01

    This paper presents a hard X-ray telescope for the Vela nebula observation during a sounding rocket flight. The Water Recovery X-ray Rocket (WRX-R) experiment is organised by the Pennsylvania State University (PSU), USA with a primary payload of a soft X-ray spectroscope. The Czech team developed a hard X-ray Lobster-eye telescope as a secondary payload. The Czech experiment’s astrophysical object of study is the Vela pulsar in the centre of the Vela nebula.

  3. Results from a tethered rocket experiment (Charge-2)

    Science.gov (United States)

    Kawashima, N.; Sasaki, S.; Oyama, K. I.; Hirao, K.; Obayashi, T.; Raitt, W. J.; White, A. B.; Williamson, P. R.; Banks, P. M.; Sharp, W. F.

    A tethered payload experiment (Charge-2) was carried out as an international program between Japan and the USA using a NASA sounding rocket at White Sands Missile Range. The objective of the experiment was to perform a new type of active experiment in space by injecting an electron beam from a mother-daughter rocket system connected with a long tether wire. The electron beam with voltage and current up to 1 kV and 80 mA (nominal) was injected from the mother payload. An insulated conductive wire of 426 m length connected the two payloads, the longest tether system flown so far. The electron gun system and diagnostic instruments (plasma, optical, particle and wave) functioned correctly throughout the flight. The potential rise of the mother payload during the electron beam emission was measured with respect to the daughter payload. The beam trajectory was detected by a camera onboard the mother rocket. Wave generation and current induction in the wire during the beam emission were also studied.

  4. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  5. LHCb launches new website

    CERN Multimedia

    2008-01-01

    A new public website for the LHCb experiment was launched last Friday to coincide with CERN’s Open Day weekend. Designed to provide accessible information on all aspects of the experiment, the website contains images and key facts about the LHCb detector, its design and installation and the international team behind the project. "LHCb is going to be one of the most important b-physics experiments in the world when it starts taking data later this year", explains Roger Forty, the experiment’s deputy spokesperson. "We hope the website will be a valuable resource, enabling people to learn about this fascinating area of research." The new website can be found at: http://cern.ch/lhcb-public

  6. Payload Launch Lock Mechanism

    Science.gov (United States)

    Young, Ken (Inventor); Hindle, Timothy (Inventor)

    2014-01-01

    A payload launch lock mechanism includes a base, a preload clamp, a fastener, and a shape memory alloy (SMA) actuator. The preload clamp is configured to releasibly restrain a payload. The fastener extends, along an axis, through the preload clamp and into the base, and supplies a force to the preload clamp sufficient to restrain the payload. The SMA actuator is disposed between the base and the clamp. The SMA actuator is adapted to receive electrical current and is configured, upon receipt of the electrical current, to supply a force that causes the fastener to elongate without fracturing. The preload clamp, in response to the fastener elongation, either rotates or pivots to thereby release the payload.

  7. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    Science.gov (United States)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  8. In-flight performance of the polarization modulator in the CLASP rocket experiment

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao

    2016-07-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non- uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.

  9. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  10. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  11. Rocket measurements of electric fields, electron density and temperature during the three phases of auroral substorms

    International Nuclear Information System (INIS)

    Marklund, G.; Block, L.; Lindqvist, P.-A.

    1979-12-01

    On Jan. 27, 1979, three rocket payloads were launched from Kiruna, Sweden, into different phases of two successive auroral substorms. Among other experiments, the payloads carried the RIT double probe electric field experiments, providing electric field, electron density and temperature data, which are presented here. These are discussed in association with observations of particles, ionospheric drifts (STARE) and electric fields in the equatorial plane (GEOS). The motions of the auroral forms, as obtained from auroral pictures are compared with the E x B/B 2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground based magnetometer data (SMA). (Auth.)

  12. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    Science.gov (United States)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.

    2014-11-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  13. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    International Nuclear Information System (INIS)

    Gill, W; Cruz-Cabrera, A A; Bystrom, E; Donaldson, A B; Haug, A; Sharp, L; Lim, J; Sivathanu, Y; Surmick, D M

    2014-01-01

    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified

  14. Building and Leading the Next Generation of Exploration Launch Vehicles

    Science.gov (United States)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.

  15. Initial risk assessment for a single stage to orbit nuclear thermal rocket

    Energy Technology Data Exchange (ETDEWEB)

    Labib, Satira, E-mail: Satira.Labib@duke-energy.com; King, Jeffrey, E-mail: kingjc@mines.edu

    2015-06-15

    Highlights: • The risks posed by the surface launch of a nuclear thermal rocket are considered. • Radiation exposure at the public viewing distance is insignificant. • Production of fission products and actinides during launch is limited. • The production of activated argon around the rocket may be a significant concern. - Abstract: In order to consider the possibility of a nuclear thermal rocket (NTR) ground launch, it is necessary to evaluate the risks from such a launch. This includes analysis of the radiation dose rate around the rocket, determining the rate of activation of the materials near the launch, and considering the radionuclides present in the core after the launch. This paper evaluates the potential risk of the NTR ground launch for a range of payloads from 1 to 15 metric tons (MT) using three NTR reactor cores (40, 80, and 120 cm in length) designed in a previous study, based on data produced by MCNP5 and MCNPX models. At the same power level, the 40 cm core length reactor results in the lowest radiation dose rate of the three reactors. Radiation dose rates decrease to background levels 3.5 km from the launch site. After a 1-year decay time, all of the activated materials produced by an NTR launch would be classified as Class A low-level waste. The activation of air produces significant amounts of argon-41 and nitrogen-16 within 100 m of the launch. The derived air concentration (DAC) ratio of the activation products decays to less than unity within 2 days, with only argon-41 remaining. After 10 min of full power operation, the 120 cm core for a 15 MT payload contains 2.5 × 10{sup 13}, 1.4 × 10{sup 12} and 1.5 × 10{sup 12} Bq of {sup 131}I, {sup 137}Cs, and {sup 90}Sr, respectively. The decay heat after shutdown increases with increasing reactor power with a maximum decay heat of 108 kW immediately after shutdown for the 15 MT payload.

  16. 14 CFR 101.25 - Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets.

    Science.gov (United States)

    2010-01-01

    ... Power Rockets and Class 3-Advanced High Power Rockets. 101.25 Section 101.25 Aeronautics and Space... OPERATING RULES MOORED BALLOONS, KITES, AMATEUR ROCKETS AND UNMANNED FREE BALLOONS Amateur Rockets § 101.25 Operating limitations for Class 2-High Power Rockets and Class 3-Advanced High Power Rockets. When operating...

  17. Five-Segment Solid Rocket Motor Development Status

    Science.gov (United States)

    Priskos, Alex S.

    2012-01-01

    In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.

  18. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    Science.gov (United States)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  19. Status of NASA's Space Launch System

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing

  20. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    Science.gov (United States)

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency

  1. Space Shuttle solid rocket booster

    Science.gov (United States)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  2. Unique nuclear thermal rocket engine

    International Nuclear Information System (INIS)

    Culver, D.W.; Rochow, R.

    1993-06-01

    In January, 1992, a new, advanced nuclear thermal rocket engine (NTRE) concept intended for manned missions to the moon and to Mars was introduced (Culver, 1992). This NTRE promises to be both shorter and lighter in weight than conventionally designed engines, because its forward flowing reactor is located within an expansion-deflection rocket nozzle. The concept has matured during the year, and this paper discusses a nearer term version that resolves four open issues identified in the initial concept: (1) the reactor design and cooling scheme simplification while retaining a high pressure power balance option; (2) elimination need for a new, uncooled nozzle throat material suitable for long life application; (3) a practical provision for reactor power control; and (4) use of near-term, long-life turbopumps

  3. A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities

    Science.gov (United States)

    Betts, Erin M.; Frederick, Robert A., Jr.

    2010-01-01

    This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.

  4. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    Science.gov (United States)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element

  5. APME launches common method

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A common approach for carrying out ecological balances for commodity thermoplastics is due to be launched by the Association of Plastics Manufacturers in Europe (APME; Brussels) and its affiliate, The European Centre for Plastics in the Environment (PWMI) this week. The methodology report is the latest stage of a program started in 1990 that aims to describe all operations up to the production of polymer powder or granules at the plant gate. Information gathered will be made freely available to companies considering the use of polymers. An industry task force, headed by PWMI executive director Vince Matthews, has gathered information on the plastics production processes from oil to granule, and an independent panel of specialists, chaired by Ian Boustead of the U.K.'s Open University, devised the methodology and analysis. The methodology report stresses the need to define the system being analyzed and discusses how complex chemical processes can be analyzed in terms of consumption of fuels, energy, and raw materials, as well as solid, liquid, and gaseous emissions

  6. AMS ready for launch

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 29 April, the Alpha Magnetic Spectrometer (AMS) will complete its long expedition to the International Space Station on board the space shuttle Endeavour. The Endeavour is set to lift off from NASA’s Kennedy Space Station at 15:47 EST (21:47 CET).   Samuel Ting, principal investigator for the AMS project, and Rolf Heuer, CERN Director-General, visit the Kennedy Space Centre before the AMS launch.  Courtesy of NASA and Kennedy Space Center. AMS is a CERN recognised experiment, created by an internal collaboration of 56 institutes. It will be the first large magnetic spectrometer to be used in space, and has been designed to function as an external module on the ISS. AMS will measure cosmic rays without atmospheric interference, allowing researchers on the ground to continue their search for dark matter and antimatter in the Universe. Data collected by AMS will be analysed in CERN’s new AMS Control Centre in Building 946 (due for completion in June 2011). The End...

  7. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  8. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  9. Principles of underwater sound

    National Research Council Canada - National Science Library

    Urick, Robert J

    1983-01-01

    ... the immediately useful help they need for sonar problem solving. Its coverage is broad-ranging from the basic concepts of sound in the sea to making performance predictions in such applications as depth sounding, fish finding, and submarine detection...

  10. Peer Review of Launch Environments

    Science.gov (United States)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  11. An Antropologist of Sound

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh

    2015-01-01

    PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology.......PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology....

  12. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  13. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  14. Water Impact Prediction Tool for Recoverable Rockets

    Science.gov (United States)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  15. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  16. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  17. Using NASA's Space Launch System to Enable Game Changing Science Mission Designs

    Science.gov (United States)

    Creech, Stephen D.

    2013-01-01

    NASA's Marshall Space Flight Center is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will help restore U.S. leadership in space by carrying the Orion Multi-Purpose Crew Vehicle and other important payloads far beyond Earth orbit. Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids, Mars, and the outer solar system. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip times and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as monolithic telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  18. Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test

    Energy Technology Data Exchange (ETDEWEB)

    Barrio-Perotti, R; Blanco-Marigorta, E; Argueelles-Diaz, K; Fernandez-Oro, J [Departamento de Energia, Universidad de Oviedo, Campus de Viesques, 33271 Gijon, Asturias (Spain)], E-mail: barrioraul@uniovi.es

    2009-09-15

    The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag coefficient of water rockets made from plastic soft drink bottles. The experiment is performed using relatively small fall distances (only about 14 m) in addition with a simple digital-sound-recording device. The fall time is inferred from the recorded signal with quite good precision, and it is subsequently introduced as an input of a Matlab (registered) program that estimates the magnitude of the drag coefficient. This procedure was tested first with a toy ball, obtaining a result with a deviation from the typical sphere value of only about 3%. For the particular water rocket used in the present investigation, a drag coefficient of 0.345 was estimated.

  19. Electron spectra over discrete auroras as measured by the Substorm-GEOS rockets

    International Nuclear Information System (INIS)

    Sandahl, I.; Eliasson, L.; Lundin, R.

    1980-01-01

    Results from the first two Substorm-GEOS rockets are presented. These rockets, as well as the third one, were launched from ESRANGE on January 27, 1979 into different substorm phases. The first rocket went into an active pre-breakup evening arc and the second one into a breakup close to magnetic midnight. Electron spectra of downcoming particles measured by a narrow energy bandwidth detector show very narrow energy peaks as soon as the integral energy fluxes are high. These peaks always show populations of two different characteristic energies above the peak energy. One of the populations has properties similar to those found in the boundary layer plasma and the other one seems to be of plasma sheet origin. The plasma sheet like population is also seen where there are no signs of energy peaks, for example equatorward of the arc. The boundary layer plasma is exclusively connected with the signatures of acceleration. (Auth.)

  20. PLUMEX II: A second set of coincident radar and rocket observations of equatorial spread-F

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Tsunoda, R.T.; Narcisi, R.; Holmes, J.C.

    1981-01-01

    PLUMEX II, the second rocket in a two-rocket operation that successfully executed coincident rocket and radar measurements of backscatter plumes and plasma depletions, was launched into the mid-phase of well-developed equatorial spread-F. In contrast with the first operation, the PLUMEX II results show large scale F-region irregularities only on the bottomside gradient with smaller scale irregularities (i.e., small scale structure imbedded in larger scale features) less intense than corresponding observations in PLUMEX I. The latter result could support current interpretations of east-west plume asymmetry which suggests that during initial upwelling the western wall of a plume (the PLUMEX I case) is more unstable than its eastern counterpart (the PLUMEX II case). In addition, ion mass spectrometer results are found to provide further support for an ion transport model which ''captures'' bottomside ions in an upwelling bubble and transports them to high altitudes