WorldWideScience

Sample records for sound water resources

  1. 76 FR 1130 - Prince William Sound Resource Advisory Committee

    Science.gov (United States)

    2011-01-07

    ... DEPARTMENT OF AGRICULTURE Forest Service Prince William Sound Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Prince William Sound Resource Advisory... conducted: The Prince William Sound Resource Advisory Committee (RAC) will be discussing and voting on...

  2. 77 FR 45331 - Prince William Sound Resource Advisory Committee

    Science.gov (United States)

    2012-07-31

    ... DEPARTMENT OF AGRICULTURE Forest Service Prince William Sound Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Prince William Sound Resource Advisory... Prince William Sound Resource Advisory Committee (RAC) will be discussing and voting on proposals that...

  3. 76 FR 18715 - Prince William Sound Resource Advisory Committee

    Science.gov (United States)

    2011-04-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Prince William Sound Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Prince William Sound Resource Advisory... meeting is open to the public. The following business will be conducted: The Prince William Sound Resource...

  4. 76 FR 44893 - Prince William Sound Resource Advisory Committee

    Science.gov (United States)

    2011-07-27

    ... DEPARTMENT OF AGRICULTURE Forest Service Prince William Sound Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Prince William Sound Resource Advisory... District, 145 Forest Station Road, Girdwood, AK; Prince Willam Sound Community College, 303 Lowe Street...

  5. 75 FR 39910 - Prince William Sound Resource Advisory Committee; Meeting

    Science.gov (United States)

    2010-07-13

    ... DEPARTMENT OF AGRICULTURE Forest Service Prince William Sound Resource Advisory Committee; Meeting AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Prince William Sound Resource..., Anchorage, Alaska 99503. Send written comments to Prince William Sound Resource Advisory Committee, c/o USDA...

  6. Water quality monitoring and data collection in the Mississippi sound

    Science.gov (United States)

    Runner, Michael S.; Creswell, R.

    2002-01-01

    The United States Geological Survey and the Mississippi Department of Marine Resources are collecting data on the quality of the water in the Mississippi Sound of the Gulf of Mexico, and streamflow data for its tributaries. The U.S. Geological Survey is collecting continuous water-level data, continuous and discrete water-temperature data, continuous and discrete specific-conductance data, as well as chloride and salinity samples at two locations in the Mississippi Sound and three Corps of Engineers tidal gages. Continuous-discharge data are also being collected at two additional stations on tributaries. The Mississippi Department of Marine Resources collects water samples at 169 locations in the Gulf of Mexico. Between 1800 and 2000 samples are collected annually which are analyzed for turbidity and fecal coliform bacteria. The continuous data are made available real-time through the internet and are being used in conjunction with streamflow data, weather data, and sampling data for the monitoring and management of the oyster reefs, the shrimp fishery and other marine species and their habitats.

  7. Mapping cultural resource sites for the Prince William Sound Graphical Resource Database

    International Nuclear Information System (INIS)

    Wooley, C. B.; O'Brien, D. K.; Hillman, S. O.

    1997-01-01

    A software package for mapping digital data 'layers' of environmentally and/or culturally sensitive areas such as seabird colonies, seal haulouts, and sea otter concentrations in Prince William Sound and adjoining areas of southern Alaska has been developed by the Alyeska Pipeline Service Company. The data is to be added to an environmental computer mapping database. More than 1,800 known and reported coastal cultural resource sites have been identified. The database is part of the Prince William Sound Tanker Oil Discharge Prevention and Contingency Plan. The mappable data layers can be used to plan and execute whatever site protection program may be necessary, thus enhancing effective cultural resource protection during an oil spill response. 22 refs., 4 figs

  8. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  9. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck Sound...

  10. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters. 80.1395 Section 80.1395 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake Union...

  11. Discovery of Sound in the Sea: Resources for Educators, Students, the Public, and Policymakers.

    Science.gov (United States)

    Vigness-Raposa, Kathleen J; Scowcroft, Gail; Miller, James H; Ketten, Darlene R; Popper, Arthur N

    2016-01-01

    There is increasing concern about the effects of underwater sound on marine life. However, the science of sound is challenging. The Discovery of Sound in the Sea (DOSITS) Web site ( http://www.dosits.org ) was designed to provide comprehensive scientific information on underwater sound for the public and educational and media professionals. It covers the physical science of underwater sound and its use by people and marine animals for a range of tasks. Celebrating 10 years of online resources, DOSITS continues to develop new material and improvements, providing the best resource for the most up-to-date information on underwater sound and its potential effects.

  12. The effect of sound speed profile on shallow water shipping sound maps

    NARCIS (Netherlands)

    Sertlek, H.Ö.; Binnerts, B.; Ainslie, M.A.

    2016-01-01

    Sound mapping over large areas can be computationally expensive because of the large number of sources and large source-receiver separations involved. In order to facilitate computation, a simplifying assumption sometimes made is to neglect the sound speed gradient in shallow water. The accuracy of

  13. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. 334.412 Section 334.412 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA...

  14. Water Resources

    International Nuclear Information System (INIS)

    Abira, M.A.

    1997-01-01

    Water is essential for life and ecological sustenance; its availability is essential component of national welfare and productivity.The country's socio-economic activities are largely dependent on the natural endowment of water resources. Kenya's water resources comprises of surface waters (rivers, lakes and wetlands) and ground water. Surface water forms 86% of total water resources while the rest is ground water Geological, topographical and climatic factors influence the natural availability and distribution of water with the rainfall distribution having the major influence. Water resources in Kenya are continuously under threat of depletion and quality degradation owing to rising population, industrialization, changing land use and settlement activities as well as natural changes. However, the anticipated climate change is likely to exacerbate the situation resulting in increased conflict over water use rights in particular, and, natural resource utilisation in general. The impacts of climate change on the water resources would lead to other impacts on environmental and socio-economic systems

  15. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  16. Albemarle Sound demonstration study of the national monitoring network for US coastal waters and their tributaries

    Science.gov (United States)

    Michelle Moorman; Sharon Fitzgerald; Keith Loftin; Elizabeth Fensin

    2016-01-01

    The U.S. Geological Survey’s (USGS) is implementing a demonstration project in the Albemarle Sound for the National Monitoring Network for U.S. coastal waters and their tributaries. The goal of the National Monitoring Network is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource...

  17. Community Relations: DOD’s Approach for Using Resources Reflects Sound Management Principles

    Science.gov (United States)

    2016-09-01

    COMMUNITY RELATIONS DOD’s Approach for Using Resources Reflects Sound Management Principles Report to...Sound Management Principles What GAO Found The Department of Defense’s (DOD) approach for determining which community relations activities to...undertake reflects sound management principles —both for activities requested by non-DOD entities and for activities initiated by the department. DOD and

  18. A review of research progress in air-to-water sound transmission

    International Nuclear Information System (INIS)

    Peng Zhao-Hui; Zhang Ling-Shan

    2016-01-01

    International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field generated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed. (special topic)

  19. Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Voisin, Nathalie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richey, Jeff [Univ. of Washington, Seattle, WA (United States); Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taira, Randal Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Constans, Michael [Univ. of Washington, Seattle, WA (United States); Wigmosta, Mark S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Van Cleve, Frances B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tesfa, Teklu K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    Final Report for the EPA-sponsored project Snow Caps to White Caps that provides data products and insight for water resource managers to support their predictions and management actions to address future changes in water resources (fresh and marine) in the Puget Sound basin. This report details the efforts of a team of scientists and engineers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to examine the movement of water in the Snohomish Basin, within the watershed and the estuary, under present and future conditions, using a set of linked numerical models.

  20. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  1. Water resources of the Lake Erie shore region in Pennsylvania

    Science.gov (United States)

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  2. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    Science.gov (United States)

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  3. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis

    International Nuclear Information System (INIS)

    Nakayama, Tadanobu; Hashimoto, Shizuka

    2011-01-01

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. - Highlights: → Simulation procedure with multi-scale was newly developed. → Latent heat flux in water-holding pavement had strong impact on hydrothermal changes. → Model predicted effect of urban geometry and anthropogenic exhaustion. → Effective management of water resources is powerful for ameliorating heat island. - This study indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle in urban area.

  4. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Tadanobu, E-mail: nakat@nies.go.jp [Asian Environment Research Group, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Process Hydrology Section, Centre for Ecology and Hydrology (CEH), Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Hashimoto, Shizuka [Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

    2011-08-15

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. - Highlights: > Simulation procedure with multi-scale was newly developed. > Latent heat flux in water-holding pavement had strong impact on hydrothermal changes. > Model predicted effect of urban geometry and anthropogenic exhaustion. > Effective management of water resources is powerful for ameliorating heat island. - This study indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle in urban area.

  5. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    Science.gov (United States)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  6. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  7. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  8. Water-Level Analysis for Cumberland Sound, Georgia

    National Research Council Canada - National Science Library

    Kraus, Nicholas

    1997-01-01

    .... The channel through St Marys Entrance is maintained at a 50-ft depth through significant dredging that occurred from 1986-1988 Questions arose as to whether this dredging had raised the water level in Cumberland Sound. The U.S...

  9. Water resources

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on water resources describes how climate change will affect the supply of water in Canada. Water is one of Canada's greatest resources, which contributes about $7.5 to 23 billion per year to the Canadian economy. The decisions taken to adapt to climate change within the water resources sector will have profound implications in many other areas such as agriculture, human health, transportation and industry. The water related problems include water quality issues that relate to water shortages from droughts, or excesses from floods. The Intergovernmental Panel on Climate Change forecasts an increase in global average surface air temperatures of 1.4 to 5.8 degrees C by 2100. Such a change would impact the hydrological cycle, affecting runoff, evaporation patterns, and the amount of water stored in glaciers, lakes, wetlands and groundwater. The uncertainty as to the magnitude of these changes is due to the difficulty that climate models have in projecting future changes in regional precipitation patterns and extreme events. This chapter presents potential impacts of climate change on water resources in the Yukon, British Columbia, the Prairies, the Great Lakes basin, the Atlantic provinces, and the Arctic and Subarctic. The associated concerns for each region were highlighted. Adaptation research has focused on the impacts of supply and demand, and on options to adapt to these impacts. 60 refs., 2 tabs., 1 fig

  10. Natural resources and environmentally sound sustainable development

    International Nuclear Information System (INIS)

    Pastizzi-Ferencic, D.

    1992-01-01

    This article summarizes the activities of the United Nations Department of Technical Co-operation for Development (UNDTCD), which has been active for over 40 years in assisting developing countries to make the fullest possible use of their natural resources. Energy, water and mineral resources must be developed, and the impacts of the development on the environment must be mitigated. The importance of protecting supplies of fresh water, the central part occupied by the mining industry in developing countries, and the proper role of energy sources for sustainable development are all discussed

  11. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  12. Ohio Water Resources Council

    Science.gov (United States)

    Ohio.gov State Agencies | Online Services Twitter YouTube EPA IMAGE Ohio Water Resources Committee Ohio enjoys abundant water resources. Few states enjoy as many streams, rivers, lakes and wetlands as Ohio. Numerous agencies and organizations are involved in protecting Ohio's valuable water resources

  13. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    Science.gov (United States)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  14. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  15. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  16. Conjunctive operation of river facilities for integrated water resources management in Korea

    Directory of Open Access Journals (Sweden)

    H. Kim

    2016-10-01

    Full Text Available With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day−1 with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  17. Determination of the thermodynamic properties of water from the speed of sound

    International Nuclear Information System (INIS)

    Trusler, J.P. Martin; Lemmon, Eric W.

    2017-01-01

    Highlights: • We analyse error propagation in thermodynamic integration of fluid-phase sound speed data. • A new correlation of the speed of sound in liquid water is derived. • Thermodynamic integration is carried out for pure water. • Derived properties considered include density, isobaric expansivity and isobaric specific heat capacity. - Abstract: Thermodynamic properties of compressed liquids may be obtained from measurements of the speed of sound by means of thermodynamic integration subject to initial values of density and isobaric specific heat capacity along a single low-pressure isobar. In this paper, we present an analysis of the errors in the derived properties arising from perturbations in both the speed-of-sound surface and the initial values. These errors are described in first order by a pair of partial differential equations that we integrate for the example case of water with various scenarios for the errors in the sound speed and the initial values. The analysis shows that errors in either the speed of sound or the initial values of density that are rapidly oscillating functions of temperature have a disproportionately large influence on the derived properties, especially at low temperatures. In view of this, we have obtained a more accurate empirical representation of the recent experimental speed-of-sound data for water [Lin and Trusler, J. Chem. Phys. 136, (2012) 094511] and use this in a new thermodynamic integration to obtain derived properties including density, isobaric heat capacity and isobaric thermal expansivity at temperatures between (253.15 and 473.15) K at pressures up to 400 MPa. The densities obtained in this way are in very close agreement with those reported by Lin and Trusler, but the isobaric specific heat capacity and the isobaric expansivity both differ significantly in the extremes of low temperatures and high pressures.

  18. Geochemistry's vital contribution to solving water resource problems

    International Nuclear Information System (INIS)

    Edmunds, W.M.

    2009-01-01

    As part of the events celebrating 40 a of IAGC, it is fitting to trace the modern evolution and development of hydrogeochemistry. However, fascination with water quality can be traced back more than 2 ka. In the post-war years, hydrogeochemistry was influenced heavily by the advances in other disciplines including physical chemistry, metallurgy and oceanography. Hydrological applications of isotope science also developed rapidly at this time, and important advances in analytical chemistry allowed multi-element and trace element applications to be made. Experimental studies on equilibrium processes and reaction kinetics allowed bench-scale insight into water-rock interaction. Consolidation of knowledge on processes in groundwaters and the current awareness of hydrogeochemistry by water professionals owe much to the work of Robert Garrels, John Hem, and co-workers in the early 1960s. Studies of down-gradient evolution enabled a field-scale understanding of groundwater quality and geochemical processes as a function of residence time (dissolution and precipitation processes in carbonate and non-carbonate aquifers; redox processes; cation exchange and salinity origins). Emerging water resource and water quality issues in the 1960s and 70s permitted the application of hydrogeochemistry to contaminant and related problems and this trend continues. The impacts of diffuse pollution from intensive agriculture, waste disposal and point source pollution from urban and industrial sources relied on geochemistry to solve questions of origin and attenuation. In semi-arid regions facing water scarcity, geochemical approaches have been vital in the assessment of renewability and characterising palaeowaters. The protection and new incoming regulation of water resources will rely increasingly on a sound geochemical basis for management.

  19. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  20. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  1. Water Resource Sustainability Conference 2015

    Science.gov (United States)

    Water Resource Sustainability Issues on Tropical Islands December 1 - 3, 2015 | Hilton Hawaiian Village | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute

  2. Electrical resistivity sounding to study water content distribution in heterogeneous soils

    Science.gov (United States)

    Electrical resistivity (ER) sounding is increasingly being used as non-invasive technique to reveal and map soil heterogeneity. The objective of this work was to assess ER sounding applicability to study soil water distribution in spatially heterogeneous soils. The 30x30-m study plot was located at ...

  3. Differential presence of anthropogenic compounds dissolved in the marine waters of Puget Sound, WA and Barkley Sound, BC.

    Science.gov (United States)

    Keil, Richard; Salemme, Keri; Forrest, Brittany; Neibauer, Jaqui; Logsdon, Miles

    2011-11-01

    Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 n g L(-1) on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound. Published by Elsevier Ltd.

  4. Pressure evolution of the high-frequency sound velocity in liquid water

    International Nuclear Information System (INIS)

    Krisch, M.; Sette, F.; D'Astuto, M.; Lorenzen, M.; Mermet, A.; Monaco, G.; Verbeni, R.; Loubeyre, P.; Le Toullec, R.; Ruocco, G.; Cunsolo, A.

    2002-01-01

    The high-frequency sound velocity v ∞ of liquid water has been determined to densities of 1.37 g/cm 3 by inelastic x-ray scattering. In comparison to the hydrodynamic sound velocity v 0 , the increase of v ∞ with density is substantially less pronounced, indicating that, at high density, the hydrogen-bond network is decreasingly relevant to the physical properties of liquid water. Furthermore, we observe an anomaly in v ∞ at densities around 1.12 g/cm 3 , contrasting the smooth density evolution of v 0

  5. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  6. Forest resources of Prince William Sound and Afognak Island, Alaska: their character and ownership, 1978.

    Science.gov (United States)

    Wlllem W.S. van Hees

    1989-01-01

    The 1978 inventory of the forest resources of Prince William Sound and Afognak Island was designed to produce estimates of timberland area, volumes of timber, and growth and mortality of timber. Estimates of timber resource quantities were also categorized by owner. Nearly 56 percent of the available timberland area is under Forest Service management, and almost 40...

  7. Water resources of King County, Washington

    Science.gov (United States)

    Richardson, Donald; Bingham, J.W.; Madison, R.J.; Williams, R.

    1968-01-01

    Although the total supply of water in King County is large, water problems are inevitable because of the large and rapidly expanding population. The county contains a third of the 3 million people in Washington, most of the population being concentrated in the Seattle metropolitan area. King County includes parts of two major physiographic features: the western area is part of the Puget Sound Lowland, and the eastern area is part of the Cascade Range. In these two areas, the terrain, weather, and natural resources (including water) contrast markedly. Average annual precipitation in the county is about 80 inches, ranging from about 30 inches near Puget Sound to more than 150 inches in parts of the Cascades. Annual evapotranspiration is estimated to range from 15 to 24 inches. Average annual runoff ranges from about 15 inches in the lowlands to more than 100 inches in the mountains. Most of the streamflow is in the major basins of the county--the Green-Duwamish, Lake Washington, and Snoqualmie basins. The largest of these is the Snoqualmie River basin (693 square miles), where average annual runoff during the period 1931-60 was about 79 inches. During the same period, annual runoff in the Lake Washington basin ( 607 square miles) averaged about 32 inches, and in the Green-Duwamish River basin (483 square miles), about 46 inches. Seasonal runoff is generally characterized by several high-flow periods in the winter, medium flows in the spring, and sustained low flows in the summer and fall. When floods occur in the county they come almost exclusively between October and March. The threat of flood damage is greatest on the flood plaits of the larger rivers, but in the Green-Duwamish Valley the threat was greatly reduced with the completion of Howard A. Hanson Dam in 1962. In the Snoqualmie River basin, where no such dam exists, the potential damage from a major flood increases each year as additional land is developed in the Snoqualmie Valley. 0nly moderate amounts of

  8. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    Sale, M.J.; Presley, P.M.

    1991-01-01

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  9. Assessing the Health of Puget Sound's Pelagic Food Web at Multiple Trophic Levels

    Science.gov (United States)

    Rhodes, L. D.; Greene, C. M.; Rice, C. A.; Hall, J. E.; Baxter, A. E.; Naman, S. M.; Chamberlin, J.

    2012-12-01

    Puget Sound is an estuarine fjord in the northwestern United State surrounded by variable upland uses, ranging from industrial and urban to agricultural to forested lands. The quality of Puget Sound's ecosystem is under scrutiny because of the biological resources that depend on its function. In 2011, we undertook a study of the Sound's pelagic food web that measured water quality, microbial parameters, and abundance of higher trophic levels including gelatinous zooplankton, forage fish, and salmon. More than 75 sites spanning the latitudinal expanse of Puget Sound and the range of developed and agricultural land uses were sampled monthly from April to October. Strong relationships between water quality and microbial parameters suggest that microbes may modulate water quality indicators, such as dissolved inorganic nitrogen and pH, and that land use may be an influential factor. Basins within Puget Sound exhibit distinct biological profiles at the microbial and macrobiotic levels, emphasizing that Puget Sound is not a homogenous water body and suggesting that informative food web indicators may vary across the basins.

  10. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  11. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Directory of Open Access Journals (Sweden)

    Magdalena Ryżak

    Full Text Available The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa. We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop. The highest sound pressure level (and the greatest variability was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  12. Economic Requirements of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Nasser Khiabani

    2017-03-01

    Full Text Available Indicators of water resources status and water consumption in Iran reveal an imbalance between supply and demand. This is compounded by the current unrealistic water price that signals the inefficiency of the water market in Iran. In economics parlance, the most important factors responsible for the low efficiency of water market are inaccurate valuation and failure to define the ownership rights of water. Low prices, low sensitivity of water demand to prices, and the lack of proper inputs as substitutes for water resources have collectively contributed to excessive pressures on the available water resources for domestic, industrial, and agricultural uses. A brief glance reveals that water resources in Iran are merely priced based on cost accounting. This is while study has shown that developed countries adopt approaches to water pricing that not only consider the final cost of water but also take into account such other parameters that are affected by intrinsic value of water including its bequest and existence values. The present paper draws upon the concepts of value, expenses, and pricing of water in an attempt to explore the marketing and pricing of water resources as the two major tools economists employ in the management of these resources. It is the objective of the study to arrive at an accurate definition of ownership rights of water resources to improve upon the present water marketing. In doing so, the more important components of modern pricing strategies adopted by developed nations will also be investigated. Results indicate that the present cost accounting method used in pricing water in Iran will in the long-run lead to the wastage of water resources and that it should, therefore, be given up in favor modern and more realistic policies to avoid such waste of resources.

  13. Water resources assessment and prediction in China

    Directory of Open Access Journals (Sweden)

    W. Guangsheng

    2016-10-01

    Full Text Available Water resources assessment in China, can be classified into three groups: (i comprehensive water resources assessment, (ii annual water resources assessment, and (iii industrial project water resources assessment. Comprehensive water resources assessment is the conventional assessment where the frequency distribution of water resources in basins or provincial regions are analyzed. For the annual water resources assessment, water resources of the last year in basins or provincial regions are usually assessed. For the industrial project water resources assessment, the water resources situation before the construction of industrial project has to be assessed. To address the climate and environmental changes, hydrological and statistical models are widely applied for studies on assessing water resources changes. For the water resources prediction in China usually the monthly runoff prediction is used. In most low flow seasons, the flow recession curve is commonly used as prediction method. In the humid regions, the rainfall-runoff ensemble prediction (ESP has been widely applied for the monthly runoff prediction. The conditional probability method for the monthly runoff prediction was also applied to assess next month runoff probability under a fixed initial condition.

  14. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  15. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  16. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  17. Water resources in the Everglades

    Science.gov (United States)

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  18. An overview of forestry in the Farm Bill and Natural Resources Conservation Service forestry resources

    Science.gov (United States)

    Andy Henriksen

    2010-01-01

    Since 1935, the Natural Resources Conservation Service (NRCS) (originally the Soil Conservation Service) has provided leadership in a partnership effort to help America's private landowners and managers conserve their soil, water, and other natural resources. NRCS employees provide technical assistance based on sound science and suited to a customer's...

  19. U.S. Geological Survey cooperative water-resources programs in Chester County, Pennsylvania

    Science.gov (United States)

    Wood, Charles R.

    1998-01-01

    Since 1969, the U.S. Geological Survey (USGS) has had a cooperative water-resources investigation program with Chester County to measure and describe the water resources of the County. Generally, the USGS provides one-half of the program funding, and local cooperators are required to provide matching funds. Cooperation has been primarily with the Chester County Water Resources Authority (CCWRA), with participation from the Chester County Health Department and funding from the Chester County Board of Commissioners. Municipalities and the Red Clay Valley Association also have provided part of the funding for several projects. This report describes how the long-term partnership between the USGS and Chester County, Pa., provides the County with the information that it needs for sound water-resources management.The CCWRA was created in 1961, primarily for land acquisition and planning for flood-control and water-supply projects. With the backing of the Brandywine Valley Association, the CCWRA started its first cooperative project with the USGS in 1969. It was a study of the water-quality condition of Chester County streams with an emphasis on benthic macroinvertebrates and stream chemistry.The kinds of projects and data collection conducted by the USGS have changed with the needs of Chester County and the mission of the CCWRA. Chester County is experiencing rapid population growth (it had the tenth-highest rate of growth in the nation from 1980 to 1990). This growth places considerable stress on water resources and has caused the CCWRA to broaden its focus from flood control to water-supply planning, water quality, and ground-water and surface-water management. The results of USGS studies are used by the CCWRA and other County agencies, including the Planning Commission, Health Department, and Parks and Recreation Department, for conducting day-to-day activities and planning for future growth. The results also are used by the CCWRA to provide guidance and technical

  20. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  1. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  2. The Water Resources Board: England and Wales’ Venture into National Water Resources Planning, 1964-1973

    Directory of Open Access Journals (Sweden)

    Christine S. McCulloch

    2009-10-01

    Full Text Available An era of technocratic national planning of water resources is examined against the views of a leading liberal economist and critics, both contemporary and retrospective. Post Second World War Labour Governments in Britain failed to nationalise either land or water. As late as 1965, the idea of public ownership of all water supplies appeared in the Labour Party manifesto and a short-lived Ministry of Land and Natural Resources, 1964-1966, had amongst its duties the development of plans for reorganising the water supply industry under full public ownership. However, instead of pursuing such a politically dangerous takeover of the industry, in July 1964, a Water Resources Board (WRB, a special interest group dominated by engineers, was set up to advise on the development of water resources. In its first Annual Report (1965 WRB claimed its role as "the master planner of the water resources of England and Wales". The WRB had a great deal of influence and justified its national planning role by promoting large-scale supply schemes such as interbasin transfers of water, large reservoirs and regulated rivers. Feasibility studies were even carried out for building innovative, large storage reservoirs in tidal estuaries. Less progress was made on demand reduction. Yet the seeds of WRB’s demise were contained in its restricted terms of reference. The lack of any remit over water quality was a fatal handicap. Quantity and quality needed to be considered together. Privatisation of the water industry in 1989 led to a shift from national strategic planning by engineers to attempts to strengthen economic instruments to fit supply more closely to demand. Engineers have now been usurped as leaders in water resources management by economists and accountants. Yet climate change may demand a return to national strategic planning of engineered water supply, with greater democratic input.

  3. Water : a commodity or resource?

    International Nuclear Information System (INIS)

    Pomeroy, G.

    2003-01-01

    Over the past several years, natural gas demand has increased significantly, as it is seen as an environmentally friendly, convenient and cost effective fuel. As a result, Alberta should experience the development of a sustainable resource in the form of natural gas from coal, provided adequate management of associated water is in place. The environmental impact and volume of water produced with natural gas from coal can be significant. Water is scarce and demand is growing. Gas producers are faced with the challenge of high water production and disposal costs, and often choose the deep disposal option as the most economical solution. However, environmentalists and agriculture groups who view water as a valuable resource, warrant the costs associated with the treatment of produced water. The author proposed a conceptual solution to this dilemma concerning produced water. It was suggested that producers of water should be connected with consumers, while allowing free market supply and demand dynamics to price out the inefficient use of the resource. The author also discussed the related regulatory, environmental, technological, economic, and commercial issues. It was concluded that water is both a resource and a commodity. Alberta should implement measures to promote water conservation, pollute less, and manage supply and demand. figs

  4. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  5. Similarity and pleasantness assessments of water-fountain sounds recorded in urban public spaces.

    Science.gov (United States)

    Ekman, Maria Rådsten; Lundén, Peter; Nilsson, Mats E

    2015-11-01

    Water fountains are potential tools for soundscape improvement, but little is known about their perceptual properties. To explore this, sounds were recorded from 32 fountains installed in urban parks. The sounds were recorded with a sound-field microphone and were reproduced using an ambisonic loudspeaker setup. Fifty-seven listeners assessed the sounds with regard to similarity and pleasantness. Multidimensional scaling of similarity data revealed distinct groups of soft variable and loud steady-state sounds. Acoustically, the soft variable sounds were characterized by low overall levels and high temporal variability, whereas the opposite pattern characterized the loud steady-state sounds. The perceived pleasantness of the sounds was negatively related to their overall level and positively related to their temporal variability, whereas spectral centroid was weakly correlated to pleasantness. However, the results of an additional experiment, using the same sounds set equal in overall level, found a negative relationship between pleasantness and spectral centroid, suggesting that spectral factors may influence pleasantness scores in experiments where overall level does not dominate pleasantness assessments. The equal-level experiment also showed that several loud steady-state sounds remained unpleasant, suggesting an inherently unpleasant sound character. From a soundscape design perspective, it may be advisable to avoid fountains generating such sounds.

  6. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  7. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  8. A new signal development process and sound system for diverting fish from water intakes

    International Nuclear Information System (INIS)

    Klinet, D.A.; Loeffelman, P.H.; van Hassel, J.H.

    1992-01-01

    This paper reports that American Electric Power Service Corporation has explored the feasibility of using a patented signal development process and underwater sound system to divert fish away from water intake areas. The effect of water intakes on fish is being closely scrutinized as hydropower projects are re-licensed. The overall goal of this four-year research project was to develop an underwater guidance system which is biologically effective, reliable and cost-effective compared to other proposed methods of diversion, such as physical screens. Because different fish species have various listening ranges, it was essential to the success of this experiment that the sound system have a great amount of flexibility. Assuming a fish's sounds are heard by the same kind of fish, it was necessary to develop a procedure and acquire instrumentation to properly analyze the sounds that the target fish species create to communicate and any artificial signals being generated for diversion

  9. Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA

    Science.gov (United States)

    Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng

    2011-12-01

    The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.

  10. Mashhad Wise Water Forum: a path to sustainable water resources management in a semi-arid region of Iran

    Science.gov (United States)

    Tabatabaee, Seyyed Alireza; Neyshaboori, Shahnaz; Basirat, Ali; Tavakoli Aminiyan, Samaneh; Mirbehrooziyan, Ahmad; Sakhdari, Hossein; Shafiei, Mojtaba; Davary, Kamran

    2016-04-01

    Water is key to sustainable development especially in semi-arid regions in which the main source of water provision is groundwater. Water has value from a social, economic and environmental perspective and is required to be managed within a sound, integrated socio-economic and environmental framework. Mashhad, the second big city in Iran, has been faced with rapid growth rates of population and economic activities. The groundwater in Mashhad basin has been overexploited to meet the increasing trend of water demand during the past 20 years. Consequently, the region has faced with water scarcity and water quality problems which originates from inefficient use and poor management. To tackle the water issue on a durable basis, within the economic, ecological, and political constraints (i.e. the integrated water resources management, IWRM concept), a Non-Governmental Organization (NGO), named as Mashhad Wise Water Forum (MWWF), has been established in 2013 that encompasses contribution of experts from academia, industry, and governmental policy-makers. The MWWF considers the UN-Water IWRM spiral conceptual model (which contains four stages: Recognizing and identifying; Conceptualizing; Coordinating and planning; Implementing, Monitoring and Evaluating) by implicating participatory water management (water users' involvement) methods in Mashhad basin. Furthermore, the MWWF has planned to look at all dimensions of water crisis (i.e. physical, economic, policy and institutional) particularly institutional dimension by gathering all stockholders, beneficiaries and experts in different parts of water policy making in Mashhad basin. The MWWF vision for Mashhad basin is achieving to sustainable equilibrium of water resources and consumptions in the basin by the prospect to 2040 year. So far, the MWWF has tried to understand and deal with regional diversity in legal systems as well as conflicts between private interests and public welfare in water allocation and management. At

  11. Groundwater resources in Southern and Eastern Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water shortage, water quality, and the protection of investments in water supply, are of continuing concern to countries in Africa. As more countries join those already short of water, sound management of groundwater resources becomes more critical. Isotope techniques provide information that is unobtainable by other means and help to achieve a better understanding of mechanisms and processes through which water resources can be managed. The International Atomic Energy Agency is sponsoring a regional technical co-operation project addressing practical issues related to water resources assessment and development in Kenya, Madagascar, Namibia, South Africa, Tanzania, Uganda and Zimbabwe. The project also seeks to strengthen isotope hydrology capacity in the sub-region. (IAEA)

  12. Contamination of water resources by pathogenic bacteria

    Science.gov (United States)

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  13. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.

    Science.gov (United States)

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2010-03-01

    In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.

  14. Cybernetics in water resources management

    International Nuclear Information System (INIS)

    Alam, N.

    2005-01-01

    The term Water Resources is used to refer to the management and use of water primarily for the benefit of people. Hence, successful management of water resources requires a solid understanding of Hydrology. Cybernetics in Water Resources Management is an endeavor to analyze and enhance the beneficial exploitation of diverse scientific approaches and communication methods; to control the complexity of water management; and to highlight the importance of making right decisions at the right time, avoiding the devastating effects of drought and floods. Recent developments in computer technology and advancement of mathematics have created a new field of system analysis i.e. Mathematical Modeling. Based on mathematical models, several computer based Water Resources System (WRS) Models were developed across the world, to solve the water resources management problems, but these were not adaptable and were limited to computation by a well defined algorithm, with information input at various stages and the management tasks were also formalized in that well structured algorithm. The recent advancements in information technology has revolutionized every field of the contemporary world and thus, the WRS has also to be diversified by broadening the knowledge base of the system. The updation of this knowledge should be a continuous process acquired through the latest techniques of networking from all its concerned sources together with the expertise of the specialists and the analysis of the practical experiences. The system should then be made capable of making inferences and shall have the tendency to apply the rules based on the latest information and inferences in a given stage of problem solving. Rigid programs cannot adapt to changing conditions and new knowledge. Thus, there is a need for an evolutionary development based on mutual independence of computational procedure and knowledge with capability to adapt itself to the increasing complexity of problem. The subject

  15. Magnetic resonance sounding survey data collected in the North Platte, Twin Platte, and South Platte Natural Resource Districts, Western Nebraska, Fall 2012

    Science.gov (United States)

    Kass, Mason A.; Bloss, Benjamin R.; Irons, Trevor P.; Cannia, James C.; Abraham, Jared D.

    2014-01-01

    This report is a release of digital data and associated survey descriptions from a series of magnetic resonance soundings (MRS, also known as surface nuclear magnetic resonance) that was conducted during October and November of 2012 in areas of western Nebraska as part of a cooperative hydrologic study by the North Platte Natural Resource District (NRD), South Platte NRD, Twin Platte NRD, the Nebraska Environmental Trust, and the U.S. Geological Survey (USGS). The objective of the study was to delineate the base-of-aquifer and refine the understanding of the hydrologic properties in the aquifer system. The MRS technique non-invasively measures water content in the subsurface, which makes it a useful tool for hydrologic investigations in the near surface (up to depths of approximately 150 meters). In total, 14 MRS production-level soundings were acquired by the USGS over an area of approximately 10,600 square kilometers. The data are presented here in digital format, along with acquisition information, survey and site descriptions, and metadata.

  16. NWS Water Resource Services Branch Division

    Science.gov (United States)

    the NWS homepage NWS Water Resources Program OS Home News Organization Search Search Home About Us Water Resources Policy Flood Loss Data AHPS Program Office (OHD) AHPS Software Development Hydrology Lab AHPS Toolbox Flood Safety Service Hydrology Program Turn Around Don't Drown! High Water Mark Signs

  17. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment......Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...

  18. Water Resources of Tajikistan and Water Use Issues in Central Asia

    Directory of Open Access Journals (Sweden)

    H. M. Mukhabbatov

    2016-01-01

    Full Text Available This paper investigates the formation and use of water resources in Tajikistan. The natural and geographic conditions as well as distribution of water resources across the economic regions are analyzed. It is stressed that after breakup of the Soviet Union the water use issues in Central Asia have acquired the dimensions of the interstate economic and political problems. Demographic growth, activation of desertification, global warming make most relevant the issue of equitable redistribution of water resources as the most valuable resource for economy.

  19. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  20. Sustainability Analysis of the Water Resources and Supply of the Vieux Fort Region of Saint Lucia

    Science.gov (United States)

    Coles, D.; Johnson, B.; Morgan, F.

    2005-05-01

    In the Vieux Fort region of the Caribbean island of St. Lucia, water needs are becoming acute. The water supply shortfalls during the dry season will continue to grow as population and development increase, unless action is taken. Actions to address the problem should include measures to optimize the present water delivery system and the development of a new supply, through new intakes, groundwater, or reservoir construction. An investigation into the potential for groundwater resources using electrical resistivity soundings indicated a likely pervasive, shallow aquitard of clay materials below the water table; the shallowness of this aquitard virtually precludes the existence of productive perched aquifers. Consequently, a model of Grande Riviere du Vieux Fort (Big Vieux Fort River) seasonal surface-water flow was developed, based on a digital elevation model and rainfall data, allowing us to analyze the possible productivity of any new intakes placed along the river. A specific site downstream of the present intake was recommended for potential development. Recommendations were given for short, medium and long-term development of the resources and supply of the Vieux Fort region of southern St. Lucia.

  1. Water, Society and the future of water resources research (Invited)

    Science.gov (United States)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  2. Resource protection and resource management of drinking water-reservoirs in Thuringia--a prerequisite for high drinking-water quality.

    Science.gov (United States)

    Willmitzer, H

    2000-01-01

    In face of widespread pollution of surface waters, strategies must be developed for the use of surface waters which protect the high quality standards of drinking water, starting with the catchment area via the reservoir to the consumer. As a rule, priority is given to the avoidance of contaminants directly at their point of origin. Water protection is always cheaper than expensive water-body restoration and water treatment. Complementary to the generally practised technical methods of raw water treatment with all their associated problems of energy input requirements, costs, and waste products, there is an increasing number of environmentally sound treatment technologies which use ecological principles as a basis to support the self-cleaning properties of flowing and dammed waters.

  3. Discussion on water resources value accounting and its application

    Science.gov (United States)

    Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu

    2018-06-01

    The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.

  4. 46 CFR 42.03-35 - U.S.-flag vessels and Canadian vessels navigating on sheltered waters of Puget Sound and...

    Science.gov (United States)

    2010-10-01

    ... sheltered waters of Puget Sound and contiguous west coast waters of United States and Canada. 42.03-35... sheltered waters of Puget Sound and contiguous west coast waters of United States and Canada. (a) In a... were satisfied of the sheltered nature of certain waters of the west coast of North America. It was...

  5. Water Resources Research Center

    Science.gov (United States)

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center At WRRC we concentrate on addressing the unique water and wastewater management problems and issues elsewhere by researching water-related issues distinctive to these areas. We are Hawaii's link in a network

  6. Water Resources Assessment and Management in Drylands

    Directory of Open Access Journals (Sweden)

    Magaly Koch

    2016-06-01

    Full Text Available Drylands regions of the world face difficult issues in maintaining water resources to meet current demands which will intensify in the future with population increases, infrastructure development, increased agricultural water demands, and climate change impacts on the hydrologic system. New water resources evaluation and management methods will be needed to assure that water resources in drylands are optimally managed in a sustainable manner. Development of water management and conservation methods is a multi-disciplinary endeavor. Scientists and engineers must collaborate and cooperate with water managers, planners, and politicians to successfully adopt new strategies to manage water not only for humans, but to maintain all aspects of the environment. This particularly applies to drylands regions where resources are already limited and conflicts over water are occurring. Every aspect of the hydrologic cycle needs to be assessed to be able to quantify the available water resources, to monitor natural and anthropogenic changes, and to develop flexible policies and management strategies that can change as conditions dictate. Optimal, sustainable water management is achieved by cooperation and not conflict, thereby necessitating the need for high quality scientific research and input into the process.

  7. Water Resources Availability in Kabul, Afghanistan

    Science.gov (United States)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  8. Water resource management : a strategy for Nova Scotia

    International Nuclear Information System (INIS)

    Theakston, J.

    1998-01-01

    Since 1995, the Nova Scotia Department of the Environment has been the lead agency responsible for water resource management in the province. The agency's mandate has been to establish a water resource management strategy and to report periodically to the people of the province on the state of the environment, including air, water and waste resource management. One of the Department's goals is to ensure that surface and groundwater resources are being adequately protected. This paper summarizes issues related to dams and how they will be addressed. The Department allocates water through approvals and regulates use and alteration of watercourses. The construction of a dam and water withdrawal for municipal, industrial, hydroelectric or other purposes requires an approval. The major concerns with these activities are flows to sustain downstream habitat, competing demand for water, public safety, and water quality impacts. The main water management actions established under the water strategy involve: (1) geo-referencing water resource use and allocation, (2) protecting water quality, (3) integrating management of natural resources, and (4) promoting partnership in stewardship

  9. Mississippi Sound Remote Sensing Study

    Science.gov (United States)

    Atwell, B. H.

    1973-01-01

    The Mississippi Sound Remote Sensing Study was initiated as part of the research program of the NASA Earth Resources Laboratory. The objective of this study is development of remote sensing techniques to study near-shore marine waters. Included within this general objective are the following: (1) evaluate existing techniques and instruments used for remote measurement of parameters of interest within these waters; (2) develop methods for interpretation of state-of-the-art remote sensing data which are most meaningful to an understanding of processes taking place within near-shore waters; (3) define hardware development requirements and/or system specifications; (4) develop a system combining data from remote and surface measurements which will most efficiently assess conditions in near-shore waters; (5) conduct projects in coordination with appropriate operating agencies to demonstrate applicability of this research to environmental and economic problems.

  10. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  11. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    In the wake of the Chernobyl accident, the vulnerability of the water cycle to radionuclide contamination has been an issue of great concern. The impact of the event throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate the potential risk to drinking water supplies, soilwater and the food chain. This book provides information on radiological standards as they exist at present, on the methods of monitoring, and on concepts in design to minimize risk and to highlight the possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book is a unique source of information about present radiological standards and monitoring requirements. It also includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. There are 19 papers all indexed separately. These are divided into sections -introduction, present radiological standards relating to drinking water, radiological monitoring requirements, the consequences of a nuclear event on water resources and water resource management strategy. The discussion at the end of each section is recorded. (author)

  12. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  13. The Connotation and Extension of Agricultural Water Resources Security

    Institute of Scientific and Technical Information of China (English)

    LIU Bu-chun; MEI Xu-rong; LI Yu-zhong; YANG You-lu

    2007-01-01

    The objective of this study is to define agricultural water resources security and its connotation and extension. The definitions of water security, water resources security, and water environment security were summarized, and their relationship was differentiated and analyzed. Based on these, the elements of the conception of agricultural water resources security were hashed and the conception was defined. Agricultural water resources security is the provision of water resource that ensures protection of agriculture against threat, hazards, destruction, and loss. Moreover, the connotation and extension of agricultural water resources security were ascertained. In detail, the connotation of the definition has natural attributes, socioeconomic attributes, and cultural attributes. The extensions of agricultural water resources security include both broad and narrow ones, as well as, food security, agroenvironmental security, agroeconomic security, rural society security, etc. The definition will serve as the frame of reference for developing the researches, limiting the frame of the theory, and founding a appraising system for agricultural water resources security.

  14. Land-use planning for nearshore ecosystem services—the Puget Sound Ecosystem Portfolio Model

    Science.gov (United States)

    Byrd, Kristin

    2011-01-01

    The 2,500 miles of shoreline and nearshore areas of Puget Sound, Washington, provide multiple benefits to people—"ecosystem services"—including important fishing, shellfishing, and recreation industries. To help resource managers plan for expected growth in coming decades, the U.S. Geological Survey Western Geographic Science Center has developed the Puget Sound Ecosystem Portfolio Model (PSEPM). Scenarios of urban growth and shoreline modifications serve as model inputs to develop alternative futures of important nearshore features such as water quality and beach habitats. Model results will support regional long-term planning decisions for the Puget Sound region.

  15. Armenia : Towards Integrated Water Resources Management

    OpenAIRE

    World Bank

    2001-01-01

    The objective of this paper is to examine the challenges in the water sector faced by Armenia today, and outline options for management and allocation of its water resources in the future, considering the need for a stable, transparent apublic sector management framework and sustainable resource use for long-term private investment and job creation, and for appropriate balances among water...

  16. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  17. Using QMRAcatch - a stochastic hydrological water quality and infection risk model - to identify sustainable management options for long term drinking water resource planning

    Science.gov (United States)

    Derx, J.; Demeter, K.; Schijven, J. F.; Sommer, R.; Zoufal-Hruza, C. M.; Kromp, H.; Farnleitner, A.; Blaschke, A. P.

    2017-12-01

    River water resources in urban environments play a critical role in sustaining human health and ecosystem services, as they are used for drinking water production, bathing and irrigation. In this study the hydrological water quality model QMRAcatch was used combined with measured concentrations of human enterovirus and human-associated genetic fecal markers. The study area is located at a river/floodplain area along the Danube which is used for drinking water production by river bank filtration and further disinfection. QMRAcatch was previously developed to support long term planning of water resources in accordance with a public infection protection target (Schijven et al., 2015). Derx et al. 2016 previously used QMRAcatch for evaluating the microbiological quality and required virus-reduction targets at the study area for the current and robust future "crisis" scenarios, i.e. for the complete failure of wastewater treatment plants and infection outbreaks. In contrast, the aim of this study was to elaborate future scenarios based on projected climate and population changes in collaboration with urban water managers. The identified scenarios until 2050 include increased wastewater discharge rates due to the projected urban population growth and more frequent storm and overflow events of urban sewer systems following forecasted changes in climate and hydrology. Based on the simulation results for the developed scenarios sustainable requirements of the drinking water treatment system for virus reductions were re-evaluated to achieve the health risk target. The model outcomes are used to guide practical and scientifically sound management options for long term water resource planning. This paper was supported by FWF (Vienna Doctoral Program on Water Resource Systems W1219-N22) and the GWRS project (Vienna Water) as part of the "(New) Danube-Lower Lobau Network Project" funded by the Government of Austria and Vienna, and the European Agricultural Fund for Rural

  18. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  19. Application of electrical geophysics to the release of water resources, case of Ain Leuh (Morocco)

    Science.gov (United States)

    Zitouni, A.; Boukdir, A.; El Fjiji, H.; Baite, W.; Ekouele Mbaki, V. R.; Ben Said, H.; Echakraoui, Z.; Elissami, A.; El Maslouhi, M. R.

    2018-05-01

    Being seen needs in increasing waters in our contry for fine domestics, manufactures and agricultural, the prospecting of subterranean waters by geologic and hydrogeologic classic method remains inaplicable in the cases of the regions where one does not arrange drillings or polls (soundings) of gratitude (recongnition) in very sufficient (self-important) number. In that case of figure, the method of prospecting geophysics such as the method of nuclear magnetic resonance (NMR) and the method of the geophysics radar are usually used most usually because they showed, worldwide, results very desive in the projects of prospecting and evaluation of the resources in subterranean waters. In the present work, which concerns only the methodology of the electric resistivity, we treat the adopted methodological approach and the study of the case of application in the tray of Ajdir Ain Leuh.

  20. Learning about water resource sharing through game play

    Directory of Open Access Journals (Sweden)

    T. Ewen

    2016-10-01

    Full Text Available Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  1. Learning about water resource sharing through game play

    Science.gov (United States)

    Ewen, Tracy; Seibert, Jan

    2016-10-01

    Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  2. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  3. Review - Water resources development

    International Nuclear Information System (INIS)

    Todd, David K.

    1970-01-01

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  4. Review - Water resources development

    Energy Technology Data Exchange (ETDEWEB)

    Todd, David K [Civil Engineering, University of California, Berkeley (United States)

    1970-05-15

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  5. 18 CFR 701.76 - The Water Resources Council Staff.

    Science.gov (United States)

    2010-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  6. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  7. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  8. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  9. Scenario-based Water Resources Management Using the Water Value Concept

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  10. Fish protection at water intakes using a new signal development process and sound system

    International Nuclear Information System (INIS)

    Loeffelman, P.H.; Klinect, D.A.; Van Hassel, J.H.

    1991-01-01

    American Electric Power Company, Inc., is exploring the feasibility of using a patented signal development process and sound system to guide aquatic animals with underwater sound. Sounds from animals such as chinook salmon, steelhead trout, striped bass, freshwater drum, largemouth bass, and gizzard shad can be used to synthesize a new signal to stimulate the animal in the most sensitive portion of its hearing range. AEP's field tests during its research demonstrate that adult chinook salmon, steelhead trout and warmwater fish, and steelhead trout and chinook salmon smolts can be repelled with a properly-tuned system. The signal development process and sound system is designed to be transportable and use animals at the site to incorporate site-specific factors known to affect underwater sound, e.g., bottom shape and type, water current, and temperature. This paper reports that, because the overall goal of this research was to determine the feasibility of using sound to divert fish, it was essential that the approach use a signal development process which could be customized to animals and site conditions at any hydropower plant site

  11. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  12. Water Resources Research Institute | Mississippi State University

    Science.gov (United States)

    Welcome The Mississippi Water Resources Research Institute provides a statewide center of expertise in water and associated land-use and serves as a repository of knowledge for use in education private interests in the conservation, development, and use of water resources; to provide training

  13. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  14. A General Water Resources Regulation Software System in China

    Science.gov (United States)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  15. Assessing water resource use in livestock production

    NARCIS (Netherlands)

    Ran, Y.; Lannerstad, M.; Herrero, M.; Middelaar, Van C.E.; Boer, De I.J.M.

    2016-01-01

    This paper reviews existing methods for assessing livestock water resource use, recognizing that water plays a vital role in global food supply and that livestock production systems consumes a large amount of the available water resources. A number of methods have contributed to the development

  16. Isotope Hydrology: Understanding and Managing Water Resources

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Development is intricately linked to water whether concerning issues of health, food and agriculture, sanitation, the environment, industry, or energy. The IAEA, through its Water Resources Programme provides its Member States with science-based information and technical skills to improve understanding and management of their water resources

  17. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  18. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  19. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  20. Water Resources: Management and Strategies in Nigeria ...

    African Journals Online (AJOL)

    Water Resources: Management and Strategies in Nigeria. ... the rational use of water resources poses a great problem and challenge to the nation. ... Suggestions were made on ways of planning sustainable water supply systems for Nigeria ... South Africa (96); South Sudan (1); Sudan (3); Swaziland (3); Tanzania (19) ...

  1. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    by human-induced activities. Over the past ... Review of water resources management in Tanzania; Global literature review on water resources ..... requirements for biodiversity and human health. .... Global warming is altering regional climates.

  2. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    Science.gov (United States)

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  3. Radio resource management using geometric water-filling

    CERN Document Server

    He, Peter; Zhou, Sheng; Niu, Zhisheng

    2014-01-01

    This brief introduces the fundamental theory and development of managing radio resources using a water-filling algorithm that can optimize system performance in wireless communication. Geometric Water-Filling (GWF) is a crucial underlying tool in emerging communication systems such as multiple input multiple output systems, cognitive radio systems, and green communication systems. Early chapters introduce emerging wireless technologies and provide a detailed analysis of water-filling. The brief investigates single user and multi-user issues of radio resource management, allocation of resources

  4. GEO/SQL in water resource manegement

    Directory of Open Access Journals (Sweden)

    Andrej Vidmar

    1992-12-01

    Full Text Available The development of water resource management concepts shouis the problem of collecting, combining, and using alphanumerical and graphical spatial data. The solution of this problem lies in the use of geographic information systems - GIS. This paper describes the usefulness of GIS programming tool Geo/SQL in water resources management.

  5. Water resources of Sedgwick County, Kansas

    Science.gov (United States)

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  6. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Science.gov (United States)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  7. GIS and Game Theory for Water Resource Management

    Science.gov (United States)

    Ganjali, N.; Guney, C.

    2017-11-01

    In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.

  8. Higher Resolution for Water Resources Studies

    Science.gov (United States)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  9. Water resources in the next millennium

    Science.gov (United States)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  10. Estuarine monitoring programs in the Albemarle Sound study area, North Carolina

    Science.gov (United States)

    Moorman, Michelle; Kolb, Katharine R.; Supak, Stacy

    2014-01-01

    Albemarle Sound was selected in 2012 as one of the two demonstration sites in the Nation to test and improve the design of the National Water Quality Monitoring Council’s National Monitoring Network (NMN) for U.S. Coastal Waters and their tributaries. The goal of the NMN for U.S. coastal waters and tributaries is to provide information about the health of our oceans and coastal ecosystems and inland influences on coastal waters for improved resource management. The NMN is an integrated, multidisciplinary, and multiorganizational program using multiple sources of data and information to augment current monitoring programs.

  11. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  12. Focus on CSIR research in water resources: ECO2 – sharing benefits from water resources

    CSIR Research Space (South Africa)

    Claassen, Marius

    2007-08-01

    Full Text Available benefits from water resources Socio-economic development de- pends on the reliable supply of water for industrial, mining, agricultural, potable and recreational purposes. These activities also generate waste products that are often discharged...

  13. Water resources activities in Kentucky, 1986

    Science.gov (United States)

    Faust, R. J.

    1986-01-01

    The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)

  14. Modeling resource basis for social and economic development strategies: Water resource case

    Science.gov (United States)

    Kosolapova, Natalia A.; Matveeva, Ludmila G.; Nikitaeva, Anastasia Y.; Molapisi, Lesego

    2017-10-01

    The article substantiates that the effectiveness of implementing socio-economic development strategies is to a large extent determined by the adequate provision of basic resources. The key role of water resources in economic strategic development is empirically illustrated. The article demonstrates the practicability of strategic management of water resources based on the principle of a combination of river basin management approaches and the consideration of regional development strategies. The Game Theory technique was used to develop economic and mathematical tools for supporting decision-making in meeting the needs of regional consumers under water balance deficit conditions. The choice of methods was determined from two positions: the methods should allow for the possibility of multi-variant solutions for the selection of optimal options for the distribution of limited water resources between different consumers; the methods should be orientated on the maximum possible harmonization of multidirectional and multi-scale interests of the subjects in the water management system of the different regions (including the state) in order to achieve a balance. The approbation of developing a toolkit for the example of the regions located in the Don and Kuban river basins resulted in the appropriate selection of priority regions for the allocation of water resources in terms of strategic management as well as the determination of measures of ensuring the sustainable use of the river basins under consideration. The proposed tools can be used for coordinating decisions on the water supply of regional economic systems with actual and projected indicators of socio-economic development of the respective regions for a strategic perspective.

  15. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    Science.gov (United States)

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  16. Evaluating participation in water resource management: A review

    Science.gov (United States)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  17. A Risk Assessment Model for Water Resources: releases of dangerous and hazardous substances.

    Science.gov (United States)

    Rebelo, Anabela; Ferra, Isabel; Gonçalves, Isolina; Marques, Albertina M

    2014-07-01

    Many dangerous and hazardous substances are used, transported and handled daily in diverse situations, from domestic use to industrial processing, and during those operations, spills or other anomalous situations may occur that can lead to contaminant releases followed by contamination of surface water or groundwater through direct or indirect pathways. When dealing with this problem, rapid, technically sound decisions are desirable, and the use of complex methods may not be able to deliver information quickly. This work describes a simple conceptual model established on multi-criteria based analysis involving a strategic appraisal for contamination risk assessment to support local authorities on rapid technical decisions. The model involves a screening for environmental risk sources, focussing on persistent, bioaccumulative and toxic (PBT) substances that may be discharged into water resources. It is a simple tool that can be used to follow-up actual accident scenarios in real time and to support daily activities, such as site-inspections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Water-resources activities, North Dakota District, Fiscal Year 1992

    Science.gov (United States)

    Martin, Cathy R.

    1993-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1992. Information on each project includes objectives, approach, progress, plans for fiscal year 1993, and completed and planned report products.

  19. Research on Water Resources Design Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Guanghua Qin

    2016-04-01

    Full Text Available Water resources carrying capacity (WRCC is a recently proposed management concept, which aims to support sustainable socio-economic development in a region or basin. However, the calculation of future WRCC is not well considered in most studies, because water resources and the socio-economic development mode for one area or city in the future are quite uncertain. This paper focused on the limits of traditional methods of WRCC and proposed a new concept, water resources design carrying capacity (WRDCC, which incorporated the concept of design. In WRDCC, the population size that the local water resources can support is calculated based on the balance of water supply and water consumption, under the design water supply and design socio-economic development mode. The WRDCC of Chengdu city in China is calculated. Results show that the WRDCC (population size of Chengdu city in development modeI (II, III will be 997 ×104 (770 × 104, 504 × 104 in 2020, and 934 × 104 (759 × 104, 462 × 104 in 2030. Comparing the actual population to the carrying population (WRDCC in 2020 and 2030, a bigger gap will appear, which means there will be more and more pressure on the society-economic sustainable development.

  20. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    Science.gov (United States)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  1. Sustainability assessment of regional water resources under the DPSIR framework

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  2. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  3. Water resources management in Tanzania: identifying research ...

    African Journals Online (AJOL)

    This paper aims at identifying research gaps and needs and recommendations for a research agenda on water resources management in Tanzania. We reviewed published literature on water resources management in Tanzania in order to highlight what is currently known, and to identify knowledge gaps, and suggest ...

  4. Groundwater resource-directed measures software | Dennis | Water ...

    African Journals Online (AJOL)

    Sustainability, equity and efficiency are identified as central guiding principles in the protection, use, development, conservation, management and control of water resources. These principles recognise the basic human needs of present and future generations, the need to protect water resources, the need to share some ...

  5. A Historical Perspective on Local Environmental Movements in Japan: Lessons for the Transdisciplinary Approach on Water Resource Governance

    Science.gov (United States)

    Oh, T.

    2014-12-01

    Typical studies on natural resources from a social science perspective tend to choose one type of resource—water, for example— and ask what factors contribute to the sustainable use or wasteful exploitation of that resource. However, climate change and economic development, which are causing increased pressure on local resources and presenting communities with increased levels of tradeoffs and potential conflicts, force us to consider the trade-offs between options for using a particular resource. Therefore, the transdisciplinary approach that accurately captures the advantages and disadvantages of various possible resource uses is particularly important in the complex social-ecological systems, where concerns about inequality with respect to resource use and access have become unavoidable. Needless to say, resource management and policy require sound scientific understanding of the complex interconnections between nature and society, however, in contrast to typical international discussions, I discuss Japan not as an "advanced" case where various dilemmas have been successfully addressed by the government through the optimal use of technology, but rather as a nation seeing an emerging trend that is based on a awareness of the connections between local resources and the environment. Furthermore, from a historical viewpoint, the nexus of local resources is not a brand-new idea in the experience of environmental governance in Japan. There exist the local environment movements, which emphasized the interconnection of local resources and succeeded in urging the governmental action and policymaking. For this reason, local movements and local knowledge for the resource governance warrant attention. This study focuses on the historical cases relevant to water resource management including groundwater, and considers the contexts and conditions to holistically address local resource problems, paying particular attention to interactions between science and society. I

  6. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  7. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    Science.gov (United States)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  8. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  9. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  10. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  11. Water advisory demand evaluation and resource toolkit

    OpenAIRE

    Paluszczyszyn, D.; Illya, S.; Goodyer, E.; Kubrycht, T.; Ambler, M.

    2016-01-01

    Cities are living organisms, 24h / 7day, with demands on resources and outputs. Water is a key resource whose management has not kept pace with modern urban life. Demand for clean water and loads on waste water no longer fit diurnal patterns; and they are impacted by events that are outside the normal range of parameters that are taken account of in water management. This feasibility study will determine how the application of computational intelligence can be used to analyse a mix of dat...

  12. promoting integrated water resources management in south west

    African Journals Online (AJOL)

    eobe

    1, 2 SOUTH WEST REGIONAL CENTRE FOR NATIONAL WATER RESOURCES CAPACITY BUILDING NETWORK,. FEDERAL UNIVERSITY OF ... that an integrated approach to water resource development and management offers the best ...

  13. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  14. A new carnivorous shallow-water sponge from McMurdo Sound, Antarctica (Porifera, Poecilosclerida)

    NARCIS (Netherlands)

    van Soest, R.W.M.; Baker, B.J.

    2011-01-01

    A new shallow-water representative of the carnviorous sponge genus Asbestopluma is described from the southernmost Antarctic region of McMurdo Sound. Asbestopluma (Asbestopluma) vaceleti n.sp. is a white, thin, sparingly branched sponge fringed by filaments along its entire length, with a slight

  15. Thoughts on access to water in Peru within the new Water Resources Law framework

    Directory of Open Access Journals (Sweden)

    Lucía Ruiz Ostoic

    2013-12-01

    Full Text Available The difficulty involved addressing issues related with water management in Peru is the article’s starting point. Therefore, the water issue approach is introduced explaining its administrative procedures, the rights involved and making a critical analysis of 2008 Water Resources Law. Finally, the need for an integrated management analysis of the water resource is highlighted by integrally understanding the General Water Law as well as the current Water Resources Law, and encouraging dialogue among social actors involved in order to avoid future conflicts.

  16. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  17. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters, Washington. 165.1317 Section 165.1317 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS...

  18. Sound speed models for a noncondensible gas-steam-water mixture

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1984-01-01

    An analytical expression is derived for the homogeneous equilibrium speed of sound in a mixture of noncondensible gas, steam, and water. The expression is based on the Gibbs free energy interphase equilibrium condition for a Gibbs-Dalton mixture in contact with a pure liquid phase. Several simplified models are discussed including the homogeneous frozen model. These idealized models can be used as a reference for data comparison and also serve as a basis for empirically corrected nonhomogeneous and nonequilibrium models

  19. Water Intensity of Electricity from Geothermal Resources

    Science.gov (United States)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  20. The Early Years: Becoming Attuned to Sound

    Science.gov (United States)

    Ashbrook, Peggy

    2014-01-01

    Exploration of making and changing sounds is part of the first-grade performance expectation 1-PS4-1, "Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate" (NGSS Lead States 2013, p. 10; see Internet Resource). Early learning experiences build toward…

  1. Lexical and perceptual grounding of a sound ontology

    NARCIS (Netherlands)

    Lobanova, Anna; Spenader, Jennifer; Valkenier, Bea; Matousek,; Mautner, P

    2007-01-01

    Sound ontologies need to incorporate source unidentifiable sounds in an adequate and consistent manner. Computational lexical resources like WordNet have either inserted these descriptions into conceptual categories, or make no attempt to organize the terms for these sounds. This work attempts to

  2. Concept and Connotation of Water Resources Carrying Capacity in Water Ecological Civilization Construction

    Science.gov (United States)

    Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua

    2018-01-01

    Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.

  3. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form....

  4. Climate proofing water and sanitation services and applying integrated water resource management in slums

    OpenAIRE

    Heath, Thomas

    2011-01-01

    This thesis assesses how climate change impacts water resources and communities and reviews how the resource can be managed in an integrated manner for small water and sanitation providers. This thesis was based upon a 10 month Knowledge Transfer Partnership (KTP) between Cranfield University and Water and Sanitation for the Urban Poor (WSUP). The aim of the project was to assess the opportunities and vulnerabilities presented by climate change and how Integrated Water Resource ...

  5. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  6. Water resources management and European integration of Serbia

    Directory of Open Access Journals (Sweden)

    Todić Dragoljub

    2015-01-01

    Full Text Available The paper points to the main elements important for understanding the obligations arising from the process of accession of the Republic of Serbia (RS to the European Union (EU as related to water resources management. The general framework is determined by the importance of water resources for contemporary international relations as well as the rules governing the process of harmonizing the national legislation with the EU legislation. This paper provides an overview of the most important regulations of the RS and the EU in the field of water resources management, including its status in international treaties. Drawing upon the rules governing the harmonization process, the paper provides indicators of the achieved level of compliance of national legislation with key EU regulations in the field of water resources management. The provided analysis is based on the premise that the process of joining the EU is the main factor that determines the current position and policy of RS in the field of water resources management. In that context, management of water resources falls into the group of EU regulations which are, within the framework of Chapter 27, most difficult to transpose and apply in the internal legal system. Although the process of harmonizing the national legislation with the EU legislation has been underway as regards a vast number of regulations, the process of reaching full compliance is likely to take a couple of years. Concurrently, it has been estimated that the full implementation of legislation harmonized with the EU legislation will take at least two decades, primarily due to the substantial financial resources to be invested in the development of water infrastructure. In terms of participation in the activities undertaken within the framework of international agreements in the field of water resources management and the state's membership in relevant international treaties, it is noted that in the last decade the RS has

  7. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  8. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  9. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Science.gov (United States)

    2010-07-01

    ... Areas Thirteenth Coast Guard District § 165.1313 Security zone regulations, tank ship protection, Puget... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington 165.1313 Section 165.1313 Navigation and...

  10. 78 FR 16706 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-03-18

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  11. 75 FR 8106 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-02-23

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  12. 78 FR 67393 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-11-12

    ... Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate...

  13. 75 FR 82066 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-12-29

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  14. 76 FR 73674 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2011-11-29

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  15. Application and Prospect of Big Data in Water Resources

    Science.gov (United States)

    Xi, Danchi; Xu, Xinyi

    2017-04-01

    Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.

  16. Water resources planning in a strategic context: Linking the water sector to the national economy

    Science.gov (United States)

    Rogers, Peter; Hurst, Christopher; Harshadeep, Nagaraja

    1993-07-01

    In many parts of the developing world investment in water resources takes a large proportion of the available public investment funds. As the conflicts for funds between the water and other sectors become more severe, the traditional ways of analyzing and planning water investments has to move away from project-by-project (or even a river basin-by-river basin) approaches to include the relationships of water investments to other sectors and to overall national development policies. Current approaches to water resources investments are too narrow. There is a need for ways to expand the strategic thinking of water sector managers. This paper develops a water resources planning methodology with the primary objective of giving insights into the linking of water sector investments and macroeconomic policies. The model optimizes the present value of investments for water resources development, while embedding a macroeconomic model into the framework to allow for an examination of the interactions between water investments, the growth in the agricultural sector, and the performance of the overall economy. A case study of Bangladesh is presented which shows how strategic thinking could lead to widely differing implications for water investments than would conventional water resources systems planning models.

  17. Water-resources activities, North Dakota District, fiscal year 1994-95

    Science.gov (United States)

    Martin, Cathy R.

    1995-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1994. Information on each project includes objectives, approach, progress, plans for fiscal year 1995, and completed and planned report products.

  18. Household-level heterogeneity of water resources within common-pool resource systems

    NARCIS (Netherlands)

    McCord, Paul; Dell'angelo, Jampel; Gower, Drew; Caylor, Kelly K.; Evans, Tom

    2017-01-01

    Prior work has demonstrated the ability of common property systems to sustain institutional arrangements governing natural resources over long periods of time. Much of this work has focused on irrigation systems where upstream users agree to management arrangements that distribute water resources

  19. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of .... approach of water resources development the most attractive and benefitial .... project plus a share of the "joint cost" which are the ... Pricing and Repayments American Water Re- sources ...

  20. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Dissolved nitrogen in drinking water resources of farming communities in Ghana. ... African Journal of Environmental Science and Technology ... Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating these water resources appear safe for drinking ...

  1. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  2. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    Science.gov (United States)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  3. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  4. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  5. Isotope techniques in water resources development 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Water resources are scarce in many parts of the world. Often, the only water resource is groundwater. Overuse usually invites a rapid decline in groundwater resources which are recharged insufficiently, or not at all, by prevailing climatic conditions. These and other problems currently encountered in hydrology and associated environmental fields have prompted an increasing demand for the utilization of isotope methods. Such methods have been recognized as being indispensable for solving problems such as the identification of pollution sources, characterization of palaeowater resources, evaluation of recharge and evaporative discharge under arid and semi-arid conditions, reconstruction of past climates, study of the interrelationships between surface and groundwater, dating of groundwater and validation of contaminant transport models. Moreover, in combination with other hydrogeological and geochemical methods, isotope techniques can provide useful hydrological information, such as data on the origin, replenishment and dynamics of groundwater. It was against this background that the International Atomic Energy Agency, in co-operation with the United Nations Educational, Scientific and Cultural Organization and the International Association of Hydrological Sciences, organized this symposium on the Use of Isotope Techniques in Water Resources Development, which took place in Vienna from 11 to 15 March 1991. The main themes of the symposium were the use of isotope techniques in solving practical problems of water resources assessment and development, particularly with respect to groundwater protection, and in studying environmental problems related to water, including palaeohydrological and palaeoclimatological problems. A substantial part of the oral presentations was concerned with the present state and trends in groundwater dating, and with some methodological aspects. These proceedings contain the papers of 37 oral and the extended synopses of 47 poster

  6. Fuzzy pricing for urban water resources: model construction and application.

    Science.gov (United States)

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.

  7. Sound symbolism: the role of word sound in meaning.

    Science.gov (United States)

    Svantesson, Jan-Olof

    2017-09-01

    The question whether there is a natural connection between sound and meaning or if they are related only by convention has been debated since antiquity. In linguistics, it is usually taken for granted that 'the linguistic sign is arbitrary,' and exceptions like onomatopoeia have been regarded as marginal phenomena. However, it is becoming more and more clear that motivated relations between sound and meaning are more common and important than has been thought. There is now a large and rapidly growing literature on subjects as ideophones (or expressives), words that describe how a speaker perceives a situation with the senses, and phonaesthemes, units like English gl-, which occur in many words that share a meaning component (in this case 'light': gleam, glitter, etc.). Furthermore, psychological experiments have shown that sound symbolism in one language can be understood by speakers of other languages, suggesting that some kinds of sound symbolism are universal. WIREs Cogn Sci 2017, 8:e1441. doi: 10.1002/wcs.1441 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  8. The use of an integrated variable fuzzy sets in water resources management

    Science.gov (United States)

    Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang

    2018-06-01

    Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.

  9. The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System

    Science.gov (United States)

    Lin, M.

    2016-12-01

    Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line

  10. 33 CFR 117.309 - Nassau Sound.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nassau Sound. 117.309 Section 117.309 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.309 Nassau Sound. The draw of the Fernandina Port...

  11. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    Science.gov (United States)

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  12. Correlating hydrogeostratification with geostratification from nuclear logging and geoelectric sounding in water impregnated traps

    International Nuclear Information System (INIS)

    Bardhan, M.

    1977-01-01

    Subsurface boundary conditions obtained through nuclear logging and geoelectric sounding were compared with the driller's log recorded in a number of boreholes drilled by employing modern down-the-hole hammer rig, to diagnose the relative merits of the methods and to portray the actual subsurface stratigraphic succession as well as hydrophysical conditions in saturated trap formations. It was observed that nuclear logging and resistivity sounding do not furnish the actual geostratigraphy due to lack of sufficient contrast in the relevant physical properties between successive lava flows, but reflects on the prevailing hydrostratigraphy. However, the informations thrown up by them are of immense technical value in guiding ground water development programme through sinking of wells in trappean terrians. It is shown that the horizontal correlation value of nuclear logging can be augmented by combining it with geoelectric sounding. This aids in enhancing the practical utility of nuclear logs in geohydrologic investigations. (author)

  13. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  14. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... the system and allowed overdraft in dry years in return for increased recharge in wet years. Further, cost-effective recovery of an overdrafted groundwater aquifer was demonstrated. The third implementation assessed interactions of water resources and water quality management. Biochemical oxygen demand (BOD...... problem with a single surface water reservoir state variable. A comparison of different management scenarios was used to evaluate how the South-to-North Water Transfer Project will impact optimal water resources management. Scenarios with unregulated groundwater pumping at realistic pumping costs verified...

  15. Water resources for Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water scarcity is a matter of urgent, national, regional and international concern. For those people, usually women, who are responsible for the daily task of obtaining sufficient water for household use, water shortages are a perpetual worry. It is a situation which affects many individual families and communities throughout the arid and semi-arid regions of Africa. The isotope studies conducted thus far have proved that the majority of regional groundwater systems in northern Africa and the Sahel zone are paleowaters, replenished thousands of years ago, without the possibility of significant replenishment under present climatic conditions. Therefore, removal from such underground reservoirs will eventually deplete the resource. Mapping these paleowaters, and estimating their reservoir sizes, is a priority. (IAEA)

  16. Risk, Robustness and Water Resources Planning Under Uncertainty

    Science.gov (United States)

    Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; Guillod, Benoit P.

    2018-03-01

    Risk-based water resources planning is based on the premise that water managers should invest up to the point where the marginal benefit of risk reduction equals the marginal cost of achieving that benefit. However, this cost-benefit approach may not guarantee robustness under uncertain future conditions, for instance under climatic changes. In this paper, we expand risk-based decision analysis to explore possible ways of enhancing robustness in engineered water resources systems under different risk attitudes. Risk is measured as the expected annual cost of water use restrictions, while robustness is interpreted in the decision-theoretic sense as the ability of a water resource system to maintain performance—expressed as a tolerable risk of water use restrictions—under a wide range of possible future conditions. Linking risk attitudes with robustness allows stakeholders to explicitly trade-off incremental increases in robustness with investment costs for a given level of risk. We illustrate the framework through a case study of London's water supply system using state-of-the -art regional climate simulations to inform the estimation of risk and robustness.

  17. Southwest: a region under stress. [Analysis of environmental, resource-revenues, and water-resources issues

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Kneese, A.V.

    1978-05-01

    The southwestern states of New Mexico, Colorado, Utah, and Arizona share some of the nation's richest natural resources and the poorest people. One goal in the development of the area's resources will be to provide a means of raising the economic level of these people. Three major regional issues (environmental preservation, resource revenues, and water resources) must be faced in terms of the conflicting claims of the states involved. A summary of these issues illustrates the emotional and political strains that have developed. Justification for optimism is seen in the adaptability of new water users, the institutional evolution toward more flexibility in the water rights market, and the growing sophistication and assertiveness of interested parties determined to see that all positions are heard. 14 references.

  18. Water Market-scale Agricultural Planning: Promoting Competing Water Resource Use Efficiency Through Agro-Economics

    Science.gov (United States)

    Delorit, J. D.; Block, P. J.

    2017-12-01

    Where strong water rights law and corresponding markets exist as a coupled econo-legal mechanism, water rights holders are permitted to trade allocations to promote economic water resource use efficiency. In locations where hydrologic uncertainty drives the assignment of annual per-water right allocation values by water resource managers, collaborative water resource decision making by water rights holders, specifically those involved in agricultural production, can result in both resource and economic Pareto efficiency. Such is the case in semi-arid North Chile, where interactions between representative farmer groups, treated as competitive bilateral monopolies, and modeled at water market-scale, can provide both price and water right allocation distribution signals for unregulated, temporary water right leasing markets. For the range of feasible per-water right allocation values, a coupled agricultural-economic model is developed to describe the equilibrium distribution of water, the corresponding market price of water rights and the net surplus generated by collaboration between competing agricultural uses. Further, this research describes a per-water right inflection point for allocations where economic efficiency is not possible, and where price negotiation among competing agricultural uses is required. An investigation of the effects of water right supply and demand inequality at the market-scale is completed to characterize optimal market performance under existing water rights law. The broader insights of this research suggest that water rights holders engaged in agriculture can achieve economic benefits from forming crop-type cooperatives and by accurately assessing the economic value of allocation.

  19. Sustainable water services and interaction with water resources in Europe and in Brazil

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  20. Estimation of crop water requirements using remote sensing for operational water resources management

    Science.gov (United States)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  1. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  2. Interactions of polyethylene glycols with water studied by measurements of density and sound velocity

    International Nuclear Information System (INIS)

    Ayranci, Erol; Sahin, Melike

    2008-01-01

    Densities and sound velocities of ethylene glycol (EG) and polyethylene glycols (PEGs) of molecular weight 200, 300, 400, 550, 600, 1000, 1450, 3350, 8000, and 10,000 at (288.15, 298.15, and 308.15) K were measured with high precision vibrating tube densimeter and sound velocity measuring device. They were used to evaluate apparent molar volumes, V o , and apparent molar isentropic compressibilities, K ΦS . Infinite dilution values of these parameters, V o 0 , and K ΦS 0 , were obtained from their plot as a function of molality. The variations of V o 0 , and K ΦS 0 , with the number of repeating units in PEGs and with temperature were examined. Comparison of the experimentally obtained data was made with the available literature data and also with some values predicted according to group additivity approach. The results were interpreted in terms of hydration and conformational effects of PEGs in water. A correlation was also examined between V o 0 or K ΦS 0 values of PEGs in water and equilibrium moisture contents of PEGs as well as the water vapor permeabilities (WVP) of edible films containing PEGs

  3. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  4. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    The study found that water supply in Harshin district is 100% surface water ... Besides, 76% of the respondents were not satisfied with the quality of drinking water. ... Key words: Water resources, pastoralists, rainwater, water-harvesting, gender ...

  5. Effect on water resources from upstream water diversion in the Ganges basin.

    Science.gov (United States)

    Adel, M M

    2001-01-01

    Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.

  6. Environmentally sound development in the energy and mining industries

    International Nuclear Information System (INIS)

    1987-01-01

    The paper contains the proceedings of a seminar on Strategies for Environmentally Sound Development in the Energy and Mining Industries, Crete, 1984. The seminar was structured around the following themes: 1) oil and gas exploration and production, 2) water power generation and storage projects, 3) electricity generating facilities, 4) restoration and after-use of disturbed land, 5) mineral development, 6) mineral and energy resources in fragile and remote ecosystems, and 7) general environmental issues. Two papers from the seminar were chosen and indexed separately. (U.K.)

  7. Transboundary Water Resources in Southern Africa: Conflict or cooperation?

    CSIR Research Space (South Africa)

    Patrick, MJ

    2006-01-01

    Full Text Available Literature suggests a linkage between internationally shared water resources and conflict potential. Anthony R. Turton, Marian J. Patrick and Frederic Julien examine transboundary water resource management in southern Africa, showing that empirical...

  8. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  9. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    Total river discharge in Pakistan in summer season vary from 3 thousand to 34 thousand cusses (100 thousand Cusses to 1,200 thousand Cusses) and can cause tremendous loss to human lives, crops and property, this causes the loss of most of the flood water in the lower Indus plains to the sea. Due to limited capacity of storage at Tarbela and Mangla Dams on river Indus and Jhelum, with virtually no control on Chenab, Ravi and Sutlej, devastating problems are faced between July and October in the event of excessive rainfall in the catchments. Due to enormous amounts of sediments brought in by the feeding rivers, the three major reservoirs -Tarbela, Mangla and Chashma will lose their storage capacity, by 25 % by the end of the year 2010, which will further aggravate the water-availability situation in Pakistan. The quality of water is also deteriorating due to urbanization and industrialization and agricultural developments. On the Environmental Front the main problems are water-logging and salinity, salt-imbalance, and increasing pollution of water-bodies. World's largest and most integrated system of irrigation was installed almost a hundred years ago and now its efficiency has been reduced to such an extent that more than 50 per cent of the irrigation-water is lost in transit and during application. On the other side, there are still not fully exploited water resources for example groundwater, the alluvial plains of Pakistan are blessed with extensive unconfined aquifer, with a potential of over 50 MAF, which is being exploited to an extent of about 38 MAF by over 562,000 private and 10,000 public tube-wells. In case of Balochistan, out of a total available potential of about 0.9 MAF of groundwater, over 0.5 MAF are already being utilized, but there by leaving a balance of about 0.4 MAF that can still be utilized. Future water resources management strategies should includes starting a mass-awareness campaign on a marshal scale in rural and urban areas to apply water

  10. Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios

    Science.gov (United States)

    Teegavarapu, R. S.

    2008-05-01

    The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.

  11. Inversion for Sound Speed Profile by Using a Bottom Mounted Horizontal Line Array in Shallow Water

    International Nuclear Information System (INIS)

    Feng-Hua, Li; Ren-He, Zhang

    2010-01-01

    Ocean acoustic tomography is an appealing technique for remote monitoring of the ocean environment. In shallow water, matched field processing (MFP) with a vertical line array is one of the widely used methods for inverting the sound speed profile (SSP) of water column. The approach adopted is to invert the SSP with a bottom mounted horizontal line array (HLA) based on MFP. Empirical orthonormal functions are used to express the SSP, and perturbation theory is used in the forward sound field calculation. This inversion method is applied to the data measured in a shallow water acoustic experiment performed in 2003. Successful results show that the bottom mounted HLA is able to estimate the SSP. One of the most important advantages of the inversion method with bottom mounted HLA is that the bottom mounted HLA can keep a stable array shape and is safe in a relatively long period. (fundamental areas of phenomenology (including applications))

  12. Challenges of Integrated Water Resources Management in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2014-07-01

    Full Text Available The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM should cope with complex issues of water in order to maximize the resultant economic and social welfare in an equitable manner, without compromising the sustainability of vital ecosystems. Even though the government of Indonesia has adopted new paradigm for water resources management by the enactment of Law No. 7/2004 on water resources, the implementation of IWRM may face the technical and managerial challenges. This paper briefly reviews the implementation of IWRM and related principles and provides an overview of potential water-related issues and progress towards implementation of IWRM in Indonesia. The availability of water and a broader range of water-related issues are identified. The recommended actions for improving the future IWRM are suggested. Challenges to improve the capacity buildings of IWRM related to enabling environment, institutional frameworks and management instruments are verified to contribute to the future directions for efficient problem-solving ability.

  13. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Bhuiyan, Nurul Amin

    2007-01-01

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  14. Research on evaluating water resource resilience based on projection pursuit classification model

    Science.gov (United States)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  15. Climate change and water resources in Britain

    International Nuclear Information System (INIS)

    Arnell, N.W.

    1998-01-01

    This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality - as characterised by nitrate concentrations and dissolved oxygen contents - will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options. 39 refs., 5 figs

  16. Masteŕ s Programme at Stockholm University: Hydrology, Hydrogeology and Water Resources

    Science.gov (United States)

    Jarsjö, J.; Destouni, G.; Lyon, S. W.; Seibert, J.

    2009-04-01

    Many environmental risks and societal concerns are directly related to the way we manage our land and water environments. The two-year master's programme "Hydrology, Hydrogeology and Water Resources" at Stockholm University, Sweden, is based on a system perspective and provides extended knowledge about water and soil-rock-sediment systems and how these interact with each other and with land use, socio-economic and water resource policy and management systems. This water system perspective includes the spreading of dissolved substances and pollutants in various water systems and associated risks for society. Questions related to water resources are also covered: the management of water resources and conflicts as well as collaborations caused by shared water resources on local, regional and global scales. A common learning objective for the courses in the programme is to be able to identify, extract and combine relevant information from databases and scientific publications, and use the resulting dataset in hydrological, hydrogeological and water resources analyses, on local, regional or global levels. Traditional classroom teaching is to large extent complemented by case study analyses, performed as project assignments. The importance of water resources for both the society and the environment is emphasized through applications to practical water resources management challenges in society. The courses in this program include the following topics: · Hydrological and hydrogeological processes, main components of the water cycle (e.g., precipitation, evapotranspiration, discharge) and the spreading of dissolved substances and pollutants in various water systems. · Water resources and water quality, pollution spreading through surface, ground and coastal water systems, as well as vulnerability and resilience of water resources. · Regional analyses related to global water resource vulnerability and resilience. · Models and information systems as important tools for

  17. Water reuse in river basins with multiple users : A literature review

    NARCIS (Netherlands)

    Simons, G. W H (Gijs); Bastiaanssen, W. G M (Wim); Immerzeel, W. W (Walter)

    2015-01-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface

  18. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  19. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  20. Water-resources activities, North Dakota District, fiscal year 1990

    Science.gov (United States)

    Martin, Cathy R.

    1991-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes waterresources activities of the Water Resources Division in North Dakota in fiscal year 1990. Information on each project includes objectives, approach, progress in fiscal year 1990, plans for fiscal year 1991, completed and planned report products, and the name of the project chief.

  1. Isotopes in water resources management. V.2. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1996-01-01

    At present, the thrusts of the IAEA involvement are towards improved management of water resources in regions suffering from water scarcity, assessment of human impact on water resources, e.g. water pollution, and exploration and management of geothermal resources. Lately, novel isotope based techniques have been evolving from specialized laboratories. These trends and challenges are reflected by the scientific contributions to the International Symposium on Isotopes in Water Resources Management, held from 20 to 24 March 1995 in Vienna. The main themes of the symposium were groundwater resources management, with about two thirds of the contributions addressing origin and recharge of groundwater, groundwater dynamics and pollution, modelling approaches, and geothermal and paleowater resources. The remaining third of the contributions were concerned with surface water sediments, unsaturated zones and methodological aspects. These proceedings contain the 43 papers presented and the extended synopses of over 100 poster presentations. Refs, figs, tabs

  2. Modeling and analysis of collective management of water resources

    Directory of Open Access Journals (Sweden)

    A. Tilmant

    2007-01-01

    Full Text Available Integrated Water Resources Management (IWRM recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  3. Water resources (Chapter 12)

    Science.gov (United States)

    Thomas C. Brown; Romano Foti; Jorge Ramirez

    2012-01-01

    In this chapter, we focus on the vulnerability of U.S. freshwater supplies considering all lands, not just forest and rangelands. We do not assess the condition of those lands or report on how much of our water supply originates on lands of different land covers or ownerships, because earlier Resources Planning Act (RPA) Assessment work addressed these topics....

  4. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  5. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Araguas-Araguas, L.

    1996-01-01

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  6. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  7. Isotopes in water resources management. V.1. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1996-01-01

    In recent years isotope applications in hydrology and water resources assessment have reached a level of maturity. Adequate investigations have been carried out to provide sufficient examples for practical applications in combination with other hydrological methods. The IAEA contributed to this development through field projects implemented in Member States within the framework of the Agency's Technical Co-operation programme. At present, the thrusts of the IAEA involvement are towards improved management of water resources in regions suffering from water scarcity, assessment of human impact on water resources, e.g. water pollution, and exploration and management of geothermal resources. Lately, novel isotope based techniques have been evolving from specialized laboratories. While the techniques have emerged, efforts need to be concentrated on more practical work to accomplish a visible impact on water resources management. These trends and challenges are reflected by the scientific contributions to the International Symposium on Isotopes in Water Resources Management. The main themes of the symposium were groundwater resources management, with about two thirds of the contributions addressing origin and recharge of groundwater, groundwater dynamics and pollution, modelling approaches, and geothermal and palaeowater resources. The remaining third of the contributions were concerned with surface water and sediments, unsaturated zones and methodological aspects. These proceedings contain the 43 papers presented and the extended synopses of over 100 poster presentations. Refs, figs and tabs

  8. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    Science.gov (United States)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  9. Opportunities and constraints for improved water resources management using different lenses and scales

    Science.gov (United States)

    Langan, Simon

    2017-04-01

    The quest for water security has been a struggle throughout human history. Only in recent years has the scale of this quest moved beyond the local, to the national and regional scales and to the planet itself. Absent or unreliable water supply, sanitation and irrigation services, unmitigated floods and droughts, and degraded water environments severely impact half of the planet's population. Over the past few years, water insecurity has become recognized in the World Economic Forum global risk studies as one of the greatest threats that business leaders themselves see that they face in the future, both in terms of likelihood and scale. The scale and complexity of the water challenges faced by society, particularly but not only in the world's poorest regions, are now recognized, as is the imperative of overcoming these challenges for a stable and equitable world. How can we ensure the well-being of all people and ecosystems with the water, human, technological, and financial resources available? In the framework of the Sustainable Development Goals water has to be managed more effectively and wisely by unlocking scientific, managerial, and business capabilities; breaking out of technological lock-in; and innovative and adaptive portfolios of solutions have to be developed while removing barriers to progress on sound water governance. IIASA's Water Futures and Solutions Initiative (WFAS) is an unprecedented inter-disciplinary scientific initiative to identify robust and adaptive portfolios of optional solutions across different economic sectors, including agriculture, energy and industry, and to test these solution-portfolios with multi-model ensembles of hydrologic and sector models to obtain a clearer picture of the trade-offs, risks, and opportunities. The results of WFaS scenarios and models will provide a basis for long-term strategic planning of water resource development. And given the complexity of the water system, WFaS will uniquely provide policy makers

  10. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of the multiple-purpose development and calls for giving ... An appraisal of water resource must consider surface as well as ground water supplies in terms of location, .... as such a very satisfactory method of cost allocation that would be equally applicable to all projects and.

  11. A framework for unravelling the complexities of unsustainable water resource use

    Science.gov (United States)

    Dermody, Brian; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2016-04-01

    The majority of unsustainable water resource use is associated with food production, with the agricultural sector accounting for up to 70% of total freshwater use by humans. Water resource use in food production emerges as a result of dynamic interactions between humans and their environment in importing and exporting regions as well as the physical and socioeconomic trade infrastructure linking the two. Thus in order to understand unsustainable water resource use, it is essential to understand the complex socioecological food production and trade system. We present a modelling framework of the food production and trade system that facilitates an understanding of complex socioenvironmental processes that lead to unsustainable water resource use. Our framework is based on a coupling of the global hydrological model PC Raster Global Water Balance (PCR-GLOBWB) with a multi-agent socioeconomic food production and trade network. In our framework, agents perceive environmental conditions. They make food supply decisions based upon those perceptions and the heterogeneous socioeconomic conditions in which they exist. Agent decisions modify land and water resources. Those environmental changes feedback to influence decision making further. The framework presented has the potential to go beyond a diagnosis of the causes of unsustainable water resource and provide pathways towards a sustainable food system in terms of water resources.

  12. Juvenile Pacific Salmon in Puget Sound

    National Research Council Canada - National Science Library

    Fresh, Kurt L

    2006-01-01

    Puget sound salmon (genus Oncorhynchus) spawn in freshwater and feed, grow and mature in marine waters, During their transition from freshwater to saltwater, juvenile salmon occupy nearshore ecosystems in Puget Sound...

  13. [Simulation for balanced effect of soil and water resources on cultivated land in Naoli River Basin, Northeast China under the RCPs climate scene].

    Science.gov (United States)

    Zhou, Hao; Lei, Guo Ping; Yang, Xue Xin; Zhao, Yu Hui; Zhang, Ji Xin

    2018-04-01

    Under the scenarios of climate change, balancing the land and water resources is one of the key problems needed to be solved in land development. To reveal the water dynamics of the cultivated land in Naoli River Basin, we simulated the future scenarios by using the future land use simulation model based on Landsat Satellite images, the DEM data and the meteorological data. Results showed that the growth rate of cultivated land gradually decreased. It showed different changing characteristics in different time periods, which led to different balancing effect between land and water resources. In 1990, the water dynamics of the cultivated land resources was in good state, At the same time, the adjustment of crops structure caused the paddy fields increased dramatically. During 2002 to 2014, the cultivated land that in moderate and serious moisture shortage state increased slightly, the water deficit was deteriorating to a certain degree, and maintained sound development of water profit and loss situation gradually. By comparing the simulation accuracy with different spatial resolutions and time scales, we selected 200 m as the spatial resolution of the simulation, and simulated the land use status in 2038. The simulation results showed that the cultivated land's water profit and loss degree in the river basin showed significant polarization characteristic, in that the water profit and loss degree of the cultivated land would be further intensified, the area with the higher grades of moisture profit and loss degree would distribute more centralized, and partially high evaluated grades for the moisture shortage would expand. It is needed to develop the cultivated land irrigation schemes and adjust the cultivated land in Naoli River Basin to balance soil and water resources.

  14. Review of Ghana's water resources: the quality and management with particular focus on freshwater resources

    Science.gov (United States)

    Yeleliere, E.; Cobbina, S. J.; Duwiejuah, A. B.

    2018-06-01

    Freshwater resources are continually decreasing in quality and quantity. Approximately, 1% of this freshwater is accessible in lakes, river channels and underground for domestic use. The study reviewed literature on water resources with focus on freshwater, the quality of our freshwater in terms of physical, chemical and biological variables, the main mechanisms of management, and the challenges associated with these mechanisms as well as blending integrated water management with the indigenous or traditional management of water resources for sustainable development and peaceful co-existence. Also the review offered potent recommendations for policy makers to consider sustainable management of freshwater resources. A total of 95 articles were downloaded from Google scholar in water-related issues. The search took place from June to September 2017, and research articles from 1998 to 2018 were reviewed. Basically Ghana is made up of three discharge or outlet systems, namely the Coastal River Systems which is the least and Volta constituting the largest and with the South-Western been the intermediate. Also, freshwater resources usage can be put into two main categories, namely ex situ (withdrawal use) and in situ or in-stream use, and could also be referred to as the consumptive and non-consumptive use, respectively. With the exception of localised pollution engineered by illegal mining and other nuisance perpetuated by indigenes, the quality of water (surface and groundwater) in Ghana is generally better. The review outlined high microbial contamination of water as almost all surface waters are contaminated with either E. coli, faecal coliforms or total coliforms or all. However, these contaminations were more prevalent in surface water than groundwater.

  15. 33 CFR 110.25 - Salem Sound, Mass.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Salem Sound, Mass. 110.25 Section 110.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.25 Salem Sound, Mass. (a) Beverly Harbor, north of Salem...

  16. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    The impact of the Chernobyl accident throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate potential risk to drinking water supplies, soil water and the food chain. This book provides information on radiological standards as they exist at present, methods of monitoring, and concepts in design to minimize risk and to highlight possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. (author)

  17. Integrated water resources management and infrastructure planning for water security in Southern Africa

    Science.gov (United States)

    Mapani, Benjamin; Magole, Lapologang; Makurira, Hodson; Meck, Maideyi; Mkandawire, Theresa; Mul, Marloes; Ngongondo, Cosmo

    2017-08-01

    This volume has brought together papers that are peer reviewed emanating from the WaterNet/WARFSA/GWP-SA 16th Symposium. The papers cover the following themes: Hydrology, Water and Environment, Water and Land, Water and Society, Water Supply and Sanitation and Water Resources Management.

  18. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  19. INFLUENCE OF CLIMATE CHANGES ON WATER RESOURCES IN MOLDOVA

    Directory of Open Access Journals (Sweden)

    Violeta Ivanov

    2012-06-01

    Full Text Available The paper aims to analyze the current state of affairs with water resources in Moldova, the challenges it faces for its national human and economic development, having in mind that the water resources are quite limited in Moldova, which encounters pollution, degradation influenced by climate change and unwise human activity to their biodiversity and ecosystems, availability and accessibility. It also attempts to highlight the relationship between climate change and water resources in Moldova, which has adverse effects on both environment and people’s health, and raise significant hurdles to the international, regional and sectoral development.

  20. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  1. Comprehensive benefit analysis of regional water resources based on multi-objective evaluation

    Science.gov (United States)

    Chi, Yixia; Xue, Lianqing; Zhang, Hui

    2018-01-01

    The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.

  2. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  3. Overview of water resource assessment in South Africa: Current ...

    African Journals Online (AJOL)

    Overview of water resource assessment in South Africa: Current state and future challenges. ... These studies illustrate how the exponential growth in computer power and the concomitant development of highly sophisticated tools have changed the manner in which our water resources have been appraised, allowing us to ...

  4. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  5. The Basin Water Resources Management System and Its Innovation in China

    Institute of Scientific and Technical Information of China (English)

    Xun; Pomponio

    2008-01-01

    Water provides the origin of human survival and prosperity,and the basic resource for the maintenance of terrestrial eco-systems,their biodiversity,productivity and ecological services.With China’s recent,rapid growth both in population and economic development,the water shortage has become one of the most constraints on its ecological restoration and socio-economic development,especially in the arid inland regions of northwest China.At first glance,this water shortage in China appears to be a resource crisis.But second,an in-depth analysis reveals that the water shortage crisis arises mainly resulting from the poor water management system and operating mechanism that cannot facilitate fair allocation and efficient utilization of water resources both regionally and nationally and thus is viewed as a crisis of water manage-ment.The solution of China’s water shortage and low-efficient utilization problem will,in particular,require a fundamen-tal and substantial reform or innovation of the existing water management system and operating mechanism.In this paper,we address explicitly the problems existed in the current water management system,explore the basic theory of water re-sources management and provide some insights into the way how to establish a river basin based integrated water re-sources management system in China.

  6. Recovery of uranium resources from sea water

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1980-01-01

    After the oil crisis in 1973, the development of atomic energy has become important as substitute energy, and the stable acquisition of uranium resources is indispensable, in order to promote smoothly the use of atomic energy. The Ministry of International Trade and Industry has engaged actively in the project ''The survey on the technical development of the system for recovering uranium and others from sea water'' since 1974. 80% of the uranium resources in the world is distributed in USA, Canada, South Africa, Australia and Niger, and in near future, the price of uranium ores may be raised. Japan must promote powerfully the development of foreign uranium resources, but also it is very important to get domestic uranium by efficiently recovering the uranium dissolved in sea water, the amount of which was estimated at 4 billion tons, and its practical use is expected in 1990s. The uranium concentration in sea water is about 3 g in 1000 t sea water. The processes of separation and recovery are as follows: (1) adsorption of uranium to titanic acid powder adsorbent by bringing sea water in contact with it, (2) dissolving the collected uranium with ammonium carbonate, the desorption agent, (3) concentration of uranium solution by ion exchange method or ion flotation method to 2800 ppm. The outline of the model plant is explained. (Kako, I.)

  7. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Directory of Open Access Journals (Sweden)

    Hailiang Ma

    2016-11-01

    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  8. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    Science.gov (United States)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  9. Relationships demand-supply of water and the rate of water shortage as tools for evaluating water resources in Colombia

    International Nuclear Information System (INIS)

    Dominguez Calle, Efrain Antonio; Gonzalo Rivera, Hebert; Vanegas, Sarmiento Raquel; Moreno, Pedro

    2008-01-01

    This paper shows updated results about Colombian water resources and their requirements by the economic sectors. Water demand water availability relationship is used as a pressure index on water resources. This relationship is expressed through the water scarcity index, which applies constraints over water availability; due to the runoff temporal variability and to the low levels of water during the dry season each year and for each geographic region to characterize average and low runoff years. Different water availability scenarios were building. One for modal runoff values and another for 95 percents for 2025 also were prepared. To the results call our attention to problems caused by the concentration of high density settlements and the presence of economics sectors in regions with low water availability. The infrastructure lag for management of a scarce high variable and over pressured resources emerges as a key factor to avoid a looming crisis in the process of water management

  10. Water, Politics and Development: Framing a Political Sociology of Water Resources Management

    NARCIS (Netherlands)

    Mollinga, P.P.; Bhat, A.; Cleaver, F.; Meinzen-Dick, R.; Molle, F.; Neef, A.; Subramanian, S.; Wester, P.

    2008-01-01

    EDITORIAL PREAMBLE: The first issue of Water Alternatives presents a set of papers that investigates the inherently political nature of water resources management. A Water, Politics and Development initiative was started at ZEF (Center for Development Research, Bonn, Germany) in 2004/2005 in the

  11. Managing Climate Risk to Agriculture and Water Resources in South ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Climate Risk to Agriculture and Water Resources in South Africa ... to better integrate information on climate change and climate variability into water resources policy, planning and management. ... University of the Free State.

  12. Development of water resources management in Iraq and its obstacles

    International Nuclear Information System (INIS)

    Jawad, A. M.

    2011-01-01

    Iraq witnessed recently a considerable development in the field of water resources management to go along with developed countries. Latest technology has been introduced in hydrology monitoring. Many stations for water measuring and monitoring have been constructed beside many irrigation and drainage canals in order to reach an optimum irrigation system. A special emphasis has been put on the role of nuclear techniques in enhancing the water resources management development. These techniques will provide the perfect opportunity for investing water and drained quantities and determining pollution resources to insure the sustainability of the agricultural sector without threatening the development processes. This development encounters the lack of knowledge of technology applied in the field of the use of peaceful atomic energy and nuclear technologies, which are essential in sustaining the momentum in the management of water resources, despite the entry of the latest developed devices and technologies in measurements and monitoring. (author)

  13. Modeling water resources as a constraint in electricity capacity expansion models

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.

    2013-12-01

    In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs

  14. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  15. Isotope techniques in water resources development and management. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The 10th International Symposium on Isotope Techniques in Water Resources Development and Management was organized by the International Atomic Energy Agency in co-operation with UNESCO, WMO and International Association of Hydrological Sciences and was held at IAEA Headquarters, Vienna, during 10-14 May 1999. The symposium provided an international forum for assessing the status and recent advances in isotope applications to water resources and an exchange of information on the following main themes: processes at the interface between the atmosphere and hydrosphere; investigations in surface waters and groundwaters: their origin, dynamics, interrelations; problems and techniques for investigating sedimentation; water resources issues: pollution, source and transport of contaminants, salinization, water-rock interaction and processes in geothermal systems; isotope data interpretation and evaluation methodologies: modelling approaches. The proceedings contain the 46 papers presented and extended synopses of poster presentations; each of them was indexed individually

  16. Conflicts Over Water as a Resource

    National Research Council Canada - National Science Library

    Cooksey, James

    2008-01-01

    .... A specific element that operational planners must consider when assessing political and military objectives of belligerents, and how those objectives may shape military operations, is water as a natural resource...

  17. Seasonal variation in aragonite saturation in surface waters of Puget Sound – a pilot study

    Directory of Open Access Journals (Sweden)

    Gregory Pelletier

    2018-01-01

    Full Text Available A pilot study of sampling, using monthly marine flights over spatially distributed stations, was conducted with the aim to characterize the carbonate system in Puget Sound over a full year-long period. Surface waters of Puget Sound were found to be under-saturated with respect to aragonite during October–March, and super-saturated during April–September. Highest pCO2 and lowest pH occurred during the corrosive October–March period. Lowest pCO2 and highest pH occurred during the super-saturated April–September period. The monthly variations in pCO2 , pH, and aragonite saturation state closely followed the variations in monthly average chlorophyll a. Super-saturated conditions during April–September are likely strongly influenced by photosynthetic uptake of CO2 during the phytoplankton growing season. The relationship between phytoplankton production, the carbonate system, and aragonite saturation state suggests that long-term trends in eutrophication processes may contribute to trends in ocean acidification in Puget Sound

  18. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  19. Quantifying benthic nitrogen fluxes in Puget Sound, Washington: a review of available data

    Science.gov (United States)

    Sheibley, Richard W.; Paulson, Anthony J.

    2014-01-01

    Understanding benthic fluxes is important for understanding the fate of materials that settle to the Puget Sound, Washington, seafloor, as well as the impact these fluxes have on the chemical composition and biogeochemical cycles of marine waters. Existing approaches used to measure benthic nitrogen flux in Puget Sound and elsewhere were reviewed and summarized, and factors for considering each approach were evaluated. Factors for selecting an appropriate approach for gathering information about benthic flux include: availability of resources, objectives of projects, and determination of which processes each approach measures. An extensive search of literature was undertaken to summarize known benthic nitrogen fluxes in Puget Sound. A total of 138 individual flux chamber measurements and 38 sets of diffusive fluxes were compiled for this study. Of the diffusive fluxes, 35 new datasets were located, and new flux calculations are presented in this report. About 65 new diffusive flux calculations are provided across all nitrogen species (nitrate, NO3-; nitrite, NO2-; ammonium, NH4+). Data analysis of this newly compiled benthic flux dataset showed that fluxes beneath deep (greater than 50 meters) water tended to be lower than those beneath shallow (less than 50 meters) water. Additionally, variability in flux at the shallow depths was greater, possibly indicating a more dynamic interaction between the benthic and pelagic environments. The overall range of bottom temperatures from studies in the Puget Sound area were small (5–16 degrees Celsius), and only NH4+ flux showed any pattern with temperature. For NH4+, flux values and variability increased at greater than about 12 degrees Celsius. Collection of additional study site metadata about environmental factors (bottom temperature, depth, sediment porosity, sediment type, and sediment organic matter) will help with development of a broader regional understanding benthic nitrogen flux in the Puget Sound.

  20. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    Science.gov (United States)

    2017-02-27

    eight divisions that are further divided into 38 districts.2 This report provides an overview of the Corps water resource activities , including...rules associated with authorization and appropriation earmarks, individual Members often brought attention to similar activities for congressional...Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities Nicole T. Carter Specialist in Natural Resources Policy

  1. 30 CFR 402.6 - Water-Resources Research Program.

    Science.gov (United States)

    2010-07-01

    ... productivity of water when used for agricultural, municipal, and commercial purposes; and (8) The economic, legal, engineering, social, recreational, biological, geographic, ecological, and other aspects of water... interpreting the results of scientific and engineering research on water-resources problems. (10) Providing...

  2. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  3. Climate change: Implications for water and ecological resources

    International Nuclear Information System (INIS)

    Wall, G.; Sanderson, M.

    1990-01-01

    A conference was held to discuss the implications of climate change on water and ecological resources. The meeting consisted of a number of plenary sessions, luncheon speeches, an open forum, and five workshops. Presentations concerned regional and global issues, climate modelling, international aspects of climate change, water resources supply and demand, wetlands, wildlife and fisheries, agriculture and forests, and conservation strategies. Separate abstracts have been prepared for 32 presentations from the conference

  4. Sound data management as a foundation for natural resources management and science

    Science.gov (United States)

    Burley, Thomas E.

    2012-01-01

    Effective decision making is closely related to the quality and completeness of available data and information. Data management helps to ensure data quality in any discipline and supports decision making. Managing data as a long-term scientific asset helps to ensure that data will be usable beyond the original intended application. Emerging issues in water-resources management and climate variability require the ability to analyze change in the conditions of natural resources over time. The availability of quality, well-managed, and documented data from the past and present helps support this requirement.

  5. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  6. Climatic changes and water resources in the Middle East and North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Inst. for Atmospheric and Environmental Sciences; Hoetzl, Heinz (eds.) [Karlsruhe Univ. (Germany). Inst. Geologie

    2008-07-01

    ''Climatic Change and Water Resources in the Middle East and North Africa'' is dedicated to high-priority topics related to the impact of climate change on water resources in a water scarce region. The subject is described and discussed in three main chapters and different case studies. The three main chapters are (1) Climatic changes - sources and effects on the water cycle, (2) Impact of climate change on water resources, (3) Water resources and water management. These chapters are split up into further 26 sections. A total of 64 individuals from many countries have made contributions to this book. All topics in this book are complimentary and contribute to a comprehensive understanding of the interactions between global climate change, world water cycle and water resources. A valuable and meaningful interdisciplinary mixture of topics is combined in this book which will be of great interest to many scientists. (orig.)

  7. The perceptions of research values and priorities in water resource ...

    African Journals Online (AJOL)

    2011-06-29

    Jun 29, 2011 ... clear strengths in water resource management in southern Africa were identified, we found that ... and cross-sector collaboration in integrated water resource .... the 2 views that topped the list were the 'implementation and.

  8. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    Science.gov (United States)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development

  9. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  10. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  11. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  12. Struggles over Access and Authority in the Governance of new water resources

    DEFF Research Database (Denmark)

    Cold-Ravnkilde, Signe Marie; Funder, Mikkel

    Research on water scarcity in the South has often focused on the impacts of limited water resources for the rural poor, prompted most recently by the climate change debate. Less attention has been drawn to the social and institutional processes surrounding the emergence of new collective water...... of the way we understand the development of new water resources in the current context of inequality, water scarcity and climate change....... resources, and how this affects authority, access rights and social exclusion in local water governance. The paper addresses this issue through a study of local competition over access to new common-pool water resources in isolated rural areas of Zambia and Mali. In Mali, climate change has led...

  13. An ontology for component-based models of water resource systems

    Science.gov (United States)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  14. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  15. Using sound to modify fish behavior at power-production and water-control facilities: A workshop. Phase 2: Final report

    International Nuclear Information System (INIS)

    Carlson, T.J.; Popper, A.N.

    1997-06-01

    A workshop on ''''Use of Sound for Fish Protection at Power-Production and Water-Control Facilities'''' was held in Portland, Oregon on December 12--13, 1995. This workshop convened a 22-member panel of international experts from universities, industry, and government to share knowledge, questions, and ideas about using sound for fish guidance. Discussions involved in a broad range of indigenous migratory and resident fish species and fish-protection issues in river systems, with particular focus on the Columbia River Basin. Because the use of sound behavioral barriers for fish is very much in its infancy, the workshop was designed to address the many questions being asked by fishery managers and researchers about the feasibility and potential benefits of using sound to augment physical barriers for fish protection in the Columbia River system

  16. 78 FR 50335 - Double Hull Tanker Escorts on the Waters of Prince William Sound, Alaska

    Science.gov (United States)

    2013-08-19

    ...-AB96 Double Hull Tanker Escorts on the Waters of Prince William Sound, Alaska AGENCY: Coast Guard, DHS... mandates two tug escorts for double hull tankers over 5,000 gross tons transporting oil in bulk in PWS. The... tug escort requirements apply to certain double hull tankers. DATES: This interim rule is effective...

  17. Sustainable development of water resources, water supply and environmental sanitation.

    CSIR Research Space (South Africa)

    Austin, LM

    2006-01-01

    Full Text Available and be capable of destroying or isolating pathogens. A need exists for documentary evidence to support various claims about different storage periods for ensuring pathogen die-off and safe handling of biosolids (Peasy 2000). Handling of faecal material... in Water and Environmental Health, Task no. 324. [Online] http://www/lboro.ac.uk/well/resources/well-studies/full-reports-pdf/task0324.pdf WHO (2001). Water quality, guidelines, standards and health: Assessment of risk and risk management for water...

  18. Key issues for determining the exploitable water resources in a Mediterranean river basin.

    Science.gov (United States)

    Pedro-Monzonís, María; Ferrer, Javier; Solera, Abel; Estrela, Teodoro; Paredes-Arquiola, Javier

    2015-01-15

    One of the major difficulties in water planning is to determine the water availability in a water resource system in order to distribute water sustainably. In this paper, we analyze the key issues for determining the exploitable water resources as an indicator of water availability in a Mediterranean river basin. Historically, these territories are characterized by heavily regulated water resources and the extensive use of unconventional resources (desalination and wastewater reuse); hence, emulating the hydrological cycle is not enough. This analysis considers the Jucar River Basin as a case study. We have analyzed the different possible combinations between the streamflow time series, the length of the simulation period and the reliability criteria. As expected, the results show a wide dispersion, proving the great influence of the reliability criteria used for the quantification and localization of the exploitable water resources in the system. Therefore, it is considered risky to provide a single value to represent the water availability in the Jucar water resource system. In this sense, it is necessary that policymakers and stakeholders make a decision about the methodology used to determine the exploitable water resources in a river basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The Potential of in situ Rain Water Harvesting for Water Resources ...

    African Journals Online (AJOL)

    The role of in situ rain water harvesting (RWH) in water resources conservation is well recognized in semiarid areas, such as the highlands of northern Ethiopia. However, in fringe areas of malaria endemicity, the potential impact of such schemes on vector populations and malaria transmission is not well documented.

  20. Quality of Waters of Aquifer Webs of Biskra Region | Bouchemal ...

    African Journals Online (AJOL)

    Controlling the quality of water distributed together with sound resource management is a factor of economic and social development. Also, the chemistry and knowledge of geological and hydrogeological aquifer, the object of this work, we identify the water quality examined through physical-chemical parameters. The study ...

  1. Evaluation of Water Resources Carrying Capacity in Shandong Province Based on Fuzzy Comprehensive Evaluation

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2018-01-01

    Full Text Available Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.

  2. Barriers to sustainable water resources management : Case study in Omnogovi province, Mongolia

    OpenAIRE

    Enkhtsetseg, Mandukhai

    2017-01-01

    This study examines the barriers to sustainable water resources management in water vulnerable, yet a mining booming area. The case study is conducted in Omnogovi province of Mongolia in Nov-Dec 2016. This study presents how the Omnogovi province manages its water with increased mining and examines what hinders the province from practicing sustainable water resources management and examines the involvement of residents in the water resources management of Omnogovi province. Qualitative approa...

  3. Water resources and water pollution studies

    International Nuclear Information System (INIS)

    Airey, P.

    2001-01-01

    Nuclear techniques are widely used in the investigation of the dynamics of the water cycle. This paper focusses on their contributions to the development of strategies for the sustainability of environmental resources. Emphasis has been placed on the role of environmental isotopes and radiotracers in evaluating models of complex environmental systems. Specific reference is made to 1) the construction of a marine radioactivity database for Asia and the Pacific, 2) the sustainability of groundwater in regions challenged by climate change, and 3) the applications of radiotracers to off-shore transport of sediments and contaminants

  4. Western Water Resources: Coming Problems and the Policy Alternatives

    Science.gov (United States)

    Wahl, Richard

    This quote from the book leads one to speculate as to what will happen to water policy in these times of increased concern for reducing federal spending, for more reliance on state and local governments as opposed to the federal government, and for more reliance on the private sector as opposed to any level of governmental control. Remembering that a wrenching debate preceded deregulation of oil and other energy prices, what are the opportunities for deregulation in the water resources field?Western Water Resources consists of the proceedings of a symposium held in Denver in September 1979 and Hosted by the Federal Reserve Bank of Kansas City. As in any conference, there is, in addition to the organized substantive content of the papers, a mixture of the clever and the banal, peppered with some humor and chit-chat. Among the contributors are economists, including Charles Howe, Allen Kneese, Emery Castle, and Kenneth Boulding; legal scholars, such as George Radosevich and Frank Trelease; and political figures, such as Scott Matheson, Governor of Utah, Guy Martin, former Assistant Secretary for Land and Water Resources of the Department of the Interior, and Leo Eisel, former Director of the Water Resources Council. Some papers are followed by a discussion from commentors.

  5. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    Science.gov (United States)

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption

  6. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    Science.gov (United States)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  7. Water-resources programs and hydrologic-information needs, Marion County, Indiana, 1987

    Science.gov (United States)

    Duwelius, R.F.

    1990-01-01

    Water resources are abundant in Marion County, Indiana, and have been developed for public and industrial supply, energy generation, irrigation, and recreation. The largest water withdrawals are from surface water, and the two largest water uses are public supply and cooling water for electrical-generating plants. Water-resources programs in the county are carried out by Federal, State and local agencies to address issues of surface and groundwater availability and quality. The programs of each agency are related to the functions and goals of the agency. Although each agency has specific information needs to fulfill its functions, sometimes these needs overlap, and there are times when the same hydrologic information benefits all. Overlapping information needs and activities create opportunities for interagency coordination and cooperation. Such cooperation could lead to a savings of dollars spent on water-resources programs and could assure an improved understanding of the water resources of the county. Representatives from four agencies-- the Indiana Department of Environmental Management, the Indiana Department of Natural Resources, the Indianapolis Department of Public Works, and the U.S. Geological Survey--met four times in 1987 to describe their own water-resources programs, to identify hydrologic-information needs, and to contact other agencies with related programs. This report presents the interagency findings and is intended to further communication among water resource agencies by identifying current programs and common needs for hydrologic information. Hydrologic information needs identified by the agency representatives include more precise methods for determining the volume of water withdrawals and for determining the volume of industrial and municipal discharges to surface water. Maps of flood-prone areas need to be updated as more of the county is developed. Improved aquifer maps of the inter-till aquifers are needed, and additional observation

  8. Continuous real-time water information: an important Kansas resource

    Science.gov (United States)

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  9. Combined multibeam and bathymetry data from Rhode Island Sound and Block Island Sound: a regional perspective

    Science.gov (United States)

    Poppe, Lawrence J.; McMullen, Katherine Y.; Danforth, William W.; Blankenship, Mark R.; Clos, Andrew R.; Glomb, Kimberly A.; Lewit, Peter G.; Nadeau, Megan A.; Wood, Douglas A.; Parker, Castleton E.

    2014-01-01

    Detailed bathymetric maps of the sea floor in Rhode Island and Block Island Sounds are of great interest to the New York, Rhode Island, and Massachusetts research and management communities because of this area's ecological, recreational, and commercial importance. Geologically interpreted digital terrain models from individual surveys provide important benthic environmental information, yet many applications of this information require a geographically broader perspective. For example, individual surveys are of limited use for the planning and construction of cross-sound infrastructure, such as cables and pipelines, or for the testing of regional circulation models. To address this need, we integrated 14 contiguous multibeam bathymetric datasets that were produced by the National Oceanic and Atmospheric Administration during charting operations into one digital terrain model that covers much of Block Island Sound and extends eastward across Rhode Island Sound. The new dataset, which covers over 1244 square kilometers, is adjusted to mean lower low water, gridded to 4-meter resolution, and provided in Universal Transverse Mercator Zone 19, North American Datum of 1983 and geographic World Geodetic Survey of 1984 projections. This resolution is adequate for sea-floor feature and process interpretation but is small enough to be queried and manipulated with standard Geographic Information System programs and to allow for future growth. Natural features visible in the data include boulder lag deposits of winnowed Pleistocene strata, sand-wave fields, and scour depressions that reflect the strength of oscillating tidal currents and scour by storm-induced waves. Bedform asymmetry allows interpretations of net sediment transport. Anthropogenic features visible in the data include shipwrecks and dredged channels. Together the merged data reveal a larger, more continuous perspective of bathymetric topography than previously available, providing a fundamental framework for

  10. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  11. Working group report on water resources

    International Nuclear Information System (INIS)

    Baulder, J.

    1991-01-01

    The results and conclusions of a working group held to discuss climate change implications for water resources are presented. The existing water resources and climatological databases necessary to develop models and functional relationships lack integration and coordination. The density and spatial distribution of the existing sampling networks for obtaining necessary climatological data is inadequate, especially in areas of complex terrain, notably higher elevations in the Rocky Mountains. Little information and knowledge is available on potential socio-economic responses that can be anticipated from either increases in climate variability or major change. Recommended research initiatives include the following. Basic functional relationships between climatic events, climatic variability and change, and both surface and groundwater hydrologic processes need to be investigated and improved. Basin-scale and regional-scale climatic models need to be developed, tested, and interfaced with existing global climate models. Public sector attitudes to water management issues and opportunities need to be investigated, and integrated scientific, socio-economic, multidisciplinary, regional databases on climatic change and variability and associated processes need to be developed

  12. Evaluation of the state water-resources research institutes

    Science.gov (United States)

    Ertel, M.O.

    1988-01-01

    Water resources research institutes, as authorized by the Water Resources Research Act of 1984 (Public Law 98-242), are located in each state and in the District of Columbia, Guam, Puerto Rico , and the Virgin Islands. Public Law 98-242 mandated an onsite evaluation of each of these institutes to determine whether ' . . .the quality and relevance of its water resources research and its effectiveness as an institution for planning, conducting, and arranging for research warrant its continued support in the national interest. ' The results of these evaluations, which were conducted between September 1985 and June 1987, are summarized. The evaluation teams found that all 54 institutes are meeting the basic objectives of the authorizing legislation in that they: (1) use the grant funds to support research that addresses water problems of state and regional concern; (2) provide opportunities for training of water scientists through student involvement on research projects; and (3) promote the application of research results through preparation of technical reports and contributions to the technical literature. The differences among institutes relate primarily to degrees of effectiveness, and most often are determined by the financial, political, and geographical contexts in which the institutes function and by the quality of their leadership. (Lantz-PTT)

  13. Simulation of Integrated Qualitative and Quantitative Allocation of Surafce and Underground Water Resources to Drinking Water Demand in Mashhad

    Directory of Open Access Journals (Sweden)

    Mansoureh Atashi

    2015-12-01

    Full Text Available Despite the fact that both surface and groundwater resources inside and outside the city of Mashhad have been already exploited to their maximum capacity and that the large water transfer Doosti Dam Project has been already implemented to transfer a considerable quanity of water to Mashhad, the city will be encountering a daily water shortage of about 1.7 m3/s by 2021. The problem would be even worse if the quality of the water resources are taken into account, in which case, the shortage would start even sooner in 2011 when the water deficit will be about 0.9 m3/s. As a result, it is essential to develop short- and medium-term strategies for secure adequate water supplies for the city's domestic water demand. The present study aims to carry out a qualitative and quantitative modeling of surface and groundwater resources supplying Mashhad domestic water. The qualitative model is based on the quality indices of surface and groundwater resources according to which the resources are classified in the three quality categories of resources with no limitation, those with moderate limitations, and those with high limitations for use as domestic water supplies. The pressure zones are then examined with respect to the potable water demand and supply to be simulated in the MODSIM environment. The model thus developed is verified for the 2012 data based on the measures affecting water resources in the region and various scenarios are finally evaluated for a long-term 30-year period. Results show that the peak hourdaily water shortage in 2042for the zone supplied from no limitation resources will be 38%. However, this value will drop to 28% if limitations due to resource quality are also taken into account. Finally, dilution is suggested as a solution for exploiting the maximum quantitative and qualitative potential of the resources used as domestic water supplies. In this situation, the daily peak hour water shortage will be equal to 31%.

  14. Mercury in Sediment, Water, and Biota of Sinclair Inlet, Puget Sound, Washington, 1989-2007

    Science.gov (United States)

    Paulson, Anthony J.; Keys, Morgan E.; Scholting, Kelly L.

    2010-01-01

    Historical records of mercury contamination in dated sediment cores from Sinclair Inlet are coincidental with activities at the U.S. Navy Puget Sound Naval Shipyard; peak total mercury concentrations occurred around World War II. After World War II, better metallurgical management practices and environmental regulations reduced mercury contamination, but total mercury concentrations in surface sediment of Sinclair Inlet have decreased slowly because of the low rate of sedimentation relative to the vertical mixing within sediment. The slopes of linear regressions between the total mercury and total organic carbon concentrations of sediment offshore of Puget Sound urban areas was the best indicator of general mercury contamination above pre-industrial levels. Prior to the 2000-01 remediation, this indicator placed Sinclair Inlet in the tier of estuaries with the highest level of mercury contamination, along with Bellingham Bay in northern Puget Sound and Elliott Bay near Seattle. This indicator also suggests that the 2000/2001 remediation dredging had significant positive effect on Sinclair Inlet as a whole. In 2007, about 80 percent of the area of the Bremerton naval complex had sediment total mercury concentrations within about 0.5 milligrams per kilogram of the Sinclair Inlet regression. Three areas adjacent to the waterfront of the Bremerton naval complex have total mercury concentrations above this range and indicate a possible terrestrial source from waterfront areas of Bremerton naval complex. Total mercury concentrations in unfiltered Sinclair Inlet marine waters are about three times higher than those of central Puget Sound, but the small numbers of samples and complex physical and geochemical processes make it difficult to interpret the geographical distribution of mercury in marine waters from Sinclair Inlet. Total mercury concentrations in various biota species were compared among geographical locations and included data of composite samples, individual

  15. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  16. Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.

    Science.gov (United States)

    Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara

    2017-09-01

    Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.

  17. Ultimate resources of drinking water in the event of a major pollution crisis: the role of bottled water

    International Nuclear Information System (INIS)

    Collin, J.J.; Comte, J.P.; Daum, J.R.; Lopoukhine, M.; Mesny, M.

    1995-01-01

    In the event of a serious and widespread pollution incident - on the level of the ''Chernobyl cloud'' - most of the drinking water resources in France could be contaminated : surface water immediately, ground water in a few days... or a few months. Therefore on the initiative of the Ministry of the Environment's Director for Defence, a study has been initiated as to what might be qualified as ''final emergency resources''. An inventory and map of protected resources have been prepared. In this context it seems reasonable to show bottled water as a resource meeting the necessary protection criteria. However it seems that these criteria are not all, nor always, relevant for defining a ''ultimate emergency resource'' not contaminated by a major incident. This article outlines a typology of situations and defines the main criteria necessary for bottled water to be able to constitute an ultimate resource

  18. 33 CFR 167.1700 - In Prince William Sound: General.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: General... Schemes and Precautionary Areas Pacific West Coast § 167.1700 In Prince William Sound: General. The Prince William Sound Traffic Separation Scheme consists of four parts: Prince William Sound Traffic Separation...

  19. TOURISM DEVELOPMENT IMPACTS ON WATER RESOURCES IN NORTHERN KUTA DISTRICT OF BADUNG BALI

    Directory of Open Access Journals (Sweden)

    I Nyoman Sunarta

    2016-03-01

    Full Text Available One of the problem in the development of Bali tourism is declining carrying capacity supporting tourism resources, especially water. In the past, rural areas have never experienced a lack of water, by which presently facing a water crisis. This condition corresponds to the higher intensity of exploitation of water resources as a result of tourism development. The rapid development of business on accommodation facilities in North Kuta District is potential to accupy rice paddy and water resources. If this development is not properly controlled can cause negative impacts not only on the existence of the fields, but also for the potential of water resources. Tourism is significantly depend on adequacy of water resources to be able to function properly, thus in case of a water crisis in the tourist areas of Bali in particular, then sooner or later will create the economic crisis and the crisis of tourism. The research was located in North Kuta District aimed to know the impacts of the development of the tourism on water resources potential. In order to understand the impact on water resources used geography disciplines approach, and applying survey research methods. Tourism development is determined by the interpretation of Quickbird imagery in a different location. Carrying capacity of water resources is determined by using the guidelines of Per Men LH. No. 17 year 2009. Impact of tourism development on water resources was determined using comparative analysis of surface water and groundwater, both an quantity and quality. There were two patterns of land use change in North Kuta District, namely from the rice fields to tourist accommodation and from the dryland/orchard land, to tourist accommodation. Changes from rice field for about 16 years (1992-2008 in North Kuta District was 1,218.44 Ha. Carrying capacity of water resources was considered deficit at all village in North Kuta District. Development of tourism, especially tourism accommodation

  20. 33 CFR 67.20-10 - Sound signal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sound signal. 67.20-10 Section 67... AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Class âAâ Requirements § 67.20-10 Sound signal. (a) The owner of a Class “A” structure shall: (1) Install a sound signal that has a rated range...

  1. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  2. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    Science.gov (United States)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  3. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Waters of Santa Rosa Sound and..., Fla. 334.730 Section 334.730 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.730 Waters of Santa Rosa...

  4. Study on characteristics of water resources in Beijing in recent 15 years

    Science.gov (United States)

    Chuan, L. M.; Zheng, H. G.; Zhao, J. J.; Wang, A. L.; Zhang, X. J.

    2018-02-01

    In order to understand the characteristics of water supply and water usage in Beijing in recent 15 years, a variety of statistical datasets were collected and field investigations were carried out, to analyze the total water resource, the characteristics and trends of water resource supply, utilization and distribution during 2000-2014. The results showed that the total amount of water resources in Beijing is maintained at 1.61~3.95 billion m3, and the surface water accounts for about 1/3, and the groundwater accounts for 2/3. Agricultural water and living water were the dominated consumption in the past 15 years in Beijing, accounted for 35.3% and 38.9% of the total amount, followed by industrial water, which accounting for 17.9% of total water consumption, and water used in environment is relatively small, only accounting for 7.8% of the total amount. This study can provide theoretical support for the establishment and management of water conservation policies and the rational utilization of water resources in Beijing.

  5. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water

  6. Payments for Ecosystem Services for watershed water resource allocations

    Science.gov (United States)

    Fu, Yicheng; Zhang, Jian; Zhang, Chunling; Zang, Wenbin; Guo, Wenxian; Qian, Zhan; Liu, Laisheng; Zhao, Jinyong; Feng, Jian

    2018-01-01

    Watershed water resource allocation focuses on concrete aspects of the sustainable management of Ecosystem Services (ES) that are related to water and examines the possibility of implementing Payment for Ecosystem Services (PES) for water ES. PES can be executed to satisfy both economic and environmental objectives and demands. Considering the importance of calculating PES schemes at the social equity and cooperative game (CG) levels, to quantitatively solve multi-objective problems, a water resources allocation model and multi-objective optimization are provided. The model consists of three modules that address the following processes: ① social equity mechanisms used to study water consumer associations, ② an optimal decision-making process based on variable intervals and CG theory, and ③ the use of Shapley values of CGs for profit maximization. The effectiveness of the proposed methodology for realizing sustainable development was examined. First, an optimization model with water allocation objective was developed based on sustainable water resources allocation framework that maximizes the net benefit of water use. Then, to meet water quality requirements, PES cost was estimated using trade-off curves among different pollution emission concentration permissions. Finally, to achieve equity and supply sufficient incentives for water resources protection, CG theory approaches were utilized to reallocate PES benefits. The potential of the developed model was examined by its application to a case study in the Yongding River watershed of China. Approximately 128 Mm3 of water flowed from the upper reach (Shanxi and Hebei Provinces) sections of the Yongding River to the lower reach (Beijing) in 2013. According to the calculated results, Beijing should pay USD6.31 M (¥39.03 M) for water-related ES to Shanxi and Hebei Provinces. The results reveal that the proposed methodology is an available tool that can be used for sustainable development with resolving PES

  7. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    Science.gov (United States)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  8. Emergence of Integrated Water Resources Management : Measuring implementation in Vietnam

    NARCIS (Netherlands)

    Akkerman, M.; Khanh, N.T.; Witter, M.; Rutten, M.M.

    2015-01-01

    Recently, the changes in laws and regulations, such as the revised Law on Water Resources in 2012, have sought to provide a legal framework for the internationally recognized practices of Integrated Water Resources Management (IWRM) in Vietnam. With IWRM being a novel approach for Vietnam, it would

  9. A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems

    Science.gov (United States)

    Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.

    2012-04-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

  10. The development of water services and their interaction with water resources in European and Brazilian cities

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  11. Advances and limitations of the integrated water resources management in Panama

    International Nuclear Information System (INIS)

    Escalante Henriquez, Luis Carlos; Charpentier, Claudia; Diez Hernandez, Juan Manuel

    2011-01-01

    Panama competitiveness depends largely on quality and abundance of natural resources, which are being progressively degraded by a disordered urban and economic development. The availability of water in adequate quantity and quality poses serious problems in some areas of the country. This affects both the quality of life of the population and key sectors such as agriculture, industry, hydro and tourism; and stimulates social conflicts related to access, use and disposal of used water. To prevent the degradation of water resources has been promoted a holistic, known as integrated in water resources management (IWRM) strategy. From the Summit of Mar del Plata, Argentina (1977) until the 5th Forum world of the water in Istanbul in Turkey (2009), international meetings that have contributed to defining the principles and recommendations for the IWRM have been held. This work presents a methodological model of IWRM designed for Panama. Essentially consists of a perfected in how to manage water, requiring changes in the political, social, economic and administrative systems of water resource management approach

  12. Integrated water resources management (IWRM) approach in water governance in Lao PDR. Cases of hydropower and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jusi, S.

    2013-06-01

    Water resources are essential for socio-economic development, enabling, for example, hydropower and irrigation. Water resources management and development are expected to become more complex and challenging and to involve new uncertainties as water development increases and accelerates in different water use sectors and is coupled with increasing population, urbanisation, and climate change. Hence, water resources need to be managed in more integrated and sustainable way, both in Lao PDR and in the whole Mekong Basin area. Integrated Water Resources Management (IWRM) has become a universal paradigm of enhancing and promoting sustainable and equal water resources management and use. However, integrating water functions is a very complex task as it involves many actors with different interests. This research analyses the application of the IWRM approach and the related principles of integration, decentralisation, and participation in the development and management of water resources in Laotian water regime at the water use sectors of hydropower and irrigation. A case study approach was used for the research and for the four appended articles in order to examine hydropower and irrigation sectors, institutional structures, and processes of institutional change - Integrated Water Resources Management (IWRM) at constitutional, organisational, and operational levels. The constitutional level refers to water policy and law, organisational to water resource management, and operational to water use. The Management and Transition Framework (MTF) and one of its components, Institutional Analysis and Development (IAD) framework, have been used for the research to explore processes, institutions, and actors related to water governance reforms including the adoption of the IWRM paradigm, and to increase understanding of the strengths and weaknesses related to different institutional contexts and levels in Laotian water management. Through Action Situations, IAD and MTF have

  13. Generation of SEEAW asset accounts based on water resources management models

    Science.gov (United States)

    Pedro-Monzonís, María; Solera, Abel; Andreu, Joaquín

    2015-04-01

    One of the main challenges in the XXI century is related with the sustainable use of water. This is due to the fact that water is an essential element for the life of all who inhabit our planet. In many cases, the lack of economic valuation of water resources causes an inefficient water use. In this regard, society expects of policymakers and stakeholders maximise the profit produced per unit of natural resources. Water planning and the Integrated Water Resources Management (IWRM) represent the best way to achieve this goal. The System of Environmental-Economic Accounting for Water (SEEAW) is displayed as a tool for water allocation which enables the building of water balances in a river basin. The main concern of the SEEAW is to provide a standard approach which allows the policymakers to compare results between different territories. But building water accounts is a complex task due to the difficulty of the collection of the required data. Due to the difficulty of gauging the components of the hydrological cycle, the use of simulation models has become an essential tool extensively employed in last decades. The target of this paper is to present the building up of a database that enables the combined use of hydrological models and water resources models developed with AQUATOOL DSSS to fill in the SEEAW tables. This research is framed within the Water Accounting in a Multi-Catchment District (WAMCD) project, financed by the European Union. Its main goal is the development of water accounts in the Mediterranean Andalusian River Basin District, in Spain. This research pretends to contribute to the objectives of the "Blueprint to safeguard Europe's water resources". It is noteworthy that, in Spain, a large part of these methodological decisions are included in the Spanish Guideline of Water Planning with normative status guaranteeing consistency and comparability of the results.

  14. Philippines -- country wide water development projects and funds needed. Water crisis in Manila coincide with parliamentarians seminar on water resources and population.

    Science.gov (United States)

    1997-01-01

    The Philippines' Clean Water Act was developed to protect the country's remaining water resources by institutionalizing mechanisms to monitor, regulate, and control human and industrial activities which contribute to the ongoing environmental degradation of marine and freshwater resources. Approximately 70 participants attended the Philippine Parliamentarians' Conference on Water Resources, Population and Development held December 3-4, 1997, at the Sulo Hotel in Quezon City. Participants included the legislative staff of the members of the House of Representatives and the Senate, Committee Secretaries of the House and Senate, and government and nongovernmental organization officials. Following the opening programs, panel discussions were held on the role of nongovernmental organizations as legitimate monitors of governments' activities; the need to evaluate water sector assessment methods, water policy and strategy, and water legislation standards; and waste water treatment and sewerage systems used in households and industries. The following issues were raised during the conference's open forum: the need to implement new methods in water resource management; the handling of water for both economic and social purposes; the need to implement guidelines, policies, and pricing mechanisms on bottled water; regulating the construction of recreational facilities such as golf courses; and transferring watershed rehabilitation from the Department of Environment and Natural Resources to local water districts. A declaration was prepared and signed by the participants at the close of the conference.

  15. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Administrator

    of the total drinking water needs. Dry season vegetable farmers also prepare their nur- sery beds close to streams and use surface water for irri- gation. The proximity of nurseries to streams results in clearing of stream bank vegetation to accommodate nur- series. Pollution of stream water and depletion of their resources ...

  16. Managing Senegalese water resources: Definition and relative importance of information needs

    Energy Technology Data Exchange (ETDEWEB)

    Engi, D.

    1998-09-01

    This report provides an overview of the results of the Vital Issues process as implemented for the Senegal Water Resources Management Initiative, a collaborative effort between the Senegalese Ministry of Water Resources and Sandia National Laboratories. This Initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Senegal. The Vital Issues process was used to provide information for the development of a proposal that will recommend actions to address the key management issues and establish a state-of-the-art decision support system (DSS) for managing Senegal`s water resources. Three Vital Issues panel meetings were convened to (1) develop a goal statement and criteria for identifying and ranking the issues vital to water resources management in Senegal; (2) define and rank the issues, and (3) identify and prioritize a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives (government, industry, academe, and citizens` interest groups) ensured a high level of stakeholder representation on the panels.

  17. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  18. Assessing water resources vulnerability and resilience of southern Taiwan to climate change

    Directory of Open Access Journals (Sweden)

    Ming-Hsu Li

    2017-01-01

    Full Text Available Water resources management has become more challenging in Taiwan due to rapid socio-economic development and the complications of climate change. This study developed a systematic procedure for assessing water resources vulnerability and resilience with an integrated tool, TaiWAP, including climate change scenarios, a weather generator, a hydrological model, and system dynamic models. Five assessment indicators, including two for vulnerability, two for resilience, and one for availability were used to quantify changes in water resources and improvements after implementing adaption measures. Each indicator was presented with 3 grades, namely low, medium, and high. Water resources vulnerability and resilience for Tainan City in southern Taiwan were evaluated. Insufficient water supply facilities capacity is the major weakness causing low resilience. Water resources allocation flexibility is limited by substantial agricultural water demands. A total of 9 adaption measures and combinations of measures were assessed. Desalination plant implementation can steadily supply public water to lessen system failure duration. Although agricultural water conservation and fallow land can greatly reduce water demand, fallow compensation is a potential cost. When food security is considered, reducing irrigation leakage will be a better adaption measure to both water and agriculture stakeholders. Both agriculture water conservation and cropping systems adjustment have cross-spatial flexibilities. The combination of desalination, reservoirs and public water conservation provide the most beneficial effects in reducing climate change impact.

  19. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  20. Water Resources of Israel: Trackrecord of the Development

    Directory of Open Access Journals (Sweden)

    Nicolai S. Orlovsky

    2018-01-01

    Full Text Available Israel is a country in the Near East consisting for 95% of the arid regions in which 60% of the territory are covered by the Negev Desert. Therefore, the water resources are scant here and formed mostly by atmospheric precipitations. In the period from 1989 to 2005 the average precipitations were 6 billion cu. m, of which 60–70% were evaporated soon after rainfalls, at least 5% run down by rivers into the sea (mostly in winter and the remaining 25% of precipitations infiltrated into soil from where the greater part of water got into the sea with ground waters. In Israel there are two groups of water resources: surface and underground. Israel is not rich in surface waters. The natural reservoir of surface fresh water is the Kinneret Lake in the northeast of the country. It gets water from the Jordan River and its tributaries. The average annual amount of available water of this lake is around 370 million cu. m, which accounts for one-third of the country’s water needs and still higher share of the drinking water needs. The greater part of fresh waters (37% of water supply of Israel as of 2011 in this country is supplied from ground water sources. Owing to insufficiency of available natural resources, unevenness of precipitations by years and seasons and with the growth of the population and economic development the issues of provision with the quality drinking water of the population as well as agriculture and industry, rehabilitation of natural environment cause permanently growing concern. In view of the water shortage untiring efforts have been taken to improve the irrigation efficiency and to reduce water use by improving the efficacy of irrigation techniques and application of advanced system management approaches. Among the water saving technologies applied in Israel there are: drop irrigation, advanced filtration, up to date methods of water leak detection from networks, rainwater collection and processing systems. At the same time

  1. System dynamics model of Suzhou water resources carrying capacity and its application

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2010-06-01

    Full Text Available A model of Suzhou water resources carrying capacity (WRCC was set up using the method of system dynamics (SD. In the model, three different water resources utilization programs were adopted: (1 continuity of existing water utilization, (2 water conservation/saving, and (3 water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.

  2. Managing Nicaraguan Water Resources Definition and Relative Importance of Information Needs

    Energy Technology Data Exchange (ETDEWEB)

    Engi, D.; Guillen, S.M.; Vammen, K.

    1999-01-01

    This report provides an overview of the results of the Vital the Nicaraguan Water Resources Management Initiative, Issues process as implemented for a collaborative effort between the Nicaraguan Ministry of Environment and Natural Resources and Sandia National Laboratories. This initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Nicamgua. The Vital Issues process was used to provide information for developing a project that will develop and implement an advanced information system for managing Nicaragua's water resources. Three Vital Issues panel meetings were convened to 1) develop a mission statement and evaluation criteria for identifying and ranking the issues vital to water resources management in Nicaragua 2) define and rank the vital issues; and 3) identify a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives- government, industiy, academe, and citizens' groups (through nongovernmental organizations (NGOs))-ensured a high level of stakeholder representation on the panels. The already existing need for a water resource management information system has been magnified in the aftemnath of Hurricane Mitch. This information system would be beneficial for an early warning system in emergencies, and the modeling and simulation capabilities of the system would allow for advanced planning. Additionally, the outreach program will provide education to help Nicaraguan improve their water hygiene practices.

  3. Resources for National Water Savings for Outdoor Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (section 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.

  4. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    Science.gov (United States)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  5. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Research of water resources allocation of South-to-North Water Diversion East Route Project in Jiangsu Province ,Eastern China

    Science.gov (United States)

    Zeng, C.

    2015-12-01

    Optimized allocation of water resources is the important means of solving regional water shortage and can improve the utilization of water resources. Water resources allocation in the large-scale water diversion project area is the current research focus. This research takes the east route of the South-to-North Water Transfer Project in Jiangsu province as the research area, based on the hydrological model, agricultural irrigation quota model, and water project scheduling model, a water resources allocation model was constructed. The research carried on generalized regional water supply network, simulated the water supply, water demand and water deficit in agriculture, industry, life, ecology and lock under the status quo and planning engineering conditions. According to the results, the east route of the South-to-North Water Transfer Project is helpful to improve regional water shortage situation. The results showed that pump output increase by 2.8 billion cubic meters of water. On the conditions of P = 95%, 75% and 50%, compared with the benchmark year, water demand increases slightly due to the need of social and economic development in planning years, and water supply increased significantly because of new diversion ability. Water deficit are greatly reduced by 74.9% especially in the commonly drought condition because of the new project operation and optimized allocation of water resources.

  7. Water on Mars - Volatile history and resource availability

    Science.gov (United States)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  8. 33 CFR 110.194a - Mobile Bay, Ala., and Mississippi Sound, Miss.

    Science.gov (United States)

    2010-07-01

    ... Sound, Miss. 110.194a Section 110.194a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Mississippi Sound, Miss. (a) The anchorage grounds. (1) The waters of lower Mobile Bay, near Cedar Point... south by latitude 30°20′00″, and on the west by longitude 88°06′00″. (2) The waters of Mississippi Sound...

  9. Alabama Water Use, 2005

    Science.gov (United States)

    Hutson, Susan S.; Littlepage, Thomas M.; Harper, Michael J.; Tinney, James O.

    2009-01-01

    Water is one of Alabama's most precious natural resources. It is a vital component of human existence and essential to the overall quality of life. Wise stewardship of this valuable resource depends on a continuing assessment of water availability and water use. Population growth in many parts of the State has resulted in increased competition for available water resources. This competition includes offstream uses, such as residential, agricultural, and industrial, and instream uses for maintenance of species habitat and diversity, navigation, power generation, recreation, and water quality. Accurate water-use information is required for sound management decisions within this competitive framework and is necessary for a more comprehensive understanding of the link between water use, water supply, and overall water availability. A study of water use during 2005 was conducted by the U.S. Geological Survey (USGS), in cooperation with the Alabama Department of Economic and Community Affairs, Office of Water Resources, Water Management Branch (ADECA-OWR), to provide water-use data for local and State water managers. The results of the study about the amount of water used, how it was used, and where it was used in Alabama have been published in 'Estimated use of water in Alabama in 2005' by Hutson and others, 2009, and is accessible on the Web at http://pubs.usgs.gov/sir/2009/5163 and available upon request as a CD-ROM through USGS and ADECA-OWR.

  10. Smart Markets for Water Resources

    Science.gov (United States)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  11. Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang

    2010-01-01

    Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from tides, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic response is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolution (around 50 m in estuaries and tide flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and tide flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore tide flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with tide flats are discussed.

  12. Department of Water Resources and Environm

    African Journals Online (AJOL)

    USER

    2015-05-01

    May 1, 2015 ... tolerable gauge network density of 1 gauge per 3000km. 2 ... for Nigeria. In the Sahelian region of West. Africa ... number of functional stations in the area is far less than this ..... Water Resources Development, 9(4):. 411 – 424.

  13. Public participation in water resources management: Restructuring model of upstream Musi watershed

    Science.gov (United States)

    Andriani, Yuli; Zagloel, T. Yuri M.; Koestoer, R. H.; Suparmoko, M.

    2017-11-01

    Water is the source of life needed by living things. Human as one of living most in needs of water. Because the population growth follows the geometrical progression, while the natural resource increases calculates the arithmetic. Humans besides needing water also need land for shelter and for their livelihood needs, such as gardening or rice farmers. If the water absorption area is reduced, water availability will decrease. Therefore it is necessary to conduct an in-depth study of water resources management involving the community. The purpose of this study is to analyze community participation in water resources management, so that its availability can still meet the needs of living and sustainable. The method that used the level of community participation according to Arstein theory. The results obtained that community participation is at the level of partnership and power delegation. This level of participation is at the level of participation that determines the sustainability of water resources for present and future generations.

  14. New aspects of sewerage and water technology

    International Nuclear Information System (INIS)

    Niemczynowics, J.

    1993-01-01

    Highly developed countries with expensive water-related infrastructure, sophisticated waterworks and treatment plants, still contribute to local and global pollution. Many developing countries still lack water-treatment facilities and environmentally-sound water management. These problems are especially accentuated in some of the large and fast growing cities of the world. Means of solving the problems involve a new holistic approach to resource management. The goal of such an approach is to close the cycles of residuals that damage the environment, and to recover resources lost in residuals emitted from human activities. The most important step is to apply pollution prevention, i.e. pollution control at the source. Present knowledge suggests technologies that can solve the problem of pollution from human settlements on a single-house level. Alternatively, wastewater may be treated locally and reused. Ecologically-sound technologies that already exist should be used whenever possible. Water management can be integrated with management of other human activities, such as waste handling, industrial production, transportation, etc. Tools for implementation of such solutions are: legislation coupled with education programs; changing competition rules of the market economy; i.e. developing a sustainable society through resource recovery and reuse. Demonstration projects, in which the rules of preventive approach and novel technology are applied, may constitute a practical means of implementing such an approach. 34 refs, 3 figs

  15. Scenario Development for Water Resources Planning and Management

    Science.gov (United States)

    Stewart, S.; Mahmoud, M.; Liu, Y.; Hartman, H.; Wagener, T.; Gupta, H.

    2006-12-01

    The main objective of scenario development for water resources is to inform policy-makers about the implications of various policies to inform decision-making. Although there have been a number of studies conducted in the relatively-new and recent field of scenario analysis and development, very few of those have been explicitly applied to water resource issues. More evident is the absence of an established formal approach to develop and apply scenarios. Scenario development is a process that evaluates possible future states of the world by examining several feasible scenarios. A scenario is a projection of various physical and socioeconomic conditions that describe change from the current state to a future state. In this paper, a general framework for scenario development with special emphasis on applications to water resources is considered. The process comprises several progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. Several characteristics of scenarios that are important in describing scenarios are also taken into account; these include scenario types, scenario themes, scenario likelihoods and scenario categories. A hindrance to the adoption of a unified framework for scenario development is inconsistency in the terminology used by scenario developers. To address this problem, we propose a consistent terminology of basic and frequent terms. Outreach for this formal approach is partially maintained through an interactive community website that seeks to educate potential scenario developers about the scenario development process, share and exchange information and resources on scenarios to foster a multidisciplinary community of scenario developers, and establish a unified framework for scenario development with regards to terminology and guidelines. The website provides information on scenario development, current scenario-related activities, key water resources scenario

  16. Participatory Water Resources Modeling in a Water-Scarce Basin (Rio Sonora, Mexico) Reveals Uncertainty in Decision-Making

    Science.gov (United States)

    Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.

    2014-12-01

    The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.

  17. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  18. Analyses of impacts of China's international trade on its water resources and uses

    Science.gov (United States)

    Zhang, Z. Y.; Yang, H.; Shi, M. J.; Zehnder, A. J. B.; Abbaspour, K. C.

    2011-04-01

    This study provides an insight into the impact of China's international trade of goods and services on its water resources and uses. Virtual water flows associated with China's international trade are quantified in an input-output framework. The analysis is scaled down to the sectoral and provincial levels to trace the origins and destinations of virtual water flows associated with the international trade. The results reveal that China is a net virtual water exporter of 4.7 × 1010 m3 year-1, accounting for 2.1% of its total water resources and 8.9% of the total water use. Water scarce regions tend to have higher percentages of virtual water export relative to their water resources and water uses. In the water scarce Huang-Huai-Hai region, the net virtual water export accounts for 7.9% of the region's water resources and 11.2% of its water uses. For individual sectors, major net virtual water exporters are those where agriculture provides raw materials in the initial process of the production chain and/or pollution intensity is high. The results suggest that China's economic gains from being a world "manufacture factory" have come at a high cost to its water resources and through pollution to its environment.

  19. The development of water services and their interaction with water resources in European and Brazilian cities

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2008-08-01

    Full Text Available The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  20. Integration of Remote Sensing and Geophysical Applications for Delineation of Geological Structures: Implication for Water Resources in Egypt

    Science.gov (United States)

    Mohamed, L.; Farag, A. Z. A.

    2017-12-01

    North African countries struggle with insufficient, polluted, oversubscribed, and increasingly expensive water. This natural water shortage, in addition to the lack of a comprehensive scheme for the identification of new water resources challenge the political settings in north Africa. Groundwater is one of the main water resources and its occurrence is controlled by the structural elements which are still poorly understood. Integration of remote sensing images and geophysical tools enable us to delineate the surface and subsurface structures (i.e. faults, joints and shear zones), identify the role of these structures on groundwater flow and then to define the proper locations for groundwater wells. This approach were applied to three different areas in Egypt; southern Sinai, north eastern Sinai and the Eastern Desert using remote sensing, geophysical and hydrogeological datasets as follows: (1) identification of the spatial and temporal rainfall events using meteorological station data and Tropical Rainfall Measuring Mission data; (2) delineation of major faults and shear zones using ALOS Palsar, Landsat 8 and ASTER images, geological maps and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) analysis of well data and derivations of hydrological parameters; (5) validation of the water-channeling discontinuities using Very Low Frequency, testing the structural elements (pre-delineated by remote sensing data) and their depth using gravity, magnetic and Vertical Electrical Sounding methods; (6) generation of regional groundwater flow and isotopic (18O and 2H) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer. The outputs include: (1) a conceptual/physical model for the groundwater flow in fractured crystalline and sedimentary aquifers; (2

  1. Hydrological Modeling and WEB-GIS for the Water Resource Management

    Science.gov (United States)

    Pierleoni, A.; Bellezza, M.; Casadei, S.; Manciola, P.

    2006-12-01

    Water resources are a strategically natural resource although they can be extremely susceptible to degradation. As a matter of fact the increasing demand from multipurpose uses, which often are in competition amongst themselves, seems to affect the concept of sustainability per se', thus highlighting phenomena of quality-quantity degradation of water resources. In this context, the issue of water resource management rises to a more important role, especially when, other then the traditional uses for civil, industrial and agronomic purposes, environmental demands are taken into consideration. In particular, for environmental demands we mean: to preserve minimal flows, to conserve ecosystems and biodiversities, to protect and improve the environment and finally also the recreational facilities. In the present work, two software tools are presented; they combine the scientific aspect of the issues with a feasible and widely accessible application of the mathematical modeling in techno-operative fields within a sustainable management policy of the water resource at the basin scale. The first evaluation model of the available superficial water resource bases its algorithms upon regionalization procedures of flow parameters deduced from the geomorphologic features of the soil of the basin (BFI, Area) and presents, as output, a set of duration curves (DC) of the natural, measurable (natural after withdrawal), and residual (discharge usable for dissipative use) flow. The hydrological modeling combined with a GIS engine allows to process the dataset and regionalize the information of each section of the hydrographic network, in order to attain information about the effect of upriver withdrawals, in terms of evaluation parameters (measurable DC) to maintain an optimal water supply all along the entire downstream network. This model, projected with a WEB interface developed in PERL and connected to a MySQL database, has also been tested at the basin and sub-basin scale as an

  2. Science to support the understanding of Ohio's water resources, 2016-17

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  3. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  4. A review on water pricing problem for sustainable water resource

    Science.gov (United States)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  5. Managing water resources in Malaysia: the use of isotope technique and its potential

    International Nuclear Information System (INIS)

    Keizrul Abdullah

    2006-01-01

    This keynote address discusses the following subjects; state of Malaysia water resources, water related problem i.e floods, water shortage (droughts), water quality, river sedimentation, water resources management and the ongoing and potential application of isotope techniques in river management

  6. Integrating policy, disintegrating practice: water resources management in Botswana

    Science.gov (United States)

    Swatuk, Larry A.; Rahm, Dianne

    Botswana is generally regarded as an African ‘success story’. Nearly four decades of unabated economic growth, multi-party democracy, conservative decision-making and low-levels of corruption have made Botswana the darling of the international donor community. One consequence of rapid and sustained economic development is that water resources use and demands have risen dramatically in a primarily arid/semi-arid environment. Policy makers recognize that supply is limited and that deliberate steps must be taken to manage demand. To this end, and in line with other members of the Southern African Development Community (SADC), Botswana devised a National Water Master Plan (NWMP) and undertook a series of institutional and legal reforms throughout the 1990s so as to make water resources use more equitable, efficient and sustainable. In other words, the stated goal is to work toward Integrated Water Resources Management (IWRM) in both policy and practice. However, policy measures have had limited impact on de facto practice. This paper reflects our efforts to understand the disjuncture between policy and practice. The information presented here combines a review of primary and secondary literatures with key informant interviews. It is our view that a number of constraints-cultural, power political, managerial-combine to hinder efforts toward sustainable forms of water resources use. If IWRM is to be realized in the country, these constraints must be overcome. This, however, is no small task.

  7. The role of the municipality in water resources management

    Directory of Open Access Journals (Sweden)

    Gustavo Carneiro de Noronha

    2013-04-01

    Full Text Available This article analyzes decentralization of the water resources management within the watershed, where the municipality problems are delimited. The analysis of the water management development in Brazil indicates that the legal framework is embedded in a process of decentralization. The Constitution of 1988 establishes that the superficial waters are goods of the Union and the States. Later, the National Water Resources Policy establishes the watershed as the territorial unit of management. However, the supervision and management of basins remain centralized and without providing an interconnection between water use and other environmental goods. Among the attributions of the municipality are the environmental enforcement, agricultural policy, definition of conservation units and management of the urban territory. The incorporation of these policies in an environmental zoning based in the water management allows better utilization of water availability and local participation in administrative decisions watershed through the municipality.

  8. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  9. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    Science.gov (United States)

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More

  10. Water Resources: the Central Component of the WEF Nexus?

    Science.gov (United States)

    Ding, K.; Gunda, T.; Hornberger, G. M.

    2017-12-01

    Increasing population growth, consumption of natural resources, and deterioration of the environment coupled with climate change impacts (such as increased variability in precipitation) will challenge our abilities to provide water, energy and food (WEF) to the global populace. Less developed areas, such as the countries in Sub-Saharan Africa, are particularly vulnerable to such resource issues due to immature governance and management structures and strategies. We introduce an integrated approach to resource security analysis, which traditionally has focused on the WEF components separately and apply the methods to a suite of countries in Sub-Saharan Africa. Specifically, we evaluate the inter-connected nature of WEF securities by considering physical, demographic, socioeconomic, health, and institutional parameters related to each of the resource securities and by analyzing the relationships among the metrics. For example, reported food deficits for countries are strongly correlated with reported levels of access to safe drinking water. Multivariate statistical analyses are applied to identify relationships among resources and to develop indices that robustly and comprehensively capture the WEF nexus. Our results indicate that water plays the central role in the WEF nexus, due to its extensive use for both food and energy production in these countries. This approach provides a framework for analyzing the WEF nexus in other regions of the world.

  11. Bridging the Gap Between Climate Science and Water-resource Applications

    Science.gov (United States)

    Arnold, J. R.; Clark, M. P.; Wood, A.; Gutmann, E. D.; Nijssen, B.; Brekke, L. D.

    2015-12-01

    Since 2010, the US Army Corps of Engineers (USACE) Climate Preparedness and Resilience Program has supported development of a coordinated system of products and tools to improve use of climate information in water-resource planning and management. The key products include: 1) a new understanding of the limitations of methods used to quantify impacts of climate change on water resources; 2) development and evaluation of national-domain climate downscaling and hydrologic simulation capabilities to provide information from climate model output relevant to the multiple scales of water resources decision-making with a spatially consistent assessment of the impacts of climate change on hydrologic conditions; and 3) development and evaluation of advanced streamflow forecasting methods. This will support USACE Districts and their stakeholders and partners with new data, new and newly evaluated model output, and specific tools in a framework to help with routine applications for managing water resources throughout the U.S., and to enhance considerations of climate preparedness and resilience in that work. This presentation will summarize the collaborative development of some of those products; describe current and planned future USACE capabilities for incorporating advanced climate information at multiple scales of analysis and decision; discuss uses of climate information in water-resources planning and management; and outline key unanswered science questions being addressed to increase utility and use of information in short- and longer-term planning. Specifically, we will describe the current suite and planned trajectory of new products, moving from capability development through to testing in limited pilot domains, on to product applications throughout the U.S., and, ultimately, into actual implementation at the level of USACE Districts to address climate change issues. Two key foci of this talk will be: 1) where climatological and hydrologic science is currently

  12. Water, Politics and Development: Framing a Political Sociology of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2008-06-01

    Full Text Available The first issue of Water Alternatives presents a set of papers that investigates the inherently political nature of water resources management. A Water, Politics and Development initiative was started at ZEF (Center for Development Research, Bonn, Germany in 2004/2005 in the context of a national-level discussion on the role of social science in global (environmental change research. In April 2005 a roundtable workshop with this title was held at ZEF, sponsored by the DFG (Deutsche Forschungsgemeinschaft/German Research Foundation and supported by the NKGCF (Nationales Komitee für Global Change Forschung/German National Committee on Global Change Research, aiming to design a research programme in the German context. In 2006 it was decided to design a publication project on a broader, European and international basis. The Irrigation and Water Engineering Group at Wageningen University, the Netherlands joined as a co-organiser and co-sponsor. The collection of papers published in this issue of Water Alternatives is one of the products of the publication project. As part of the initiative a session on Water, Politics and Development was organised at the Stockholm World Water Week in August 2007, where most of the papers in this collection were presented and discussed. Through this publication, the Water, Politics and Development initiative links up with other initiatives simultaneously ongoing, for instance the 'Water governance – challenging the consensus' project of the Bradford Centre for International Development at Bradford University, UK. At this point in time, the initiative has formulated its thrust as 'framing a political sociology of water resources management'. This, no doubt, is an ambitious project, methodologically, theoretically as well as practically. Through the compilation of this collection we have started to explore whether and how such an endeavour might make sense. The participants in the initiative think it does, are quite

  13. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  14. Underwater sound produced by individual drop impacts and rainfall

    DEFF Research Database (Denmark)

    Pumphrey, Hugh C.; Crum, L. A.; Jensen, Leif Bjørnø

    1989-01-01

    An experimental study of the underwater sound produced by water drop impacts on the surface is described. It is found that sound may be produced in two ways: first when the drop strikes the surface and, second, when a bubble is created in the water. The first process occurs for every drop...

  15. Investigation of Fungi in Drinking Water Resources as a Source of Contamination Tap Water in Sari, Iran

    Directory of Open Access Journals (Sweden)

    Z Yousefi

    2013-06-01

    Full Text Available Background and purpose: One of the most prominent concerns for the water consumers is pathogenic microorganism contamination. Wells and underground water resources are the main resources of drinking water in Sari city, Iran. The main objectives of the research project were to explore the distribution and frequency of mycoflora in wells and underground water resources of the city and their contamination effects on humans. Materials and methods: Three reservoirs and 18 wells or underground water resources were analyzed. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Each filter and 0.2 ml of suspension inoculated on SDA+CG media. For fungal growth, plates were incubated at 27’C for 7-10 days. The fungi were identified by standard mycological techniques. Results: Fungal colonies were isolated from all samples. From total of 160 fungal colonies isolated from wells water, 14 species of fungi were distinguished. Rhodotorula (54.4%, Monilinia (13.7%, Alternaria (6.9% were the most commonly isolated. Drechslera, Rhizopus, and Exserohilum (0.6% had the lowest frequency. There was no significant difference between fungal elements isolated from three major reservoirs (P>0.05. Conclusion: This study revealed that resources of drinking water from an area have to monitored and if its fungal CFU be greater than a certain value, medical and health preventive measures should be taken before the water is used by human. In this context, public and private awareness should also be provided through the media, broadcasting, teachers and scholars.

  16. 33 CFR 110.233 - Prince William Sound, Alaska.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Prince William Sound, Alaska. 110... ANCHORAGES ANCHORAGE REGULATIONS Anchorage Grounds § 110.233 Prince William Sound, Alaska. (a) The anchorage grounds. In Prince William Sound, Alaska, beginning at a point at latitude 60°40′00″ N., longitude 146°40...

  17. Effects of meteorological droughts on agricultural water resources in southern China

    Science.gov (United States)

    Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang

    2017-05-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.

  18. WATER RESOURCES IN THE ROMANIAN CARPATHIANS – GENESIS, TERRITORIAL DISTRIBUTION, MANAGEMENT

    Directory of Open Access Journals (Sweden)

    P. GÂȘTESCU

    2014-05-01

    Full Text Available Water resources in Romanian Carpathians-genesis, territorial distribution, management. Discussing water resources in Romania implies a twofold approach: water as a sine qua non of life itself and water as an important factor for the development of the contemporary society. Lying in a temperate zone, Romania’s water resources are rather modest compared with other countries in Europe. Inland rivers span 78,905 km (referred only to the 4,864 codified watercourses at an average density: 0.38 km/km2 and an annual volume: 40.6 billion m3, which means 1,765 m3/capita. To knowledge ground waters are put at 9.62 billion m3/year, of which 6 billion can be used in optimal technological and economic conditions. According to a recent UN statistical report, Romania lists at position 21 among the 34 European. Natural lakes are replenished from precipitation and springs water every year and the reserves are estimated at around 1 billion m3/year and are of local importance for water management schemes. The Black Sea (in the Romanian sector could become a major source if sea water desalting could be economical.The water resources of the drainage network were calculated on the basis of the mean liquid flow map (scale 1: 500,000 releves picture of river-water resources in the major relief units: the Carpathian, which occupies only 27.9% of the Romanian territory, 65.3% (26.48 billion mc from a total of 40.61 billion m3 of the water is formed and regenerated every year; the hill unit, which includes the Subcarpathians, the tablelands and the piedmont hills, and occupies 42.4% of Romania’s territory, only 28.0% of the water volume is formed (11.38 billion m3, of which 8.7% (3.51 billion m3 in the Subcarpathians and 19.4% (7.87 billion m3 in the other two units; the plain unit, which covers 29.7% of the country’s territory, the water volume formed there is small (6.7%

  19. Resilience-based performance metrics for water resources management under uncertainty

    Science.gov (United States)

    Roach, Tom; Kapelan, Zoran; Ledbetter, Ralph

    2018-06-01

    This paper aims to develop new, resilience type metrics for long-term water resources management under uncertain climate change and population growth. Resilience is defined here as the ability of a water resources management system to 'bounce back', i.e. absorb and then recover from a water deficit event, restoring the normal system operation. Ten alternative metrics are proposed and analysed addressing a range of different resilience aspects including duration, magnitude, frequency and volume of related water deficit events. The metrics were analysed on a real-world case study of the Bristol Water supply system in the UK and compared with current practice. The analyses included an examination of metrics' sensitivity and correlation, as well as a detailed examination into the behaviour of metrics during water deficit periods. The results obtained suggest that multiple metrics which cover different aspects of resilience should be used simultaneously when assessing the resilience of a water resources management system, leading to a more complete understanding of resilience compared with current practice approaches. It was also observed that calculating the total duration of a water deficit period provided a clearer and more consistent indication of system performance compared to splitting the deficit periods into the time to reach and time to recover from the worst deficit events.

  20. Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University

    Science.gov (United States)

    Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.

    2006-12-01

    Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.

  1. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  2. Challenges of communicating integrated water resource management in Zimbabwe

    NARCIS (Netherlands)

    Marimbe, S.; Manzungu, E.

    2003-01-01

    With the promulgation of the 1998 Water Act the Government of Zimbabwe took a decisive step to reform the country's water sector, to bring it in line with contemporary socio-political realities obtaining in the country, and in tune with the philosophy of integrated water resources management.

  3. Sound characteristics of Terapon jorbua as a response to temperature changes

    Science.gov (United States)

    Amron; Jaya, I.; Hestirianoto, T.; Juterzenka, K. v.

    2017-10-01

    The change of water temperature has potential impact on the behavior of aquatic animal including fish which generated by their sound productivity and characteristics. This research aimed to study the response of sound productivity and characteristics of Terapon jorbua to temperature change. As a response to temperature increase, T. jorbua to have decreased the number of sound productivity. Two characteristic parameters of fish sound, i.e. intensity and frequency as were quadratic increased during the water temperature rises. In contrast, pulse duration was quadratic decreased.

  4. Water resources transfers through Chinese interprovincial and foreign food trade.

    Science.gov (United States)

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  5. Adjusting water resources management to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Riebsame, W E

    1988-01-01

    The nature of climate impacts and adjustment in water supply and flood management is discussed, and a case study of water manager response to climate fluctuation in California's Sacramento Basin is presented. The case illuminates the effect on climate impact and response of traditional management approaches, the dynamic qualities of maturing water systems, socially imposed constraints, and climate extremes. A dual pattern of crisis-response and gradual adjustment emerges, and specific mechanisms for effecting adjustment of water management systems are identified. The case study, and broader trends in US water development, suggest that oversized structural capacity, the traditional adjustment to climate variability in water resources, may prove less feasible in the future as projects become smaller and new facilities are delayed by economic and environmental concerns.

  6. The current state of water resources of Transcarpathia

    Directory of Open Access Journals (Sweden)

    V. І. Nikolaichuk

    2015-07-01

    Full Text Available Throughout their existence, humans use the water of rivers, lakes and underground sources not only for water supply but also for dumping of polluted waters and wastes into it. Significant development of urbanization, concentration of urban industrial enterprises, transport, increase in mining, expansion of drainage and irrigation reclamation, plowing of the river channels, creating a large number of landfills resulted in significant, and in some regions critical, depletion and contamination of the surface and ground waters. Because of this disastrous situation, the society is getting more and more concerned about the state of the environment. The public became increasingly interested in the state of the soil cover, air, water resources, and biotic diversity. Transcarpathian region (Zakarpattya is situated in the heart of Europe, bordered by four Central European countries (Poland, Slovakia, Hungary and Romania and two regions of Ukraine (Lviv and Ivano-Frankivsk regions. Transcarpathian region (Zakarpattya is one of the richest regions of Ukraine in terms of water resources. The territory is permeated by the dense network of rivers. There are in total 9,429 rivers of 19,866 kmlength flowing in the region. Among them, the rivers Tysa, Borzhava, Latoryca, Uzh have the length of over 100 kmeach. 25 cities and urban settlements of the area are substantially provided with the centralized water intake of underground drinking water. The rural areas have virtually no centralized water supply; mainly, it is carried out due to domestic wells or water boreholes. Predicted resources of underground drinking waters in the region are equal to 1,109,300 m3/day. The use of fresh water in 2014 per capita amounted to 23,769 m3, 15% less than in 2009. The main pollutants of surface water bodies are the facilities of utility companies in the region. Analysis of studies of surface water quality in Transcarpathian region in 2014 shows that water quality meets the

  7. Evaluation of Water Resource Security Based on an MIV-BP Model in a Karst Area

    Directory of Open Access Journals (Sweden)

    Liying Liu

    2018-06-01

    Full Text Available Evaluation of water resource security deserves particular attention in water resource planning and management. A typical karst area in Guizhou Province, China, was used as the research area in this paper. First, based on data from Guizhou Province for the past 10 years, the mean impact value–back propagation (MIV-BP model was used to analyze the factors influencing water resource security in the karst area. Second, 18 indices involving five aspects, water environment subsystem, social subsystem, economic subsystem, ecological subsystem, and human subsystem, were selected to establish an evaluation index of water resource security. Finally, a BP artificial neural network model was constructed to evaluate the water resource security of Guizhou Province from 2005 to 2014. The results show that water resource security in Guizhou, which was at a moderate warning level from 2005 to 2009 and a critical safety level from 2010 to 2014, has generally improved. Groundwater supply ratio, industrial water utilization rate, water use efficiency, per capita grain production, and water yield modulus were the obstacles to water resource security. Driving factors were comprehensive utilization rate of industrial solid waste, qualifying rate of industrial wastewater, above moderate rocky desertification area ratio, water requirement per unit gross domestic product (GDP, and degree of development and utilization of groundwater. Our results provide useful suggestions on the management of water resource security in Guizhou Province and a valuable reference for water resource research.

  8. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  9. Water resources of the Apostle Islands National Lakeshore, northern Wisconsin

    Science.gov (United States)

    Rose, W.J.

    1988-01-01

    The Apostle Islands National Lakeshore consists of 21 islands, part of the Bayfield Peninsula, and the adjacent waters of Lake Superior. Selected water resources of the Apostle Islands National Lakeshore were assessed to aid the National Park Service in developing and managing the Lakeshore and to provide a data base against which future changes can be compared. This summary of water-resources data, collected by the U.S. Geological Survey during 1979-84, provides a qualitative description of selected hydrologic components of the Lakeshore.

  10. Water resource taxation with full-cost water pricing: lessons from Europe

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Pizzol, Massimo

    Green fiscal reform involves removal of environmentally harmful subsidies, introduction of taxes on pollution and resource depletion as well as full-cost pricing for environmental services. One sector which traditionally has been shielded against Green Fiscal Reform is the water sector, where...... social and distributional concerns have had priority over charging policies. This may seem a paradox, as the water sector is of major financial significance and traditionally accounts for 1-2 per cent of GDP in developed nations. Moreover, in the European Union the Water Framework Directive prescribes...

  11. Long Island Sound Water Temperatures During the Last Two Thousand Years

    Science.gov (United States)

    Warren, C. E.; Varekamp, J. C.; Thomas, E.

    2010-12-01

    The Long Island Sound (LIS), sometimes called the “urban sea”, is a large estuary in the heavily populated coastal zone between New York City and the Connecticut - Rhode Island border. LIS has seen dramatic environmental shifts since colonial times, including major changes in aquatic food extraction, land use, contaminant and nutrient inputs, and climate change. Annual seasonal hypoxic/anoxic events, especially common in westernmost LIS, have been identified as potentially severe stressors for LIS biota including valuable fisheries species such as lobsters and shellfish. These conditions develop when the Sound becomes stratified in midsummer and oxygen consumption from the oxidation of organic matter exceeds oxygen resupply from the atmosphere or photosynthesis. Severity, lateral extent and frequency of hypoxia/anoxia is influenced by the amount of organic matter available for oxidation, both marine organic matter (produced by algal blooms in response to influx of N-rich effluents from waste water treatment plants) and terrestrial organic matter. These events are also influenced by the severity of stratification, determined by differences in density from temperature and salinity gradients of surface and bottom waters. Studies of cores in western and central LIS, dated using Hg-pollution profiles, 210Pb - 137Cs, and 14C, indicate that eutrophication and hypoxia have occurred in LIS only over the last ~150 years, with the possible exception of the Narrows (closest to NY) where it may have occurred before colonial times. Salinity decreased as well over the last 150 years, possibly due to changes in land use or deflection of fresh water from the Hudson River. Temperature variability in LIS over the last few thousand years has not been clearly documented, as several paleotemperature proxies are difficult to use in estuarine settings. Oxygen isotope values of carbonate microfossils are influenced by salinity fluctuations, and Mg/Ca values in these shells may be

  12. QUALITY OF WATERS OF AQUIFER WEBS OF BISKRA REGION F ...

    African Journals Online (AJOL)

    30 juin 2011 ... Controlling the quality of water distributed together with sound resource management is ... laboratoire Qualité et Traitement des Eaux Souterraines et de .... en vue de caractériser facilement une eau, de suivre son évolution.

  13. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  14. Long-term climatic change and sustainable ground water resources management

    International Nuclear Information System (INIS)

    Loaiciga, Hugo A

    2009-01-01

    Atmospheric concentrations of greenhouse gases (GHGs), prominently carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and halocarbons, have risen from fossil-fuel combustion, deforestation, agriculture, and industry. There is currently heated national and international debate about the consequences of such increasing concentrations of GHGs on the Earth's climate, and, ultimately, on life and society in the world as we know it. This paper reviews (i) long-term patterns of climate change, secular climatic variability, and predicted population growth and their relation to water resources management, and, specifically, to ground water resources management, (ii) means available for mitigating and adapting to trends of climatic change and climatic variability and their impacts on ground water resources. Long-term (that is, over hundreds of millions of years), global-scale, climatic fluctuations are compared with more recent (in the Holocene) patterns of the global and regional climates to shed light on the meaning of rising mean surface temperature over the last century or so, especially in regions whose historical hydroclimatic records exhibit large inter-annual variability. One example of regional ground water resources response to global warming and population growth is presented.

  15. Water resources of the Black Sea Basin at high spatial and temporal resolution

    Science.gov (United States)

    Rouholahnejad, Elham; Abbaspour, Karim C.; Srinivasan, Raghvan; Bacu, Victor; Lehmann, Anthony

    2014-07-01

    The pressure on water resources, deteriorating water quality, and uncertainties associated with the climate change create an environment of conflict in large and complex river system. The Black Sea Basin (BSB), in particular, suffers from ecological unsustainability and inadequate resource management leading to severe environmental, social, and economical problems. To better tackle the future challenges, we used the Soil and Water Assessment Tool (SWAT) to model the hydrology of the BSB coupling water quantity, water quality, and crop yield components. The hydrological model of the BSB was calibrated and validated considering sensitivity and uncertainty analysis. River discharges, nitrate loads, and crop yields were used to calibrate the model. Employing grid technology improved calibration computation time by more than an order of magnitude. We calculated components of water resources such as river discharge, infiltration, aquifer recharge, soil moisture, and actual and potential evapotranspiration. Furthermore, available water resources were calculated at subbasin spatial and monthly temporal levels. Within this framework, a comprehensive database of the BSB was created to fill the existing gaps in water resources data in the region. In this paper, we discuss the challenges of building a large-scale model in fine spatial and temporal detail. This study provides the basis for further research on the impacts of climate and land use change on water resources in the BSB.

  16. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  17. Using Water Footprints to Identify Alternatives for Conserving Local Water Resources in California

    Directory of Open Access Journals (Sweden)

    D. L. Marrin

    2016-11-01

    Full Text Available As a management tool for addressing water consumption issues, footprints have become increasingly utilized on scales ranging from global to personal. A question posed by this paper is whether water footprint data that are routinely compiled for particular regions may be used to assess the effectiveness of actions taken by local residents to conserve local water resources. The current California drought has affected an agriculturally productive region with large population centers that consume a portion of the locally produced food, and the state’s arid climate demands a large volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports most of its food products, enough is consumed within the state so that residents shifting their food choices and/or habits could save as much or more local blue water as their reduction of household or office water use. One of those shifts is reducing the intake of animal-based products that require the most water of any food group on both a gravimetric and caloric basis. Another shift is reducing food waste, which represents a shared responsibility among consumers and retailers, however, consumer preferences ultimately drive much of this waste.

  18. Water: A critical resource in the thermoelectric power industry

    International Nuclear Information System (INIS)

    Feeley, Thomas J. III.; McNemar, Andrea; Skone, Timothy J.; Stiegel, Gary J. Jr.; Nemeth, Michael; Schimmoller, Brian; Murphy, James T.; Manfredo, Lynn

    2008-01-01

    Water availability represents a growing concern for meeting future power generation needs. In the United States, projected population growth rates, energy consumption patterns, and demand from competing water use sectors will increase pressure on power generators to reduce water use. Water availability and use also exhibit strong regional variations, complicating the nature of public policy and technological response. The US Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is engaged in a research and development (R and D) program to reduce freshwater withdrawal (total quantity of water utilized) and consumption (portion of withdrawal not returned to the source) from existing and future thermoelectric power generating facilities. The Innovations for Existing Plants (IEP) Program is currently developing technologies in 5 categories of water management projects to reduce water use while minimizing the impacts of plant operations on water quality. This paper outlines the freshwater withdrawal and consumption rates for various thermoelectric power generating types and then estimates the potential benefits of IEP program technologies at both the national and regional levels in the year 2030. NETL is working to protect and conserve water resources while leveraging domestic fossil fuel resources, such as coal, to increase national energy security. (author)

  19. A Connection Entropy Approach to Water Resources Vulnerability Analysis in a Changing Environment

    Directory of Open Access Journals (Sweden)

    Zhengwei Pan

    2017-11-01

    Full Text Available This paper establishes a water resources vulnerability framework based on sensitivity, natural resilience and artificial adaptation, through the analyses of the four states of the water system and its accompanying transformation processes. Furthermore, it proposes an analysis method for water resources vulnerability based on connection entropy, which extends the concept of contact entropy. An example is given of the water resources vulnerability in Anhui Province of China, which analysis illustrates that, overall, vulnerability levels fluctuated and showed apparent improvement trends from 2001 to 2015. Some suggestions are also provided for the improvement of the level of water resources vulnerability in Anhui Province, considering the viewpoint of the vulnerability index.

  20. Resolving and Prevention of Shared Water Resources Conflicts ...

    African Journals Online (AJOL)

    Learning from experiences from other parts of the world, it was recommended to incorporate game theory technique in water resources conflicts and cooperation in the African river basins for equitable and fair utilization and management of shared water. Journal of Civil Engineering Research and Practice Vol.1(1) 2004: 51- ...

  1. Water resources management in a homogenizing world: Averting the Growth and Underinvestment trajectory

    Science.gov (United States)

    Mirchi, Ali; Watkins, David W.; Huckins, Casey J.; Madani, Kaveh; Hjorth, Peder

    2014-09-01

    Biotic homogenization, a de facto symptom of a global biodiversity crisis, underscores the urgency of reforming water resources management to focus on the health and viability of ecosystems. Global population and economic growth, coupled with inadequate investment in maintenance of ecological systems, threaten to degrade environmental integrity and ecosystem services that support the global socioeconomic system, indicative of a system governed by the Growth and Underinvestment (G&U) archetype. Water resources management is linked to biotic homogenization and degradation of system integrity through alteration of water systems, ecosystem dynamics, and composition of the biota. Consistent with the G&U archetype, water resources planning primarily treats ecological considerations as exogenous constraints rather than integral, dynamic, and responsive parts of the system. It is essential that the ecological considerations be made objectives of water resources development plans to facilitate the analysis of feedbacks and potential trade-offs between socioeconomic gains and ecological losses. We call for expediting a shift to ecosystem-based management of water resources, which requires a better understanding of the dynamics and links between water resources management actions, ecological side-effects, and associated long-term ramifications for sustainability. To address existing knowledge gaps, models that include dynamics and estimated thresholds for regime shifts or ecosystem degradation need to be developed. Policy levers for implementation of ecosystem-based water resources management include shifting away from growth-oriented supply management, better demand management, increased public awareness, and institutional reform that promotes adaptive and transdisciplinary management approaches.

  2. Water use efficiency and integrated water resource management for river basin

    Science.gov (United States)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water use efficiency and management have attracted increasing attention as water has become scare to challenge the world's sustainable development. Water use efficiency is correlated to the land use and cover changes (LUCC), population distribution, industrial structure, economic development, climate changes, and environmental governance. These factors significantly alter water productivity for water balance through the changes in natural environment and socio-economic system (Wang et al., 2015b). Consequently, dynamics of water inefficiency lower the social welfare of water allocation (Wang et al., 2015b), and induce water management alternation interactively and financially (Wang et al., 2015a). This triggers on actual water price changes through both natural resource and socioeconomic system (Zhou et al., 2015). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Jin et al., 2015) at a global perspective (Zhao et al., 2015), climate and economic changes of ecosystem service at various spatial and temporal scales (Li et al., 2015).

  3. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    many factors affecting water resources decision making, it is ubiquitous in that it permeates the planning, policy-making .... estimated that in many farming systems, more than 70% of the rain ..... Using correlation techniques, the relationship ...

  4. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    Science.gov (United States)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  5. Serious-game for water resources management adaptation training to climatic changes

    Science.gov (United States)

    Leroy, Eve; Saulnier, Georges-Marie

    2013-04-01

    Water resources access is a main issue for territorial development to ensure environmental and human well-being. Indeed, sustainable development is vulnerable to water availability and climate change may affect the quantity and temporality of available water resources for anthropogenic water uses. How then to adapt, how to change water management rules and practices and how to involve stakeholders is such process? To prevent water scarcity situations, which may generate conflicts and impacts on ecosystems, it is important to think about a sustainable development where anthropogenic water uses are in good balance with forecasted water resources availability. This implies to raise awareness and involve stakeholders for a sustainable water management. Stakeholders have to think about future territorial development taking into account climate change impacts on water resources. Collaboration between scientists and stakeholders is essential to insure consistent climate change knowledge, well identification of anthropogenic uses, tensions and stakes of the territory. However sharing information on complex questions such as climate change, hydro-meteorological modeling and practical constraints may be a difficult task. Therefore to contribute to an easier debate and to the global training of all the interested actors, a serious game about water management was built. The serious game uses scientist complex models with real data but via a simple and playful web-game interface. The advantage of this interface is that it may help stakeholders, citizen or the target group to raise their understandings of impacts of climate change on water resources and to raise their awareness to the need for a sustainable water management while using state-of-the-art knowledge. The principle of the game is simple. The gamer is a mayor of a city and has to manage the water withdrawals from hydro systems, water distribution and consumption, water retreatment etc. In the same time, a clock is

  6. optimization of water resources allocation in semi-arid region

    African Journals Online (AJOL)

    Eng Obi Ibeje

    This study is aimed at achieving optimal water resources allocation .... (2005) points out, in his discussions of non- cooperative games model ... the linear and dynamic programming model which many ... e.g. Institute of Water and Hydropower.

  7. Combined multibeam and LIDAR bathymetry data from eastern Long Island Sound and westernmost Block Island Sound-A regional perspective

    Science.gov (United States)

    Poppe, L.J.; Danforth, W.W.; McMullen, K.Y.; Parker, Castle E.; Doran, E.F.

    2011-01-01

    Detailed bathymetric maps of the sea floor in Long Island Sound are of great interest to the Connecticut and New York research and management communities because of this estuary's ecological, recreational, and commercial importance. The completed, geologically interpreted digital terrain models (DTMs), ranging in area from 12 to 293 square kilometers, provide important benthic environmental information, yet many applications require a geographically broader perspective. For example, individual surveys are of limited use for the planning and construction of cross-sound infrastructure, such as cables and pipelines, or for the testing of regional circulation models. To address this need, we integrated 12 multibeam and 2 LIDAR (Light Detection and Ranging) contiguous bathymetric DTMs, produced by the National Oceanic and Atmospheric Administration during charting operations, into one dataset that covers much of eastern Long Island Sound and extends into westernmost Block Island Sound. The new dataset is adjusted to mean lower low water, is gridded to 4-meter resolution, and is provided in UTM Zone 18 NAD83 and geographic WGS84 projections. This resolution is adequate for sea floor-feature and process interpretation but is small enough to be queried and manipulated with standard Geographic Information System programs and to allow for future growth. Natural features visible in the grid include exposed bedrock outcrops, boulder lag deposits of submerged moraines, sand-wave fields, and scour depressions that reflect the strength of the oscillating and asymmetric tidal currents. Bedform asymmetry allows interpretations of net sediment transport. Anthropogenic artifacts visible in the bathymetric data include a dredged channel, shipwrecks, dredge spoils, mooring anchors, prop-scour depressions, buried cables, and bridge footings. Together the merged data reveal a larger, more continuous perspective of bathymetric topography than previously available, providing a fundamental

  8. 33 CFR 167.1701 - In Prince William Sound: Precautionary areas.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: Precautionary areas. 167.1701 Section 167.1701 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Traffic Separation Schemes and Precautionary Areas Pacific West Coast § 167.1701 In Prince William Sound...

  9. Effects of climate change on evapotranspiration over the Okavango Delta water resources

    Science.gov (United States)

    Moses, Oliver; Hambira, Wame L.

    2018-06-01

    In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.

  10. Waters Without Borders: Scarcity and the Future of State Interactions over Shared Water Resources

    Science.gov (United States)

    2010-04-01

    earth’s water is fresh water , stored in rivers, lakes, reservoirs, glaciers, permanent snow, groundwater aquifers, and the atmosphere. 10 This... freshwater resources between and within countries. 13 There is significant media attention given to intra-state water sharing issues. One...intrusion into coastal ground freshwater sources, among other effects. Consequently, water scarcity brought about by climate change could drive

  11. Bioregional Assessments: Determining the Impacts of Coal Resource Development on Water Resources in Australia through Groundwater, Surface Water and Ecological Modelling

    Science.gov (United States)

    Peeters, L. J.; Post, D. A.; Crosbie, R.; Holland, K.

    2017-12-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed `coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. The Australian Federal Government commissioned a multi-disciplinary programme of bioregional assessments to improve understanding of the potential impacts of coal seam gas and large coal mining activities on water resources and water-dependent assets across six bioregions Australia. A bioregional assessment is a transparent scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. The first step in the analysis is to establish the most likely scenario for coal development in each region and establish a causal pathway linking coal development to impacts to the social, economic and ecological functioning of water resources. This forms the basis for a sequence of probabilistic geological, hydrogeological, hydrological and ecological models to quantify the probability of potential impacts. This suite of models is developed independent of the proponents and regulators of coal resource developments and so can provide unbiased information to all stakeholders. To demonstrate transparency of the modelling, all inputs, outputs and executables will be available from http://www.bioregionalassessments.gov.au. The analysis delineated a zone of potential hydrological change for each region, outside of which impacts

  12. Dynamical Models of Interactions between Herds Forage and Water Resources in Sahelian Region

    Directory of Open Access Journals (Sweden)

    Jean Jules Tewa

    2014-01-01

    Full Text Available Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking water in space and especially in time (highly seasonal, interannual variability and the scarcity of water resources. The mobility is the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region. These models in some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals as predators. These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks in their trajectories.

  13. Study on the Flexibility in Cross-Border Water Resources Cooperation Governance

    Science.gov (United States)

    Liu, Zongrui; Wang, Teng; Zhou, Li

    2018-02-01

    Flexible strategy is very important to cross-border cooperation in international rivers water resources, which may be employed to reconcile contradictions and ease conflicts. Flexible characters of cross-border cooperation in international rivers water resources could be analyzed and revealed, using flexible strategic management framework, by taking international cooperation protocols related to water from Transboundary Freshwater Disputes Database (TFDD) as samples from the number of cooperation issues, the amount of management layers and regulator agencies in cooperation organization and the categories of income (cost) distribution (allocation) mode. The research demonstrates that there are some flexible features of cross-border cooperation in international rivers water resources: Riparian countries would select relative diversification strategies related to water, tend to construct a flexible cooperation organization featured with moderate hierarchies from vertical perspective and simplified administrations from horizontal perspective, and adopt selective inducement modes to respect ‘joint and several liability’.

  14. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  15. WATER RESOURCES AND URBAN PLANNING: THE CASE OF A COASTAL AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iana Alexandra Alves Rufino

    2009-06-01

    Full Text Available Urban planning requires the integration of several disciplines, among them ones related to water resources. The impacts of urban development on those resources, and viceversa, are well known, but some aspects have not been well characterized in literature. This research analyzes a case that shows interesting relationships between urban planning, its legislation, the evolution of urban occupation and several aspects of water resources: groundwater, surface water, drainage and saltwater intrusion. The research argues for integrated and dynamic planning, monitoring and directive enforcement of the urban processes, including environmental dimension and water resources. Advanced decision support techniques are suggested as tools for supporting this integrated approach.

  16. 33 CFR 110.27 - Lynn Harbor in Broad Sound, Mass.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lynn Harbor in Broad Sound, Mass. 110.27 Section 110.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.27 Lynn Harbor in Broad Sound, Mass. North of...

  17. World water resources and water use: Modern assessment and outlook for the 21st century

    International Nuclear Information System (INIS)

    Shiklomanov, I.A.

    1999-01-01

    A quantitative assessment of the world water resources, water use, and water availability has been made during 1991-1996. The assessment has been made in retrospective for the period 1921-1985, for 1995, and for the future (2000, 2010 and 2025)

  18. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  19. The Water – Energy – Food Nexus and Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Holtermann Talin

    2015-01-01

    Full Text Available This report explores the exposure and vulnerability of Korea and the Southern African region to climate-driven impacts in the Water-Energy-Food (WEF nexus. It presents the building of ecological networks as a mean to address climate change - induced alterations of ecosystems and the consequences for humans and nature. Reducing the asymmetry between price and value of water resources is identified as an essential aspect to enable sound resource management use decisions. The report highlights the need for comprehensive tools which assist decision makers in dealing with the complexity of WEF nexus interrelations and facilitate sustainable resource management.

  20. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  1. Missouri StreamStats—A water-resources web application

    Science.gov (United States)

    Ellis, Jarrett T.

    2018-01-31

    The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged

  2. Factors Influencing Water Resource Governance among Pastoral Community at Mkondoa Sub-Catchment Morogoro Region Tanzania

    OpenAIRE

    Yeremia Yohana Masifia; Sarone Ole Sena

    2017-01-01

    The importance of proper Water Resource Management with greater emphasis on ensuring sustainability quality accountability and community participation has become imminent as water resources increasingly become scarce Harvey et al 2007. Water resources management in Tanzania is governed under the National Water Policy of 2002 and Water Resources Management Act No.11 of year 2009. Other related legislations include Environmental Management Act No. 20 of year 2004 Forest Policy and Forest Act No...

  3. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    OpenAIRE

    Zeki Gökalp; Sedat Karaman; Ismail Taş; Halil Kirnak

    2016-01-01

    Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance c...

  4. Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions

    Science.gov (United States)

    Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.

    2017-12-01

    Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of

  5. Seasonal distribution of Dall's porpoise in Prince William Sound, Alaska

    Science.gov (United States)

    Moran, John R.; O'Dell, Matthew B.; Arimitsu, Mayumi L.; Straley, Janice M.; Dickson, Danielle M. S.

    2018-01-01

    Dall's porpoise, Phocoenoides dalli, are a conspicuous predator in the Prince William Sound ecosystem, yet there has been little effort directed towards monitoring this species since the 1980s, prior to the Exxon Valdez oil spill. We used vessel-based surveys to examine the seasonal distribution of Dall's porpoise in the waters of Prince William Sound during eight years from 2007 to 2015. Over the course of 168 days and 15,653 km of survey effort, 921 Dall's porpoise were encountered in 210 groups. We estimate an encounter rate of 0.061 porpoise/km traveled or 1 porpoise encountered for every 16.5 km traveled. Dall's porpoise were found throughout the year in Prince William Sound, and used a wide range of habitats, including those not considered typical of the species, such as bays, shallow water, and nearshore waters. Dall's porpoise seasonally shifted their center of distribution from the western passages in fall to the bays of the eastern Sound in winter and spring. Dall's porpoises were widely dispersed throughout the Sound in summer. We identified potential Dall's porpoise habitat (depth, slope, and distance from shore) within Prince William Sound using generalized additive models (GAM). Dall's porpoise were found in deeper water during summer and in shallowest water during spring. We propose that their use of novel habitats is a function of reduced predation risk associated with the decline of their main predator, killer whales (Orcinus orca), following the Exxon Valdez oil spill, and the presence of overwintering and spawning Pacific herring (Clupea pallasii). While the size of the Dall's porpoise population within Prince William Sound remains unknown, our encounter rates were lower than those reported in the 1970s. Their high metabolic rate and ubiquitous presence makes them one of the more important, yet understudied, forage fish predators in the region.

  6. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  7. THE SOUNDING WATERS

    DEFF Research Database (Denmark)

    Isar, Nicoletta

    2018-01-01

    Church as harmonious moving waters. This vision is shared both by the Eastern and the Western world. With its renewed marble revetments, Aquasgrani still conveys the appearance of the Ambrosian vision of the primordial waters. The church is constructed according to propria dispositione, this is...

  8. Governance of water resources in Colombia: Between progress and challenges

    International Nuclear Information System (INIS)

    Zamudio Rodriguez, Carmen

    2012-01-01

    This work is an overview of water management in Colombia, emphasizing governance as a key element in this type of process. Therefore, from the collection and analysis of secondary data, identifies the evolution of water management in the country and, to that extent, aspects that reveal a crisis of governance in this area. In this sense, initially some relevant issues are raised in order to analyze the integrated water resource management and water governance. Later, it addresses factors that show that, despite significant progress in water management in the country, it is still to emerge a comprehensive approach that considers multiple criteria to provide governance on water resources. Thus, we propose that there is a crisis of governance on water expressed in terms of lack of experience and international context, lack of coordination and dispersion of water policy, ignorance of the various forms of local government, a wrong perception on the water abundance and richness of the country, and dissimulation or disinterest ignoring the many pressures that threaten water.

  9. Water resources of the Chad Basin Region

    Directory of Open Access Journals (Sweden)

    Franklyn R. Kaloko

    2013-07-01

    Full Text Available River basin development is seen as a very effective means of improving agricultural productivity. In the Chad Basin area of the Sahelian Zone of the West African Sub-Region, the water resources have been harnessed to ensure viable agricultural programmes for Nigeria. However,the resultant successes have met by many problems that range from physical to socio-economic and of which water losses have been the most threatening. The study has called for the use of Hexa.deconal (C1-OH film on the water surface of the Chad as a means of reducing evaporation.

  10. Conceptual model of water resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  11. Watered down : overcoming federal inaction on the impact of oil sands development to water resources

    International Nuclear Information System (INIS)

    Droitsch, D.

    2009-11-01

    The oil sands industry is having a negative impact on Canada's fresh water resources and aquatic ecosystems. Members of the Government of the Northwest Territories (NT) and experts from scientific, non-governmental, and First Nations groups have stated at federal hearings that the federal government must involve itself in the protection of Canada's water resources. This report discussed compelling testimony from recent federal hearings by the House of Commons Standing Committee on Environment and Sustainable Development.The federal government must establish enforceable standards for key toxic substances created by oil sands activity. A water-sharing agreement must be established between Alberta, NT, Saskatchewan, and First Nations governments. Other recommendations included the establishment of a peer-reviewed assessment of the health impacts of industrial oil sands development on First Nations communities; the establishment of cumulative effects assessment procedures; the identification and protection of listed species at risk; and the establishment of proactive measures designed to ensure that oil sands operators pay for the environmental damage caused to water resources. 94 refs., 4 figs.

  12. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria...

  13. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  14. The impact of traditional coffee processing on river water quality in Ethiopia and the urgency of adopting sound environmental practices.

    Science.gov (United States)

    Beyene, Abebe; Kassahun, Yared; Addis, Taffere; Assefa, Fassil; Amsalu, Aklilu; Legesse, Worku; Kloos, Helmut; Triest, Ludwig

    2012-11-01

    Although waste from coffee processing is a valuable resource to make biogas, compost, and nutrient-rich animal food, it is usually dumped into nearby water courses. We carried out water quality assessment at 44 sampling sites along 18 rivers that receive untreated waste from 23 coffee pulping and processing plants in Jimma Zone, Ethiopia. Twenty upstream sampling sites free from coffee waste impact served as control, and 24 downstream sampling sites affected by coffee waste were selected for comparison. Physicochemical and biological results revealed a significant river water quality deterioration as a result of disposing untreated coffee waste into running water courses. During coffee-processing (wet) season, the highest organic load (1,900 mg/l), measured as biochemical oxygen demand, depleted dissolved oxygen (DO) to a level less than 0.01 mg/l, and thus curtailed nitrification. During off season, oxygen started to recuperate and augmented nitrification. The shift from significantly elevated organic load and reduced DO in the wet season to increased nitrate in the off season was found to be the determining factor for the difference in macroinvertebrate community structure as verified by ordination analysis. Macroinvertebrate diversity was significantly reduced in impacted sites during the wet season contrary to the off season. However, there was a significant difference in the ratio of sensitive to pollution-tolerant taxa in the off season, which remained depreciated in the longer term. This study highlights the urgency of research exploring on the feasibility of adopting appropriate pollution abatement technologies to implement ecologically sound coffee-processing systems in coffee-growing regions of Ethiopia.

  15. 33 CFR 161.60 - Vessel Traffic Service Prince William Sound.

    Science.gov (United States)

    2010-07-01

    ... William Sound. 161.60 Section 161.60 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Movement Reporting System Areas and Reporting Points § 161.60 Vessel Traffic Service Prince William Sound... Cape Hinchinbrook Light to Schooner Rock Light, comprising that portion of Prince William Sound between...

  16. Ecosystem Services Insights into Water Resources Management in China: A Case of Xi'an City.

    Science.gov (United States)

    Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan

    2016-11-24

    Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi'an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index's weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem's service capability is closely related to water resources, providing a method for managing water resources. Using Xi'an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers.

  17. Effect of temperature on density, sound velocity, and their derived properties for the binary systems glycerol with water or alcohols

    International Nuclear Information System (INIS)

    Negadi, Latifa; Feddal-Benabed, Badra; Bahadur, Indra; Saab, Joseph; Zaoui-Djelloul-Daouadji, Manel; Ramjugernath, Deresh; Negadi, Amina

    2017-01-01

    Highlights: • Densities (ρ) and sound velocities (u) for glycerol, +water, +methanol, or +ethanol systems were measured. • The derived properties (excess molar volume, isentropic compressibility and deviation in isentropic compressibility) were calculated. • The Redlich–Kister polynomial was used to fit the experimental results. - Abstract: Densities and sound velocities of three binary systems containing glycerol + (water, methanol, or ethanol) have been measured over the entire composition range at temperatures ranging from (283.15 to 313.15) K in 10 K intervals, at atmospheric pressure. A vibrating u-tube densimeter and sound velocity analyzer (Anton Paar DSA 5000M) was used for the measurements. Thermodynamic properties were derived from the measured data, viz. excess molar volume, isentropic compressibility, and deviation in isentropic compressibility. The property data were correlated with the Redlich-Kister polynomial. In all cases, the excess molar volumes and deviation in isentropic compressibility are negative over the entire composition range for all binary mixtures studied and become increasingly negative with an increase in the temperature. These properties provide important information about different interactions that take place between like-like, like-unlike and unlike-unlike molecules in the mixtures.

  18. Local and Transboundary Sharing of Water Resources: Legal and Equity Issues

    International Nuclear Information System (INIS)

    Mumma, A

    2001-01-01

    The article reviewed the law on water in local and transboundary contexts.The aim was to highlight the mechanisms for facilitating equity in the allocation and sharing of the resource. It has been demonstrated that, the relevant local and transboundary laws are in need for further urgent development in order to be able to achieve their objectives. The objective that will be of greatest importance in the 21. century is that of ensuring that, water conservation is fostered and promoted. The effort to meet the increasing demand for water, on the whole, have focused on attempts to increase supply to water users. In the era of increasing water scarcity, the management of demand and development of legal and other mechanisms to ensure efficient utilisation of the available water resources will become the central issue of the day. Equity in allocation will take, as it's central premises the conservation of the limited resource. The law will therefore need to develop increasingly in the direction of fostering a conservation ethic

  19. Istanbul : the challenges of integrated water resources management in Europa’s megacity

    NARCIS (Netherlands)

    van Leeuwen, Kees; Sjerps, Rosa

    Effective integrated water resources management (IWRM) and developments impacting on water resources are recognized as key components of environmentally sustainable development. Istanbul (Turkey) is a very large metropolitan city with a population of approximately 14 million. Istanbul is one of the

  20. A review of Ghana’s water resource management and the future prospect

    Directory of Open Access Journals (Sweden)

    Phebe Asantewaa Owusu

    2016-12-01

    Full Text Available Water covers about 70% of the earth’s surface and it exists naturally in the earth in all the three physical states of matter and it is always moving around because the water flows with the current. Out of the earth’s percentage of water covering the surface, only about 2.5% is fresh water and due to the fact that most are stored in deep groundwater, a small amount is readily available for human use. Water scarcity is becoming a major concern for people around the world and the need to protect the existing ones and find ways or means to provide safe water for individuals around the globe in adequate quantities with keeping the needs of future generations in mind. Water is life, and it is linked with lots of services either directly or indirectly, such as; human health and welfare and social and economic development of a community or country. The need to delve into Ghana’s water resources management is essential. The study reviewed existing literature on the various members of the Water Resource Commission (WRC in Ghana; the various basins in the country; the existing measures that the WRC authorities have in place to deal with water resources management issues; the challenges that hinder the progress of their achievements and some suggestions that if considered can improve the current water resources management situations in Ghana.

  1. Appropriate administrative structures in harnessing water resources ...

    African Journals Online (AJOL)

    Appropriate administrative structures in harnessing water resources for sustainable growth in Nigeria. Lekan Oyebande. Abstract. No Abstract. Journal of Mining and Geology Vol. 42(1) 2006: 21-30. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  2. Lake Victoria water resources management challenges and ...

    African Journals Online (AJOL)

    ... governing management measures capable of meeting the needs of riparian states and ensuring sustainability within the basin is highlighted. Keywords: biodiversity loss; East Africa; eutrophication; heavy metal pollution; international treaties; Nile Basin; shared water resources. African Journal of Aquatic Science 2008, ...

  3. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    Science.gov (United States)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  4. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  5. Engaging the creative to better build science into water resource solutions

    Science.gov (United States)

    Klos, P. Z.

    2014-12-01

    Psychological thought suggests that social engagement with an environmental problem requires 1) cognitive understanding of the problem, 2) emotional engagement with the problem, and 3) perceived efficacy that there is something we can do to solve the problem. Within the water sciences, we form problem-focused, cross-disciplinary teams to help address complex water resource problems, but often we only seek teammates from other disciplines within the realms of engineering and the natural/social sciences. Here I argue that this science-centric focus fails to fully solve these water resource problems, and often the science goes unheard because it is heavily cognitive and lacks the ability to effectively engage the audience through crucial social-psychological aspects of emotion and efficacy. To solve this, future cross-disciplinary collaborations that seek to include creative actors from the worlds of art, humanities, and design can begin to provide a much stronger overlap of the cognition, emotion, and efficacy needed to communicate the science, engage the audience, and create the solutions needed to solve or world's most complex water resource problems. Disciplines across the arts, sciences, and engineering all bring unique strengths that, through collaboration, allow for uniquely creative modes of art-science overlap that can engage people through additions of emotion and efficacy that compliment the science and go beyond the traditional cognitive approach. I highlight examples of this art-science overlap in action and argue that water resource collaborations like these will be more likely to have their hydrologic science accepted and applied by those who decide on water resource solutions. For this Pop-up Talk session, I aim to share the details of this proposed framework in the context of my own research and the work of others. I hope to incite discussion regarding the utility and relevance of this framework as a future option for other water resource

  6. Passive Solar Driven Water Treatment of Contaminated Water Resources

    OpenAIRE

    Ahmed, Mubasher

    2016-01-01

    Master's thesis in Environmental technology Freshwater, being vital for mankind survival, has become a very serious concern for the public especially living in countries with limited water, energy and economic resources. Freshwater generation is an energy-intensive task particularly when fossil based fuels are required as energy source. However, environmental concerns and high energy costs have called for the alternative and renewable sources of energy like wind, hy...

  7. Pricing of Water Resources With Depletable Externality: The Effects of Pollution Charges

    Science.gov (United States)

    Kitabatake, Yoshifusa

    1990-04-01

    With an abstraction of a real-world situation, the paper views water resources as a depletable capital asset which yields a stream of services such as water supply and the assimilation of pollution discharge. The concept of the concave or convex water resource depletion function is then introduced and applied to a general two-sector, three-factor model. The main theoretical contribution is to prove that when the water resource depletion function is a concave rather than a convex function of pollution, it is more likely that gross regional income will increase with a higher pollution charge policy. The concavity of the function is meant to imply that with an increase in pollution released, the ability of supplying water at a certain minimum quality level diminishes faster and faster. A numerical example is also provided.

  8. Earth and water resources and hazards in Central America

    Science.gov (United States)

    Cunningham, Charles G.; Fary, R.W.; Guffanti, Marianne; Laura, Della; Lee, M.P.; Masters, C.D.; Miller, R.L.; Quinones-Marques, Ferdinand; Peebles, R.W.; Reinemund, J.A.; Russ, D.P.

    1984-01-01

    Long-range economic development in Central America will depend in large part on production of indigenous mineral, energy, and water resources and on mitigation of the disastrous effects of geologic and hydrologic hazards such as landslides, earthquakes, volcanic eruptions, and floods. The region has six world-class metal mines at present as well as additional evidence of widespread mineralization. Systematic investigations using modern mineral exploration techniques should reveal more mineral deposits suitable for development. Widespread evidence of lignite and geothermal resources suggests that intensive studies could identify producible energy sources in most Central American countries. Water supply and water quality vary greatly from country to country. Local problems of ground- and surface-water availability and of contamination create a need for systematic programs to provide better hydrologic data, capital improvements, and management. Disastrous earthquakes have destroyed or severely damaged many cities in Central America. Volcanic eruptions, landslides, mudflows, and floods have devastated most of the Pacific side of Central America at one time or another. A regional approach to earthquake, volcano, and flood-risk analysis and monitoring, using modern technology and concepts, would provide the facilities and means for acquiring knowledge necessary to reduce future losses. All Central American countries need to strengthen institutions and programs dealing with earth and water resources and natural hazards. Some of these needs may be satisfied through existing or pending projects and technical and economic assistance from U.S. or other sources. The need for a comprehensive study of the natural resources of Central America and the requirements for their development is evident. The U.S. Caribbean Basin Initiative offers both an excellent opportunity for a regional approach to these pervasive problems and an opportunity for international cooperation.

  9. Ecosystem Services Insights into Water Resources Management in China: A Case of Xi’an City

    Science.gov (United States)

    Liu, Jingya; Li, Jing; Gao, Ziyi; Yang, Min; Qin, Keyu; Yang, Xiaonan

    2016-01-01

    Global climate and environmental changes are endangering global water resources; and several approaches have been tested to manage and reduce the pressure on these decreasing resources. This study uses the case study of Xi’an City in China to test reasonable and effective methods to address water resource shortages. The study generated a framework combining ecosystem services and water resource management. Seven ecosystem indicators were classified as supply services, regulating services, or cultural services. Index values for each indicator were calculated, and based on questionnaire results, each index’s weight was calculated. Using the Likert method, we calculated ecosystem service supplies in every region of the city. We found that the ecosystem’s service capability is closely related to water resources, providing a method for managing water resources. Using Xi’an City as an example, we apply the ecosystem services concept to water resources management, providing a method for decision makers. PMID:27886137

  10. Managing new resources in Arctic marine waters

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Fernandez, Linda; Kaiser, Brooks

    and management of the resource which poses challenges due its nature as a ‘sedentary species’ colonizing the Barents Sea continental shelf shared by Norway and Russia and approaching the fishery protection zone around Svalbard. Conversely, little research has looked into the implications of the invasion partly...... fishery straddling Arctic waters which lends towards different productivity under different management and we delineate acceptable risk levels in order build up a bioeconomic framework that pinpoints the underlying trade-offs. We also address the difficulties of managing the resource under uncertainty...

  11. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  12. Socio–economic benefits and pollution levels of water resources ...

    African Journals Online (AJOL)

    Communities are dependent on wetlands resources for income generation. However, anthropogenic activities that result into pollution of water are one of the major public health problems. Assessment of socio–economic activities and pollution levels of domestic water sources in Gulu Municipality, Pece wetland was done.

  13. Thailand Environment Monitor : Integrated Water Resources Management - A Way Forward

    OpenAIRE

    World Bank

    2011-01-01

    Water is everyone's business. Beside a necessity for living, water has implications on public health and, most importantly, can cause social conflicts. This is because water is limited, is difficult to control, and can easily be polluted. The Integrated Water Resource Management (IWRM) process is considered worldwide as a means to reduce social conflicts from competing water needs as well ...

  14. China's coal-fired power plants impose pressure on water resources

    NARCIS (Netherlands)

    Zhang, Xinxin; Liu, Junguo; Tang, Yu; Zhao, Xu; Yang, Hong; Gerbens-Leenes, P.W.; Vliet, van Michelle T.H.; Yan, Jinyue

    2017-01-01

    Coal is the dominant fuel for electricity generation around the world. This type of electricity generation uses large amounts of water, increasing pressure on water resources. This calls for an in-depth investigation in the water-energy nexus of coal-fired electricity generation. In China,

  15. An Implentation Methodology for Integrated Resource Management in Urban Water Planning

    Science.gov (United States)

    Ebrahimi, G.; Thurm, B.; Klein, D. R.; Öberg, G.

    2014-12-01

    Urban water management requires innovative and integrative approaches to improve sustainability in cities keeping in touch with science progress. Integrated Resource Management (IRM) is one of these strategies and has been developed to integrate various natural and human resources. However, it is becoming increasingly clear that it is challenging to move from vision to implementation. The aim of this paper is to identify strengths and weaknesses of IRM and analyze if the approach might facilitate implementation of sustainability objectives in the water management field. A literature review was performed on peer-reviewed papers that were identified through Google Scholar search for the term 'Integrated Resource Management'. It was found that IRM has been used in a number of contexts such as urban planning, forestry, and management of waste and livestock. Significant implementation challenges are highlighted in the literature. Based on the lessons learned in many different fields, from forestry to communication sciences, important characteristics of IRM approach were found such as the need for adequate governance and strong leaderships, stakeholder's involvement, the learning process and the critical need of appropriate evaluation criteria. We conclude developing an implementation methodology and presenting several recommendations to implement IRM in urban management. While Integrated Water Resource Management (IWRM) is recognized as a fruitful approach to achieve sustainable water management, this study suggests that a shift toward Integrated Resource Management (IRM) can be beneficial as it is designed to facilitate consideration of the interrelationships between various natural and human resources.

  16. Climate change and mountain water resources: overview and recommendations for research, management and policy

    Directory of Open Access Journals (Sweden)

    D. Viviroli

    2011-02-01

    Full Text Available Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy.

    After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields.

    We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction.

  17. Earth, Air, Fire, & Water: Resource Guide 6. The Arts and Learning, Interdisciplinary Resources for Education.

    Science.gov (United States)

    Lee, Ronald T., Ed.

    This resource guide is intended to aid practitioners in the design of new curriculum units or the enrichment of existing units by suggesting activities and resources in the topic areas of earth, air, fire, and water. Special projects and trips relating to these topic areas are proposed. A sample arts networking system used to integrate various…

  18. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  19. The Process of Creation and Consolidation Committees for Hydrographic Basin Management Water Resources

    Directory of Open Access Journals (Sweden)

    Mario Marcos Lopes Lopes

    2011-06-01

    Full Text Available Water is among the most precious goods in Earth's environmental heritage, however, the economic activities have caused the contamination and degradation of surface and underground springs. Consequently, emerges the need to reconcile the development and the management of natural resources. Several national and international conferences have been taken place to spread this idea. In Brazil, this new model of water resources management is beginning to be implanted, culminating in the approval of The State Water Resources Policy and, later, in the National Water Resources Policy. This legislation takes the river basin as a regional unity of water planning and management. The objective of this work is to present the evolution of the process of organization and creation of river basin committees. Literature search as well as documentary analysis (minutes, decisions were used as research methodology. The experience of basin committees is considered an innovation for considering deliberative groups with effectively deliberative actions, incorporating guiding principles favoring shared management, taking as a support basis decentralization, integration and participation in the destiny of water resources in each region of the river basin. However, it is also necessary to intensify the involvement of users and other segments of society so that these groups can really work as "Water Parliament".

  20. Nuclear explosives in water-resource management

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Arthur M [United States Department of the Interior, Geological Survey (United States)

    1970-05-15

    Nuclear explosives afford diverse tools for managing our water resources. These include principally: the rubble column of a fully contained underground detonation, the similar rubble column of a retarc, the crater by subsidence, the throwout crater of maximum volume (the latter either singly or in-line), and the ejecta of a valley-slope crater. By these tools, one can create space in which to store water, either underground or on the land surface - in the latter instance, to a considerable degree independently of the topography. Underground, one can accelerate movement of water by breaching a confining bed, a partition of a compartmented aquifer, or some other obstruction in the natural 'plumbing system'. Finally, on the land surface, one can modify the natural pattern of water flow, by canals excavated with in-line detonation. In all these applications, the potential advantage of a nuclear explosive rests chiefly in undertakings of large scale, under a consequent small cost per unit of mechanical work accomplished.

  1. A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina

    Science.gov (United States)

    Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.

    2014-12-01

    Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.

  2. Management of water resources in the Cantareira Water Producer System area: a look at the rural context

    Directory of Open Access Journals (Sweden)

    Rafael Eduardo Chiodi

    2013-12-01

    Full Text Available The National Water Resources Policy established the principles of participation, integration and decentralization, as well as new instruments for the management of water resources in Brazil. The implementation of this policy created several challenges, such as establishing effective management within the framework of rural territorial structure. The example of the Cantareira’s System in Piracicaba river watershed is conducive to the understanding of this challenge. In this scenario, we analyzed the effective implementation of principles, and of two instruments of water resource management from the perspective of farmers’ participation: the integration of water management and rural land use, and public policies for rural areas. To accomplish this, we reviewed documents and literature, and considered conclusions drawn from meetings at the Technical Chamber of Use and Water Conservation in Rural Areas (CT-Rural. We identified a lack of participation by farmers’ representatives in the CT-Rural Chamber and little concern to increase their participation in the management practices. However, the support payments for environmental services projects (PES are stimulating farmers and calling attention to the Cantareira area, in addition to promoting the integration of water resource management and rural land use. However, even though this support acknowledges the importance of the farmers, we emphasize the low priority given by the Piracicaba, Capivari and Jundiaí Watershed Committee to the rural context of the area studied.

  3. Summary of West Virginia Water-Resource Data through September 2008

    Science.gov (United States)

    Evaldi, R.D.; Ward, S.M.; White, J.S.

    2009-01-01

    The West Virginia Water Science Center of the U.S. Geological Survey, in cooperation with State and Federal agencies, obtains a large amount of data pertaining to the water resources of West Virginia each water year. A water year is the 12-month period beginning October 1 and ending September 30. These data, accumulated during many years, constitute a valuable database for developing an improved understanding of the water resources of the State. These data are maintained in the National Water Information System (NWIS) and are available through its World-Wide Web interface, NWISWeb, at http://waterdata.usgs.gov/wv/nwis. Data can be retrieved in a variety of common formats, and a tutorial is available at http://nwis.waterdata.usgs.gov/tutorial. Location information for all continuous-record gaging stations operated in West Virginia through September 2008 is provided in this report, as well as statistical summaries of the available daily records. This report can serve as an index to the daily records data available on the World-Wide Web. Hydrologic data for nearly all of the gaging stations identified in this report are also available in the annual publication series titled Water-Resources Data - West Virginia. This series of annual reports for West Virginia began with the 1961 water year with a report that contained only data relating to quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to include data on quantities of surface water, quality of surface water and groundwater, and groundwater levels. Prior to the introduction of the Water-Resources Data - West Virginia series and for several water years concurrent with it, water-resources data for West Virginia were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage through September

  4. Measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Especially, when the phases of acoustic sources were different, various acoustic wave effects were checked. (author)

  5. Simulation Games: The Future of Water Resources Education and Management?

    Science.gov (United States)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Scientists rely on models of the water cycle to describe and predict problems of water scarcity in a changing climate, and to suggest adaptation strategies for securing future water needs. Yet these models are too often complicated for managers, the general public and for students to understand. Simpler modelling environments will help with finding solutions by engaging a broader segment of the population. Such environments will enable education at the earliest stages and collective action. I propose that simulation games can be an effective communication platform between scientists and 'non-experts' and that such games will shed light on problems of pollution and overuse of water resources. In the same way as pilots use flight simulators to become proficient at flying aircraft, simulation games—if underpinned by good science—can be used to educate the public, students and managers about how to best manage our water resources. I aim to motivate young scientists to think about using games to advance water education and management.

  6. The Wealth of Water: The Value of an Essential Resource

    Science.gov (United States)

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  7. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open......-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost-effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current...... and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir...

  8. Water Resources by 2100 in Mountains with Declining Glaciers

    Science.gov (United States)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  9. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  10. A Method of Evaluating Water Resource Assets and Liabilities: A Case Study of Jinan City, Shandong Province

    Directory of Open Access Journals (Sweden)

    Yuheng Yang

    2017-08-01

    Full Text Available The traditional concepts of water resource development and utilization have caused serious hydrological and environmental issues in some regions. In addition, policy issues in China have led to a severe water crisis. The quantitative accounting of water resources is a theoretical approach to solving these problems. In this paper, 13 indicators were selected from four classes, including resources, the environment, society, and efficiency, and a case study of Jinan, Shandong Province, was performed using a set pair analysis model to calculate the water resource assets from 2011–2015. In previous methods of water resource accounting, the water quality was not considered; therefore, the loss coefficient of water resource assets was proposed to improve the reliability of accounting. According to the relationships among the unit price of water, water quantity, and water quality, physical and quantitative accounting methods were used to create water balance sheets from 2011–2015. The calculation results showed that the physical change in water resource assets in Jinan City was −30 million m 3 , and water resource assets initially increased and then decreased. In 2011, 2012, 2013, 2014, and 2015, water resource assets totalled 36.5 million USD, 45.9 million USD, 66.7 million USD, 35.5 million USD, and 37.5 million USD, respectively (at 6.4588, 6.3125, 6.1932, 6.2166, 6.2284 USRMB, respectively. This initial accounting provides quantitative and physical support for the improved management of water resources.

  11. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    Science.gov (United States)

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Hyphenated hydrology: Interdisciplinary evolution of water resource science

    Science.gov (United States)

    McCurley, Kathryn L.; Jawitz, James W.

    2017-04-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-twentieth century. Modern water resource related questions have forced adaptation from exclusively physical or engineering science viewpoints toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution were foreseen by prominent expert hydrologists. However, their narrative descriptions have lacked substantial quantification. This study addressed that gap by measuring the prevalence of and analyzing the relationships between the terms most frequently used by hydrologists to define and describe their research. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerged. Our word frequency and term cooccurrence network results revealed the dynamic timing of the lateral movement of hydrology across multiple disciplines as well as the deepening of scientific discourse with respect to traditional hydrologic questions. The conversation among water resource scientists surrounding the hydrologic subdisciplines of catchment-hydrology, hydro-meteorology, socio-hydrology, hydro-climatology, and eco-hydrology gained statistically significant momentum in the analyzed time period, while that of hydro-geology and contaminant-hydrology experienced periods of increase followed by significant decline. This study concludes that formerly exotic disciplines can potentially modify hydrology, prompting new insights and inspiring unconventional perspectives on old questions that may have otherwise become obsolete.

  13. Superficial Water Resource at Tempisque River Watershed, Costa Rica: Availability and Requirement Perspective

    Directory of Open Access Journals (Sweden)

    Isabel Guzmán-Arias

    2014-03-01

    Full Text Available This paper describes the status of water resources availability and demand in the upper and middle Tempisque watershed projected up to 2030 and the proposed actions to start a planning process. The resource availability scenarios incorporate the modifications inwater flows due to land use and cli­mate changes; these combined effects increases the problems of water shortages during the dry season. The resource demand scenarios include projections provided by the major users in the watershed, of which very few can envision growth expectations in terms of water consumption. The proposed resource planning process integrates the analysis conducted in this thesis and tries to identify the basic steps to be followed for the pro­per management of the resource in the future.

  14. Use of isotope techniques in water resources inventory planning and development

    International Nuclear Information System (INIS)

    1979-01-01

    The seminar, sponsored jointly by the IAEA, UNESCO, and WHO, was organized by the Isotope Hydrology Section for hydrologists and hydrogeologists from English-speaking African countries who have primary administrative and technical responsibility in planning, implementing, and supervising programmes in the field of water resources in their countries. The aim of the seminar was to discuss and to inform the participants of both the theoretical and applied aspects of isotope techniques in hydrology and their potential use in studies dealing with water resources inventory, planning, and development. A similar regional seminar was organized in 1973 by the IAEA in Mexico City for Latin- American countries. In 1979, such a seminar will be held for French-speaking African countries. The Nairobi seminar was held at the East African Institute for Meteorological Training and Research. It was opened by the Minister for Water Development of the Kenyan Government, Dr. Gikonyo Kiano, who stressed the importance of water development problems in the African region and who appreciated the IAEA/UNESCO/WHO initiative in holding the seminar on isotope techniques in water resources in Nairobi. The programme of seminar lectures and discussions included the following topics. 1 Basic principles of radioisotope techniques and stable isotope ratios in hydrology 2. Tritium and radiocarbon as environmental tracers for dating water bodies 3 Isotope techniques in studying the origin of groundwater, recharge, and flow of groundwater. 4. Isotope techniques for identification of surface and groundwater relationships. 5 Surface water studies including lake dynamics, discharge measurements and sediment transport 6. Isotope methods in aquifer characteristics. 7 Isotope methods in geothermal resources prospecting. 8. Isotope techniques in hydraulics engineering. Each topic was illustrated with detailed descriptions of case studies During discussions, participants presented important problems (of water

  15. Emergy Evaluation of the Natural Value of Water Resources in Chinese Rivers

    Science.gov (United States)

    Chen, Dan; Chen, Jing; Luo, Zhaohui; Lv, Zhuwu

    2009-08-01

    Emergy theory and method were used to evaluate the economy of China and the contributions of water resources in Chinese rivers to the real wealth of the Chinese economy. The water cycle and energy conversion were reviewed, and an emergy method for evaluating the natural value of water resources in a river watershed was developed. The indices for China calculated from the emergy evaluation were close to those of developing countries. Despite a small surplus in its balance of payments, China had a net emergy loss from its trade in 2002. The efficiency of Chinese natural resource use was still not high and did not match its economic growth rate. Furthermore, the Chinese economy placed a stress on its ecological environment and natural resources. Several indices of Chinese rivers from the emergy evaluation were close to those of average global river water. The main average indices of Chinese rivers were transformity (4.17 × 104 sej/J), emergy per volume (2.05 × 1011 sej/m3), and emdollar per volume (0.06 /m3). The total value of all the rivers’ water made up 13.0% of the GDP of China in 2002, and that of water consumption accounted for 2.1%. The value of the water resources in the Haihe-luanhe River (11.39 × 104 sej/J) was the highest, followed by the Yellow River (10.27 × 104 sej/J), while the rivers in Southwest China had the lowest values (2.92 × 104 sej/J).

  16. The modeling of response indicators of integrated water resources ...

    African Journals Online (AJOL)

    The results indicate that the feed forward multilayer perceptron models with back propagation are useful tools to define and prioritize the most effective response variable on water resources mobilization to intervene and solve water problems. The model evaluation shows that the correlation coefficients are more than 96% ...

  17. From safe yield to sustainable development of water resources - The Kansas experience

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    This paper presents a synthesis of water sustainability issues from the hydrologic perspective. It shows that safe yield is a flawed concept and that sustainability is an idea that is broadly used but perhaps not well understood. In general, the sustainable yield of an aquifer must be considerably less than recharge if adequate amounts of water are to be available to sustain both the quantity and quality of streams, springs, wetlands, and ground-water-dependent ecosystems. To ensure sustainability, it is imperative that water limits be established based on hydrologic principles of mass balance. To establish water-use policies and planning horizons, the transition curves of aquifer systems from ground-water storage depletion to induced recharge of surface water need to be developed. Present-day numerical models are capable of generating such transition curves. Several idealized examples of aquifer systems show how this could be done. Because of the complexity of natural systems and the uncertainties in characterizing them, the current philosophy underlying sustainable management of water resources is based on the interconnected systems approach and on adaptive management. Examples of water-resources management from Kansas illustrate some of these concepts in a real-world setting. Some of the hallmarks of Kansas water management are the formation of local ground-water management districts, the adoption of minimum streamflow standards, the use of modified safe-yield policies in some districts, the implementation of integrated resource planning by the City of Wichita, and the subbasin water-resources management program in potential problem areas. These are all appropriate steps toward sustainable development. The Kansas examples show that local decision-making is the best way to fully account for local variability in water management. However, it is imperative that public education and involvement be encouraged, so that system complexities and constraints are better

  18. Oil pollution and the significant biological resources of Puget Sound : final report field survey from 16 July 1974 to 01 September 1976 (NODC Accession 7601556)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Biological and chemical data were collected using sediment sampler and other instruments in the PUGET Sound, which is in the Northwest coastal waters of Washington....

  19. Integrated water resources management : A case study in the Hehei river basin, China

    Science.gov (United States)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  20. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States

    Science.gov (United States)

    2008-06-01

    This report provides an assessment of the effects of climate change on U.S. agriculture, land resources, water resources, and biodiversity. It is one of a series of 21 Synthesis and Assessment Products (SAP) that are being produced under the auspices...

  1. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  2. What the Toadfish Ear Tells the Toadfish Brain About Sound.

    Science.gov (United States)

    Edds-Walton, Peggy L

    2016-01-01

    Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.

  3. Water Resources Development in Minnesota 1991

    Science.gov (United States)

    1991-01-01

    Mississippi River Comprehensive Elk River, Mississippi River ..................... 43 Master Plan .............................. 20 Epr Roau, Mississippi...Mississippi River has in- water resource projects, and receiving more than 600 million creased steadily since the advent of the 9-foot channel in 1935 ...and increased from about Minneapolis, Completed Project - 11 0,(XX) tons in 1935 to a peak of 3,177,355 tons in 1975. Traffic Commercial Navigation

  4. Application of Isotope Techniques in the Assessment of Groundwater Resource in Water Resources Region 10, Philippines

    International Nuclear Information System (INIS)

    Racadio, Charles Darwin T.; Mendoza, Norman DS.; Castañeda, Soledad S.; Abaño, Susan P.; Rongavilla, Luis S.; Castro, Joey

    2015-01-01

    Groundwater has been the primary source of drinking water of about 50% of the people in the Philippines and the numbers continue to rise. However, data and information on groundwater resources are generally spasmodic or sparse in the country. A specific remedy to address this gap is the use of isotope hydrological techniques. A pilot project utilizing this technique was done in Water Resources Region X with the aim of demonstrating the effectiveness and efficiency of these approach in groundwater resources assessment. When optimized, the technique will be replicated in other areas of the country. Groundwater samples from springs deep wells hand pumps and dug wells and river water were collected within the study area from September 2012 to June 2014. Monthly integrated precipitation samples were also collected at different points within the study area from October 2012 to March 2015. Samples were analyzed for stable isotope (δ”2H and δ”1”8O) using Laser Water Isotope Analyzer and tritium for groundwater dating. Results showed that aquifers in the study area are recharged by infiltrated rain during the heavy rainfall moths (May to November for Cagayan-Tagaloan Basin, and December to April for Agusan Basin). Water in Agusan Basin is isotopically enriched compared with the water in Cagayan-Tagaloan Basin. There appears to be interaction between shallow unconfined aquifer and deep semi-confined aquifer in Cagayan de Oro City. Shallow aquifers appear to be recharged by local precipitation. Groundwater in the study area is of Ca-Mg-HCO 3 type, which is characteristic of dynamic water with short residence time. Tritium-helium aging puts the water at ages between 18 to 72 years. Recharged rates of 422 to 625 mm/year were calculated for Cagayan de Oro City.(author)

  5. Lost water and nitrogen resources due to EU consumer food waste

    Science.gov (United States)

    Vanham, D.; Bouraoui, F.; Leip, A.; Grizzetti, B.; Bidoglio, G.

    2015-08-01

    The European Parliament recently called for urgent measures to halve food waste in the EU, where consumers are responsible for a major part of total waste along the food supply chain. Due to a lack of data on national food waste statistics, uncertainty in (consumer) waste quantities (and the resulting associated quantities of natural resources) is very high, but has never been previously assessed in studies for the EU. Here we quantify: (1) EU consumer food waste, and (2) associated natural resources required for its production, in term of water and nitrogen, as well as estimating the uncertainty of these values. Total EU consumer food waste averages 123 (min 55-max 190) kg/capita annually (kg/cap/yr), i.e. 16% (min 7-max 24%) of all food reaching consumers. Almost 80%, i.e. 97 (min 45-max 153) kg/cap/yr is avoidable food waste, which is edible food not consumed. We have calculated the water and nitrogen (N) resources associated with avoidable food waste. The associated blue water footprint (WF) (the consumption of surface and groundwater resources) averages 27 litre per capita per day (min 13-max 40 l/cap/d), which slightly exceeds the total blue consumptive EU municipal water use. The associated green WF (consumptive rainwater use) is 294 (min 127-max 449) l/cap/d, equivalent to the total green consumptive water use for crop production in Spain. The nitrogen (N) contained in avoidable food waste averages 0.68 (min 0.29-max 1.08) kg/cap/yr. The food production N footprint (any remaining N used in the food production process) averages 2.74 (min 1.02-max 4.65) kg/cap/yr, equivalent to the use of mineral fertiliser by the UK and Germany combined. Among all the food product groups wasted, meat accounts for the highest amounts of water and N resources, followed by wasted cereals. The results of this study provide essential insights and information on sustainable consumption and resource efficiency for both EU policies and EU consumers.

  6. Water resources trends in Middle East and North Africa towards 2050

    Directory of Open Access Journals (Sweden)

    P. Droogers

    2012-09-01

    Full Text Available Changes in water resources availability can be expected as consequences of climate change, population growth, economic development and environmental considerations. A two-stage modeling approach is used to explore the impact of these changes in the Middle East and North Africa (MENA region. An advanced, physically based, distributed, hydrological model is applied to determine the internal and external renewable water resources for the current situation and under future changes. Subsequently, a water allocation model is used to combine the renewable water resources with sectoral water demands. Results show that total demand in the region will increase to 393 km3 yr−1 in 2050, while total water shortage will grow to 199 km3 yr−1 in 2050 for the average climate change projection, an increase of 157 km3 yr−1. This increase in shortage is the combined impact of an increase in water demand by 50% with a decrease in water supply by 12%. Uncertainty, based on the output of the nine GCMs applied, reveals that expected water shortage ranges from 85 km3 yr−1 to 283 km3 yr−1~in 2050. The analysis shows that 22% of the water shortage can be attributed to climate change and 78% to changes in socio-economic factors.

  7. Sound Probabilistic #SAT with Projection

    Directory of Open Access Journals (Sweden)

    Vladimir Klebanov

    2016-10-01

    Full Text Available We present an improved method for a sound probabilistic estimation of the model count of a boolean formula under projection. The problem solved can be used to encode a variety of quantitative program analyses, such as concerning security of resource consumption. We implement the technique and discuss its application to quantifying information flow in programs.

  8. Using Sound to Modify Fish Behavior at Power-Production and Water-Control Facilities: A Workshop December 12-13, 1995. Phase II: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J. [ed.] [Pacific Northwest National Lab., Richland, WA (United States); Popper, Arthur N. [ed.] [Univ. of Maryland, College Park, MD (United States)

    1997-06-01

    A workshop on ``Use of Sound for Fish Protection at Power-Production and Water-Control Facilities`` was held in Portland, Oregon on December 12--13, 1995. This workshop convened a 22-member panel of international experts from universities, industry, and government to share knowledge, questions, and ideas about using sound for fish guidance. Discussions involved in a broad range of indigenous migratory and resident fish species and fish-protection issues in river systems, with particular focus on the Columbia River Basin. Because the use of sound behavioral barriers for fish is very much in its infancy, the workshop was designed to address the many questions being asked by fishery managers and researchers about the feasibility and potential benefits of using sound to augment physical barriers for fish protection in the Columbia River system.

  9. Reallocation of Water Resources in the Arab Region: An Emerging Challenge in Water Governance

    OpenAIRE

    Kannan Ambalam

    2014-01-01

    Water is an integral part of ecosystems. It is essential to earth’s living creatures and central to maintaining the earth’s ecosystems. In most part of the world, both water quantity andquality problems are becoming more acute, since the limited available water resource are being over-utilized and stressed beyond the sustainability point. The contemporary globalwater crises including inefficient use and lack of equitable distribution are mainly due to the crises of governance. Water governanc...

  10. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  11. Water resources for urban water and food security: the case of megacity Hong Kong

    Science.gov (United States)

    Vanham, Davy; Gawlik, Bernd; Bidoglio, Giovanni

    2017-04-01

    The extent to which urban dwellers consume resources is key on the path to reaching global SDGs. One of these resources is water, which is consumed in a direct and indirect way by city inhabitants, to achieve water and food security within city borders. In this study, we quantify the water resources required to provide these two essential securities for megacity Hong Kong. During the last years, this city has made large investments to make its urban water supply system more water efficient and sustainable. As such, its municipal water abstraction - often defined as direct water use - has decreased from 355 litres per capita per day (l/cap/d) in 2005 to 326 l/cap/d in 2013. Due to its political history, Hong Kong is unique in the world in data availability on urban food consumption. It is therefore the ideal case study to show typical urban food consumption behaviour and its related indirect water use. The current average diet in Hong Kong is very different to the average Chinese diet. It is characterised by a high intake of water intensive products like animal products and sugar, leading to a food related indirect water use or water footprint (WFcons) of 4727 l/cap/d. According to recommendations from the Chinese Nutrition Society for a healthy diet, the intake of some product groups should be increased (vegetables and fruit) and of other product groups reduced (sugar, crop oils, meat and animal fats). This would result in a reduction of the WFcons of 40% to 2852 l/cap/d. Especially the reduced intake of meat (including offals) from currently 126 kg per capita per year (kg/cap/yr) to the recommended value 27 kg/cap/yr would result in a substantial WFcons reduction. Meat consumption in Hong Kong is extremely high. A pesco-vegetarian diet would result in a reduction of 49% (to 2398 l/cap/d) and a vegetarian diet in a 53% (to 2224 l/cap/d) reduction. Hong Kong citizens can thus save a lot of water by looking at their indirect water use, through a change in their diet

  12. Issues of governance in water resource management and spatial planning

    NARCIS (Netherlands)

    Rocco de Campos Pereira, R.C.; Schweitzer, R.

    2013-01-01

    This paper describes governance arrangements in regional spatial planning and water resources management at the regional level from a normative point of view. It discusses the need to integrate spatial planning and resources management in order to deliver socially sustainable integral territorial

  13. U.S. Geological Survey water-resources programs in New Mexico, FY 2015

    Science.gov (United States)

    Mau, David P.

    2015-01-01

    The U.S. Geological Survey (USGS) has collected hydrologic information in New Mexico since 1889, beginning with the first USGS streamflow-gaging station in the Nation, located on the Rio Grande near Embudo, New Mexico. Water-resources information provided by the USGS is used by many government agencies for issuing flood warnings to protect lives and reduce property damage,managing water rights and interstate water use, protecting water quality and regulating pollution discharges, designing highways and bridges, planning, designing, and operating reservoirs and watersupply facilities, monitoring the availability of groundwater resources and forecasting aquifer response to human and environmental stressors, and prioritizing areas where emergency erosion mitigation or other protective measures may be necessary after a wildfire. For more than 100 years, the Cooperative Water Program has been a highly successful cost-sharing partnership between the USGS and water-resources agencies at the State, local, and tribal levels. It would be difficult to effectively accomplish the mission of the USGS without the contributions of the Cooperative Water Program.

  14. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  15. Water Resources Management in the Lerma-Chapala Basin, Mexico: A Case Study

    Science.gov (United States)

    Villamagna, Amy M.; Murphy, Brian R.

    2008-01-01

    Water resources have become an increasingly important topic of discussion in natural resources and environmental management courses. To address the need for more critical thinking in the classroom and to provide an active learning experience for undergraduate students, we present a case study based on water competition and management in the…

  16. Conservation of Water and Related Land Resources

    Science.gov (United States)

    Caldwell, Lynton K.

    1984-04-01

    The author was quite clear about the purpose of this book and clearly achieved his intent. In his preface, the author states, “The purpose of this book is to acquaint the reader with a broad understanding of the topics relevant to the management of the nation's water and related land resources.” The book is a product of the author's 20 years of work as a teacher, consultant, researcher, and student of watershed management and hydrology and has served as a text for a course entitled Soil and Water Conservation, which the author has taught at the State University of New York, College of Environmental Science and Forestry at Syracuse, New York. But it was also written with the intent to be of use “to informal students of water and land related resources on the national level as well.” The objectives of Black's course at Syracuse and its larger purpose define the scope of the book which, again in the author's words, have been “(1) to acquaint students with principles of soil and water conservation; (2) to stimulate an appreciation for an integrated, comprehensive approach to land management; (3) to illustrate the influence of institutional, economic, and cultural forces on the practice of soil and water conservation; and (4) to provide information, methods, and techniques by which soil and water conservation measures are applied to land, as well as the basis for predicting and evaluating results.” The book is written in straightforward nontechnical language and provides the reader with a set of references, a table of cases, a list of abbreviations, and an adequate index. It impresses this reviewer as a very well edited piece of work.

  17. From Premise to Practice: a Critical Assessment of Integrated Water Resources Management and Adaptive Management Approaches in the Water Sector

    OpenAIRE

    Wietske Medema; Brian S. McIntosh; Paul J. Jeffrey

    2008-01-01

    The complexity of natural resource use processes and dynamics is now well accepted and described in theories ranging across the sciences from ecology to economics. Based upon these theories, management frameworks have been developed within the research community to cope with complexity and improve natural resource management outcomes. Two notable frameworks, Integrated Water Resource Management (IWRM) and Adaptive Management (AM) have been developed within the domain of water resource managem...

  18. Selected techniques in water resources investigations, 1965

    Science.gov (United States)

    Mesnier, Glennon N.; Chase, Edith B.

    1966-01-01

    Increasing world activity in water-resources development has created an interest in techniques for conducting investigations in the field. In the United States, the Geological Survey has the responsibility for extensive and intensive hydrologic studies, and the Survey places considerable emphasis on discovering better ways to carry out its responsibility. For many years, the dominant interest in field techniques has been "in house," but the emerging world interest has led to a need for published accounts of this progress. In 1963 the Geological Survey published "Selected Techniques in Water Resources Investigations" (Water-Supply Paper 1669-Z) as part of the series "Contributions to the Hydrology of the United States."The report was so favorably received that successive volumes are planned, of which this is the first. The present report contains 25 papers that represent new ideas being tested or applied in the hydrologic field program of the Geological Survey. These ideas range from a proposed system for monitoring fluvial sediment to how to construct stream-gaging wells from steel oil drums. The original papers have been revised and edited by the compilers, but the ideas presented are those of the authors. The general description of the bubble gage on page 2 has been given by the compilers as supplementary information.

  19. Factors Influencing Water Resource Governance among Pastoral Community at Mkondoa Sub-Catchment Morogoro Region Tanzania

    Directory of Open Access Journals (Sweden)

    Yeremia Yohana Masifia

    2017-06-01

    Full Text Available The importance of proper Water Resource Management with greater emphasis on ensuring sustainability quality accountability and community participation has become imminent as water resources increasingly become scarce Harvey et al 2007. Water resources management in Tanzania is governed under the National Water Policy of 2002 and Water Resources Management Act No.11 of year 2009. Other related legislations include Environmental Management Act No. 20 of year 2004 Forest Policy and Forest Act No. 14 of year 2002 and Water Supply Act No.12 of year 2009 among others. However the mechanisms processes and institutions through which all stakeholders articulate their priorities exercise their legal rights meet their obligations and mediate their differences is still missing. This study employed descriptive exploratory research design. Data collection was done by the use of both structured and semi structured interview to respondents who were both purpose and simple randomly selected observation and focus group discussion. Review of reports from Districts and Basin offices and internet to access relevant secondary information was done. Results show that WUAs LGAs and WSSAs lack relevant understanding capacities management and law enforcement as result water management generally remains non participatory inefficient and expensive and increased water user conflicts in Kisangata and Ilonga WUAs of Mkondoa sub catchment Morogoro region. The study propose participatory approaches best practices on water resource management at local level for embracement of Community- Based Water Resource Management as the only option of managing sub catchment water resources and reduce water related conflicts among water users. Awareness creation on policy and establishment of alternative economic activities like horticulture bee keeping and poultry is significant to give relief to land.

  20. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    Science.gov (United States)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  1. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    Zhao, T h; Yin, Z; Song, Y Z

    2012-01-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  2. Natural Resources Management on Corps of Engineers Water Resources Development Projects: Practices, Challenges, and Perspectives on the Future

    National Research Council Canada - National Science Library

    Kasual, Richard

    1998-01-01

    Natural resources management on U.S. Army Corps of Engineers water resources development projects was documented from the responses of management personnel to a detailed questionnaire mailed to a stratified random sample of projects...

  3. The U.S. Geological Survey's water resources program in New York

    Science.gov (United States)

    Wiltshire, Denise A.

    1983-01-01

    The U.S. Geological Survey performs hydrologic investigations throughout the United States to appraise the Nation's water resources. The Geological Survey began its water-resources investigations in New York in 1895. To meet the objectives of assessing New York's water resources, the Geological Survey (1) monitors the quantity and quality of surface and ground water, (2) conducts investigations of the occurrence, availability, and chemical quality of water in specific areas of the State, (3) develops methods and techniques of data-collection and interpretation, (4) provides scientific guidance to the research community, to Federal, State, and local governments, and to the public, and (5) disseminates data and results of research through reports, maps, news releases, conferences, and workshops. Many of the joint hydrologic investigations are performed by the Geological Survey in cooperation with State, county, and nonprofit organizations. The data collection network in New York includes nearly 200 gaging stations and 250 observation wells; chemical quality of water is measured at 260 sites. Data collected at these sites are published annually and are filed in the WATSTORE computer system. Some of the interpretive studies performed by the Geological Survey in New York include (1) determining the suitability of ground-water reservoirs for public-water supply in urban areas, (2) assessing geohydrologic impacts of leachate from hazardous waste sites on stream and ground-water quality, (3) evaluating the effects of precipitation quality and basin characteristics on streams and lakes, and (4) developing digital models of the hydrology of aquifers to simulate ground-water flow and the interaction between ground water and streams.

  4. Construction of an evaluation index system of water resources bearing capacity: An empirical study in Xi’an, China

    Science.gov (United States)

    Qu, X. E.; Zhang, L. L.

    2017-08-01

    In this paper, a comprehensive evaluation of the water resources bearing capacity of Xi’an is performed. By constructing a comprehensive evaluation index system of the water resources bearing capacity that included water resources, economy, society, and ecological environment, we empirically studied the dynamic change and regional differences of the water resources bearing capacities of Xi’an districts through the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution). Results show that the water resources bearing capacity of Xi’an significantly increased over time, and the contributions of the subsystems from high to low are as follows: water resources subsystem, social subsystem, ecological subsystem, and economic subsystem. Furthermore, there are large differences between the water resources bearing capacities of the different districts in Xi’an. The water resources bearing capacities from high to low are urban areas, Huxian, Zhouzhi, Gaoling, and Lantian. Overall, the water resources bearing capacity of Xi’an is still at a the lower level, which is highly related to the scarcity of water resources, population pressure, insufficient water saving consciousness, irrational industrial structure, low water-use efficiency, and so on.

  5. Water resource quality policy: the approach adopted by the Department of Water Affairs and Forestry under the Water Law principles

    CSIR Research Space (South Africa)

    Harris, J

    1999-01-01

    Full Text Available . More discussion in this paper is, therefore, centred on ecological integrity than on individual water users under the assumption that the resource will only be able to provide for long term water uses if ecological integrity is assured. A water Reserve...

  6. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  7. Mining influence on underground water resources in arid and semiarid regions

    Science.gov (United States)

    Luo, A. K.; Hou, Y.; Hu, X. Y.

    2018-02-01

    Coordinated mining of coal and water resources in arid and semiarid regions has traditionally become a focus issue. The research takes Energy and Chemical Base in Northern Shaanxi as an example, and conducts statistical analysis on coal yield and drainage volume from several large-scale mines in the mining area. Meanwhile, research determines average water volume per ton coal, and calculates four typical years’ drainage volume in different mining intensity. Then during mining drainage, with the combination of precipitation observation data in recent two decades and water level data from observation well, the calculation of groundwater table, precipitation infiltration recharge, and evaporation capacity are performed. Moreover, the research analyzes the transforming relationship between surface water, mine water, and groundwater. The result shows that the main reason for reduction of water resources quantity and transforming relationship between surface water, groundwater, and mine water is massive mine drainage, which is caused by large-scale coal mining in the research area.

  8. Multiunit water resource systems management by decomposition, optimization and emulated evolution : a case study of seven water supply reservoirs in Tunisia

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water

  9. Ultrathin metasurface with high absorptance for waterborne sound

    KAUST Repository

    Mei, Jun

    2018-01-12

    We present a design for an acoustic metasurface which can efficiently absorb low-frequency sound energy in water. The metasurface has a simple structure and consists of only two common materials: i.e., water and silicone rubber. The optimized material and geometrical parameters of the designed metasurface are determined by an analytic formula in conjunction with an iterative process based on the retrieval method. Although the metasurface is as thin as 0.15 of the wavelength, it can absorb 99.7% of the normally incident sound wave energy. Furthermore, the metasurface maintains a substantially high absorptance over a relatively broad bandwidth, and also works well for oblique incidence with an incident angle of up to 50°. Potential applications in the field of underwater sound isolation are expected.

  10. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Automatic Identification System Shipborne Equipment-Prince William Sound. 164.43 Section 164.43 Navigation and Navigable Waters COAST GUARD... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004, each...

  11. 33 CFR 165.151 - Safety Zones; Long Island Sound annual fireworks displays.

    Science.gov (United States)

    2010-07-01

    ... annual fireworks displays. 165.151 Section 165.151 Navigation and Navigable Waters COAST GUARD... § 165.151 Safety Zones; Long Island Sound annual fireworks displays. (a) Safety Zones. The following...) Indian Harbor Yacht Club Fireworks Safety Zone. All waters of Long Island Sound off Greenwich CT, within...

  12. Regulation of water resources for sustaining global future socioeconomic development

    Science.gov (United States)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  13. A review of inexact optimization modeling and its application to integrated water resources management

    Science.gov (United States)

    Wang, Ran; Li, Yin; Tan, Qian

    2015-03-01

    Water is crucial in supporting people's daily life and the continual quest for socio-economic development. It is also a fundamental resource for ecosystems. Due to the associated complexities and uncertainties, as well as intensive competition over limited water resources between human beings and ecosystems, decision makers are facing increased pressure to respond effectively to various water-related issues and conflicts from an integrated point of view. This quandary requires a focused effort to resolve a wide range of issues related to water resources, as well as the associated economic and environmental implications. Effective systems analysis approaches under uncertainty that successfully address interactions, complexities, uncertainties, and changing conditions associated with water resources, human activities, and ecological conditions are desired, which requires a systematic investigation of the previous studies in relevant areas. Systems analysis and optimization modeling for integrated water resources management under uncertainty is thus comprehensively reviewed in this paper. A number of related methodologies and applications related to stochastic, fuzzy, and interval mathematical optimization modeling are examined. Then, their applications to integrated water resources management are presented. Perspectives of effective management schemes are investigated, demonstrating many demanding areas for enhanced research efforts, which include issues of data availability and reliability, concerns over uncertainty, necessity of post-modeling analysis, and the usefulness of the development of simulation techniques.

  14. Exploring Water Resources as a Study Abroad Experience in Northern India

    Science.gov (United States)

    Vulava, V. M.; Callahan, T. J.

    2013-12-01

    Water and environmental resources are of high interest for students at the College of Charleston. These issues are covered in varying levels of detail in the Geology Department in introductory to advanced courses, some of which include field and laboratory components. While courses stress the importance of understanding global water resource issues, students are rarely given hands-on exposure beyond local problems. To address this, we designed a course that explored water resource issues along the entire length of the Ganges River from headwaters to the mouth, a region in which water is seen as a critical economic, environmental, and cultural resource. The 2500-km long Ganges River in northern India is stressed due to large demand and cyclical, yet unpredictable, supply. This region has a population of over 700 million who speak different languages, have diverse cultures, and varied states of development, economic access, and planning, and diverse geologic and ecological settings. Poor river management, inconsistent precipitation during monsoons likely affected by climate change and pollution from insufficient waste management practices and a burgeoning population has resulted in additional stress on the river and its ecosystems. A three-week travel-intensive study abroad course covered three important reaches of the river in the headwaters (Himalayan glaciers, steep mountain landscapes, and large hydroelectric dams in Uttarakhand state), the plains (industrial heartland and large population centers in Uttar Pradesh state), and the mouth (coastal development, Sunderbans mangrove forest, and coastal hazards near Bay of Bengal in West Bengal state). The course was timed to coincide with the pre-monsoon summer season to show students the importance of the monsoon season to this region. The course had two modules: (1) water resource and hydrology principles that delve into specific issues, including impacts of river management for economic development and associated

  15. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  16. Optimization of Water Resources and Agricultural Activities for Economic Benefit in Colorado

    Science.gov (United States)

    LIM, J.; Lall, U.

    2017-12-01

    The limited water resources available for irrigation are a key constraint for the important agricultural sector of Colorado's economy. As climate change and groundwater depletion reshape these resources, it is essential to understand the economic potential of water resources under different agricultural production practices. This study uses a linear programming optimization at the county spatial scale and annual temporal scales to study the optimal allocation of water withdrawal and crop choices. The model, AWASH, reflects streamflow constraints between different extraction points, six field crops, and a distinct irrigation decision for maize and wheat. The optimized decision variables, under different environmental, social, economic, and physical constraints, provide long-term solutions for ground and surface water distribution and for land use decisions so that the state can generate the maximum net revenue. Colorado, one of the largest agricultural producers, is tested as a case study and the sensitivity on water price and on climate variability is explored.

  17. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    1970-01-01

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  18. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    Science.gov (United States)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss

  19. Planning for Regional Water Resources in Northwest China Using a Dynamic Simulation Model

    Science.gov (United States)

    Chen, C.; Kalra, A.; Ahmad, S.

    2014-12-01

    Problem of water scarcity is prominent in northwest China due to its typical desert climate. Exceedence of sustainable yield of groundwater resources has resulted in groundwater depletion, which has raised a series of issues such as drying wells, increasing pumping costs and environmental damage. With a rapid agricultural and economic development, population increase has added extra stress on available water resources by increasing municipal, agricultural and industrial demands. This necessitates efficient water resources management strategies with better understanding of the causes of water stress and options for sustainable development of economy and management of environment. This study focuses on simulating the water supply and demand, under the influence of changing climate, for Shanshan County, located in northwest of China. A dynamic simulation model is developed using the modeling tool Stella for monthly water balance for the period ranging from 2000-2030. Different future water demand and supply scenarios are developed to represent: (1) base scenario- with current practices; (2) change of the primary water source; (3) improvement of irrigation efficiency; (4) reduction of irrigation area; and (5) reduction of industrial water demand. The results indicate that besides growing demand, the low water use efficiency and low level of water reuse are the primary concerns for water scarcity. Groundwater recharge and abstraction could be balanced by 2030, by reducing industrial demand by 50% and using high efficiency irrigation for agriculture. The model provided a better understanding of the effect of different policies and can help in identifying water resources management strategies.

  20. Effect of Population Growths on Water Resources in Dubai Emirate, United Arab Emirates

    Science.gov (United States)

    Al-Nuaimi, Hind S.; Murad, Ahmed A.

    The Emirate of Dubai is situated to the north of the United Arab Emirates on the Arabian Gulf. Due to its political stability and strong economy, people are continuing to immigrate to Dubai and this will enhance the stress on water resources. Therefore, demands for water will increase significantly in Dubai. The scarcity of water resources in Dubai is evident. The total production of water in the Dubai has increased to 61,478 million gallons in 2004. About 58,808 million gallons has been produced from the desalination plants in 2004. The production of freshwater from the main aquifers is about 2763 and 2655 million gallons for the years 2003 and 2004, respectively. The reduction of groundwater in 2004 may be ascribed to the low amount of rainfall and to the decreasing capacity of the aquifers. Treated wastewater is another source for water whose quantity was increased from 72 m3 to about 107 m3 in 2000 and 2004, respectively. The increase in water production in Dubai to meet the demand corresponds to population growth and this might be attributed to the political stability and strong economy. Moreover, major problems related to the water resources have appeared and affected the availability of freshwater in Dubai. These problems include: lowering water level and groundwater deterioration. This paper is aimed to assess the impacts of population growth on water resources in Dubai.