WorldWideScience

Sample records for sounder mls measurements

  1. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  2. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    Science.gov (United States)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  3. Interrelated variations of O3, CO and deep convection in the tropical/subtropical upper troposphere observed by the Aura Microwave Limb Sounder (MLS during 2004–2011

    Directory of Open Access Journals (Sweden)

    L. Froidevaux

    2013-01-01

    Full Text Available The interrelated geographic and temporal variability seen in more than seven years of tropical and subtropical upper tropospheric (215 hPa ozone, carbon monoxide and cloud ice water content (IWC observations by the Aura Microwave Limb Sounder (MLS are presented. Observed ozone abundances and their variability (geographic and temporal agree to within 10–15 ppbv with records from sonde observations. MLS complements these (and other observations with global coverage and simultaneous measurements of related parameters. Previously-reported phenomena such as the ozone "wave one" feature are clearly seen in the MLS observations, as is a double peak in ozone abundance over tropical East Africa, with enhanced abundances in both May to June and September to November. While repeatable seasonal cycles are seen in many regions, they are often accompanied by significant interannual variability. Ozone seasonal cycles in the southern tropics and subtropics tend to be more distinct (i.e., annually repeatable than in the northern. By contrast, carbon monoxide shows distinct seasonal cycles in many northern subtropical regions, notably from India to the Eastern Pacific. Deep convection (as indicated by large values of IWC is typically associated with reductions in upper tropospheric ozone. Convection over polluted regions is seen to significantly enhance upper tropospheric carbon monoxide. While some regions show statistically significant correlations among ozone, carbon monoxide and IWC, simple correlations fall well short of accounting for the observed variability. The observed interrelated variations and metrics of annual and interannual variability described here represent a new resource for validation of atmospheric chemistry models.

  4. Validation of Aura Microwave Limb Sounder stratospheric water vapor measurements by the NOAA frost point hygrometer.

    Science.gov (United States)

    Hurst, Dale F; Lambert, Alyn; Read, William G; Davis, Sean M; Rosenlof, Karen H; Hall, Emrys G; Jordan, Allen F; Oltmans, Samuel J

    2014-02-16

    Differences between stratospheric water vapor measurements by NOAA frost point hygrometers (FPHs) and the Aura Microwave Limb Sounder (MLS) are evaluated for the period August 2004 through December 2012 at Boulder, Colorado, Hilo, Hawaii, and Lauder, New Zealand. Two groups of MLS profiles coincident with the FPH soundings at each site are identified using unique sets of spatiotemporal criteria. Before evaluating the differences between coincident FPH and MLS profiles, each FPH profile is convolved with the MLS averaging kernels for eight pressure levels from 100 to 26 hPa (~16 to 25 km) to reduce its vertical resolution to that of the MLS water vapor retrievals. The mean FPH - MLS differences at every pressure level (100 to 26 hPa) are well within the combined measurement uncertainties of the two instruments. However, the mean differences at 100 and 83 hPa are statistically significant and negative, ranging from -0.46 ± 0.22 ppmv (-10.3 ± 4.8%) to -0.10 ± 0.05 ppmv (-2.2 ± 1.2%). Mean differences at the six pressure levels from 68 to 26 hPa are on average 0.8% (0.04 ppmv), and only a few are statistically significant. The FPH - MLS differences at each site are examined for temporal trends using weighted linear regression analyses. The vast majority of trends determined here are not statistically significant, and most are smaller than the minimum trends detectable in this analysis. Except at 100 and 83 hPa, the average agreement between MLS retrievals and FPH measurements of stratospheric water vapor is better than 1%.

  5. MLS/Aura L2 Geopotential Height V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2GPH is the EOS Aura Microwave Limb Sounder (MLS) standard product for geopotential height derived from radiances measured by the 118 and 240 GHz radiometers. The...

  6. MLS/Aura L2 Geopotential Height V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2GPH is the EOS Aura Microwave Limb Sounder (MLS) standard product for geopotential height derived from radiances measured by the 118 and 240 GHz radiometers. The...

  7. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Science.gov (United States)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  8. Validation of UARS Microwave Limb Sounder 183 GHz H2O Measurements

    Science.gov (United States)

    Lahoz, W. A.; Suttie, M. R.; Froidevaux, L.; Harwood, R. S.; Lau, C. L.; Lungu, T. A.; Peckham, G. E.; Pumphrey, H. C.; Read, W. G.; Shippony, Z.; hide

    1996-01-01

    The Upper Atmosphere Research Satellite (UARS) microwave limb sounder (MLS) makes measurements of thermal emission at 183.3 GHz which are used to infer the concentration of water vapor over a pressure range of 46-0.2hPa (approximately 20-60 km). We provide a validation of MLS H2O by analyzing the integrity of the measurements, by providing an error characterization, and by comparison with data from other instruments. It is estimated that version 3 MLS H2O retrievals are accurate to within 20-25% in the lower stratosphere and to within 8-13% in the upper stratosphere and lower mesosphere. The precision of a single profile is estimated to be approximately 0.15 parts per million by volume (ppmv) in the midstratosphere and 0.2 ppmv in the lower and upper stratosphere. In the lower mesosphere the estimate of a single profile precision is 0.25-0.45 ppmv. During polar winter conditions, H2O retrievals at 46 hPa can have a substantial contribution from climatology. The vertical resolution of MLS H2O retrievals is approximately 5 km.

  9. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  10. MLS/Aura L2 Hydrogen Chloride (HCl) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCL is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen chloride derived from radiances measured primarily by the 640 GHz radiometer. The...

  11. MLS/Aura L2 Hydrogen Cyanide (HCN) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCN is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen cyanide derived from radiances measured primarily by the 190 GHz radiometer. The...

  12. MLS/Aura L2 Hydrogen Cyanide (HCN) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCN is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen cyanide derived from radiances measured primarily by the 190 GHz radiometer. The...

  13. MLS/Aura Level 2 Hydrogen Chloride (HCl) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCL is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen chloride derived from radiances measured primarily by the 640 GHz radiometer. The...

  14. MLS/Aura L2 Chlorine Monoxide (ClO) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2CLO is the EOS Aura Microwave Limb Sounder (MLS) standard product for chlorine monoxide derived from radiances measured primarily by the 640 GHz radiometer. The...

  15. MLS/Aura L2 Nitric Acid (HNO3) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HNO3 is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitric acid derived from radiances measured by the 240 GHz radiometer at and below 10 hPa,...

  16. MLS/Aura Level 2 Nitric Acid (HNO3) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HNO3 is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitric acid derived from radiances measured by the 240 GHz radiometer at and below 10 hPa,...

  17. MLS/Aura L2 Nitric Acid (HNO3) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HNO3 is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitric acid derived from radiances measured by the 240 GHz radiometer at and below 10 hPa,...

  18. MLS/Aura Level 2 Hypochlorous Acid (HOCl) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HOCL is the EOS Aura Microwave Limb Sounder (MLS) standard product for hypochlorous acid derived from radiances measured primarily by the 640 GHz radiometer. The...

  19. MLS/Aura L2 Hypochlorous Acid (HOCL) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HOCL is the EOS Aura Microwave Limb Sounder (MLS) standard product for hypochlorous acid derived from radiances measured primarily by the 640 GHz radiometer. The...

  20. MLS/Aura L2 Hypochlorous Acid (HOCL) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HOCL is the EOS Aura Microwave Limb Sounder (MLS) standard product for hypochlorous acid derived from radiances measured primarily by the 640 GHz radiometer. The...

  1. MLS/Aura L2 Hydroxyl (OH) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2OH is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydroxyl derived from radiances measured by the THz radiometer. The current version is 2.2....

  2. MLS/Aura Level 2 Nitrous Oxide (N2O) Mixing Ratio V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitrous oxide derived from radiances measured primarily by the 640 GHz radiometer (Band 12)...

  3. MLS measurements of stratospheric hydrogen cyanide during the 2015-2016 El Niño event

    Science.gov (United States)

    Pumphrey, Hugh C.; Glatthor, Norbert; Bernath, Peter F.; Boone, Christopher D.; Hannigan, James W.; Ortega, Ivan; Livesey, Nathaniel J.; Read, William G.

    2018-01-01

    It is known from ground-based measurements made during the 1982-1983 and 1997-1998 El Niño events that atmospheric hydrogen cyanide (HCN) tends to be higher during such years than at other times. The Microwave Limb Sounder (MLS) on the Aura satellite has been measuring HCN mixing ratios since launch in 2004; the measurements are ongoing at the time of writing. The winter of 2015-2016 saw the largest El Niño event since 1997-1998. We present MLS measurements of HCN in the lower stratosphere for the Aura mission to date, comparing the 2015-2016 El Niño period to the rest of the mission. HCN in 2015-2016 is higher than at any other time during the mission, but ground-based measurements suggest that it may have been even more elevated in 1997-1998. As the MLS HCN data are essentially unvalidated, we show them alongside data from the MIPAS and ACE-FTS instruments; the three instruments agree reasonably well in the tropical lower stratosphere. Global HCN emissions calculated from the Global Fire Emissions Database (GFED v4.1) database are much greater during large El Niño events and are greater in 1997-1998 than in 2015-2016, thereby showing good qualitative agreement with the measurements. Correlation between El Niño-Southern Oscillation (ENSO) indices, measured HCN, and GFED HCN emissions is less clear if the 2015-2016 event is excluded. In particular, the 2009-2010 winter had fairly strong El Niño conditions and fairly large GFED HCN emissions, but very little effect is observed in the MLS HCN.

  4. Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder.

    Science.gov (United States)

    Hurst, Dale F; Read, William G; Vömel, Holger; Selkirk, Henry B; Rosenlof, Karen H; Davis, Sean M; Hall, Emrys G; Jordan, Allen F; Oltmans, Samuel J

    2016-09-08

    Balloon-borne frost point hygrometers (FPs) and the Aura Microwave Limb Sounder (MLS) provide high-quality vertical profile measurements of water vapor in the upper troposphere and lower stratosphere (UTLS). A previous comparison of stratospheric water vapor measurements by FPs and MLS over three sites - Boulder, Colorado (40.0° N); Hilo, Hawaii (19.7° N); and Lauder, New Zealand (45.0° S) - from August 2004 through December 2012 not only demonstrated agreement better than 1% between 68 and 26 hPa but also exposed statistically significant biases of 2 to 10% at 83 and 100 hPa (Hurst et al., 2014). A simple linear regression analysis of the FP-MLS differences revealed no significant long-term drifts between the two instruments. Here we extend the drift comparison to mid-2015 and add two FP sites - Lindenberg, Germany (52.2° N), and San José, Costa Rica (10.0° N) - that employ FPs of different manufacture and calibration for their water vapor soundings. The extended comparison period reveals that stratospheric FP and MLS measurements over four of the five sites have diverged at rates of 0.03 to 0.07 ppmv year -1 (0.6 to 1.5% year -1 ) from ~2010 to mid-2015. These rates are similar in magnitude to the 30-year (1980-2010) average growth rate of stratospheric water vapor (~ 1% year -1 ) measured by FPs over Boulder (Hurst et al., 2011). By mid-2015, the FP-MLS differences at some sites were large enough to exceed the combined accuracy estimates of the FP and MLS measurements.

  5. MLS/Aura Level 2 Nitric Acid (HNO3) Mixing Ratio V003 (ML2HNO3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HNO3 is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitric acid derived from radiances measured by the 240 GHz radiometer at and below 10 hPa,...

  6. MLS/Aura Level 2 Hypochlorous Acid (HOCl) Mixing Ratio V003 (ML2HOCL) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HOCL is the EOS Aura Microwave Limb Sounder (MLS) standard product for hypochlorous acid derived from radiances measured primarily by the 640 GHz radiometer. The...

  7. MLS/Aura Level 2 Nitric Acid (HNO3) Mixing Ratio V004 (ML2HNO3) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HNO3 is the EOS Aura Microwave Limb Sounder (MLS) standard product for nitric acid derived from radiances measured by the 240 GHz radiometer at and below 10 hPa,...

  8. A cloud-ozone data product from Aura OMI and MLS satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2017-11-01

    Full Text Available Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004–April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of  ∼ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden–Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.

  9. An MLS coherence function and its performance in measurements on time-varying systems

    DEFF Research Database (Denmark)

    Liu, Jiyuan; Jacobsen, Finn

    1999-01-01

    A new MLS coherence function has been developed and tested in various room acoustic measurements. The new measure, which takes values between zero and unity just as the ordinary coherence, can be used only if averaging over several periods of the MLS signal is carried out. It indicates possible...... contamination by extraneous noise in the same manner as the the ordinary coherence function does in measurements with FFT analysers. It is also very sensitive to disturbances such as reflections caused by moving surfaces during the measurement. Very weak time-variance effects caused by a small change...

  10. Plasma density measurements from the GEOS-1 relaxation sounder

    International Nuclear Information System (INIS)

    Etcheto, J.; Bloch, J.J.

    1978-01-01

    The relaxation sounder uses the characteristics of the propagation of radiowaves to sound the plasma surrounding the spacecraft. It determines, in particular, the plasma frequency, which gives the electron density. Measurements over the whole dayside of the magnetosphere, from the evening to the night sectors, are now available. The behaviour of the plasma resonance depends on local time, the nighttime echoes being generally weaker. Density measurements thus obtained are shown and discussed in the context of what is presently known about the plasma distribution in the magnetosphere. In particular, the density around apogee is studied as a function of magnetic activity. On the dayside, it appears to vary between a few and a few tens of electrons per cubic centimeter. The evolution of the density profile for several consecutive days is studied and interpreted tracing back the drift of the particles. (Auth.)

  11. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    Science.gov (United States)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; hide

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  12. A comprehensive overview of the climatological composition of the Asian summer monsoon anticyclone based on 10 years of Aura Microwave Limb Sounder measurements

    Science.gov (United States)

    Santee, M. L.; Manney, G. L.; Livesey, N. J.; Schwartz, M. J.; Neu, J. L.; Read, W. G.

    2017-05-01

    Intense deep convection associated with the Asian summer monsoon (ASM) lofts surface pollutants to the upper troposphere/lower stratosphere (UTLS), where strong winds and long chemical lifetimes allow intercontinental transport, affecting atmospheric composition around the globe. The Aura Microwave Limb Sounder (MLS), launched in 2004, makes simultaneous colocated measurements of trace gases and cloud ice water content (a proxy for deep convection) in the UTLS on a daily basis. Here we exploit the dense spatial and temporal coverage, long-term data record, extensive measurement suite, and insensitivity to aerosol and most clouds of Aura MLS to characterize the climatological (2005-2014) composition of the ASM anticyclone throughout its annual life cycle. We use version 4 MLS data to quantify spatial and temporal variations in both tropospheric (H2O, CO, CH3Cl, CH3CN, CH3OH) and stratospheric (O3, HNO3, HCl) tracers on four potential temperature surfaces (350-410 K). Inside the mature anticyclone, all species exhibit substantial changes, not only from their premonsoon distributions in the ASM region but also from their summertime distributions in the rest of the hemisphere. Different tracers exhibit dissimilar seasonal evolution, and the exact location and timing of their extreme values vary. Although individual aspects of the anticyclone have been described previously, we present a uniquely comprehensive overview of the climatological seasonal evolution of the ASM and its impact on UTLS composition. This work provides valuable context for planned in situ measurements as well as a benchmark for model evaluation and future investigations of interannual variability and long-term changes in monsoon processes.

  13. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  14. ISAMS and MLS for NASA's Upper Atmosphere Research Satellite

    Science.gov (United States)

    Llewellyn-Jones, D.; Dickinson, P. H. G.

    1990-04-01

    The primary goal of NASA's Upper Atmosphere Research Satellite (UARS), planned to be launched in 1991, is to compile data about the structure and behavior of the stratospheric ozone layer, and especially about the threat of the chlorine-based pollutants to its stablility. Two of the payload instruments, manufactured in the UK, are described: the Improved Stratospheric and Mesospheric Sounder (ISAMS), a radiometer designed to measure thermal emission from selected atmospheric constituents at the earth's limb, then making it possible to obtain nearly global coverage of the vertical distribution of temperature and composition from 80 deg S to 80 deg N latitude; and the Microwave Limb Sounder (MLS), a limb sounding radiometer, measuring atmospheric thermal emission from selected molecular spectral lines at mm wavelength, in the frequency regions of 63, 183, and 205 GHz.

  15. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  16. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  17. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    Science.gov (United States)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  18. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  19. Polar stratospheric cloud evolution and chlorine activation measured by CALIPSO and MLS, and modeled by ATLAS

    Directory of Open Access Journals (Sweden)

    H. Nakajima

    2016-03-01

    Full Text Available We examined observations of polar stratospheric clouds (PSCs by CALIPSO, and of HCl and ClO by MLS along air mass trajectories, to investigate the dependence of the inferred PSC composition on the temperature history of the air parcels and the dependence of the level of chlorine activation on PSC composition. Several case studies based on individual trajectories from the Arctic winter 2009/2010 were conducted, with the trajectories chosen such that the first processing of the air mass by PSCs in this winter occurred on the trajectory. Transitions of PSC composition classes were observed to be highly dependent on the temperature history. In cases of a gradual temperature decrease, nitric acid trihydrate (NAT and super-cooled ternary solution (STS mixture clouds were observed. In cases of rapid temperature decrease, STS clouds were first observed, followed by NAT/STS mixture clouds. When temperatures dropped below the frost point, ice clouds formed and then transformed into NAT/STS mixture clouds when temperature increased above the frost point. The threshold temperature for rapid chlorine activation on PSCs is approximately 4 K below the NAT existence temperature, TNAT. Furthermore, simulations of the ATLAS chemistry and transport box model along the trajectories were used to corroborate the measurements and show good agreement with the observations. Rapid chlorine activation was observed when an air mass encountered PSCs. Usually, chlorine activation was limited by the amount of available ClONO2. Where ClONO2 was not the limiting factor, a large dependence on temperature was evident.

  20. Multi-year assimilation of IASI and MLS ozone retrievals: variability of tropospheric ozone over the tropics in response to ENSO

    Science.gov (United States)

    Peiro, Hélène; Emili, Emanuele; Cariolle, Daniel; Barret, Brice; Le Flochmoën, Eric

    2018-05-01

    The Infrared Atmospheric Sounder Instrument (IASI) allows global coverage with very high spatial resolution and its measurements are promising for long-term ozone monitoring. In this study, Microwave Limb Sounder (MLS) O3 profiles and IASI O3 partial columns (1013.25-345 hPa) are assimilated in a chemistry transport model to produce 6-hourly analyses of tropospheric ozone for 6 years (2008-2013). We have compared and evaluated the IASI-MLS analysis and the MLS analysis to assess the added value of IASI measurements. The global chemical transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) has been used with a linear ozone chemistry scheme and meteorological forcing fields from ERA-Interim (ECMWF global reanalysis) with a horizontal resolution of 2° × 2° and 60 vertical levels. The MLS and IASI O3 retrievals have been assimilated with a 4-D variational algorithm to constrain stratospheric and tropospheric ozone respectively. The ozone analyses are validated against ozone soundings and tropospheric column ozone (TCO) from the OMI-MLS residual method. In addition, an Ozone ENSO Index (OEI) is computed from the analysis to validate the TCO variability during the ENSO events. We show that the assimilation of IASI reproduces the variability of tropospheric ozone well during the period under study. The variability deduced from the IASI-MLS analysis and the OMI-MLS measurements are similar for the period of study. The IASI-MLS analysis can reproduce the extreme oscillation of tropospheric ozone caused by ENSO events over the tropical Pacific Ocean, although a correction is required to reduce a constant bias present in the IASI-MLS analysis.

  1. MLS/Aura Level 2 Diagnostics, Geophysical Parameter Grid V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2DGG is the EOS Aura Microwave Limb Sounder (MLS) product containing geophysical diagnostic quantities pertaining directly to the standard geophysical data...

  2. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    Science.gov (United States)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  3. Processing EOS MLS Level-2 Data

    Science.gov (United States)

    Snyder, W. Van; Wu, Dong; Read, William; Jiang, Jonathan; Wagner, Paul; Livesey, Nathaniel; Schwartz, Michael; Filipiak, Mark; Pumphrey, Hugh; Shippony, Zvi

    2006-01-01

    A computer program performs level-2 processing of thermal-microwave-radiance data from observations of the limb of the Earth by the Earth Observing System (EOS) Microwave Limb Sounder (MLS). The purpose of the processing is to estimate the composition and temperature of the atmosphere versus altitude from .8 to .90 km. "Level-2" as used here is a specialists f term signifying both vertical profiles of geophysical parameters along the measurement track of the instrument and processing performed by this or other software to generate such profiles. Designed to be flexible, the program is controlled via a configuration file that defines all aspects of processing, including contents of state and measurement vectors, configurations of forward models, measurement and calibration data to be read, and the manner of inverting the models to obtain the desired estimates. The program can operate in a parallel form in which one instance of the program acts a master, coordinating the work of multiple slave instances on a cluster of computers, each slave operating on a portion of the data. Optionally, the configuration file can be made to instruct the software to produce files of simulated radiances based on state vectors formed from sets of geophysical data-product files taken as input.

  4. EOS MLS Lessons Learned: Design Ideas for Safer and Lower Cost Operations

    Science.gov (United States)

    Miller, Dominick

    2012-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) is a complex instrument with a front end computer and 32 subsystem computers. MLS is one of four instruments on NASA's EOS Aura spacecraft With almost 8 years in orbit, MLS has a few lessons learned which can be applied during the design phase of future instruments to effect better longevity, more robust operations and a significant cost benefit during operations phase.

  5. Satellite Atmospheric Sounder IRFS-2 1. Analysis of Outgoing Radiation Spectra Measurements

    Science.gov (United States)

    Polyakov, A. V.; Timofeyev, Yu. M.; Virolainen, Ya. A.; Uspensky, A. B.; Zavelevich, F. S.; Golovin, Yu. M.; Kozlov, D. A.; Rublev, A. N.; Kukharsky, A. V.

    2017-12-01

    The outgoing radiation spectra measured by the IRFS-2 spectrometer onboard Meteor-M no. 2 satellite have been analyzed. Some statistical parameters of more than 106 spectra measured in spring in 2015 have been calculated. The radiation brightness temperature varied from ˜300 K (surface temperature) up to ˜210 K (tropopause temperature). The quite high variability of the longwave measured radiation has been demonstrated. The signal-to-noise ratio distinctively decreases in the shortwave region (higher than 1300 cm-1). Intercomparisons of IR sounders IRFS-2 with IASI and CrIS spectra showed that the discrepancies in the average spectra and their variability do not exceed measurement errors in the spectral region 660-1300 cm-1. A comparison of specially chosen pairs of the simultaneously measured spectra showed that the differences between IRFS-2 and European instruments in the region of the 15-μm CO2 band and the transparency windows 8-12 μm are less than 1 mW/(m2 sr cm-1) and no more than the differences between the two IASI instruments (-A and -B). The differences between measured and simulated spectra are less than 1 mW/(m2 sr cm-1) in the mean part of CO2 band. However, starting from 720 cm-1, values appear that reach 2-4 mW/(m2 sr cm-1). This is caused by the absence of precise information about the surface temperature. Further investigations into the possible reasons for the observed disagreements are required in order to improve both the method of initial processing and the radiative model of the atmosphere.

  6. Variability at Multiple Scales: Using an Array of Current- and Pressure-Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  7. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics.

    Keywords

  8. HF doppler sounder measurements of the ionospheric signatures of small scale ULF waves

    Directory of Open Access Journals (Sweden)

    L. J. Baddeley

    2005-07-01

    Full Text Available An HF Doppler sounder, DOPE (DOppler Pulsation Experiment with three azimuthally-separated propagation paths is used to provide the first statistical examination of small scale-sized, high m waves where a direct measurement of the azimuthal wavenumber m, is made in the ionosphere. The study presents 27 events, predominantly in the post-noon sector. The majority of events are Pc4 waves with azimuthal m numbers ranging from –100 to –200, representing some of the smallest scale waves ever observed in the ionosphere. 4 Pc5 waves are observed in the post-noon sector. The fact that measurements for the wave azimuthal m number and the wave angular frequency are available allows the drift-bounce resonance condition to be used to hypothesise potential particle populations which could drive the waves through either a drift or drift-bounce resonance interaction mechanism. These results are compared with the statistical study presented by Baddeley et al. (2004 which investigated the statistical likelihood of such driving particle populations occurring in the magnetospheric ring current. The combination of these two studies indicates that any wave which requires a possible drift resonance interaction with particles of energies >60 keV, is statistically unlikely to be generated by such a mechanism. The evidence presented in this paper therefore suggests that in the pre-noon sector the drift-bounce resonance mechanism is statistically more likely implying an anti-symmetric standing wave structure while in the post-noon sector both a drift or drift-bounce resonance interaction is statistically possible, indicating both symmetric and anti-symmetric standing mode structures. A case study is also presented investigating simultaneous observations of a ULF wave in ground magnetometer and DOPE data. The event is in the lower m range of the statistical study and displays giant pulsation (Pg characteristics. Keywords. Ionosphere (Ionosphere

  9. ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS

    Science.gov (United States)

    Sheese, Patrick E.; Walker, Kaley A.; Boone, Chris D.; Bernath, Peter F.; Froidevaux, Lucien; Funke, Bernd; Raspollini, Piera; von Clarmann, Thomas

    2017-01-01

    The atmospheric limb sounders, ACE-FTS on the SCISAT satellite, MIPAS on ESA's Envisat satellite, and MLS on NASA's Aura satellite, take measurements used to retrieve atmospheric profiles of O3, N2O, H2O, HNO3, and CO. Each was taking measurements between February 2004 and April 2012 (ACE-FTS and MLS are currently operational), providing hundreds of profile coincidences in the Northern and Southern hemispheres, and during local morning and evening. Focusing on determining diurnal and hemispheric biases in the ACE-FTS data, this study compares ACE-FTS version 3.5 profiles that are collocated with MIPAS and MLS, and analyzes the differences between instrument retrievals for Northern and Southern hemispheres and for local morning and evening data. For O3, ACE-FTS is typically within ±5% of mid-stratospheric MIPAS and MLS data and exhibits a positive bias of 10 to 20% in the upper stratosphere - lower mesosphere. For H2O, ACE-FTS exhibits an average bias of -5% between 20 and 60 km. For N2O, ACE-FTS agrees with MIPAS and MLS within -20 to +10% up to 45 km and 35 km, respectively. For HNO3, ACE-FTS typically agrees within ±10% below 30 km, and exhibits a positive bias of 10 to 20% above 30 km. With respect to MIPAS CO, ACE-FTS exhibits an average -11% bias between 28 and 50 km, and at higher altitudes a positive bias on the order of 10% (>100%) in the winter (summer). With respect to winter MLS CO, ACE-FTS is typically within ±10% between 25 and 40 km, and has an average bias of -11% above 40 km.

  10. MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2014-11-01

    Full Text Available We present vM21 MIPAS temperatures from the lower stratosphere to the lower thermosphere, which cover all optimized resolution measurements performed by MIPAS in the middle-atmosphere, upper-atmosphere and noctilucent-cloud modes during its lifetime, i.e., from January 2005 to April 2012. The main upgrades with respect to the previous version of MIPAS temperatures (vM11 are the update of the spectroscopic database, the use of a different climatology of atomic oxygen and carbon dioxide, and the improvement in important technical aspects of the retrieval setup (temperature gradient along the line of sight and offset regularizations, apodization accuracy. Additionally, an updated version of ESA-calibrated L1b spectra (5.02/5.06 is used. The vM21 temperatures correct the main systematic errors of the previous version because they provide on average a 1–2 K warmer stratopause and middle mesosphere, and a 6–10 K colder mesopause (except in high-latitude summers and lower thermosphere. These lead to a remarkable improvement in MIPAS comparisons with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and the two Rayleigh lidars at Mauna Loa and Table Mountain, which, with a few specific exceptions, typically exhibit differences smaller than 1 K below 50 km and than 2 K at 50–80 km in spring, autumn and winter at all latitudes, and summer at low to midlatitudes. Differences in the high-latitude summers are typically smaller than 1 K below 50 km, smaller than 2 K at 50–65 km and 5 K at 65–80 km. Differences between MIPAS and the other instruments in the mid-mesosphere are generally negative. MIPAS mesopause is within 4 K of the other instruments measurements, except in the high-latitude summers, when it is within 5–10 K, being warmer there than SABER, MLS and OSIRIS and colder than ACE-FTS and SOFIE. The agreement in the lower thermosphere is typically better than 5 K, except for high latitudes during spring and summer, when MIPAS usually exhibits larger

  11. MLS/Aura Near-Real-Time L2 Nitrous Oxide (N2O) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2N2O_NRT is the EOS Aura Microwave Limb Sounder (MLS) Near-Real-Time (NRT) product for nitrous oxide (N2O). This product contains daily N2O profiles taken from the...

  12. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder

    Science.gov (United States)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.

    1996-01-01

    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  13. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  14. Tropospheric Carbon Monoxide Measurements from the Scanning High-resolution Interferometer Sounder on 7 September 2000 in Southern Africa during SAFARI 2000

    Science.gov (United States)

    McMillan, W. W.; McCourt, M. L.; Revercomb, H. E.; Knuteson, R. O.; Christian, T. J.; Doddridge, B. G.; Hobbs, P. V.; Lukovich, P. C.; Novelli, P. C.; Piketh, S. J.

    2003-01-01

    Retrieved tropospheric carbon monoxide (CO) column densities are presented for more than 9000 spectra obtained by the University of Wisconsin-Madison (UWis) Scanning High-Resolution Interferometer Sounder (SHIS) during a flight on the NASA ER-2 on 7 September 2000 as part of the Southern African Regional Science Initiative (SAFARI 2000) dry season field campaign. Enhancements in tropospheric column CO were detected in the vicinity of a controlled biomass burn in the Timbavati Game Reserve in northeastern South Africa and over the edge of the river of smoke in south central Mozambique. Relatively clean air was observed over the far southern coast of Mozambique. Quantitative comparisons are presented with in situ measurements from five different instruments flying on two other aircraft: the University of Washington Convair-580 (CV) and the South African Aerocommander JRB in the vicinity of the Timbavati fire. Measured tropospheric CO columns (extrapolated from 337 to 100 mb) of 2.1 x 10(exp 18) per square centimeter in background air and up to 1.5 x 10(exp 19) per square centimeter in the smoke plume agree well with SHIS retrieved tropospheric CO columns of (2.3 plus or minus 0.25) x 10(exp 18) per square centimeter over background air near the fire and (1.5 plus or minus 0.35) x 10(exp 19) per square centimeter over the smoke plume. Qualitative comparisons are presented with three other in situ CO profiles obtained by the South African JRA aircraft over Mozambique and northern South Africa showing the influence of the river of smoke.

  15. Assessing the potential for measuring Europa's tidal Love number h2 using radar sounder and topographic imager data

    Science.gov (United States)

    Steinbrügge, G.; Schroeder, D. M.; Haynes, M. S.; Hussmann, H.; Grima, C.; Blankenship, D. D.

    2018-01-01

    The tidal Love number h2 is a key geophysical measurement for the characterization of Europa's interior, especially of its outer ice shell if a subsurface ocean is present. We performed numerical simulations to assess the potential for estimating h2 using altimetric measurements with a combination of radar sounding and stereo imaging data. The measurement principle exploits both delay and Doppler information in the radar surface return in combination with topography from a digital terrain model (DTM). The resulting radar range measurements at cross-over locations can be used in combination with radio science Doppler data for an improved trajectory solution and for estimating the h2 Love number. Our simulation results suggest that the absolute accuracy of h2 from the joint analysis of REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface) surface return and EIS (Europa Imaging System) DTM data will be in the range of 0.04-0.17 assuming full radio link coverage. The error is controlled by the SNR budget and DTM quality, both dependent on the surface properties of Europa. We estimate that this would unambiguously confirm (or reject) the global ocean hypothesis and, in combination with a nominal radio-science based measurement of the tidal Love number k2, constrain the thickness of Europa's outer ice shell to up to ±15 km.

  16. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    Science.gov (United States)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  17. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    Science.gov (United States)

    Cofield, Richard E.; Kasl, Eldon P.

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.

  18. EOS MLS Level 1B Data Processing, Version 2.2

    Science.gov (United States)

    Perun, Vincent; Jarnot, Robert; Pickett, Herbert; Cofield, Richard; Schwartz, Michael; Wagner, Paul

    2009-01-01

    A computer program performs level- 1B processing (the term 1B is explained below) of data from observations of the limb of the Earth by the Earth Observing System (EOS) Microwave Limb Sounder (MLS), which is an instrument aboard the Aura spacecraft. This software accepts, as input, the raw EOS MLS scientific and engineering data and the Aura spacecraft ephemeris and attitude data. Its output consists of calibrated instrument radiances and associated engineering and diagnostic data. [This software is one of several computer programs, denoted product generation executives (PGEs), for processing EOS MLS data. Starting from level 0 (representing the aforementioned raw data, the PGEs and their data products are denoted by alphanumeric labels (e.g., 1B and 2) that signify the successive stages of processing.] At the time of this reporting, this software is at version 2.2 and incorporates improvements over a prior version that make the code more robust, improve calibration, provide more diagnostic outputs, improve the interface with the Level 2 PGE, and effect a 15-percent reduction in file sizes by use of data compression.

  19. Comparison of CMAM simulations of carbon monoxide (CO, nitrous oxide (N2O, and methane (CH4 with observations from Odin/SMR, ACE-FTS, and Aura/MLS

    Directory of Open Access Journals (Sweden)

    B. Barret

    2009-05-01

    Full Text Available Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, and Aura Microwave Limb Sounder (Aura/MLS. Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global CO, N2O, and CH4 distributions quite well. Generally, excellent agreement with measurements is found between CO simulations and observations in the stratosphere and mesosphere. Differences between the simulations and the ACE-FTS observations are generally within 30%, and the differences between CMAM results and SMR and MLS observations are slightly larger. These differences are comparable with the difference between the instruments in the upper stratosphere and mesosphere. Comparisons of N2O show that CMAM results are usually within 15% of the measurements in the lower and middle stratosphere, and the observations are close to each other. However, the standard version of CMAM has a low N2O bias in the upper stratosphere. The CMAM CH4 distribution also reproduces the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. The negative bias may be due to that the gravity drag is not fully resolved in the model. The simulated polar CO evolution in the Arctic and Antarctic agrees with the ACE and MLS observations. CO measurements from 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs. CMAM also shows strong descent of air after SSWs. In the tropics, CMAM captures the annual oscillation in the lower stratosphere and the semiannual oscillations at the stratopause and mesopause seen in Aura/MLS CO and N2O observations and in Odin/SMR N2O observations. The Odin/SMR and Aura/MLS N2O observations also show a quasi

  20. A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008

    Directory of Open Access Journals (Sweden)

    A. Lambert

    2012-03-01

    Full Text Available A-train Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP and Microwave Limb Sounder (MLS observations are used to investigate the development of polar stratospheric clouds (PSCs and the gas-phase nitric acid distribution in the early 2008 Antarctic winter. Observational evidence of gravity-wave activity is provided by Atmospheric Infrared Sounder (AIRS radiances and infrared spectroscopic detection of nitric acid trihydrate (NAT in PSCs is obtained from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Goddard Earth Observing System Data Assimilation System (GEOS-5 DAS analyses are used to derive Lagrangian trajectories and to determine temperature-time histories of air parcels. We use CALIOP backscatter and depolarization measurements to classify PSCs and the MLS measurements to determine the corresponding gas-phase HNO3 as a function of temperature. For liquid PSCs the uptake of HNO3 follows the theoretical equilibrium curve for supercooled ternary solutions (STS, but at temperatures about 1 K lower as determined from GEOS-5. In the presence of solid phase PSCs, above the ice frost-point, the HNO3 depletion occurs over a wider range of temperatures (+2 to −7 K distributed about the NAT equilibrium curve. Rapid gas-phase HNO3 depletion is first seen by MLS from from 23–25 May 2008, consisting of a decrease in the volume mixing ratio from 14 ppbv (parts per billion by volume to 7 ppbv on the 46–32 hPa (hectopascal pressure levels and accompanied by a 2–3 ppbv increase by renitrification at the 68 hPa pressure level. The observed region of depleted HNO3 is substantially smaller than the region bounded by the NAT existence temperature threshold. Temperature-time histories of air parcels demonstrate that the depletion is more clearly correlated with prior exposure to temperatures a few kelvin above the frost-point. From the combined data we infer the presence

  1. Design and development of a MLS based compact active suspension system, featuring air spring and energy harvesting capabilities

    DEFF Research Database (Denmark)

    Berg, Nick Ilsø; Holm, Rasmus Koldborg; Rasmussen, Peter Omand

    2016-01-01

    This paper describes the design and development of an novel Magnetic Lead Screw based active suspension system for passenger vehicles, using a new MLS topology. The design is based on performance specifications found from ISO road profiles, with a maximum harvested energy approach. By integrating...... the PMSM motor with the MLS, it possible to construct a very compact design with an integrated air spring. The prototype is build and frictional losses and efficiency for the MLS damper unit are measured. Additional the stall force and stall torque are measured for the build prototype to validate...

  2. Accuracy and precision of polar lower stratospheric temperatures from reanalyses evaluated from A-Train CALIOP and MLS, COSMIC GPS RO, and the equilibrium thermodynamics of supercooled ternary solutions and ice clouds

    Science.gov (United States)

    Lambert, Alyn; Santee, Michelle L.

    2018-02-01

    We investigate the accuracy and precision of polar lower stratospheric temperatures (100-10 hPa during 2008-2013) reported in several contemporary reanalysis datasets comprising two versions of the Modern-Era Retrospective analysis for Research and Applications (MERRA and MERRA-2), the Japanese 55-year Reanalysis (JRA-55), the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-I), and the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (NCEP-CFSR). We also include the Goddard Earth Observing System model version 5.9.1 near-real-time analysis (GEOS-5.9.1). Comparisons of these datasets are made with respect to retrieved temperatures from the Aura Microwave Limb Sounder (MLS), Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) temperatures, and independent absolute temperature references defined by the equilibrium thermodynamics of supercooled ternary solutions (STSs) and ice clouds. Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations of polar stratospheric clouds are used to determine the cloud particle types within the Aura MLS geometric field of view. The thermodynamic calculations for STS and the ice frost point use the colocated MLS gas-phase measurements of HNO3 and H2O. The estimated bias and precision for the STS temperature reference, over the 68 to 21 hPa pressure range, are 0.6-1.5 and 0.3-0.6 K, respectively; for the ice temperature reference, they are 0.4 and 0.3 K, respectively. These uncertainties are smaller than those estimated for the retrieved MLS temperatures and also comparable to GPS RO uncertainties (bias 0.7 K) in the same pressure range. We examine a case study of the time-varying temperature structure associated with layered ice clouds formed by orographic gravity waves forced by flow over the Palmer Peninsula and

  3. A Strategy for an MLS Workflow Management System

    National Research Council Canada - National Science Library

    Kang, Myong H; Froscher, Judith N; Eppinger, Brian J; Moskowitz, Ira S

    1999-01-01

    .... Therefore, DoD needs MLS workflow management systems (WFMS) to enable globally distributed users and existing applications to cooperate across classification domains to achieve mission critical goals...

  4. EOS MLS Level 1B Data Processing Software. Version 3

    Science.gov (United States)

    Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina

    2011-01-01

    This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.

  5. 3D Reconfigurable NoC Multiprocessor Portable Sounder for Plasmaspheric Studies

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    The paper describes the development of a prototype imaging sounder for studying the irregularities of the ionospheric plasma. Cutting edge three-dimensional reconfigurable logic has been implemented allowing highly-intensive scientific calculations to be performed in hardware. The new parallel processing algorithms implemented offer a significant amount of performance improvement in the range of 80% compared to existing digital sounder implementations. The current system configuration is taking into consideration the modern scientific needs for portability during scientific campaigns. The prototype acts as a digital signal processing experimentation platform for future larger-scale digital sounder instrumentations for measuring complex planetary plasmaspheric environments.

  6. Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder

    Science.gov (United States)

    Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi

    2017-04-01

    -and-aac-microtec-to-develop-the-innosat-platform-and-implement-its-first-mission-named-mats.html [2] Wu D., et al.: Mesospheric Doppler wind measurements from Aura Microwave Limb Sounder (MLS), Advanced in Space Research, 42, 1246-1252, 2008 [3] Baron P., et al.: Observation of horizontal winds in the middle-atmosphere between 30S and 55N during the northern winter 2009-2010, Atmospheric Chemistry and Physics 13(13), 6049-6064, 2013, doi:10.5194/acp-13-6049-2013 [4] Baron P., et al.: Definition of an uncooled submillimeter/terahertz limb sounder for measuring middle atmospheric winds, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 9-13 September 2013, (ESA SP-722, December 2013)

  7. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    Science.gov (United States)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  8. The Box Model and the Acoustic Sounder, a Case Study

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Lundtang Petersen, Erik

    1979-01-01

    Concentrations of SO2 in a large city during a subsidence situation are predicted as a function of time by means of a simple box model and the predictions are compared to actual SO2 concentration measurements. The agreement between model results and measurements is found to be excellent. The mode...... uses the height of the mixing layer as measured by means of an acoustic sounder. It is demonstrated that this height is a dominant factor in determining the variation of the SO2 concentration...

  9. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy

    Science.gov (United States)

    Kukko, Antero; Kaijaluoto, Risto; Kaartinen, Harri; Lehtola, Ville V.; Jaakkola, Anttoni; Hyyppä, Juha

    2017-10-01

    Mobile laser scanning (MLS) provides kinematic means to collect three dimensional data from surroundings for various mapping and environmental analysis purposes. Vehicle based MLS has been used for road and urban asset surveys for about a decade. The equipment to derive the trajectory information for the point cloud generation from the laser data is almost without exception based on GNSS-IMU (Global Navigation Satellite System - Inertial Measurement Unit) technique. That is because of the GNSS ability to maintain global accuracy, and IMU to produce the attitude information needed to orientate the laser scanning and imaging sensor data. However, there are known challenges in maintaining accurate positioning when GNSS signal is weak or even absent over long periods of time. The duration of the signal loss affects the severity of degradation of the positioning solution depending on the quality/performance level of the IMU in use. The situation could be improved to a certain extent with higher performance IMUs, but increasing system expenses make such approach unsustainable in general. Another way to tackle the problem is to attach additional sensors to the system to overcome the degrading position accuracy: such that observe features from the environment to solve for short term system movements accurately enough to prevent the IMU solution to drift. This results in more complex system integration with need for more calibration and synchronization of multiple sensors into an operational approach. In this paper we study operation of an ATV (All -terrain vehicle) mounted, GNSS-IMU based single scanner MLS system in boreal forest conditions. The data generated by RoamerR2 system is targeted for generating 3D terrain and tree maps for optimizing harvester operations and forest inventory purposes at individual tree level. We investigate a process-flow and propose a graph optimization based method which uses data from a single scanner MLS for correcting the post

  10. EOS MLS Level 2 Data Processing Software Version 3

    Science.gov (United States)

    Livesey, Nathaniel J.; VanSnyder, Livesey W.; Read, William G.; Schwartz, Michael J.; Lambert, Alyn; Santee, Michelle L.; Nguyen, Honghanh T.; Froidevaux, Lucien; wang, Shuhui; Manney, Gloria L.; hide

    2011-01-01

    This software accepts the EOS MLS calibrated measurements of microwave radiances products and operational meteorological data, and produces a set of estimates of atmospheric temperature and composition. This version has been designed to be as flexible as possible. The software is controlled by a Level 2 Configuration File that controls all aspects of the software: defining the contents of state and measurement vectors, defining the configurations of the various forward models available, reading appropriate a priori spectroscopic and calibration data, performing retrievals, post-processing results, computing diagnostics, and outputting results in appropriate files. In production mode, the software operates in a parallel form, with one instance of the program acting as a master, coordinating the work of multiple slave instances on a cluster of computers, each computing the results for individual chunks of data. In addition, to do conventional retrieval calculations and producing geophysical products, the Level 2 Configuration File can instruct the software to produce files of simulated radiances based on a state vector formed from a set of geophysical product files taken as input. Combining both the retrieval and simulation tasks in a single piece of software makes it far easier to ensure that identical forward model algorithms and parameters are used in both tasks. This also dramatically reduces the complexity of the code maintenance effort.

  11. Mesoscale Phenomenon Revealed by an Acoustic Sounder

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Jensen, Niels Otto

    1976-01-01

    A particular phenomenon observed on an acoustic sounder record is analyzed, and is interpreted as being associated with the passing of a land breeze front. A simple physical explanation of the frontal movements is suggested. The actual existence of the land breeze is demonstrated by examination...

  12. Observations of volcanic SO2 from MLS on Aura

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2015-01-01

    Full Text Available Sulfur dioxide (SO2 is an important atmospheric constituent, particularly in the aftermath of volcanic eruptions. These events can inject large amounts of SO2 into the lower stratosphere, where it is oxidised to form sulfate aerosols; these in turn have a significant effect on the climate. The MLS instrument on the Aura satellite has observed the SO2 mixing ratio in the upper troposphere and lower stratosphere from August 2004 to the present, during which time a number of volcanic eruptions have significantly affected those regions of the atmosphere. We describe the MLS SO2 data and how various volcanic events appear in the data. As the MLS SO2 data are currently not validated we take some initial steps towards their validation. First we establish the level of internal consistency between the three spectral regions in which MLS is sensitive to SO2. We compare SO2 column values calculated from MLS data to total column values reported by the OMI instrument. The agreement is good (within about 1 DU in cases where the SO2 is clearly at altitudes above 147 hPa.

  13. The accuracy of remotely-sensed IWC: An assessment from MLS, TRMM and CloudSat statistics

    Science.gov (United States)

    Wu, D. L.; Heymsfield, A. J.

    2006-12-01

    Understanding climate change requires accurate global cloud ice water content (IWC) measurements. Satellite remote sensing has been the major tool to provide such global observations, but the accuracy of deduced IWC depends on knowledge of cloud microphysics learned from in-situ samples. Because only limited number and type of ice clouds have been measured by in-situ sensors, the knowledge about cloud microphysics is incomplete, and the IWC accuracy from remote sensing can vary from 30% to 200% from case to case. Recent observations from MLS, TRMM and CloudSat allow us to evaluate consistency and accuracy of IWCs deduced from passive and active satellite techniques. In this study we conduct statistical analyses on the tropical and subtropical IWCs observed by MLS, TRMM and CloudSat. The probability density functions (PDFs) of IWC are found to depend on the volume size of averaging, and therefore data need to be averaged into the same volume in order for fair comparisons. Showing measurement noise, bias and sensitivity, the PDF is a better characterization than an average for evaluating IWC accuracy because an averaged IWC depends on cloud-detection threshold that can vary from sensor to sensor. Different thresholds will not only change the average value but also change cloud fraction and occurrence frequency. Our study shows that MLS and TRMM IWCs, despite large differences in sensitivity with little overlap, can still be compared under PDF. The two statistics are generally consistent within 50% at ~13 km, obeying an approximate lognormal distribution as suggested by some ground-based radar observations. MLS has sensitivity to IWC of 1-100 mg/m3 whereas TRMM can improve its sensitivity to IWC as low as 70 mg/m3 if the radar data are averaged properly for the equivalent volume of MLS samples. The proper statistical averaging requires full characteristics of IWC noise, which are not available for products normally derived from radar reflectivity, and therefore we

  14. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Røstad, Anders

    2013-11-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled to shore for continuous measurements during winter and spring. Records of sinking pellets were for the first time observed with an echo sounder. Seasonal patterns of sedimentation of krill FPs were strongly correlated with data from continuous measurement of fluorescence, which illustrate the development of the spring bloom. Sedimenting particles were first observed as fluorescence values started to increase at the end of February and continued to increase until the bloom suddenly culminated at the end of March. This collapse of the bloom was detected on the echo sounder as a pulse of slowly sinking acoustic targets over a 2 d period. Prior to this event, there was a strong diel pattern in sedimentation, which correlated, with some time lag, with the diel migration of krill foraging at night near the surface. Pellet average sinking speeds ranged between 423 m d−1 and 804 m d−1, with a strong relation to pellet target strength, which is an acoustic proxy for size. This novel approach shows that echo sounders may be a valuable tool in studies of vertical pellet flux and, thereby, carbon flux, providing temporal resolution and direct observation of the sedimentation process, which are not obtained from standard methods.

  15. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  16. Educational Requirements beyond the MLS for Academic Librarians in 1990.

    Science.gov (United States)

    Aufderhaar, Kathleen E.

    Eight-hundred sixty-five advertisements for academic librarian positions in the 1990 issues of "American Libraries" were examined to determine how many position advertisements were asking for advanced degrees in addition to the MLS. Data from the 231 advertisements asking for advanced degrees were compared with data from previous studies as well…

  17. Tropospheric Column Ozone Response to ENSO in GEOS-5 Assimilation of OMI and MLS Ozone Data

    Science.gov (United States)

    Olsen, Mark A.; Wargan, Krzysztof; Pawson, Steven

    2016-01-01

    We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone observations to investigate the magnitude and spatial distribution of the El Nino Southern Oscillation (ENSO) influence on tropospheric column ozone (TCO) into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Nino 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Nino 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9- year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Nino influence on tropospheric ozone in the middle latitudes.

  18. Tropospheric column ozone response to ENSO in GEOS-5 assimilation of OMI and MLS ozone data

    Directory of Open Access Journals (Sweden)

    M. A. Olsen

    2016-06-01

    Full Text Available We use GEOS-5 analyses of Ozone Monitoring Instrument (OMI and Microwave Limb Sounder (MLS ozone observations to investigate the magnitude and spatial distribution of the El Niño Southern Oscillation (ENSO influence on tropospheric column ozone (TCO into the middle latitudes. This study provides the first explicit spatially resolved characterization of the ENSO influence and demonstrates coherent patterns and teleconnections impacting the TCO in the extratropics. The response is evaluated and characterized by both the variance explained and sensitivity of TCO to the Niño 3.4 index. The tropospheric response in the tropics agrees well with previous studies and verifies the analyses. A two-lobed response symmetric about the Equator in the western Pacific/Indonesian region seen in some prior studies and not in others is confirmed here. This two-lobed response is consistent with the large-scale vertical transport. We also find that the large-scale transport in the tropics dominates the response compared to the small-scale convective transport. The ozone response is weaker in the middle latitudes, but a significant explained variance of the TCO is found over several small regions, including the central United States. However, the sensitivity of TCO to the Niño 3.4 index is statistically significant over a large area of the middle latitudes. The sensitivity maxima and minima coincide with anomalous anti-cyclonic and cyclonic circulations where the associated vertical transport is consistent with the sign of the sensitivity. Also, ENSO related changes to the mean tropopause height can contribute significantly to the midlatitude response. Comparisons to a 22-year chemical transport model simulation demonstrate that these results from the 9-year assimilation are representative of the longer term. This investigation brings insight to several seemingly disparate prior studies of the El Niño influence on tropospheric ozone in the middle latitudes.

  19. MLS student active learning within a "cloud" technology program.

    Science.gov (United States)

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  20. SABER (TIMED) and MLS (UARS) Temperature Observations of Mesospheric and Stratospheric QBO and Related Tidal Variations

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.; Russell, James; Mlynczak, Marty; Mengel, John

    2006-01-01

    More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral

  1. Registration of TLS and MLS Point Cloud Combining Genetic Algorithm with ICP

    Directory of Open Access Journals (Sweden)

    YAN Li

    2018-04-01

    Full Text Available Large scene point cloud can be quickly acquired by mobile laser scanning (MLS technology,which needs to be supplemented by terrestrial laser scanning (TLS point cloud because of limited field of view and occlusion.MLS and TLS point cloud are located in geodetic coordinate system and local coordinate system respectively.This paper proposes an automatic registration method combined genetic algorithm (GA and iterative closed point ICP to achieve a uniform coordinate reference frame.The local optimizer is utilized in ICP.The efficiency of ICP is higher than that of GA registration,but it depends on a initial solution.GA is a global optimizer,but it's inefficient.The combining strategy is that ICP is enabled to complete the registration when the GA tends to local search.The rough position measured by a built-in GPS of a terrestrial laser scanner is used in the GA registration to limit its optimizing search space.To improve the GA registration accuracy,a maximum registration model called normalized sum of matching scores (NSMS is presented.The results for measured data show that the NSMS model is effective,the root mean square error (RMSE of GA registration is 1~5 cm and the registration efficiency can be improved by about 50% combining GA with ICP.

  2. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  3. An FPGA-Based Adaptable 200 MHz Bandwidth Channel Sounder for Wireless Communication Channel Characterisation

    Directory of Open Access Journals (Sweden)

    David L. Ndzi

    2011-01-01

    Full Text Available This paper describes the development of a fast adaptable FPGA-based wideband channel sounder with signal bandwidths of up to 200 MHz and channel sampling rates up to 5.4 kHz. The application of FPGA allows the user to vary the number of real-time channel response averages, channel sampling interval, and duration of measurement. The waveform, bandwidth, and frequency resolution of the sounder can be adapted for any channel under investigation. The design approach and technology used has led to a reduction in size and weight by more than 60%. This makes the sounder ideal for mobile time-variant wireless communication channels studies. Averaging allows processing gains of up to 30 dB to be achieved for measurement in weak signal conditions. The technique applied also improves reliability, reduces power consumption, and has shifted sounder design complexity from hardware to software. Test results show that the sounder can detect very small-scale variations in channels.

  4. Flight evaluations of approach/landing navigation sensor systems. MLS to kohokei hiko jikken. ; 1990 nendo no jikken gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Flight test results of such navigation sensor systems as MLS (microwave landing system), GPS(global positioning system) and INS (inertial navigation system) on the Dornier-228 research aircraft in 1990 were reported, which tests have being promoted by National Aerospace Laboratory (NAL), Japan to develop unmanned approach/landing (A/L) navigation sensor systems for the future spaceplane HOPE. The measured data corresponding to a WGS84 (world geodetic system 1984) navigation coordinate system were evaluated, and the reference orbit was also prepared by laser tracker analysis. The navigation sensor systems such as MLS were evaluated on the basis of CMN (control motion noise) or PFE (path following error), and preliminary calculation was also conducted for a GPS-INS hybrid system. As experimental results, several data were gathered for each sensor system resulting in possible data comparison between the sensor systems, and the feasibility of the GPS-INS hybrid system was also confirmed. 35 refs., 49 figs., 22 tabs.

  5. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    Science.gov (United States)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  6. The effect of MLS laser radiation on cell lipid membrane.

    Science.gov (United States)

    Pasternak, Kamila; Wróbel, Dominika; Nowacka, Olga; Pieszyński, Ireneusz; Bryszewska, Maria; Kujawa, Jolanta

    2018-03-14

    Authors of numerous publications have proved the therapeutic effect of laser irradiation on biological material, but the mechanisms at cellular and subcellular level are not yet well understood. The aim of this study was to assess the effect of laser radiation emitted by the MLS M1 system (Multiwave Locked System) at two wavelengths (808 nm continuous and 905 nm pulsed) on the stability and fluidity of liposomes with a lipid composition similar to that of human erythrocyte membrane or made of phosphatidylocholine. Liposomes were exposed to low-energy laser radiation at surface densities 195 mW/cm2 (frequency 1,000 Hz) and 230 mW/cm2 (frequency 2,000 Hz). Different doses of radiation energy in the range 0-15 J were applied. The surface energy density was within the range 0.46 - 4.9 J/cm 2. The fluidity and stability of liposomes subjected to such irradiation changed depending on the parameters of radiation used. Since MLS M1 laser radiation, depending on the parameters used, affects fluidity and stability of liposomes with the lipid content similar to erythrocyte membrane, it may also cause structural and functional changes in cell membranes.

  7. Microwave Atmospheric Sounder on CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which

  8. NOAA JPSS Advanced Technology Microwave Sounder (ATMS) Remapped to Cross-track Infrared Sounder (CrIS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Technology Microwave Sounder (ATMS) is a 22 channel microwave sounder on board the Suomi NPP satellite that provides continuous cross-track scanning in...

  9. Immunobiology of T cell responses to Mls-locus-disparate stimulator cells. III. Helper and cytolytic functions of cloned, Mls-reactive T cell lines

    International Nuclear Information System (INIS)

    Katz, M.E.; Tite, J.P.; Janeway, C.A. Jr.

    1986-01-01

    Mls-specific T cell clones derived by limiting dilution were tested for cytotoxic activity in a lectin-dependent 51 Cr-release assay. All the T cell clones tested were cytotoxic in such an assay in apparent contrast to previous reports (1, 2). However, only those target cells sensitive to cytolysis by other L3T4a + cytolytic T cells (3) were killed by Mls-specific T cell clones in short term 51 Cr-release assays, possibly explaining this discrepancy. All the T cell clones tested were L3T4a + ,Lyt-2 - and stimulated B cells from Mls strains of mice to proliferate and secrete immunoglobulin. Furthermore, lysis of innocent bystander targets was observed when the T cells were stimulated with Mls-disparate stimulator cells. These results are consistent with those obtained with L3T4a - T cells specific for protein antigen:self Ia and that express cytotoxic potential (3)

  10. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  11. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  12. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  13. Noise performance of microwave humidity sounders over their lifetime

    Directory of Open Access Journals (Sweden)

    I. Hans

    2017-12-01

    Full Text Available The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2, Advanced Microwave Sounding Unit-B (AMSU-B and Microwave Humidity Sounder (MHS to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs of the instrument and the noise equivalent differential temperature (NEΔT as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT  <  1 K. Due to overlapping life spans of the instruments, these reduced data records still cover without gaps the time since 1994 and may therefore serve as a first step for constructing long time

  14. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    Science.gov (United States)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  15. The WHISPER Relaxation Sounder and the CLUSTER Active Archive

    Science.gov (United States)

    Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.

    The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.

  16. Special Sensor Microwave Imager/Sounder (SSMIS) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  17. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  18. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    Science.gov (United States)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  19. Experimental immunologically mediated aplastic anemia (AA) in H-2k identical, Mls (M) locus different mice

    Energy Technology Data Exchange (ETDEWEB)

    Knospe, W.H.; Steinberg, D.; Speck, B.

    1983-07-01

    Immunologically mediated aplastic anemia (AA) was experimentally induced in mice by injecting 10(7) lymph node cells (LNC) from donor mice of one inbred strain to another H-2k identical but Mls mismatched strain previously given 600 rad total body gamma irradiation (TBI). AA developed after 2 weeks to 6 months in selected strain combinations used and usually 60 to 90% of the mice died. Clinical signs of graft-versus-host disease did not occur and splenic atrophy rather than splenomegaly was the rule. Histologically these mice had a lesion of the hematopoietic microenvironment characterized by sinusoidal injury and stromal necrosis. Others have demonstrated injury to hematopoietic stem cells. C3H/He LNC induced AA whereas C3H/HeJ LNC failed to induce AA. The C3H/HeJ strain carries a macrophage defect and these results suggest that a macrophage-like cell may be a mediator of immunological injury in this experimental model. Although all strain combinations evaluated were H-2k identical and Mls mismatched, certain Mls combinations resulted in AA and identical Mls mismatched but different strains did not. Both strong (Mlsd) and weak (Mlsc) stimulating LNC induce AA but simple Mls differences do not explain the AA as similar Mls combinations but different strain combinations fail to induce AA.

  20. Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption - a statistical approach

    Science.gov (United States)

    Kulikov, Mikhail Y.; Nechaev, Anton A.; Belikovich, Mikhail V.; Ermakova, Tatiana S.; Feigin, Alexander M.

    2018-05-01

    This Technical Note presents a statistical approach to evaluating simultaneous measurements of several atmospheric components under the assumption of photochemical equilibrium. We consider simultaneous measurements of OH, HO2, and O3 at the altitudes of the mesosphere as a specific example and their daytime photochemical equilibrium as an evaluating relationship. A simplified algebraic equation relating local concentrations of these components in the 50-100 km altitude range has been derived. The parameters of the equation are temperature, neutral density, local zenith angle, and the rates of eight reactions. We have performed a one-year simulation of the mesosphere and lower thermosphere using a 3-D chemical-transport model. The simulation shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3-4 % in the full range of altitudes independent of season or latitude. We have developed a statistical Bayesian evaluation technique for simultaneous measurements of OH, HO2, and O3 based on the equilibrium equation taking into account the measurement error. The first results of the application of the technique to MLS/Aura data (Microwave Limb Sounder) are presented in this Technical Note. It has been found that the satellite data of the HO2 distribution regularly demonstrate lower altitudes of this component's mesospheric maximum. This has also been confirmed by model HO2 distributions and comparison with offline retrieval of HO2 from the daily zonal means MLS radiance.

  1. Morphological Operations to Extract Urban Curbs in 3D MLS Point Clouds

    Directory of Open Access Journals (Sweden)

    Borja Rodríguez-Cuenca

    2016-06-01

    Full Text Available Automatic curb detection is an important issue in road maintenance, three-dimensional (3D urban modeling, and autonomous navigation fields. This paper is focused on the segmentation of curbs and street boundaries using a 3D point cloud captured by a mobile laser scanner (MLS system. Our method provides a solution based on the projection of the measured point cloud on the XY plane. Over that plane, a segmentation algorithm is carried out based on morphological operations to determine the location of street boundaries. In addition, a solution to extract curb edges based on the roughness of the point cloud is proposed. The proposed method is valid in both straight and curved road sections and applicable both to laser scanner and stereo vision 3D data due to the independence of its scanning geometry. The proposed method has been successfully tested with two datasets measured by different sensors. The first dataset corresponds to a point cloud measured by a TOPCON sensor in the Spanish town of Cudillero. The second dataset corresponds to a point cloud measured by a RIEGL sensor in the Austrian town of Horn. The extraction method provides completeness and correctness rates above 90% and quality values higher than 85% in both studied datasets.

  2. Whisper, a resonance sounder and wave analyser: Performances and perspectives for the Cluster mission

    DEFF Research Database (Denmark)

    Decreau, P.M.E.; Fergeau, P.; KrannoselsKikh, V.

    1997-01-01

    The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2-80 cm(-3). This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wav...... in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere....

  3. Science Study For A Low Cost Upper Atmosphere Sounder (LOCUS)

    Science.gov (United States)

    Gerber, D.; Swinyard, B. M.; Ellison, B. N.; Siddans, R.; Kerridge, B. J.; Plane, J. M. C.; Feng, W.

    2013-12-01

    We present the findings of an initial science study to define the spectral bands for the proposed Mesosphere / Lower Thermosphere (MLT) sounder LOCUS. The LOCUS mission (Fig 1) uses disruptive technologies to make key MLT species detectable globally by satellite remote sensing for the first time. This presentation summarises the technological and scientific foundation on which the current 4-band Terahertz (THz) and sub- millimetre wave (SMW) instrument configuration was conceived.

  4. Observations of atmospheric structure using an acoustic sounder

    International Nuclear Information System (INIS)

    Shaw, N.A.

    1974-11-01

    An acoustic sounder has been used to monitor the vertical temperature structure of the lowest 1.5 km of the atmosphere over the meteorological field site at Argonne National Laboratory since February 1972. Additional records were obtained near St. Louis, Mo., during the month of August. Sounder records obtained during cloudless days on which no major synoptic events occurred are separated into three characteristic phases. The first phase is the rise of the morning inversion associated with increasing solar heating of the surface after dawn. The second phase is the period of strong convective activity that usually exists between about 1100 and 1600 local time in summer and which typically destroys the inversion. The third phase includes the gradual regeneration of the low level inversion through radiation cooling of the lowest levels, followed by a period of persistence throughout the night until the first phase begins again after sunrise. Analysis of records obtained from a single acoustic sounder operating in the vertically-pointing, monostatic mode is subject to the usual ambiguity regarding the relative importance of advective effects and local changes with time. To provide a spatial sampling facility, a mobile acoustic sounding system was constructed during 1972. Details of the mobile antenna acoustic baffle or cuff are given in the Appendix. (19 figures, 1 table) (U.S.)

  5. Interpreting Observations of Large-Scale Traveling Ionospheric Disturbances by Ionospheric Sounders

    Science.gov (United States)

    Pederick, L. H.; Cervera, M. A.; Harris, T. J.

    2017-12-01

    From July to October 2015, the Australian Defence Science and Technology Group conducted an experiment during which a vertical incidence sounder (VIS) was set up at Alice Springs Airport. During September 2015 this VIS observed the passage of many large-scale traveling ionospheric disturbances (TIDs). By plotting the measured virtual heights across multiple frequencies as a function of time, the passage of the TID can be clearly displayed. Using this plotting method, we show that all the TIDs observed during the campaign by the VIS at Alice Springs show an apparent downward phase progression of the crests and troughs. The passage of the TID can be more clearly interpreted by plotting the true height of iso-ionic contours across multiple plasma frequencies; the true heights can be obtained by inverting each ionogram to obtain an electron density profile. These plots can be used to measure the vertical phase speed of a TID and also reveal a time lag between events seen in true height compared to virtual height. To the best of our knowledge, this style of analysis has not previously been applied to other swept-frequency sounder observations. We develop a simple model to investigate the effect of the passage of a large-scale TID on a VIS. The model confirms that for a TID with a downward vertical phase progression, the crests and troughs will appear earlier in virtual height than in true height and will have a smaller apparent speed in true height than in virtual height.

  6. Automatic Rail Extraction and Celarance Check with a Point Cloud Captured by Mls in a Railway

    Science.gov (United States)

    Niina, Y.; Honma, R.; Honma, Y.; Kondo, K.; Tsuji, K.; Hiramatsu, T.; Oketani, E.

    2018-05-01

    Recently, MLS (Mobile Laser Scanning) has been successfully used in a road maintenance. In this paper, we present the application of MLS for the inspection of clearance along railway tracks of West Japan Railway Company. Point clouds around the track are captured by MLS mounted on a bogie and rail position can be determined by matching the shape of the ideal rail head with respect to the point cloud by ICP algorithm. A clearance check is executed automatically with virtual clearance model laid along the extracted rail. As a result of evaluation, the accuracy of extracting rail positions is less than 3 mm. With respect to the automatic clearance check, the objects inside the clearance and the ones related to a contact line is successfully detected by visual confirmation.

  7. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    Science.gov (United States)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  8. The JPSS CrIS Instrument and the Evolution of Space-Based Infrared Sounders

    Science.gov (United States)

    Glumb, Ronald; Suwinski, Lawrence; Wells, Steven; Glumb, Anna; Malloy, Rebecca; Colton, Marie

    2018-01-01

    This paper will summarize the development of infrared sounders since the 1970s, describe the technological hurdles that were overcome to provide ever-increasing performance capabilities, and highlight the radiometric performance of the CrIS instrument on JPSS-1 (CrIS-JPSS1). This includes details of the CrIS-JPSS1 measured noise-equivalent spectral radiance (NEdN) performance, radiometric uncertainty performance utilizing a new and improved internal calibration target, short-term and long-term repeatability, spectral uncertainty, and spectral stability. In addition, the full-resolution operating modes for CrIS-JPSS1 will be reviewed, including a discussion of how these modes will be used during on-orbit characterization tests. We will provide a brief update of CrIS-SNPP on-obit performance and the production status of the CrIS instruments for JPSS-2 through JPSS-4. Current technological challenges will also be reviewed, including how ongoing research and development is enabling improvements to future sounders. The expanding usage of infrared sounding data will also be discussed, including demonstration of value via data assimilation, the roles of the public/private sector in communicating the importance of sounding data for long-term observations, and the long road to success from research to operational data products.

  9. Distribution and transport of water vapor in the UTLS over the Tibetan Plateau as inferred from the MLS satellite data and WRF model simulations

    Science.gov (United States)

    Jain, S.; Kar, S. C.

    2016-12-01

    Water vapor is an important minor constituent in the lower stratosphere as it influences the stratospheric chemistry and total radiation budget. The spatial distribution of water vapor mixing ratio (WVMR) obtained from Aura Microwave Limb Sounder (MLS) satellite at 100 hPa level shows prominent maxima over the Tibetan Plateau during August 2015. The Asian monsoon upper level anticyclone is also known to occur over this region during this period. The Indian Meteorological Department (IMD) and National Centre of Medium Range Weather Forecasting (NCMRWF) observed daily gridded rainfall data shows moderate to heavy rainfall over the Tibetan Plateau, suggesting active convection from 26 July to 10 August 2015. The atmospheric conditions are simulated over the Asian region for the 15-day period using the Weather Research Forecasting (WRF) model. The simulations are carried out using two nested domains with resolution of 12 km and 4 km. The initial and boundary conditions are taken from the NGFS (up-graded version of the NCEP GFS) data. The WRF WVMR profiles are observed to be comparatively moist than the MLS profiles in the UTLS region over the Tibetan Plateau. This may be due to the relatively higher temperatures (1-2 K) simulated in the WRF model near 100 hPa level. It is noted that the WRF model has a drying tendency at all the levels. The UTLS WVMR and temperatures show poor sensitivity to the convective schemes. The parent domain and the explicit convective scheme simulate almost same moisture over time in the inner domain. The cloud micro-physics is observed to play a rather important role in controlling the UTLS water vapor content. The WSM-6 convective scheme is observed to simulate the UTLS moisture comparatively well and therefore the processes associated with the formation of ice, snow and graupel formation may be of much more importance in controlling the UTLS WVMR in the WRF model. The 24 hr, 48 hr and 72 hr forecast averaged for the 15-day period shows that

  10. 76 FR 24045 - Notice of HUD-Held Multifamily Loan Sale (MLS 2011-1)

    Science.gov (United States)

    2011-04-29

    ..., the bidder's deposit was non-refundable and was applied toward the purchase price. Deposits were... Commissioner, HUD. ACTION: Notice of sale of mortgage loans. SUMMARY: This notice announces HUD's intention to... INFORMATION: HUD announces its intention to sell in MLS 2011-1 certain unsubsidized mortgage loans (Mortgage...

  11. Variability in the Speed of the Brewer-Dobson Circulation as Observed by Aura/MLS

    Science.gov (United States)

    Flury, Thomas; Wu, Dong L.; Read, W. G.

    2013-01-01

    We use Aura/MLS stratospheric water vapour (H2O) measurements as tracer for dynamics and infer interannual variations in the speed of the Brewer-Dobson circulation (BDC) from 2004 to 2011. We correlate one-year time series of H2O in the lower stratosphere at two subsequent pressure levels (68 hPa, approx.18.8 km and 56 hPa, approx 19.9 km at the Equator) and determine the time lag for best correlation. The same calculation is made on the horizontal on the 100 hPa (approx 16.6 km) level by correlating the H2O time series at the Equator with the ones at 40 N and 40 S. From these lag coefficients we derive the vertical and horizontal speeds of the BDC in the tropics and extra-tropics, respectively. We observe a clear interannual variability of the vertical and horizontal branch. The variability reflects signatures of the Quasi Biennial Oscillation (QBO). Our measurements confirm the QBO meridional circulation anomalies and show that the speed variations in the two branches of the BDC are out of phase and fairly well anti-correlated. Maximum ascent rates are found during the QBO easterly phase. We also find that transport of H2O towards the Northern Hemisphere (NH) is on the average two times faster than to the Southern Hemisphere (SH) with a mean speed of 1.15m/s at 100 hPa. Furthermore, the speed towards the NH shows much more interannual variability with an amplitude of about 21% whilst the speed towards the SH varies by only 10 %. An amplitude of 21% is also observed in the variability of the ascent rate at the Equator which is on the average 0.2mm/s.

  12. SEMANTIC LABELLING OF ULTRA DENSE MLS POINT CLOUDS IN URBAN ROAD CORRIDORS BASED ON FUSING CRF WITH SHAPE PRIORS

    Directory of Open Access Journals (Sweden)

    W. Yao

    2017-09-01

    Full Text Available In this paper, a labelling method for the semantic analysis of ultra-high point density MLS data (up to 4000 points/m2 in urban road corridors is developed based on combining a conditional random field (CRF for the context-based classification of 3D point clouds with shape priors. The CRF uses a Random Forest (RF for generating the unary potentials of nodes and a variant of the contrastsensitive Potts model for the pair-wise potentials of node edges. The foundations of the classification are various geometric features derived by means of co-variance matrices and local accumulation map of spatial coordinates based on local neighbourhoods. Meanwhile, in order to cope with the ultra-high point density, a plane-based region growing method combined with a rule-based classifier is applied to first fix semantic labels for man-made objects. Once such kind of points that usually account for majority of entire data amount are pre-labeled; the CRF classifier can be solved by optimizing the discriminative probability for nodes within a subgraph structure excluded from pre-labeled nodes. The process can be viewed as an evidence fusion step inferring a degree of belief for point labelling from different sources. The MLS data used for this study were acquired by vehicle-borne Z+F phase-based laser scanner measurement, which permits the generation of a point cloud with an ultra-high sampling rate and accuracy. The test sites are parts of Munich City which is assumed to consist of seven object classes including impervious surfaces, tree, building roof/facade, low vegetation, vehicle and pole. The competitive classification performance can be explained by the diverse factors: e.g. the above ground height highlights the vertical dimension of houses, trees even cars, but also attributed to decision-level fusion of graph-based contextual classification approach with shape priors. The use of context-based classification methods mainly contributed to smoothing of

  13. Semantic Labelling of Ultra Dense Mls Point Clouds in Urban Road Corridors Based on Fusing Crf with Shape Priors

    Science.gov (United States)

    Yao, W.; Polewski, P.; Krzystek, P.

    2017-09-01

    In this paper, a labelling method for the semantic analysis of ultra-high point density MLS data (up to 4000 points/m2) in urban road corridors is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds with shape priors. The CRF uses a Random Forest (RF) for generating the unary potentials of nodes and a variant of the contrastsensitive Potts model for the pair-wise potentials of node edges. The foundations of the classification are various geometric features derived by means of co-variance matrices and local accumulation map of spatial coordinates based on local neighbourhoods. Meanwhile, in order to cope with the ultra-high point density, a plane-based region growing method combined with a rule-based classifier is applied to first fix semantic labels for man-made objects. Once such kind of points that usually account for majority of entire data amount are pre-labeled; the CRF classifier can be solved by optimizing the discriminative probability for nodes within a subgraph structure excluded from pre-labeled nodes. The process can be viewed as an evidence fusion step inferring a degree of belief for point labelling from different sources. The MLS data used for this study were acquired by vehicle-borne Z+F phase-based laser scanner measurement, which permits the generation of a point cloud with an ultra-high sampling rate and accuracy. The test sites are parts of Munich City which is assumed to consist of seven object classes including impervious surfaces, tree, building roof/facade, low vegetation, vehicle and pole. The competitive classification performance can be explained by the diverse factors: e.g. the above ground height highlights the vertical dimension of houses, trees even cars, but also attributed to decision-level fusion of graph-based contextual classification approach with shape priors. The use of context-based classification methods mainly contributed to smoothing of labelling by removing

  14. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.

  15. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Science.gov (United States)

    Nedoluha, Gerald E.; Kiefer, Michael; Lossow, Stefan; Gomez, R. Michael; Kämpfer, Niklaus; Lainer, Martin; Forkman, Peter; Christensen, Ole Martin; Oh, Jung Jin; Hartogh, Paul; Anderson, John; Bramstedt, Klaus; Dinelli, Bianca M.; Garcia-Comas, Maya; Hervig, Mark; Murtagh, Donal; Raspollini, Piera; Read, William G.; Rosenlof, Karen; Stiller, Gabriele P.; Walker, Kaley A.

    2017-12-01

    As part of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically ˜ 1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0-1 % yr-1. In particular, MLS shows a trend of between 0.5 % yr-1 and 0.7 % yr-1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr-1 (at Mauna Loa, Hawaii) and -0.1 % yr-1 (at Lauder, New Zealand).

  16. The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2017-12-01

    Full Text Available As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate water vapor assessment (WAVAS-II, we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii and −0.1 % yr−1 (at Lauder, New Zealand.

  17. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Rø stad, Anders; Kaartvedt, Stein

    2013-01-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled

  18. MLS (Microwave Landing System) Multipath Studies, Phase 3. Volume 3. Application of Models to MLS Assessment Issues. Part 1. Chapters 1 through 4.

    Science.gov (United States)

    1981-06-08

    generated by the AWOP panel members from the FRG, Netherlands, U.K., and U.S. 1-3 Airport-specific simulations, intended to predict MLS performance at a...05. C.𔃼 C. 00 0,5 r, !,. . lSTM FIN I l "i Fig. 2-89. Elevation rate error filter output for scenario 4. 2-116...Report No. 1, Texas Instruments Incorporated, Dallas, Texas (25 June 1975), ALEX(03)-TR-75-01. 50. J. Makhoul, "Linear Prediction ; A Tutorial Review

  19. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  20. Bottom pressure, vertical acoustic round-trip travel time, and near-bottom currents data collected by Current-and-Pressure-recording Inverted Echo Sounders (CPIES), as part of the Kuroshio Extension System Study (KESS), from 26 April 2004 to 25 June 2006 in the Kuroshio Extension east of Japan (NODC Accession 0073269)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains Current and Pressure recording Inverted Echo Sounder (CPIES) measurements collected during the Kuroshio Extension System Study (KESS) under...

  1. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation.

    Science.gov (United States)

    Kujawa, Jolanta; Pasternak, Kamila; Zavodnik, Ilya; Irzmański, Robert; Wróbel, Dominika; Bryszewska, Maria

    2014-09-01

    The therapeutic effects of low-power laser radiation of different wavelengths and light doses are well known, but the biochemical mechanism of the interaction of laser light with living cells is not fully understood. We have investigated the effect of MLS (Multiwave Locked System) laser near-infrared irradiation on cell membrane structure, functional properties, and free radical generation using human red blood cells and breast cancer MCF-4 cells. The cells were irradiated with low-intensity MLS near-infrared (simultaneously 808 nm, continuous emission and 905 nm, pulse emission, pulse-wave frequency, 1,000 or 2,000 Hz) laser light at light doses from 0 to 15 J (average power density 212.5 mW/cm(2), spot size was 3.18 cm(2)) at 22 °C, the activity membrane bound acetylcholinesterase, cell stability, anti-oxidative activity, and free radical generation were the parameters used in characterizing the structural and functional changes of the cell. Near-infrared low-intensity laser radiation changed the acetylcholinesterase activity of the red blood cell membrane in a dose-dependent manner: There was a considerable increase of maximal enzymatic rate and Michaelis constant due to changes in the membrane structure. Integral parameters such as erythrocyte stability, membrane lipid peroxidation, or methemoglobin levels remained unchanged. Anti-oxidative capacity of the red blood cells increased after MLS laser irradiation. This irradiation induced a time-dependent increase in free radical generation in MCF-4 cells. Low-intensity near-infrared MLS laser radiation induces free radical generation and changes enzymatic and anti-oxidative activities of cellular components. Free radical generation may be the mechanism of the biomodulative effect of laser radiation.

  2. Models for estimating runway landing capacity with Microwave Landing System (MLS)

    Science.gov (United States)

    Tosic, V.; Horonjeff, R.

    1975-01-01

    A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.

  3. Mechanical Description of the Mars Climate Sounder Instrument

    Science.gov (United States)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  4. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  5. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    Directory of Open Access Journals (Sweden)

    S. Dwivedi

    2016-04-01

    Full Text Available Monsoon inversion (MI over the Arabian Sea (AS is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013 of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS and western AS (WAS to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO (COSMIC, has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  6. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Science.gov (United States)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  7. Identification of Critical Design Points for the EAP of a Space-based Doppler Lidar Wind Sounder

    Science.gov (United States)

    Emmitt, G. D.; Wood, S. A.

    1992-01-01

    The feasibility of making tropospheric wind measurements with a space-based Doppler lidar was studied by a number of agencies over the past 10-15 years. Currently NASA has a plan to launch such an instrument, the Laser Atmospheric Wind Sounder (LAWS), within the next decade. The design of the LAWS continues to undergo a series of iterations common to most instruments targeted for a space platform. In general, the constraints of available platform power, weight allowance, and project funds continue to change. With these changes the performance and design specifications also must change.

  8. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    Science.gov (United States)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  9. NOAA JPSS Advanced Technology Microwave Sounder (ATMS)-based Tropical Cyclone (TC) Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The JPSS Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  10. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of...

  11. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of...

  12. Total column ozone retrieval using INSAT-3D sounder in the tropics ...

    Indian Academy of Sciences (India)

    important for ozone estimation and lower instrument noise results in better ozone ... the Indian Space Research Organisation (ISRO) ... tivity of the sounder ozone band corresponding to .... NOAA Climate Monitoring and Diagnostics Labo-.

  13. Space-time patterns of trends in stratospheric constituents derived from UARS measurements

    Science.gov (United States)

    Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe

    1999-02-01

    The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.

  14. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    Science.gov (United States)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  15. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    Science.gov (United States)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  16. MTG infrared sounder detection chain: first radiometric test results

    Science.gov (United States)

    Dumestier, D.; Pistone, F.; Dartois, T.; Blazquez, E.

    2017-11-01

    Europe's next fleet of geostationary meteorological satellites, MeteoSat Third Generation, will introduce new functions in addition to continuity of high-resolution meteorological data. The atmosphere Infrared Sounder (IRS), as high -end instrument, is part of this challenging program. IRS principle is a Fourier Transform Interferometer, which allows recomposing atmospheric spectrum after infrared photons detection. Transmission spectrums will be used to support numerical weather prediction. IRS instrument is able to offer full disk coverage in one hour, an on-ground resolution of 4 by 4 km, in two spectral bands (MWIR: 1600 to 2175cm-1 and LWIR: 700 to 1210cm-1) with a spectral resolution of 0.6cm-1. Among critical technologies and processes, IRS detection chain shall offer outstanding characteristics in terms of radiometric performance like Signal to Noise Ratio (SNR), dynamic range and linearity. Selected detectors are HgCdTe two-dimensions arrays, cooled at 55 Kelvins, hybridized on snapshot silicon read-out circuit at 160x160 format. Video electronics present 16 bits resolution, and the whole detection chain (Detectors and electronics) permits to reach SNR between 2 000 and 10 000 as requested by the application. Radiometric onground test results performed on design representative detection chains are presented and are confirming the challenging phase A design choices.

  17. Submillimeter-wave measurements of the pressure broadening of BrO

    International Nuclear Information System (INIS)

    Yamada, M.M.; Kobayashi, M.; Habara, H.; Amano, T.; Drouin, B.J.

    2003-01-01

    The N 2 and O 2 pressure broadening coefficients of the J=23.5 ↔ 22.5 and J=25.5 ↔ 24.5 rotational transitions in the ground vibronic state X 2 Π 3/2 of 81 BrO at 624.768 and 650.178 GHz have been independently measured at Ibaraki University and Jet Propulsion Laboratory. These lines are expected to be monitored by the superconducting submillimeter-wave limb emission sounder in the Japanese Experiment Module on the International Space Station (JEM/SMILES) as well as the earth observing system microwave limb sounder (EOS-MLS). This work provides temperature-dependent pressure broadening parameters of BrO needed by the space station and satellite based observations. The BrO pressure broadening coefficients and their 1σ uncertainties are: γ 0 (N 2 )=3.24±0.05 MHz/Torr and γ 0 (O 2 )=2.33±0.06 MHz/Torr for the 624.768 GHz transition at room temperature (296 K). For the 650.178 GHz line, the results are: γ 0 (N 2 )=3.20±0.07 MHz/Torr and γ 0 (O 2 )=2.41±0.06 MHz/Torr. The temperature dependence exponents and their 1σ error are determined to be: n(N 2 )=-0.76±0.05 and n(O 2 )=-0.93±0.07 for the 624.768 GHz transition, and n(N 2 )=-0.84±0.07 and n(O 2 )=-0.70±0.07 for the 650.178 GHz transition

  18. The Vertical Structure of Relative Humidity and Ozone in the Tropical Upper Troposphere: Intercomparisons Among In Situ Observations, A-Train Measurements and Large-Scale Models

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, Michael; Douglass, Anne R.; Oman, Luke; Pawson, Steven; Ott, Lesley; Benson, Craig; Stolarski, Richard

    2010-01-01

    In situ measurements in the tropics have shown that in regions of active convection, relative humidity with respect to ice in the upper troposphere is typically close to saturation on average, and supersaturations greater than 20% are not uncommon. Balloon soundings with the cryogenic frost point hygrometer (CFH) at Costa Rica during northern summer, for example, show this tendency to be strongest between 11 and 15.5 km (345-360 K potential temperature, or approximately 250-120 hPa). this is the altitude range of deep convective detrainment. Additionally, simultaneous ozonesonde measurements show that stratospheric air (O3 greater than 150 ppbv) can be found as low as approximately 14 km (350 K/150 hPa). In contrast, results from northern winter show a much drier upper troposphere and little penetration of stratospheric air below the tropopause at 17.5 km (approximately 383 K). We show that these results are consistent with in situ measurements from the Measurement of Ozone and water vapor by Airbus In-service airCraft (MOZAIC) program which samples a wider, though still limited, range of tropical locations. To generalize to the tropics as a whole, we compare our insitu results to data from two A-Train satellite instruments, the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS) on the Aqua and Aura satellites respectively. Finally, we examine the vertical structure of water vapor, relative humidity and ozone in the NASA Goddard MERRA analysis, an assimilation dataset, and a new version of the GEOS CCM, a free-running chemistry-climate model. We demonstrate that conditional probability distributions of relative humidity and ozone are a sensitive diagnostic for assessing the representation of deep convection and upper troposphere/lower stratosphere mixing processes in large-scale analyses and climate models.

  19. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  20. Soft-sensing Modeling Based on MLS-SVM Inversion for L-lysine Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-06-01

    Full Text Available A modeling approach 63 based on multiple output variables least squares support vector machine (MLS-SVM inversion is presented by a combination of inverse system and support vector machine theory. Firstly, a dynamic system model is developed based on material balance relation of a fed-batch fermentation process, with which it is analyzed whether an inverse system exists or not, and into which characteristic information of a fermentation process is introduced to set up an extended inversion model. Secondly, an initial extended inversion model is developed off-line by the use of the fitting capacity of MLS-SVM; on-line correction is made by the use of a differential evolution (DE algorithm on the basis of deviation information. Finally, a combined pseudo-linear system is formed by means of a serial connection of a corrected extended inversion model behind the L-lysine fermentation processes; thereby crucial biochemical parameters of a fermentation process could be predicted on-line. The simulation experiment shows that this soft-sensing modeling method features very high prediction precision and can predict crucial biochemical parameters of L-lysine fermentation process very well.

  1. 20 years of ClO measurements in the Antarctic lower stratosphere

    Science.gov (United States)

    Nedoluha, Gerald E.; Connor, Brian J.; Mooney, Thomas; Barrett, James W.; Parrish, Alan; Gomez, R. Michael; Boyd, Ian; Allen, Douglas R.; Kotkamp, Michael; Kremser, Stefanie; Deshler, Terry; Newman, Paul; Santee, Michelle L.

    2016-08-01

    We present 20 years (1996-2015) of austral springtime measurements of chlorine monoxide (ClO) over Antarctica from the Chlorine Oxide Experiment (ChlOE1) ground-based millimeter wave spectrometer at Scott Base, Antarctica, as well 12 years (2004-2015) of ClO measurements from the Aura Microwave Limb Sounder (MLS). From August onwards we observe a strong increase in lower stratospheric ClO, with a peak column amount usually occurring in early September. From mid-September onwards we observe a strong decrease in ClO. In order to study interannual differences, we focus on a 3-week period from 28 August to 17 September for each year and compare the average column ClO anomalies. These column ClO anomalies are shown to be highly correlated with the average ozone mass deficit for September and October of each year. We also show that anomalies in column ClO are strongly anti-correlated with 30 hPa temperature anomalies, both on a daily and an interannual timescale. Making use of this anti-correlation we calculate the linear dependence of the interannual variations in column ClO on interannual variations in temperature. By making use of this relationship, we can better estimate the underlying trend in the total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2 × Cl2O2 + ClO + Cl). The resultant trends in Cly, which determine the long-term trend in ClO, are estimated to be -0.5 ± 0.2, -1.4 ± 0.9, and -0.6 ± 0.4 % year-1, for zonal MLS, Scott Base MLS (both 2004-2015), and ChlOE (1996-2015) respectively. These trends are within 1σ of trends in stratospheric Cly previously found at other latitudes. The decrease in ClO is consistent with the trend expected from regulations enacted under the Montreal Protocol.

  2. 20 years of ClO measurements in the Antarctic lower stratosphere

    Directory of Open Access Journals (Sweden)

    G. E. Nedoluha

    2016-08-01

    Full Text Available We present 20 years (1996–2015 of austral springtime measurements of chlorine monoxide (ClO over Antarctica from the Chlorine Oxide Experiment (ChlOE1 ground-based millimeter wave spectrometer at Scott Base, Antarctica, as well 12 years (2004–2015 of ClO measurements from the Aura Microwave Limb Sounder (MLS. From August onwards we observe a strong increase in lower stratospheric ClO, with a peak column amount usually occurring in early September. From mid-September onwards we observe a strong decrease in ClO. In order to study interannual differences, we focus on a 3-week period from 28 August to 17 September for each year and compare the average column ClO anomalies. These column ClO anomalies are shown to be highly correlated with the average ozone mass deficit for September and October of each year. We also show that anomalies in column ClO are strongly anti-correlated with 30 hPa temperature anomalies, both on a daily and an interannual timescale. Making use of this anti-correlation we calculate the linear dependence of the interannual variations in column ClO on interannual variations in temperature. By making use of this relationship, we can better estimate the underlying trend in the total chlorine (Cly  =  HCl + ClONO2 + HOCl + 2  ×  Cl2 + 2  ×  Cl2O2 + ClO + Cl. The resultant trends in Cly, which determine the long-term trend in ClO, are estimated to be −0.5 ± 0.2, −1.4 ± 0.9, and −0.6 ± 0.4 % year−1, for zonal MLS, Scott Base MLS (both 2004–2015, and ChlOE (1996–2015 respectively. These trends are within 1σ of trends in stratospheric Cly previously found at other latitudes. The decrease in ClO is consistent with the trend expected from regulations enacted under the Montreal Protocol.

  3. 20 Years of ClO Measurements in the Antarctic Lower Stratosphere

    Science.gov (United States)

    Nedoluha, Gerald E.; Connor, Brian J.; Mooney, Thomas; Barrett, James W.; Parrish, Alan; Gomez, R. Michael; Boyd, Ian; Allen, Douglas R.; Kotkamp, Michael; Kremser, Stefanie; hide

    2016-01-01

    We present 20 years (1996-2015) of austral springtime measurements of chlorine monoxide (ClO) over Antarctica from the Chlorine Oxide Experiment (ChlOEl) ground-based millimeter wave spectrometer at Scott Base, Antarctica, as well 12 years (2004-2015) of ClO measurements from the Aura Microwave Limb Sounder (MLS). From August onwards we observe a strong increase in lower stratospheric ClO, with a peak column amount usually occurring in early September. From mid-September onwards we observe a strong decrease in ClO. In order to study interannual differences, we focus on a 3-week period from 28 August to 17 September for each year and compare the average column ClO anomalies. These column ClO anomalies are shown to be highly correlated with the average ozone mass deficit for September and October of each year. We also show that anomalies in column ClO are strongly anti-correlated with 30 hPa temperature anomalies, both on a daily and an interannual timescale. Making use of this anti-correlation we calculate the linear dependence of the interannual variations in column C1O on interannual variations in temperature. By making use of this relationship, we can better estimate the underlying trend in the total chlorine (Cl(sub y) = HCl + ClONO2 + HOCl + 2 x Cl2 + 2 x Cl2+ ClO + Cl). The resultant trends in Cl(sub y), which determine the long-term trend in ClO, are estimated to be -0.5 +/-0.2, -1.40.9, and -0.60.4% per year, for zonal MLS, Scott Base MLS (both 2004-2015), and ChlOE (1996-2015) respectively. These trends are within 1sigma of trends in stratospheric Cl(sub y) previously found at other latitudes. The decrease in ClO is consistent with the trend expected from regulations enacted under the Montreal Protocol.

  4. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    Science.gov (United States)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.

  5. Keeping Pace with Information Literacy Instruction for the Real World: When Will MLS Programs Wake Up and Smell the LILACs?

    Directory of Open Access Journals (Sweden)

    Kimberly Davies-Hoffman

    2013-08-01

    Full Text Available For over thirty years, numerous studies have discussed the contradiction between the growing importance of information literacy instruction to the Library’s core mission and lack of pedagogical training for new librarians. This article reviews the more recent contributions on the topic, presents a survey of New York State MLS curricula and describes initiatives of pedagogy training offered in that region outside of MLS programs. The authors focus on the Library Instruction Leadership Academy (LILAC, an innovative, semester-long training program created in Western New York State to offer instruction in the pedagogical foundation and practical experience essential for teaching information literacy skills effectively. They provide details of the program’s content, organization, funding, assessment methods, and learning outcomes. While regional initiatives like LILAC prove to be very valuable to their participants, the authors aim to apply pressure on MLS programs to establish curricular requirements better suited to the demands of today's librarianship.

  6. User expectations for multibeam echo sounders backscatter strength data-looking back into the future

    Science.gov (United States)

    Lucieer, Vanessa; Roche, Marc; Degrendele, Koen; Malik, Mashkoor; Dolan, Margaret; Lamarche, Geoffroy

    2018-06-01

    With the ability of multibeam echo sounders (MBES) to measure backscatter strength (BS) as a function of true angle of insonification across the seafloor, came a new recognition of the potential of backscatter measurements to remotely characterize the properties of the seafloor. Advances in transducer design, digital electronics, signal processing capabilities, navigation, and graphic display devices, have improved the resolution and particularly the dynamic range available to sonar and processing software manufacturers. Alongside these improvements the expectations of what the data can deliver has also grown. In this paper, we identify these user-expectations and explore how MBES backscatter is utilized by different communities involved in marine seabed research at present, and the aspirations that these communities have for the data in the future. The results presented here are based on a user survey conducted by the GeoHab (Marine Geological and Biological Habitat Mapping) association. This paper summarises the different processing procedures employed to extract useful information from MBES backscatter data and the various intentions for which the user community collect the data. We show how a range of backscatter output products are generated from the different processing procedures, and how these results are taken up by different scientific disciplines, and also identify common constraints in handling MBES BS data. Finally, we outline our expectations for the future of this unique and important data source for seafloor mapping and characterisation.

  7. Use of INSAT-3D sounder and imager radiances in the 4D-VAR data assimilation system and its implications in the analyses and forecasts

    Science.gov (United States)

    Indira Rani, S.; Taylor, Ruth; George, John P.; Rajagopal, E. N.

    2016-05-01

    INSAT-3D, the first Indian geostationary satellite with sounding capability, provides valuable information over India and the surrounding oceanic regions which are pivotal to Numerical Weather Prediction. In collaboration with UK Met Office, NCMRWF developed the assimilation capability of INSAT-3D Clear Sky Brightness Temperature (CSBT), both from the sounder and imager, in the 4D-Var assimilation system being used at NCMRWF. Out of the 18 sounder channels, radiances from 9 channels are selected for assimilation depending on relevance of the information in each channel. The first three high peaking channels, the CO2 absorption channels and the three water vapor channels (channel no. 10, 11, and 12) are assimilated both over land and Ocean, whereas the window channels (channel no. 6, 7, and 8) are assimilated only over the Ocean. Measured satellite radiances are compared with that from short range forecasts to monitor the data quality. This is based on the assumption that the observed satellite radiances are free from calibration errors and the short range forecast provided by NWP model is free from systematic errors. Innovations (Observation - Forecast) before and after the bias correction are indicative of how well the bias correction works. Since the biases vary with air-masses, time, scan angle and also due to instrument degradation, an accurate bias correction algorithm for the assimilation of INSAT-3D sounder radiance is important. This paper discusses the bias correction methods and other quality controls used for the selected INSAT-3D sounder channels and the impact of bias corrected radiance in the data assimilation system particularly over India and surrounding oceanic regions.

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    It is examined whether high resolution radiosonde measurements represent well the UTWV by comparing with different satellite based (Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit-B (AMSUB) and Microwave Limb Sounder (MLS)) water vapour measurements. Very good comparison in the ...

  9. AMOS Seeing Quality Measurements.

    Science.gov (United States)

    1976-01-01

    Measurement Atmosphere Turbulence Propagation Observatory Acoustic Sounder Maui Optical Station Astronomy Microthermal Probe TEAL BLUE Degradation...presence of the site structures. Instruments used were an acoustic sounder (to probe the altitudes of 100 to 1000 ft), fine- wire microthermal probes...responsibility during the experiment for the microthermal probes. The report itself, while compiled and edited at RADC, may be considered as coming from

  10. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  11. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  12. VoIP Quality Measurements in a Multilevel Secure (MLS) Environment

    National Research Council Canada - National Science Library

    Adams, Jr, Coy M

    2008-01-01

    Voice over Internet Protocol (VoIP) is growing in popularity in the civilian and military communities due to its low cost and the management advantages it offers over traditional Public Switched Telephone Networks (PSTN) phone systems...

  13. Acoustic-sounder investigation of the effects of boundary-layer decoupling on long-distance polutant transport

    International Nuclear Information System (INIS)

    Miller, E.L.

    1976-01-01

    The formation of the nocturnal surface temperature inversion results in a decrease in vertical momentum transfer which, in turn, is accompanied by an associated reduction in the transfer of pollutants from the atmosphere to surface sinks, thus decoupling the surface layer from the layer above the inversion. The diurnal oscillation in the surface temperature profiles may therefore have a significant effect upon the transport of atmospheric pollutants over long distances. Flights of a large manned balloon with a diverse array of chemical and meteorological instrumentation aboard, known as Project de Vinci, provided a unique opportunity to combine acoustic-sounder observations of qualitative temperature structure in the atmospheric boundary layer with the chemical measurements necessary to gain increased understanding of this decoupling process and its consequences for pollutant transport. The data collected on ozone on the balloon and the grounds are reported

  14. The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation

    Science.gov (United States)

    Jacquinet-Husson, N.; Lmd Team

    The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated

  15. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    Energy Technology Data Exchange (ETDEWEB)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed [SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV Groningen (Netherlands); Birk, Manfred [DLR German Aerospace Centre, Remote Sensing Technology Institute, D-82234 Wessling (Germany); Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu, E-mail: G.de.Lange@sron.n, E-mail: valery@hitech.cplire.r [Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 11/7 Mokhovaya Street, 125009, Moscow (Russian Federation)

    2010-04-15

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  16. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    International Nuclear Information System (INIS)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed; Birk, Manfred; Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu

    2010-01-01

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  17. P-sounder: an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2007-01-01

    is to test new ice sounding techniques, e.g. polarimetry, synthetic aperture processing, and coherent clutter suppression. A system analysis involving ice scattering models confirms that it is feasible to detect the bedrock through 4 km of ice and to detect deep ice layers. The ice sounder design features...

  18. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to

  19. Direction-of-Arrival Analysis of Airborne Ice Depth Sounder Data

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Yan, Jie-Bang; Gogineni, Sivaprasad

    2017-01-01

    In this paper, we analyze the direction-of arrival(DOA) of the ice-sheet data collected over Jakobshavn Glacier with the airborne Multichannel Radar Depth Sounder (MCRDS) during the 2006 field season. We extracted weak ice–bed echoes buried in signals scattered by the rough surface of the fast...

  20. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    Science.gov (United States)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  1. Measuring long impulse responses with pseudorandom sequences and sweep signals

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Jacobsen, Finn

    2010-01-01

    In architectural acoustics, background noise, loudspeaker nonlinearities, and time variances are the most common disturbances that can compromise a measurement. The effects of such disturbances on measurement of long impulse responses with pseudorandom sequences (maximum-length sequences (MLS) an...

  2. Preparation of hypoxic imaging agents 99Tcm-MNLS and 99Tcm-MLS and their biodistribution in mice

    International Nuclear Information System (INIS)

    Zha Zhihao; Wang Jianjun; Zhu Lin

    2009-01-01

    To develop 99 Tc m labeled hypoxic agents,two phosphate-based chelating agents were coupled to metronidazole, 2- (2-methyl-5-nitro-1H-imidazol-1-yl) ethyl dihydrogen phosphate (MNLS) and its analog 2- (2-methyl-1H-imidazol-1-yl) ethyl dihydrogen phosphate (MLS) were synthesized based on the mechanism of prodrug. Labeling yield of these 99 Tc m complexes were more than 90% as proved by TLC. Paper electrophoresis showed that these complexes were neutral. Biodistribution of these complexes in tumor-bearing mice showed that the uptake of 99 Tc m -MNLS (120 min, 2.99 ± 0.25 ID%/g) in tumor was higher than that of 99 Tc m -HL91 (120 min, 0.93 ± 0.13 ID%/g) and 99 Tc m -MLS (120 min, 1.61 ± 0.13 ID%/g), and the uptake ratio of tumor to muscle and tumor to liver of 99 Tc m -MNLS (120 min, 5.90, 1.03) were higher than that of 99 Tc m -HL91 (120 min, 3.59, 0.17) and 99 Tc m -MLS (120 min, 5.40, 0.13). The higher tumor uptake for 99 Tc m -MNLS than 99 Tc m -MLS suggested that nitroimidazole was a key group for tumor accumulation. 99 Tc m -MNLS had higher tumor uptake and lower liver uptake, which had the potential for tumor imaging and was worth of further vestigation. (authors)

  3. Impact of Time Lapse on ASCP Board of Certification Medical Laboratory Scientist (MLS) and Medical Laboratory Technician (MLT) Examination Scores.

    Science.gov (United States)

    Brown, Karen A; Fenn, JoAnn P; Freeman, Vicki S; Fisher, Patrick B; Genzen, Jonathan R; Goodyear, Nancy; Houston, Mary Lunz; O'Brien, Mary Elizabeth; Tanabe, Patricia A

    2015-01-01

    Research in several professional fields has demonstrated that delays (time lapse) in taking certification examinations may result in poorer performance by examinees. Thirteen states and/or territories require licensure for laboratory personnel. A core component of licensure is passing a certification exam. Also, many facilities in states that do not require licensure require certification for employment or preferentially hire certified individuals. To analyze examinee performance on the American Society for Clinical Pathology (ASCP) Board of Certification (BOC) Medical Laboratory Scientist (MLS) and Medical Laboratory Technician (MLT) certification examinations to determine whether delays in taking the examination from the time of program completion are associated with poorer performance. We obtained examination data from April 2013 through December 2014 to look for changes in mean (SD) exam scaled scores and overall pass/fail rates. First-time examinees (MLS: n = 6037; MLT, n = 3920) were divided into 3-month categories based on the interval of time between date of program completion and taking the certification exam. We observed significant decreases in mean (SD) scaled scores and pass rates after the first quarter in MLS and MLT examinations for applicants who delayed taking their examination until the second, third, and fourth quarter after completing their training programs. Those who take the ASCP BOC MLS and MLT examinations are encouraged to do so shortly after completion of their educational training programs. Delays in taking an exam are generally not beneficial to the examinee and result in poorer performance on the exam. Copyright© by the American Society for Clinical Pathology (ASCP).

  4. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  5. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL V010 (UARIS3AL) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of...

  6. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT V010 (UARIS3AT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of...

  7. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes.

    In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days.

    Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates

  8. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes. In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days. Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates that the temporal

  9. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  10. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    Science.gov (United States)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  11. Summer planetary-scale oscillations: aura MLS temperature compared with ground-based radar wind

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    2009-04-01

    Full Text Available The advent of satellite based sampling brings with it the opportunity to examine virtually any part of the globe. Aura MLS mesospheric temperature data are analysed in a wavelet format for easy identification of possible planetary waves (PW and aliases masquerading as PW. A calendar year, 2005, of eastward, stationary, and westward waves at a selected latitude is shown in separate panels for wave number range −3 to +3 for period range 8 h to 30 days (d. Such a wavelet analysis is made possible by Aura's continuous sampling at all latitudes 82° S–82° N. The data presentation is suitable for examination of years of data. However this paper focuses on the striking feature of a "dish-shaped" upper limit to periods near 2 d in mid-summer, with longer periods appearing towards spring and fall, a feature also commonly seen in radar winds. The most probable cause is suggested to be filtering by the summer jet at 70–80 km, the latter being available from ground based medium frequency radar (MFR. Classically, the phase velocity of a wave must be greater than that of the jet in order to propagate through it. As an attempt to directly relate satellite and ground based sampling, a PW event of period 8d and wave number 2, which appears to be the original rather than an alias, is compared with ground based radar wind data. An appendix discusses characteristics of satellite data aliases with regard to their periods and amplitudes.

  12. Combining Passive Microwave Sounders with CYGNSS information for improved retrievals: Observations during Hurricane Harvey

    Science.gov (United States)

    Schreier, M. M.

    2017-12-01

    The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.

  13. An Assessment of Data from the Advanced Technology Microwave Sounder at the Met Office

    Directory of Open Access Journals (Sweden)

    Amy Doherty

    2015-01-01

    Full Text Available An appraisal of the Advanced Technology Microwave Sounder (ATMS for use in numerical weather prediction (NWP is presented, including an assessment of the data quality, the impact on Met Office global forecasts in preoperational trials, and a summary of performance over a period of 17 months operational use. After remapping, the noise performance (NEΔT of the tropospheric temperature sounding channels is evaluated to be approximately 0.1 K, comparing favourably with AMSU-A. However, the noise is not random, differences between observations and simulations based on short-range forecast fields show a spurious striping effect, due to 1/f noise in the receiver. The amplitude of this signal is several tenths of a Kelvin, potentially a concern for NWP applications. In preoperational tests, adding ATMS data to a full Met Office system already exploiting data from four microwave sounders improves southern hemisphere mean sea level pressure forecasts in the 2- to 5-day range by 1-2%. In operational use, where data from five other microwave sounders is assimilated, forecast impact is typically between −0.05 and −0.1 J/kg (3.4% of total mean impact per day over the period 1 April to 31 July 2013. This suggests benefits beyond redundancy, associated with reducing already small analysis errors.

  14. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    Science.gov (United States)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For

  15. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    Science.gov (United States)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  16. Ticosonde CFH at Costa Rica: A Seasonal Climatology of Tropical UT-LS Water Vapor and Inter-Comparisons with MLS and CALIPSO

    Science.gov (United States)

    Selkirk, Henry B.; Voemel, Holger; Avery, Melody; Rosenlof, Karen; Davis, Sean; Hurst, Dale; Schoeberl, Mark; Diaz, Jorge Andres; Morris, Gary

    2014-01-01

    Balloon sonde measurements of tropical water vapor using the Cryogenic Frostpoint Hygrometer were initiated in Costa Rica in July 2005 and have continued to the present day. Over the nine years through July 2014, the Ticosonde program has launched 174 CFH payloads, representing the longest-running and most extensive single-site balloon dataset for tropical water vapor. In this presentation we present a seasonal climatology for water vapor and ozone at Costa Rica and examine the frequency of upper tropospheric supersaturation with comparisons to cloud fraction and cloud ice water content observations from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO mission. We then make a critical comparison of these data to water vapor measurements from the MLS instrument on board Aura in light of recently published work for other sites. Finally, we examine time series of 2-km altitude averages in the upper troposphere-lower stratosphere at Costa Rica in light of anomalies and trends seen in various large-scale indices of tropical water vapor.

  17. MLS-Net and SecureParser®: A New Method for Securing and Segregating Network Data

    Directory of Open Access Journals (Sweden)

    Robert A. Johnson

    2008-10-01

    Full Text Available A new method of network security and virtualization is presented which allows the consolidation of multiple network infrastructures dedicated to single security levels or communities of interest onto a single, virtualized network. An overview of the state of the art of network security protocols is presented, including the use of SSL, IPSec, and HAIPE IS, followed by a discussion of the SecureParser® technology and MLS-Net architecture, which in combination allow the virtualization of local network enclaves.

  18. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Science.gov (United States)

    Kramarova, Natalya A.; Bhartia, Pawan K.; Jaross, Glen; Moy, Leslie; Xu, Philippe; Chen, Zhong; DeLand, Matthew; Froidevaux, Lucien; Livesey, Nathaniel; Degenstein, Douglas; Bourassa, Adam; Walker, Kaley A.; Sheese, Patrick

    2018-05-01

    The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal

  19. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    Science.gov (United States)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  20. Investigating the Water Vapor Component of the Greenhouse Effect from the Atmospheric InfraRed Sounder (AIRS)

    Science.gov (United States)

    Gambacorta, A.; Barnet, C.; Sun, F.; Goldberg, M.

    2009-12-01

    We investigate the water vapor component of the greenhouse effect in the tropical region using data from the Atmospheric InfraRed Sounder (AIRS). Differently from previous studies who have relayed on the assumption of constant lapse rate and performed coarse layer or total column sensitivity analysis, we resort to AIRS high vertical resolution to measure the greenhouse effect sensitivity to water vapor along the vertical column. We employ a "partial radiative perturbation" methodology and discriminate between two different dynamic regimes, convective and non-convective. This analysis provides useful insights on the occurrence and strength of the water vapor greenhouse effect and its sensitivity to spatial variations of surface temperature. By comparison with the clear-sky computation conducted in previous works, we attempt to confine an estimate for the cloud contribution to the greenhouse effect. Our results compare well with the current literature, falling in the upper range of the existing global circulation model estimates. We value the results of this analysis as a useful reference to help discriminate among model simulations and improve our capability to make predictions about the future of our climate.

  1. Mechanical design and qualification of IR filter mounts and filter wheel of INSAT-3D sounder for low temperature

    Science.gov (United States)

    Vora, A. P.; Rami, J. B.; Hait, A. K.; Dewan, C. P.; Subrahmanyam, D.; Kirankumar, A. S.

    2017-11-01

    Next generation Indian Meteorological Satellite will carry Sounder instrument having subsystem of filter wheel measuring Ø260mm and carrying 18 filters arranged in three concentric rings. These filters made from Germanium, are used to separate spectral channels in IR band. Filter wheel is required to be cooled to 214K and rotated at 600 rpm. This Paper discusses the challenges faced in mechanical design of the filter wheel, mainly filter mount design to protect brittle germanium filters from failure under stresses due to very low temperature, compactness of the wheel and casings for improved thermal efficiency, survival under vibration loads and material selection to keep it lighter in weight. Properties of Titanium, Kovar, Invar and Aluminium materials are considered for design. The mount has been designed to accommodate both thermal and dynamic loadings without introducing significant aberrations into the optics or incurring permanent alignment shifts. Detailed finite element analysis of mounts was carried out for stress verification. Results of the qualification tests are discussed for given temperature range of 100K and vibration loads of 12g in Sine and 11.8grms in Random at mount level. Results of the filter wheel qualification as mounted in Electro Optics Module (EOM) are also presented.

  2. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  3. VESPA-22: a ground-based microwave spectrometer for long-term measurements of polar stratospheric water vapor

    Directory of Open Access Journals (Sweden)

    G. Mevi

    2018-02-01

    Full Text Available The new ground-based 22 GHz spectrometer, VESPA-22 (water Vapor Emission Spectrometer for Polar Atmosphere at 22 GHz measures the 22.23 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The integration time for a measurement ranges from 6 to 24 h, depending on season and weather conditions. Water vapor spectra are collected using the beam-switching technique. VESPA-22 is designed to operate automatically with little maintenance; it employs an uncooled front-end characterized by a receiver temperature of about 180 K and its quasi-optical system presents a full width at half maximum of 3.5°. Every 30 min VESPA-22 measures also the sky opacity using the tipping curve technique. The instrument calibration is performed automatically by a noise diode; the emission temperature of this element is estimated twice an hour by observing alternatively a black body at ambient temperature and the sky at an elevation of 60°. The retrieved profiles obtained inverting 24 h integration spectra present a sensitivity larger than 0.8 from about 25 to 75 km of altitude during winter and from about 30 to 65 km during summer, a vertical resolution from about 12 to 23 km (depending on altitude, and an overall 1σ uncertainty lower than 7 % up to 60 km altitude and rapidly increasing to 20 % at 75 km. In July 2016, VESPA-22 was installed at the Thule High Arctic Atmospheric Observatory located at Thule Air Base (76.5° N, 68.8° W, Greenland, and it has been operating almost continuously since then. The VESPA-22 water vapor mixing ratio vertical profiles discussed in this work are obtained from 24 h averaged spectra and are compared with version 4.2 of concurrent Aura/Microwave Limb Sounder (MLS water vapor vertical profiles. In the sensitivity range of VESPA-22 retrievals, the intercomparison from July 2016 to July 2017 between VESPA-22 dataset and Aura/MLS dataset

  4. VESPA-22: a ground-based microwave spectrometer for long-term measurements of polar stratospheric water vapor

    Science.gov (United States)

    Mevi, Gabriele; Muscari, Giovanni; Bertagnolio, Pietro Paolo; Fiorucci, Irene; Pace, Giandomenico

    2018-02-01

    The new ground-based 22 GHz spectrometer, VESPA-22 (water Vapor Emission Spectrometer for Polar Atmosphere at 22 GHz) measures the 22.23 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The integration time for a measurement ranges from 6 to 24 h, depending on season and weather conditions. Water vapor spectra are collected using the beam-switching technique. VESPA-22 is designed to operate automatically with little maintenance; it employs an uncooled front-end characterized by a receiver temperature of about 180 K and its quasi-optical system presents a full width at half maximum of 3.5°. Every 30 min VESPA-22 measures also the sky opacity using the tipping curve technique. The instrument calibration is performed automatically by a noise diode; the emission temperature of this element is estimated twice an hour by observing alternatively a black body at ambient temperature and the sky at an elevation of 60°. The retrieved profiles obtained inverting 24 h integration spectra present a sensitivity larger than 0.8 from about 25 to 75 km of altitude during winter and from about 30 to 65 km during summer, a vertical resolution from about 12 to 23 km (depending on altitude), and an overall 1σ uncertainty lower than 7 % up to 60 km altitude and rapidly increasing to 20 % at 75 km. In July 2016, VESPA-22 was installed at the Thule High Arctic Atmospheric Observatory located at Thule Air Base (76.5° N, 68.8° W), Greenland, and it has been operating almost continuously since then. The VESPA-22 water vapor mixing ratio vertical profiles discussed in this work are obtained from 24 h averaged spectra and are compared with version 4.2 of concurrent Aura/Microwave Limb Sounder (MLS) water vapor vertical profiles. In the sensitivity range of VESPA-22 retrievals, the intercomparison from July 2016 to July 2017 between VESPA-22 dataset and Aura/MLS dataset convolved with VESPA-22 averaging kernels shows an average difference

  5. Troc: a proposed tropospheric sounder for chemistry and climate

    Science.gov (United States)

    Camy-Peyret, C.

    TROC has been submitted to ESA in the last call for proposals of the Earth Explorer Opportunity Missions and its focus is on tropospheric composition and chemistry-climate interactions. The mission objectives of TROC cover four research subjects. Global tropospheric chemistry: perform global measurements from space of tropospheric composition in order to improve our understanding and to constrain models of tropospheric chemistry with emphasis on tropospheric ozone. Pollution: establish the impact of mega cities of industrialised or developing countries by monitoring their pollution plumes. Biomass burning: monitor the chemical species and aerosols injected in the free troposphere during major burning episodes in the intertropical region as well as by major forest fires at other latitudes. Chemistry-climate interactions: quantify on a global scale the distributions and the sources of greenhouse gases like CO2, CH4, O3, N2O and the CFCs. Contribute to demonstration studies for monitoring from space how Montreal and Kyoto protocols are enforced as far as human impacts on atmospheric chemistry and climate are concerned. To fulfil these objectives, passive remote sensing of the troposphere has been selected as the best compromise between technical maturity and multi-species coverage. The main elements of TROC are a Fourier transform infrared (FTIR) instrument and an ultraviolet-visible (UV-vis) spectrometer, both operating in the downward-looking geometry with a 10 km diameter footprint at nadir. An ``intelligent'' pointing mirror coupled to an infrared imager is used to optimise day/night sounding down to the surface. The FTIR instrument covers at 0.1 cm-1 apodised spectral resolution 3 bands from 14 to 3.3 μ m in thermal emission and one band in solar reflected light around 2.3 μ m. The UV-vis instrument covers the regions 290-490 nm (1 nm resolution) and 520-1030 nm (2.5 nm resolution) with 43 array detectors (2 bands × 2 polarizations) in reflected

  6. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Directory of Open Access Journals (Sweden)

    N. A. Kramarova

    2018-05-01

    Full Text Available The Limb Profiler (LP is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS. We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing

  7. The Whisper Relaxation Sounder onboard Cluster: A Powerful Tool for Space Plasma Diagnosis around the Earth

    International Nuclear Information System (INIS)

    Trotignon, J.G.; Decreau, P.M.E.; Rauch, J.L.; LeGuirriec, E.; Canu, P.; Darrouzet, F.

    2001-01-01

    The WHISPER relaxation sounder that is onboard the four CLUSTER spacecraft has for main scientific objectives to monitor the natural waves in the 2 kHz - 80 kHz frequency range and, mostly, to determine the total plasma density from the solar wind down to the Earth's plasmasphere. To fulfil these objectives, the WHISPER uses the two long double sphere antennae of the Electric Field and Wave experiment as transmitting and receiving sensors. In its active working mode, the WHISPER works according to principles that have been worked out for topside sounding. A radio wave transmitter sends an almost monochromatic and short wave train. A few milliseconds after, a receiver listens to the surrounding plasma response. Strong and long lasting echoes are actually received whenever the transmitting frequencies coincide with characteristic plasma frequencies. Provided that these echoes, also called resonances, may be identified, the WHISPER relaxation sounder becomes a reliable and powerful tool for plasma diagnosis. When the transmitter is off, the WHISPER behaves like a passive receiver, allowing natural waves to be monitored. The paper aims mainly at the resonance identification process description and the WHISPER capabilities and performance highlighting. (author)

  8. Counter electrojet features in the Brazilian sector: simultaneous observation by radar, digital sounder and magnetometers

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2009-04-01

    Full Text Available In the present work we show new results regarding equatorial counter electrojet (CEJ events in the Brazilian sector, based on the RESCO radar, two set of fluxgate magnetometer systems and a digital sounder. RESCO radar is a 50 MHz backscatter coherent radar installed in 1998 at São Luís (SLZ, 2.33° S, 44.60° W, an equatorial site. The Digital sounder routinely monitors the electron density profile at the radar site. The magnetometer systems are fluxgate-type installed at SLZ and Eusébio (EUS, 03.89° S, 38.44° W. From the difference between the horizontal component of magnetic field at SLZ station and the same component at EUS (EEJ ground strength several cases of westward morning electrojet and its normal inversion to the eastward equatorial electrojet (EEJ have been observed. Also, the EEJ ground strength has shown some cases of CEJ events, which been detected with the RESCO radar too. Detection of these events were investigated with respect to their time and height of occurrence, correlation with sporadic E (Es layers at the same time, and their spectral characteristics as well as the radar echo power intensity.

  9. Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land

    Science.gov (United States)

    Chen, Keyi; Bormann, Niels; English, Stephen; Zhu, Jiang

    2018-03-01

    The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.

  10. Applications and Lessons Learned using Data from the Atmospheric Infrared Sounder

    Science.gov (United States)

    Ray, S. E.; Fetzer, E. J.; Olsen, E. T.; Lambrigtsen, B.; Pagano, T. S.; Teixeira, J.; Licata, S. J.; Hall, J. R.

    2016-12-01

    Applications and Lessons Learned using Data from the Atmospheric Infrared SounderSharon Ray, Jet Propulsion Laboratory, California Institute of Technology The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS can play a role in applications that fall under many of the NASA Applied Sciences focus areas. AIRS' involvement in applications is two years in, so what have we learned and what are the pitfalls? AIRS has made gains in drought applications with products under consideration for inclusion in the U.S. Drought Monitor national map, as also with volcano rapid response with an internal alert system and automated products to help characterize plume extent. Efforts are underway with cold air aloft for aviation, influenza outbreak prediction, and vector borne disease. But challenges have occurred both in validation and in crossing the "valley of death" between products and decision makers. AIRS now has improved maps of standard products to be distributed in near real-time via NASA LANCE and by the Goddard DAAC as part of the Obama's administration Big Earth Data Initiative. In addition internal tools have been developed to support development and distribution of our application products. This talk will communicate the status of the AIRS applications effort along with lessons learned, and provide examples of new product imagery designed to best communicate AIRS data.

  11. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region

    Science.gov (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.

    2017-12-01

    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  12. Terminal area automatic navigation, guidance, and control research using the Microwave Landing System (MLS). Part 2: RNAV/MLS transition problems for aircraft

    Science.gov (United States)

    Pines, S.

    1982-01-01

    The problems in navigation and guidance encountered by aircraft in the initial transition period in changing from distance measuring equipment, VORTAC, and barometric instruments to the more precise microwave landing system data type navaids in the terminal area are investigated. The effects of the resulting discontinuities on the estimates of position and velocity for both optimal (Kalman type navigation schemes) and fixed gain (complementary type) navigation filters, and the effects of the errors in cross track, track angle, and altitude on the guidance equation and control commands during the critical landing phase are discussed. A method is presented to remove the discontinuities from the navigation loop and to reconstruct an RNAV path designed to land the aircraft with minimal turns and altitude changes.

  13. Verification of small-scale water vapor features in VAS imagery using high resolution MAMS imagery. [VISSR Atmospheric Sounder - Multispectral Atmospheric Mapping Sensor

    Science.gov (United States)

    Menzel, Paul W.; Jedlovec, Gary; Wilson, Gregory

    1986-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS), a modification of NASA's Airborne Thematic Mapper, is described, and radiances from the MAMS and the VISSR Atmospheric Sounder (VAS) are compared which were collected simultaneously on May 18, 1985. Thermal emission from the earth atmosphere system in eight visible and three infrared spectral bands (12.3, 11.2 and 6.5 microns) are measured by the MAMS at up to 50 m horizontal resolution, and the infrared bands are similar to three of the VAS infrared bands. Similar radiometric performance was found for the two systems, though the MAMS showed somewhat less attenuation from water vapor than VAS because its spectral bands are shifted to shorter wavelengths away from the absorption band center.

  14. Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome

    NARCIS (Netherlands)

    van Rahden, V.A.; Rau, I.; Fuchs, S.; Kosyna, F.K.; de Almeida, H.L.; Fryssira, H.; Isidor, B.; Jauch, A.; Joubert, M.; Lachmeijer, A.M.A.; Zweier, C.; Moog, U.; Kutsche, K.

    2014-01-01

    Background: Segmental Xp22.2 monosomy or a heterozygous HCCS mutation is associated with the microphthalmia with linear skin defects (MLS) or MIDAS (microphthalmia, dermal aplasia, and sclerocornea) syndrome, an X-linked disorder with male lethality. HCCS encodes the holocytochrome c-type synthase

  15. Neutral wind and density perturbations in the thermosphere created by gravity waves observed by the TIDDBIT sounder

    Science.gov (United States)

    Vadas, Sharon L.; Crowley, Geoff

    2017-06-01

    In this paper, we study the 10 traveling ionospheric disturbances (TIDs) observed at zobs˜283 km by the TIDDBIT ionospheric sounder on 30 October 2007 at 0400-0700 UT near Wallops Island, USA. These TIDs propagated northwest/northward and were previously found to be secondary gravity waves (GWs) from tropical storm Noel. An instrumented sounding rocket simultaneously measured a large neutral wind peak uH' with a similar azimuth at z ˜ 325 km. Using the measured TID amplitudes and wave vectors from the TIDDBIT system, together with ion-neutral theory, GW dissipative polarization relations and ray tracing, we determine the GW neutral horizontal wind and density perturbations as a function of altitude from 220 to 380 km. We find that there is a serious discrepancy between the GW dissipative theory and the observations unless the molecular viscosity, μ, decreases with altitude in the middle to upper thermosphere. Assuming that μ∝ρ¯q, where ρ¯ is the density, we find using GW dissipative theory that the GWs could have been observed at zobs and that one or more of the GWs could have caused the uH' wind peak at z≃325 km if q ˜ 0.67 for z≥220 km. This implies that the kinematic viscosity, ν=μ/ρ¯, increases less rapidly with altitude for z≥220 km: ν∝1/ρ¯0.33. This dependence makes sense because as ρ¯→0, the distance between molecules goes to infinity, which implies no molecular collisions and therefore no molecular viscosity μ.

  16. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    Science.gov (United States)

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  17. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  18. Nonlinear bias analysis and correction of microwave temperature sounder observations for FY-3C meteorological satellite

    Science.gov (United States)

    Hu, Taiyang; Lv, Rongchuan; Jin, Xu; Li, Hao; Chen, Wenxin

    2018-01-01

    The nonlinear bias analysis and correction of receiving channels in Chinese FY-3C meteorological satellite Microwave Temperature Sounder (MWTS) is a key technology of data assimilation for satellite radiance data. The thermal-vacuum chamber calibration data acquired from the MWTS can be analyzed to evaluate the instrument performance, including radiometric temperature sensitivity, channel nonlinearity and calibration accuracy. Especially, the nonlinearity parameters due to imperfect square-law detectors will be calculated from calibration data and further used to correct the nonlinear bias contributions of microwave receiving channels. Based upon the operational principles and thermalvacuum chamber calibration procedures of MWTS, this paper mainly focuses on the nonlinear bias analysis and correction methods for improving the calibration accuracy of the important instrument onboard FY-3C meteorological satellite, from the perspective of theoretical and experimental studies. Furthermore, a series of original results are presented to demonstrate the feasibility and significance of the methods.

  19. Preliminary Regional Analysis of the Kaguya Lunar Radar Sounder (LRS) Data through Eastern Mare Imbrium

    Science.gov (United States)

    Cooper, B.L.; Antonenko, I.; Yamaguchi, Y.; Osinski, G.; Ono, T.; Ku-mamoto, A.

    2009-01-01

    The Lunar Radar Sounder (LRS) experiment on board the Kaguya spacecraft is observing the subsurface structure of the Moon, using ground-penetrating radar operating in the frequency range of 5 MHz [1]. Because LRS data provides in-formation about lunar features below the surface, it allows us to improve our understanding of the processes that formed the Moon, and the post-formation changes that have occurred (such as basin formation and volcanism). We look at a swath of preliminary LRS data, that spans from 7 to 72 N, and from 2 to 10 W, passing through the eastern portion of Mare Imbrium (Figure 1). Using software, designed for the mineral exploration industry, we produce a preliminary, coarse 3D model, showing the regional structure beneath the study area. Future research will involve smaller subsets of the data in regions of interest, where finer structures, such as those identified in [2], can be studied.

  20. Toward a standard line for use in multibeam echo sounder calibration

    Science.gov (United States)

    Weber, Thomas C.; Rice, Glen; Smith, Michael

    2018-06-01

    A procedure is suggested in which a relative calibration for the intensity output of a multibeam echo sounder (MBES) can be performed. This procedure identifies a common survey line (i.e., a standard line), over which acoustic backscatter from the seafloor is collected with multiple MBES systems or by the same system multiple times. A location on the standard line which exhibits temporal stability in its seafloor backscatter response is used to bring the intensity output of the multiple MBES systems to a common reference. This relative calibration procedure has utility for MBES users wishing to generate an aggregate seafloor backscatter mosaic using multiple systems, revisiting an area to detect changes in substrate type, and comparing substrate types in the same general area but with different systems or different system settings. The calibration procedure is demonstrated using three different MBES systems over 3 different years in New Castle, NH, USA.

  1. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    Science.gov (United States)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  2. Automatic detection of subglacial lakes in radar sounder data acquired in Antarctica

    Science.gov (United States)

    Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Dalsasso, Emanuele; Bruzzone, Lorenzo

    2017-10-01

    Subglacial lakes decouple the ice sheet from the underlying bedrock, thus facilitating the sliding of the ice masses towards the borders of the continents, consequently raising the sea level. This motivated increasing attention in the detection of subglacial lakes. So far, about 70% of the total number of subglacial lakes in Antarctica have been detected by analysing radargrams acquired by radar sounder (RS) instruments. Although the amount of radargrams is expected to drastically increase, from both airborne and possible future Earth observation RS missions, currently the main approach to the detection of subglacial lakes in radargrams is by visual interpretation. This approach is subjective and extremely time consuming, thus difficult to apply to a large amount of radargrams. In order to address the limitations of the visual interpretation and to assist glaciologists in better understanding the relationship between the subglacial environment and the climate system, in this paper, we propose a technique for the automatic detection of subglacial lakes. The main contribution of the proposed technique is the extraction of features for discriminating between lake and non-lake basal interfaces. In particular, we propose the extraction of features that locally capture the topography of the basal interface, the shape and the correlation of the basal waveforms. Then, the extracted features are given as input to a supervised binary classifier based on Support Vector Machine to perform the automatic subglacial lake detection. The effectiveness of the proposed method is proven both quantitatively and qualitatively by applying it to a large dataset acquired in East Antarctica by the MultiChannel Coherent Radar Depth Sounder.

  3. Distinct fates of self-specific T cells developing in irradiation bone marrow chimeras: Clonal deletion, clonal anergy, or in vitro responsiveness to self-Mls-1a controlled by hemopoietic cells in the thymus

    International Nuclear Information System (INIS)

    Speiser, D.E.; Chvatchko, Y.; Zinkernagel, R.M.; MacDonald, H.R.

    1990-01-01

    Elimination of potentially self-reactive T lymphocytes during their maturation in the thymus has been shown to be a major mechanism in accomplishing self-tolerance. Previous reports demonstrated that clonal deletion of self-Mls-1a-specific V beta 6+ T lymphocyte is controlled by a radiosensitive I-E+ thymic component. Irradiation chimeras reconstituted with I-E- bone marrow showed substantial numbers of mature V beta 6+ T cells despite host Mls-1a expression. Analysis of the functional properties of such chimeric T cells revealed a surprising variability in their in vitro reactivity to host Mls-1a, depending on the H-2 haplotype of stem cells used for reconstitution. In chimeras reconstituted with B10.S (H-2s) stem cells, mature V beta 6+ lymphocytes were present but functionally anergic to host-type Mls-1a in vitro. In contrast, in chimeras reconstituted with B10.G (H-2q) bone marrow, nondeleted V beta 6+ cells were highly responsive to Mls-1a in vitro. These findings suggest that clonal anergy of V beta 6+ cells to self-Mls-1a may be controlled by the affinity/avidity of T cell receptor interactions with bone marrow-derived cells in the thymus depending on the major histocompatibility complex class II molecules involved. Furthermore, chimeras bearing host (Mls-1a)-reactive V beta 6+ cells did not differ clinically from those with anergic or deleted V beta 6+ cells and survived more than one year without signs of autoimmune disease. Interestingly, their spleen cells had no Mls-1a stimulatory capacity in vitro. Therefore, regulation at the level of antigen presentation may be an alternative mechanism for maintenance of tolerance to certain self-antigens such as Mls-1a

  4. NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky High Resolution Infrared Radiation Sounder (HIRS) Channel 12 Brightness Temperature Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The High-Resolution Infrared Radiation Sounder (HIRS) of intersatellite calibrated channel 12 brightness temperature (TB) product is a gridded global monthly time...

  5. Sound velocity from inverted echo sounders (IES) in the western Pacific Ocean from 1992-08-26 to 1993-03-22 (NODC Accession 9300159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains inverted echo sounder data collected from two stations in the western Pacific, TPW nominally @ 2S and 154E and TPE nominally @ 2S and 164E....

  6. Classification of Mls Point Clouds in Urban Scenes Using Detrended Geometric Features from Supervoxel-Based Local Contexts

    Science.gov (United States)

    Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U.

    2018-05-01

    In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3) Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for assigning eight semantic classes.

  7. Characteristics of Water Vapor in the UTLS over the Tibetan Plateau Based on AURA/MLS Observations

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2017-01-01

    Full Text Available Water vapor (WV has a vital effect on global climate change. Using satellite data observed by AURA/MLS and ERA-Interim reanalysis datasets, the spatial distributions and temporal variations of WV were analyzed. It was found that high WV content in the UTLS over the southern Tibetan Plateau is more apparent in summer, due to monsoon-induced strong upward motions. The WV content showed the opposite distribution at 100 hPa, though, during spring and winter. And a different distribution at 121 hPa indicated that the difference in WV content between the northern and southern plateau occurs between 121 and 100 hPa in spring and between 147 and 121 hPa in winter. In the UTLS, it diminishes rapidly with increase in altitude in these two seasons, and it shows a “V” structure in winter. There has been a weak increasing trend in WV at 100 hPa, but a downtrend at 147 and 215 hPa, during the past 12 years. At the latter two heights, the WV content in summer has been much higher than in other seasons. Furthermore, WV variation showed a rough wave structure in spring and autumn at 215 hPa. The variation of WV over the Tibetan Plateau is helpful in understanding the stratosphere-troposphere exchange (STE and climate change.

  8. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  9. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a

  10. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  11. Dedicated Low Latitude Diurnal CO2 Frost Observation Campaigns by the Mars Climate Sounder

    Science.gov (United States)

    Piqueux, S.; Kass, D. M.; Kleinboehl, A.; Hayne, P. O.; Heavens, N. G.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.

    2017-12-01

    In December 2016 (Ls≈280, MY33) and July 2017 (Ls≈30, MY34), the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) conducted two distinct observation campaigns. The first one aimed at 1) confirming the presence of low latitude diurnal CO2 frost on Mars, and 2) refining the estimated mass of carbon dioxide condensed at the surface, whereas the second campaign was designed to 3) search for temporally and spatially varying spectral characteristics indicative of frost properties (i.e., crystal size, contamination, etc.) and relationship to the regolith. To meet these goals, MCS acquired thermal infrared observations of the surface and atmosphere at variable local times (≈1.70-3.80 h Local True Solar Time) and in the 10°-50°N latitude band where very low thermal inertia material (frost distribution and spectral properties. In addition, pre-frost deposition surface cooling rates are found to be consistent with those predicted by numerical models (i.e., 1-2K per hour). Finally, we observe buffered surface temperatures near the local frost point, indicating a surface emissivity ≈1. (i.e., optically thin frost layers, or dust contaminated frost, or slab-like ice) and no discernable frost metamorphism. We will present a detailed analysis of these new and unique observations, and elaborate on the potential relationship between the regolith and this recurring frost cycle.

  12. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    Science.gov (United States)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  13. Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder

    Science.gov (United States)

    Bowden, William

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.

  14. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    Science.gov (United States)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  15. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  16. Space weather and HF propagation along different paths of the Russian chirp sounders network

    Science.gov (United States)

    Kurkin, V. I.; Litovkin, G. I.; Matyushonok, S. M.; Vertogradov, G. G.; Ivanov, V. A.; Poddelsky, I. N.; Rozanov, S. V.; Uryadov, V. P.

    This paper presents experimental data obtained on long paths (from 2200 km to 5700 km range) of Russian frequency modulated continues wave (chirp) sounders network for the period from 1998 to 2003. Four transmitters (near Magadan, Khabarovsk, Irkutsk, Norilsk) and four receivers (near Irkutsk, Yoshkar-Ola, Nizhny Novgorod, Rostov-on-Don) were combined into single network to investigate a influence of geomagnetic storms and substorms on HF propagation in Asian region of Russia. In this region the geographic latitudes are in greatest excess of magnetic latitudes. As a consequence, elements of the large-scale structure, such as the main ionospheric trough, and the zone of auroral ionization, are produced in the ionosphere at the background of a low electron ionization. Coordinated experiments were carried out using 3-day Solar-Geophysical activity forecast presented by NOAA Space Environment Center in Internet. Sounding operations were conducted in the frequency band 4 -- 30 MHz on a round-the-clock basis at 15-min intervals. Oblique-incidence sounding (OIS) ionograms were recorded during 5-7 days every season for some years. The comparison between experimental data and simulation of OIS ionograms using International Reference Ionospheric model (IRI-2001) allowed to estimate the forecast of HF propagation errors both under quiet condition and during geomagnetic disturbances. Strong deviations from median values of maximum observed frequencies on mid-latitude paths in daytime present a real challenge to ionospheric forecast. Subauroral and mid-latitude chirp-sounding paths run, respectively, near the northward and southward walls of the main ionospheric trough. This make sit possible to study the dynamics of the trough's boundaries under different geophysical conditions and assess the influence of ionization gradients and small-scale turbulence on HF signal characteristics. The signals off-great circle propagation were registered over a wide frequency range and for

  17. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    Science.gov (United States)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  18. Feasibility of megavoltage portal CT using an electronic portal imaging device (EPID) and a multi-level scheme algebraic reconstruction technique (MLS-ART)

    International Nuclear Information System (INIS)

    Guan, Huaiqun; Zhu, Yunping

    1998-01-01

    Although electronic portal imaging devices (EPIDs) are efficient tools for radiation therapy verification, they only provide images of overlapped anatomic structures. We investigated using a fluorescent screen/CCD-based EPID, coupled with a novel multi-level scheme algebraic reconstruction technique (MLS-ART), for a feasibility study of portal computed tomography (CT) reconstructions. The CT images might be useful for radiation treatment planning and verification. We used an EPID, set it to work at the linear dynamic range and collimated 6 MV photons from a linear accelerator to a slit beam of 1 cm wide and 25 cm long. We performed scans under a total of ∼200 monitor units (MUs) for several phantoms in which we varied the number of projections and MUs per projection. The reconstructed images demonstrated that using the new MLS-ART technique megavoltage portal CT with a total of 200 MUs can achieve a contrast detectibility of ∼2.5% (object size 5mmx5mm) and a spatial resolution of 2.5 mm. (author)

  19. SYNERGISTIC EFFECTS OF ETHANOL MEDICINAL PLANT EXTRACTS WITH ERYTHROMYCIN AGAINST SKIN STRAINS OF STAPHYLOCOCCI WITH INDUCIBLE PHENOTYPE OF MLS-RESISTANCE

    Directory of Open Access Journals (Sweden)

    Yurchyshyn O.I.

    2017-10-01

    Full Text Available Introduction. One of the main ways to control microorganisms’ resistance to antibiotics is to find substances that are able to overcome it and potentiate antibiotics action, in particular to neutralize the antibiotic-inactivating enzymes or block the active efflux of antibiotic from microbial cells. Every year there is a growing interest in the therapeutic potential of herbal active compounds as modifiers of antibiotic resistance including MLS-resistance (macrolide-lincosamide-streptoramin B. It should be emphasized that a number of biologically active substances of plant origin can potentiate antimicrobial activity of erythromycin (ERY against MLS-resistant staphylococci. The present study was designed to investigate the antibacterial and synergistic effects of eight Ukrainian ethanol medicinal plant extracts with erythromycin against skin strains of staphylococci with inducible phenotype of MLS-resistance. Material & methods. S. aureus and S. epidermidis strains were tested for susceptibility to antibiotics of MLS-group by disk diffusion test. Effective antimicrobial concentrations of plant extracts and erythromycin were determined by two-fold serial dilution in nutrient agar and broth. Combinatory effects between organic extracts and ERY were assessed using the checkerboard assay against tested strains to evaluate culture growth in the presence of two antimicrobials with different concentrations. Results & discussion. The Alnus incana L. fruits extract was the most potent inhibitor against tested strains (MIC 40.625-162.5 µg/mL; while Geranium pratense L. rhizomes extract exhibited the least antimicrobial activity (MIC 650-2,600 µg/mL. The Alnus incana L. fruits extract and the Geranium pratense L. rhizomes extract showed synergistic effect with erythromycin against 100% strains of staphylococci (average FICI 0.028 – 0.057; p<0.001. In the presence of 1/4 MIC of ERY Alnus incana L. fruits extract antimicrobial concentration was

  20. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    Science.gov (United States)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  1. Bathymetric surveys at highway bridges crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010

    Science.gov (United States)

    Huizinga, Richard J.

    2010-01-01

    Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches that ranged from 1,640 to 1,800 feet long and extending from bank to bank in the main channel of the Missouri River. These bathymetric scans will be used by the Missouri Department of Transportation to assess the condition of the bridges for stability and integrity with respect to bridge scour. Bathymetric data were collected around every pier that was in water, except those at the edge of the water or in extremely shallow water, and one pier that was surrounded by a large debris raft. A scour hole was present at every pier for which bathymetric data could be obtained. The scour hole at a given pier varied in depth relative to the upstream channel bed, depending on the presence and proximity of other piers or structures upstream from the pier in question. The surveyed channel bed at the bottom of the scour hole was between 5 and 50 feet above bedrock. At bridges with drilled shaft foundations, generally there was exposure of the upstream end of the seal course and the seal course often was undermined to some extent. At one site, the minimum elevation of the scour hole at the main channel pier was about 10 feet below the bottom of the seal course, and the sides of the drilled shafts were evident in a point cloud visualization of the data at that pier. However, drilled shafts generally penetrated 20 feet into bedrock. Undermining of the seal course was evident as a sonic 'shadow' in the point cloud visualization of several of the piers. Large dune features were present in the channel at nearly all of the surveyed sites, as were numerous smaller dunes and many ripples. Several of the sites are on or near bends in the river

  2. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  3. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  4. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    clouds. Stratospheric column ozone derived in this manner agrees well with that retrieved independently with the Aura Microwave Limb Sounder (MLS instrument and thus provides a consistency check of our method.

  5. Discrimination of fish layers using the three-dimensional information obtained by a split-beam echo-sounder

    DEFF Research Database (Denmark)

    Pedersen, Jens

    1996-01-01

    separation angle between neighbours around a reference fish was 68 degrees and 74 degrees, respectively. The estimated mean target strength (TS) was found to be significantly different for the two layers and conforms to the theoretical TS calculated from the diurnal species and size composition of the layers......This study attempts to illustrate the three-dimensional pattern of a ''pelagic'' and a ''benthic'' layer of fish using single- target information obtained using a split-beam echo-sounder. Parameters such as the nearest-neighbour distance and separation angle between the two nearest neighbours...... around a reference fish were used to discriminate between the two layers. The parameters estimated were found to be significantly different between the two layers. The mean nearest-neighbour distance estimated was 6.3 m and 5.8 m for the ''benthic'' and the ''pelagic'' layers, respectively, and the mean...

  6. Stratigraphy and structural evolution of southern Mare Serenitatis - A reinterpretation based on Apollo Lunar Sounder Experiment data

    Science.gov (United States)

    Sharpton, V. L.; Head, J. W., III

    1983-01-01

    Two subsurface reflecting horizons have been detected by the Apollo Lunar Sounder Experiment (ALSE) in the southern Mare Serenitatis which appear to be regolith layers more than 2 m thick, and are correlated with major stratigraphic boundaries in the southeastern Mare Serenitatis. The present stratigraphic boundaries in the southeastern Mare Serenitatis. The present analysis implies that the lower horizon represents the interface between the earliest mare unit and the modified Serenitatis basin material below. The depth of volcanic fill within Serenitatis is highly variable, with an average thickness of mare basalts under the ALSE ground track of 1.6 km. Comparisons with the Orientale basin topography suggests that a major increaae in load thickness could occur a few km basinward of the innermost extent of the traverse. The history of volcanic infilling of Mare Serenitatis was characterized by three major episodes of volcanism.

  7. Recreational Fish-Finders--An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey.

    Directory of Open Access Journals (Sweden)

    Alistair M McInnes

    Full Text Available Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98 and school area (R2 = 0.70. Estimates of relative school density (mean volume backscattering strength; Sv measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions.

  8. Recreational Fish-Finders—An Inexpensive Alternative to Scientific Echo-Sounders for Unravelling the Links between Marine Top Predators and Their Prey

    Science.gov (United States)

    McInnes, Alistair M.; Khoosal, Arjun; Murrell, Ben; Merkle, Dagmar; Lacerda, Miguel; Nyengera, Reason; Coetzee, Janet C.; Edwards, Loyd C.; Ryan, Peter G.; Rademan, Johan; van der Westhuizen, Jan J; Pichegru, Lorien

    2015-01-01

    Studies investigating how mobile marine predators respond to their prey are limited due to the challenging nature of the environment. While marine top predators are increasingly easy to study thanks to developments in bio-logging technology, typically there is scant information on the distribution and abundance of their prey, largely due to the specialised nature of acquiring this information. We explore the potential of using single-beam recreational fish-finders (RFF) to quantify relative forage fish abundance and draw inferences of the prey distribution at a fine spatial scale. We compared fish school characteristics as inferred from the RFF with that of a calibrated scientific split-beam echo-sounder (SES) by simultaneously operating both systems from the same vessel in Algoa Bay, South Africa. Customized open-source software was developed to extract fish school information from the echo returns of the RFF. For schools insonified by both systems, there was close correspondence between estimates of mean school depth (R2 = 0.98) and school area (R2 = 0.70). Estimates of relative school density (mean volume backscattering strength; Sv) measured by the RFF were negatively biased through saturation of this system given its smaller dynamic range. A correction factor applied to the RFF-derived density estimates improved the comparability between the two systems. Relative abundance estimates using all schools from both systems were congruent at scales from 0.5 km to 18 km with a strong positive linear trend in model fit estimates with increasing scale. Although absolute estimates of fish abundance cannot be derived from these systems, they are effective at describing prey school characteristics and have good potential for mapping forage fish distribution and relative abundance. Using such relatively inexpensive systems could greatly enhance our understanding of predator-prey interactions. PMID:26600300

  9. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  10. Feasibility of modifying the high resolution infrared radiation sounder (HIRS/2) for measuring spectral components of Earth radiation budget

    Science.gov (United States)

    Koenig, E. W.; Holman, K. A.

    1980-01-01

    The concept of adding four spectral channels to the 20 channel HIRS/2 instrument for the purpose of determining the origin and profile of radiant existence from the Earth's atmosphere is considered. Methods of addition of three channels at 0.5, 1.0 and 1.6 micron m to the present 0.7 micron m visible channel and an 18-25 micron m channel to the present 19 channels spaced from 3.7 micron m to 15 micron m are addressed. Optical components and physical positions were found that permit inclusion of these added channels with negligible effect on the performance of the present 20 channels. Data format changes permit inclusion of the ERB data in the 288 bits allocated to HIRS for each scan element. A lamp and collimating optic assembly may replace one of the on board radiometric black bodies to provide a reference source for the albedo channels. Some increase in instrument dimensions, weight and power will be required to accommodate the modifications.

  11. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    Science.gov (United States)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  12. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    Science.gov (United States)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  13. Seasonal variations of water vapor in the tropical lower statosphere

    Science.gov (United States)

    Mote, Philip W.; Rosenlof, Karen H.; Holton, James R.; Harwood, Robert S.; Waters, Joe W.

    1995-01-01

    Measurments of stratospheric water vapor by the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) show that in the tropical lower statosphere, low-frequency variations are closely related to the annual cycle in tropical tropopause temperatures. Tropical stratospheric air appears to retain information about the tropopause conditions it enconters for over a year as it rises through the stratosphere. A two-dimensional Lagrangian model is used to relate MLS measurements to the temperature that tropical air parcels encounter when crossing the 100 hPa surface.

  14. Land Surface Temperature and Emissivity Separation from Cross-Track Infrared Sounder Data with Atmospheric Reanalysis Data and ISSTES Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Ze Zhang

    2017-01-01

    Full Text Available The Cross-track Infrared Sounder (CrIS is one of the most advanced hyperspectral instruments and has been used for various atmospheric applications such as atmospheric retrievals and weather forecast modeling. However, because of the specific design purpose of CrIS, little attention has been paid to retrieving land surface parameters from CrIS data. To take full advantage of the rich spectral information in CrIS data to improve the land surface retrievals, particularly the acquisition of a continuous Land Surface Emissivity (LSE spectrum, this paper attempts to simultaneously retrieve a continuous LSE spectrum and the Land Surface Temperature (LST from CrIS data with the atmospheric reanalysis data and the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES algorithm. The results show that the accuracy of the retrieved LSEs and LST is comparable with the current land products. The overall differences of the LST and LSE retrievals are approximately 1.3 K and 1.48%, respectively. However, the LSEs in our study can be provided as a continuum spectrum instead of the single-channel values in traditional products. The retrieved LST and LSEs now can be better used to further analyze the surface properties or improve the retrieval of atmospheric parameters.

  15. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    Science.gov (United States)

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  16. Detection of heavy oil on the seabed by application of a 400 kHz multibeam echo sounder

    International Nuclear Information System (INIS)

    Wendelboe, G.; Fonseca, L.; Eriksen, M.; Mutschler, M.; Hvidbak, F.

    2009-01-01

    Marine spills of heavy oil that sink to the sea floor can have significant impacts on marine ecosystems. This paper described a program implemented by the United States Coast Guard to improve operational techniques for the detection, monitoring, and recovery of sunken oil. The program has developed an algorithm based on data from a multibeam echo sounder. The algorithm used calibrated backscatter strengths (BS) to produce a mosaic of the seabed. Values below a pre-specified threshold were sorted into groups using morphological filtering techniques. The angular response curves from each group were then analyzed and compared to a reference BS curve for heavy oil. Response curves below the upper bound curve were defined as oil. The algorithm had a 90 per cent accuracy rate at a recent demonstration using oil 6, Tesoro, Sundex, and asphalt samples. It was concluded that processing times per square mile are approximately 12 hours. Further studies will be conducted to reduce computation times by replacing raw beam-formed data with data that originated solely from the region near the seabed. 15 refs., 15 tabs., 18 figs

  17. 2-O-α-D-glucosylglycerol phosphorylase from Bacillus selenitireducens MLS10 possessing hydrolytic activity on β-D-glucose 1-phosphate.

    Directory of Open Access Journals (Sweden)

    Takanori Nihira

    Full Text Available The glycoside hydrolase family (GH 65 is a family of inverting phosphorylases that act on α-glucosides. A GH65 protein (Bsel_2816 from Bacillus selenitireducens MLS10 exhibited inorganic phosphate (Pi-dependent hydrolysis of kojibiose at the rate of 0.43 s(-1. No carbohydrate acted as acceptor for the reverse phosphorolysis using β-D-glucose 1-phosphate (βGlc1P as donor. During the search for a suitable acceptor, we found that Bsel_2816 possessed hydrolytic activity on βGlc1P with a k cat of 2.8 s(-1; moreover, such significant hydrolytic activity on sugar 1-phosphate had not been reported for any inverting phosphorylase. The H2 (18O incorporation experiment and the anomeric analysis during the hydrolysis of βGlc1P revealed that the hydrolysis was due to the glucosyl-transferring reaction to a water molecule and not a phosphatase-type reaction. Glycerol was found to be the best acceptor to generate 2-O-α-D-glucosylglycerol (GG at the rate of 180 s(-1. Bsel_2816 phosphorolyzed GG through sequential Bi-Bi mechanism with a k cat of 95 s(-1. We propose 2-O-α-D-glucopyranosylglycerol: phosphate β-D-glucosyltransferase as the systematic name and 2-O-α-D-glucosylglycerol phosphorylase as the short name for Bsel_2816. This is the first report describing a phosphorylase that utilizes polyols, and not carbohydrates, as suitable acceptor substrates.

  18. Next generation global Earth atmospheric composition sounders for the decadal survey requirements and roadmaps

    Data.gov (United States)

    National Aeronautics and Space Administration — This task follows directly from an "A Team" study conducted in April 2013 to identify the future space based atmospheric composition measurements required to inform...

  19. Project installation the large equipment in line system in Brazil. Gas export line valve P-40 FPSO-MLS. Field Marlim Sul, Campos Basin, Brazil; Operacao de instalacao do maior equipamento no sistema in line ja realizado no Brasil. Valvula do gasoduto P-40 X FPSO-MLS. Campo de Marlim Sul, Bacia de Campos, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Marcos Antonio Rodrigues; Fernandes, Paulo Tavares [PETROBRAS, Campos dos Goytacases, RJ (Brazil). Exploracao e Producao

    2005-07-01

    This work will approach the current level of development of the installation of connected underwater equipment to flexible lines in the underwater engineering operations in Campos' Basin. The project will show studies, analysis and simulations (through software developed by PETROBRAS) about the installation of the largest equipment laid in the 'in-line' system (connected to flexible lines) in Brazil - and one of the largest of the world: the ESDV (Emergency Shut Down Valve) of the gas pipeline P-40 x FPSO-MLS, in the South Marlim field, in Campos' Basin. This ESDV, of about 18.000 kg, 4 m height and 6,5 m length, has the purpose of assuring the safety conditions on the facilities, interrupting the gas flow exported for P-40 in case of emergency situations. Its installation opened a new alternative in releasing underwater equipment, using the ships that install the flexible lines. This operation occurred in June, 2004, and required the use of a second vessel for support and monitoring of the ESDV laying. The ESDV was installed at 400 m from FPSO-MLS, in a water depth of 1.137 m. This method shall be used broadly by the company in the implantation of the new units of Campos' Basin, and the upcoming studies must consider the gradual increase of the water depth in the new projects. This work will focus the technological development in this area, and one of its purposes is to foresee the future difficulties that can appear in the implantation of the production systems in deep and ultra-deep waters. (author)

  20. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    Science.gov (United States)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  1. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts

    Science.gov (United States)

    Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.

    2017-12-01

    Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.

  2. Investigating the possibility of the CONSERT instrument operating as a bi-static RADAR sounder during the seperation, descent and landing phase of the ROSETTA mission

    Science.gov (United States)

    Statz, C.; Hegler, S.; Plettemeier, D.; Berquin, Y. P.; Herique, A.; Kofman, W. W.

    2012-12-01

    The main scientific objective of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) is to determine the dielectric properties of comet 67P/Chuyurmov-Gerasimenko's nucleus. This will be achieved by performing a sounding of the comet's core between the lander "Philae" launched on the comet's surface and the orbiter "Rosetta". For the sounding the lander will receive, process and retransmit the radio signal emitted by the CONSERT instrument aboard the orbiter. With data measured during the first science phase, a three-dimensional model of the material distribution with regard to the complex dielectric permittivity of the comet's nucleus is to be reconstructed. In order to increase the scientific outcome of the experiment and to collect data beneficial for the main scientific objective, it may be considered to operate the CONSERT instrument as a bi-static RADAR sounder during the non mission-critical parts of the separation, descent and landing (SDL) phase, i.e. when the lander is launched onto the comet's surface, of the ROSETTA mission. The data measured during this phase will be mainly echoes from the comet's surface and first meters of subsurface. Based on this data, we intent to create an initial dielectric permittivity mapping of the comet's surface at and around the landing site In order to estimate the performance of the instrument in this special operational mode, simulations of a sounding in SDL configuration were performed. The simulations are based on a hybrid method-of-moments physical-optics (EFIE-DPO) approach for large dielectric bodies with consideration of the behavior of the instrument's antennas and coupling with the spacecraft as well as polarization effects. The simulated results are furthermore processed in a system-level-instrument-simulator to include effects such as a realistic sounding signal, pulse-compression and analog digital conversion in the estimation of the sounding capabilities. The main objective of the

  3. Atmospheric Infrared Sounder on NASA's Aqua Satellite: Applications for Volcano Rapid Response, Influenza Outbreak Prediction, and Drought Onset Prediction

    Science.gov (United States)

    Ray, S. E.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Licata, S. J.; Hall, J. R.; Penteado, P. F.; Realmuto, V. J.; Thrastarson, H. T.; Teixeira, J.; Granger, S. L.; Behrangi, A.; Farahmand, A.

    2017-12-01

    The Atmospheric Infrared Sounder (AIRS) has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With its 15-year data record and near real-time capability, AIRS data are being used in the development of applications that fall within many of the NASA Applied Science focus areas. An automated alert system for volcanic plumes has been developed that triggers on threshold breaches of SO2, ash and dust in granules of AIRS data. The system generates a suite of granule-scale maps that depict both plume and clouds, all accessible from the AIRS web site. Alerts are sent to a curated list of volcano community members, and links to views in NASA Worldview and Google Earth are also available. Seasonal influenza epidemics are major public health concern with millions of cases of severe illness and large economic impact. Recent studies have highlighted the role of absolute or specific humidity as a likely player in the seasonal nature of these outbreaks. A quasi-operational influenza outbreak prediction system has been developed based on the SIRS model which uses AIRS and NCEP humidity data, Center for Disease Control reports on flu and flu-like illnesses, and results from Google Flu Trends. Work is underway to account for diffusion (spatial) in addition to the temporal spreading of influenza. The US Drought Monitor (USDM) is generated weekly by the National Drought Mitigation Center (NDMC) and is used by policymakers for drought decision-making. AIRS data have demonstrated utility in monitoring the development and detection of meteorological drought with both AIRS-derived standardized vapor pressure deficit and standardized relative humidity, showing early detection lead times of up to two months. An agreement was secured with the NDMC to begin a trial period using AIRS products in the production of the USDM, and in July of 2017 the operational delivery of weekly CONUS AIRS images of Relative Humidity, Surface Air Temperature

  4. Characterizing sampling and quality screening biases in infrared and microwave limb sounding

    Science.gov (United States)

    Millán, Luis F.; Livesey, Nathaniel J.; Santee, Michelle L.; von Clarmann, Thomas

    2018-03-01

    This study investigates orbital sampling biases and evaluates the additional impact caused by data quality screening for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Aura Microwave Limb Sounder (MLS). MIPAS acts as a proxy for typical infrared limb emission sounders, while MLS acts as a proxy for microwave limb sounders. These biases were calculated for temperature and several trace gases by interpolating model fields to real sampling patterns and, additionally, screening those locations as directed by their corresponding quality criteria. Both instruments have dense uniform sampling patterns typical of limb emission sounders, producing almost identical sampling biases. However, there is a substantial difference between the number of locations discarded. MIPAS, as a mid-infrared instrument, is very sensitive to clouds, and measurements affected by them are thus rejected from the analysis. For example, in the tropics, the MIPAS yield is strongly affected by clouds, while MLS is mostly unaffected. The results show that upper-tropospheric sampling biases in zonally averaged data, for both instruments, can be up to 10 to 30 %, depending on the species, and up to 3 K for temperature. For MIPAS, the sampling reduction due to quality screening worsens the biases, leading to values as large as 30 to 100 % for the trace gases and expanding the 3 K bias region for temperature. This type of sampling bias is largely induced by the geophysical origins of the screening (e.g. clouds). Further, analysis of long-term time series reveals that these additional quality screening biases may affect the ability to accurately detect upper-tropospheric long-term changes using such data. In contrast, MLS data quality screening removes sufficiently few points that no additional bias is introduced, although its penetration is limited to the upper troposphere, while MIPAS may cover well into the mid-troposphere in cloud-free scenarios. We emphasize that the

  5. New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Meteosat Third Generation Infrared Sounder Instrument (MTG-IRS)

    Science.gov (United States)

    Freudling, Maximilian; Klammer, Jesko; Lousberg, Gregory; Schumacher, Jean-Marc; Körner, Christian

    2016-07-01

    A novel isostatic mounting concept for a space born TMA of the Meteosat Third Generation Infrared Sounder is presented. The telescope is based on a light-weight all-aluminium design. The mounting concept accommodates the telescope onto a Carbon-Fiber-Reinforced Polymer (CRFP) structure. This design copes with the high CTE mismatch without introducing high stresses into the telescope structure. Furthermore a Line of Sight stability of a few microrads under geostationary orbit conditions is provided. The design operates with full performance at a temperature 20K below the temperature of the CFRP structure and 20K below the integration temperature. The mounting will sustain launch loads of 47g. This paper will provide the design of the Back Telescope Assembly (BTA) isostatic mounting and will summarise the consolidated technical baseline reached following a successful Preliminary Design Review (PDR).

  6. Towards a NNORSY Ozone Profile ECV from European Nadir UV/VIS Measurements

    Science.gov (United States)

    Felder, Martin; Kaifel, Anton; Huckle, Roger

    2010-12-01

    The Neural Network Ozone Retrieval System (NNORSY) has been adapted and applied to several different satellite instruments, including the backscatter UV/VIS instruments ERS2-GOME, SCIAMACHY and METOP-GOME-2. The retrieved long term ozone field hence spans the years 1995 till now. To provide target data for training the neural networks, the lower parts of the atmosphere are sampled by ozone sondes from the WOUDC and SHADOZ data archives. Higher altitudes are covered by a variety of limb-sounding instruments, including the SAGE and POAM series, HALOE, ACE-FTS and AURA-MLS. In this paper, we show ozone profile time series over the entire time range to demonstrate the "out-of-the-box" consistency and homogeneity of our data across the three different nadir sounders, i.e. without any kind of tuning applied. These features of Essential Climate Variable (ECV) datasets [1] also lie at the heart of the recently announced ESA Climate Change Initiative, to which we hope to contribute in the near future.

  7. Measurement

    NARCIS (Netherlands)

    Boumans, M.; Durlauf, S.N.; Blume, L.E.

    2008-01-01

    Measurement theory takes measurement as the assignment of numbers to properties of an empirical system so that a homomorphism between the system and a numerical system is established. To avoid operationalism, two approaches can be distinguished. In the axiomatic approach it is asserted that if the

  8. Indoor MIMO Channel Measurement and Modeling

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ødum; Andersen, Jørgen Bach

    2005-01-01

    Forming accurate models of the multiple input multiple output (MIMO) channel is essential both for simulation as well as understanding of the basic properties of the channel. This paper investigates different known models using measurements obtained with a 16x32 MIMO channel sounder for the 5.8GHz...... band. The measurements were carried out in various indoor scenarios including both temporal and spatial aspects of channel changes. The models considered include the so-called Kronecker model, a model proposed by Weichselberger et. al., and a model involving the full covariance matrix, the most...

  9. Research on Water Velocity Measurement of Reservoir Based on Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhao

    2014-11-01

    Full Text Available To address the problem that pressure sensor can only measure the liquid level in reservoir, we designed a current velocity measurement system of reservoir based on pressure sensor, analyzed the error of current velocity measurement system, and proposed the error processing method and corresponding program. Several tests and experimental results show that in this measurement system, the liquid level measurement standard deviation is no more than 0.01 cm, and the current velocity measurement standard deviation is no more than 0.35 mL/s, which proves that the pressure sensor can measure both liquid level and current velocity synchronously.

  10. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    Science.gov (United States)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  11. Measuring $\

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Jessica Sarah [Univ. of Cambridge (United Kingdom)

    2011-01-01

    The MINOS Experiment consists of two steel-scintillator calorimeters, sampling the long baseline NuMI muon neutrino beam. It was designed to make a precise measurement of the ‘atmospheric’ neutrino mixing parameters, Δm2 atm. and sin2 (2 atm.). The Near Detector measures the initial spectrum of the neutrino beam 1km from the production target, and the Far Detector, at a distance of 735 km, measures the impact of oscillations in the neutrino energy spectrum. Work performed to validate the quality of the data collected by the Near Detector is presented as part of this thesis. This thesis primarily details the results of a vμ disappearance analysis, and presents a new sophisticated fitting software framework, which employs a maximum likelihood method to extract the best fit oscillation parameters. The software is entirely decoupled from the extrapolation procedure between the detectors, and is capable of fitting multiple event samples (defined by the selections applied) in parallel, and any combination of energy dependent and independent sources of systematic error. Two techniques to improve the sensitivity of the oscillation measurement were also developed. The inclusion of information on the energy resolution of the neutrino events results in a significant improvement in the allowed region for the oscillation parameters. The degree to which sin2 (2θ )= 1.0 could be disfavoured with the exposure of the current dataset if the true mixing angle was non-maximal, was also investigated, with an improved neutrino energy reconstruction for very low energy events. The best fit oscillation parameters, obtained by the fitting software and incorporating resolution information were: | Δm2| = 2.32+0.12 -0.08×10-3 eV2 and sin2 (2θ ) > 0.90(90% C.L.). The analysis provides the current world best measurement of the atmospheric neutrino mass

  12. Measuring the Non-Line-of-Sight Ultra-High-Frequency Channel in Mountainous Terrain: A Spread-Spectrum, Portable Channel Sounder

    Science.gov (United States)

    2018-03-01

    5), correlating each side of equation (3) with a transmit- ted signal, x [t], yields [] = ℎ[] ∗ []. (6) Here...i.e., input), x [t], and the complex-valued received signal (i.e., output), y[t], via the convolution function (Papazian and Lemmon 2011), which is...Rxy is the cross-correlation function of x [t] and y[t], and Rxx is the autocorrelation function of x [t]. The additive noise component is dropped

  13. Heard Island and McDonald Islands Acoustic Plumes: Split-beam Echo sounder and Deep Tow Camera Observations of Gas Seeps on the Central Kerguelen Plateau

    Science.gov (United States)

    Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.

    2016-12-01

    Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.

  14. The Application of a Multi-Beam Echo-Sounder in the Analysis of the Sedimentation Situation of a Large Reservoir after an Earthquake

    Directory of Open Access Journals (Sweden)

    Zhong-Luan Yan

    2018-04-01

    Full Text Available The Wenchuan Earthquake took place in the upper reach catchment of the Min River. It resulted in large amounts of loose materials gathering in the river channel, leading to changes in the sediment transport system in this area. The Zipingpu Reservoir is the last and the largest reservoir located in the upper reach of the Min River. It is near the epicenter and receives sediment from upstream. This paper puts forward a study on the reservoir sedimentation and storage capacity of the Zipingpu Reservoir, employing a multi-beam echo-sounder system in December 2012. Then, the data were merged with digital line graphics and shuttle radar topography mission data in ArcGIS to build a digital elevation model and triangulate the irregular network of Zipingpu Reservoir. Via the analysis of the bathymetric data, the results show the following: (1 The main channels of the reservoir gradually aggrade to a flat bottom from the deep-cutting valley. Sedimentation forms a reach with a W-shaped longitudinal thalweg profile and an almost zero slope reach in the upstream section of the reservoir due to the natural barrier induced by a landslide; (2 The loss ratios of the wetted cross-section surface are higher than 10% in the upstream section of the reservoir and higher than 40% in the natural barrier area; (3 Comparing the surveyed area storage capacity of December 2012 with March 2008, the Zipingpu Reservoir has lost 15.28% of its capacity at the dead storage water level and 10.49% of its capacity at the flood limit water level.

  15. Terminal area automatic navigation, guidance and control research using the Microwave Landing System (MLS). Part 5: Design and development of a Digital Integrated Automatic Landing System (DIALS) for steep final approach using modern control techniques

    Science.gov (United States)

    Halyo, N.

    1983-01-01

    The design and development of a 3-D Digital Integrated Automatic Landing System (DIALS) for the Terminal Configured Vehicle (TCV) Research Aircraft, a B-737-100 is described. The system was designed using sampled data Linear Quadratic Gaussian (LOG) methods, resulting in a direct digital design with a modern control structure which consists of a Kalman filter followed by a control gain matrix, all operating at 10 Hz. DIALS uses Microwave Landing System (MLS) position, body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not use inertial platforms. The phases of the final approach considered are the localizer and glideslope capture which may be performed simultaneously, localizer and steep glideslope track or hold, crab/decrab and flare to touchdown. DIALS captures, tracks and flares from steep glideslopes ranging from 2.5 deg to 5.5 deg, selected prior to glideslope capture. Digital Integrated Automatic Landing System is the first modern control design automatic landing system successfully flight tested. The results of an initial nonlinear simulation are presented here.

  16. Millimeter radiometer system technology

    Science.gov (United States)

    Wilson, W. J.; Swanson, P. N.

    1989-07-01

    JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.

  17. Grafting, pruning, and the antipodal map on measured laminations

    OpenAIRE

    Dumas, David

    2006-01-01

    Grafting a measured lamination on a hyperbolic surface defines a self-map of Teichmuller space, which is a homeomorphism by a result of Scannell and Wolf. In this paper we study the large-scale behavior of pruning, which is the inverse of grafting. Specifically, for each conformal structure $X \\in \\T(S)$, pruning $X$ gives a map $\\ML(S) \\to \\T(S)$. We show that this map extends to the Thurston compactification of $\\T(S)$, and that its boundary values are the natural antipodal involution relat...

  18. Development Challenges of Utilizing a Corner Cube Mechanism Design with Successful IASI Flight Heritage for the Infrared Sounder (IRS) on MTG: Recurrent Mechanical Design not Correlated to Recurrent Development

    Science.gov (United States)

    Spanoudakis, Peter; Schwab, Philippe; Kiener, Lionel; Saudan, Herve; Perruchoud, Gerald

    2015-09-01

    The Corner Cube Mechanism (CCM) design for the Infra-Red Sounder (IRS) on MTG is based on the successful mechanism currently in orbit on the Infrared Atmospheric Sounding Interferometers (IASI) on the Metop satellites. The overall CCM performance is described with attention given to the specific design developments for the MTG project. A description is presented of the modifications introduced and challenges encountered to adapt the IASI space heritage design (which is only 15 years old) to meet the MTG specifications. A detailed account is provided regarding the tests performed on the adapted components for the new programme. The major issues encountered and solutions proposed are illustrated concerning the voice- coil actuator development, optical switch design, fatigue life of the flexure components and the adaptation of the launch locking device. Nevertheless, an Engineering Qualification Model was rapidly manufactured and now undergoing a qualification test campaign.

  19. IASI instrument: technical description and measured performances

    Science.gov (United States)

    Hébert, Ph.; Blumstein, D.; Buil, C.; Carlier, T.; Chalon, G.; Astruc, P.; Clauss, A.; Siméoni, D.; Tournier, B.

    2017-11-01

    IASI is an infrared atmospheric sounder. It will provide meteorologist and scientific community with atmospheric spectra. The IASI system includes 3 instruments that will be mounted on the Metop satellite series, a data processing software integrated in the EPS (EUMETSAT Polar System) ground segment and a technical expertise centre implemented in CNES Toulouse. The instrument is composed of a Fourier transform spectrometer and an associated infrared imager. The optical configuration is based on a Michelson interferometer and the interferograms are processed by an on-board digital processing subsystem, which performs the inverse Fourier transforms and the radiometric calibration. The infrared imager co-registers the IASI soundings with AVHRR imager (AVHRR is another instrument on the Metop satellite). The presentation will focus on the architectures of the instrument, the description of the implemented technologies and the measured performance of the first flight model. CNES is leading the IASI program in association with EUMETSAT. The instrument Prime is ALCATEL SPACE.

  20. Indonesian Fire Activity and Smoke Pollution in 2015 Show Persistent Nonlinear Sensitivity to El Niño-induced Drought

    Science.gov (United States)

    Field, Robert D.; van der Werf, Guido R.; Fanin, Thierry; Fetzer, Eric; Fuller, Ryan; Jethva, Hiren; Levy, Robert; Livesey, Nathaniel; Luo, Ming; Torres, Omar; hide

    2016-01-01

    The 2015 fire season and related smoke pollution in Indonesia was more severe than the major 2006 episode, making it the most severe season observed by the NASA Earth Observing System satellites that go back to the early 2000s, namely active fire detections from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS), MODIS aerosol optical depth, Terra Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO), Aqua Atmospheric Infrared Sounder (AIRS) CO, Aura Ozone Monitoring Instrument (OMI) aerosol index, and Aura Microwave Limb Sounder (MLS) CO. The MLS CO in the upper troposphere showed a plume of pollution stretching from East Africa to the western Pacific Ocean that persisted for two months. Longer-term records of airport visibility in Sumatra and Kalimantan show that 2015 ranked after 1997 and alongside 1991 and 1994 as among the worst episodes on record. Analysis of yearly dry season rainfall from the Tropical Rainfall Measurement Mission (TRMM) and rain gauges shows that, due to the continued use of fire to clear and prepare land on degraded peat, the Indonesian fire environment continues to have non-linear sensitivity to dry conditions during prolonged periods with less than 4mmday of precipitation, and this sensitivity appears to have increased over Kalimantan. Without significant reforms in land use and the adoption of early warning triggers tied to precipitation forecasts, these intense fire episodes will re-occur during future droughts, usually associated with El Nio events.

  1. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    Delgado-Penín JA

    2008-01-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  2. Building Entry Loss and Delay Spread Measurements on a Simulated HAP-to-Indoor Link at S-Band

    Directory of Open Access Journals (Sweden)

    P. Valtr

    2008-07-01

    Full Text Available Results from a measurement campaign emulating the high altitude platform (HAP-to-indoor communication channel at S-band are presented in this paper. A link was established between a transmitter carried by a helicopter, representing the HAP, and a receiver placed at several locations in different building types including an airport, an office building, a shopping mall, a residential house, and a skyscraper. A wideband, directive channel sounder was used to measure building entry loss and time delay spread. Results of the building entry loss are presented as a function of building type, elevation, and building entry angle. Results of delay spread for each building are also provided.

  3. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2013-02-01

    Full Text Available Since May 2009, high-resolution Fourier Transform Infrared (FTIR solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level, Ethiopia. The vertical profiles and total column amounts of ozone (O3 are deduced from the spectra by using the retrieval code PROFFIT (V9.5 and regularly determined instrumental line shape (ILS. A detailed error analysis of the O3 retrieval is performed. Averaging kernels of the target gas shows that the major contribution to the retrieved information comes from the measurement. The degrees of freedom for signals is found to be 2.1 on average for the retrieval of O3 from the observed FTIR spectra. The ozone Volume Mixing Ratio (VMR profiles and column amounts retrieved from FTIR spectra are compared with the coincident satellite observations of Microwave Limb Sounding (MLS, Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Tropospheric Emission Spectrometer (TES, Ozone Monitoring Instrument (OMI, Atmospheric Infrared Sounding (AIRS and Global Ozone Monitoring Experiment (GOME-2 instruments. The mean relative differences in ozone profiles of FTIR from MLS and MIPAS are generally lower than 15% within the altitude range of 27 to 36 km, whereas difference from TES is lower than 1%. Comparisons of measurements of column amounts from the satellite and the ground-based FTIR show very good agreement as exhibited by relative differences within +0.2% to +2.8% for FTIR versus MLS and GOME-2; and −0.9 to −9.0% for FTIR versus OMI, TES and AIRS. The corresponding standard deviations are within 2.0 to 2.8% for FTIR versus MLS and GOME-2 comparisons whereas that of FTIR versus OMI, TES and AIRS are within 3.5 to 7.3%. Thus, the retrieved O3 VMR and column amounts from a tropical site, Addis Ababa, is found to exhibit very good agreement with all coincident satellite observations over an approximate 3-yr period.

  4. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  5. Relating Fresh Concrete Viscosity Measurements from Different Rheometers.

    Science.gov (United States)

    Ferraris, Chiara F; Martys, Nicos S

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to "scientifically" improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis.

  6. Should measurement of maximum urinary flow rate and residual urine volume be a part of a "minimal care" assessment programme in female incontinence?

    DEFF Research Database (Denmark)

    Sander, Pia; Mouritsen, L; Andersen, J Thorup

    2002-01-01

    OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHODS....... Twenty-six per cent had a maximum flow rate less than 15 ml/s, but only 4% at a voided volume > or =200 ml. Residual urine more than 149 ml was found in 6%. Two women had chronic retention with overflow incontinence. Both had typical symptoms with continuous leakage, stranguria and chronic cystitis...

  7. The Upper Atmosphere Research Satellite: From Coffee Table Art to Quantitative Science

    Science.gov (United States)

    Douglass, Anne R.

    1999-01-01

    The Upper Atmosphere Research Satellite (UARS) has provided an unprecedented set of observations of constituents of the stratosphere. When used in combination with data from other sources and appropriate modeling tools, these observations are useful for quantitative evaluation of stratospheric photochemical processes. This is illustrated by comparing ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen occultation Experiment (HALOE) with ozone fields generated with a three dimensional model. For 1995-96, at polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with ozone fields from the GSFC 3D chemistry and transport model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge. The importance of chlorine catalyzed photochemistry to this ozone loss is explored by comparing observations from MLS and HALOE with simulations for other northern winters, particularly 1997-98.

  8. Inverted echo sounder measurements collected in the Japan/East Sea, between 1999-06 to July 2001, under the sponsorship of the Office of Naval Research (NODC Accession 0002331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations were conducted from June 1999 to July 2001 to study the shallow and deep current variability in the southwest Japan/East Sea. Data were collected during...

  9. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  10. Measuring self-esteem in dieting disordered patients: the validity of the Rosenberg and Coopersmith contrasted.

    Science.gov (United States)

    Griffiths, R A; Beumont, P J; Giannakopoulos, E; Russell, J; Schotte, D; Thornton, C; Touyz, S W; Varano, P

    1999-03-01

    In order to ascertain the most appropriate measure of self-esteem for dieting disordered patients, this study contrasted the construct and convergent validities of two widely used measures. In addition, dieting disordered subgroups were compared on levels of self-esteem. One hundred and seventeen male and female patients diagnosed with anorexia nervosa, bulimia nervosa, or eating disorder not otherwise specified completed the Rosenberg Self-Esteem Scale (SES), the Coopersmith Self-Esteem Inventory (SEI), and measures of dieting disorder pathology and depression. No significant differences among the three dieting disorder subgroups were found. In determining convergent validity, regression analyses indicated that the SES was a significant predictor of dieting disorder psychopathology whereas the SEI was not. Of the two self-esteem measures, only the SES showed evidence of convergent validity. The results suggest that the SES has sounder construct and convergent validity than the SEI. Hence, the SES may be more appropriate for use with dieting disordered populations.

  11. First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity From Space

    Science.gov (United States)

    Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.

    2017-01-01

    Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.

  12. Discharge and other hydraulic measurements for characterizing the hydraulics of Lower Congo River

    Science.gov (United States)

    Oberg, Kevin; Shelton, John M.; Gardiner, Ned; Jackson, P. Ryan

    2009-01-01

    The first direct measurements of discharge of the Lower Congo River below Malebo Pool and upstream from Kinganga, Democratic Republic of Congo (DRC) were made in July 2008 using acoustic Doppler current profilers, differential GPS, and echo sounders. These measurements were made in support of research that is attempting to understand the distribution of fish species in the Lower Congo River and reasons for separation of species within this large river. Analyses of these measurements show that the maximum depth in the Lower Congo River was in excess of 200 m and maximum water velocities were greater than 4 m/s. The discharge measured near Luozi, DRC was 35,800 m3/s, and decreased slightly beginning midway through the study. Local bedrock controls seem to have a large effect on the flow in the river, even in reaches without waterfalls and rapids. Dramatic changes in bed topography are evident in transects across the river.

  13. Experimental and clinical trial of measuring urinary velocity with the pitot tube and a transrectal ultrasound guided video urodynamic system.

    Science.gov (United States)

    Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi

    2003-01-01

    The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.

  14. Pressure broadening measurement of submillimeter-wave lines of O3

    International Nuclear Information System (INIS)

    Yamada, M.M.; Amano, T.

    2005-01-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, 16 O 18 O 16 O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5-3% accuracy for the normal species transitions

  15. Advances in simultaneous atmospheric profile and cloud parameter regression based retrieval from high-spectral resolution radiance measurements

    Science.gov (United States)

    Weisz, Elisabeth; Smith, William L.; Smith, Nadia

    2013-06-01

    The dual-regression (DR) method retrieves information about the Earth surface and vertical atmospheric conditions from measurements made by any high-spectral resolution infrared sounder in space. The retrieved information includes temperature and atmospheric gases (such as water vapor, ozone, and carbon species) as well as surface and cloud top parameters. The algorithm was designed to produce a high-quality product with low latency and has been demonstrated to yield accurate results in real-time environments. The speed of the retrieval is achieved through linear regression, while accuracy is achieved through a series of classification schemes and decision-making steps. These steps are necessary to account for the nonlinearity of hyperspectral retrievals. In this work, we detail the key steps that have been developed in the DR method to advance accuracy in the retrieval of nonlinear parameters, specifically cloud top pressure. The steps and their impact on retrieval results are discussed in-depth and illustrated through relevant case studies. In addition to discussing and demonstrating advances made in addressing nonlinearity in a linear geophysical retrieval method, advances toward multi-instrument geophysical analysis by applying the DR to three different operational sounders in polar orbit are also noted. For any area on the globe, the DR method achieves consistent accuracy and precision, making it potentially very valuable to both the meteorological and environmental user communities.

  16. Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns

    NARCIS (Netherlands)

    Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Hudman, R.C.; Froidevaux, L.; Livesey, N.J.; Levelt, P.F.; Thompson, A.M.; Tarasick, D.W.; Stübi, R.; Andersen, S.B.; Yela, M.; König-Langlo, G.; Schmidlin, F.J.; Witte, J.C.

    2008-01-01

    Retrievals from the Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) on EOS-Aura were included in the Goddard Earth Observing System version 4 (GEOS-4) ozone data assimilation system. The distribution and daily to seasonal evolution of ozone in the stratosphere and troposphere

  17. Change Detection Of Seafloor Topography By Modeling Multitemporal Multibeam Echosounder Measurements

    Science.gov (United States)

    Zirek, E.; Sunar, F.

    2014-09-01

    The term "topography" implies the study of numerous landforms that exist on or below the Earth and a detailed knowledge of topography is required to understand the most Earth processes. In the oceans, sea floor topography refers the geographic features of the sea floor including the configuration of a surface and the position of its natural and man-made features; and detailed nautical charts are fundamental for many sciences such as physical oceanography, biology and marine geology. The hydrographic offices, which use the Multi Beam Echo sounder (MBE) system for the establishment of nautical charts, have their own set of accuracy standards for hydrographic surveys, which generally comply with the standards defined by the International Hydrographic Organization. MBE systems include multiple measurement systems such as sonar head, positioning system, motion sensor that work in a synchronized manner. Before the measurements, the "Patch Test" is required to eliminate the systematic errors due to instrumental synchronization and installation. In this test, signal delay test (latency), Y-axis rotation (roll), X-axis rotation (pitch), Z-axis rotation (yaw) errors are calculated. Besides, the effects of the sound velocity measurement through water column and the sea level changes need to be taken into consideration especially in the multi-temporal data analysis and 3D modeling. In this paper, the seafloor of the Anamur -TRNC Drinking Water Pipeline route in the "Northern Cyprus Water Project" is selected as a study area. This project, a unique in the world, is an international water diversion project designed to supply water for drinking and irrigation from southern Turkey to Northern Cyprus via pipeline under Mediterranean Sea. Multi temporal multi beam echo sounder measurements are used in the change analysis and surface modeling and the efficiency of this system is outlined together with its limitations.

  18. Modeling the TTL at Continental Scale for a Wet Season: An Evaluation of the BRAMS Mesoscale Model Using TRO-Pico Campaign, and Measurements From Airborne and Spaceborne Sensors

    Science.gov (United States)

    Behera, Abhinna K.; Rivière, Emmanuel D.; Marécal, Virginie; Rysman, Jean-François; Chantal, Claud; Sèze, Geneviève; Amarouche, Nadir; Ghysels, Mélanie; Khaykin, Sergey M.; Pommereau, Jean-Pierre; Held, Gerhard; Burgalat, Jérémie; Durry, Georges

    2018-03-01

    In order to better understand the water vapor (WV) intrusion into the tropical stratosphere, a mesoscale simulation of the tropical tropopause layer using the BRAMS (Brazilian version of Regional Atmospheric Modeling System (RAMS)) model is evaluated for a wet season. This simulation with a horizontal grid point resolution of 20 km × 20 km cannot resolve the stratospheric overshooting convection (SOC). Its ability to reproduce other key parameters playing a role in the stratospheric WV abundance is investigated using the balloon-borne TRO-Pico campaign measurements, the upper-air soundings over Brazil, and the satellite observations by Aura Microwave Limb Sounder, Microwave Humidity Sounder, and Geostationary Operational Environmental Satellite 12. The BRAMS exhibits a good ability in simulating temperature, cold-point, WV variability around the tropopause. However, the simulation is typically observed to be warmer by ˜2.0°C and wetter by ˜0.4 ppmv at the hygropause, which can be partly affiliated with the grid boundary nudging of the model by European Centre for Medium-Range Weather Forecasts operational analyses. The modeled cloud tops show a good correlation (maximum cross-correlation of ˜0.7) with Geostationary Operational Environmental Satellite 12. Furthermore, the overshooting cells detected by Microwave Humidity Sounder are observed at the locations, where 75% of the modeled cloud tops are higher than 11 km. Finally, the modeled inertia-gravity wave periodicity and wavelength are comparable with those deduced from the radio sounding measurements during TRO-Pico campaign. The good behavior of BRAMS confirms the SOC contribution in the WV abundance, and variability is of lesser importance than the large-scale processes. This simulation can be used as a reference run for upscaling the impact of SOC at a continental scale for future studies.

  19. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1

  20. Evidence for Dynamical Coupling of Stratosphere-MLT during recent minor Stratospheric Warmings in Southern Hemisphere

    Science.gov (United States)

    Kim, Yongha; Sunkara, Eswaraiah; Hong, Junseok; Ratnam, Venkat; Chandran, Amal; Rao, Svb; Riggin, Dennis

    2015-04-01

    The mesosphere-lower thermosphere (MLT) response to extremely rare minor sudden stratospheric warming (SSW) events was observed for the first time in the southern hemisphere (SH) during 2010 and is investigated using the meteor radar located at King Sejong Station (62.22°S, 58.78°W), Antarctica. Three episodic SSWs were noticed from early August to late October 2010. The mesospheric wind field was found to significantly differ from normal years due to enhanced planetary wave (PW) activity before the SSWs and secondary PWs in the MLT afterwards. The zonal winds in the mesosphere reversed approximately a week before the SSW occurrence in the stratosphere as has been observed 2002 major SSW, suggesting the downward propagation of disturbance during minor SSWs as well. Signatures of mesospheric cooling (MC) in association with SSWs are found in the Microwave Limb Sounder (MLS) measurements. SD-WACCM simulations are able to produce these observed features.

  1. Graduate and Post-MLS Study in Digital Libraries

    Science.gov (United States)

    Blummer, Barbara

    2005-01-01

    As librarians confront the Information Age, it is imperative that they remain aware of the issues that affect the profession. Traditional library skills are no longer adequate for maintaining a competitive edge in the field. Post-graduate education in digital libraries offers information professionals an opportunity to broaden their knowledge of…

  2. Applying Bourdieu’s Field Theory to MLS Curricula Development

    DEFF Research Database (Denmark)

    Wien, Charlotte; Dorch, Bertil F.

    the tasks in the library. The hypothesis is that the subject specialist previously found him or herself in the upper part of the compass, while the librarians would be placed in the lower part. Obviously, this created a field of tension between the subject specialists and the librarians. A useful tool...... for the power to decide exactly what is associated with power and what is not persist. With the upgrading of LIS the librarians have moved upwards on the vertical axis and thereby challenge the subject specialist’s position. At the same time developments within the academic world have brought about...

  3. Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation

    Science.gov (United States)

    2008-12-01

    slight longitudinal variations, with secondary high- latitude peaks occurring over Greenland and Europe . As the QBO changes to the westerly phase, the...equatorial GW temperature variances from suborbital data (e.g., Eck- ermann et al. 1995). The extratropical wave variances are generally larger in the...emanating from tropopause altitudes, presumably radiated from tropospheric jet stream in- stabilities associated with baroclinic storm systems that

  4. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  5. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  6. Assimilation of stratospheric ozone in the chemical transport model STRATAQ

    Directory of Open Access Journals (Sweden)

    B. Grassi

    2004-09-01

    Full Text Available We describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using χ2 and OmF (Observation minus Forecast statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime.

  7. What quantum measurements measure

    Science.gov (United States)

    Griffiths, Robert B.

    2017-09-01

    A solution to the second measurement problem, determining what prior microscopic properties can be inferred from measurement outcomes ("pointer positions"), is worked out for projective and generalized (POVM) measurements, using consistent histories. The result supports the idea that equipment properly designed and calibrated reveals the properties it was designed to measure. Applications include Einstein's hemisphere and Wheeler's delayed choice paradoxes, and a method for analyzing weak measurements without recourse to weak values. Quantum measurements are noncontextual in the original sense employed by Bell and Mermin: if [A ,B ]=[A ,C ]=0 ,[B ,C ]≠0 , the outcome of an A measurement does not depend on whether it is measured with B or with C . An application to Bohm's model of the Einstein-Podolsky-Rosen situation suggests that a faulty understanding of quantum measurements is at the root of this paradox.

  8. HCl and ClO in activated Arctic air; first retrieved vertical profiles from TELIS submillimetre limb spectra

    Directory of Open Access Journals (Sweden)

    A. de Lange

    2012-02-01

    Full Text Available The first profile retrieval results of the Terahertz and submillimeter Limb Sounder (TELIS balloon instrument are presented. The spectra are recorded during a 13-h balloon flight on 24 January 2010 from Kiruna, Sweden. The TELIS instrument was mounted on the MIPAS-B2 gondola and shared this platform with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS and the mini-Differential Optical Absorption Spectroscopy (mini-DOAS instruments. The flight took place within the Arctic vortex at an altitude of ≈34 km in chlorine activated air, and both active (ClO and inactive chlorine (HCl were measured over an altitude range of respectively ≈16–32 km and ≈10–32 km. In this altitude range, the increase of ClO concentration levels during sunrise has been recorded with a temporal resolution of one minute. During the daytime equilibrium, a maximum ClO level of 2.1 ± 0.3 ppbv has been observed at an altitude of 23.5 km. This equilibrium profile is validated against the ClO profile by the satellite instrument Microwave Limb Sounder (MLS aboard EOS Aura. HCl profiles have been determined from two different isotopes – H35Cl and H37Cl – and are also validated against MLS. The precision of all profiles is well below 0.01 ppbv and the overall accuracy is therefore governed by systematic effects. The total uncertainty of these effects is estimated to be maximal 0.3 ppbv for ClO around its peak value at 23.5 km during the daytime equilibrium, and for HCl it ranges from 0.05 to 0.4 ppbv, depending on altitude. In both cases the main uncertainty stems from a largely unknown non-linear response in the detector.

  9. Convective Influence and Transport Pathways Controlling the Tropical Distribution of Carbon Monoxide at 100 Hpa

    Science.gov (United States)

    Jensen, Eric; Bergman, John; Pfister, Leonard; Ueyama, Rei; Kinnison, Doug

    2014-01-01

    Trajectory calculations with convective influence diagnosed from geostationary-satellite cloud measurements are used to evaluate the relative importance of different Tropical Tropopause Layer (TTL) transport pathways for establishing the distribution of carbon monoxide (CO) at 100 hPa as observed by the Microwave Limb Sounder (MLS) on board the Aura satellite. Carbon monoxide is a useful tracer for investigating TTL transport and convective influence because the CO lifetime is comparable to the time require for slow ascent through the TTL (a couple of months). Offline calculations of TTL radiative heating are used to determine the vertical motion field. The simple trajectory model does a reasonable job of reproducing the MLS CO distributions during Boreal wintertime and summertime. The broad maximum in CO concentration over the Pacific is primarily a result of the strong radiative heating (indicating upward vertical motion) associated with the abundant TTL cirrus in this region. Sensitivity tests indicate that the distinct CO maximum in the Asian monsoon anticyclone is strongly impacted by extreme convective systems with detrainment of polluted air above 360 K potential temperature. The relative importance of different CO source regions will also be discussed.

  10. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  11. Neutral wind measurements by Fabry-Perot interferometry in Antarctica

    International Nuclear Information System (INIS)

    Stewart, K.D.; Dudeney, J.R.; Rodger, A.S.; Smith, R.W.; Rees, D.

    1986-01-01

    A large-aperture (150 mm), spatially scanned Fabry-Perot Interferometer (FPI) has been deployed at Halley (75.5 o S, 26.8 o W; L=4.2), Antarctica. Thermospheric neutral wind measurements were made by finding the Doppler shift of the OI( 3 P 2 - 1 D 2 ) 630.0 nm emission. This has allowed the first comparison to be made between southern hemisphere ground-based thermospheric wind measurements and the predictions of a three-dimensional, time-dependent thermospheric global circulation model. Geomagnetic and geographic latitude are well separated at Halley, so we may expect a distinct contrast to the dynamic behaviour observed in the more frequently studied northern polar thermosphere. Although the initial results from the experiment are in general agreement with the model, some consistent and significant differences between the observed wind field and that predicted are evident in the morning sector. These may be related to uncertainties in mapping magnetospheric boundaries to ionospheric heights in the southern hemisphere. The intensity of the 630 nm emission has been examined with respect to the maximum plasma frequency of the Es layer using data from the Advanced Ionospheric Sounder at Halley

  12. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    Science.gov (United States)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an

  13. Observing Trace Gases Of The Arctic And Subarctic Stratosphere By TELIS

    Science.gov (United States)

    Xu, Jian; Schreier, Franz; Doicu, Adrian; Vogt, Peter; Birk, Manfred; Wagner, Georg; Trautmann, Thomas

    2013-12-01

    The Terahertz and submillimeter Limb Sounder (TELIS) is a balloon-borne cryogenic heterodyne spectrometer developed by a consortium of European institutes, which was mounted together with the Michelson Interferometer for Passive Atmospheric Sounding - Balloon (MIPAS- B) and the mini- Differential Optical Absorption Spectroscopy (mini-DOAS) instruments on a stratospheric gondola. The TELIS instrument is designed to monitor the vertical distribution of stratospheric state parameters associated with ozone destruction and climate change in Arctic and subarctic areas. The broad spectral coverage of TELIS is achieved by utilizing three frequency channels: a tunable 1.8THz channel based on a solid state local oscillator and a hot electron bolometer as mixer, a 480-650GHz channel with the Superconducting Integrated Receiver (SIR) technology, and a highly compact 500 GHz channel developed by the German Aerospace Center (DLR), the Netherlands Institute for Space Research (SRON), and the Rutherford Apple- ton Laboratory (RAL), respectively. Furthermore, an ex- tended spectral range is observed by the combination of TELIS and MIPAS-B, which can be employed for cross validation of several gas concentrations. Between 2009 and 2011 three successful scientific flights have been launched in Kiruna, Sweden and all relevant atmospheric gas species were seen by TELIS over an altitude range of 10-32.5 km. For estimation of concentration profiles from TELIS measurements, a constrained nonlinear least squares fitting framework along with var- ious Tikhonov-type regularization methods has been developed. In this work we present recent retrieval results from latest calibrated spectra during the 2010 flight. Emphasis is placed on ozone (O3) and hydrogen chloride (HCl), and error issues pertaining to the main instrumental uncertainty terms including nonlinearity in the calibration procedure, sideband ratio and pointing offset are investigated. The retrieved profiles are validated against

  14. Measurement-Based Performance Evaluation of Advanced MIMO Transceiver Designs

    Directory of Open Access Journals (Sweden)

    Schneider Christian

    2005-01-01

    Full Text Available This paper describes the methodology and the results of performance investigations on a multiple-input multiple-output (MIMO transceiver scheme for frequency-selective radio channels. The method relies on offline simulations and employs real-time MIMO channel sounder measurement data to ensure a realistic channel modeling. Thus it can be classified in between the performance evaluation using some predefined channel models and the evaluation of a prototype hardware in field experiments. New aspects for the simulation setup are discussed, which are frequently ignored when using simpler model-based evaluations. Example simulations are provided for an iterative ("turbo" MIMO equalizer concept. The dependency of the achievable bit error rate performance on the propagation characteristics and on the variation in some system design parameters is shown, whereas the antenna constellation is of particular concern for MIMO systems. Although in many of the considered constellations turbo MIMO equalization appears feasible in real field scenarios, there exist cases with poor performance as well, indicating that in practical applications link adaptation of the transmitter and receiver processing to the environment is necessary.

  15. Morphodynamics of Wadden Sea Areas – Field Measurements and Modeling

    Directory of Open Access Journals (Sweden)

    Thorsten Albers

    2010-09-01

    Full Text Available The Wadden Sea areas of the German North Sea coast are affected by intense morphodynamics. Especially in the mouths of the estuaries sedimentation and erosion occur on different temporal and spatial scales and therefore challenge the decision-makers. To satisfy the requirements, which modern maritime traffic demands, a sustainable concept for sediment management has to be developed to grant an economic and ecologic balanced system. To evaluate different actions and their effects, e.g. by means of numerical models, an improved knowledge of morphodynamic processes on tidal flats is required. The Institute of River and Coastal Engineering at the Hamburg University of Technology runs detailed measurements to collect hydrodynamic and morphodynamic data of tidal flats in the estuary Elbe, that is the approach to the port of Hamburg. Water levels, flow and wave parameters and concentrations of suspended sediments are recorded in high resolution. Furthermore, the bathymetry is determined in frequent intervals with a multi-beam echo sounder.

  16. Data collected by current-and-pressure-recording inverted echo sounders (CPIES) and current meter moorings in Drake Passage as part of cDrake from November 2007 to December 2011 (NCEI Accession 0121256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains measurements collected in Drake Passage between November 2007 and December 2011 as part of the cDrake progam funded by the National Science...

  17. Atmospheric radiation measurement program facilities newsletter, June 2002.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2002-01-01

    ARM Intensive Operational Period Scheduled to Validate New NASA Satellite-Beginning in July, all three ARM sites (Southern Great Plains[SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and

  18. Measurements of exhaled nitric oxide in healthy subjects age 4 to 17 years

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Baraldi, Eugenio; Carraro, Silvia

    2005-01-01

    to almost 100% from the age of 10 years. The repeatability of 3 approved measurements was 1.6 ppb (95% CI, 1.49-1.64 ppb). CONCLUSION: FE NO in healthy children is below 15 to 25 ppb depending on age and self-reported atopy. Measurement of FE NO by NIOX is simple and safe and has a good repeatability...... NO was measured in healthy subjects of 4 to 17 years according to American Thoracic Society guidelines (single breath online, exhalation flow 50 mL/s) with a chemiluminescence analyzer (NIOX Exhaled Nitric Oxide Monitoring System, Aerocrine, Sweden) in 3 European and 2 US centers. Each child performed 3...... NO in 405 children was 9.7 ppb, and the upper 95% confidence limit was 25.2 ppb. FE NO increased significantly with age, and higher FE NO was seen in children with self-reported rhinitis/conjunctivitis or hay fever. The success rate was age-dependent and improved from 40% in the children 4 years old...

  19. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Science.gov (United States)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross

  20. Radio frequency sensing measurements and methods for location classification in wireless networks

    Science.gov (United States)

    Maas, Dustin C.

    The wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces

  1. Intracapillary HbO2 saturations in murine tumours and human tumour xenografts measured by cryospectrophotometry: relationship to tumour volume, tumour pH and fraction of radiobiologically hypoxic cells.

    Science.gov (United States)

    Rofstad, E K; Fenton, B M; Sutherland, R M

    1988-05-01

    Frequency distributions for intracapillary HbO2 saturation were determined for two murine tumour lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI) using a cryospectrophotometric method. The aim was to search for possible relationships between HbO2 saturation status and tumour volume, tumour pH and fraction of radiobiologically hypoxic cells. Tumour pH was measured by 31P NMR spectroscopy. Hypoxic fractions were determined from cell survival curves for tumours irradiated in vivo and assayed in vitro. Tumours in the volume range 100-4000 mm3 were studied and the majority of the vessels were found to have HbO2 saturations below 10%. The volume-dependence of the HbO2 frequency distributions differed significantly among the four tumour lines; HbO2 saturation status decreased with increasing tumour volume for the KHT, RIF-1 and MLS lines and was independent of tumour volume for the OWI line. The data indicated that the rate of decrease in HbO2 saturation status during tumour growth was related to the rate of development of necrosis. The volume-dependence of tumour pH was very similar to that of the HbO2 saturation status for all tumour lines. Significant correlations were therefore found between HbO2 saturation status and tumour pH, both within tumour lines and across the four tumour lines, reflecting that the volume-dependence of both parameters probably was a compulsory consequence of reduced oxygen supply conditions during tumour growth. Hypoxic fraction increased during tumour growth for the KHT, RIF-1 and MLS lines and was volume-independent for the OWI line, suggesting a relationship between HbO2 saturation status and hypoxic fraction within tumour lines. However, there was no correlation between these two parameters across the four tumour lines, indicating that the hypoxic fraction of a tumour is not determined only by the oxygen supply conditions; other parameters may also be important, e.g. oxygen diffusivity, rate of oxygen

  2. Retrieval of the vertical column of an atmospheric constituent from data fusion of remote sensing measurements

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Cortesi, Ugo; Del Bianco, Samuele; Raspollini, Piera

    2010-01-01

    Techniques of data fusion are presently being considered with increasing interest for application to atmospheric observations from space because of their capability to optimally exploit the complementary information provided by different instruments operating aboard on-going and future satellite missions. The task of combining measurements of the same target, when carried out at the level of the retrieved state vectors, faces with two major problems: the need to interpolate the products represented on different retrieval grids which determines a loss of information and the presence of a priori information in the products that can determine a bias in the product of the data fusion. The measurement space solution method avoids these problems. Based on this method we present a novel approach to retrieve the vertical column of an atmospheric constituent from data fusion of remote sensing measurements. We apply the method to retrieve the ozone column from the fusion of simulated measurements of the IASI nadir-viewing spectrometer onboard the METOP-A platform and of the MIPAS limb sounder onboard the ENVISAT satellite. The performance of the method is evaluated in terms of retrieval errors and averaging kernels of the products. The results show the evidence of improved retrieval quality when comparing the outcome of data fusion with that of the inversion process applied to spectra from either of the two instruments.

  3. An oscillating microbalance for meteorological measurements of ice and volcanic ash accumulation from a weather balloon platform

    Science.gov (United States)

    Airey, Martin; Harrison, Giles; Nicoll, Keri; Williams, Paul; Marlton, Graeme

    2017-04-01

    A new, low cost, instrument has been developed for meteorological measurements of the accumulation of ice and volcanic ash that can be readily deployed using commercial radiosondes and weather balloons. It is based on principles used by [1], an instrument originally developed to measure supercooled liquid water profiles in clouds. This new instrument introduces numerous improvements in terms of reduced complexity and cost. It uses the oscillating microbalance principle, whereby a wire vibrating at its natural frequency is subjected to increased loading of the property to be measured. The increase in mass modifies the wire properties such that its natural frequency of oscillation changes. By measuring this frequency, the increase in mass can be inferred and transmitted to a ground base station through the radiosonde's UHF antenna via the PANDORA interface [2], which has been previously developed to provide power and connection to the radiosonde telemetry. The device consists of a simple circuit board controlled by an ATMEGA microcontroller. For calibration, the controller is capable of driving the wire at specified frequencies via excitation by a piezo sounder upon which the wire is mounted. The same piezo sounder is also used during active operation to measure the frequency of the wire in its non-driven state in order to infer the mass change on the wire. A phase-locked loop implemented on the board identifies when resonance occurs and the measured frequency is stable, prompting the microcontroller to send the measurement through the data interface. The device may be used for any application that requires the measurement of incremental mass variation e.g. ice accumulation, frosting, or particle accumulation such as dust and volcanic ash. For the solid particle accumulation, a low temperature, high-tack, adhesive may be applied to the wire prior to deployment to collect the material. In addition, the same instrument may be used for ground-based applications, such as

  4. Evaluation of higher brain function by MRI. Flow measurement in the superior sagittal sinus using phase contrast method

    International Nuclear Information System (INIS)

    Ono, Mototsugu

    1997-01-01

    To assess the higher brain function, flow measurement in the superior sagittal sinus (SSS) was performed noninvasively using a phase contrast MRI in 76 patients with suspicious of impaired higher brain function including dementias (senile dementia of Alzheimer type; SDAT and multi-infarct dementia; MID), strokes, and others. Thirty-one normal controls were consisted of 18 healthy volunteers and 13 patients with tension headache whose higher brain function was proved be normal. Mean flow velocity was measured in the distal portion of the SSS adjoining to the occipital lobes and was multiplied by cross-sectional area of the SSS at the measuring point to obtain mean flow volume. For intellectual index, cross-cultural cognitive examination (CCCE) was applied to all cases excluding volunteers. Normal value of SSS flow volume measured by MRI was 6.92±0.66 ml/s. Significant differences in both SSS flow and CCCE score from normal controls were found in SDAT group, MID group, and non-dementia group. No substantial differences between SDAT group and MID group were noted in both CCCE score and SSS flow. In normal controls, there was no correlation between SSS flow and age, whereas, significant inverse correlation of SSS flow with age was found in all cases. Between CCCE score and SSS flow, there were nearly linear relationships in all cases, SDAT group, MID group, and non-dementia group. Significant but relatively poor correlation was found in normals. (K.H.)

  5. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    Science.gov (United States)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  6. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra

    Directory of Open Access Journals (Sweden)

    J. Bak

    2013-02-01

    Full Text Available South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error derived from the 270–330 nm (OMI and 300–330 nm (GEMS wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS Microwave Limb Sounder (MLS. The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those

  7. The Multidimensional Loss Scale: validating a cross-cultural instrument for measuring loss.

    Science.gov (United States)

    Vromans, Lyn; Schweitzer, Robert D; Brough, Mark

    2012-04-01

    The Multidimensional Loss Scale (MLS) represents the first instrument designed specifically to index Experience of Loss Events and Loss Distress across multiple domains (cultural, social, material, and intrapersonal) relevant to refugee settlement. Recently settled Burmese adult refugees (N = 70) completed a questionnaire battery, including MLS items. Analyses explored MLS internal consistency, convergent and divergent validity, and factor structure. Cronbach alphas indicated satisfactory internal consistency for Experience of Loss Events (0.85) and Loss Distress (0.92), reflecting a unitary construct of multidimensional loss. Loss Distress did not correlate with depression or anxiety symptoms and correlated moderately with interpersonal grief and trauma symptoms, supporting divergent and convergent validity. Factor analysis provided preliminary support for a five-factor model: Loss of Symbolic Self, Loss of Interdependence, Loss of Home, Interpersonal Loss, and Loss of Intrapersonal Integrity. Received well by participants, the new scale shows promise for application in future research and practice.

  8. Regional Characteristics for Interpreting Inverted Echo Sounder (IES) observations

    Science.gov (United States)

    1987-06-01

    rounding the IESs. There are seasonal warming and and ideally, we should like to have a series of hydro- cooling effects which may be missed with...thermocline This shallo, sanabihlit\\ , Is lkck to be spatialk and temporall , aliased: it ma\\ 01 ." b assoi ated ws.ith internal \\ awes or frontal tluctua

  9. Spatial noise-aware temperature retrieval from infrared sounder data

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Laparra, Valero; Nielsen, Allan Aasbjerg

    2017-01-01

    Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used...... for these purposes but our analysis shows that one can gain significant improvements of the error rates when using MNF instead. In our analysis we also investigate the relationship between error rate improvements when including more spectral and spatial components in the regression model, aiming to uncover the trade...

  10. An application of the multibeam sounder for seabed backscattering analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Raju, Y.S.N.

    signals are studied with the sediments like sand, clay and silt of smooth and rippled type. Study shows that the scattering effect is less with the sand bottom while compared with clay and silt type sediments...

  11. Application of multiplicative array techniques for multibeam sounder systems

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    modification in terms of additional computation or hardware for improved array gain. The present work is devoted towards the study of a better beamforming method i.e. a multiplicative array technique with some modification proposEd. by Brown and Rowland...

  12. Importance measures

    International Nuclear Information System (INIS)

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the following: general concepts of importance measures; example fault tree, used to illustrate importance measures; Birnbaum's structural importance; criticality importance; Fussel-Vesely importance; upgrading function; risk achievement worth; risk reduction worth

  13. Formative (measurement)

    NARCIS (Netherlands)

    Fassott, G.; Henseler, Jörg; Cooper, C.; Lee, N.; Farrell, A.

    2015-01-01

    When using measurement models with multiple indicators, researchers need to decide about the epistemic relationship between the latent variable and its indicators. In this article, we describe the nature, the estimation, the characteristics, and the validity assessment of formative measurement

  14. A New ENSO Index Derived from Satellite Measurements of Column Ozone

    Science.gov (United States)

    Ziemke, J. R.; Chandra, S.; Oman, L. D.; Bhartia, P. K.

    2010-01-01

    Column Ozone measured in tropical latitudes from Nimbus 7 total ozone mapping spectrometer (TOMS), Earth Probe TOMS, solar backscatter ultraviolet (SBUV), and Aura ozone monitoring instrument (OMI) are used to derive an El Nino-Southern Oscillation (ENSO) index. This index, which covers a time period from 1979 to the present, is defined as the Ozone ENSO Index (OEI) and is the first developed from atmospheric trace gas measurements. The OEI is constructed by first averaging monthly mean column ozone over two broad regions in the western and eastern Pacific and then taking their difference. This differencing yields a self-calibrating ENSO index which is independent of individual instrument calibration offsets and drifts in measurements over the long record. The combined Aura OMI and MLS ozone data confirm that zonal variability in total column ozone in the tropics caused by ENSO events lies almost entirely in the troposphere. As a result, the OEI can be derived directly from total column ozone instead of tropospheric column ozone. For clear-sky ozone measurements a +1K change in Nino 3.4 index corresponds to +2.9 Dobson Unit (DU) change in the OEI, while a +1 hPa change in SOI coincides with a -1.7DU change in the OEI. For ozone measurements under all cloud conditions these numbers are +2.4DU and -1.4 DU, respectively. As an ENSO index based upon ozone, it is potentially useful in evaluating climate models predicting long term changes in ozone and other trace gases.

  15. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    Science.gov (United States)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  16. The roles of convection, extratropical mixing, and in-situ freeze-drying in the Tropical Tropopause Layer

    Directory of Open Access Journals (Sweden)

    W. G. Read

    2008-10-01

    Full Text Available Mechanisms for transporting and dehydrating air across the tropical tropopause layer (TTL are investigated with a conceptual two dimensional (2-D model. The 2-D TTL model combines the Holton and Gettelman cold trap dehydration mechanism (Holton and Gettelman, 2001 with the two column convection model of Folkins and Martin (2005. We investigate 3 possible transport scenarios through the TTL: 1 slow uniform ascent across the level of zero radiative heating without direct convective mixing, 2 convective mixing of H2O vapor at 100% relative humidity with respect to ice (RHi with no ice retention, and 3 convective mixing of extremely subsaturated air (100% RHi following the moist adiabatic temperature above the level of neutral buoyancy with sufficient ice retention such that total H2O is 100%RHi. The three mechanisms produce similar seasonal cycles for H2O that are in good quantitative agreement with the Aura Microwave Limb Sounder (MLS measurements. We use Aura MLS measurement of CO and Atmospheric Chemistry Experiment-Fourier Transform Spectrometer measurement of HDO to distinguish among the transport mechanisms. Model comparisons with the observations support the view that H2O is predominantly controlled by regions having the lowest cold point tropopause temperature but the trace species CO and HDO support the convective mixing of dry air and lofted ice. The model provides some insight into the processes affecting the long term trends observed in stratospheric H2O.

  17. Measurement evaluation

    CERN Document Server

    Boros, A

    1990-01-01

    The information obtained about a measured object is called ``crude'' measurement information and must be related to the conditions under which the measurement took place. Using ``crude'' measurement information as a starting point, evaluation produces physically correctly interpreted data with their estimated (or corrected) error. Although a number of works deal with the evaluation of measurements, they either appeared a long time ago or serve essentially different aims. This book gives a comprehensive and current overview on the basic principles, aids, devices, and methods in the eval

  18. A Network Version of the Pump

    National Research Council Canada - National Science Library

    Kang, Myong H; Moskowitz, Ira S; Lee, Daniel C

    1995-01-01

    A designer of reliable MLS networks must consider covert channels and denial of service attacks in addition to traditional network performance measures such as throughput, fairness, and reliability...

  19. Quantum measurement

    CERN Document Server

    Busch, Paul; Pellonpää, Juha-Pekka; Ylinen, Kari

    2016-01-01

    This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann’s classic treatise with this title. Fundamental non-classical features of quantum mechanics—indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality—are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4....

  20. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    Directory of Open Access Journals (Sweden)

    R. A. Stachnik

    2013-03-01

    Full Text Available Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO were made using observations of BrO rotational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor submillimeterwave heterodyne limb sounder (SLS. The balloon was launched from Ft. Sumner, New Mexico (34° N on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry, derived from BrO vmr (volume mixing ratio using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  1. Impacts of the January 2005 solar particle events on middle atmospheric chlorine species

    Science.gov (United States)

    Winkler, Holger; Sinnhuber, Miriam; Notholt, Justus; Maik Wissing, Jan; Kallenrode, May-Britt; Santee, Michelle

    It is well established that solar particle events (SPEs) are sources of significant chemical dis-turbances in the Earth's polar atmosphere. The observed SPE effects on nitrogen, hydrogen and oxygen compounds have been investigated in some detail in recent years, and they can be reproduced by atmospheric models using basic parametrizations for NOx and HOx produc-tion as a funtion of the particle impact ionisation. However, there are considerable differences between model predictions and measurements concerning several other trace gases including chlorine species. Two major SPEs occurred on January 17, and January 20, 2005. The latter had an exceptionally hard energy spectrum which caused maximum particle impact ionization at stratospheric altitudes. The Microwave Limb Sounder (MLS) instrument on-board the Aura satellite has measured a short-term decrease of HCl in the northern polar region corresponding to January 2005 SPEs. The peak HCl depletion is ˜300 ppt at 35-40 km. This is comparable to the depletion of messopheric HCl observed by the HALOE instrument during the July 2000 SPE. We will present simulation results of the University of Bremen Ion Chemistry (UBIC) model for the SPEs in January 2005 focusing on chlorine species. The simulations indicate that the observed short-term decrease of middle atmospheric HCl is due to a conversion into active chlorine species such as Cl, ClO and HOCl. The magnitude of the observed HCl loss can only be reproduced if reactions of negative chlorine species and the production of O(1 D) from the reaction N(2 D) + O2 are taken into account. The model results will be compared to MLS/Aura data of HCl, HOCl and ClO. Additionally, the impacts of the observed chlorine activation, e.g. on ozone, will be assessed.

  2. Cloud ice: A climate model challenge with signs and expectations of progress

    Science.gov (United States)

    Waliser, Duane E.; Li, Jui-Lin F.; Woods, Christopher P.; Austin, Richard T.; Bacmeister, Julio; Chern, Jiundar; Del Genio, Anthony; Jiang, Jonathan H.; Kuang, Zhiming; Meng, Huan; Minnis, Patrick; Platnick, Steve; Rossow, William B.; Stephens, Graeme L.; Sun-Mack, Szedung; Tao, Wei-Kuo; Tompkins, Adrian M.; Vane, Deborah G.; Walker, Christopher; Wu, Dong

    2009-04-01

    Present-day shortcomings in the representation of upper tropospheric ice clouds in general circulation models (GCMs) lead to errors in weather and climate forecasts as well as account for a source of uncertainty in climate change projections. An ongoing challenge in rectifying these shortcomings has been the availability of adequate, high-quality, global observations targeting ice clouds and related precipitating hydrometeors. In addition, the inadequacy of the modeled physics and the often disjointed nature between model representation and the characteristics of the retrieved/observed values have hampered GCM development and validation efforts from making effective use of the measurements that have been available. Thus, even though parameterizations in GCMs accounting for cloud ice processes have, in some cases, become more sophisticated in recent years, this development has largely occurred independently of the global-scale measurements. With the relatively recent addition of satellite-derived products from Aura/Microwave Limb Sounder (MLS) and CloudSat, there are now considerably more resources with new and unique capabilities to evaluate GCMs. In this article, we illustrate the shortcomings evident in model representations of cloud ice through a comparison of the simulations assessed in the Intergovernmental Panel on Climate Change Fourth Assessment Report, briefly discuss the range of global observational resources that are available, and describe the essential components of the model parameterizations that characterize their "cloud" ice and related fields. Using this information as background, we (1) discuss some of the main considerations and cautions that must be taken into account in making model-data comparisons related to cloud ice, (2) illustrate present progress and uncertainties in applying satellite cloud ice (namely from MLS and CloudSat) to model diagnosis, (3) show some indications of model improvements, and finally (4) discuss a number of

  3. CTD, nephelometry and currentmeter measurements at the N.E.A. dumpsite during the 1984 Epicea cruise

    International Nuclear Information System (INIS)

    Vangriesheim, A.

    1989-01-01

    In May of 1984, an EPICEA cruise to the N.E.A. dumpsite was conducted aboard the french research vessel LE SUROIT. The site work was jointly sponsored by IFREMER and CEA and followed IFREMER studies over Meriadzek Terrace. The main purposes of this joint cruise included first an exploration of a part of the site with the IFREMER unmanned submersible EPAULARD, including bottom photographs. Biological measurements included baited cameras, fish and amphipod traps, radioactive baited traps and one-year mooring of a bottom-mounted autonomous colonisation module (the M.A.C.). Geological measurements were made with a 3.5 Khz echo sounder. Radiochemistry included water samples. Physical oceanography included a CTD equipped with a nephelometer. Five CTD vertical profiles to the bottom were made over the dumpsite, 4 of them in the area previously covered by the SEABEAM and 1 outside of that to the East. At the end of the cruise, a M.A.C. was equipped with a currentmeter at 10 meters above the bottom, and moored for one year. The results of the CTD, nephelometry and current measurements are presented

  4. Measurement Uncertainty

    Science.gov (United States)

    Koch, Michael

    Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.

  5. Quantitative measurement of hemodynamics of inferior vena in healthy volunteers with phase-contrast MR imaging at 3.0 T

    International Nuclear Information System (INIS)

    Ruan Zhibing; Fan Guangming; Jiao Jun; Min Dingyu

    2014-01-01

    Objective: To explore the feasibility of quantitative hemodynamics measurement of inferior vena cava (IVC) in healthy volunteers with phase-contrast sequence on 3.0 T MR system (3.0 T PC-MRI), and to evaluate the relationship between IVC lumen area, blood flow, and velocity. Methods: Fifty healthy adult volunteers prospective underwent IVC PC-MRI at 3.0 T MR system. All volunteers were from our hospital for the routine chest or abdomen examinations, no heart disease and lung disease always, heart rate, blood pressure, electrocardiogram was in normal range, no abnormalities were found in clinical and abdominal imaging examinations, and IVC disease was excluded by ultrasonic examination. The area (A), mean velocity (MV), mean flux (MF), regurgitant fraction (RF) and time-flow curve of upper and middle segments of IVC during one cardiac cycle were observed. Independent samples t test was used to compare IVC lumen area and blood flow, velocity between different genders, different age groups (18 to 30 years old group, more than 30 years old group) and different phase velocity encoding value of IVC middle segment, one-way ANOVA was used to compare different phase velocity encoding value of IVC upper segment [(60, 80, 100)cm/s]. Pearson correlation coefficient and regression equation were used to evaluate the relationships between area, blood flow, and velocity. Results: Among 50 patients with successful completion of the examination, significant difference was found in A, MV, MF and RF between the different IVC segments. MF of the IVC middle segment were (37.94 ± 7.32) and (33.68 ± 6.65) ml/s in male (n=24) and female (n=26), respectively; significant difference was found in different genders (t=2.49, P=0.017). MF of upper segment and middle segments of IVC were (54.89 ± 10.98) and (38.29 ± 7.54) ml/s in 18 to 30 years old group (n=27), while MF of upper segment and the middle of IVC were (44.96 ± 8.49) and (32.65 ± 5.59) ml/s in older than 30 years old group (n=23

  6. Validation of ACE-FTS N2O measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2008-08-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE, also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS, is measuring volume mixing ratio (VMR profiles of nitrous oxide (N2O from the upper troposphere to the lower mesosphere at a vertical resolution of about 3–4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs. Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between −42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences for the satellite comparisons are generally within ±10 ppbv. From 30 to 60 km, the mean absolute differences are within ±4 ppbv, and are mostly between −2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns (which cover a mean altitude range of 14 to 27 km are within ±5.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations

  7. Measuring Colour

    CERN Document Server

    Hunt, R W G

    2011-01-01

    The classic authority on colour measurement now fully revised and updated with the latest CIE recommendations The measurement of colour is of major importance in many commercial applications, such as the textile, paint, and foodstuff industries; as well as having a significant role in the lighting, paper, printing, cosmetic, plastics, glass, chemical, photographic, television, transport, and communication industries. Building upon the success of earlier editions, the 4th edition of Measuring Colour has been updated throughout with new chapters on colour rendering by light sources; colorimetry

  8. Mechanical measurements

    CERN Document Server

    Venkateshan, S P

    2015-01-01

    The first edition of this book was co-published by Ane Books India, and CRC Press in 2008. This second edition is an enlarged version of the web course developed by the author at IIT Madras, and also a modified and augmented version of the earlier book.  Major additions/modifications presented are in the treatment of errors in measurement, temperature measurement, measurement of thermo-physical properties, and data manipulation. Many new worked examples have been introduced in this new and updated second edition. 

  9. Horizon measures

    KAUST Repository

    Zhang, Eugene

    2016-11-28

    In this paper we seek to answer the following question: where do contour lines and visible contour lines (silhouette) tend to occur in a 3D surface. Our study leads to two novel shape descriptors, the horizon measure and the visible horizon measure, which we apply to the visualization of 3D shapes including archeological artifacts. In addition to introducing the shape descriptors, we also provide a closed-form formula for the horizon measure based on classical spherical geometry. To compute the visible horizon measure, which depends on the exact computation of the surface visibility function, we instead of provide an image-based approach which can process a model with high complexity within a few minutes.

  10. Lifetime measurements

    International Nuclear Information System (INIS)

    Poletti, A.R.

    1976-01-01

    Recent developments in experimental methods of measuring the lifetimes of excited nuclear states is reviewed in three main areas. (a) Doppler Shift Attenuation Measurements (DSAM) Times: 10 -14 - 10 -11 sec.; (b) Recoil Distance Measurements (RDM) Times: 10 -9 - 10 -12 sec.; (c) Direct Electronic Timing Times: down to 10 -10 sec.; A measurement of an excited state lifetime can answer a large number of different questions. Two examples are discussed: (a) The determination of the lifetime of an isomeric transition in 93 Tc and its use in determining an upper limit for the magnitude of the parity non-conserving matrix element - /Hsub(PN)/17/2 + >. (b) The dependence of the strength of M2 transitions on isospin in nuclei in the 1dsub(3/2) -1fsub(7/2) region. (author)

  11. MEASURING CIRCUIT

    Science.gov (United States)

    Mahoney, J.R.

    1963-01-29

    A measuring and balancing arrangement for mass spectrometers permits the ready determination of isotopic ratios and mole and weight percentages by employing a selection of amplifier input resistors to vary sensitivity in a bridge arrangement. (AEC)

  12. Measuring colour

    National Research Council Canada - National Science Library

    Hunt, R. W. G; Pointer, Michael, Ph. D

    2011-01-01

    ... industries.Building upon the success of earlier editions, the 4th edition of [start italics]Measuring Colour[end italics] has been updated throughout with new chapters on colour rendering by light sources...

  13. Diversity Measures

    Directory of Open Access Journals (Sweden)

    MSc. Mentor Ademaj

    2012-06-01

    Full Text Available Diversity measures are a type of non-criminal measures foreseen in the Chapter IV of the Code of Juvenile Justice, which may be imposed on juvenile perpetrators of criminal acts. These measures can be applied in cases of minor offenses, for which is foreseen the criminal sanction with a fine or imprisonment up to three years or for criminal offenses committed by negligence for which is foreseen the sentence up to five years of imprisonment, except those cases that result in death. With the imposition of these measures is intended to prevent criminal proceedings against juveniles whenever is possible, rehabilitation and reintegration of juvenile in his/her community and the prevention of recidivist behaviour. Competent authority to impose them is the public prosecutor, the juvenile judge and juvenile court. And they are executed by the Kosovo Correctional Service.

  14. Lifetime measurements

    International Nuclear Information System (INIS)

    Fossan, D.B.; Warburton, E.K.

    1974-01-01

    Lifetime measurements are discussed, concentrating on the electronic technique, the recoil distance method (RDM), and the Doppler shift attenuation method (DSAM). A brief review of several indirect timing techniques is given, and their specific advantages and applicability are considered. The relationship between lifetimes of nuclear states and the nuclear structure information obtained from them is examined. A short discussion of channeling and microwave methods of lifetime measurement is presented. (23 figures, 171 references) (U.S.)

  15. Anthropomorphic measurements

    International Nuclear Information System (INIS)

    Wang, J.

    1998-01-01

    Based on decisions taken during the Research Coordination Meetings in Mito City 1988 and Bombay 1991, the participants were requested to provide data on physical measurement parameters of body height, body weight, sitting height, head circumference, neck circumference, chest circumference, chest width and chest depth which represented the age groups as newborn, 1 year, 5 years, 10 years, 15 years and adult 20-50 years. Accordingly, physical measurement data was obtained by participants from 9 countries

  16. Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming

    Directory of Open Access Journals (Sweden)

    R. J. de Wit

    2015-03-01

    Full Text Available The previously reported observation of anomalous eastward gravity wave forcing at mesopause heights around the onset of the January 2013 major sudden stratospheric warming (SSW over Trondheim, Norway (63° N, 10° E, is placed in a global perspective using Microwave Limb Sounder (MLS temperature observations from the Aura satellite. It is shown that this anomalous forcing results in a clear cooling over Trondheim about 10 km below mesopause heights. Conversely, near the mesopause itself, where the gravity wave forcing was measured, observations with meteor radar, OH airglow and MLS show no distinct cooling. Polar cap zonal mean temperatures show a similar vertical profile. Longitudinal variability in the high northern-latitude mesosphere and lower thermosphere (MLT is characterized by a quasi-stationary wave-1 structure, which reverses phase at altitudes below ~ 0.1 hPa. This wave-1 develops prior to the SSW onset, and starts to propagate westward at the SSW onset. The latitudinal pole-to-pole temperature structure associated with the major SSW shows a warming (cooling in the winter stratosphere (mesosphere which extends to about 40° N. In the stratosphere, a cooling extending over the equator and far into the summer hemisphere is observed, whereas in the mesosphere an equatorial warming is noted. In the Southern Hemisphere mesosphere, a warm anomaly overlaying a cold anomaly is present, which is shown to propagate downward in time. This observed structure is in accordance with the temperature perturbations predicted by the proposed interhemispheric coupling mechanism for cases of increased winter stratospheric planetary wave activity, of which major SSWs are an extreme case. These results provide observational evidence for the interhemispheric coupling mechanism, and for the wave-mean flow interaction believed to be responsible for the establishment of the anomalies in the summer hemisphere.

  17. Cross-sectional measures and modelled estimates of blood alcohol levels in UK nightlife and their relationships with drinking behaviours and observed signs of inebriation

    Directory of Open Access Journals (Sweden)

    Jarman Ian

    2010-04-01

    Full Text Available Abstract Background Management of nightlife in UK cities focuses on creating safe places for individuals to drink. Little is known about intoxication levels as measuring total alcohol consumption on nights out is complicated by early evening interviews missing subsequent consumption and later interviews risking individuals being too drunk to recall consumption or participate at all. Here we assess mixed survey and modelling techniques as a methodological approach to examining these issues. Methods Interviews with a cross sectional sample of nightlife patrons (n = 214 recruited at different locations in three cities established alcohol consumption patterns up to the point of interview, self-assessed drunkenness and intended drinking patterns throughout the remaining night out. Researchers observed individuals' behaviours to independently assess drunkenness. Breath alcohol tests and general linear modelling were used to model blood alcohol levels at participants' expected time of leaving nightlife settings. Results At interview 49.53% of individuals regarded themselves as drunk and 79.43% intended to consume more alcohol before returning home, with around one in ten individuals (15.38% males; 4.35% females intending to consume >40 units (equal to 400 mls of pure alcohol. Self-assessed drunkenness, researcher observed measures of sobriety and blood alcohol levels all correlated well. Modelled estimates for blood alcohol at time of going home suggested that 71.68% of males would be over 0.15%BAC (gms alcohol/100 mls blood. Higher blood alcohol levels were related to drinking later into the night. Conclusions UK nightlife has used substantive health and judicial resources with the aim of creating safer and later drinking environments. Survey and modelling techniques together can help characterise the condition of drinkers when using and leaving these settings. Here such methods identified patrons as routinely getting drunk, with risks of drunkenness

  18. Evidence of horizontal and vertical transport of water in the Southern Hemisphere tropical tropopause layer (TTL from high-resolution balloon observations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2016-09-01

    Full Text Available High-resolution in situ balloon measurements of water vapour, aerosol, methane and temperature in the upper tropical tropopause layer (TTL and lower stratosphere are used to evaluate the processes affecting the stratospheric water budget: horizontal transport (in-mixing and hydration by cross-tropopause overshooting updrafts. The obtained in situ evidence of these phenomena are analysed using satellite observations by Aura MLS (Microwave Limb Sounder and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation together with trajectory and transport modelling performed using CLaMS (Chemical Lagrangian Model of the Stratosphere and HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model. Balloon soundings were conducted during March 2012 in Bauru, Brazil (22.3° S in the frame of the TRO-Pico campaign for studying the impact of convective overshooting on the stratospheric water budget. The balloon payloads included two stratospheric hygrometers: FLASH-B (Fluorescence Lyman-Alpha Stratospheric Hygrometer for Balloon and Pico-SDLA instrument as well as COBALD (Compact Optical Backscatter Aerosol Detector sondes, complemented by Vaisala RS92 radiosondes. Water vapour vertical profiles obtained independently by the two stratospheric hygrometers are in excellent agreement, ensuring credibility of the vertical structures observed. A signature of in-mixing is inferred from a series of vertical profiles, showing coincident enhancements in water vapour (of up to 0.5 ppmv and aerosol at the 425 K (18.5 km level. Trajectory analysis unambiguously links these features to intrusions from the Southern Hemisphere extratropical stratosphere, containing more water and aerosol, as demonstrated by MLS and CALIPSO global observations. The in-mixing is successfully reproduced by CLaMS simulations, showing a relatively moist filament extending to 20° S. A signature of local cross-tropopause transport of water is observed in

  19. Interpretation of Aura satellite observations of CO and aerosol index related to the December 2006 Australia fires

    Science.gov (United States)

    Luo, M.; Boxe, C.; Jiang, J.; Nassar, R.; Livesey, N.

    2009-11-01

    Enhanced Carbon Monoxide (CO) in the upper troposphere (UT) is shown by collocated Tropospheric Emission Spectrometer (TES) and Microwave Limb Sounder (MLS) measurements near and down-wind from the known wildfire region of SE Australia from 12-19 December 2006. Enhanced UV aerosol index (AI) derived from Ozone Monitoring Instrument (OMI) measurements correlate with these high CO concentrations. HYSPLIT model back trajectories trace selected air parcels to the SE Australia fire region as their initial location, where TES observes enhanced CO in the upper and lower troposphere. Simultaneously, they show a lack of vertical advection along their tracks. TES retrieved CO vertical profiles in the higher and lower southern latitudes are examined together with the averaging kernels and show that TES CO retrievals are most sensitive at approximately 300-400 hPa. The enhanced CO observed by TES at the upper (215 hPa) and lower (681 hPa) troposphere are, therefore, influenced by mid-tropospheric CO. GEOS-Chem model simulations with an 8-day emission inventory, as the wildfire source over Australia, are sampled to the TES/MLS observation times and locations. These simulations only show CO enhancements in the lower troposphere near and down-wind from the wildfire region of SE Australia with drastic underestimates of UT CO. Although CloudSat along-track ice-water content curtains are examined to see whether possible vertical convection events can explain the high UT CO values, sparse observations of collocated Aura CO and CloudSat along-track ice-water content measurements for the single event precludes any conclusive correlation. Vertical convection that uplift fire-induced CO (i.e. most notably referred to as pyro-cumulonimbus, pyroCb) may provide an explanation for the incongruence between these simulations and the TES/MLS observations of enhanced CO in the UT. Future GEOS-Chem simulations are needed to validate this conjecture as the the PyroCb mechanism is currently not

  20. Tunable Far Infrared Studies in Support of Stratospheric Measurements

    Science.gov (United States)

    Chance, Kelly V.; Park, K.; Nolt, I. G.; Evenson, K. M.

    2001-01-01

    This report summarizes research done under NASA Grant NAG5-4653. The research performed under this grant has been a collaboration between institutions including the Smithsonian Astrophysical Observatory, the National Institute of Standards and Technology, the University of Oregon, and the NASA Langley Research Center. The program has included fully line-resolved measurements of submillimeter and far infrared spectroscopic line parameters (pressure broadening coefficients and their temperature dependences, and line positions) for the analysis of field measurements of stratospheric constituents, far infrared database improvements, and studies for improved satellite measurements of the Earth's atmosphere. This research program is designed to enable the full utilization of spectra obtained in far infrared/submillimeter field measurements, such as FIRS-2, FILOS, IBEX, SLS, EosMLS, and proposed European Space Agency measurements of OH (e.g., PIRAMHYD and SFINX) for the retrieval of accurate stratospheric altitude profiles of key trace gases involved in ozone layer photochemistry. For the analysis of the spectra obtained in the stratosphere from far infrared measurements it is necessary to have accurate values of the molecular parameters (line positions, strengths, and pressure broadening coefficients) for the measured molecules and for possible interfering species. Knowledge of line positions is in increasingly good shape, with some notable exceptions. The increase in position information includes research that has been performed in the present program of research on HO2, H2O, H2O2, O3, HCl, HF, HBr, HI, CO, OH, and ClO. Examples where further line position studies are necessary include hot band and minor isotopomer lines of some of the major trace species (H2O, O3) and normal lines of some triatomic and larger molecules (NO2). Knowledge of strengths is in generally good shape, since most of the lines are from electric dipole transitions whose intensities are well

  1. Against 'measurement'

    International Nuclear Information System (INIS)

    Bell, John

    1990-01-01

    This author of this article rails against the term ''measurement'' as it is commonly used in quantum mechanics. Many terms such as this are full of common place, everyday associations which are entirely inappropriate to the quantum world and lead to misunderstanding even amongst physicists. Measurement implies, at least for laboratory experiments, that the complexities of the real world have been simplified to the minimum number of variables. This can never be so for quantum mechanics where the act of measurement is intrinsic to the result, where even the mind of the observer plays a part. Three books on quantum mechanics are reviewed in an attempt to present a more precise comprehension of the meaning inside quantum mechanics. (UK)

  2. Measurements of

    CERN Document Server

    Angerami, Aaron; The ATLAS collaboration

    2018-01-01

    A measurement is presented of $\\gamma \\gamma \\rightarrow \\mu^{+} \\mu^{-}$ in Pb+Pb collisions recorded by the ATLAS detector at the LHC at $\\sqrt{s_{\\mathrm{NN}}}=5.02$ TeV with an integrated luminosity of 0.49 nb$^{-1}$. The angular and transverse momentum correlations between the muons are measured as a function of collision centrality. The lepton pairs are produced from $\\gamma \\gamma$ through the interaction of the large electromagnetic fields of the nuclei. The contribution from background sources of muon pairs is removed using a template fit method. In peripheral collisions, the muons exhibit a strong back-to-back correlation consistent with previous measurements of muon pair production in ultra-peripheral collisions. The angular correlations are observed to broaden significantly in central collisions. The modifications are qualitatively consistent with rescattering of the muons while passing through the hot matter produced in the collision.

  3. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    Science.gov (United States)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  4. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  5. SAFETY MEASURES

    CERN Multimedia

    Relations with the Host States Service; Tel. 75152

    2001-01-01

    Following the recent terrorist attacks, the French authorities have introduced increased-vigilance measures («Vigipirate renforcé») as part of their prevention of terrorism campaign and have expressed the wish to extend these measures to the French part of the CERN site. The Organization has acceded to this request with the understanding that its international status will be respectd and has granted the French Gendarmerie right of access to the Prévessin site and to the LEP/LHC sites on French territory.

  6. Measuring anhedonia

    DEFF Research Database (Denmark)

    Rømer Thomsen, Kristine

    2015-01-01

    about pleasure, which is often, but not always accessible to conscious awareness." (Rømer Thomsen et al., 2015). This framework is in line with Treadway and Zald's (2011) proposal to differentiate between motivational and consummatory types of anhedonia, and stresses the need to combine traditional self......-report measures with behavioral measures or procedures. In time, this approach may lead to improved clinical assessment and treatment. In line with our reconceptualization, increasing evidence suggests that reward processing deficits are not restricted to impaired hedonic impact in major psychiatric disorders...

  7. Measuring Globalization

    OpenAIRE

    Andersen, Torben M.; Herbertsson, Tryggvi Thor

    2003-01-01

    The multivariate technique of factor analysis is used to combine several indicators of economic integration and international transactions into a single measure or index of globalization. The index is an alternative to the simple measure of openness based on trade, and it produces a ranking of countries over time for 23 OECD countries. Ireland is ranked as the most globalized country during the 1990?s, while the UK was at the top during the 1980?s. Some of the most notable changes in the rank...

  8. Radioactivity measurement

    International Nuclear Information System (INIS)

    Bohme, R.F.; Lazerson, M.M.

    1984-01-01

    A problem with ore sorting arrangements is that radiation is difficult to measure accurately while particles are moving at speed past the detector. This is particulary so when dealing with ores such as gold ores which have weak emissions. A method of measuring radioactive emissions from moving radioactive material includes the steps of shielding the radiation detector(s) so that the angle of acceptance of the receptor surface is restricted, and further shielding the shielded portion of the detector with a second material which is less radiation emissive than the material of the first shield. This second shield is between the first shield and the detector

  9. User-assisted Object Detection by Segment Based Similarity Measures in Mobile Laser Scanner Data

    NARCIS (Netherlands)

    Oude Elberink, S.J.; Kemboi, B.J.

    2014-01-01

    This paper describes a method that aims to find all instances of a certain object in Mobile Laser Scanner (MLS) data. In a userassisted approach, a sample segment of an object is selected, and all similar objects are to be found. By selecting samples from multiple classes, a classification can be

  10. AMS measurements

    International Nuclear Information System (INIS)

    Lawson, E.M.

    1999-01-01

    Accelerator mass spectrometry (AMS) ia an ultrasensitive analysis technique using a system based on a nuclear particle accelerator and its beam transport system to detect and measure individual 14 C ions.. In AMS a 14 C abundance is obtained by comparing the measurement rates of 14 C and 13 C ions. This is not as simple as it sounds. The enormous difference in the numbers of the two isotopes makes it very hard to uniquely detect 14 C ions. For modern samples, those with the most 14 C, some 10 10 13 C ions leave the source for every 14 C ion. However, the use of an accelerator and various high energy techniques makes it possible to the detect the 14 C and to reject the 13 C. in order to achieve this high rejection efficiency the injection magnet is set to transmit only one isotope, namely 14 C. However, a subsequent measurement of 13 C must be made. The number and the rate of arrival of 13 C ions is such that individual ions cannot be measured, instead a 13 C current is measured in a Faraday cup. It is possible to alternate the injection magnet field between that to transmit 14 C and that to transmit 13 C. This method is known as slow cycling but suffers from significant dead (not useful) periods while the magnet field is changed and stabilises. Furthermore and more significantly, during this dead time changes in ion source output may occur distorting the 14 C/ 13 C ratio. We instead employ a method known as fast cycling which involves rapidly increasing the energy of the 13 C ions as they enter the injection magnet. This is achieved by the use of a high voltage (6.7 kV) pulser. We can also inject 12 C by this method although a 14.7 kV pulse is required. The switching time from one carbon isotope to another is only a fraction of a millisecond in this fast cycling method. Hence one has quasi-simultaneous measurement of 14 C and 13 C. Measurements of the 14 C/ 13 C ratio from a sample are always compared to the same ratio from an internationally accepted standard

  11. Climatology and Impact of Convection on the Tropical Tropopause Layer

    Science.gov (United States)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  12. The Role of Overshooting Convection in Elevated Stratospheric Water Vapor over the Summertime Continental United States

    Science.gov (United States)

    Herman, R. L.; Ray, E. A.; Rosenlof, K. H.; Bedka, K. M.; Schwartz, M. J.; Read, W. G.; Troy, R. F.

    2016-12-01

    The NASA ER-2 aircraft sampled the UTLS region over North America during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. On four flights targeting convectively-influenced air parcels, in situ measurements of enhanced water vapor in the lower stratosphere over the summertime continental United States were made using the JPL Laser Hygrometer (JLH Mark2). Water vapor mixing ratios greater than 10 ppmv, twice the stratospheric background levels, were measured at pressure levels between 80 and 160 hPa. Through satellite observations and analysis, we make the connection between these in situ water measurements and overshooting cloud tops. The overshooting tops (OT) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Back-trajectory analysis ties enhanced water to OT one to seven days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American Monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. Regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  13. Merged ozone profiles from four MIPAS processors

    Science.gov (United States)

    Laeng, Alexandra; von Clarmann, Thomas; Stiller, Gabriele; Dinelli, Bianca Maria; Dudhia, Anu; Raspollini, Piera; Glatthor, Norbert; Grabowski, Udo; Sofieva, Viktoria; Froidevaux, Lucien; Walker, Kaley A.; Zehner, Claus

    2017-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared (IR) limb emission spectrometer on the Envisat platform. Currently, there are four MIPAS ozone data products, including the operational Level-2 ozone product processed at ESA, with the scientific prototype processor being operated at IFAC Florence, and three independent research products developed by the Istituto di Fisica Applicata Nello Carrara (ISAC-CNR)/University of Bologna, Oxford University, and the Karlsruhe Institute of Technology-Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía (KIT-IMK/IAA). Here we present a dataset of ozone vertical profiles obtained by merging ozone retrievals from four independent Level-2 MIPAS processors. We also discuss the advantages and the shortcomings of this merged product. As the four processors retrieve ozone in different parts of the spectra (microwindows), the source measurements can be considered as nearly independent with respect to measurement noise. Hence, the information content of the merged product is greater and the precision is better than those of any parent (source) dataset. The merging is performed on a profile per profile basis. Parent ozone profiles are weighted based on the corresponding error covariance matrices; the error correlations between different profile levels are taken into account. The intercorrelations between the processors' errors are evaluated statistically and are used in the merging. The height range of the merged product is 20-55 km, and error covariance matrices are provided as diagnostics. Validation of the merged dataset is performed by comparison with ozone profiles from ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) and MLS (Microwave Limb Sounder). Even though the merging is not supposed to remove the biases of the parent datasets, around the ozone volume mixing ratio peak the merged product is found to have a smaller (up to 0.1 ppmv

  14. A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation

    Directory of Open Access Journals (Sweden)

    M. Claeyman

    2010-07-01

    Full Text Available This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO continuity equation. This linear scheme (hereinafter noted LINCO has been implemented in the 3-D Chemical Transport Model (CTM MOCAGE (MOdèle de Chimie Atmospherique Grande Echelle. First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about ±25 ppbv (part per billion by volume or 15% in the troposphere and ±10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT and the stratosphere (Microwave Limb Sounder: MLS and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme mostly flying in the upper troposphere and lower stratosphere (UTLS. In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 Pa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics

  15. The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss

    Directory of Open Access Journals (Sweden)

    G. L. Manney

    2016-12-01

    Full Text Available The 2015/16 Northern Hemisphere winter stratosphere appeared to have the greatest potential yet seen for record Arctic ozone loss. Temperatures in the Arctic lower stratosphere were at record lows from December 2015 through early February 2016, with an unprecedented period of temperatures below ice polar stratospheric cloud thresholds. Trace gas measurements from the Aura Microwave Limb Sounder (MLS show that exceptional denitrification and dehydration, as well as extensive chlorine activation, occurred throughout the polar vortex. Ozone decreases in 2015/16 began earlier and proceeded more rapidly than those in 2010/11, a winter that saw unprecedented Arctic ozone loss. However, on 5–6 March 2016 a major final sudden stratospheric warming ("major final warming", MFW began. By mid-March, the mid-stratospheric vortex split after being displaced far off the pole. The resulting offspring vortices decayed rapidly preceding the full breakdown of the vortex by early April. In the lower stratosphere, the period of temperatures low enough for chlorine activation ended nearly a month earlier than that in 2011 because of the MFW. Ozone loss rates were thus kept in check because there was less sunlight during the cold period. Although the winter mean volume of air in which chemical ozone loss could occur was as large as that in 2010/11, observed ozone values did not drop to the persistently low values reached in 2011.We use MLS trace gas measurements, as well as mixing and polar vortex diagnostics based on meteorological fields, to show how the timing and intensity of the MFW and its impact on transport and mixing halted chemical ozone loss. Our detailed characterization of the polar vortex breakdown includes investigations of individual offspring vortices and the origins and fate of air within them. Comparisons of mixing diagnostics with lower-stratospheric N2O and middle-stratospheric CO from MLS (long-lived tracers show rapid vortex erosion and

  16. Measuring Trust

    OpenAIRE

    Glaeser, Edward Ludwig; Laibson, David I.; Scheinkman, Jose A.; Soutter, Christine L.

    2000-01-01

    We combine two experiments and a survey to measure trust and trustworthiness—two key components of social capital. Standard attitudinal survey questions about trust predict trustworthy behavior in our experiments much better than they predict trusting behavior. Trusting behavior in the experiments is predicted by past trusting behavior outside of the experiments. When individuals are closer socially, both trust and trustworthiness rise. Trustworthiness declines when partners are of differen...

  17. Radiation measurement

    International Nuclear Information System (INIS)

    Go, Sung Jin; Kim, Seung Guk; No, Gyeong Seok; Park, Myeong Hwan; Ann, Bong Seon

    1998-03-01

    This book explains technical terms about radiation measurement, which are radiation, radiation quantity and unit such as prefix of international unit, unit for defence purposes of radiation, coefficient of radiation and interaction, kinds and principles of radiation detector, ionization chamber, G-M counter, G-M tube, proportional counter, scintillation detector, semiconductor radiation detector, thermoluminescence dosimeter, PLD, others detector, radiation monitor, neutron detector, calibration of radiation detector, statistics of counting value, activation analysis and electronics circuit of radiation detector.

  18. Measuring phase with Stokes measurements

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-07-01

    Full Text Available Measurements Angela Dudley1, Giovanni Milione2, Robert Alfano2 and Andrew Forbes1. 1 CSIR National Laser Centre, Pretoria, South Africa. 2 Institute for Ultrafast Spectroscopy and Lasers, Physics Department, City College of New York,160 Convent Ave., New...

  19. Measurements of Humidity in the Atmosphere and Validation Experiments (MOHAVE-2009: overview of campaign operations and results

    Directory of Open Access Journals (Sweden)

    T. Leblanc

    2011-12-01

    sounders allowed to identify only the largest biases, in particular a 10% dry bias of the Water Vapor Millimeter-wave Spectrometer compared to the Aura-Microwave Limb Sounder. No other large, or at least statistically significant, biases could be observed.

    Total Precipitable Water (TPW measurements from six different co-located instruments were available. Several retrieval groups provided their own TPW retrievals, resulting in the comparison of 10 different datasets. Agreement within 7% (0.7 mm was found between all datasets. Such good agreement illustrates the maturity of these measurements and raises confidence levels for their use as an alternate or complementary source of calibration for the Raman lidars.

    Tropospheric and stratospheric ozone and temperature measurements were also available during the campaign. The water vapor and ozone lidar measurements, together with the advected potential vorticity results from the high-resolution transport model MIMOSA, allowed the identification and study of a deep stratospheric intrusion over TMF. These observations demonstrated the lidar strong potential for future long-term monitoring of water vapor in the UTLS.

  20. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  1. Measuring progress

    DEFF Research Database (Denmark)

    Wahlberg, Ayo

    2007-01-01

    In recent years, sociological examinations of genetics, therapeutic cloning, neuroscience and tissue engineering have suggested that 'life itself' is currently being transformed through technique with profound implications for the ways in which we understand and govern ourselves and others...... in much the same way that mortality rates, life expectancy or morbidity rates can. By analysing the concrete ways in which human progress has been globally measured and taxonomised in the past two centuries or so, I will show how global stratifications of countries according to their states...

  2. Nuclear measurements

    International Nuclear Information System (INIS)

    Schenkel, R.

    2005-01-01

    Nuclear measurements play a fundamental role in the development of nuclear technology and the assurance of its peaceful use. They are also required in many non-power nuclear applications such as in nuclear medicine, agriculture, environmental protection, etc. This presentation will show examples of most recent advances in measurement methodology or technology in the areas described below. The Generation IV International Forum has selected six innovative reactor systems as candidates for a next generation of sustainable, economic and safe nuclear energy systems. The choice of the best options relies heavily on the availability of accurate nuclear data that can only be obtained, in an international effort, using highly specialised facilities. Significant efforts are being directed towards the partitioning and transmutation of highly active nuclear waste. Different concepts involving fast reactors or accelerator-driven systems are being studied in view of their transmutation capabilities. State of the art equipment has been developed to assess basic properties of nuclear fuel at very high burn-up; some fine examples of this work will be shown. Physical and chemical methods play a crucial role in the detection and identification of radioisotopes used in various stages of the nuclear fuel cycle. Radiation measurement techniques are used, for example, to monitor the quantities of uranium, plutonium and other actinide elements in fuel enrichment and reprocessing facilities. Another field of application of physical and chemical methods is the characterisation of nuclear material seized from illicit trafficking. Seized material has to be analysed in order to obtain clues on its origin and intended use and to prevent diversion of nuclear material from the same source in the future. A recent highlight in basic physics relates to nuclear fission and transmutation with high intensity lasers. Ultra-fast high intensity lasers can produce high energy (tens of MeV) photons through

  3. Drift-corrected Odin-OSIRIS ozone product: algorithm and updated stratospheric ozone trends

    Directory of Open Access Journals (Sweden)

    A. E. Bourassa

    2018-01-01

    Full Text Available A small long-term drift in the Optical Spectrograph and Infrared Imager System (OSIRIS stratospheric ozone product, manifested mostly since 2012, is quantified and attributed to a changing bias in the limb pointing knowledge of the instrument. A correction to this pointing drift using a predictable shape in the measured limb radiance profile is implemented and applied within the OSIRIS retrieval algorithm. This new data product, version 5.10, displays substantially better both long- and short-term agreement with Microwave Limb Sounder (MLS ozone throughout the stratosphere due to the pointing correction. Previously reported stratospheric ozone trends over the time period 1984–2013, which were derived by merging the altitude–number density ozone profile measurements from the Stratospheric Aerosol and Gas Experiment (SAGE II satellite instrument (1984–2005 and from OSIRIS (2002–2013, are recalculated using the new OSIRIS version 5.10 product and extended to 2017. These results still show statistically significant positive trends throughout the upper stratosphere since 1997, but at weaker levels that are more closely in line with estimates from other data records.

  4. Is There Evidence that Mid-Latitude Stratospheric Ozone Depletion Occurs in Conjunction with North American Monsoon Convection?

    Science.gov (United States)

    Rosenlof, K. H.; Ray, E. A.; Portmann, R. W.

    2017-12-01

    A recent study suggests that during the period of the summertime North American Monsoon (NAM), ozone depletion could occur as a result of catalytic ozone destruction associated with the cold and wet conditions caused by overshooting convection. Aura Microwave Limb Sounder (MLS) water vapor measurements do show that the NAM region is wetter than other parts of the globe in regards to both the mean and extremes. However, definitive evidence of ozone depletion occurring in that region has not been presented. In this study, we examine coincident measurements of water vapor, ozone, and tropospheric tracers from aircraft data taken during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign looking specifically for ozone depletion in regions identified as impacted by overshooting convection. Although we do find evidence of lower ozone values in air impacted by convective overshoots, using tropospheric tracers we attribute those observations to input of tropospheric air rather than catalytic ozone destruction. Additionally, we explore the consequences of these lower ozone values on surface UV, and conclude that there is minimal impact on the UV index.

  5. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  6. Development of an in vitro bioassay for measuring susceptibility to macrocyclic lactone anthelmintics in Dirofilaria immitis.

    Science.gov (United States)

    Evans, Christopher C; Moorhead, Andrew R; Storey, Bobby E; Wolstenholme, Adrian J; Kaplan, Ray M

    2013-12-01

    For more than 20 years, anthelmintics of the macrocyclic lactone (ML) drug class have been widely and effectively used as preventives against the canine heartworm, Dirofilaria immitis. However, in recent years an increased number of lack of efficacy (LOE) cases are being reported, in which dogs develop mature heartworm infections despite receiving monthly prophylactic doses of ML drugs. While this situation is raising concerns that heartworms may be developing resistance to MLs, compelling evidence for this is still lacking. Resolution of this dilemma requires validated biological or molecular diagnostic assays, but, unfortunately, no such tests currently exist. To address this need, we developed and optimized a larval migration inhibition assay (LMIA) for use with D. immitis third-stage larvae. The LMIA was used to measure the in vitro dose-response of two ML drugs (ivermectin and eprinomectin) on a known ML-susceptible laboratory strain of D. immitis. A nonlinear regression model was fit to the dose-response data, from which IC50 values were calculated; the mean IC50 and 95% confidence interval for IVM was 4.56 μM (1.26-16.4 μM), greater than that for EPR at 2.02 μM (1.68-2.42 μM), and this difference was significant (p = 0.0428). The R (2) value for EPR assays (0.90) was also greater than that for IVM treatment (0.71). The consistency and reproducibility of the dose-response data obtained with this assay suggests that it may be a useful technique for investigating the relative susceptibilities to ML drugs in other D. immitis populations.

  7. Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    S. Noël

    2018-04-01

    Full Text Available An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17–45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within  ∼  5 %. A significant positive linear change in water vapour for the time 2003–2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year−1 around 17 km. Between 30 and 37 km the changes become significantly negative (about −0.01 ± 0.008 ppmv year−1; all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5–6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer–Dobson circulation.

  8. Measuring Quality

    DEFF Research Database (Denmark)

    Næsby, Torben

    local differences in the quality of day care facilities in Denmark (Nordahl et al, 2012; Hansen et al, 2016) and also that we in fact have little knowledge of whether the desired politically determined targets are being met or not and what the quality is really like. In order to measure the quality......The Danish Day Care Facilities Act (2015), which provides the curriculum on which day care education is based, does not stipulate very clearly what children should learn and therefore how educational processes in preschools should be organised. This means that we must accept that there are large...... of preschool in Denmark a new research project using the ECERS 3 instrument has been launched. This could capture quality from a global quality standard’s perspective, building the basis for a further investigation of practice in Danish early childhood provisions and centers in a more narrow approach...

  9. Bias Correction and Random Error Characterization for the Assimilation of HRDI Line-of-Sight Wind Measurements

    Science.gov (United States)

    Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.

  10. Overview and sample applications of SMILES and Odin-SMR retrievals of upper tropospheric humidity and cloud ice mass

    Directory of Open Access Journals (Sweden)

    P. Eriksson

    2014-12-01

    Full Text Available Retrievals of cloud ice mass and humidity from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES and the Odin-SMR (Sub-Millimetre Radiometer limb sounder are presented and example applications of the data are given. SMILES data give an unprecedented view of the diurnal variation of cloud ice mass. Mean regional diurnal cycles are reported and compared to some global climate models. Some improvements in the models regarding diurnal timing and relative amplitude were noted, but the models' mean ice mass around 250 hPa is still low compared to the observations. The influence of the ENSO (El Niño–Southern Oscillation state on the upper troposphere is demonstrated using 12 years of Odin-SMR data. The same retrieval scheme is applied for both sensors, and gives low systematic differences between the two data sets. A special feature of this Bayesian retrieval scheme, of Monte Carlo integration type, is that values are produced for all measurements but for some atmospheric states retrieved values only reflect a priori assumptions. However, this "all-weather" capability allows a direct statistical comparison to model data, in contrast to many other satellite data sets. Another strength of the retrievals is the detailed treatment of "beam filling" that otherwise would cause large systematic biases for these passive cloud ice mass retrievals. The main retrieval inputs are spectra around 635/525 GHz from tangent altitudes below 8/9 km for SMILES/Odin-SMR, respectively. For both sensors, the data cover the upper troposphere between 30° S and 30° N. Humidity is reported as both relative humidity and volume mixing ratio. The vertical coverage of SMILES is restricted to a single layer, while Odin-SMR gives some profiling capability between 300 and 150 hPa. Ice mass is given as the partial ice water path above 260 hPa, but for Odin-SMR ice water content, estimates are also provided. Besides a smaller contrast between most dry and wet

  11. Mesospheric signatures observed during 2010 minor stratospheric warming at King Sejong Station (62°S, 59°W)

    Science.gov (United States)

    Eswaraiah, S.; Kim, Yong Ha; Hong, Junseok; Kim, Jeong-Han; Ratnam, M. Venkat; Chandran, A.; Rao, S. V. B.; Riggin, Dennis

    2016-03-01

    A minor stratospheric sudden warming (SSW) event was noticed in the southern hemisphere (SH) during September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. Among the three warming events, the signature of mesosphere response was detected only for the September event in the mesospheric wind dataset from both meteor radar and MF radar located at King Sejong Station (62°S, 59°W) and Rothera (68°S, 68°W), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW event, as has been observed in the 2002 major SSW. Signatures of mesospheric cooling (MC) in association with stratospheric warmings are found in temperatures measured by the Microwave Limb Sounder (MLS). Simulations of specified dynamics version of Whole Atmosphere Community Climate Model (SD-WACCM) are able to reproduce these observed features. The mesospheric wind field was found to differ significantly from that of normal years probably due to enhanced planetary wave (PW) activity before the SSW. From the wavelet analysis of wind data of both stations, we find that strong 14-16 day PWs prevailed prior to the SSW and disappeared suddenly after the SSW in the mesosphere. Our study provides evidence that minor SSWs in SH can result in significant effects on the mesospheric dynamics as in the northern hemisphere.

  12. Global CO emission estimates inferred from assimilation of MOPITT and IASI CO data, together with observations of O3, NO2, HNO3, and HCHO.

    Science.gov (United States)

    Zhang, X.; Jones, D. B. A.; Keller, M.; Jiang, Z.; Bourassa, A. E.; Degenstein, D. A.; Clerbaux, C.; Pierre-Francois, C.

    2017-12-01

    Atmospheric carbon monoxide (CO) emissions estimated from inverse modeling analyses exhibit large uncertainties, due, in part, to discrepancies in the tropospheric chemistry in atmospheric models. We attempt to reduce the uncertainties in CO emission estimates by constraining the modeled abundance of ozone (O3), nitrogen dioxide (NO2), nitric acid (HNO3), and formaldehyde (HCHO), which are constituents that play a key role in tropospheric chemistry. Using the GEOS-Chem four-dimensional variational (4D-Var) data assimilation system, we estimate CO emissions by assimilating observations of CO from the Measurement of Pollution In the Troposphere (MOPITT) and the Infrared Atmospheric Sounding Interferometer (IASI), together with observations of O3 from the Optical Spectrograph and InfraRed Imager System (OSIRIS) and IASI, NO2 and HCHO from the Ozone Monitoring Instrument (OMI), and HNO3 from the Microwave Limb Sounder (MLS). Our experiments evaluate the inferred CO emission estimates from major anthropogenic, biomass burning and biogenic sources. Moreover, we also infer surface emissions of nitrogen oxides (NOx = NO + NO2) and isoprene. Our results reveal that this multiple species chemical data assimilation produces a chemical consistent state that effectively adjusts the CO-O3-OH coupling in the model. The O3-induced changes in OH are particularly large in the tropics. Overall, our analysis results in a better constrained tropospheric chemical state.

  13. Simple Approaches to Improve the Automatic Inventory of ZEBRA Crossing from Mls Data

    Science.gov (United States)

    Arias, P.; Riveiro, B.; Soilán, M.; Díaz-Vilariño, L.; Martínez-Sánchez, J.

    2015-08-01

    The city management is increasingly supported by information technologies, leading to paradigms such as smart cities, where decision-makers, companies and citizens are continuously interconnected. 3D modelling turns of great relevance when the city has to be managed making use of geospatial databases or Geographic Information Systems. On the other hand, laser scanning technology has experienced a significant growth in the last years, and particularly, terrestrial mobile laser scanning platforms are being more and more used with inventory purposes in both cities and road environments. Consequently, large datasets are available to produce the geometric basis for the city model; however, this data is not directly exploitable by management systems constraining the implementation of the technology for such applications. This paper presents a new algorithm for the automatic detection of zebra crossing. The algorithm is divided in three main steps: road segmentation (based on a PCA analysis of the points contained in each cycle of collected by a mobile laser system), rasterization (conversion of the point cloud to a raster image coloured as a function of intensity data), and zebra crossing detection (using the Hough Transform and logical constrains for line classification). After evaluating different datasets collected in three cities located in Northwest Spain (comprising 25 strips with 30 visible zebra crossings) a completeness of 83% was achieved.

  14. 78 FR 74157 - Notice of HUD-Held Multifamily Loan Sale (MLS 2014-1)

    Science.gov (United States)

    2013-12-10

    ... Street SW., Washington, DC 20410-8000; telephone 202-708-2625, extension 3927. Hearing- or speech... 2014-1. Freedom of Information Act Requests HUD reserves the right, in its sole and absolute discretion... to the Freedom of Information Act and all regulations promulgated thereunder. Scope of Notice This...

  15. 76 FR 47226 - Notice of HUD-Held Multifamily Loan Sale (MLS 2011-2)

    Science.gov (United States)

    2011-08-04

    ...., Washington, DC 20410-8000; telephone number 202- 708-2625, extension 3927. Hearing- or speech-impaired... with HUD, unless such default or violation is cured on or before June 30, 2011; Freedom of Information... Freedom of Information Act and all regulations promulgated thereunder. Scope of Notice This notice applied...

  16. Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors

    Science.gov (United States)

    Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus

    2018-02-01

    We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.

  17. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children

    Directory of Open Access Journals (Sweden)

    Janson C

    2006-04-01

    Full Text Available Abstract Background Exhaled nitric oxide (NO measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO was compared with a standard stationary chemiluminescence unit (NIOX. Methods A total of 71 subjects (6–60 years; 36 males, both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots, measurement feasibility (success rate with 6 attempts and repeatability (intrasubject SD. Results Success rate was high (≥ 84% in both devices for both adults and children. The subjects represented a FENO range of 8–147 parts per billion (ppb. When comparing the mean of three measurements (n = 61, the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. Conclusion The hand-held device (NIOX MINO and the stationary system (NIOX are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO is used. The hand-held device shows good repeatability, and it

  18. Performance of a new hand-held device for exhaled nitric oxide measurement in adults and children.

    Science.gov (United States)

    Alving, K; Janson, C; Nordvall, L

    2006-04-20

    Exhaled nitric oxide (NO) measurement has been shown to be a valuable tool in the management of patients with asthma. Up to now, most measurements have been done with stationary, chemiluminescence-based NO analysers, which are not suitable for the primary health care setting. A hand-held NO analyser which simplifies the measurement would be of value both in specialized and primary health care. In this study, the performance of a new electrochemical hand-held device for exhaled NO measurements (NIOX MINO) was compared with a standard stationary chemiluminescence unit (NIOX). A total of 71 subjects (6-60 years; 36 males), both healthy controls and atopic patients with and without asthma were included. The mean of three approved exhalations (50 ml/s) in each device, and the first approved measurement in the hand-held device, were compared with regard to NO readings (Bland-Altman plots), measurement feasibility (success rate with 6 attempts) and repeatability (intrasubject SD). Success rate was high (> or = 84%) in both devices for both adults and children. The subjects represented a FENO range of 8-147 parts per billion (ppb). When comparing the mean of three measurements (n = 61), the median of the intrasubject difference in exhaled NO for the two devices was -1.2 ppb; thus generally the hand-held device gave slightly higher readings. The Bland-Altman plot shows that the 95% limits of agreement were -9.8 and 8.0 ppb. The intrasubject median difference between the NIOX and the first approved measurement in the NIOX MINO was -2.0 ppb, and limits of agreement were -13.2 and 10.2 ppb. The median repeatability for NIOX and NIOX MINO were 1.1 and 1.2 ppb, respectively. The hand-held device (NIOX MINO) and the stationary system (NIOX) are in clinically acceptable agreement both when the mean of three measurements and the first approved measurement (NIOX MINO) is used. The hand-held device shows good repeatability, and it can be used successfully on adults and most children

  19. CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2008-05-01

    Full Text Available The Atmospheric Chemistry Experiment (ACE mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO, a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS. This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006. We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES as well as limb-viewing remote sensors (MIPAS, SMR and MLS were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above. These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km, than 30% in the lower stratosphere (12–30 km, and than 25% from 30 to 100 km.

  20. Northern Hemisphere Atmospheric Influence of the Solar Proton Events and Ground Level Enhancement in January 2005

    Science.gov (United States)

    Jackman, C. H.; Marsh, D. R.; Vitt, F. M.; Roble, R. G.; Randall, C. E.; Bernath, P. F.; Funke, B.; Lopez-Puertas, M.; Versick, S.; Stiller, G. P.; hide

    2011-01-01

    Solar eruptions in early 2005 led substantial barrage of charged particles on the Earth's atmosphere during the January 16-21 period. Proton fluxes were greatly increased during these several days and led to the production ofHO(x)(H, OH, BO2)and NO(x)(N, NO, NO2), which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3) showed large enhancements in mesospheric HO(x) and NO(x) constituents, and associated ozone reductions, due 10 these solar proton events (SPEs). The WACCM3 simulations show enhanced short-lived OH throughout the mesosphere in the 60-82.5degN latitude band due to the SPEs for most days in the Jan.16-2l,2005 period, in reasonable agreement with the Aura Microwave Limb Sounder (MLS) measurements. Mesospheric HO2 is also predicted to be increased by the SPEs, however, the modeled HO2 results are somewhat larger than the MLS measurements. These HO(x) enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40% throughout most of the Northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements of hydrogen peroxide (H2O2) show increases throughout the stratosphere with highest enhancements of about 60 ppt y in the lowermost mesosphere over the Jan. 16-18, 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of more than twice that amount. Measurements of nitric acid (HNO3) by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during January 16-29, 2005. WACCM3 simulations show only minuscule HNO3 changes in the upper stratosphere during this time period. However due to the small loss rates during winter, polar mesospheric enhancements of NO(x) are computed to be greater than 50 ppbv during the SPE period. Computed NO

  1. Electricity electron measurement

    International Nuclear Information System (INIS)

    Kim, Sang Jin; Sung, Rak Jin

    1985-11-01

    This book deals with measurement of electricity and electron. It is divided into fourteen chapters, which depicts basic of electricity measurement, unit and standard, important electron circuit for measurement, instrument of electricity, impedance measurement, power and power amount measurement, frequency and time measurement, waveform measurement, record instrument and direct viewing instrument, super high frequency measurement, digital measurement on analog-digital convert, magnetic measurement on classification by principle of measurement, measurement of electricity application with principle sensors and systematization of measurement.

  2. The newest precision measurement

    International Nuclear Information System (INIS)

    Lee, Jing Gu; Lee, Jong Dae

    1974-05-01

    This book introduces basic of precision measurement, measurement of length, limit gauge, measurement of angles, measurement of surface roughness, measurement of shapes and locations, measurement of outline, measurement of external and internal thread, gear testing, accuracy inspection of machine tools, three dimension coordinate measuring machine, digitalisation of precision measurement, automation of precision measurement, measurement of cutting tools, measurement using laser, and point of choosing length measuring instrument.

  3. Practical precision measurement

    International Nuclear Information System (INIS)

    Kwak, Ho Chan; Lee, Hui Jun

    1999-01-01

    This book introduces basic knowledge of precision measurement, measurement of length, precision measurement of minor diameter, measurement of angles, measurement of surface roughness, three dimensional measurement, measurement of locations and shapes, measurement of screw, gear testing, cutting tools testing, rolling bearing testing, and measurement of digitalisation. It covers height gauge, how to test surface roughness, measurement of plan and straightness, external and internal thread testing, gear tooth measurement, milling cutter, tab, rotation precision measurement, and optical transducer.

  4. Lower stratospheric observations from aircraft and satellite during the 2015/2016 El Nino

    Science.gov (United States)

    Rosenlof, K. H.; Avery, M. A.; Davis, S. M.; Gao, R. S.; Thornberry, T. D.

    2016-12-01

    Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the lower stratosphere over the Pacific. These will be contrasted with ozone measurements taken during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, lower stratospheric water vapor and ozone measurements from the Microwave Limb Sounder satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone measurements are higher for the El Nino flights than during other missions previously sampled, while zonally averaged lower stratospheric water vapor and central Pacific ice path above the tropopause reached record highs. Implications and possible reasons for these anomalous observations will be discussed. Winter 2015/2016 experienced a strong El Nino that was heavily observed by aircraft, radiosonde and satellite platforms. During the National Oceanographic and Atmospheric Administration's (NOAA) Sensing Hazards with Operational Unmanned Technology (SHOUT)/El Nino Rapid Response (ENRR) flights of the NASA Global Hawk, in situ ozone measurements were made in the upper troposphere and lower stratosphere (UTLS) over the Pacific. These will be contrasted with ozone measurements made during La Nina and ENSO neutral conditions during past Global Hawk aircraft campaigns. Additionally, UTLS water vapor and ozone measurements from the Microwave Limb Sounder (MLS) satellite instrument and stratospheric ice measurements above the tropopause from the Cloud-Aerosol Aerosol Lidar with Orthogonal Polarization (CALIOP) will be presented. Our aircraft ozone

  5. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    Science.gov (United States)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  6. Blood cell labeling with technetium-99m. II. Measurement of circulating blood volume by sup(99m)Tc-labeled red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T; Yoshida, H; Matsuda, S; Kimura, H; Miura, N [Fukushima Medical Coll. (Japan)

    1978-02-01

    Using a labeling method with sup(99m)Tc-pertechnetate to red blood cells (RBC), circulating blood volume was measured in comparison with that from /sup 51/Cr-labeled RBC method. The technique is easier than already published methods, because CIS kit for sup(99m)Tc-RBC labeling (TCK-11) became to be available recently. Two mls of ACD-anticoagulated blood were withdrawn and 0.5 ml of reducing reagent prepared just before use was added to blood, waiting 5 minutes and discarding the serum after centrifugation, then adding 100 ..mu..Ci of sup(99m)Tc. After washing the labeled cells by isotonic saline, cells were re-suspended in 10 ml of saline and injected to the subject. Blood specimen was obtained 10, 30, 60 and 120 minutes after infusion and blood volume was calculated by the usual way. Circulating blood volume by sup(99m)Tc was well correlated with that by /sup 51/Cr (=0.98, p 0.01), however, the value calculated from sup(99m)Tc were 4.8 percent higher than those by /sup 51/Cr, which suggested the elution of sup(99m)Tc from labeled RBC. sup(99m)Tc method has the advantages that higher radioactivity can be obtained in small amount of blood, which is useful in the determination of blood volume in children or in small animals in the laboratory. The measurement of blood volume of the mouse was done by using sup(99m)Tc method. The results were 1.70 +- 0.06 ml (6.35 +- 0.18%/gm), which coincided with the values reported previously. Because of it's short half life and low radiation dosage to the patients, sup(99m)Tc method will be recommended in the field of pediatrics or in patients with polycythemia or congestive heart failure, who are requested the repeated measurement of blood volume.

  7. Measure and dimension functions: measurability and densities

    Science.gov (United States)

    Mattila, Pertti; Mauldin, R. Daniel

    1997-01-01

    During the past several years, new types of geometric measure and dimension have been introduced; the packing measure and dimension, see [Su], [Tr] and [TT1]. These notions are playing an increasingly prevalent role in various aspects of dynamics and measure theory. Packing measure is a sort of dual of Hausdorff measure in that it is defined in terms of packings rather than coverings. However, in contrast to Hausdorff measure, the usual definition of packing measure requires two limiting procedures, first the construction of a premeasure and then a second standard limiting process to obtain the measure. This makes packing measure somewhat delicate to deal with. The question arises as to whether there is some simpler method for defining packing measure and dimension. In this paper, we find a basic limitation on this possibility. We do this by determining the descriptive set-theoretic complexity of the packing functions. Whereas the Hausdorff dimension function on the space of compact sets is Borel measurable, the packing dimension function is not. On the other hand, we show that the packing dimension functions are measurable with respect to the [sigma]-algebra generated by the analytic sets. Thus, the usual sorts of measurability properties used in connection with Hausdorff measure, for example measures of sections and projections, remain true for packing measure.

  8. Implementation of the Land, Atmosphere Near Real-Time Capability for EOS (LANCE)

    Science.gov (United States)

    Michael, Karen; Murphy, Kevin; Lowe, Dawn; Masuoka, Edward; Vollmer, Bruce; Tilmes, Curt; Teague, Michael; Ye, Gang; Maiden, Martha; Goodman, H. Michael; hide

    2010-01-01

    The past decade has seen a rapid increase in availability and usage of near real-time data from satellite sensors. Applications have demonstrated the utility of timely data in a number of areas ranging from numerical weather prediction and forecasting, to monitoring of natural hazards, disaster relief, agriculture and homeland security. As applications mature, the need to transition from prototypes to operational capabilities presents an opportunity to improve current near real-time systems and inform future capabilities. This paper presents NASA s effort to implement a near real-time capability for land and atmosphere data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), Atmospheric Infrared Sounder (AIRS), Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) instruments on the Terra, Aqua, and Aura satellites. Index Terms- Real time systems, Satellite applications

  9. The GEOS Chemistry Climate Model: Comparisons to Satellite Data

    Science.gov (United States)

    Stolarski, R. S.; Douglass, A. R.

    2008-05-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.

  10. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector

    Science.gov (United States)

    Abshire, James B.; Ramanathan, Anand K.; Riris, Haris; Allan, Graham R.; Sun, Xiaoli; Hasselbrack, William E.; Mao, Jianping; Wu, Stewart; Chen, Jeffrey; Numata, Kenji; Kawa, Stephan R.; Yang, Mei Ying Melissa; DiGangi, Joshua

    2018-04-01

    Here we report on measurements made with an improved CO2 Sounder lidar during the ASCENDS 2014 and 2016 airborne campaigns. The changes made to the 2011 version of the lidar included incorporating a rapidly wavelength-tunable, step-locked seed laser in the transmitter, using a much more sensitive HgCdTe APD detector and using an analog digitizer with faster readout time in the receiver. We also improved the lidar's calibration approach and the XCO2 retrieval algorithm. The 2014 and 2016 flights were made over several types of topographic surfaces from 3 to 12 km aircraft altitudes in the continental US. The results are compared to the XCO2 values computed from an airborne in situ sensor during spiral-down maneuvers. The 2014 results show significantly better performance and include measurement of horizontal gradients in XCO2 made over the Midwestern US that agree with chemistry transport models. The results from the 2016 airborne lidar retrievals show precisions of ˜ 0.7 parts per million (ppm) with 1 s averaging over desert surfaces, which is an improvement of about 8 times compared to similar measurements made in 2011. Measurements in 2016 were also made over fresh snow surfaces that have lower surface reflectance at the laser wavelengths. The results from both campaigns showed that the mean values of XCO2 retrieved from the lidar consistently agreed with those based on the in situ sensor to within 1 ppm. The improved precision and accuracy demonstrated in the 2014 and 2016 flights should benefit future airborne science campaigns and advance the technique's readiness for a space-based instrument.

  11. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  12. First 3D measurements of temperature fluctuations induced by gravity wave with the infrared limb imager GLORIA

    Science.gov (United States)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Friedl-Vallon, Felix; Riese, Martin

    2017-04-01

    Gravity waves (GWs) are one of the most important coupling mechanisms in the atmosphere. They couple different compartments of the atmosphere. The GW-LCYCLE (Gravity Wave Life Cycle) project aims on studying the excitation, propagation, and dissipation of gravity waves. An aircraft campaign has been performed in winter 2015/2016, during which the first 3D tomographic measurements of GWs were performed with the infrared limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). GLORIA combines a classical Fourier Transform Spectrometer with a 2D detector array. The capability to image the atmosphere and thereby take several thousand spectra simultaneously improves the spatial sampling compared to conventional limb sounders by an order of magnitude. Furthermore GLORIA is able to pan the horizontal viewing direction and therefore measure the same volume of air under different angles. Due to these properties tomographic methods can be used to derive 3D temperature and tracer fields with spatial resolutions of better than 30km x 30km x 250m from measurements taken during circular flight patterns. Temperature distributions measured during a strong GW event on the 25.01.2016 during the GW-LCycle campaign over Iceland will be presented and analyzed for gravity waves. The three dimensional nature of the GLORIA measurements allows for the determination of the gravity wave momentum flux, including its horizontal direction. The calculated momentum fluxes rank this event under one of the strongest 1% observed in that latitude range in January 2016. The three dimensional wave vectors determined from the GLORIA measurements can be used for a ray tracing study with the Gravity wave Regional Or Global RAy Tracer (GROGRAT). Here 1D ray tracing, meaning solely vertical column propagation, as used by standard parameterizations in numerical weather prediction and climate models is compared to 4D ray tracing (spatially three dimensional with time varying

  13. Analysis of antenna position measurements and weather station network data during the ALMA long baseline campaign of 2015

    Science.gov (United States)

    Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine

    2016-07-01

    improvement, which include recalibrating the baseline measurement datasets using the contemporaneous measurements of the water vapor scale height and temperature lapse rate from the oxygen sounder, and applying more accurate measurements of the sky coupling of the WVRs.

  14. Measurements of total suspended matter - How does salinity and the amount of rinse water influence the results; Maetning av totalt suspenderat material - Hur paaverkar salthalt och maengden skoeljvatten resultatet

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Bjoern (Bjoern Hall, Miljoe och Foerbraenningskemi, Onsala (Sweden))

    2010-03-15

    Under regulations for incineration of waste NFS 2002:28 total suspended matter (tsm) in wastewater from incineration plants are analyzed by daily sampling measurement or by representative flow-proportional 24-hour test. It has been shown that many plants that analyzes the suspended matter according to EN 872:2005 are having trouble keeping their conditions for suspended solids constant. This applies mainly to plants rated for a high chloride content in the closing process. Waste Sweden has for years drawn attention to this problem and have with a joint working group with representatives from the Swedish waste incineration plants tried to obtain a better understanding of this phenomenon. The basic question is whether the water from the facilities in question really contain high levels of tsm or if there is something else behind the observed concentrations. The results from this study suggest that the most important factor is the salinity and the amount of rinse water used in the analysis. Under the standard, all samples are washed with 2 x 20 ml of water. If salinity exceeds 1000 mg/l, a further 3 x 50 ml used. How this process is this implemented in practice varies from laboratory to laboratory and there is no laboratory that regularly measure the salinity of the sample. It is not specified especially when submitting the sample uses most of the labs normal rinse water of 2 x 20 ml. The findings also indicate that the samples with very high salinities the standard stipulated 190 mls is not enough. This would likely lead to that further rinse water is needed. In order to establish safe Several measurements would be needed to confirm this assumption. A relatively simple way to obtain an idea of the salinity of the test is to measure its conductivity. Accordingly, this could be a first step on to get a more consistent performance than is the case at present

  15. Measuring probe for measurement of local velocities

    International Nuclear Information System (INIS)

    Casal, V.; Arnold, G.; Kirchner, R.; Kussmaul, H.; Miller, H.

    1988-03-01

    The report describes a method for measurement of local velocities. It bases on the detection of the propagation of a temperature pulse induced into the fluid. The method can also be applied in flowing liquid metals with superimposed magnetic field; in this case common measuring principles fail application. The measuring system discussed consists of, a measuring head, a heating system, amplifiers and a PC. The latter performs process operation, data sampling, and evaluation of velocity. The measuring head itself includes a miniaturized heater (as a pulse marker) heated by the heating system in a short pulse, and a number of thermocouples (sensors) for detection of signals. The design, construction, and examination of a developed measuring device is described. (orig.) [de

  16. MEASURE FOR MEASURE: A THRICE TOLD TALE

    Directory of Open Access Journals (Sweden)

    HALIMAH MOHAMED ALI

    2009-01-01

    Full Text Available This paper argues that Measure for Measure is a difficult play to perform because it has problematic themes, especially the theme of sexuality, that clash with the way of life and thinking of contemporary society. As such, any director who chooses to stage it must consider these difficulties and how to present them in a natural manner without making the audience feel that the whole production is contrived. The directors of the two major productions discussed in this paper tried their best to present a Measure for Measure that would be acceptable to the modern society. It is evident that there are many interpretations of the Duke and Isabella's characters and also of Isabella's reaction to the Duke's proposal at the end of the play. It can be concluded that no interpretation is wrong because each actor or director brings with him his own reading of the play, and every reading has been influenced by other performances and textual criticisms. Since Measure for Measure is a thematically rich play, it should not be confined to a single interpretation. The different performances of Measure for Measure have proven that theatre is experimental as well as ageless. Because it is a brilliant play with a myriad of interpretations, Measure for Measure will not cease to be a favourite for directors in times to come. It is not wrong to predict that fans of Shakespeare in general and of Measure for Measure in particular can look forward to many more productions.For experienced Shakespeare observers all performances are thrice-told tales. The perceiving eye absorbs the performance even as the mind's eye attends to the text. Both are augmented by the inner ear buzzing with those other voices, both critical and dramatic, carried by the observer into the theatre.(Crowl, Samuel 1992: 3

  17. Measuring transformers in energy measurement technology

    International Nuclear Information System (INIS)

    Vock, E.

    2009-01-01

    This article takes a look at the use of measurement transformers in energy measurement installations in the light of electricity market liberalisation. Such equipment is quoted as being long living and capital-intensive. Increasing requirements on the installation of measurement equipment between partners in a liberalised market are examined. The requirements placed by electricity market legislation on the systems for the various grid voltage levels are discussed. Both current and voltage measurement transformers are looked at and the requirements placed on their accuracy are discussed in detail.

  18. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  19. The organizational measurement manual

    National Research Council Canada - National Science Library

    Wealleans, David

    2001-01-01

    ... Relationship of process to strategic measurements Summary 37 36Contents 19/10/2000 1:23 pm Page vi vi THE ORGANIZATIONAL MEASUREMENT MANUAL 4 PART 2 ESTABLISHING A PROCESS MEASUREMENT PROGRAMME...

  20. Measurements on Hearing

    DEFF Research Database (Denmark)

    Poulsen, Torben

    1996-01-01

    Background material for measurements of hearing for grammar school pupils. The note gives the necessary background for the exercise 'Measurement on Hearing'. The topics comprise sound and decibel, the ear, basic psychoacoustics, hearing threshold, audiometric measurement methods, speech and speech...

  1. Software product quality measurement

    OpenAIRE

    Godliauskas, Eimantas

    2016-01-01

    This paper analyses Ruby product quality measures, suggesting three new measures for Ruby product quality measurement tool Rubocop to measure Ruby product quality characteristics defined in ISO 2502n standard series. This paper consists of four main chapters. The first chapter gives a brief view of software product quality and software product quality measurement. The second chapter analyses object oriented quality measures. The third chapter gives a brief view of the most popular Ruby qualit...

  2. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  3. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  4. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  5. Reconsidering formative measurement.

    Science.gov (United States)

    Howell, Roy D; Breivik, Einar; Wilcox, James B

    2007-06-01

    The relationship between observable responses and the latent constructs they are purported to measure has received considerable attention recently, with particular focus on what has become known as formative measurement. This alternative to reflective measurement in the area of theory-testing research is examined in the context of the potential for interpretational confounding and a construct's ability to function as a point variable within a larger model. Although these issues have been addressed in the traditional reflective measurement context, the authors suggest that they are particularly relevant in evaluating formative measurement models. On the basis of this analysis, the authors conclude that formative measurement is not an equally attractive alternative to reflective measurement and that whenever possible, in developing new measures or choosing among alternative existing measures, researchers should opt for reflective measurement. In addition, the authors provide guidelines for researchers dealing with existing formative measures. Copyright 2007 APA, all rights reserved.

  6. Geophysical validation of temperature retrieved by the ESA processor from MIPAS/ENVISAT atmospheric limb-emission measurements

    Directory of Open Access Journals (Sweden)

    M. Ridolfi

    2007-08-01

    comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to vertical oscillations in the ECMWF temperature. The current understanding is that, at least in the upper stratosphere (above ≈10 hPa, these oscillations are caused by a discrepancy between model biases and biases of assimilated radiances from primarily nadir sounders.

  7. Promoting Therapists' Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation.

    Directory of Open Access Journals (Sweden)

    Danielle E Levac

    Full Text Available Therapists use motor learning strategies (MLSs to structure practice conditions within stroke rehabilitation. Virtual reality (VR-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use.A pre-post design evaluated a knowledge translation (KT intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Self-report and observer-rated outcome measures evaluated therapists' confidence, clinical reasoning and behaviour with respect to MLS use. A focus group captured therapists' perspectives on MLS use during VR-based therapy provision.The intervention improved self-reported confidence about MLS use as measured by confidence ratings (p <0.001. Chart-Stimulated Recall indicated a moderate level of competency in therapists' clinical reasoning about MLSs following the intervention, with no changes following additional opportunities to use VR (p = .944. On the Motor Learning Strategy Rating Instrument, no behaviour change with respect to MLS use was noted (p = 0.092. Therapists favoured the strategy of transferring skills from VR to real-life tasks over employing a more comprehensive MLS approach.The KT intervention improved therapists' confidence but did not have an effect on clinical reasoning or behaviour with regard to MLS use during VR-based therapy.

  8. Promoting Therapists' Use of Motor Learning Strategies within Virtual Reality-Based Stroke Rehabilitation.

    Science.gov (United States)

    Levac, Danielle E; Glegg, Stephanie M N; Sveistrup, Heidi; Colquhoun, Heather; Miller, Patricia; Finestone, Hillel; DePaul, Vincent; Harris, Jocelyn E; Velikonja, Diana

    2016-01-01

    Therapists use motor learning strategies (MLSs) to structure practice conditions within stroke rehabilitation. Virtual reality (VR)-based rehabilitation is an MLS-oriented stroke intervention, yet little support exists to assist therapists in integrating MLSs with VR system use. A pre-post design evaluated a knowledge translation (KT) intervention incorporating interactive e-learning and practice, in which 11 therapists learned how to integrate MLSs within VR-based therapy. Self-report and observer-rated outcome measures evaluated therapists' confidence, clinical reasoning and behaviour with respect to MLS use. A focus group captured therapists' perspectives on MLS use during VR-based therapy provision. The intervention improved self-reported confidence about MLS use as measured by confidence ratings (p behaviour change with respect to MLS use was noted (p = 0.092). Therapists favoured the strategy of transferring skills from VR to real-life tasks over employing a more comprehensive MLS approach. The KT intervention improved therapists' confidence but did not have an effect on clinical reasoning or behaviour with regard to MLS use during VR-based therapy.

  9. Perspectives on Measurement Instruction.

    Science.gov (United States)

    Airasian, Peter W.

    1991-01-01

    This paper seeks to identify ways of making measurement more relevant to classroom teachers, and making classroom realities more apparent to measurement specialists. Measurement elements of teacher education textbooks and courses, nontraditional assessment topics, informal classroom measurement techniques, terminological issues, and three types of…

  10. Can Virtue Be Measured?

    Science.gov (United States)

    Curren, Randall; Kotzee, Ben

    2014-01-01

    This article explores some general considerations bearing on the question of whether virtue can be measured. What is moral virtue? What are measurement and evaluation, and what do they presuppose about the nature of what is measured or evaluated? What are the prospective contexts of, and purposes for, measuring or evaluating virtue, and how would…

  11. Measuring Infant Memory.

    Science.gov (United States)

    Bogartz, Richard S.

    1996-01-01

    Reviews three response rate measures (in a baseline measurement, immediately after acquisition, and at a long-term retention test) of infant memory that are used in experiments involving infants' conditioned kicking. Compares these measures to a new measure, the fraction of kicking rate remaining after the retention interval. Explains the…

  12. Measuring thermal neutron characteristics

    International Nuclear Information System (INIS)

    Johnstone, C.W.; Jacobson, L.A.

    1983-01-01

    A method for providing a background-compensated measurement of the level of inducted radiation within an earth formation is claimed. The formation is irradiated with a discrete burst of neutrons and the level of radiation in the formation measured. The level of background radiation is then measured. An average level of both measurements is obtained

  13. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  14. Measurement of communication

    International Nuclear Information System (INIS)

    1998-08-01

    This book is one of series of information communication, which deals with measurement of communication. It is divided into six chapters. The contents are foundation of measurement with classification and principle, Basic measurement on current, voltage, electric resistance, power and impedance, measurement of communication line with way by L3 tester, BW tester and pulse tester, measurement of optical fiber cable of equipment and method, Test and measurement of information communication equipment about test of modulator and use, measurement of cable broadcasting equipment on transmission level and main transmission equipment.

  15. Inspector measurement verification activities

    International Nuclear Information System (INIS)

    George, R.S.; Crouch, R.

    e most difficult and complex activity facing a safeguards inspector involves the verification of measurements and the performance of the measurement system. Remeasurement is the key to measurement verification activities. Remeasurerements using the facility's measurement system provide the bulk of the data needed for determining the performance of the measurement system. Remeasurements by reference laboratories are also important for evaluation of the measurement system and determination of systematic errors. The use of these measurement verification activities in conjunction with accepted inventory verification practices provides a better basis for accepting or rejecting an inventory. (U.S.)

  16. New dynamic NNORSY ozone profile climatology

    Science.gov (United States)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  17. Broadband Radiometric LED Measurements

    OpenAIRE

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(��) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irr...

  18. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Directory of Open Access Journals (Sweden)

    K. Lamy

    2018-01-01

    . Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman(2000's algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006's algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  19. Ultraviolet radiation modelling from ground-based and satellite measurements on Reunion Island, southern tropics

    Science.gov (United States)

    Lamy, Kévin; Portafaix, Thierry; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Morel, Béatrice; Pazmino, Andrea; Metzger, Jean Marc; Auriol, Frédérique; Deroo, Christine; Duflot, Valentin; Goloub, Philippe; Long, Charles N.

    2018-01-01

    clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.

  20. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  1. On the Quality of the Nimbus 7 LIMS Version 6 Water Vapor Profiles and Distributions

    Science.gov (United States)

    Remsberg, E. E.; Natarajan, M.; Lingenfelser, G. S.; Thompson, R. E.; Marshall, B. T.; Gordley, L. L.

    2009-01-01

    This report describes the quality of the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) water vapor (H2O) profiles of 1978/79 that were processed with a Version 6 (V6) algorithm and archived in 2002. The V6 profiles incorporate a better knowledge of the instrument attitude for the LIMS measurements along its orbits, leading to improvements for its temperature profiles and for the registration of its water vapor radiances with pressure. As a result, the LIMS V6 zonal-mean distributions of H2O exhibit better hemispheric symmetry than was the case from the original Version 5 (V5) dataset that was archived in 1982. Estimates of the precision and accuracy of the V6 H2O profiles are developed and provided. Individual profiles have a precision of order 5% and an estimated accuracy of about 19% at 3 hPa, 14% at 10 hPa, and 26% at 50 hPa. Profile segments within about 2 km of the tropopause are often affected by emissions from clouds that appear in the finite field-of-view of the detector for the LIMS H2O channel. Zonally-averaged distributions of the LIMS V6 H2O are compared with those from the more recent Microwave Limb Sounder (MLS) satellite experiment for November, February, and May of 2004/2005. The patterns and values of their respective distributions are similar in many respects. Effects of a strengthened Brewer-Dobson circulation are indicated in the MLS distributions of the recent decade versus those of LIMS from 1978/79. A tropical tape recorder signal is present in the 7-month time series of LIMS V6 H2O with lowest values in February 1979, and the estimated, annually-averaged "entry-level" H2O is 3.5 to 3.8 ppmv. It is judged that this historic LIMS water vapor dataset is of good quality for studies of the near global-scale chemistry and transport for pressure levels from 3 hPa to about 70 to 100 hPa.

  2. Subsurface structures in the northern Mare Imbrium measured by Chang'E-3 and SELENE

    Science.gov (United States)

    Kumamoto, A.; Ishiyama, K.; Feng, J.

    2016-12-01

    Subsurface structures in the northern Mare Imbrium measured by Chang'E-3 and SELENE have been compared. In Chang'E-3 mission, subsurface radar sounding at (19.51W, 44.12N) was performed by Lunar Penetrating Radar (LPR) onboard the Yutu rover. The LPR was pulse radar operated at two frequencies: 60 MHz and 500 MHz. During its operation period from December 2013 to January 2014, the LPR observed subsurface echoes along the rover's track with total distance of 114 m. From the observation in 60 MHz, the subsurface echoes from buried regolith layers at depths of 35, 50, 140, 240, and 360 m were reported (Xiao et al., 2015). In SELENE mission, global subsurface radar sounding of the moon was performed by Lunar Radar Sounder (LRS) onboard the SELENE (Kaguya) spacecraft from the polar orbit with an altitude of 100 km. The LRS was chirp radar operated in a frequency range from 4-6 MHz. So the range resolution of LRS was 75 m in vacuum. During operation period from December 2007 to September 2008, subsurface echoes from all areas of the Moon was observed with a lateral resolution of 76 m. From the global observation, the subsurface echoes from the buried regolith layers in the neraside maria including Mare Imbrium at depths of several hundred meters were reported (Ono et al., 2009).In the present study, we focus on SELENE/LRS data obtained at (19.50W, 44.12N) which is the nearest to the Chang'E-3 landing site. While clear and large-scale subsurface reflectors, as found in Ono et al. (2009), are not found in it, we can identify some echo components from the depths of 140 ( 2000 ns), 240 ( 4000 ns), and 360 m ( 6000 ns). Further analyses utilizing high-resolution data from Chang'E-3/LPR and large-scale data from SELENE/LRS, we will be able to determine the thickness and large-scale structures of the buried regolith layers found by the both radars, and discuss their formation processes in volcanic history of Mare Imbrium.

  3. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  4. Vessel size measurements in angiograms: Manual measurements

    International Nuclear Information System (INIS)

    Hoffmann, Kenneth R.; Dmochowski, Jacek; Nazareth, Daryl P.; Miskolczi, Laszlo; Nemes, Balazs; Gopal, Anant; Wang Zhou; Rudin, Stephen; Bednarek, Daniel R.

    2003-01-01

    Vessel size measurement is perhaps the most often performed quantitative analysis in diagnostic and interventional angiography. Although automated vessel sizing techniques are generally considered to have good accuracy and precision, we have observed that clinicians rarely use these techniques in standard clinical practice, choosing to indicate the edges of vessels and catheters to determine sizes and calibrate magnifications, i.e., manual measurements. Thus, we undertook an investigation of the accuracy and precision of vessel sizes calculated from manually indicated edges of vessels. Manual measurements were performed by three neuroradiologists and three physicists. Vessel sizes ranged from 0.1-3.0 mm in simulation studies and 0.3-6.4 mm in phantom studies. Simulation resolution functions had full-widths-at-half-maximum (FWHM) ranging from 0.0 to 0.5 mm. Phantom studies were performed with 4.5 in., 6 in., 9 in., and 12 in. image intensifier modes, magnification factor = 1, with and without zooming. The accuracy and reproducibility of the measurements ranged from 0.1 to 0.2 mm, depending on vessel size, resolution, and pixel size, and zoom. These results indicate that manual measurements may have accuracies comparable to automated techniques for vessels with sizes greater than 1 mm, but that automated techniques which take into account the resolution function should be used for vessels with sizes smaller than 1 mm

  5. Characterization of molybdenum/silicon X-ray multilayers

    CERN Document Server

    Nayak, M; Lodha, G S; Shrivastava, A K; Tripathi, P; Sinha, A K; Sawhney, K J S; Nandedkar, R V

    2003-01-01

    Mo/Si multilayers (MLs) with variable Mo thickness were fabricated using electron beam evaporator. Percolation thickness for Mo was determined experimentally. MLs with Mo thickness below percolation show low reflectivity due to discontinuous nature of Mo film. As the number of layer pair increases, the interfacial roughness increases, due to increase in correlated roughness. Extreme ultra violet reflectivity was measured using synchrotron radiation. The fitting result reveals that the graded interface layer exists at each interface. Cross-sectional transmission electron microscopy has been done on some of these MLs.

  6. Convectively-driven cold layer and its influences on moisture in the UTLS

    Science.gov (United States)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  7. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2011-07-01

    Full Text Available Solar eruptions in early 2005 led to a substantial barrage of charged particles on the Earth's atmosphere during the 16–21 January period. Proton fluxes were greatly increased during these several days and led to the production of HOx (H, OH, HO2 and NOx (N, NO, NO2, which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3 showed large enhancements in mesospheric HOx and NOx constituents, and associated ozone reductions, due to these solar proton events (SPEs. The WACCM3 simulations show enhanced short-lived OH and HO2 concentrations throughout the mesosphere in the 60–82.5° N latitude band due to the SPEs for most days in the 16–21 January 2005 period, somewhat higher in abundance than those observed by the Aura Microwave Limb Sounder (MLS. These HOx enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40 % throughout most of the northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS measurements of hydrogen peroxide (H2O2 show increases throughout the stratosphere with highest enhancements of about 60 pptv in the lowermost mesosphere over the 16–18 January 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of about three times that amount. Measurements of nitric acid (HNO3 by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during 16–29 January 2005. WACCM3 simulations show only minuscule HNO3 increases (<0.05 ppbv in the upper stratosphere during this time period. Polar mesospheric enhancements of NOx are computed to be greater than 50

  8. Some mass measurement problems

    International Nuclear Information System (INIS)

    Merritt, J.S.

    1976-01-01

    Concerning the problem of determining the thickness of a target, an uncomplicated approach is to measure its mass and area and take the quotient. This paper examines the mass measurement aspect of such an approach. (author)

  9. Developing Effective Performance Measures

    Science.gov (United States)

    2014-10-14

    University When Performance Measurement Goes Bad Laziness Vanity Narcissism Too Many Pettiness Inanity 52 Developing Effective...Kasunic, October 14, 2014 © 2014 Carnegie Mellon University Narcissism Measuring performance from the organization’s point of view, rather than from

  10. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart Rate & Estimated Maximum Heart Rate Perceived Exertion ( ... a heavy backpack Other Methods of Measuring Intensity Target Heart Rate and Estimated Maximum Heart Rate Perceived ...

  12. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Jaech, J.L.

    1984-01-01

    The estimation of measurement error parameters in safeguards systems is discussed. Both systematic and random errors are considered. A simple analysis of variances to characterize the measurement error structure with biases varying over time is presented

  13. Emissions & Measurements - Black Carbon

    Science.gov (United States)

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near sour...

  14. How Is PTSD Measured?

    Science.gov (United States)

    ... Public » Is it PTSD? » How is PTSD Measured? PTSD: National Center for PTSD Menu Menu PTSD PTSD Home For the Public ... code here Enter ZIP code here How is PTSD Measured? Public This section is for Veterans, General ...

  15. In praise of measurement

    International Nuclear Information System (INIS)

    Mermin, D.N.

    2005-01-01

    Full text: A quantum computer provides a toy universe in which to reexamine many aspects of quantum mechanics and quantum metaphysics. In particular measurement, against which John Bell unleashed one of his most elegant polemics, plays a transparent role. Since all measurements can be constructed out of identical 1-Qbit measurement gates, such obscurity as there is in the notion of measurement reduces to the obscurity, if any, of the elementary 1-Qbit gate. The 1-Qbit measurement gate is insufficiently celebrated. Without it the quantum computer has, in Abner Shimony's admirable words, 'no foreign policy'. Without it no computation has been done. without it no computation can begin. Without it there can be no error correction. Measurement takes coherence away but measurement also gives coherence. Praised be measurement. (author)

  16. Structural Measures - Hospital

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of hospitals and the structural measures they report. A structural measure reflects the environment in which hospitals care for patients, for example, whether...

  17. MDS Quality Measures

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of the quality measures displayed on Nursing Home Compare, excluding Measures of Rehospitalization, Emergency Room Visit, and Community Discharge. Each row...

  18. Measuring Pollution Prevention

    Science.gov (United States)

    Measuring results is an essential component of any successful P2 program and is one way to determine the success of a technical assistance or training effort. This page introduces the concept of P2 measurement.

  19. Spectrum and network measurements

    CERN Document Server

    Witte, Robert A

    2014-01-01

    This new edition of Spectrum and Network Measurements enables readers to understand the basic theory, relate it to measured results, and apply it when creating new designs. This comprehensive treatment of frequency domain measurements successfully consolidates all the pertinent theory into one text. It covers the theory and practice of spectrum and network measurements in electronic systems. It also provides thorough coverage of Fourier analysis, transmission lines, intermodulation distortion, signal-to-noise ratio and S-parameters.

  20. Temperature measuring device

    International Nuclear Information System (INIS)

    Brixy, H.

    1977-01-01

    The temperature measuring device is equipped with an electric resistor installed within a metal shroud tube so as to be insulated from it, the noise voltage of which resistor is fed to a measuring unit. The measuring junctions of one or two thermocouples are connected with the electric resistor and the legs of one or both thermocouples can be connected to the measuring unit by means of a switch. (orig.) [de

  1. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Federici, Paolo

    This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2.......This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2....

  2. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  3. Foundations of measurement

    CERN Document Server

    Suppes, Patrick

    1989-01-01

    Foundations of Measurement offers the most coherently organized treatment of the topics and issues central to measurement. Much of the research involved has been scattered over several decades and a multitude of journals--available in many instances only to specialties. With the publication of Volumes two and three of this important work, Foundations of Measurement is the most comprehensive presentation in the area of measurement.

  4. Reconsidering Formative Measurement

    Science.gov (United States)

    Howell, Roy D.; Breivik, Einar; Wilcox, James B.

    2007-01-01

    The relationship between observable responses and the latent constructs they are purported to measure has received considerable attention recently, with particular focus on what has become known as formative measurement. This alternative to reflective measurement in the area of theory-testing research is examined in the context of the potential…

  5. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  6. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  7. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  8. Power Curve Measurements

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  9. Standards for holdup measurement

    International Nuclear Information System (INIS)

    Zucker, M.S.

    1982-01-01

    Holdup measurement, needed for material balance, depend intensively on standards and on interpretation of the calibration procedure. More than other measurements, the calibration procedure using the standard becomes part of the standard. Standards practical for field use and calibration techniques have been developed. While accuracy in holdup measurements is comparatively poor, avoidance of bias is a necessary goal

  10. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  11. Measuring agricultural policy bias

    DEFF Research Database (Denmark)

    Jensen, Henning Tarp; Robinson, Sherman; Tarp, Finn

    2010-01-01

    Measurement is a key issue in the literature on price incentive bias induced by trade policy. We introduce a general equilibrium measure of the relative effective rate of protection, which generalizes earlier protection measures. For our fifteen sample countries, results indicate that the agricul...

  12. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...

  13. Distributions of δD observations from IASI/MetOp across the globe and intercomparison with other instruments/measurements

    Science.gov (United States)

    Lacour, Jean-Lionel; Clarisse, Lieven; Hurtmans, Daniel; Clerbaux, Cathy; Worden, John; Schneider, Matthias; Risi, Camille; Coheur, Pierre-François

    2014-05-01

    The Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp, through its observations of the water isotopologues, has great potential to support research on hydrological processes responsible for the moistening/drying of the atmosphere. The instrumental characteristics of the spectrometer (low radiometric noise and good spectral resolution) combined with its high sampling (global coverage twice a day) make it particularly suitable for providing numerous observations of the isotopologues ratio (δD) of water vapour in the troposphere. Retrieving isotopologues ratios at the required accuracy is, however, a challenging task. To get meaningful results, the retrieval needs to be well constrained. This can be achieved, with the optimal estimation method, by using an a priori probability density function containing correlation information between HDO and H2O. In this presentation, first, we will show that the measurements are mainly sensitive to δD in the troposphere between 3 and 6 km. We will illustrate the capabilities of IASI to provide δD observations at high spatio-temporal resolution with some distributions across the globe and we will discuss their added values to constrain hydrological processes. Second, we will document how IASI observations compare to other remote sounding observations of δD in the troposphere. Comparisons of IASI observations with the TES sounder and with three ground-based NDACC FTIR (Izaña, Kalsruhe and Kiruna, data generated within the project MUSICA) will be presented. The differences between the instruments as well as the methodology to compare them will be exposed. We will show that the different instruments agree within their own uncertainties and vertical sensitivities, asserting the use of IASI δD observations for scientific purposes.

  14. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2017-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a ESPA-Class (50 kg) micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. In this third year of a NASA Instrument incubator program, the compact infrared spectrometer has been integrated into an airborne version of the instrument for high-altitude flights on a NASA ER2. The purpose of these airborne tests is to examine the potential for improved capabilities for tracking atmospheric motion-vector wind tracer features, and determining their height using hyper-spectral sounding and

  15. A Novel Method making direct use of AIRS and IASI Calibrated Radiances for Measuring Trends in Surface Temperatures

    Science.gov (United States)

    Aumann, H. H.; Ruzmaikin, A.

    2014-12-01

    Making unbiased measurements of trends in the surface temperatures, particularly on a gobal scale, is challenging: While the non-frozen oceans temperature measurements are plentiful and accurate, land and polar areas are much less accurately or fairly sampled. Surface temperature deduced from infrared radiometers on polar orbiting satellites (e.g. the Atmospheric Infrared Sounder (AIRS) at 1:30PM, the Interferometer Atmosphere Sounding Interferometer (IASI) at 9:30 AM and the MODerate resolution Imaging Spectro-radiometer (MODIS) at 1:30PM), can produce what appear to be well sampled data, but dealing with clouds either by cloud filtering (MODIS, IASI) or cloud-clearing (AIRS) can create sampling bias. We use a novel method: Random Nadir Sampling (RNS) combined with Probability Density Function (PDF) analysis. We analyze the trend in the PDF of st1231, the water vapor absorption corrected brightness temperatures measured in the 1231 cm-1 atmospheric window channel. The advantage of this method is that trends can be directly traced to the known, less than 3 mK/yr trend for AIRS, in st1231. For this study we created PDFs from 22,000 daily RNS from the AIRS and IASI data. We characterized the PDFs by its daily 90%tile value, st1231p90, and analysed the statistical properties of the this time series between 2002 and 2014. The method was validated using the daily NOAA SST (RTGSST) from the non-frozen oceans: The mean, seasonal variability and anomaly trend of st1231p90 agree with the corrsponding values from the RTGSST and the anomaly correlation is larger than 0.9. Preliminary results (August 2014) confirm the global hiatus in the increase of the globally averaged surface temperatures between 2002 and 2014, with a change of less than 10 mK/yr. This uncertainty is dominated by the large interannual variability related to El Niño events. Further insite is gained by analyzing land/ocean, day/night, artic and antarctic trends. We observe a massive warming trend in the

  16. In situ pore-pressure evolution during dynamic CPT measurements in soft sediments of the western Baltic Sea

    Science.gov (United States)

    Seifert, Annedore; Stegmann, Sylvia; Mörz, Tobias; Lange, Matthias; Wever, Thomas; Kopf, Achim

    2008-08-01

    We present in situ strength and pore-pressure measurements from 57 dynamic cone penetration tests in sediments of Mecklenburg ( n = 51), Eckernförde ( n = 2) and Gelting ( n = 4) bays, western Baltic Sea, characterised by thick mud layers and partially free microbial gas resulting from the degradation of organic material. In Mecklenburg and Eckernförde bays, sediment sampling by nine gravity cores served sedimentological characterisation, analyses of geotechnical properties, and laboratory shear tests. At selected localities, high-resolution echo-sounder profiles were acquired. Our aim was to deploy a dynamic cone penetrometer (CPT) to infer sediment shear strength and cohesion of the sea bottom as a function of fluid saturation. The results show very variable changes in pore pressure and sediment strength during the CPT deployments. The majority of the CPT measurements ( n = 54) show initially negative pore-pressure values during penetration, and a delayed response towards positive pressures thereafter. This so-called type B pore-pressure signal was recorded in all three bays, and is typically found in soft muds with high water contents and undrained shear strengths of 1.6-6.4 kPa. The type B signal is further affected by displacement of sediment and fluid upon penetration of the lance, skin effects during dynamic profiling, enhanced consolidation and strength of individual horizons, the presence of free gas, and a dilatory response of the sediment. In Mecklenburg Bay, the remaining small number of CPT measurements ( n = 3) show a well-defined peak in both pore pressure and cone resistance during penetration, i.e. an initial marked increase which is followed by exponential pore-pressure decay during dissipation. This so-called type A pore-pressure signal is associated with normally consolidated mud, with indurated clay layers showing significantly higher undrained shear strength (up to 19 kPa). In Eckernförde and Gelting bays pore-pressure response type B is

  17. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In the previous two sessions, it was assumed that the measurement error variances were known quantities when the variances of the safeguards indices were calculated. These known quantities are actually estimates based on historical data and on data generated by the measurement program. Session 34 discusses how measurement error parameters are estimated for different situations. The various error types are considered. The purpose of the session is to enable participants to: (1) estimate systematic error variances from standard data; (2) estimate random error variances from data as replicate measurement data; (3) perform a simple analysis of variances to characterize the measurement error structure when biases vary over time

  18. Measure and integration theory

    CERN Document Server

    Burckel, Robert B

    2001-01-01

    This book gives a straightforward introduction to the field as it is nowadays required in many branches of analysis and especially in probability theory. The first three chapters (Measure Theory, Integration Theory, Product Measures) basically follow the clear and approved exposition given in the author's earlier book on ""Probability Theory and Measure Theory"". Special emphasis is laid on a complete discussion of the transformation of measures and integration with respect to the product measure, convergence theorems, parameter depending integrals, as well as the Radon-Nikodym theorem. The fi

  19. Precision electroweak measurements

    International Nuclear Information System (INIS)

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro e + e - and p anti p colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct m t measurements. Using the world's electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs' mass are discussed

  20. Measurement of true density

    International Nuclear Information System (INIS)

    Carr-Brion, K.G.; Keen, E.F.

    1982-01-01

    System for determining the true density of a fluent mixture such as a liquid slurry, containing entrained gas, such as air comprises a restriction in pipe through which at least a part of the mixture is passed. Density measuring means such as gamma-ray detectors and source measure the apparent density of the mixture before and after its passage through the restriction. Solid-state pressure measuring devices are arranged to measure the pressure in the mixture before and after its passage through the restriction. Calculating means, such as a programmed microprocessor, determine the true density from these measurements using relationships given in the description. (author)

  1. Coordinate measuring machines

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceabilit...... and uncertainty during coordinate measurements, 3) Digitalisation and Reverse Engineering. This document contains a short description of each step in the exercise and schemes with room for taking notes of the results.......This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceability...

  2. Four Decades of Space-Borne Radio Sounding

    Science.gov (United States)

    Benson, Robert F.

    2010-01-01

    A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.

  3. Performance Measurement und Environmental Performance Measurement

    OpenAIRE

    Sturm, Anke

    2000-01-01

    Die Zielsetzung der vorliegenden Dissertationsschrift besteht in der Entwicklung einer systematisierten Vorgehensweise, eines Controllingmodells, zur unternehmensinternen Umweltleistungsmessung. Das entwickelte Environmental Performance Measurement (EPM)-Modell umfaßt die fünf Stufen Festlegung der Ziele der Umweltleistungsmessung (1. Stufe), Erfassung der Umwelteinflüsse nach der ökologischen Erfolgsspaltung (2. Stufe), Bewertung der Umwelteinflüsse auf der Grundlage des qualitätszielbezogen...

  4. Measurement control program

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A measurement control program for the model plant is described. The discussion includes the technical basis for such a program, the application of measurement control principles to each measurement, and the use of special experiments to estimate measurement error parameters for difficult-to-measure materials. The discussion also describes the statistical aspects of the program, and the documentation procedures used to record, maintain, and process the basic data. The purpose of the session is to enable participants to: (1) understand the criteria for this type of a measurement control program; (2) understand the kinds of physical standards required for the various measurement processes, e.g., weighing, analytical, NDA; (3) understand the need for and importance of a measurement control program; (4) understand the need for special experiments to provide an improved basis for the measurement of difficult-to-measure materials; (5) understand the general scope of the program's statistical aspects; and (6) understand the basis and scope of the documentation procedures

  5. Evaluation of accountability measurements

    International Nuclear Information System (INIS)

    Cacic, C.G.

    1988-01-01

    The New Brunswick Laboratory (NBL) is programmatically responsible to the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) for providing independent review and evaluation of accountability measurement technology in DOE nuclear facilities. This function is addressed in part through the NBL Safegaurds Measurement Evaluation (SME) Program. The SME Program utilizes both on-site review of measurement methods along with material-specific measurement evaluation studies to provide information concerning the adequacy of subject accountability measurements. This paper reviews SME Program activities for the 1986-87 time period, with emphasis on noted improvements in measurement capabilities. Continued evolution of the SME Program to respond to changing safeguards concerns is discussed

  6. An approach to measurement

    International Nuclear Information System (INIS)

    Gudder, S.P.

    1984-01-01

    A new approach to measurement theory is presented. The definition of measurement is motivated by direct laboratory procedures as they are carried out in practice. The theory is developed within the quantum logic framework. The work clarifies an important problem in the quantum logic approach; namely, where the Hilbert space comes from. The relationship between measurements and observables is considered, and a Hilbert space embedding theorem is presented. Charge systems are also discussed. (author)

  7. Decoherence and quantum measurements

    CERN Document Server

    Namiki, Mikio; Pascazio, Saverio

    1997-01-01

    The quantum measurement problem is one of the most fascinating and challenging topics in physics both theoretically and experimentally. It involves deep questions and the use of very sophisticated and elegant techniques. After analyzing the fundamental principles of quantum mechanics and of the Copenhagen interpretation, this book reviews the most important approaches to the measurement problem and rigorously reformulates the "collapse of the wave function" by measurement, as a dephasing process quantitatively characterized by an order parameter (called the decoherence parameter), according to

  8. Betatron tune measurement

    International Nuclear Information System (INIS)

    Dinev, D.

    2001-01-01

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  9. Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2°S, 58.8°W)

    Science.gov (United States)

    Kam, Hosik; Jee, Geonhwa; Kim, Yong; Ham, Young-bae; Song, In-Sun

    2017-03-01

    We have investigated the characteristics of mesospheric short period (King Sejong Station (KSS) (62.22°S, 58.78°W) during a period of 2008-2015. By applying 2-dimensional FFT to time differenced images, we derived horizontal wavelengths, phase speeds, and propagating directions (188 and 173 quasi-monochromatic waves from OH and OI airglow images, respectively). The majority of the observed waves propagated predominantly westward, implying that eastward waves were filtered out by strong eastward stratospheric winds. In order to obtain the intrinsic properties of the observed waves, we utilized winds simultaneously measured by KSS Meteor Radar and temperatures from Aura Microwave Limb Sounder (MLS). More than half the waves propagated horizontally, as waves were in Doppler duct or evanescent in the vertical direction. This might be due to strong eastward background wind field in the mesosphere over KSS. For freely propagating waves, the vertical wavelengths were in the interquartile range of 9-33 km with a median value of 15 km. The vertical wavelengths are shorter than those observed at Halley station (76°S, 27°W) where the majority of the observed waves were freely propagating. The difference in the wave propagating characteristics between KSS and Halley station suggests that gravity waves may affect mesospheric dynamics in this part of the Antarctic Peninsula more strongly than over the Antarctic continent. Furthermore, strong wind shear over KSS played an important role in changing the vertical wavenumbers as the waves propagated upward between two airglow layers (87 and 96 km).

  10. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    Directory of Open Access Journals (Sweden)

    M. Lainer

    2015-08-01

    Full Text Available The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change. Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high

  11. What is the role of laminar cirrus cloud on regulating the cross-tropopause water vapor transport?

    Science.gov (United States)

    Wu, D. L.; Gong, J.; Tsai, V.

    2016-12-01

    Laminar cirrus is an extremely thin ice cloud found persistently inhabit in the tropical and subtropical tropopause. Due to its sub-visible optical depth and high formation altitude, knowledge about the characteristics of this special type of cloud is very limited, and debates are ongoing about its role on regulating the cross-tropopause transport of water vapor. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite has been continuously providing us with unprecedented details of the laminar cirrus since its launch in 2006. In this research, we adapted Winker and Trepte (1998)'s eyeball detection method. A JAVA-based applet and graphical user interface (GUI) is developed to manually select the laminar, which then automatically record the cloud properties, such as spatial location, shape, thickness, tilt angle, and whether its isolated or directly above a deep convective cloud. Monthly statistics of the laminar cirrus are then separately analyzed according to the orbit node, isolated/convective, banded/non-banded, etc. Monthly statistics support a diurnal difference in the occurring frequency and formation height of the laminar cirrus. Also, isolated and convective laminars show diverse behaviors (height, location, distribution, etc.), which strongly implies that their formation mechanisms and their roles on depleting the upper troposphere water vapor are distinct. We further study the relationship between laminar characteristics and collocated and coincident water vapor gradient measurements from Aura Microwave Limb Sounder (MLS) observations below and above the laminars. The identified relationship provides a quantitative answer to the role laminar cirrus plays on regulating the water vapor entering the stratosphere.

  12. Broadband radiometric LED measurements

    Science.gov (United States)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  13. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  14. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  15. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Measuring Physical Activity Intensity Recommend on Facebook Tweet Share Compartir For more help with what ...

  16. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  17. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  18. The attribute measurement technique

    International Nuclear Information System (INIS)

    MacArthur, Duncan W.; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  19. Measuring School Contexts

    Directory of Open Access Journals (Sweden)

    Chandra L. Muller PhD

    2015-11-01

    Full Text Available This article describes issues in measuring school contexts with an eye toward understanding students’ experiences and outcomes. I begin with an overview of the conceptual underpinnings related to measuring contexts, briefly describe the initiatives at the National Center for Education Statistics to measure school contexts, and identify possible gaps in those initiatives that if filled could provide valuable new data for researchers. Next, I discuss new approaches and opportunities for measurement, and special considerations related to diverse populations and youth development. I conclude with recommendations for future priorities.

  20. Luminosity measurement at AMY

    International Nuclear Information System (INIS)

    Kurihara, Y.

    1995-01-01

    A precise measurement of a luminosity is required by experiments with high statistics. The largest sources of a systematic error of a luminosity measurement are an alignment of the tube chambers which measure a polar angle of Bhabha events and a higher order correction for the Bhabha cross section calculation. We describe a resent study for these uncertainties and how to reduce the systematic errors from these sources. The total systematic error of the luminosity measurement of 1.8% can be reduced to 1.0% by this study. (author)

  1. Smart Push, Smart Pull, Sensor to Shooter in a Multi-Level Secure/Safe (MLS) Infrastructure

    Science.gov (United States)

    2006-05-04

    Communication Periods Processing Resource Sanitization Minimum Interrupt Servicing Semaphores Multi-Core Synchronization Primitives Timers And nothing else...Communities of Interest Secure Configuration of all Nodes in Enclave Bandwidth provisioning & partitioning Secure Clock Synchronization Suppression of

  2. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined

  3. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined instrument

  4. Young Measures and Compactness in Measure Spaces

    CERN Document Server

    Florescu, Liviu C

    2012-01-01

    Many problems in science can be formulated in the language of optimization theory, in which case an optimal solution or the best response to a particular situation is required. In situations of interest, such classical optimal solutions are lacking, or at least, the existence of such solutions is far from easy to prove. So, non-convex optimization problems may not possess a classical solution because approximate solutions typically show rapid oscillations. This phenomenon requires the extension of such problems' solution often constructed by means of Young measures. This book is written to int

  5. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Sounding Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature and humidity profiles from the NOAA Microwave Integrated Retrieval System (MIRS) using sensor data from the Advanced Technology...

  6. Buried CO2 Ice traces in South Polar Layered Deposits of Mars detected by radar sounder

    Science.gov (United States)

    Castaldo, L.; Mège, D.; Orosei, R.; Séjourné, A.

    2014-12-01

    SHARAD (SHAllow RADar) is the subsurface sounding radar provided by the Italian Space Agency (ASI) as a facility instrument to NASA's 2005 Mars Reconnaissance Orbiter (MRO). The Reduced Data Record of SHARAD data covering the area of the South Polar Layered Deposits (SPLD), has been used. The elaboration and interpretation of the data, aimed to estimate electromagnetic properties of surface layers, has been performed in terms of permittivity. The theory of electromagnetic scattering from fractal surfaces, and the estimation of geometric parameters from topographic data by Mars Orbiter Laser Altimeter (MOLA) which was one of five instruments on board the Mars Global Surveyor (MGS) spacecraft, has been used. A deep analysis of inversion has been made on all Mars and extended to the South Polar Caps in order to extract the area with a permittivity constant of CO2 ice. Several corrections have been applied to the data, moreover the calibration of the signal requires the determination of a constant that takes into account the power gain due to the radar system and the surface in order to compensate the power losses due to the orbitographic phenomena. The determination of regions with high probability of buried CO2 ice in the first layer of the Martian surface, is obtained extracting the real part of the permittivity constant of the CO2 ice (~2), estimated by other means. The permittivity of CO2ice is extracted from the Global Permittivity Map of Mars using the global standard deviation of itself as following: ɛCO2ice=ɛCO2ice+ Σ (1)where Σ=±std(ɛMapMars)/2Figure 1(a) shows the south polar areas where the values of the permittivity point to the possibility of a CO2 ice layer. Figure 1(b) is the corresponding geologic map. The comparison between the two maps indicates that the area with probable buried CO2 overlaps Hesperian and Amazonian polar units (Hp, Hesperian plains-forming deposits marked by narrow sinuous, anabranching ridges and irregular depressions, and Apu, Amazonian layered plateaus). From this analysis, the south polar cap could be covered by a thin frozen carbon dioxide coating. The perennial south polar cap is probably made of frozen carbon dioxide ca. 8 meters thick.

  7. An approach towards solving refraction problems in EM1002 multi-beam echo-sounder system

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, W.A.

    Multi-beam echo-sounding is the technique in which multiple beams of acoustic in nature are sent down to seabed and upon reflection, they are received back and processed to give depths values. The report is focused to give a brief idea about EM1002...

  8. Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 1: Executive summary

    Science.gov (United States)

    1992-01-01

    The LAWS phase 1 and phase 2 studies have been completed on schedule and have led to significant advances in CO2 laser development. The Phase 2 Design Definition Study has shown that a large scanning mirror/high pulse energy laser LAWS Instrument is feasible and within the existing technology. The capability to monitor wind velocities with backscatter ratios of 10(exp 11) m(exp -1) SR(exp -1) is feasible. The weight budget allocated for the baseline LAWS is adequate, and sufficient reserves exist with the potential downsized configuration. With the possible decrease in available power from the baseline of 2.2 kW guideline, power and shot management is critical for the baseline configuration (15 to 20 J). This is particularly true during the 100 day occultation period each year. With the downsized configurations (5 to 7 J), power management is still necessary during the occultation but is primarily limited to shot management over the polar regions. The breadboard effort has produced significant laser advances for a tight 18 month schedule and the minimum budgets available from NASA, Lockheed, and TDS. Using the NASA funds and Lockheed and TDS fixed assets budgets, the breadboard was designed, fabricated, and brought on-line with first laser light within 16 months after ATP. First laser beam was obtained on 21 April 1992 at a 5 J power level. Tests since then have been conducted at sustained, repetitive pulse levels of over 7 J and 20 Hz. This is an increase of over two or three times greater than any system previously developed from this type laser. Increased power levels and additional life tests will be accomplished in the next LAWS phase. The Lockheed LAWS design will operate in the gravity gradient mode on-orbit, and all possible instrument vibration and jitter modes have been considered. Adequate pointing stability and control is state-of-the-art technology for the critical time periods, frequency rates, and control responses required by LAWS. Lockheed recommends a 6-1/2 year phase C/D program for LAWS to provide adequate feedback from the engineering unit and the qualification unit to the final flight unit. Assuming a one year period for LAWS integration to the spacecraft, followed by a six-month period for launch vehicle integration, LAWS could be successfully developed and launched in eight years. Our baseline design or downsized design can be accommodated by either the Atlas 2AS or the Delta launch vehicles. Lockheed's recommendation is that, based on the successful phase 2 design study and breadboard program, a follow-on 18 month extended breadboard testing program and additional system engineering studies, primarily in interfacing with a to be defined platform, be initiated. This should be immediately followed by the phase C/D program, leading to a LAWS launch in late 2001 or early 2002.

  9. GEOSTAR-II: A Prototype Water Vapor Imager/Sounder for the Path Mission

    Science.gov (United States)

    Gaier, Todd; Lambrigtsen, Bjorn; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan; Harding, Dennis; Owen, Heather; Soria, Mary; ODwyer, Ian; Ruf, Christopher; hide

    2011-01-01

    We describe the development and progress of the GeoSTAR-II risk reduction activity for the NASA Earth Science Decadal Survey PATH Mission. The activity directly addresses areas of technical risk including the system design, low noise receiver production, sub-array development, signal distribution and digital signal processing.

  10. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    Science.gov (United States)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  11. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  12. A review of results of the international ionospheric Doppler sounder network

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Chum, Jaroslav

    2017-01-01

    Roč. 60, č. 8 (2017), s. 1629-1643 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : ionospheric Doppler shift sounding * gravity waves * infrasound * solar forcing Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.401, year: 2016 http://www.sciencedirect.com/science/article/pii/S0273117717300790?via%3Dihub

  13. Regularities of Multifractal Measures

    Indian Academy of Sciences (India)

    First, we prove the decomposition theorem for the regularities of multifractal Hausdorff measure and packing measure in R R d . This decomposition theorem enables us to split a set into regular and irregular parts, so that we can analyze each separately, and recombine them without affecting density properties. Next, we ...

  14. Similarity Measure of Graphs

    Directory of Open Access Journals (Sweden)

    Amine Labriji

    2017-07-01

    Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and  offers a contribution to solving the problem mentioned above.

  15. Measures of Pleasures

    NARCIS (Netherlands)

    S.J. Magala (Slawomir)

    2002-01-01

    textabstractMeasuring culture originated in cultural anthropology, but all social sciences contributed to comparative cultural studies. Tracing critical approaches towards a measurement of cultural values one is bound to strip the biases and stereotypes bare and to invade numerous academic fiefs.

  16. Measuring Mobile Phone Use

    DEFF Research Database (Denmark)

    Boase, Jeff; Ling, Richard

    2013-01-01

    In this paper we examine how well two types of self-report measures adequately operationalize frequency of mobile phone use by comparing them to server log data. Our self-report measures of voice and SMS text messaging activity are drawn from a nationally representative survey of adults living...

  17. Mechanical Measurements Laboratory

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The CERN mechanical measurements team check the sensors on one of the ATLAS inner detector end-caps using high precision measurement equipment. Remote checks like this must be made on these sensitive detector components before they can be transported to make sure that all systems are working correctly.

  18. Auditing measurement control programs

    International Nuclear Information System (INIS)

    Roberts, F.P.; Brouns, R.J.

    1979-10-01

    Requirements and a general procedure for auditing measurement control programs used in special nuclear material accounting are discussed. The areas of measurement control that need to be examined are discussed and a suggested checklist is included to assist in the preparation and performance of the audit

  19. Measuring Relational Reasoning

    Science.gov (United States)

    Alexander, Patricia A.; Dumas, Denis; Grossnickle, Emily M.; List, Alexandra; Firetto, Carla M.

    2016-01-01

    Relational reasoning is the foundational cognitive ability to discern meaningful patterns within an informational stream, but its reliable and valid measurement remains problematic. In this investigation, the measurement of relational reasoning unfolded in three stages. Stage 1 entailed the establishment of a research-based conceptualization of…

  20. Measurement of surface roughness

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with two 3 hours laboratory exercises that are part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The laboratories include a demonstration of the function of roughness measuring instruments plus a series of exercises illustrating roughness measurement...