WorldWideScience

Sample records for sound velocity probe

  1. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  2. Sound velocities of skiagite-iron-majorite solid solution to 56 GPa probed by nuclear inelastic scattering

    Science.gov (United States)

    Vasiukov, D. M.; Ismailova, L.; Kupenko, I.; Cerantola, V.; Sinmyo, R.; Glazyrin, K.; McCammon, C.; Chumakov, A. I.; Dubrovinsky, L.; Dubrovinskaia, N.

    2018-05-01

    High-pressure experimental data on sound velocities of garnets are used for interpretation of seismological data related to the Earth's upper mantle and the mantle transition zone. We have carried out a Nuclear Inelastic Scattering study of iron-silicate garnet with skiagite (77 mol%)-iron-majorite composition in a diamond anvil cell up to 56 GPa at room temperature. The determined sound velocities are considerably lower than sound velocities of a number of silicate garnet end-members, such as grossular, pyrope, Mg-majorite, andradite, and almandine. The obtained sound velocities have the following pressure dependencies: V p [km/s] = 7.43(9) + 0.039(4) × P [GPa] and V s [km/s] = 3.56(12) + 0.012(6) × P [GPa]. We estimated sound velocities of pure skiagite and khoharite, and conclude that the presence of the iron-majorite component in skiagite strongly decreases V s . We analysed the influence of Fe3+ on sound velocities of garnet solid solution relevant to the mantle transition zone and consider that it may reduce sound velocities up to 1% relative to compositions with only Fe2+ in the cubic site.

  3. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  4. Temperature dependence of sound velocity in yttrium ferrite

    International Nuclear Information System (INIS)

    L'vov, V.A.

    1979-01-01

    The effect of the phonon-magnon and phonon-phonon interoctions on the temperature dependence of the longitudinal sound velocity in yttrium ferrite is considered. It has been shown that at low temperatures four-particle phonon-magnon processes produce the basic contribution to renormalization of the sound velocity. At higher temperatures the temperature dependence of the sound velocity is mainly defined by phonon-phonon processes

  5. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  6. A note on measurement of sound pressure with intensity probes

    DEFF Research Database (Denmark)

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  7. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  8. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  9. Contamination-free sounding rocket Langmuir probe

    Science.gov (United States)

    Amatucci, W. E.; Schuck, P. W.; Walker, D. N.; Kintner, P. M.; Powell, S.; Holback, B.; Leonhardt, D.

    2001-04-01

    A technique for removing surface contaminants from a sounding rocket spherical Langmuir probe is presented. Contamination layers present on probe surfaces can skew the collected data, resulting in the incorrect determination of plasma parameters. Despite following the usual probe cleaning techniques that are used prior to a launch, the probe surface can become coated with layers of adsorbed neutral gas in less than a second when exposed to atmosphere. The laboratory tests reported here show that by heating the probe from the interior using a small halogen lamp, adsorbed neutral particles can be removed from the probe surface, allowing accurate plasma parameter measurements to be made.

  10. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  11. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  12. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  13. Second sound velocities in superfluid 3He-4He solutions

    International Nuclear Information System (INIS)

    Dikina, L.S.; Kotenev, G.Ya.; Rudavskij, Eh.Ya.

    1978-01-01

    The velocities of the second sound in the superfluid He 3 -He 4 solutions were measured by the pulse method in the range of temperatures from 1.3 K to Tsub(lambda) and for He 3 concentrations up to 13%.The results obtained supplemented by those available before give the complete description of the concentration and temperature dependences of the second sound velocity in superfluid He 3 -He 4 solutions. The comprehensive comparison of the experimental data on the velocity of the second sound with the theoretical calculations for the superfluid solutions with arbitrary content of He 3 is performed. The good agreement is found between experiment and the theory. The experimental data obtained are used for determination of the potential, which determines the properties of the superfluid solutions

  14. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    International Nuclear Information System (INIS)

    Rout, G C; Panda, S

    2009-01-01

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e g band, an exchange interaction between spins of the itinerant e g band electrons and the core t 2g electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  15. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G C [Condensed Matter Physics Group, PG Department of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S, E-mail: gcr@iopb.res.i [Trident Academy of Technology, F2/A, Chandaka Industrial Estate, Bhubaneswar 751 024 (India)

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e{sub g} band, an exchange interaction between spins of the itinerant e{sub g} band electrons and the core t{sub 2g} electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  16. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 2, the correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Fischer, H.B; Matthes, C.; Beuthan, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  17. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; Part 2, The correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Fischer, H.B.; Mattes, Chr.; Beutha, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  18. Numerical modeling of probe velocity effects for electromagnetic NDE methods

    Science.gov (United States)

    Shin, Y. K.; Lord, W.

    The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.

  19. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, S.K.

    2011-01-01

    Research highlights: → Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. → The longitudinal velocity of sound is studied in the under-doped region. → The velocity of sound exhibits suppression in both the CDW and SDW phases. → Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T c cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  20. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S K [KD Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India)

    2011-02-15

    Research highlights: {yields} Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. {yields} The longitudinal velocity of sound is studied in the under-doped region. {yields} The velocity of sound exhibits suppression in both the CDW and SDW phases. {yields} Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T{sub c} cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  1. Microscopic theory of longitudinal sound velocity in CDW and SDW ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S.K. [KD Science College, Pochilima, Hinjilicut 761 101, Ganjam, Orissa (India)

    2011-02-15

    Research highlights: {yields} Reported the study of the interplay of the CDW and SDW interactions in the high-Tc cuprates. {yields} The longitudinal velocity of sound is studied in the under-doped region. {yields} The velocity of sound exhibits suppression in both the CDW and SDW phases. {yields} Strong electron-phonon interaction is observed in normal phases. - Abstract: We address here the self-consistent calculation of the spin density wave and the charge density wave gap parameters for high-T{sub c} cuprates on the basis of the Hubbard model. In order to describe the experimental observations for the velocity of sound, we consider the phonon coupling to the conduction band in the harmonic approximation and then the expression for the temperature dependent velocity of sound is calculated from the real part of the phonon Green's function. The effects of the electron-phonon coupling, the frequency of the sound wave, the hole doping concentration, the CDW coupling and the SDW coupling parameters on the sound velocity are investigated in the pure CDW phase as well as in the co-existence phase of the CDW and SDW states. The results are discussed to explain the experimental observations.

  2. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    International Nuclear Information System (INIS)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)

  3. Sound field separation with a double layer velocity transducer array (L)

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    of the array. The technique has been examined and compared with direct velocity based reconstruction, as well as with a technique based on the measurement of the sound pressure and particle velocity. The double layer velocity method circumvents some of the drawbacks of the pressure-velocity based...

  4. SOUND VELOCITY and Other Data from USS STUMP DD-978) (NCEI Accession 9400069)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The sound velocity data in this accession were collected from USS STUMP DD-978 by US Navy. The sound velocity in water is analog profiles data that was recorded in...

  5. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    CERN Document Server

    Vacek, V; Lindsay, S

    2000-01-01

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  6. Continuous Sound Velocity Measurements along the Shock Hugoniot Curve of Quartz

    Science.gov (United States)

    Li, Mu; Zhang, Shuai; Zhang, Hongping; Zhang, Gongmu; Wang, Feng; Zhao, Jianheng; Sun, Chengwei; Jeanloz, Raymond

    2018-05-01

    We report continuous measurements of the sound velocity along the principal Hugoniot curve of α quartz between 0.25 and 1.45 TPa, as determined from lateral release waves intersecting the shock front as a function of time in decaying-shock experiments. The measured sound velocities are lower than predicted by prior models, based on the properties of stishovite at densities below ˜7 g /cm3 , but agree with density functional theory molecular dynamics calculations and an empirical wide-regime equation of state presented here. The Grüneisen parameter calculated from the sound velocity decreases from γ ˜1 .3 at 0.25 TPa to 0.66 at 1.45 TPa. In combination with evidence for increased (configurational) specific heat and decreased bulk modulus, the values of γ suggest a high thermal expansion coefficient at ˜0. 25 - 0 .65 TPa , where SiO2 is thought to be a bonded liquid. From our measurements, dissociation of the molecular bonds persists to ˜0. 65 - 1 .0 TPa , consistent with estimates by other methods. At higher densities, the sound velocity is close to predictions from previous models, and the Grüneisen parameter approaches the ideal gas value.

  7. Measurement of the velocity of sound in crystals by pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Willis, B.T.M.; Carlile, C.J.; Ward, R.C.; David, W.I.F.; Johnson, M.W.

    1986-03-01

    The diffraction method of observing elementary excitations in crystals has been applied to the study of one-phonon thermal diffuse scattering from pyrolytic graphite on a high resolution pulsed neutron diffractometer. The variation of the phase velocity of sound as a function of direction in the crystal and efficient method of determining sound velocities in crystals under extreme conditions. (author)

  8. Sound velocity of tantalum under shock compression in the 18–142 GPa range

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng, E-mail: xifeng@caep.cn; Jin, Ke; Cai, Lingcang, E-mail: cai-lingcang@aliyun.com; Geng, Huayun; Tan, Ye; Li, Jun [National Key Laboratory of Shock Waves and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102 Mianyang, Sichuan 621999 (China)

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142 GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  9. Sound velocity and attenuation in single-crystal YBa2Cu3O/sub 7-//sub δ/

    International Nuclear Information System (INIS)

    Shi, X.D.; Yu, R.C.; Wang, Z.Z.; Ong, N.P.; Chaikin, P.M.

    1989-01-01

    We have used a modified vibrating reed technique to measure the temperature dependence of the sound velocity and attenuation for modes corresponding to the Young's modulus and c/sub 14/ shear modulus of single crystals of YBa 2 Cu 3 O/sub 7-//sub δ/. The Young's sound velocity shows a tremendous softening during the superconducting transition: a smeared discontinuity of as high as 190 ppm. Below the transition, the temperature dependences of both sound velocities harden considerably. The discontinuities of the sound velocities and their temperature derivatives at T/sub c/ are related to the specific-heat jump at the superconducting transition

  10. Pressure evolution of the high-frequency sound velocity in liquid water

    International Nuclear Information System (INIS)

    Krisch, M.; Sette, F.; D'Astuto, M.; Lorenzen, M.; Mermet, A.; Monaco, G.; Verbeni, R.; Loubeyre, P.; Le Toullec, R.; Ruocco, G.; Cunsolo, A.

    2002-01-01

    The high-frequency sound velocity v ∞ of liquid water has been determined to densities of 1.37 g/cm 3 by inelastic x-ray scattering. In comparison to the hydrodynamic sound velocity v 0 , the increase of v ∞ with density is substantially less pronounced, indicating that, at high density, the hydrogen-bond network is decreasingly relevant to the physical properties of liquid water. Furthermore, we observe an anomaly in v ∞ at densities around 1.12 g/cm 3 , contrasting the smooth density evolution of v 0

  11. Field Testing of an In-well Point Velocity Probe for the Rapid Characterization of Groundwater Velocity

    Science.gov (United States)

    Osorno, T.; Devlin, J. F.

    2017-12-01

    Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when

  12. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    International Nuclear Information System (INIS)

    Wicks, J.K.; Jackson, J.M.; Sturhahn, W.

    2010-01-01

    The sound velocities of (Mg .16 Fe .84 )O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Moessbauer spectroscopy. We found the sound velocities of (Mg .16 Fe .84 )O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary.

  13. On second and fourth sound in helium II and their application as acoustical probes of superfluid turbulence

    International Nuclear Information System (INIS)

    Goeje, M.P. de.

    1986-01-01

    Second sound, in which the normal and the superfluid fraction move in opposite directions, is very suitable as probe of superfluid turbulence. Owing to viscous effects, the application of second sound is restricted to relatively high frequencies in relatively wide tubes. Up to now no attempts are reported in literature to use fourth sound as a probe in narrow tubes - fourth sound being the sound mode in which only the superfluid fraction takes part. This thesis is divided into two parts. The first part describes the use of second sound as a probe to investigate superfluid turbulence, generated by a heat flow in a relatively wide flow tube. Part two treats an investigation of the damping of a fourth-sound oscillator, as well as the question to which extent fourth sound can be used as a probe of superfluid turbulence in relatively narrow capillaries. In both experiments standing waves have been used, generated in a Helmholtz oscillator. (Auth.)

  14. On-line velocity measurements using phase probes at the SuperHILAC

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-12-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non- destructive velocity measurements independent of the ion being accelerated. The system uses three probes in each line to obtain accurate velocity measurements at all beam energies. Automatic gain control and signal analysis are performed so that the energy/nucleon along with up to three probe signals are displayed on a vector graphics display with a refresh rate better than twice per second. The system uses a sensitive pseudo-correlation technique to pick out the signal from the noise, features simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and is controlled by a touch-screen operator interface. It is accurate to within /+-/0.25% and has provisions for on-line calibration tests. The phase probes thus provide a velocity measurement independent of the mass defect associated with the use of crystal detectors, which can become significant for heavy elements. They are now used as a routine tuning aid to ensure proper bunch structure, and as a beam velocity monitor. 3 refs., 5 figs

  15. Melting along the Hugoniot and solid phase transition for Sn via sound velocity measurements

    Science.gov (United States)

    Song, Ping; Cai, Ling-cang; Tao, Tian-jiong; Yuan, Shuai; Chen, Hong; Huang, Jin; Zhao, Xin-wen; Wang, Xue-jun

    2016-11-01

    It is very important to determine the phase boundaries for materials with complex crystalline phase structures to construct their corresponding multi-phase equation of state. By measuring the sound velocity of Sn with different porosities, different shock-induced melting pressures along the solid-liquid phase boundary could be obtained. The incipient shock-induced melting of porous Sn samples with two different porosities occurred at a pressure of about 49.1 GPa for a porosity of 1.01 and 45.6 GPa for a porosity of 1.02, based on measurements of the sound velocity. The incipient shock-induced melting pressure of solid Sn was revised to 58.1 GPa using supplemental measurements of the sound velocity. Trivially, pores in Sn decreased the shock-induced melting pressure. Based on the measured longitudinal sound velocity data, a refined solid phase transition and the Hugoniot temperature-pressure curve's trend are discussed. No bcc phase transition occurs along the Hugoniot for porous Sn; further investigation is required to understand the implications of this finding.

  16. The sound velocity in an equilibrium hadron gas

    OpenAIRE

    Prorok, Dariusz; Turko, Ludwik

    2001-01-01

    We calculate the velocity of sound in an ideal gas of massive hadrons with non-vanishing baryon number. The gas is in thermal and chemical equilibrium. Also we show that the temperature dependence $T(\\tau) \\cong T_{0} \\cdot ({\\tau_{0} \\over \\tau})^{c_{s}^{2}}$ is approximately valid, when the gas expands longitudinally according to the Bjorken law.

  17. Experiments on second-sound shock waves in superfluid helium

    International Nuclear Information System (INIS)

    Cummings, J.C.; Schmidt, D.W.; Wagner, W.J.

    1978-01-01

    The waveform and velocity of second-sound waves in superfluid helium have been studied experimentally using superconducting, thin-film probes. The second-sound waves were generated with electrical pulses through a resistive film. Variations in pulse power, pulse duration, and bath temperature were examined. As predicted theoretically, the formation of a shock was observed at the leading or trailing edge of the waves depending on bath temperature. Breakdown of the theoretical model was observed for large pulse powers. Accurate data for the acoustic second-sound speed were derived from the measurements of shock-wave velocities and are compared with previous results

  18. Erratum to: Elastic and piezoelectric properties, sound velocity and ...

    Indian Academy of Sciences (India)

    Erratum to: Elastic and piezoelectric properties, sound velocity and Debye temperature of (B3) BBi compound under pressure. S DAOUD1,∗, N BIOUD2 and N LEBGAA2. 1Faculté des Sciences et de la Technologie, Université de Bordj Bou Arreridj, 34000, Algeria. 2Laboratoire d'Optoélectronique & Composants, Université ...

  19. Zero sound velocity in π, ρ mesons at different temperatures

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Tomio, L.; Araujo, C.F. de Jr.

    1994-07-01

    Sharp transitions are perhaps absent in QCD, so that one looks for physical quantities which may reflect the phase change. One such quantity is the sound velocity which was shown in lattice theory to become zero at the transition point for pure glue. We show that even in a simple bag model the sound velocity goes to zero at temperature T=T ν ≠ 0 and that the numerical value of this T ν depends on the nature of the meson. The average thermal energy of mesons go linearly with T near T ν , with much smaller slope for the pion. The T ν - s can be connected with the Boltzmann temperatures obtained from transverse momentum spectrum of these mesons in heavy ion collision at mid-rapidity. It would be interesting to check the presence of different T ν - s in present day finite T lattice theory. (author). 22 refs, 1 fig., 2 tabs

  20. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    International Nuclear Information System (INIS)

    Emuna, M.; Mayo, M.; Makov, G.; Greenberg, Y.; Caspi, E. N.; Yahel, E.; Beuneu, B.

    2014-01-01

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structural origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature

  1. The effect of isotopic mass on the velocity of sound in liquid Li

    International Nuclear Information System (INIS)

    McAlister, S.P.; Crozier, E.D.; Cochran, J.F.

    1976-01-01

    Results are presented for the velocity of ultrasound in liquid 6 Li- 7 Li alloys of composition 4.5, 49.7 and 99.9 at % Li for temperatures up to 700 0 C. At the melting point the ratio of the velocity of sound in 6 Li to that in 7 Li was found within experimental error to equal (M 7 /M 6 )sup(1/2), the result expected for classical liquids which differ only in the isotopic mass M. In the alloy of 49.7 at % 7 Li the sound velocity exceeded by 0.6% the value expected for a thermodynamically ideal alloy. This result is discussed in terms of the theoretical treatment by Parrinello et al, (J. Phys. C.: Solid St. Phys.; 7:2577 (1974)) of collective excitations in binary isotopic fluids. (author)

  2. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  3. Interferometric phase velocity measurements in the auroral electrojet

    International Nuclear Information System (INIS)

    Labelle, J.; Kinter, P.M.; Kelley, M.C.

    1986-01-01

    A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10 s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (deltan/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two deltan/n turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Csub(s)) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range - an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this. (author)

  4. Measurement of two-dimensional bubble velocity by Using tri-fiber-optical Probe

    International Nuclear Information System (INIS)

    Yang Ruichang; Zheng Rongchuan; Zhou Fanling; Liu Ruolei

    2009-01-01

    In this study, an advanced measuring system with a tri-single-fiber-optical-probe has been developed to measure two-dimensional vapor/gas bubble velocity. The use of beam splitting devices instead of beam splitting lens simplifies the optical system, so the system becomes more compact and economic, and more easy to adjust. Corresponding to using triple-optical probe for measuring two-dimensional bubble velocity, a data processing method has been developed, including processing of bubble signals, cancelling of unrelated signals, determining of bubble velocity with cross correlation technique and so on. Using the developed two-dimensional bubble velocity measuring method, the rising velocity of air bubbles in gravitational field was measured. The measured bubble velocities were compared with the empirical correlation available. Deviation was in the range of ±30%. The bubble diameter obtained by data processing is in good accordance with that observed with a synchro-scope and a camera. This shows that the method developed here is reliable.

  5. Estimation of a melting probe's penetration velocity range to reach icy moons' subsurface ocean

    Science.gov (United States)

    Erokhina, Olga; Chumachenko, Eugene

    2014-05-01

    In modern space science one of the actual branches is icy satellites explorations. The main interest is concentrated around Jovian's moons Europa and Ganymede, Saturn's moons Titan and Enceladus that are covered by thick icy layer according to "Voyager1", "Voyager2", "Galileo" and "Cassini" missions. There is a big possibility that under icy shell could be a deep ocean. Also conditions on these satellites allow speculating about possible habitability, and considering these moons from an astrobiological point of view. One of the possible tasks of planned missions is a subsurface study. For this goal it is necessary to design special equipment that could be suitable for planetary application. One of the possible means is to use a melting probe which operates by melting and moves by gravitational force. Such a probe should be relatively small, should not weight too much and should require not too much energy. In terrestrial case such kind of probe has been successfully used for glaciers study. And it is possible to extrapolate the usage of such probe to extraterrestrial application. One of the tasks is to estimate melting probe's penetration velocity. Although there are other unsolved problems such as analyzing how the probe will move in low gravity and low atmospheric pressure; knowing whether hole will be closed or not when probe penetrate thick enough; and considering what order could be a penetration velocity. This study explores two techniques of melting probe's movement. One of them based on elasto-plastic theory and so-called "solid water" theory, and other one takes phase changing into account. These two techniques allow estimating melting probe's velocity range and study whole process. Based on these technique several cases of melting probe movement were considered, melting probe's velocity range estimated, influence of different factors studied and discussed and an easy way to optimize parameters of the melting probe proposed.

  6. Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity

    International Nuclear Information System (INIS)

    Bellomo, N; Mazzarella, G; Salasnich, L

    2014-01-01

    Motivated by the fact that two-component confined fermionic gases in Bardeen–Cooper–Schrieffer–Bose–Einstein condensate (BCS–BEC) crossover can be described through an hydrodynamical approach, we study these systems—both in the cigar-shaped configuration and in the disc-shaped one—by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity. (paper)

  7. Thermodynamic measurement of the sound velocity of a Bose gas across the transition to Bose–Einstein condensation

    Science.gov (United States)

    Fritsch, A. R.; Tavares, P. E. S.; Vivanco, F. A. J.; Telles, G. D.; Bagnato, V. S.; Henn, E. A. L.

    2018-05-01

    We present an alternative method for determining the sound velocity in atomic Bose–Einstein condensates, based on thermodynamic global variables. The total number of trapped atoms was as a function of temperature carefully studied across the phase transition, at constant volume. It allowed us to evaluate the sound velocity resulting in consistent values from the quantum to classical regime, in good agreement with previous results found in literature. We also provide some insight about the dominant sound mode (thermal or superfluid) across a wide temperature range.

  8. Microstructure and sound velocity of Ti-N-O synthetic inclusions in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Gigliotti, M.F.X.; Gilmore, R.S.; Perocchi, L.C.

    1994-01-01

    Nitrogen and oxygen stabilize the alpha phase in titanium. Regions within Ti alloy parts containing high local levels of N and O can stabilize a hard-alpha phase. The ultrasonic properties of titanium-nitrogen-oxygen inclusions within Ti-6Al-4V (Ti64) blocks were measured and related to inclusion chemistry. Sound velocities were measured on Ti-N-O alloy samples that had been prepared by powder metallurgy and ingot-melting techniques. The contributions to sound velocity from oxygen and nitrogen contents were determined. Then, Ti64 blocks were hot isostatic pressing (HIP) bonded to contain inclusions of the Ti-N-O alloys. The signal-to-noise ratios of reflections from uncracked inclusions were found to be an increasing function of inclusion interstitial content and were related to changes in sound velocity with inclusion chemistry. Measurements were made of the reflectance of titanium-nitrogen inclusions in titanium and Ti64

  9. Spatial averaging of streamwise and spanwise velocity measurements in wall-bounded turbulence using ∨- and ×-probes

    International Nuclear Information System (INIS)

    Philip, Jimmy; Baidya, Rio; Hutchins, Nicholas; Monty, Jason P; Marusic, Ivan

    2013-01-01

    The effect of finite dimensions of ∨- and ×-probes is investigated for the measurement of mean and variances of streamwise and spanwise velocities in wall-turbulence. The probes are numerically simulated using a Direct Numerical Simulation database of channel flow at a friction Reynolds number (Re τ ) of 934 by varying the probe parameters, namely, the wire-lengths (l), the angle between the wires (θ) and the spacing between the wires (Δs). A single inclined wire is first studied to isolate the effect of l and θ. Analytical expressions for the variances of the streamwise and spanwise velocities are derived by applying a linear-box-type filter to the unfiltered velocity field for both ∨- and ×-probes (at θ = 45°, and arbitrary l and Δs). A similar expression for the streamwise variance in the case of a single inclined wire (for arbitrary l and θ) is also derived. These analytical expressions, supplemented with a model for the correlation over the wire-length, compare favourably with the numerical simulation results, and more importantly explain various trends that are observed in the variances with varying parameters. Close to the wall (where the errors are generally higher) the errors in spanwise variances of the ×-probes are much lower than the ∨-probes, owing to an ‘error-cancelling’ mechanism present in ×-probes due to the effect of l and Δs, as well as due to the procedure of recovering the velocities from two wires. The errors in the streamwise variances are comparable for both ∨- and ×-probes. On the other hand, mean velocities are measured with almost no error by the ∨-probe, whereas the ×-probe induces finite errors in mean velocities due to the fact that the two wires experience different mean velocities in ×-probes unlike ∨-probes. These results are explained using the corresponding analytical results, which also show that under the effect of a linear filter, measured variances depend only on the fluctuating velocities

  10. Simultaneous sound velocity and thickness measurement by the ultrasonic pitch-catch method for corrosion-layer-forming polymeric materials.

    Science.gov (United States)

    Kusano, Masahiro; Takizawa, Shota; Sakai, Tetsuya; Arao, Yoshihiko; Kubouchi, Masatoshi

    2018-01-01

    Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Velocity of sound in, and adiabatic compressibility of, Molten LiF-NaF, LiF-KF, NaF-KF mixtures

    International Nuclear Information System (INIS)

    Minchenko, V.I.; Konovalov, Y.V.; Smirnov, M.V.

    1986-01-01

    The authors measured the velocity of sound as a function of temperature at 1.5 zHM frequency in LiF-NaF, NaF-KF, LiF-KF melts over the entire range of their compositions. The measurements were made by comparison of the phases of a reference pulse signal and a signal reflected from the bottom of the crucible. The specified temperatures were maintained constant within plus or minus 1 degree. The sound conductor consisted of a cylindrical rod of sintered beryllium oxide, which does not interact with test melts. The study shows that the velocity of sound decreases linearly with increase of the temperature. The values of the constants of the empirical equations are presented in a table, with indication of the temperature range. The dependence of the velocity of sound on composition of the melts is shown, where isotherms for 1250 K are given as an example. Variation of the composition by 1-2 mole % leads to increase or decrease of the velocity of sound by 5-10 m

  12. An asymptotic inversion method of inferring the sound velocity distribution in the sun from the spectrum of p-mode oscillations

    International Nuclear Information System (INIS)

    Sekii, Takashi; Shibahashi, Hiromoto

    1989-01-01

    We present an inversion method of inferring the sound velocity distribution in the Sun from its oscillation data of p-modes. The equation governing the p-mode oscillations is reduced to a form similar to the Schroedinger equation in quantum mechanics. By using a quantization rule based on the KWBJ asymptotic method, we derive an integral equation of which solution provides the 'acoustic potential' of the wave equation. The acoustic potential consists of two parts: One of them is related with the squared sound velocity and is dependent on the degree of the mode l, while the other term is independent of l and dominates in the outer part of the Sun. By examining the l-dependence of the acoustic potential obtained as the solution of the integral equation, we separate these two components of the potential and eventually obtain the sound velocity distribution from a set of eigenfrequencies of p-modes. In order to evaluate prospects of this inversion method, we perform numerical simulations in which eigenfrequencies of a theoretical solar model are used to reproduce the sound velocity distribution of the model. The error of thus inferred sound velocity relative to the true values is estimated to be less than a few percent. (author)

  13. Small scale features of sound velocity structure in the northern Arabian sea during February - May 1974

    Digital Repository Service at National Institute of Oceanography (India)

    Somayajulu, Y.K.; Rao, L.V.G.; Varadachari, V.V.R.

    at intermediate depths (200-400 m), influence the sound velocity structure and cause formation of an upper sound channel in the northern Arabian Sea. The Persian Gulf waters spread as tongues at 1 or 2 more levels (up to a limited extent), besides the prominent...

  14. Temperature dependence of velocity of sound in high-Tc superconductors in normal state

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2002-01-01

    A microscopic theoretical calculation of temperature dependence of velocity of sound in high temperature superconductors is addressed in this paper. The influence of model parameters of the system in its normal phase is investigated through numerical calculations. The results at the room temperature as well as low temperatures (∼ 25 K), are discussed. The dimensionless parameters involved in the calculations are the electron-phonon coupling (g), staggered magnetic field (h), hybridization (V), position of the f-level (d), temperature (t) and the conduction band width (ω). The model Hamiltonian contains the antiferromagnetism in conduction electrons of cooper and the electron-phonon interaction through the hybridization between conduction electrons and f-electrons of impurity atoms. The phonon Green's functions are calculated by Zubarev's technique. The velocity of sound is calculated in the long wavelength and finite temperature limit. (author)

  15. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  16. Sound velocity and compressibility for lunar rocks 17 and 46 and for glass spheres from the lunar soil.

    Science.gov (United States)

    Schreiber, E; Anderson, O L; Sogat, N; Warren, N; Scholz, C

    1970-01-30

    Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.

  17. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    Science.gov (United States)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  18. Development of a single well dilution probe for groundwater velocity measurements

    International Nuclear Information System (INIS)

    Jain, S.K.; Santra, A.B.; Kulkarni, U.P.; Rao, S.M.

    1982-01-01

    The paper describes the development and design of a single well dilution probe for the measurement of groundwater velocities at different sections of the borehole. In this probe, the radioactive tracer is introduced in the measuring volume by dissolving a gelatine capsule containing the tracer. The continuous mixing of the tracer solution is achieved by a specially designed magnetic stirrer. To prevent vertical flows, the measuring volume is sealed off in the bore-hole at the top and bottom by inflator rubber tubes which are inflated by compressed air from the ground surface. The concentration of the gamma tracer solution is measured 'insitu' by a NaI crystal scintillation detector incorporated in the probe. (author)

  19. Controllable group velocity of the probe light in a Λ-type system with two fold levels

    International Nuclear Information System (INIS)

    Jin Lihui; Gong Shangqing; Niu Yueping; Li Ruxin; Jin Shiqi

    2006-01-01

    The group velocities of the probe laser field are studied in a Λ-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance, we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light

  20. A single-probe heat pulse method for estimating sap velocity in trees.

    Science.gov (United States)

    López-Bernal, Álvaro; Testi, Luca; Villalobos, Francisco J

    2017-10-01

    Available sap flow methods are still far from being simple, cheap and reliable enough to be used beyond very specific research purposes. This study presents and tests a new single-probe heat pulse (SPHP) method for monitoring sap velocity in trees using a single-probe sensor, rather than the multi-probe arrangements used up to now. Based on the fundamental conduction-convection principles of heat transport in sapwood, convective velocity (V h ) is estimated from the temperature increase in the heater after the application of a heat pulse (ΔT). The method was validated against measurements performed with the compensation heat pulse (CHP) technique in field trees of six different species. To do so, a dedicated three-probe sensor capable of simultaneously applying both methods was produced and used. Experimental measurements in the six species showed an excellent agreement between SPHP and CHP outputs for moderate to high flow rates, confirming the applicability of the method. In relation to other sap flow methods, SPHP presents several significant advantages: it requires low power inputs, it uses technically simpler and potentially cheaper instrumentation, the physical damage to the tree is minimal and artefacts caused by incorrect probe spacing and alignment are removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. APPLICATION OF MULTIHOLE PRESSURE PROBE FOR RESEARCH OF COOLANT VELOCITY PROFILE IN NUCLEAR REACTOR FUEL ASSEMBLIES

    Directory of Open Access Journals (Sweden)

    S. M. Dmitriev

    2015-01-01

    Full Text Available Development of heat and mass transfer intensifiers is a major engineering task in the design of new and modernization of existing fuel assemblies. These devices create lateral mass flow of coolant. Design of intensifiers affects both the coolant mixing and the hydraulic resistance. The aim of this work is to develop a methodology of measuring coolant local velocity in the fuel assembly models with different mixing grids. To solve the problems was manufactured and calibrated multihole pressure probe. The air flow velocity measuring method with multihole pressure probe was used in the experimental studies on the coolant local hydrodynamics in fuel assemblies with mixing grids. Analysis of the coolant lateral velocity vector fields allowed to study the formation of the secondary vortex flows behind the mixing grids, and to determine the basic laws of coolant flow in experimental models. Quantitative data on the coolant flow velocity distribution obtained with a multihole pressure probe make possible to determine the magnitude of the flow lateral velocities in fuel rod gaps, as well as to determine the distance at which damping occurs during mixing. 

  2. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  3. Ab initio calculation of the sound velocity of dense hydrogen: implications for models of Jupiter

    NARCIS (Netherlands)

    Alavi, A.; Parrinello, M.; Frenkel, D.

    1995-01-01

    First-principles molecular dynamics simulations were used to calculate the sound velocity of dense hydrogen, and the results were compared with extrapolations of experimental data that currently conflict with either astrophysical models or data obtained from recent global oscillation measurements of

  4. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  5. Reconstruction of the forehead acoustic properties in an Indo-Pacific humpback dolphin (Sousa chinensis), with investigation on the responses of soft tissue sound velocity to temperature.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Berggren, Per; Wei, Chong

    2017-02-01

    Computed tomography (CT) imaging and ultrasound experimental measurements were combined to reconstruct the acoustic properties (density, velocity, and impedance) of the head from a deceased Indo-Pacific humpback dolphin (Sousa chinensis). The authors extracted 42 soft forehead tissue samples to estimate the sound velocity and density properties at room temperature, 25.0  °C. Hounsfield Units (HUs) of the samples were read from CT scans. Linear relationships between the tissues' HUs and velocity, and HUs and density were revealed through regression analyses. The distributions of the head acoustic properties at axial, coronal, and sagittal cross sections were reconstructed, suggesting that the forehead soft tissues were characterized by low-velocity in the melon, high-velocity in the muscle and connective tissues. Further, the sound velocities of melon, muscle, and connective tissue pieces were measured under different temperatures to investigate tissues' velocity response to temperature. The results demonstrated nonlinear relationships between tissues' sound velocity and temperature. This study represents a first attempt to provide general information on acoustic properties of this species. The results could provide meaningful information for understanding the species' bioacoustic characteristics and for further investigation on sound beam formation of the dolphin.

  6. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol–cloud interactions

    Directory of Open Access Journals (Sweden)

    R. Calmer

    2018-05-01

    Full Text Available The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA. In atmospheric research, lightweight RPAs ( <  2.5 kg are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol–cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol–cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS. The five-hole probe is calibrated on a multi-axis platform, and the probe–INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD functions and turbulent kinetic energy (TKE derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland, a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological

  7. Sound velocities and hypersonic dampings of Pb[(Mg1/3Nb2/3)0.45Ti0.55]O3 single crystals studied by Brillouin light scattering.

    Science.gov (United States)

    Ko, Jae-Hyeon; Kim, Tae Hyun; Kojima, Seiji; Bokov, Alexei A; Ye, Zuo-Guang

    2010-12-08

    A Brillouin spectroscopic investigation was carried out on PMN-55%PT single crystals, which are known to have no chemically ordered regions and undergo a well-defined structural phase transition at T(C) ∼ 521 K. The longitudinal and transverse sound velocities probed on a right-angle scattering geometry exhibited a remarkable softening and increasing hypersonic damping on approaching T(C) from T(B) ∼ 610 K that was characterized by the deviation of the dielectric permittivity from the high-temperature Curie-Weiss behavior. The acoustic anomalies of the longitudinal acoustic mode at the backward scattering were more substantial than those observed at the right-angle scattering, which could be understood in the framework of normal acoustic dispersion considering the difference in the acoustic frequency. The softening of the transverse sound velocity was more significant than that of the longitudinal one upon cooling toward T(C), suggesting that this acoustic anomaly may be related to the local rhombohedral transformation, occurring in polar nano-regions (PNRs). The observed acoustic behaviors combined with the central peak dynamics clearly indicated the existence of dynamic polar nano-regions in PMN-55%PT where there are no chemically ordered regions, and seem to suggest that the order parameter fluctuations due to two kinds of coupling contribute to the acoustic anomalies in the temperature range of T(C) ∼ T(B): electrostrictive coupling between the acoustic waves and the dynamic PNRs, and linear coupling between the acoustic waves and the precursor polar clusters, i.e., the ordering unit responsible for the order-disorder-type slowing down behavior probed by the central peak.

  8. Interactions of polyethylene glycols with water studied by measurements of density and sound velocity

    International Nuclear Information System (INIS)

    Ayranci, Erol; Sahin, Melike

    2008-01-01

    Densities and sound velocities of ethylene glycol (EG) and polyethylene glycols (PEGs) of molecular weight 200, 300, 400, 550, 600, 1000, 1450, 3350, 8000, and 10,000 at (288.15, 298.15, and 308.15) K were measured with high precision vibrating tube densimeter and sound velocity measuring device. They were used to evaluate apparent molar volumes, V o , and apparent molar isentropic compressibilities, K ΦS . Infinite dilution values of these parameters, V o 0 , and K ΦS 0 , were obtained from their plot as a function of molality. The variations of V o 0 , and K ΦS 0 , with the number of repeating units in PEGs and with temperature were examined. Comparison of the experimentally obtained data was made with the available literature data and also with some values predicted according to group additivity approach. The results were interpreted in terms of hydration and conformational effects of PEGs in water. A correlation was also examined between V o 0 or K ΦS 0 values of PEGs in water and equilibrium moisture contents of PEGs as well as the water vapor permeabilities (WVP) of edible films containing PEGs

  9. Reflector construction by sound path curves - A method of manual reflector evaluation in the field

    International Nuclear Information System (INIS)

    Siciliano, F.; Heumuller, R.

    1985-01-01

    In order to describe the time-of-flight behavior of various reflectors we have set up models and derived from them analytical and graphic approaches to reflector reconstruction. In the course of this work, maximum achievable accuracy and possible simplifications were investigated. The aim of the time-of-flight reconstruction method is to determine the points of a reflector on the basis of a sound path function (sound path as the function of the probe index position). This method can only be used on materials which are isotropic in terms of sound velocity since the method relies on time of flight being converted into sound path. This paper deals only with two-dimensional reconstruction, in other words all statements relate to the plane of incidence. The method is based on the fact that the geometrical location of the points equidistant from a certain probe index position is a circle. If circles with radiuses equal to the associated sound path are drawn for various search unit positions the points of intersection of the circles are the desired reflector points

  10. Effects of heat treatment to the sound velocity and microstructural changes of ASTM A516 steels

    International Nuclear Information System (INIS)

    Norasiah Abdul Kasim; Azali Muhammad; Amry Amin Abas; Zaiton Selamat

    2010-01-01

    Full-text: The used of ultrasonic testing as a thickness measurement for structural components (pipeline and pressure vessel) is among the popular inspection tool widely use in the industrial power plant such as at petrochemical and nuclear power plant. Currently, there are cases where the thickness grows and the result will affect the reliability of the test. There are many factors that can affect the reliability of measurement. One of it is the material under test itself. In the Malaysian Nuclear Agency, initial efforts are underway to study the understanding on the effects of heat treatment to the sound velocity and microstructure changes of ASTM A516 steel. Few samples of thin square shaped prepared were heat treated under the following conditions: austenitization at 9800 degree Celsius - 2 hours, quenching; tempering at various temperature 4000, 5000, 6000 and 7000 degree Celsius. The results show that the microstructure changes and samples exhibit different sound velocity at different heat treatment. (author)

  11. Effect of temperature on density, sound velocity, and their derived properties for the binary systems glycerol with water or alcohols

    International Nuclear Information System (INIS)

    Negadi, Latifa; Feddal-Benabed, Badra; Bahadur, Indra; Saab, Joseph; Zaoui-Djelloul-Daouadji, Manel; Ramjugernath, Deresh; Negadi, Amina

    2017-01-01

    Highlights: • Densities (ρ) and sound velocities (u) for glycerol, +water, +methanol, or +ethanol systems were measured. • The derived properties (excess molar volume, isentropic compressibility and deviation in isentropic compressibility) were calculated. • The Redlich–Kister polynomial was used to fit the experimental results. - Abstract: Densities and sound velocities of three binary systems containing glycerol + (water, methanol, or ethanol) have been measured over the entire composition range at temperatures ranging from (283.15 to 313.15) K in 10 K intervals, at atmospheric pressure. A vibrating u-tube densimeter and sound velocity analyzer (Anton Paar DSA 5000M) was used for the measurements. Thermodynamic properties were derived from the measured data, viz. excess molar volume, isentropic compressibility, and deviation in isentropic compressibility. The property data were correlated with the Redlich-Kister polynomial. In all cases, the excess molar volumes and deviation in isentropic compressibility are negative over the entire composition range for all binary mixtures studied and become increasingly negative with an increase in the temperature. These properties provide important information about different interactions that take place between like-like, like-unlike and unlike-unlike molecules in the mixtures.

  12. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Joao Eduardo [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Lisbon (Portugal); Pereira, Nuno H.C. [EST Setubal, Polytechnic Institute of Setubal, Department of Mechanical Engineering, Setubal (Portugal); Matos, Jorge [Instituto Superior Tecnico, Technical University of Lisbon, Department of Civil Engineering and Architecture, Lisbon (Portugal); Frizell, Kathleen H. [U.S. Bureau of Reclamation, Denver, CO (United States)

    2010-01-15

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows. (orig.)

  14. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Science.gov (United States)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  15. Circular mode: a new scanning probe microscopy method for investigating surface properties at constant and continuous scanning velocities.

    Science.gov (United States)

    Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier

    2011-11-01

    In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics

  16. Development of a generalized correlation for phase-velocity measurements obtained from impedance-probe pairs in two-phase flow systems

    International Nuclear Information System (INIS)

    Hsu, C.T.; Keshock, E.G.; McGill, R.N.

    1983-01-01

    A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations

  17. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    Energy Technology Data Exchange (ETDEWEB)

    Amoudache, Samira [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d' Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d' Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2014-04-07

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  18. First- and zero-sound velocity and Fermi liquid parameter F2s in liquid 3He determined by a path length modulation technique

    International Nuclear Information System (INIS)

    Hamot, P.J.; Lee, Y.; Sprague, D.T.

    1995-01-01

    We have measured the velocity of first- and zero-sound in liquid 3 He at 12.6 MHz over the pressure range of 0.6 to 14.5 bar using a path length modulation technique that we have recently developed. From these measurements, the pressure dependent value of the Fermi liquid parameter F 2 s was calculated and found to be larger at low pressure than previously reported. These new values of F 2 s indicate that transverse zero-sound is a propagating mode at all pressures. The new values are important for the interpretation of the frequencies of order parameter collective modes in the superfluid phases. The new acoustic technique permits measurements in regimes of very high attenuation with a sensitivity in phase velocity of about 10 ppm achieved by a feedback arrangement. The sound velocity is thus measured continuously throughout the highly attenuating crossover (ωt ∼ 1) regime, even at the lowest pressures

  19. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    Science.gov (United States)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  20. Determination of the filtration velocities and mean velocity in ground waters using radiotracers

    International Nuclear Information System (INIS)

    Duran P, Oscar; Diaz V, Francisco; Heresi M, Nelida

    1994-01-01

    An experimental method to determine filtration, or, Darcy velocity and mean velocity in underground waters using radiotracers, is described. After selecting the most appropriate tracers, from 6 chemical compounds, to measure water velocity, a method to measure filtration velocity was developed. By fully labelling the water column with 2 radioisotopes, Br and tritium, almost identical values were obtained for the aquifer filtration velocity in the sounding S1. This value was 0.04 m/d. Field porosity was calculated at 11% and mean velocity at 0.37 m.d. With the filtration velocity value and knowing the hydraulic variation between the soundings S1 and S2 placed at 10 meters, field permeability was estimated at 2.4 x 10 m/s. (author)

  1. Development of a beam ion velocity detector for the heavy ion beam probe

    International Nuclear Information System (INIS)

    Fimognari, P. J.; Crowley, T. P.; Demers, D. R.

    2016-01-01

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  2. Development of a beam ion velocity detector for the heavy ion beam probe

    Energy Technology Data Exchange (ETDEWEB)

    Fimognari, P. J., E-mail: PJFimognari@XanthoTechnologies.com; Crowley, T. P.; Demers, D. R. [Xantho Technologies, LLC, Madison, Wisconsin 53705 (United States)

    2016-11-15

    In an axisymmetric plasma, the conservation of canonical angular momentum constrains heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of secondary ions provides a localized determination of the poloidal flux at the volume where they originated. We have developed a prototype detector which is designed to determine the beam angle in one dimension through the detection of ion current landing on two parallel planes of detecting elements. A set of apertures creates a pattern of ion current on wires in the first plane and solid metal plates behind them; the relative amounts detected by the wires and plates determine the angle which beam ions enter the detector, which is used to infer the toroidal velocity component. The design evolved from a series of simulations within which we modeled ion beam velocity changes due to equilibrium and fluctuating magnetic fields, along with the ion beam profile and velocity dispersion, and studied how these and characteristics such as the size, cross section, and spacing of the detector elements affect performance.

  3. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    International Nuclear Information System (INIS)

    Cannon, N.S.

    1994-01-01

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported

  4. Influence of probe motion on laser probe temperature in circulating blood.

    Science.gov (United States)

    Hehrlein, C; Splinter, R; Littmann, L; Tuntelder, J R; Tatsis, G P; Svenson, R H

    1991-01-01

    The purpose of this study was to evaluate the effect of probe motion on laser probe temperature in various blood flow conditions. Laser probe temperatures were measured in an in vitro blood circulation model consisting of 3.2 nm-diameter plastic tubes. A 2.0 mm-diameter metal probe attached to a 300 microns optical quartz fiber was coupled to an argon laser. Continuous wave 4 watts and 8 watts of laser power were delivered to the fiber tip corresponding to a 6.7 +/- 0.5 and 13.2 +/- 0.7 watts power setting at the laser generator. The laser probe was either moved with constant velocity or kept stationary. A thermocouple inserted in the lateral portion of the probe was used to record probe temperatures. Probe temperature changes were found with the variation of laser power, probe velocity, blood flow, and duration of laser exposure. Probe motion significantly reduced probe temperatures. After 10 seconds of 4 watts laser power the probe temperature in stagnant blood decreased from 303 +/- 18 degrees C to 113 +/- 17 degrees C (63%) by moving the probe with a velocity of 5 cm/sec. Blood flow rates of 170 ml/min further decreased the probe temperature from 113 +/- 17 degrees C to 50 +/- 8 degrees C (56%). At 8 watts of laser power a probe temperature reduction from 591 +/- 25 degrees C to 534 +/- 36 degrees C (10%) due to 5 cm/sec probe velocity was noted. Probe temperatures were reduced to 130 +/- 30 degrees C (78%) under the combined influence of 5 cm/sec probe velocity and 170 ml/min blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.

    Science.gov (United States)

    Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin

    2017-08-01

    Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  7. Ultrasonic velocity measurements in expanded liquid mercury

    International Nuclear Information System (INIS)

    Suzuki, K.; Inutake, M.; Fujiwaka, S.

    1977-10-01

    In this paper we present the first results of the sound velocity measurements in expanded liquid mercury. The measurements were made at temperatures up to 1600 0 C and pressures up to 1700 kg/cm 2 by means of an ultrasonic pulse transmission/echo technique which was newly developed for such high temperature/pressure condition. When the density is larger than 9 g/cm 3 , the observed sound velocity decreases linearly with decreasing density. At densities smaller than 9 g/cm 3 , the linear dependence on the density is no longer observed. The observed sound velocity approaches a minimum near the liquid-gas critical point (rho sub(cr) asymptotically equals 5.5 g/cm 3 ). The existing theories for sound velocity in liquid metals fail to explain the observed results. (auth.)

  8. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age

    NARCIS (Netherlands)

    Sulter, AM; Wit, HP

    Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity

  9. Glottal volume velocity waveform characteristics in subjects with and without vocal training, related to gender, sound intensity, fundamental frequency, and age

    NARCIS (Netherlands)

    Sulter, AM; Wit, HP

    1996-01-01

    Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity

  10. First and second sound in He films

    International Nuclear Information System (INIS)

    Oh, H.G.; Um, C.I.; Kahng, W.H.; Isihara, A.

    1986-01-01

    In consideration of a collision integral in the Boltzmann equation and with use of kinetic and hydrodynamical equations, the velocities of the first and second sound in liquid 4 He films are evaluated as functions of temperature, and the attenuation coefficients are obtained. The second sound is 2/sup -1/2/ times the first-sound velocity in the low-temperature and low-frequency limit

  11. Combination probe for optically assisted ultrasonic velocity-change imaging aimed at detecting unstable blood vessel plaque

    Science.gov (United States)

    Tanigawa, Shohei; Mano, Kazune; Wada, Kenji; Matsunaka, Toshiyuki; Horinaka, Hiromichi

    2016-04-01

    Blood vessel plaque with a large lipid core is at risk of becoming thrombus and is likely to induce acute heart disease. To prevent this, it is necessary to determine not only the plaque's size but also its chemical composition. We, therefore, made the prototype of a combination probe to diagnose carotid artery plaque. It is used to differentiate propagation characteristics between light spectra and ultrasonic images. By propagating light and ultrasound along a common direction, it is possible to effectively warm the diagnosis domain. Moreover, the probe is thought to be compact and be easy to use for diagnosing human carotid artery plaque. We applied the combination probe to a carotid artery phantom with a lipid area and obtained an image of the ultrasonic velocity change in the fatty area.

  12. Fourth sound in relativistic superfluidity theory

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.; Fomin, P.I.

    1995-01-01

    The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined

  13. Monte-Carlo calculation of the calibration factors for the interfacial area concentration and the velocity of the bubbles for double sensor conductivity probe

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Pena, J.; Chiva, S.; Mendez, S.

    2007-01-01

    This paper presents a study of the estimation of the correction factors for the interfacial area concentration and the bubble velocity in two phase flow measurements using the double sensor conductivity probe. Monte-Carlo calculations of these correction factors have been performed for different values of the relative distance (ΔS/D) between the tips of the conductivity probe and different values of the relative bubble velocity fluctuation parameter. Also this paper presents the Monte-Carlo calculation of the expected value of the calibration factors for bubbly flow assuming a log-normal distribution of the bubble sizes. We have computed the variation of the expected values of the calibration factors with the relative distance (ΔS/D) between the tips and the velocity fluctuation parameter. Finally, we have performed a sensitivity study of the variation of the average values of the calibration factors for bubbly flow with the geometrical standard deviation of the log-normal distribution of bubble sizes. The results of these calculations show that the total interfacial area correction factor is very close to 2, and depends very weakly on the velocity fluctuation, and the relative distance between tips. For the velocity calibration factor, the Monte-Carlo results show that for moderate values of the relative bubble velocity fluctuation parameter (H max ≤ 0.3) and values of the relative distance between tips not too small (ΔS/D ≥ 0.2), the correction velocity factor for the bubble sensor conductivity probe is close to unity, ranging from 0.96 to 1

  14. Sound velocity profiles collected by NOAA's Navigation Response Team No. 4 in the Great Lakes, July 5 - September 25, 2007 (NODC Accession 0020370)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical oceanographic data were collected from NOAA Navigation Response Team-4 in the Great Lakes from 05 July 2007 to 25 September 2007. Sound velocity profiles...

  15. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  16. Statistically optimized near field acoustic holography using an array of pressure-velocity probes

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Jaud, Virginie

    2007-01-01

    of a measurement aperture that extends well beyond the source can be relaxed. Both NAH and SONAH are based on the assumption that all sources are on one side of the measurement plane whereas the other side is source free. An extension of the SONAH procedure based on measurement with a double layer array...... of pressure microphones has been suggested. The double layer technique makes it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise coming from the “wrong” side. It has also recently been demonstrated that there are significant advantages...... in NAH based on an array of acoustic particle velocity transducers (in a single layer) compared with NAH based on an array of pressure microphones. This investigation combines the two ideas and examines SONAH based on an array of pressure-velocity intensity probes through computer simulations as well...

  17. Sound velocity profiles in the St. Clair and St. Mary's Rivers in the Great Lakes area by the National Ocean Service's Navigation Response Team 4, May 2006 (NODC Accession 0006777)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sound velocity profile data were collected using sound velocimeter in the St. Clair and St. Mary rivers in the Great Lakes area by the NAVIGATION RESPONSE TEAM 4...

  18. Simple indicator to identify the environmental soundness of growth of consumption and technology: "eco-velocity of consumption".

    Science.gov (United States)

    Nansai, Keisuke; Kagawa, Shigemi; Suh, Sangwon; Inaba, Rokuta; Moriguchi, Yuichi

    2007-02-15

    Today's material welfare has been achieved at the expense of consumption of finite resources and generation of environmental burdens. Over the past few decades the volume of global consumption has grown dramatically, while at the same time technological advances have enabled products with greater efficiencies. These two directions of change, consumption growth and technological advance, are the foci of the present paper. Using quantitative measures for these two factors, we define a new indicator, "eco-velocity of consumption", analogous to velocity in physics. The indicator not only identifies the environmental soundness of consumption growth and technological advance but also indicates whether and to what extent our society is shifting toward sustainable consumption. This study demonstrates the practicability of the indicator through a case study in which we calculate the eco-velocities of Japanese household consumption in 2 years: 1995 and 2000. The rate of technological advance during the periods concerned is quantified in terms of the embodied carbon dioxide emission per yen of product. The results show that the current growth rate of Japanese household consumption is greater than the rate of technological advance to mitigate carbon dioxide emissions. The eco-velocities at the level of individual commodity groups are also examined, and the sources of changes in eco-velocity for each commodity are identified using structural decomposition analysis.

  19. Five-hole pitot probe time-mean velocity measurements in confined swirling flows

    Science.gov (United States)

    Yoon, H. K.; Lilley, D. G.

    1983-01-01

    Nonswirling and swirling nonreacting flows in an axisymmetric test section with an expansion ratio D/d = 2, which may be equipped with contraction nozzles of area ratios 2 and 4, are investigated. The effects of a number of geometric parameters on the flow-field are investigated, among them side-wall expansion angles of 90 and 45 deg, swirl vane angles of 0, 38, 45, 60, and 70 deg, and contraction nozzle locations L/D = 1 and 2 (if present). Data are acquired by means of a five-hole pitot probe enabling three time-mean velocity components in the axial, radial, and azimuthal directions to be measured. The velocities are extensively plotted and artistic impressions of recirculation zones are set forth. The presence of a swirler is found to shorten the corner recirculation zone and to generate a central recirculation zone followed by a precessing vortex core. A gradual inlet expansion has the effect of encouraging the flow to remain close to the sidewall and shortening the extent of the corner recirculation zone in all cases investigated.

  20. Magnetic field dependence of ultrasound velocity in high-Tc superconductors

    International Nuclear Information System (INIS)

    Higgins, M.J.; Goshorn, D.P.; Bhattacharya, S.; Johnston, D.C.

    1989-01-01

    The magnetic field dependence of ultrasound velocity in the superconductor La 1.8 Sr 0.2 CuO 4-y is studied. The sound velocity anomaly near T c is shown to be unambiguously related to superconductivity. Below T c , the sound velocity is found to be sensitive to the dynamics of a pinned flux lattice. A combination of sound velocity and magnetization measurements suggests three regimes of pinning behavior. A generic pinning ''phase diagram'' is obtained in the superconducting state. An anomalous peak effect in the magnetization is also observed at intermediate field strengths

  1. The Seismo-Generated Electric Field Probed by the Ionospheric Ion Velocity

    Science.gov (United States)

    (Tiger) Liu, Jann-Yenq

    2017-04-01

    The ion density, ion temperature, and the ion velocity probed by IPEI (ionospheric Plasma and Electrodynamics Instrument) onboard ROCSAT (i.e. FORMOSAT-1), and the global ionospheric map (GIM) of the total electron content (TEC) derived from measurements of ground-based GPS receivers are employed to study seismo-ionospheric precursors (SIPs) of the 31 March 2002 M6.8 Earthquake in Taiwan. The GIM TEC and ROCSAT/IPEI ion density significantly decrease specifically over the epicenter area 1-5 days before the earthquake, which suggests that the associated SIPs have observed. The ROCSAT/IPEI ion temperature reveals no significant changes before and after the earthquake, while the latitude-time-TEC plots extracted from the GIMs along the Taiwan longitude illustrate that the equatorial ionization anomaly significantly weakens and moves equatorward, which indicates that the daily dynamo electric field has been disturbed and cancelled by possible seismo-generated electric field on 2 days before (29 March) the earthquake. Here, for the first time a vector parameter of ion velocity is employed to study SIPs. It is found that ROCSAT/IPEI ion velocity becomes significantly downward, which confirms that a westward electric field of about 0.91mV/m generated during the earthquake preparation period being essential 1-5 days before the earthquake. Liu, J. Y., and C. K. Chao (2016), An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terrestrial Atmospheric and Oceanic Sciences, DOI: 10.3319/TAO.2016.07.18.01(EOF5).

  2. A particle velocity based method for separating all multi incoherent sound sources

    NARCIS (Netherlands)

    Winkel, J.C.; Yntema, Doekle Reinder; Druyvesteyn, W.F.; de Bree, H.E.

    2006-01-01

    In this paper we present a method to separate the contributions of different uncorrelated sound sources to the total sound field. When the contribution of each sound source to the total sound field is known, techniques with array-applications like direct sound field measurements or inverse acoustics

  3. Sound velocities of the 23 Å phase at high pressure and implications for seismic velocities in subducted slabs

    Science.gov (United States)

    Cai, N.; Chen, T.; Qi, X.; Inoue, T.; Li, B.

    2017-12-01

    Dense hydrous phases are believed to play an important role in transporting water back into the deep interior of the Earth. Recently, a new Al-bearing hydrous Mg-silicate, named the 23 Å phase (ideal composition Mg12Al2Si4O16(OH)14), was reported (Cai et al., 2015), which could be a very important hydrous phase in subducting slabs. Here for the first time we report the measurements of the compressional and shear wave velocities of the 23 Å phase under applied pressures up to 14 GPa and room temperature, using a bulk sample with a grain size of less than 20 μm and density of 2.947 g/cm3. The acoustic measurements were conducted in a 1000-ton uniaxial split-cylinder multi-anvil apparatus using ultrasonic interferometry techniques (Li et al., 1996). The pressures were determined in situ by using an alumina buffer rod as the pressure marker (Wang et al., 2015). A dual-mode piezoelectric transducer enabled us to measure P and S wave travel times simultaneously, which in turn allowed a precise determination of the sound velocities and elastic bulk and shear moduli at high pressures. A fit to the acoustic data using finite strain analysis combined with a Hashin-Shtrikman (HS) bounds calculation yields: Ks0 = 113.3 GPa, G0 = 42.8 GPa, and K' = 3.8, G' = 1.9 for the bulk and shear moduli and their pressure derivatives. The velocities (especially for S wave) of this 23 Å phase (ambient Vp = 7.53 km/s, Vs = 3.72 km/s) are lower than those of phase A, olivine, pyrope, etc., while the Vp/Vs ratio (from 2.02 to 1.94, decreasing with increasing pressure) is quite high. These results suggest that a hydrous assemblage containing 23 Å phase should be distinguishable from a dry one at high pressure and temperature conditions relevant to Al-bearing subducted slabs.

  4. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 1, the calculation of sound speed of slurries and hardened porous material

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2011-01-01

    This article focuses on the computation of the sound velocity through slurries and hardened products. The purpose is to use the sound velocity to quantify the composition of the fresh slurry as well as the hardening and hardened - porous - material. Therefore the volumetric models for hydration of

  5. Precise zero-sound velocity measurements in the A and A1 phases of 3He near T/sub c/

    International Nuclear Information System (INIS)

    Berg, R.F.; Ihas, G.G.

    1983-01-01

    The authors have made phase-velocity change measurements for 5 and 15 MHz zero sound within a few microkelvin of the 3 He superfluid transition, T/sub c/, at 31.1 bar. The results show no marked feature at homega = 2Δ(T). However, there is a marked reduction in the slope of dc/dT upon passing from the A-phase into the Al-phase. 2 references

  6. Sound velocity and equation-of-state measurements in high pressure fluid and solid helium

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1979-01-01

    A piston--cylinder apparatus was used to obtain P, V, T, and simultaneous values of longitudinal sound velocity in helium fluid throughout the ranges 75 to 300 0 K and 3 to 20 kbar. Some 670 data sets were obtained for the fluid and used in a double-process least-squares fit to an equation of state of the Benedict type. Additional measurements extended across the melting line into the solid phase at pressures up to 18 kbar. Measurements of the compressibility are compared with those obtained by Stewart along the 4 0 K isotherm up to 20 kbar. We discuss the use of helium as a pressure medium in high-pressure diamond anvil cells. Essentially no data are given

  7. Fifth sound in superfluid 4He below 1 K

    International Nuclear Information System (INIS)

    Williams, G.A.; Rosenbaum, R.

    1979-01-01

    Fifth-sound propagation has been studied in He II adsorbed on large-diameter alumina (Al 2 O 3 ) powder grains below 1 K. The velocity of the fifth-sound mode in 4 He remains in good agreement with the theoretical value c 2 5 =rho/sub n//rhoc 2 2 . Using tabulated values for rho/sub n//rho, values of the second-sound velocity are obtained

  8. Sounds in one-dimensional superfluid helium

    International Nuclear Information System (INIS)

    Um, C.I.; Kahng, W.H.; Whang, E.H.; Hong, S.K.; Oh, H.G.; George, T.F.

    1989-01-01

    The temperature variations of first-, second-, and third-sound velocity and attenuation coefficients in one-dimensional superfluid helium are evaluated explicitly for very low temperatures and frequencies (ω/sub s/tau 2 , and the ratio of second sound to first sound becomes unity as the temperature decreases to absolute zero

  9. Experimental investigation of the temperature dependence of sound velocity in the structural materials for nuclear power engineering

    International Nuclear Information System (INIS)

    Roshchupkin, V.V.; Pokrasin, M.A.; Chernov, A.I.; Semashko, N.A.; Filonenko, S.F.

    1999-01-01

    The purpose of the study consists in determination of the sound velocity temperature dependence in structural materials for nuclear power engineering. In particular, the Zr-2.5%Nb, Hastelloys-H alloys and X2.5M steel are studied. The facility for studying acoustic parameters of metals and alloys is described. The software makes it possible to obtain the results in various forms with the data stored in the memory for further analysis. The data on the above alloys obtained by use of various methods are presented and analyzed [ru

  10. Microflown based monopole sound sources for reciprocal measurements

    NARCIS (Netherlands)

    Bree, H.E. de; Basten, T.G.H.

    2008-01-01

    Monopole sound sources (i.e. omni directional sound sources with a known volume velocity) are essential for reciprocal measurements used in vehicle interior panel noise contribution analysis. Until recently, these monopole sound sources use a sound pressure transducer sensor as a reference sensor. A

  11. Salinity, sound velocity, and other data from CTD, XBT, XSV, AXBT, and XCTD casts from 20 May 1978 to 01 September 2000 (NODC Accession 0000383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity, sound velocity, depth, and temperature data were collected using CTD, XBT, XSV, AXBT, and XCTD casts from May 20, 1978 to September 1, 2000. Data were...

  12. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  13. Probing dark energy models with extreme pairwise velocities of galaxy clusters from the DEUS-FUR simulations

    Science.gov (United States)

    Bouillot, Vincent R.; Alimi, Jean-Michel; Corasaniti, Pier-Stefano; Rasera, Yann

    2015-06-01

    Observations of colliding galaxy clusters with high relative velocity probe the tail of the halo pairwise velocity distribution with the potential of providing a powerful test of cosmology. As an example it has been argued that the discovery of the Bullet Cluster challenges standard Λ cold dark matter (ΛCDM) model predictions. Halo catalogues from N-body simulations have been used to estimate the probability of Bullet-like clusters. However, due to simulation volume effects previous studies had to rely on a Gaussian extrapolation of the pairwise velocity distribution to high velocities. Here, we perform a detail analysis using the halo catalogues from the Dark Energy Universe Simulation Full Universe Runs (DEUS-FUR), which enables us to resolve the high-velocity tail of the distribution and study its dependence on the halo mass definition, redshift and cosmology. Building upon these results, we estimate the probability of Bullet-like systems in the framework of Extreme Value Statistics. We show that the tail of extreme pairwise velocities significantly deviates from that of a Gaussian, moreover it carries an imprint of the underlying cosmology. We find the Bullet Cluster probability to be two orders of magnitude larger than previous estimates, thus easing the tension with the ΛCDM model. Finally, the comparison of the inferred probabilities for the different DEUS-FUR cosmologies suggests that observations of extreme interacting clusters can provide constraints on dark energy models complementary to standard cosmological tests.

  14. Longitudinal sound velocities, elastic anisotropy, and phase transition of high-pressure cubic H2O ice to 82 GPa

    Science.gov (United States)

    Kuriakose, Maju; Raetz, Samuel; Hu, Qing Miao; Nikitin, Sergey M.; Chigarev, Nikolay; Tournat, Vincent; Bulou, Alain; Lomonosov, Alexey; Djemia, Philippe; Gusev, Vitalyi E.; Zerr, Andreas

    2017-10-01

    Water ice is a molecular solid whose behavior under compression reveals the interplay of covalent bonding in molecules and forces acting between them. This interplay determines high-pressure phase transitions, the elastic and plastic behavior of H2O ice, which are the properties needed for modeling the convection and internal structure of the giant planets and moons of the solar system as well as H2O -rich exoplanets. We investigated experimentally and theoretically elastic properties and phase transitions of cubic H2O ice at room temperature and high pressures between 10 and 82 GPa. The time-domain Brillouin scattering (TDBS) technique was used to measure longitudinal sound velocities (VL) in polycrystalline ice samples compressed in a diamond anvil cell. The high spatial resolution of the TDBS technique revealed variations of VL caused by elastic anisotropy, allowing us to reliably determine the fastest and the slowest sound velocity in a single crystal of cubic H2O ice and thus to evaluate existing equations of state. Pressure dependencies of the single-crystal elastic moduli Ci j(P ) of cubic H2O ice to 82 GPa have been obtained which indicate its hardness and brittleness. These results were compared with ab initio calculations. It is suggested that the transition from molecular ice VII to ionic ice X occurs at much higher pressures than proposed earlier, probably above 80 GPa.

  15. Calculation of sound propagation in fibrous materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1996-01-01

    Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....

  16. Transport processes and sound velocity in vibrationally non-equilibrium gas of anharmonic oscillators

    Science.gov (United States)

    Rydalevskaya, Maria A.; Voroshilova, Yulia N.

    2018-05-01

    Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.

  17. SOUND VELOCITY and Other Data from FIXED PLATFORM and Other Platforms From NE Atlantic (limit-40 W) and Others from 19860512 to 19891112 (NODC Accession 9000121)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The sound velocity and other data in this accession has been processed by NODC from a tape submitted by the originator containing Inverted Echo Sounder data from the...

  18. Dissipation in vibrating superleak second sound transducers

    International Nuclear Information System (INIS)

    Giordano, N.

    1985-01-01

    We have performed an experimental study of the generation and detection of second sound in 4 He using vibrating superleak second sound transducers. At temperatures well below T/sub lambda/ and for low driving amplitudes, the magnitude of the generated second sound wave is proportional to the drive amplitude. However, near T/sub lambda/ and for high drive amplitudes this is no longer the case--instead, the second sound amplitude saturates. In this regime we also find that overtones of the drive frequency are generated. Our results suggest that this behavior is due to critical velocity effects in the pores of the superleak in the generator transducer. This type of measurement may prove to be a useful way in which to study critical velocity effects in confined geometries

  19. Effects of Auditory Stimuli on Visual Velocity Perception

    Directory of Open Access Journals (Sweden)

    Michiaki Shibata

    2011-10-01

    Full Text Available We investigated the effects of auditory stimuli on the perceived velocity of a moving visual stimulus. Previous studies have reported that the duration of visual events is perceived as being longer for events filled with auditory stimuli than for events not filled with auditory stimuli, ie, the so-called “filled-duration illusion.” In this study, we have shown that auditory stimuli also affect the perceived velocity of a moving visual stimulus. In Experiment 1, a moving comparison stimulus (4.2∼5.8 deg/s was presented together with filled (or unfilled white-noise bursts or with no sound. The standard stimulus was a moving visual stimulus (5 deg/s presented before or after the comparison stimulus. The participants had to judge which stimulus was moving faster. The results showed that the perceived velocity in the auditory-filled condition was lower than that in the auditory-unfilled and no-sound conditions. In Experiment 2, we investigated the effects of auditory stimuli on velocity adaptation. The results showed that the effects of velocity adaptation in the auditory-filled condition were weaker than those in the no-sound condition. These results indicate that auditory stimuli tend to decrease the perceived velocity of a moving visual stimulus.

  20. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  1. Third sound in mixtures of helium-3 and helium-4

    International Nuclear Information System (INIS)

    Downs, J.L.

    1975-01-01

    Third sound (surface wave) velocities have been measured at temperatures of 1.205, 1.400, and 1.601 K in thin adsorbed films of 3 He-- 4 He mixtures of four concentrations. The molar concentrations of the overall mixtures, including both the film and vapor phases, were 20.254 percent, 39.907 percent, 64.968 percent, and 84.686 percent. The results of these measurements are generally consistent with a new theory of third sound in mixtures, in which the changes in velocity from that in the case of pure 4 He are shown to result from two factors. A decrease in the superfluid density in the mixture, which is enhanced by an increase in the superfluid healing length, tends to cause a reduction in the velocity, which is sometimes dominant for very thin films. An increase in the restoring force resulting from osmotic pressure in the mixture (in addition to Van der Waals forces) causes an increase in the velocity, which is dominant for thicker films. Other characteristics of third sound in mixtures are an increase in the onset thickness and an increase in the attenuation from those observed in pure 4 He. New measurements of third sound velocities in films of pure 4 He have also been made, with emphasis on very thin films near the onset thickness. The onset of third sound was seen to occur at less than the maximum velocity, and dispersion has been observed in very thin films which is qualitatively in agreement with theory

  2. Second-sound studies of coflow and counterflow of superfluid 4He in channels

    International Nuclear Information System (INIS)

    Varga, Emil; Skrbek, L.; Babuin, Simone

    2015-01-01

    We report a comprehensive study of turbulent superfluid 4 He flow through a channel of square cross section. We study for the first time two distinct flow configurations with the same apparatus: coflow (normal and superfluid components move in the same direction), and counterflow (normal and superfluid components move in opposite directions). We realise also a variation of counterflow with the same relative velocity, but where the superfluid component moves while there is no net flow of the normal component through the channel, i.e., pure superflow. We use the second-sound attenuation technique to measure the density of quantised vortex lines in the temperature range 1.2 K ≲ T ≲ T λ ≈ 2.18 K and for flow velocities from about 1 mm/s up to almost 1 m/s in fully developed turbulence. We find that both the steady-state and temporal decay of the turbulence significantly differ in the three flow configurations, yielding an interesting insight into two-fluid hydrodynamics. In both pure superflow and counterflow, the same scaling of vortex line density with counterflow velocity is observed, L∝V cf 2 , with a pronounced temperature dependence; in coflow instead, the vortex line density scales with velocity as L ∝ V 3/2 and is temperature independent; we provide theoretical explanations for these observations. Further, we develop a new promising technique to use different second-sound resonant modes to probe the spatial distribution of quantised vortices in the direction perpendicular to the flow. Preliminary measurements indicate that coflow is less homogeneous than counterflow/superflow, with a denser concentration of vortices between the centre of the channel and its walls

  3. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  4. The Microflown, an acoustic particle velocity sensor

    NARCIS (Netherlands)

    de Bree, H.E.

    2003-01-01

    The Microflown is an acoustic sensor directly measuring particle velocity instead of sound pressure, which is usually measured by conventional microphones. Since its invention in 1994 it is mostly used for measurement purposes (broadband1D and 3D-sound intensity measurement and acoustic impedance).

  5. A shrouded aerosol sampling probe: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    McFarland, A.R.; Ortiz, C.A.; Moore, M.E.; DeOtte, R.E. Jr.; Somasundaram, S.

    1988-08-01

    A new device has been developed for sampling aerosol particles from moving air streams--a shrouded probe. In the design reported herein, a 30 mm diameter sampling probe is located concentrically within a 105 mm diameter cylindrically-shaped shroud. The flow rate through the sampling probe is a constant value of 170 l/min. The dynamic pressure of the external air stream forces flow through the region between the shroud and the internal probe. The velocity of the main air stream, U/sub o/, is reduced in the shroud such that the velocity just upstream of the probe, U/sub s/, is 0.40 that of U/sub o/. By reducing the main air stream velocity, the aerosol losses on the internal walls of the probe inlet are considerably reduced. For a typical isokinetic probe sampling at 170 l/min in an air stream with a velocity of 14 m/s, the wall losses of 10 μm aerodynamic diameter particles are 39% of the total aspirated aerosol; whereas, the wall losses in the shrouded probe are 13%. Also, by reducing the velocity of the air stream in the shroud, anisokinetic effects can be substantially reduced. Wind tunnel experiments with 10 μm diameter particles over the range of free stream velocities of 2.0 to 14 m/s show the transmission ratio (ratio of aerosol transmitted through the probe to aerosol concentration in the free stream) to be within the range of 0.93 to 1.11. These data are for a constant flow rate of 170 l/min through the probe. 19 refs., 7 figs

  6. Coupling of Rayleigh-like waves with zero-sound modes in normal 3He

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Ketterson, J.B.

    1985-01-01

    The Landau kinetic equation is solved in the collisionless regime for a sample of normal 3 He excited by a surface perturbation of arbitrary ω and k. The boundary condition for the nonequilibrium particle distribution is determined for the case of specular reflection of the elementary excitations at the interface. Using the above solution, the energy flux through the boundary is obtained as a function of the surface wave velocity ω/k. The absorption spectrum and its frequency derivative are calculated numerically for typical values of temperature and pressure. The spectrum displays a sharp, resonant-like maximum concentrated at the longitudinal sound velocity and a sharp maximum of the derivative concentrated at the transverse sound velocity. The energy transfer is cut off discontinuously below the Fermi velocity. An experimental measurement of the energy transfer spectrum would permit a determination of both zero-sound velocities and the Fermi velocity with spectroscopic precision

  7. Spatial resolution limits for the localization of noise sources using direct sound mapping

    DEFF Research Database (Denmark)

    Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren

    2016-01-01

    the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially...... extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring......One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has...

  8. Investigation of fourth sound propagation in HeII in the presence of superflow

    International Nuclear Information System (INIS)

    Andrei, Y.E.

    1980-01-01

    The temperature dependence of a superflow-induced downshift of the fourth sound velocity in HeII confined in various restrictive media was measured. We found that the magnitude of the downshift strongly depends on the restrictive medium, whereas the temperature dependence is universal. The results are interpreted in terms of local superflow velocities approaching the Landau critical velocity. This model provides and understanding of the nature of the downshift and correctly predicts temperature dependence. The results show that the Landau excitation model, even when used at high velocities, where interactions between elementary excitations are substantial, hield good agreement with experiment when a first order correction is introduced to account for these interactions. In a separate series of experiments, fourth sound-like propagation in HeII in a grafoil-filled resonator was observed. The sound velocity was found to be more than an order of magnitude smaller than that of ordinary fourth sound. This significant reduction is explained in terms of a model in which the pore structure in grafoil is pictured as an ensemble of coupled Helmholz resonators

  9. Thermal and viscous effects on sound waves: revised classical theory.

    Science.gov (United States)

    Davis, Anthony M J; Brenner, Howard

    2012-11-01

    In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.

  10. P--V--T and sound velocity data for fluid n-D2 in the range 75-300 K and 2-20 kbar

    International Nuclear Information System (INIS)

    Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.

    1977-11-01

    Simultaneous static measurements of pressure, volume, temperature, and sound velocity are reported in deuterium fluid in the range 75 less than or equal to T less than or equal to 300K and 2 less than or equal to P less than or equal to 20 kbar [0.2 to 2.0 GPa]. The 1340 sets of data points along the 33 different isotherms are presented so that they may be available for use in equation-of-state development

  11. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  12. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  13. On the absorption of a sound in helium 2

    International Nuclear Information System (INIS)

    Matveev, Yu.A.

    1977-01-01

    A theory is developed which describes the propagation of high frequency sound in helium 2 at low temperatures (T 15 atm.) pressures when the phonon energy spectrum becomes stable. The absorption and sound dispersion coefficients under these conditions are calculated. The dependence of the velocity of second sound on frequency is determined. The resonance properties of the solution obtained are discussed

  14. Sound dispersion in a spin-1 Ising system near the second-order phase transition point

    International Nuclear Information System (INIS)

    Erdem, Ryza; Keskin, Mustafa

    2003-01-01

    Sound dispersion relation is derived for a spin-1 Ising system and its behaviour near the second-order phase transition point or the critical point is analyzed. The method used is a combination of molecular field approximation and Onsager theory of irreversible thermodynamics. If we assume a linear coupling of sound wave with the order parameter fluctuations in the system, we find that the dispersion which is the relative sound velocity change with frequency behaves as ω 0 ε 0 , where ω is the sound frequency and ε the temperature distance from the critical point. In the ordered region, one also observes a frequency-dependent velocity or dispersion minimum which is shifted from the corresponding attenuation maxima. These phenomena are in good agreement with the calculations of sound velocity in other magnetic systems such as magnetic metals, magnetic insulators, and magnetic semiconductors

  15. Measuring probe for measurement of local velocities

    International Nuclear Information System (INIS)

    Casal, V.; Arnold, G.; Kirchner, R.; Kussmaul, H.; Miller, H.

    1988-03-01

    The report describes a method for measurement of local velocities. It bases on the detection of the propagation of a temperature pulse induced into the fluid. The method can also be applied in flowing liquid metals with superimposed magnetic field; in this case common measuring principles fail application. The measuring system discussed consists of, a measuring head, a heating system, amplifiers and a PC. The latter performs process operation, data sampling, and evaluation of velocity. The measuring head itself includes a miniaturized heater (as a pulse marker) heated by the heating system in a short pulse, and a number of thermocouples (sensors) for detection of signals. The design, construction, and examination of a developed measuring device is described. (orig.) [de

  16. Influence of probe geometry on pitot-probe displacement in supersonic turbulent flow

    Science.gov (United States)

    Allen, J. M.

    1975-01-01

    An experiment was conducted to determine the varying effects of six different probe-tip and support-shaft configurations on pitot tube displacement. The study was stimulated by discrepancies between supersonic wind-tunnel tests conducted by Wilson and Young (1949) and Allen (1972). Wilson (1973) had concluded that these discrepancies were caused by differences in probe geometry. It is shown that in fact, no major differences in profiles of streamwise velocity over streamwise velocity at boundary-layer edge vs normal coordinate over boundary-layer total thickness result from geometry. The true cause of the discrepancies, however, remains to be discovered.

  17. Impacts of distinct observations during the 2009 Prince William Sound field experiment: A data assimilation study

    Science.gov (United States)

    Li, Z.; Chao, Y.; Farrara, J.; McWilliams, J. C.

    2012-12-01

    A set of data assimilation experiments, known as Observing System Experiments (OSEs), are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of three types: High Frequency (HF) radar surface velocities, vertical profiles of temperature/salinity (T/S) measured by ships, moorings, Autonomous Underwater Vehicles and gliders, and satellite sea surface temperatures (SSTs). The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill. It is suggested that a potentially promising observing network could be based on satellite SSHs and SSTs along with sparse T/S profiles, and future satellite SSHs with wide swath coverage and higher resolution may offer excellent data that will be of great use for predicting the circulation in the Sound.

  18. Results of the non-nulling calibration of five-hole pressure probe

    Science.gov (United States)

    Bereznai, J.; Mlynár, P.; Masaryk, M.

    2017-09-01

    In the laboratory of the Institute of Energy Machinery, Faculty of Mechanical Engineering in Bratislava were produced amount of pressure probes of different designs. Special position among themselves are five-hole pressure probe with tip of sphere or wedge used to determine the velocity vector in a unknown flow fields. Such probes have to be calibrated during blowing an air stream of known velocity magnitude and components of the velocity vector at different angles of attack, when the characteristic information about pressures on a sensitive part of the measuring probe is obtained.

  19. An Experimental Concept for Probing Nonlinear Physics in Radiation Belts

    Science.gov (United States)

    Crabtree, C. E.; Ganguli, G.; Tejero, E. M.; Amatucci, B.; Siefring, C. L.

    2017-12-01

    A sounding rocket experiment, Space Measurement of Rocket-Released Turbulence (SMART), can be used to probe the nonlinear response to a known stimulus injected into the radiation belt. Release of high-speed neutral barium atoms (8- 10 km/s) generated by a shaped charge explosion in the ionosphere can be used as the source of free energy to seed weak turbulence in the ionosphere. The Ba atoms are photo-ionized forming a ring velocity distribution of heavy Ba+ that is known to generate lower hybrid waves. Induced nonlinear scattering will convert the lower hybrid waves into EM whistler/magnetosonic waves. The escape of the whistlers from the ionospheric region into the radiation belts has been studied and their observable signatures quantified. The novelty of the SMART experiment is to make coordinated measurement of the cause and effect of the turbulence in space plasmas and from that to deduce the role of nonlinear scattering in the radiation belts. Sounding rocket will carry a Ba release module and an instrumented daughter section that includes vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors. The goal of these measurements is to determine the whistler and lower hybrid wave amplitudes and spectrum in the ionospheric source region and look for precipitated particles. The Ba release may occur at 600-700 km near apogee. Ground based cameras and radio diagnostics can be used to characterize the Ba and Ba+ release. The Van Allen Probes can be used to detect the propagation of the scattering-generated whistler waves and their effects in the radiation belts. By detecting whistlers and measuring their energy density in the radiation belts the SMART mission will confirm the nonlinear generation of whistlers through scattering of lower hybrid along with other nonlinear responses of the radiation belts and their connection to weak turbulence.

  20. Experimental investigation of ultrasonic velocity anisotropy in ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/pram/077/02/0345-0355. Keywords. Magnetic fluids; ultrasonic wave; sound velocity; anisotropy. Abstract. Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is ...

  1. Plasma flow measurement using directional Langmuir probe under weakly ion-magnetized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Kenichi; Okamoto, Atsushi [Graduate School of Science, Nagoya Univ., Nagoya (Japan); Yoshimura, Shinji; Tanaka, Masayoshi Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    It is both experimentally and theoretically demonstrated that ion flow velocity at an arbitrary angle with respect to the magnetic field can be measured with a directional Langmuir probe. Based on the symmetry argument, we show that the effect of magnetic field on directional probe current is exactly canceled in determining the ion flow velocity, and obtain the generalized relation between flow velocity and directional probe currents valid for any flowing direction. The absolute value of the flow velocity is determined by an in situ calibration method of the probe. The applicability limit of the present method to a strongly ion-magnetized plasma is experimentally examined. (author)

  2. Second sound tracking system

    Science.gov (United States)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  3. A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows

    Science.gov (United States)

    Tinoco, R. O.; Goldstein, E. B.; Coco, G.

    2016-12-01

    We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.

  4. Propagation of sound wave in high density deuterium at high temperatures

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1986-01-01

    The velocity and the attenuation constant of sound wave have been calculated for high density (10 24 ∼ 10 27 /cm 3 ) deuterium at high temperatures (10 -1 ∼ 10 4 eV). This calculation was made to understand the fuel properties in inertial confinement fusion and to obtain the basic data for pellet design. The isentropic sound wave which propagates in deuterium in plasma state at temperature T i = T e , is dealt with. The velocity is derived using the modulus of bulk elasticity of the whole system and the modulus of shear elasticity due to ion-ion interaction. For the calculation of attenuation constant, the bulk and shear viscosity due to ion-ion interaction, the shear viscosity of free electron gas, and the thermal conductivity due to free electrons are considered. The condition of frequency for the existence of such isentropic sound wave is discussed. The possibility of penetration into the fuel pellet in inertial confinement fusion is also discussed. The followings have been found: (1) The sound velocity is determined mainly from the bulk elasticity. The contribution of the shear elasticity is small. The velocity ranges from 2.8 x 10 6 to 1.5 x 10 8 cm/s in the above mentioned temperature and density regions. (2) The coefficient of attenuation constant with respect to ω 2 /2ρu 3 plotted versus temperature with the parameter of density shows a minimum. At temperatures below this minimum, the attenuation comes mainly from the bulk viscosity due to ion-ion interaction and the shear viscosity due to free electron gas. At temperatures above this minimum, the sound is attenuated mainly by the thermal conductivity due to electrons. (3) The condition for the existence of such adiabatic sound wave, is satisfied with the frequency less than 10 10 Hz. But, as for the pellet design, the wave length of sound with frequency less than 10 10 Hz is longer than the diameter of pellet when compressed highly. (author)

  5. The sound of high winds. The effect of atmospheric stability on wind turbine sound and microphone noise

    International Nuclear Information System (INIS)

    Van den Berg, G.P.

    2006-01-01

    In this thesis issues are raised concerning wind turbine noise and its relationship to altitude dependent wind velocity. The following issues are investigated: what is the influence of atmospheric stability on the speed and sound power of a wind turbine?; what is the influence of atmospheric stability on the character of wind turbine sound?; how widespread is the impact of atmospheric stability on wind turbine performance: is it relevant for new wind turbine projects; how can noise prediction take this stability into account?; what can be done to deal with the resultant higher impact of wind turbine sound? Apart from these directly wind turbine related issues, a final aim was to address a measurement problem: how does wind on a microphone affect the measurement of the ambient sound level?

  6. In situ Probe Microphone Measurement for Testing the Direct Acoustical Cochlear Stimulator

    Directory of Open Access Journals (Sweden)

    Christof Stieger

    2017-08-01

    Full Text Available Hypothesis: Acoustical measurements can be used for functional control of a direct acoustic cochlear stimulator (DACS.Background: The DACS is a recently released active hearing implant that works on the principle of a conventional piston prosthesis driven by the rod of an electromagnetic actuator. An inherent part of the DACS actuator is a thin titanium diaphragm that allows for movement of the stimulation rod while hermetically sealing the housing. In addition to mechanical stimulation, the actuator emits sound into the mastoid cavity because of the motion of the diaphragm.Methods: We investigated the use of the sound emission of a DACS for intra-operative testing. We measured sound emission in the external auditory canal (PEAC and velocity of the actuators stimulation rod (Vact in five implanted ears of whole-head specimens. We tested the influence various positions of the loudspeaker and a probe microphone on PEAC and simulated implant malfunction in one example.Results: Sound emission of the DACS with a signal-to-noise ratio >10 dB was observed between 0.5 and 5 kHz. Simulated implant misplacement or malfunction could be detected by the absence or shift in the characteristic resonance frequency of the actuator. PEAC changed by <6 dB for variations of the microphone and loudspeaker position.Conclusion: Our data support the feasibility of acoustical measurements for in situ testing of the DACS implant in the mastoid cavity as well as for post-operative monitoring of actuator function.

  7. The magnetic-distortion probe: velocimetry in conducting fluids.

    Science.gov (United States)

    Miralles, Sophie; Verhille, Gautier; Plihon, Nicolas; Pinton, Jean-François

    2011-09-01

    A new type of velocimeter, capable of local velocity measurements in conducting fluids, is introduced. The principle of the "magnetic-distortion probe" is based on the measurement of the induced magnetic field by the flow of a conducting fluid in the vicinity of a localized magnetic field. The new velocimeter has no moving parts, and can be enclosed in a sealed cap, easing the implementation in harsh environments, such as liquid metals. The proposed method allows one to probe both the continuous part and fluctuations of the velocity, the temporal and spatial resolution being linked to the actual geometric configuration of the probe. A prototype probe has been tested in a gallinstan pipe flow and in a fully turbulent flow of liquid gallium generated by the counter rotation of two coaxial impellers in a cylinder. The signals have been compared to a reference potential probe and show very good agreement both for time-averaged velocities and turbulent fluctuations. The prototype is shown to detect motion from a few cm s(-1) to a few m s(-1). Moreover, the use of the magnetic-distortion probe with large-scale applied magnetic field is discussed. © 2011 American Institute of Physics

  8. Sound segregation via embedded repetition is robust to inattention.

    Science.gov (United States)

    Masutomi, Keiko; Barascud, Nicolas; Kashino, Makio; McDermott, Josh H; Chait, Maria

    2016-03-01

    The segregation of sound sources from the mixture of sounds that enters the ear is a core capacity of human hearing, but the extent to which this process is dependent on attention remains unclear. This study investigated the effect of attention on the ability to segregate sounds via repetition. We utilized a dual task design in which stimuli to be segregated were presented along with stimuli for a "decoy" task that required continuous monitoring. The task to assess segregation presented a target sound 10 times in a row, each time concurrent with a different distractor sound. McDermott, Wrobleski, and Oxenham (2011) demonstrated that repetition causes the target sound to be segregated from the distractors. Segregation was queried by asking listeners whether a subsequent probe sound was identical to the target. A control task presented similar stimuli but probed discrimination without engaging segregation processes. We present results from 3 different decoy tasks: a visual multiple object tracking task, a rapid serial visual presentation (RSVP) digit encoding task, and a demanding auditory monitoring task. Load was manipulated by using high- and low-demand versions of each decoy task. The data provide converging evidence of a small effect of attention that is nonspecific, in that it affected the segregation and control tasks to a similar extent. In all cases, segregation performance remained high despite the presence of a concurrent, objectively demanding decoy task. The results suggest that repetition-based segregation is robust to inattention. (c) 2016 APA, all rights reserved).

  9. Sound Clocks and Sonic Relativity

    Science.gov (United States)

    Todd, Scott L.; Menicucci, Nicolas C.

    2017-10-01

    Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.

  10. Fast reciprocating probe system on the EAST superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Chang, J. F.; Wan, B. N.; Xu, G. S.; Li, B.; Xu, C. S.; Yan, N.; Wang, L.; Liu, S. C.; Jiang, M.; Liu, P. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Xiao, C. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Department of Physics and Engineering Physics, Plasma Physics Laboratory, University of Saskatchewan, Saskatoon SK S7N 5E2 (Canada)

    2010-11-15

    A new fast reciprocating probe system (FRPS) has been built and installed on the outer midplane of the EAST tokamak to investigate the profiles of the boundary plasma parameters such as electron density and temperature. The system consists of a two-stage motion drive mechanism: slow motion and fast motion. The fast motion is powered by a servo motor, which drives the probe horizontally up to 50 cm to scan the edge region of the EAST tokamak. The maximum velocity achieved is 2 m/s. High velocity and flexible control of the fast motion are the remarkable features of this FRPS. A specially designed connector installed at the front end of the probe shaft makes it easy to install or replace the probe head on FRPS. During the latest experimental campaign in the spring of 2010, a probe head with seven tips, including two tips for a Mach probe, has been used. An example is given for simultaneous profile measurements of the plasma temperature, plasma density, and the plasma flow velocity.

  11. Sound velocity in the coolant of boiling nuclear reactors

    International Nuclear Information System (INIS)

    Proskuryakov, K.N.; Parshin, D.A.; Novikov, K.S.; Galivec, E.Yu.

    2009-01-01

    To prevent resonant interaction between acoustic resonance and natural frequencies of FE, FA and RI oscillations, it is necessary to determine the value of EACPO. Based on results of calculations of EACPO and natural frequencies of FR, FA and RI oscillations values, it would be possible to reveal the dynamical loadings on metal that are dangerous for the initiation of cracking process in the early stage of negative condition appearance. To calculate EACPO it is necessary to know the Speed Velocity in Coolant. Now we do not have any data about real values of such important parameter as pressure pulsations propagation velocity in two phase environments, especially in conditions with variations of steam content along the length of FR, with taking into account the type of local resistances, flow geometry etc. While areas of resonant interaction of the single-phase liquid coolant with equipment and internals vibrations are estimated well enough, similar estimations in the conditions of presence of a gas and steam phase in the liquid coolant are inconvenient till now. Paper presents results of calculation of velocity of pressure pulsations distribution in two-phase flow formed in core of RBMK-1000 reactors. Feature of the developed techniques is that not only thermodynamic factors and effect of a speed difference between water and steam in a two phase flow but also geometrical features of core, local resistance, non heterogeneity in the two phase environment and power level of a reactor are considered. Obtained results evidence noticeable decreasing of velocity propagation of pressure pulsations in the presence of steam actions in the liquids. Such estimations for real RC of boiling nuclear reactors with steam-liquid coolant are obtained for the first time. (author)

  12. Search for fourth sound propagation in supersolid 4He

    International Nuclear Information System (INIS)

    Aoki, Y.; Kojima, H.; Lin, X.

    2008-01-01

    A systematic study is carried out to search for fourth sound propagation solid 4 He samples below 500 mK down to 40 mK between 25 and 56 bar using the techniques of heat pulse generator and titanium superconducting transition edge bolometer. If solid 4 He is endowed with superfluidity below 200 mK, as indicated by recent torsional oscillator experiments, theories predict fourth sound propagation in such a supersolid state. If found, fourth sound would provide convincing evidence for superfluidity and a new tool for studying the new phase. The search for a fourth sound-like mode is based on the response of the bolometers to heat pulses traveling through cylindrical samples of solids grown with different crystal qualities. Bolometers with increasing sensitivity are constructed. The heater generator amplitude is reduced to the sensitivity limit to search for any critical velocity effects. The fourth sound velocity is expected to vary as ∞ √ Ρ s /ρ. Searches for a signature in the bolometer response with such a characteristic temperature dependence are made. The measured response signal has not so far revealed any signature of a new propagating mode within a temperature excursion of 5 μK from the background signal shape. Possible reasons for this negative result are discussed. Prior to the fourth sound search, the temperature dependence of heat pulse propagation was studied as it transformed from 'second sound' in the normal solid 4 He to transverse ballistic phonon propagation. Our work extends the studies of [V. Narayanamurti and R. C. Dynes, Phys. Rev. B 12, 1731 (1975)] to higher pressures and to lower temperatures. The measured transverse ballistic phonon propagation velocity is found to remain constant (within the 0.3% scatter of the data) below 100 mK at all pressures and reveals no indication of an onset of supersolidity. The overall dynamic thermal response of solid to heat input is found to depend strongly on the sample preparation procedure

  13. Third sound resonance studies of 3He-4He mixture films

    International Nuclear Information System (INIS)

    Heinrichs, R.M.

    1985-01-01

    Third sound velocity and dissipation measurements were performed on 3 He- 4 He mixture films of 3.6 and 5.3 layers 4 He and up to 3 added layers 3 He in the temperature range 0.05-0.3 K using third sound resonance techniques. The 3 He concentration dependence of the velocity was in excellent agreement with a simple layered film model down to the lowest concentrations studied. At the higher 3 He concentrations, the velocity began to deviate from the model, rising above it. The concentration dependence of the dissipation showed some unique structure with a maximum at 0.3-0.5 layers added 3 He for both 4 He coverages. The third sound velocity in the low concentration mixture films had very little temperature dependence in the range studied. The dissipation, however, had some definite temperature dependent structure that evolved with concentration. This evolution was most pronounced at concentrations near the dissipation maximum and eventually became exponential at the higher coverages. Fitting these exponentials produced estimates of the difference in binding energy for the 3 He states in and on the film. In this higher 3 He concentration regime, a temperature dependence of the velocity was observed that began as a small peak at about 0.15 K and eventually became a step at the highest concentrations studied. The exponential nature of the dissipation became clouded when the velocity evolved into this last behavior

  14. Model studies of bubble size distribution and sound propagation at microleaks in sodium-heated steam generators

    International Nuclear Information System (INIS)

    Uhlmann, G.

    1979-01-01

    The reaction zone of a small water leak in a sodium-heated steam generator (microleak) has been simulated by jet gassing or argon in water. The bubble diameter distribution in the bubble flow has been measured using a photoelectric method. The bubble size distribution obtained can be approached by an exponential distribution. For this case, phase velocity and sound damping have been calculated in the two-phase mixture. In the case of small ratios of sound frequency to the expected value of bubble resonance frequency, the frequency-independent sound velocity of the homogeneous mixture is obtained as a function of the gas volume fraction. In the case of very high frequencies, the sound velocity of the pure liquid is obtained for any gas volume fractions. In the whole range investigated damping is strongly dependent on the frequency. (author)

  15. Worldwide Echo-Sounding Correction Tables to Convert to Standard Velocity Depths

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Echo-sounding tables (3rd Edition) were prepared by D.J.T. Carter of the Marine Information and Advisory Service (United Kingdom) for the conversion of raw...

  16. Statistical representation of sound textures in the impaired auditory system

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2015-01-01

    Many challenges exist when it comes to understanding and compensating for hearing impairment. Traditional methods, such as pure tone audiometry and speech intelligibility tests, offer insight into the deficiencies of a hearingimpaired listener, but can only partially reveal the mechanisms...... that underlie the hearing loss. An alternative approach is to investigate the statistical representation of sounds for hearing-impaired listeners along the auditory pathway. Using models of the auditory periphery and sound synthesis, we aimed to probe hearing impaired perception for sound textures – temporally...

  17. Acoustic methods for measuring bullet velocity

    OpenAIRE

    Courtney, Michael

    2008-01-01

    This article describes two acoustic methods to measure bullet velocity with an accuracy of 1% or better. In one method, a microphone is placed within 0.1 m of the gun muzzle and a bullet is fired at a steel target 45 m away. The bullet's flight time is the recorded time between the muzzle blast and sound of hitting the target minus the time for the sound to return from the target to the microphone. In the other method, the microphone is placed equidistant from both the gun muzzle and the stee...

  18. Counting probe

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki

    1976-01-01

    Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)

  19. Superhilac real-time velocity measurements

    International Nuclear Information System (INIS)

    Feinberg, B.; Meaney, D.; Thatcher, R.; Timossi, C.

    1987-03-01

    Phase probes have been placed in several external beam lines at the LBL heavy ion linear accelerator (SuperHILAC) to provide non-destructive velocity measurements independent of the ion being accelerated. The existing system has been improved to provide the following features: a display refresh rate better than twice per second, a sensitive pseudo-correlation technique to pick out the signal from the noise, simultaneous measurements of up to four ion velocities when more than one beam is being accelerated, and a touch-screen operator interface. These improvements allow the system to be used as a routine tuning aid and beam velocity monitor

  20. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  1. Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1

    Science.gov (United States)

    Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard

    2018-02-01

    Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.

  2. Viscosity and attenuation of sound wave in high density deuterium

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Ariyasu, Tomio

    1985-01-01

    The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)

  3. Zero sound and quasiwave: separation in the magnetic field

    International Nuclear Information System (INIS)

    Bezuglyj, E.V.; Bojchuk, A.V.; Burma, N.G.; Fil', V.D.

    1995-01-01

    Theoretical and experimental results on the behavior of the longitudinal and transverse electron sound in a weak magnetic field are presented. It is shown theoretically that the effects of the magnetic field on zero sound velocity and ballistic transfer are opposite in sign and have sufficiently different dependences on the sample width, excitation frequency and relaxation time. This permits us to separate experimentally the Fermi-liquid and ballistic contributions in the electron sound signals. For the first time the ballistic transfer of the acoustic excitation by the quasiwave has been observed in zero magnetic field

  4. Tensor quasiparticle interaction and spin-isospin sound in nuclear matter

    International Nuclear Information System (INIS)

    Haensel, P.

    1979-01-01

    The effect of the tensor components of the quasiparticle interaction in nuclear matter on the spin-isospin sound type excitations is studied. Numerical results are obtained using a simplified model of the quasiparticle interaction in nuclear matter. The quasiparticle distribution matrix corresponding to the spin-isospin sound is found to be qualitatively different from that obtained for purely central quasiparticle interaction. The macroscopic effects, however, are restricted to a small change in the phase velocity of the spin-isospin sound. (Auth.)

  5. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Chi-Shung; Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Severn, Greg [Department of Physics, University of San Diego, San Diego, California 92110 (United States); Baalrud, Scott D. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2016-05-15

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar–Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.

  6. Temperature profile and sound velocity data using CTD casts from the US Naval Oceanographic Office as part of the Master Oceanographic Observation Data Set (MOODS) project, from 1975-04-11 to 1998-08-31 (NODC Accession 9900220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and sound velocity data were collected using CTD, XCTD, and XBT casts in the Arctic Ocean, Mediterranean Sea - Eastern Basin, North Pacific...

  7. Ultrasonic study on ternary liquid systems by laser-sound interaction

    International Nuclear Information System (INIS)

    Behboudnia, M.; Necati Ecevit, F.; Aydin, R.

    1994-01-01

    To investigate the ultrasound velocity in liquid mixtures an interferometer based on Raman-Nath diffraction of laser light by sound waves is described. Ultrasonic velocity measurements in water in dependence of temperature and in carboxylic acids with triethylamine in benzene of different mole fractions are presented. (author). 14 refs, 4 figs, 1 tab

  8. Boundary effects on sound propagation in superfluids

    International Nuclear Information System (INIS)

    Jensen, H.H.; Smith, H.; Woelfle, P.

    1983-01-01

    The attenuation of fourth sound propagating in a superfluid confined within a channel is determined on a microscopic basis, taking into account the scatter of the quasiparticles from the walls. The Q value of a fourth-sound resonance is shown to be inversely proportional to the stationary flow of thermal excitations through the channel due to an external force. Our theoretical estimates of Q are compared with experimentally observed values for 3 He. The transition between first and fourth sound is studied in detail on the basis of two-fluid hydrodynamics, including the slip of the normal component at the walls. The slip is shown to have a strong influence on the velocity and attenuation in the transition region between first and fourth sound, offering a means to examine the interaction of quasiparticles with a solid surface

  9. Sound modes in hot nuclear matter

    International Nuclear Information System (INIS)

    Kolomietz, V. M.; Shlomo, S.

    2001-01-01

    The propagation of the isoscalar and isovector sound modes in a hot nuclear matter is considered. The approach is based on the collisional kinetic theory and takes into account the temperature and memory effects. It is shown that the sound velocity and the attenuation coefficient are significantly influenced by the Fermi surface distortion (FSD). The corresponding influence is much stronger for the isoscalar mode than for the isovector one. The memory effects cause a nonmonotonous behavior of the attenuation coefficient as a function of the relaxation time leading to a zero-to-first sound transition with increasing temperature. The mixing of both the isoscalar and the isovector sound modes in an asymmetric nuclear matter is evaluated. The condition for the bulk instability and the instability growth rate in the presence of the memory effects is studied. It is shown that both the FSD and the relaxation processes lead to a shift of the maximum of the instability growth rate to the longer-wavelength region

  10. Initial Results from Lunar Electromagnetic Sounding with ARTEMIS

    Science.gov (United States)

    Fuqua, H.; Fatemi, S.; Poppe, A. R.; Delory, G. T.; Grimm, R. E.; De Pater, I.

    2016-12-01

    Electromagnetic Sounding constrains conducting layers of the lunar interior by observing variations in the Interplanetary Magnetic Field. Here, we focus our analysis on the time domain transfer function method locating transient events observed by two magnetometers near the Moon. We analyze ARTEMIS and Apollo magnetometer data. This analysis assumes the induced field responds undisturbed in a vacuum. In actuality, the dynamic plasma environment interacts with the induced field. Our models indicate distortion but not confinement occurs in the nightside wake cavity. Moreover, within the deep wake, near-vacuum region, distortion of the induced dipole fields due to the interaction with the wake is minimal depending on the magnitude of the induced field, the geometry of the upstream fields, and the upstream plasma parameters such as particle densities, solar wind velocity, and temperatures. Our results indicate the assumption of a vacuum dipolar response is reasonable within this minimally disturbed zone. We then interpret the ATEMIS magnetic field signal through a geophysical forward model capturing the induced response based on prescribed electrical conductivity models. We demonstrate our forward model passes benchmarking analyses and solves the magnetic induction response for any input signal as well as any 2 or 3 dimensional conductivity profile. We locate data windows according to the following criteria: (1) probe locations such that the wake probe is within 500km altitude within the wake cavity and minimally disturbed zone, and the second probe is in the free streaming solar wind; (2) a transient event consisting of an abrupt change in the magnetic field occurs enabling the observation of induction; (3) cross correlation analysis reveals the magnetic field signals are well correlated between the two probes and distances observed. Here we present initial ARTEMIS results providing further insight into the lunar interior structure. This method and modeling results

  11. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  12. Acoustic holography for piston sound radiation with non-uniform velocity profiles

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2010-01-01

    The theory of orthogonal (Zernike) expansions of functions on a disk, as used in the diffraction theory of optical aberrations, is applied to obtain (semi-) analytical results for the radiation of sound due to a non-uniformly moving, baffled, circular piston. For this particular case, a scheme for

  13. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-01-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×10 4 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×10 4 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  14. Sound Beams with Shockwave Pulses

    Science.gov (United States)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  15. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  16. First, second and fourth sound in relativistic superfluidity theory with account for dissipative effects

    International Nuclear Information System (INIS)

    Vyil'chins'kij, S.Yi.

    1993-01-01

    The equations describing the propagation of the first, second and fourth sound in the relativistic theory of superfluidity are derived with account for dissipation. The expressions for the velocity of the first, second and fourth sound are obtained. (author). 4 refs

  17. A new estimator for vector velocity estimation [medical ultrasonics

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    A new estimator for determining the two-dimensional velocity vector using a pulsed ultrasound field is derived. The estimator uses a transversely modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation...... be introduced, and the velocity estimation is done at a fixed depth in tissue to reduce the influence of a spatial velocity spread. Examples for different velocity vectors and field conditions are shown using both simple and more complex field simulations. A relative accuracy of 10.1% is obtained...

  18. Experimental investigation of a blunt trailing edge flow field with application to sound generation

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Daniel W. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, B026 Hessert Laboratory, Notre Dame, IN (United States); Morris, Scott C. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, 109 Hessert Laboratory, Notre Dame, IN (United States)

    2006-11-15

    The unsteady lift generated by turbulence at the trailing edge of an airfoil is a source of radiated sound. The objective of the present research was to measure the velocity field in the near wake region of an asymmetric beveled trailing edge in order to determine the flow mechanisms responsible for the generation of trailing edge noise. Two component velocity measurements were acquired using particle image velocimetry. The chord Reynolds number was 1.9 x 10{sup 6}. The data show velocity field realizations that were typical of a wake flow containing an asymmetric periodic vortex shedding. A phase average decomposition of the velocity field with respect to this shedding process was utilized to separate the large scale turbulent motions that occurred at the vortex shedding frequency (i.e., those responsible for the production of tonal noise) from the smaller scale turbulent motions, which were interpreted to be responsible for the production of broadband sound. The small scale turbulence was found to be dependent on the phase of the vortex shedding process implying a dependence of the broadband sound generated by the trailing edge on the phase of the vortex shedding process. (orig.)

  19. Development of transient internal probe (TIP) magnetic field diagnostic

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1994-01-01

    The Transient Internal Probe (TIP) is designed to permit measurement of internal magnetic fields, in hot, high density plasmas. The concept consists of accelerating a probe to high velocities (2.2 Km/s) in order to minimize probe exposure time to plasma. Faraday rotation within the probe is used to measure the local magnetic field. An Argon laser illuminates the probe consisting of a Faraday-rotator material with a retro-reflector that returns the incident light to the detection system. Performance results of the light gas gun and optical detection system will be shown. To date, the gas gun has been extensively tested consistently achieving velocities between 2 and 3 km/s. The probe and detection scheme have been tested by dropping the probe through a static magnetic field. Magnetic field resolution of 20 gauss and spatial resolution of 5 mm has been achieved. System frequency response is 10Mhz. Work is currently being conducted to integrate the diagnostic system with laboratory plasma experiments. Specifically a gas interfaced system has been developed to prevent helium muzzle gas from entering the plasma chamber with the probe. Additionally the probe must be separated from the sabot which protects the probe during acceleration in the gas gun. Data will be presented showing the results of various separation techniques

  20. Non-invasive optoacoustic probing of the density and stiffness of single biological cells

    Science.gov (United States)

    Dehoux, T.; Audoin, B.

    2012-12-01

    Recently, the coherent generation of GHz acoustic waves using ultrashort laser pulses has demonstrated the ability to probe the sound velocity in vegetal cells and in cell-mimicking soft micro-objects with micrometer resolution, opening tremendous potentialities for single-cell biology. However, manipulating biological media in physiological conditions is often a technical challenge when using a laser-based setup. In this article, we present a new opto-acoustic bio-transducer composed of a thin metal film sputtered on a transparent heat sink that allows reducing importantly the laser-induced cellular stresses, and offers a wide variety of optical configurations. In particular, by exploiting the acoustic reflection coefficient at the sample-transducer interface and the photoacoustic interaction inside the transparent sample, the density and compressibility of the sample can be probed simultaneously. Using an ad hoc signal analysis based on Hilbert and wavelet transforms, these quantities are measured accurately for a reference fluid. Similar analysis performed in a single vegetal cell also suggests high sensitivity to the state of the transducer-cell interface, and notably to the presence of the plasma membrane that encloses the cell vacuole.

  1. Stellar Velocity Dispersion: Linking Quiescent Galaxies to their Dark Matter Halos

    OpenAIRE

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-01-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This prop...

  2. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback

    Science.gov (United States)

    Bicen, Baris

    or enhance the desired vibration modes of the diaphragm. This approach provides an electronic means to tailor the directional response of the microphones, with significant implications in device performance for various applications. As an example, the use of this device as a particle velocity sensor for sound intensity and sound power measurements is investigated. Without force feedback, the gradient microphone provides accurate particle velocity measurement for frequencies below 2 kHz, after which the pressure response of the second order mode becomes significant. With two-sided force feedback, the calculations show that this upper frequency limit may be increased to 10 kHz. This improves the pressure residual intensity index by more than 15 dB in the 50 Hz--10 kHz range, matching the Class I requirements of IEC 1043 standards for intensity probes without any need for multiple spacers.

  3. Hot-Wire Calibration at Low Velocities: Revisiting the Vortex Shedding Method

    Directory of Open Access Journals (Sweden)

    Sohrab S. Sattarzadeh

    2013-01-01

    Full Text Available The necessity to calibrate hot-wire probes against a known velocity causes problems at low velocities, due to the inherent inaccuracy of pressure transducers at low differential pressures. The vortex shedding calibration method is in this respect a recommended technique to obtain calibration data at low velocities, due to its simplicity and accuracy. However, it has mainly been applied in a low and narrow Reynolds number range known as the laminar vortex shedding regime. Here, on the other hand, we propose to utilize the irregular vortex shedding regime and show where the probe needs to be placed with respect to the cylinder in order to obtain unambiguous calibration data.

  4. Vector velocity estimation using directional beam forming and cross-correlation

    DEFF Research Database (Denmark)

    2000-01-01

    The two-dimensional velocity vector using a pulsed ultrasound field can be determined with the invention. The method uses a focused ultrasound field along the velocity direction for probing the moving medium under investigation. Several pulses are emitted and the focused received fields along...

  5. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  6. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  7. On-axis and far-field sound radiation from resilient flat and dome-shaped radiators

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2009-01-01

    On-axis and far-field series expansions are developed for the sound pressure due to an arbitrary, circular symmetric velocity distribution on a flat radiator in an infinite baffle. These expansions are obtained by expanding the velocity distributions in terms of orthogonal polynomials

  8. Uranium-series radionuclides as tracers of geochemical processes in Long Island Sound

    International Nuclear Information System (INIS)

    Benninger, L.K.

    1976-05-01

    An estuary can be visualized as a membrane between land and the deep ocean, and the understanding of the estuarine processes which determine the permeability of this membrane to terrigenous materials is necessary for the estimation of fluxes of these materials to the oceans. Natural radionuclides are useful probes into estuarine geochemistry because of the time-dependent relationships among them and because, as analogs of stable elements, they are much less subject to contamination during sampling and analysis. In this study the flux of heavy metals through Long Island Sound is considered in light of the material balance for excess 210 Pb, and analyses of concurrent seston and water samples from central Long Island Sound are used to probe the internal workings of the estuary

  9. Comparative sound velocity measurements between porous rock and fully-dense material under crustal condition: The cases of Darley Dale sandstone and copper block

    Science.gov (United States)

    Kung, J.; Chien, Y. V.; Wu, W.; Dong, J.; Chang, Y.; Tsai, C.; Yang, M.; Wang, K.

    2012-12-01

    Previous studies showed that the voids and their geometry in the sedimentary rocks have great influence on the compressibility of rock, which reflects on its elastic velocities. Some models were developed to discuss the relations among velocity, porosity and void geometry. Therefore, the information of porosity, and void geometry and its distribution in rock is essential for understanding how the elastic properties of porous rocks affected by their poregeometry. In this study, we revisited a well-studied porous rock, Darley Dale sandstone, which has been studied by different groups with different purposes. Most of them are the deformation experiments. Different from previous studies, we measured the sound velocity of Darley dale sandstone under hydrostatic conditions. Also, we employed different techniques to investigate the pore geometry and porosity of Darley Dale sandstone to gain the insight of velocity changing behavior under the crustal conditions. Here, we measured a fully-dense copper block for a comparison. We performed X-ray CT scanning (XCT) to image the pore space of sandstone to construct the 3-D image of pore geometry, distribution and the pore size. The CT image data are allowed us to estimate the porosity of sandstone, too. One the other hand, the porosity of sample was measured using imbibitions method at ambient conditions and helium porosimeter at high pressure (up to 150 MPa). A set of specimens were cored from Darley Dale sandstone block. P and S wave velocities of specimens were measured at ambient conditions. We also performed high pressure velocity measurements on a selected rock specimen and a copper block up to 150 MPa under dry condition. Porosity of a set of rock specimens measured by imbibitions method was spanned from 6% to 15%, largely distributed within a range of 8%-11%. Compared the porosity obtained from three different techniques, imbibitions method, helium porosimeter and XCT, values from those measurements are in good agreement

  10. 10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression

    Directory of Open Access Journals (Sweden)

    Patrick Neff

    2017-05-01

    Full Text Available Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM sounds (two pure tones, noise, music, and frequency modulated (FM sounds and unmodulated sounds (pure tone, noise regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively.Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min, and loudness (reduced by 30 dB and linear fade out. Repeated measures mixed model analyses of variance (ANOVA were calculated to assess differences in loudness growth between the stimuli for each block separately.Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes with strongest suppression right after stimulus offset [F(6, 1331 = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink

  11. Control of group velocity by phase-changing collisions

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2005-01-01

    We discuss the influence of phase-changing collisions on the group velocities in Doppler-broadened, cycling, degenerate two-level systems where F e =F g +1 and F g >0, interacting with pump and probe lasers, that exhibit electromagnetically induced absorption (EIA). Two model systems are considered: the N system where the pump and probe are polarized perpendicularly, and EIA is due to transfer of coherence (TOC), and the double two-level system (TLS) where both lasers have the same polarization, and EIA is due to transfer of population (TOP). For the case of Doppler-broadened EIA TOC, which occurs at low pump intensity, there is a switch from positive to negative dispersion and group velocity, as the rate of phase-changing collisions is increased. For the case of EIA TOP at low pump intensity, the dispersion and group velocity remain negative even when the collision rate is increased. Pressure-induced narrowing, accompanied by an increase in the magnitude of the negative dispersion and a decrease in the magnitude of the negative group velocity, occurs in both EIA TOC and EIA TOP, at low pump intensity. When the pump intensity is increased, a switch from negative to positive dispersion and group velocity, with increasing collision rate, also occurs in the double TLS system. However, the effect is far smaller than in the case of the N system at low pump intensity

  12. Second sound, osmotic pressure, and Fermi-liquid parameters in 3He-4He solutions

    International Nuclear Information System (INIS)

    Corruccini, L.R.

    1984-01-01

    Second-sound velocities and osmotic pressures are analyzed to obtain the first experimental values for the Landau compressibility parameter F 0 /sup s/ in 3 He- 4 He solutions. Data are presented as a function of pressure and 3 He concentration, and are compared to theoretical predictions. The square of the second-sound velocity at finite temperature is found to be accurately proportional to the internal energy of a perfect Fermi gas. Using inertial effective masses given by the Landau-Pomeranchuk theory, the square of the velocity is found to separate into two parts: a temperature-dependent part characterized completely by ideal Fermi-gas behavior and a temperature-independent part containing all the Fermi-liquid corrections. This is related to a similar separation found in the osmotic pressure

  13. Two-dimensional dissipation in third sound resonance

    International Nuclear Information System (INIS)

    Buck, A.L.; Mochel, J.M.; Illinois Univ., Urbana

    1981-01-01

    The first determination of non-linear superflow dissipation in a truly two-dimensional helium film is reported. Superfluid velocities were measured using third sound resonance on a closed superfluid film. The predicted power law dissipation function, with exponent of approximately eight, is observed at three temperatures in a film of 0.58 mobile superfluid layers. (orig.)

  14. The screening of sound in a subsonic flow by a cylindrical airbubble layer and a semi-infinite tube

    NARCIS (Netherlands)

    Grand, Pieter le

    1971-01-01

    The problem here under discussion lies in the field of sound waves in layered media. The presence of a layer with a velocity of sound less than that of the surroundings will enable sound waves to travel along great distances. In this domain many investigations have been made e. g. in connection with

  15. A comparison of two different sound intensity measurement principles

    DEFF Research Database (Denmark)

    Jacobsen, Finn; de Bree, Hans-Elias

    2005-01-01

    , and compares the two measurement principles with particular regard to the sources of error in sound power determination. It is shown that the phase calibration of intensity probes that combine different transducers is very critical below 500 Hz if the measurement surface is very close to the source under test...

  16. A piezo-bar pressure probe

    Science.gov (United States)

    Friend, W. H.; Murphy, C. L.; Shanfield, I.

    1967-01-01

    Piezo-bar pressure type probe measures the impact velocity or pressure of a moving debris cloud. It measures pressures up to 200,000 psi and peak pressures may be recorded with a total pulse duration between 5 and 65 musec.

  17. Songbirds and humans apply different strategies in a sound sequence discrimination task

    Directory of Open Access Journals (Sweden)

    Yoshimasa eSeki

    2013-07-01

    Full Text Available The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an AAB or ABB rule. The sound elements used were taken from a variety of male (M and female (F calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: 1 memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and 2 using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e. AAB and ABB; MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

  18. Songbirds and humans apply different strategies in a sound sequence discrimination task.

    Science.gov (United States)

    Seki, Yoshimasa; Suzuki, Kenta; Osawa, Ayumi M; Okanoya, Kazuo

    2013-01-01

    The abilities of animals and humans to extract rules from sound sequences have previously been compared using observation of spontaneous responses and conditioning techniques. However, the results were inconsistently interpreted across studies possibly due to methodological and/or species differences. Therefore, we examined the strategies for discrimination of sound sequences in Bengalese finches and humans using the same protocol. Birds were trained on a GO/NOGO task to discriminate between two categories of sound stimulus generated based on an "AAB" or "ABB" rule. The sound elements used were taken from a variety of male (M) and female (F) calls, such that the sequences could be represented as MMF and MFF. In test sessions, FFM and FMM sequences, which were never presented in the training sessions but conformed to the rule, were presented as probe stimuli. The results suggested two discriminative strategies were being applied: (1) memorizing sound patterns of either GO or NOGO stimuli and generating the appropriate responses for only those sounds; and (2) using the repeated element as a cue. There was no evidence that the birds successfully extracted the abstract rule (i.e., AAB and ABB); MMF-GO subjects did not produce a GO response for FFM and vice versa. Next we examined whether those strategies were also applicable for human participants on the same task. The results and questionnaires revealed that participants extracted the abstract rule, and most of them employed it to discriminate the sequences. This strategy was never observed in bird subjects, although some participants used strategies similar to the birds when responding to the probe stimuli. Our results showed that the human participants applied the abstract rule in the task even without instruction but Bengalese finches did not, thereby reconfirming that humans have to extract abstract rules from sound sequences that is distinct from non-human animals.

  19. Effects of wind turbine wake on atmospheric sound propagation

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    In this paper, we investigate the sound propagation from a wind turbine considering the effects of wake-induced velocity deficit and turbulence. In order to address this issue, an advanced approach was developed in which both scalar and vector parabolic equations in two dimensions are solved. Flow...

  20. Experiments on the attenuation of third sound in saturated superfluid helium films

    International Nuclear Information System (INIS)

    Telschow, K.L.; Galkiewicz, R.K.; Hallock, R.B.

    1976-01-01

    Upper limits of the attenuation of third sound in saturated superfluid 4 He films have been measured in three separate experiments. Observations at frequencies from 0.1 to 200 Hz indicate that the attenuation in these thick films is substantially lower than would be inferred from the only previous experiment done on saturated films. The third-sound velocity is observed to have the temperature dependence predicted by Bergman

  1. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding

    Directory of Open Access Journals (Sweden)

    Mari eTervaniemi

    2014-07-01

    Full Text Available Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel to compare memory-related MMN and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians. In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  2. Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding.

    Science.gov (United States)

    Tervaniemi, Mari; Huotilainen, Minna; Brattico, Elvira

    2014-01-01

    Musical expertise modulates preattentive neural sound discrimination. However, this evidence up to great extent originates from paradigms using very simple stimulation. Here we use a novel melody paradigm (revealing the auditory profile for six sound parameters in parallel) to compare memory-related mismatch negativity (MMN) and attention-related P3a responses recorded from non-musicians and Finnish Folk musicians. MMN emerged in both groups of participants for all sound changes (except for rhythmic changes in non-musicians). In Folk musicians, the MMN was enlarged for mistuned sounds when compared with non-musicians. This is taken to reflect their familiarity with pitch information which is in key position in Finnish folk music when compared with e.g., rhythmic information. The MMN was followed by P3a after timbre changes, rhythm changes, and melody transposition. The MMN and P3a topographies differentiated the groups for all sound changes. Thus, the melody paradigm offers a fast and cost-effective means for determining the auditory profile for music-sound encoding and also, importantly, for probing the effects of musical expertise on it.

  3. Sensitivity studies on the multi-sensor conductivity probe measurement technique for two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Worosz, Ted [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Bernard, Matt [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States); Kong, Ran; Toptan, Aysenur [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Kim, Seungjin, E-mail: skim@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 230 Reber Building, University Park, PA 16802 (United States); Hoxie, Chris [The United States Nuclear Regulatory Commission, 11545 Rockville Pike, Rockville, MD 20852 (United States)

    2016-12-15

    Highlights: • Revised conductivity probe circuit to eliminate signal “ghosting” among sensors. • Higher sampling frequencies suggested for bubble number frequency and a{sub i} measurements. • Two-phase parameter sensitivity to measurement duration and bubble number investigated. • Sensors parallel to pipe wall recommended for symmetric bubble velocity measurements. • Sensor separation distance ratio (s/d) greater than four minimizes bubble velocity error. - Abstract: The objective of this study is to advance the local multi-sensor conductivity probe measurement technique through systematic investigation into several practical aspects of a conductivity probe measurement system. Firstly, signal “ghosting” among probe sensors is found to cause artificially high bubble velocity measurements and low interfacial area concentration (a{sub i}) measurements that depend on sampling frequency and sensor impedance. A revised electrical circuit is suggested to eliminate this artificial variability. Secondly, the sensitivity of the probe measurements to sampling frequency is investigated in 13 two-phase flow conditions with superficial liquid and gas velocities ranging from 1.00–5.00 m/s and 0.17–2.0 m/s, respectively. With increasing gas flow rate, higher sampling frequencies, greater than 100 kHz in some cases, are required to adequately capture the bubble number frequency and a{sub i} measurements. This trend is due to the increase in gas velocity and the transition to the slug flow regime. Thirdly, the sensitivity of the probe measurements to the measurement duration as well as the sample number is investigated for the same flow conditions. Measurements of both group-I (spherical/distorted) and group-II (cap/slug/churn-turbulent) bubbles are found to be relatively insensitive to both the measurement duration and the number of bubbles, as long as the measurements are made for a duration long enough to capture a collection of samples characteristic to a

  4. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  5. First and second sound of a unitary Fermi gas in highly oblate harmonic traps

    International Nuclear Information System (INIS)

    Hu, Hui; Dyke, Paul; Vale, Chris J; Liu, Xia-Ji

    2014-01-01

    We theoretically investigate first and second sound modes of a unitary Fermi gas trapped in a highly oblate harmonic trap at finite temperatures. Following the idea by Stringari and co-workers (2010 Phys. Rev. Lett. 105 150402), we argue that these modes can be described by the simplified two-dimensional two-fluid hydrodynamic equations. Two possible schemes—sound wave propagation and breathing mode excitation—are considered. We calculate the sound wave velocities and discretized sound mode frequencies, as a function of temperature. We find that in both schemes, the coupling between first and second sound modes is large enough to induce significant density fluctuations, suggesting that second sound can be directly observed by measuring in situ density profiles. The frequency of the second sound breathing mode is found to be highly sensitive to the superfluid density. (paper)

  6. Design - manufacturing and characterization of specific ultrasonic probes

    International Nuclear Information System (INIS)

    Petit, J.

    1985-01-01

    Optimization of ultrasonic examinations requires essentially to determine precisely parameters used for manufacturing of probes and to check characteristics of beams used. The system presented permits an automatic determination of dimensions of beams in conditions which are totally representative of those of their use. In the field of ultrasonic examinations a good estimate or knowledge of sound beams is of great help to solve difficult examination problems. The FRAMATOME's Centre d'Etude et de Recherche en Essais Non Destructifs (CEREND) : (Study and Research Center in Non-Destructive Testing) has developed and elaborated various techniques in order to improve ultrasonic examinations with specific probes. These techniques concern design, manufacturing and characterization of these probes

  7. A New Method for Estimation of Velocity Vectors

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Munk, Peter

    1998-01-01

    The paper describes a new method for determining the velocity vector of a remotely sensed object using either sound or electromagnetic radiation. The movement of the object is determined from a field with spatial oscillations in both the axial direction of the transducer and in one or two...... directions transverse to the axial direction. By using a number of pulse emissions, the inter-pulse movement can be estimated and the velocity found from the estimated movement and the time between pulses. The method is based on the principle of using transverse spatial modulation for making the received...

  8. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones

    Science.gov (United States)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S.; Merchant, Saumil N.; Ravicz, Michael E.; Rosowski, John J.

    2009-02-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. Micro-scale fiberoptic pressure sensors enabled the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. Results showed that: pressure of scala vestibuli was much greater than scala tympani except at low and high frequencies where scala tympani pressure affects the input to the cochlea; the differential pressure proved to be an excellent measure of normal ossicular transduction of sound (shown to decrease 30-50 dB with ossicular disarticulation, whereas the individual scala pressures were significantly affected by non-ossicular conduction of sound at high frequencies); the middle-ear gain and differential pressure were generally bandpass in frequency dependence; and the middle-ear delay in the human was over twice that of the gerbil. Concurrent stapes velocity measurements allowed determination of the differential impedance across the partition and round-window impedance. The differential impedance was generally resistive, while the round-window impedance was consistent with a compliance in conjunction with distributed inertia and damping. Our techniques can be used to study inner-ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round-window stimulation) - situations that cannot be completely quantified by measurements of stapes velocity or scala-vestibuli pressure by themselves.

  9. The AMEMIYA probe. Theoretical background

    International Nuclear Information System (INIS)

    Belitz, Hans Joahim; Althausen, Bernhard; Uehara, Kazuya; Amemiya, Hiroshi

    2010-01-01

    The present probe was developed in order to measure the temperature T i of positive ions in the scrape-off layer (SOL) of tokamak where T i is usually larger than the electron temperature Ti so that the presheath in front of the probe need not be considered and the ions reach the probe with the thermal velocity. The axis of the cylindrical probe is placed parallel to the magnetic field. The important parameter are L/a, the ratio of the length to the radius of the cylindrical probe and κ, the ratio of the probe radius to (π/4) 1/2 , where is the mean ion Larmor radius. The ion current densities to the side and the end surfaces are expressed by the double integral, which can give an analytical formula with respect to the value of κ. If two electrodes with different lengths are placed parallel to the magnetic field, the difference of current densities can be reduced to κ and hence to Ti. Some examples of the application of the probe to tokamaks, JFT-2M and Textor, are demonstrated. (author)

  10. Sound modes in holographic hydrodynamics for charged AdS black hole

    International Nuclear Information System (INIS)

    Matsuo, Yoshinori; Sin, Sang-Jin; Takeuchi, Shingo; Tsukioka, Takuya; Yoo, Chul-Moon

    2009-01-01

    In the previous paper we studied the transport coefficients of quark-gluon plasma in finite temperature and finite density in vector and tensor modes. In this paper, we extend it to the scalar modes. We work out the decoupling problem and hydrodynamic analysis for the sound mode in charged AdS black hole and calculate the sound velocity, the charge susceptibility and the electrical conductivity. We find that Einstein relation among the conductivity, the diffusion constant and the susceptibility holds exactly.

  11. Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology

    Science.gov (United States)

    Hirth, Michael; Kuhn, Jochen; Müller, Andreas

    2015-02-01

    Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.

  12. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  13. Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma

    International Nuclear Information System (INIS)

    Lee, Dongsoo; Severn, Greg; Oksuz, Lutfi; Hershkowitz, Noah

    2006-01-01

    The Bohm sheath criterion in single- and two-ion species plasma is studied with laser-induced fluorescence using a diode laser. Xenon is added to a low pressure unmagnetized dc hot filament argon discharge confined by surface multidipole magnetic fields. The Ar II transition at 668.614 nm is adopted for optical pumping to detect the fluorescence from the plasma and to measure the argon ion velocity distribution functions with respect to positions relative to a negatively biased boundary plate. The structures of the plasma sheath and presheath are measured by an emissive probe. The ion concentrations of the two-species in the bulk plasma are calculated from ion acoustic wave experiments. Results are compared with previous experiments of Ar-He plasmas in which the argon ions were the heavier ion species. Unlike the previous results, the argon speed is slower than its own Bohm velocity near the sheath-presheath boundary in the Ar-Xe plasma where argon ions are the lighter ion species. We argue that this result is consistent with the behaviour of the helium ion required by the generalized Bohm criterion in the previous experiments with Ar-He plasmas. Further, our results suggest that the measured argon ion speed approaches the ion sound speed of the system

  14. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    Science.gov (United States)

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  15. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  16. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  17. The baffle influence on sound radiation characteristics of a plate

    Directory of Open Access Journals (Sweden)

    Bao Liu

    2017-01-01

    Full Text Available The acoustic radiation characteristics of the baffle plates and unbaffle plates are calculated and compared by single-layer potential and double-layer potential. Based on the boundary integral equation, the sound pressure integral equation of the baffle and the baffle are deduced respectively. According to the boundary compatibility condition, the sound pressure and the vibration velocity of the plates are obtained. Further, the dynamic equation of the structure is substituted into the vibration equation in the form of the baffle plate and the baffle plate. The sound pressure difference and the displacement of a plate surface are in the form of the vibration mode superposition and the acoustic radiation impedance of the double integral form is obtained, which determines vibration mode coefficient and sound radiation parameters. The effect of the baffle on the acoustic radiation characteristics of the thin plate is analyzed by comparing the acoustic radiation parameters with the simple and simple rectangular plate in water.

  18. Movement and Perceptual Strategies to Intercept Virtual Sound Sources.

    Directory of Open Access Journals (Sweden)

    Naeem eKomeilipoor

    2015-05-01

    Full Text Available To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling, while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.

  19. Investigation of magnetic transitions through ultrasonic measurements in double-layered CMR manganite La1.2Sr1.8Mn2O7

    Science.gov (United States)

    Reddy, Y. S.; Vishnuvardhan Reddy, C.

    2014-03-01

    A polycrystalline, double-layered, colossal magnetoresistive manganite La1.2Sr1.8Mn2O7 is synthesized by sol-gel process and its magnetic and ultrasonic properties were investigated in the temperature range 80-300 K. The sample has Curie temperature at 124 K, where the sample exhibits a transition from paramagnetic insulator to ferromagnetic metallic state. The longitudinal sound velocity measurements show a significant hardening of sound velocity below TC, which may be attributed to the coupling between ferromagnetic spins and longitudinal acoustic phonons. The magnetization and ultrasonic studies reveal the presence of secondary transition at ≈ 260 K in this sample. The present sound velocity measurement results confirm the reliability of ultrasonic investigations as an independent tool to probe magnetic transitions in manganites.

  20. Interpretation of plasma impurity deposition probes. Analytic approximation

    Science.gov (United States)

    Stangeby, P. C.

    1987-10-01

    Insertion of a probe into the plasma induces a high speed flow of the hydrogenic plasma to the probe which, by friction, accelerates the impurity ions to velocities approaching the hydrogenic ion acoustic speed, i.e., higher than the impurity ion thermal speed. A simple analytic theory based on this effect provides a relation between impurity fluxes to the probe Γimp and the undisturbed impurity ion density nimp, with the hydrogenic temperature and density as input parameters. Probe size also influences the collection process and large probes are found to attract a higher flux density than small probes in the same plasma. The quantity actually measured, cimp, the impurity atom surface density (m-2) net-deposited on the probe, is related to Γimp and thus to nimp by taking into account the partial removal of deposited material caused by sputtering and the redeposition process.

  1. Measurement of gas phase characteristics using new monofiber optical probes and real time signal processing

    International Nuclear Information System (INIS)

    Cartellier, A.

    1998-01-01

    Single optical or impedance phase detection probes are able to measure gas velocities provided that their sensitive length L is accurately known. In this paper, it is shown that L can be controlled during the manufacture of optical probes. Beside, for a probe geometry in the form of a cone + a cylinder + a cone, the corresponding rise time / velocity correlation becomes weakly sensitive to uncontrollable parameter such as the angle of impact on the interface. A real time signal processing performing phase detection as well as velocity measurements is described. Since its sensitivity to the operator inputs is less than the reproducibility of measurements, it is a fairly objective tool. Qualifications achieved in air/water flows with various optical probes demonstrate that the void fraction is detected with a relative error less than 10 %. For bubbly flows, the gas flux is accurate within ±10%, but this uncertainty increases when large bubbles are present in the flow. (author)

  2. Intermediate layer observed by the impedance probe on board the S-310-3 sounding rocket

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y; Obayashi, T [Tokyo Univ. (Japan). Inst. of Space and Aeronautical Science

    1977-08-01

    The intermediate layer (or M layer) was detected at the height of 150-170 km in the nighttime ionospheric electron density profile measured by impedance probe on board the S-310-3 sounding rocket. This M layer was interpreted to be generated by the convergence effect of the ionization due to the west-east component of the solar tidal wind as suggested by K.Fujitaka. The altitude variation of the M layer during the course of a night is studied at three other locations with different latitudes. At Boulder (40/sup 0/N, 105/sup 0/W) and Wallops Island (38/sup 0/N, 75/sup 0/W) which have higher latitude than that of KSC(31/sup 0/N, 131/sup 0/E), the altitude of the observed M layers seems to be determined by the north-south component of the wind above about 150 km, by the west-east component of the wind below about 130 km in agreement with the drift theory. The altitude of the observed M layers at Arecibo (19/sup 0/N, 67/sup 0/W) located at lower latitude than that of KSC also coincides with the theoretical estimate when the direction of the north-south wind is assumed to be opposite to that prevailing in middle latitudes. Thus, M layer observations at these stations are consistent with the view that around the latitude range of KSC the north-south wind reverses direction and the west-east component of the wind has the dominant effect on the formation of the M layer.

  3. Anomalous cross-field velocities in a CIV laboratory experiment

    International Nuclear Information System (INIS)

    Axnaes, I.

    1988-10-01

    The axial and radial ion velocities and the electron radial velocity are determined in coaxial plasma gun operated under critical velocity conditions. The particle celocities are determined from probe measurement together with He I 3889 AA absolute intensity measurements and the consideration of the total momentum balance of the current sheet. The ions are found move axially and the electrons radially much faster than predicted by the E/B drift in the macroscopic fields. These results agree with what can be expected from the instability processes, which has earlier been proposed to operate in these experiments. It is therefore a direct experimental demonstration that instability processes have to be invoked not only for the electron heating, but also to explain the macroscopic velocities and currents. (author)

  4. Considering the potential of IAR emissions for ionospheric sounding

    Science.gov (United States)

    Potapov, A. S.; Polyushkina, T. N.; Tsegmed, B.; Oinats, A. V.; Pashinin, A. Yu.; Edemskiy, I. K.; Mylnikova, A. A.; Ratovsky, K. G.

    2017-11-01

    Knowledge of the ionospheric state allows us to adjust the forecasts of radio wave propagation, specify the environment models, and follow the changes of space weather. At present, probing of the ionosphere is produced by radio sounding with ground ionosondes, as well as by raying signals from satellites. We want to draw attention to the possibility of the diagnosis of the ionospheric parameters by detecting ultra-low frequency (ULF) electromagnetic emission generated in the so-called ionospheric Alfvén resonator (IAR). To do this, we present observations of the IAR emission made simultaneously for the first time at three stations using identical induction magnetometers. The stations are within one-hour difference of local time, two of them are mid-latitudinal; the third one is situated in the auroral zone. We compare frequency and frequency difference between adjacent harmonics of the observed multi-band emission with ionospheric parameters measured at the stations using ionosondes and GPS-observations. Diurnal variations of the ionospheric and ULF emission characteristics are also compared. The results show that there is quite a stable correlation between the resonant frequencies of the resonator bands and the critical frequency of the F2 layer of the ionosphere, namely, the frequency of the IAR emission varies inversely as the critical frequency of the ionosphere. This is due to the fact that the frequency of oscillation captured in the resonator is primarily determined by the Alfvén velocity (which depends on the plasma density) in the ionospheric F2 layer. The correlation is high; it varies at different stations, but is observed distinctly along the whole meridian. However, coefficients of a regression equation that connects the ionosphere critical frequency with DSB frequency vary significantly from day to day at all stations. The reason for such a big spread of the regression parameters is not clear and needs further investigation before we are able to

  5. Contamination effects on fixed-bias Langmuir probes

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, C. T. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet zu Kiel, 24098 Kiel (Germany); Barjatya, A. [Department of Physical Sciences, Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114 (United States)

    2012-11-15

    Langmuir probes are standard instruments for plasma density measurements on many sounding rockets. These probes can be operated in swept-bias as well as in fixed-bias modes. In swept-bias Langmuir probes, contamination effects are frequently visible as a hysteresis between consecutive up and down voltage ramps. This hysteresis, if not corrected, leads to poorly determined plasma densities and temperatures. With a properly chosen sweep function, the contamination parameters can be determined from the measurements and correct plasma parameters can then be determined. In this paper, we study the contamination effects on fixed-bias Langmuir probes, where no hysteresis type effect is seen in the data. Even though the contamination is not evident from the measurements, it does affect the plasma density fluctuation spectrum as measured by the fixed-bias Langmuir probe. We model the contamination as a simple resistor-capacitor circuit between the probe surface and the plasma. We find that measurements of small scale plasma fluctuations (meter to sub-meter scale) along a rocket trajectory are not affected, but the measured amplitude of large scale plasma density variation (tens of meters or larger) is attenuated. From the model calculations, we determine amplitude and cross-over frequency of the contamination effect on fixed-bias probes for different contamination parameters. The model results also show that a fixed bias probe operating in the ion-saturation region is affected less by contamination as compared to a fixed bias probe operating in the electron saturation region.

  6. Measurements of ion velocity separation and ionization in multi-species plasma shocks

    Science.gov (United States)

    Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.

    2018-05-01

    The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.

  7. Interference effects on quantum light group velocity in cavity induced transparency

    International Nuclear Information System (INIS)

    Eilam, Asaf; Thanopulos, Ioannis

    2015-01-01

    We investigate the propagation of a quantized probe field in a dense medium composed of three-level Λ-type systems under cavity electromagnetically induced transparency conditions. We treat the medium as composed of collective states of the three-level systems while the light-medium interaction occurs within clusters of such collective states depending on the photon number state of the probe field. We observe slower group velocity for lower photon number input probe field only under conditions of no interference between different clusters of collective states in the system. (paper)

  8. Spatiotemporal Signal Analysis via the Phase Velocity Transform

    International Nuclear Information System (INIS)

    Mattor, Nathan

    2000-01-01

    The phase velocity transform (PVT) is an integral transform that divides a function of space and time into components that propagate at uniform phase velocities without distortion. This paper examines the PVT as a method to analyze spatiotemporal fluctuation data. The transform is extended to systems with discretely sampled data on a periodic domain, and applied to data from eight azimuthally distributed probes on the Sustained Spheromak Physics Experiment (SSPX). This reveals features not shown by Fourier analysis, particularly regarding nonsinusoidal mode structure. (c) 2000 The American Physical Society

  9. Origin of the Drude peak and of zero sound in probe brane holography

    Directory of Open Access Journals (Sweden)

    Chi-Fang Chen

    2017-11-01

    Full Text Available At zero temperature, the charge current operator appears to be conserved, within linear response, in certain holographic probe brane models of strange metals. At small but finite temperature, we analytically show that the weak non-conservation of this current leads to both a collective “zero sound” mode and a Drude peak in the electrical conductivity. This simultaneously resolves two outstanding puzzles about probe brane theories. The nonlinear dynamics of the current operator itself appears qualitatively different.

  10. Payload charging events in the mesosphere and their impact on Langmuir type electric probes

    Directory of Open Access Journals (Sweden)

    T. A. Bekkeng

    2013-02-01

    Full Text Available Three sounding rockets were launched from Andøya Rocket Range in the ECOMA campaign in December 2010. The aim was to study the evolution of meteoric smoke particles during a major meteor shower. Of the various instruments onboard the rocket payload, this paper presents the data from a multi-Needle Langmuir Probe (m-NLP and a charged dust detector. The payload floating potential, as observed using the m-NLP instrument, shows charging events on two of the three flights. These charging events cannot be explained using a simple charging model, and have implications towards the use of fixed bias Langmuir probes on sounding rockets investigating mesospheric altitudes. We show that for a reliable use of a single fixed bias Langmuir probe as a high spatial resolution relative density measurement, each payload should also carry an additional instrument to measure payload floating potential, and an instrument that is immune to spacecraft charging and measures absolute plasma density.

  11. Measurement of sound velocity on metal surfaces by impulsive stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Shimada, Yukihiro; Murakami, Hiroshi; Nishimura, Akihiko

    2005-01-01

    Impulsive stimulated Brillouin Scattering (ISBS) experiment was performed in order to measure acoustic waves on metal surfaces. The ISBS technique offers robust method of obtaining acoustic velocities without physical contact. The generation and detection mechanism were discussed. (author)

  12. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  13. Noise and noise disturbances from wind power plants - Tests with interactive control of sound parameters for more comfortable and less perceptible sounds

    International Nuclear Information System (INIS)

    Persson-Waye, K.; Oehrstroem, E.; Bjoerkman, M.; Agge, A.

    2001-12-01

    In experimental pilot studies, a methodology has been worked out for interactively varying sound parameters in wind power plants. In the tests, 24 persons varied the center frequency of different band-widths, the frequency of a sinus-tone and the amplitude-modulation of a sinus-tone in order to create as comfortable a sound as possible. The variations build on the noise from the two wind turbines Bonus and Wind World. The variations were performed with a constant dba level. The results showed that the majority preferred a low-frequency tone (94 Hz and 115 Hz for Wind World and Bonus, respectively). The mean of the most comfortable amplitude-modulation varied between 18 and 22 Hz, depending on the ground frequency. The mean of the center-frequency for the different band-widths varied from 785 to 1104 Hz. In order to study the influence of the wind velocity on the acoustic character of the noise, a long-time measurement program has been performed. A remotely controlled system has been developed, where wind velocity, wind direction, temperature and humidity are registered simultaneously with the noise. Long-time registrations have been performed for four different wing turbines

  14. An apparatus for the determination of speeds of sound in fluids

    International Nuclear Information System (INIS)

    Gedanitz, Holger; Davila, Maria J.; Baumhoegger, Elmar; Span, Roland

    2010-01-01

    An apparatus for accurate measurements of the sound velocity in fluids is described, which is based on the pulse-echo technique, and operates up to 30 MPa in the temperature range between (250 and 350) K. The expanded uncertainties (k = 2) in the speed of sound measurements are 0.006%, 6 mK in the temperature, 2.1 hPa in the pressure up to 3 MPa, and 23.9 hPa above this value. Measurements of the speed of sound for nitrogen from (250 to 350) K and for water at temperatures between (303.15 and 323.15) K are presented at pressures up to 30 MPa to validate the new apparatus. The expanded overall uncertainty of the measurements on nitrogen and water were estimated to be 0.011% and 0.006%, respectively. The speed of sound of both fluids was compared with literature sources showing an excellent agreement among them, with relative deviations lower than 0.01% in nitrogen and 0.006% in water.

  15. Experimental observation of the layering and wetting of multilayer liquid helium-4 films on graphite

    International Nuclear Information System (INIS)

    Kumar, S.

    1987-01-01

    The multilayer adsorption of liquid 4 He on graphite was studied by using third sound, a substrate-induced surface wave in a superfluid film, to probe the 4 He film-vapor interface. The third-sound velocity decreases with increasing film thickness and can be used to monitor the film growth. Graphite, forms of which have large areas of atomic uniformity, is an ideal substrate for the study of film growth and layering. An annular resonator made out of graphite fibers was used for the experiments. Such a resonator avoids problems such as capillary condensation present in earlier resonance experiments with graphite foam and vapor sound interference present in time-of-flight experiments with highly oriented pyrolitic graphite (HOPG). Measurements of film growth were made between temperatures of 0.35 and 1.25 K. The third-sound resonance frequency, which is proportional to the third-sound velocity, was used to follow the film growth. Simultaneous measurements of the third-sound velocity on glass provide an independent measure of the film thickness. Results obtained show continuous film growth up to at least 25 to 30 layers on graphite. Oscillations of the third-sound velocity for low film coverages shown evidence of layering of the film

  16. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    International Nuclear Information System (INIS)

    Polevoy, J.T.

    1989-06-01

    Experimental measurements of the average axial velocity v parallel of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V p and the beam current I b . V p is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I b is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v parallel and calculations of the corresponding transverse to longitudinal beam velocity ratio α = v perpendicular /v parallel at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical rf interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v parallel and α are determined through the use of a computer code entitled EGUN. EGUN is used to model the cathode and anode regions of the gyrotron and it computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of α at low α, with the expected values from EGUN often falling within the standard errors of the measured values. 10 refs., 29 figs., 2 tabs

  17. Adaptive sound speed correction for abdominal ultrasonography: preliminary results

    Science.gov (United States)

    Jin, Sungmin; Kang, Jeeun; Song, Tai-Kyung; Yoo, Yangmo

    2013-03-01

    Ultrasonography has been conducting a critical role in assessing abdominal disorders due to its noninvasive, real-time, low cost, and deep penetrating capabilities. However, for imaging obese patients with a thick fat layer, it is challenging to achieve appropriate image quality with a conventional beamforming (CON) method due to phase aberration caused by the difference between sound speeds (e.g., 1580 and 1450m/s for liver and fat, respectively). For this, various sound speed correction (SSC) methods that estimate the accumulated sound speed for a region-of interest (ROI) have been previously proposed. However, with the SSC methods, the improvement in image quality was limited only for a specific depth of ROI. In this paper, we present the adaptive sound speed correction (ASSC) method, which can enhance the image quality for whole depths by using estimated sound speeds from two different depths in the lower layer. Since these accumulated sound speeds contain the respective contributions of layers, an optimal sound speed for each depth can be estimated by solving contribution equations. To evaluate the proposed method, the phantom study was conducted with pre-beamformed radio-frequency (RF) data acquired with a SonixTouch research package (Ultrasonix Corp., Canada) with linear and convex probes from the gel pad-stacked tissue mimicking phantom (Parker Lab. Inc., USA and Model539, ATS, USA) whose sound speeds are 1610 and 1450m/s, respectively. From the study, compared to the CON and SSC methods, the ASSC method showed the improved spatial resolution and information entropy contrast (IEC) for convex and linear array transducers, respectively. These results indicate that the ASSC method can be applied for enhancing image quality when imaging obese patients in abdominal ultrasonography.

  18. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  19. Apparatus and method for determining movements and velocities of moving objects

    DEFF Research Database (Denmark)

    1998-01-01

    in the apparatus is applicable where wave energy is used to sense or detect an object by its scattering properties when using either sound waves or electro-magnetic waves. The movement can be detected according to the field properties. The field represented by the sampling pulse must feature a spatial oscillation...... in the directions, where the velocity components are of interest. Such a transversely oscillating field is e.g. generated by using apodization on individual transducer elements and a special focusing scheme. The apparatus uses waves of either sound or electro-magnetic radiation. The temporal characteristics...

  20. Effect of perforation on the sound transmission through a double-walled cylindrical shell

    Science.gov (United States)

    Zhang, Qunlin; Mao, Yijun; Qi, Datong

    2017-12-01

    An analytical model is developed to study the sound transmission loss through a general double-walled cylindrical shell system with one or two walls perforated, which is excited by a plane wave in the presence of external mean flow. The shell motion is governed by the classical Donnell's thin shell theory, and the mean particle velocity model is employed to describe boundary conditions at interfaces between the shells and fluid media. In contrast to the conventional solid double-walled shell system, numerical results show that perforating the inner shell in the transmission side improves sound insulation performance over a wide frequency band, and removes fluctuation of sound transmission loss with frequency at mid-frequencies in the absence of external flow. Both the incidence and azimuthal angles have nearly negligible effect on the sound transmission loss over the low and middle frequency range when perforating the inner shell. Width of the frequency band with continuous sound transmission loss can be tuned by the perforation ratio.

  1. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission

    Science.gov (United States)

    Yang, Jieun; Lee, Joong Seok; Lee, Hyeong Rae; Kang, Yeon June; Kim, Yoon Young

    2018-02-01

    Sound transmission reduction is typically governed by the mass law, requiring thicker panels to handle lower frequencies. When open holes must be inserted in panels for heat transfer, ventilation, or other purposes, the efficient reduction of sound transmission through holey panels becomes difficult, especially in the low-frequency ranges. Here, we propose slow-wave metamaterial open panels that can dramatically lower the working frequencies of sound transmission loss. Global resonances originating from slow waves realized by multiply inserted, elaborately designed subwavelength rigid partitions between two thin holey plates contribute to sound transmission reductions at lower frequencies. Owing to the dispersive characteristics of the present metamaterial panels, local resonances that trap sound in the partitions also occur at higher frequencies, exhibiting negative effective bulk moduli and zero effective velocities. As a result, low-frequency broadened sound transmission reduction is realized efficiently in the present metamaterial panels. The theoretical model of the proposed metamaterial open panels is derived using an effective medium approach and verified by numerical and experimental investigations.

  2. Continuous Re-Exposure to Environmental Sound Cues During Sleep Does Not Improve Memory for Semantically Unrelated Word Pairs.

    Science.gov (United States)

    Donohue, Kelly C; Spencer, Rebecca M C

    2011-06-01

    Two recent studies illustrated that cues present during encoding can enhance recall if re-presented during sleep. This suggests an academic strategy. Such effects have only been demonstrated with spatial learning and cue presentation was isolated to slow wave sleep (SWS). The goal of this study was to examine whether sounds enhance sleep-dependent consolidation of a semantic task if the sounds are re-presented continuously during sleep. Participants encoded a list of word pairs in the evening and recall was probed following an interval with overnight sleep. Participants encoded the pairs with the sound of "the ocean" from a sound machine. The first group slept with this sound; the second group slept with a different sound ("rain"); and the third group slept with no sound. Sleeping with sound had no impact on subsequent recall. Although a null result, this work provides an important test of the implications of context effects on sleep-dependent memory consolidation.

  3. Two-phase flow measurements with advanced instrumented spool pieces and local conductivity probes

    International Nuclear Information System (INIS)

    Turnage, K.G.; Davis, C.E.

    1979-01-01

    A series of two-phase, air-water and steam-water tests performed with instrumented spool pieces and with conductivity probes obtained from Atomic Energy of Canada, Ltd. is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Application of some two-phase mass flow models to the recorded spool piece data is made and preliminary results are shown. Velocity and void fraction information derived from the conductivity probes is presented and compared to velocities and void fractions obtained using the spool piece instrumentation

  4. Constraining cosmology with the velocity function of low-mass galaxies

    Science.gov (United States)

    Schneider, Aurel; Trujillo-Gomez, Sebastian

    2018-04-01

    The number density of field galaxies per rotation velocity, referred to as the velocity function, is an intriguing statistical measure probing the smallest scales of structure formation. In this paper we point out that the velocity function is sensitive to small shifts in key cosmological parameters such as the amplitude of primordial perturbations (σ8) or the total matter density (Ωm). Using current data and applying conservative assumptions about baryonic effects, we show that the observed velocity function of the Local Volume favours cosmologies in tension with the measurements from Planck but in agreement with the latest findings from weak lensing surveys. While the current systematics regarding the relation between observed and true rotation velocities are potentially important, upcoming data from H I surveys as well as new insights from hydrodynamical simulations will dramatically improve the situation in the near future.

  5. Sounding rocket flight report, MUMP 9 and MUMP 10

    Science.gov (United States)

    Grassl, H. J.

    1971-01-01

    The results of the launching of two-Marshall-University of Michigan Probes (MUMP 9 and MUMP 10), Nike-Tomahawk sounding rocket payloads, are summarized. The MUMP is similar to the thermosphere probe, an ejectable instrument package for studying the variability of the earth's atmospheric parameters. The MUMP 9 payload included an omegatron mass analyzer, a molecular fluorescence densitometer, a mini-tilty filter, and a lunar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature in the altitude range from approximately 143 to 297 km over Wallops Island, Virginia, during January 1971. The MUMP 10 payload included an omegatron mass analyzer, an electron temperature probe, a cryogenic densitometer, and a solar position sensor. These instruments permitted the determination of the molecular nitrogen density and temperature and the charged particle density and temperature in the altitude range from approximately 145 to 290 km over Wallops Island during the afternoon preceding the MUMP 9 launch.

  6. Analysis of Wave Velocity Patterns in Black Cherry Trees and its Effect on Internal Decay Detection

    Science.gov (United States)

    Guanghui Li; Xiping Wang; Jan Wiedenbeck; Robert J. Ross

    2013-01-01

    In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...

  7. First and second sound in cylindrically trapped gases.

    Science.gov (United States)

    Bertaina, G; Pitaevskii, L; Stringari, S

    2010-10-08

    We investigate the propagation of density and temperature waves in a cylindrically trapped gas with radial harmonic confinement. Starting from two-fluid hydrodynamic theory we derive effective 1D equations for the chemical potential and the temperature which explicitly account for the effects of viscosity and thermal conductivity. Differently from quantum fluids confined by rigid walls, the harmonic confinement allows for the propagation of both first and second sound in the long wavelength limit. We provide quantitative predictions for the two sound velocities of a superfluid Fermi gas at unitarity. For shorter wavelengths we discover a new surprising class of excitations continuously spread over a finite interval of frequencies. This results in a nondissipative damping in the response function which is analytically calculated in the limiting case of a classical ideal gas.

  8. Portal monitor incorporating smart probes

    International Nuclear Information System (INIS)

    Bartos, D.; Constantin, F.; Guta, T.

    2003-01-01

    Portal monitors are intended for detection of radioactive and special nuclear materials in vehicles, pedestrians, luggage, as well as for prevention of illegal traffic of radioactive sources. Monitors provide audio and visual alarms when radioactive and/or special nuclear materials are detected. They can be recommended to officers of customs, border guard and emergency services, civil defense, fire brigades, police and military departments or nuclear research or energetic facilities. The portal monitor developed by us consists in a portal frame, which sustains five intelligent probes having long plastic scintillator (0.5 liters each). The probes communicate, by serial transmission, with a Central Unit constructed on the basis of the 80552 microcontroller. This one manages the handshake, calculates the background, establishes the measuring time, starts and stops each measurement and makes all the other decisions. Sound signals and an infrared sensor monitor the passing through the portal and the measuring procedure. For each measurement the result is displayed on a LCD device contaminated/uncontaminated; for the contaminated case a loud and long sound signal is also issued. An RS 232 serial interface is provided in order to further developments or custom made devices. As a result, the portal monitor detects 1 μ Ci 137 Cs, spread all over a human body, in a 20 μR/h gamma background for a measuring time of 1.5 or 10 seconds giving a 99% confidence factor. (authors)

  9. The use of the automation for experiments using computers: determination of sound velocity in air

    International Nuclear Information System (INIS)

    Valdes, R.; Valdes, P.; Clavelo, A.

    1998-01-01

    This article shows the use of IBM PCs joysticks in order to measure the speed of sound in the air. Electrical circuits and software are presented and both technical and methodological advantages of the proposed method are discussed. (Author) 19 refs

  10. [NEII] Line Velocity Structure of Ultracompact HII Regions

    Science.gov (United States)

    Okamoto, Yoshiko K.; Kataza, Hirokazu; Yamashita, Takuya; Miyata, Takashi; Sako, Shigeyuki; Honda, Mitsuhiko; Onaka, Takashi; Fujiyoshi, Takuya

    Newly formed massive stars are embedded in their natal molecular clouds and are observed as ultracompact HII regions. They emit strong ionic lines such as [NeII] 12.8 micron. Since Ne is ionized by UV photons of E>21.6eV which is higher than the ionization energy of hydrogen atoms the line probes the ionized gas near the ionizing stars. This enables to probe gas motion in the vicinity of recently-formed massive stars. High angular and spectral resolution observations of the [NeII] line will thus provide siginificant information on structures (e.g. disks and outflows) generated through massive star formation. We made [NeII] spectroscopy of ultracompact HII regions using the Cooled Mid-Infrared Camera and Spectrometer (COMICS) on the 8.2m Subaru Telescope in July 2002. Spatial and spectral resolutions were 0.5"" and 10000 respectively. Among the targets G45.12+0.13 shows the largest spatial variation in velocity. The brightest area of G45.12+0.13 has the largest line width in the object. The total velocity deviation amounts to 50km/s (peak to peak value) in the observed area. We report the velocity structure of [NeII] emission of G45.12+0.13 and discuss the gas motion near the ionizing star.

  11. Creating unstable velocity-space distributions with barium injections

    International Nuclear Information System (INIS)

    Pongratz, M.B.

    1983-01-01

    Large Debye lengths relative to detector dimensions and the absence of confining walls makes space an attractive laboratory for studying fundamental theories of plasma instabilities. However, natural space plasmas are rarely found displaced from equilibrium enough to permit isolation and diagnosis of the controlling parameters and driving conditions. Furthermore, any plasma or field response to the departure from equilibrium can be masked by noise in the natural system. Active experiments provide a technique for addressing the chicken or egg dilemma. Early thermite barium releases were generally conducted at low altitudes from sounding rockets to trace electric fields passively or to study configuration-space instabilities. One can also study velocity-space instabilities with barium releases. Neutral barium vapor releases wherein a typical speed greatly exceeds the thermal speed can be used to produce barium ion velocity-space distributions that should be subject to a number of microinstabilities. We examine the ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped-charges

  12. Canonical sound speed profile and related ray acoustic parameters in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; Rao, B.P.; SuryaPrakash, S.; Chandramouli, P.; Murthy, K.S.R.; Prasad, K.V.S.R.

    Following Munk's canonical theory, canonical parameters (i.e., B the stratification scale and epsilon the perturbation coefficient) in adiabatic ocean are obtained using SOFAR channel parameters (i.e., C sound velocity at the channel axis, Z sub(1...

  13. A Miniature Four-Hole Probe for Measurement of Three-Dimensional Flow with Large Gradients

    Directory of Open Access Journals (Sweden)

    Ravirai Jangir

    2014-01-01

    Full Text Available A miniature four-hole probe with a sensing area of 1.284 mm2 to minimise the measurement errors due to the large pressure and velocity gradients that occur in highly three-dimensional turbomachinery flows is designed, fabricated, calibrated, and validated. The probe has good spatial resolution in two directions, thus minimising spatial and flow gradient errors. The probe is calibrated in an open jet calibration tunnel at a velocity of 50 m/s in yaw and pitch angles range of ±40 degrees with an interval of 5 degrees. The calibration coefficients are defined, determined, and presented. Sensitivity coefficients are also calculated and presented. A lookup table method is used to determine the four unknown quantities, namely, total and static pressures and flow angles. The maximum absolute errors in yaw and pitch angles are 2.4 and 1.3 deg., respectively. The maximum absolute errors in total, static, and dynamic pressures are 3.4, 3.9, and 4.9% of the dynamic pressures, respectively. Measurements made with this probe, a conventional five-hole probe and a miniature Pitot probe across a calibration section, demonstrated that the errors due to gradient and surface proximity for this probe are considerably reduced compared to the five-hole probe.

  14. Novel sound phenomena in superfluid helium in aerogel and other impure superfluids

    International Nuclear Information System (INIS)

    Brusov, Peter; Brusov, Paul; Lawes, Gavin; Lee, Chong; Matsubara, Akira; Ishikawa, Osamu; Majumdar, Pinaki

    2003-01-01

    During the last decade new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities (D 2 , N 2 , Ne, Kr), superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and for superfluid He in aerogel. We show that the coupling between these two sound modes is governed either by c∂ρ/∂c or σρ a ρ s (for aerogel) rather than thermal expansion coefficient ∂ρ/∂T, which is enormously small in pure superfluids. This replacement plays a fundamental role in all sound phenomena in impure superfluids. It enhances the coupling between the two sound modes that leads to the existence of such phenomena as the slow mode and heat pulse propagation with the velocity of first sound observed in superfluids in aerogel. This means that it is possible to observe in impure superfluids such unusual sound phenomena as slow pressure (density) waves and fast temperature (entropy) waves. The enhancement of the coupling between the two sound modes decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by shock waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which never been observed in pure superfluids) could be observed in impure superfluids

  15. Theory of a spherical emissive probe in a low-density isotropic plasma

    International Nuclear Information System (INIS)

    Din, A.

    2010-01-01

    Emissive probes are widely being used by plasma experimentalists to determine plasma parameters. Here, a fairly general spherical-emissive-probe scenario based on trajectory integration of the Vlasov equation is formulated and specialized to the particular non-emissive situation considered by Bernstein and Rabinowitz (1959), which is monoenergetic isotropic ions and Boltzmann-distributed electrons originating from the plasma. Then, this formalism together with our newly developed analytic-numerical matching procedure is used for finding the potential profile in the entire plasma-probe transition (PPT) region, consisting of the 'inward' and 'outward' sheath solutions, and the quasineutral (plasma) solution. The analytically expanded outward sheath and plasma solutions, the quasineutral solution and the related matching procedure represent genuinely new results in the context of this particular non-emissive probe scenario, however with the underlying methodology also applicable to other probe scenarios in the future. For the emissive case we consider, in addition to the plasma ions and electrons of the Bernstein and Rabinowitz scenario, electrons emitted from the probe surface with zero tangential velocity and a 'waterbag' distribution with respect to the radial velocity. Using our newly developed numerical matching procedure, we calculate the entire potential profile also for this emissive case. Comparison of the potential profiles for the emissive and non-emissive cases shows visible differences, thus demonstrating the effect of electron emission from the probe. To our knowledge, the present work represents the first attempt at systematically developing a kinetic approach for spherical emissive probes. (author)

  16. Time-dependent stochastic inversion in acoustic tomography of the atmosphere with reciprocal sound transmission

    International Nuclear Information System (INIS)

    Vecherin, Sergey N; Ostashev, Vladimir E; Wilson, D Keith; Ziemann, A

    2008-01-01

    Time-dependent stochastic inversion (TDSI) was recently developed for acoustic travel-time tomography of the atmosphere. This type of tomography allows reconstruction of temperature and wind-velocity fields given the location of sound sources and receivers and the travel times between all source–receiver pairs. The quality of reconstruction provided by TDSI depends on the geometry of the transducer array. However, TDSI has not been studied for the geometry with reciprocal sound transmission. This paper is focused on three aspects of TDSI. First, the use of TDSI in reciprocal sound transmission arrays is studied in numerical and physical experiments. Second, efficiency of time-dependent and ordinary stochastic inversion (SI) algorithms is studied in numerical experiments. Third, a new model of noise in the input data for TDSI is developed that accounts for systematic errors in transducer positions. It is shown that (i) a separation of the travel times into temperature and wind-velocity components in tomography with reciprocal transmission does not improve the reconstruction, (ii) TDSI yields a better reconstruction than SI and (iii) the developed model of noise yields an accurate reconstruction of turbulent fields and estimation of errors in the reconstruction

  17. Velocity diagnostics of electron beams within a 140 GHz gyrotron

    Science.gov (United States)

    Polevoy, Jeffrey Todd

    1989-06-01

    Experimental measurements of the average axial velocity v(sub parallel) of the electron beam within the M.I.T. 140 GHz MW gyrotron have been performed. The method involves the simultaneous measurement of the radial electrostatic potential of the electron beam V(sub p) and the beam current I(sub b). The V(sub p) is measured through the use of a capacitive probe installed near or within the gyrotron cavity, while I(sub b) is measured with a previously installed Rogowski coil. Three capacitive probes have been designed and built, and two have operated within the gyrotron. The probe results are repeatable and consistent with theory. The measurements of v(sub parallel) and calculations of the corresponding transverse to longitudinal beam velocity ratio (alpha) = v(sub perpendicular)/v(sub parallel) at the cavity have been made at various gyrotron operation parameters. These measurements will provide insight into the causes of discrepancies between theoretical RF interaction efficiencies and experimental efficiencies obtained in experiments with the M.I.T. 140 GHz MW gyrotron. The expected values of v(sub parallel) and (alpha) are determined through the use of a computer code (EGUN) which is used to model the cathode and anode regions of the gyrotron. It also computes the trajectories and velocities of the electrons within the gyrotron. There is good correlation between the expected and measured values of (alpha) at low (alpha), with the expected values from EGUN often falling within the standard errors of the measured values.

  18. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  19. Description and Flight Performance Results of the WASP Sounding Rocket

    Science.gov (United States)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  20. Precision of working memory for speech sounds.

    Science.gov (United States)

    Joseph, Sabine; Iverson, Paul; Manohar, Sanjay; Fox, Zoe; Scott, Sophie K; Husain, Masud

    2015-01-01

    Memory for speech sounds is a key component of models of verbal working memory (WM). But how good is verbal WM? Most investigations assess this using binary report measures to derive a fixed number of items that can be stored. However, recent findings in visual WM have challenged such "quantized" views by employing measures of recall precision with an analogue response scale. WM for speech sounds might rely on both continuous and categorical storage mechanisms. Using a novel speech matching paradigm, we measured WM recall precision for phonemes. Vowel qualities were sampled from a formant space continuum. A probe vowel had to be adjusted to match the vowel quality of a target on a continuous, analogue response scale. Crucially, this provided an index of the variability of a memory representation around its true value and thus allowed us to estimate how memories were distorted from the original sounds. Memory load affected the quality of speech sound recall in two ways. First, there was a gradual decline in recall precision with increasing number of items, consistent with the view that WM representations of speech sounds become noisier with an increase in the number of items held in memory, just as for vision. Based on multidimensional scaling (MDS), the level of noise appeared to be reflected in distortions of the formant space. Second, as memory load increased, there was evidence of greater clustering of participants' responses around particular vowels. A mixture model captured both continuous and categorical responses, demonstrating a shift from continuous to categorical memory with increasing WM load. This suggests that direct acoustic storage can be used for single items, but when more items must be stored, categorical representations must be used.

  1. Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.

    Science.gov (United States)

    Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R

    1999-04-06

    Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.

  2. On the sound insulation of acoustic metasurface using a sub-structuring approach

    Science.gov (United States)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-08-01

    The feasibility of using an acoustic metasurface (AMS) with acoustic stop-band property to realize sound insulation with ventilation function is investigated. An efficient numerical approach is proposed to evaluate its sound insulation performance. The AMS is excited by a reverberant sound source and the standardized sound reduction index (SRI) is numerically investigated. To facilitate the modeling, the coupling between the AMS and the adjacent acoustic fields is formulated using a sub-structuring approach. A modal based formulation is applied to both the source and receiving room, enabling an efficient calculation in the frequency range from 125 Hz to 2000 Hz. The sound pressures and the velocities at the interface are matched by using a transfer function relation based on ;patches;. For illustration purposes, numerical examples are investigated using the proposed approach. The unit cell constituting the AMS is constructed in the shape of a thin acoustic chamber with tailored inner structures, whose stop-band property is numerically analyzed and experimentally demonstrated. The AMS is shown to provide effective sound insulation of over 30 dB in the stop-band frequencies from 600 to 1600 Hz. It is also shown that the proposed approach has the potential to be applied to a broad range of AMS studies and optimization problems.

  3. Thermal SiO as a probe of high velocity motions in regions of star formation

    International Nuclear Information System (INIS)

    Downes, D.; Genzel, R.; Hjalmarson, A.; Nyman, L.A.; Roennaeng, B.

    1982-01-01

    New observations of the v = 0, J = = 2→1 line of SiO at 86.8 GHz show a close association of the thermal SiO emission and infrared and maser sources in regions of star formation. In addition to SiO emission with low velocity dispersion (Δν -1 ), we report the first detection of high velocity (''plateau'') emission toward W49 and W51. The low velocity SiO component may come from the core of the molecular cloud which contains the infrared and maser sources. The ''plateau'' may indicate mass clusters. In Orion KL, the positional centroid of the high velocity SiO emission (Vertical BarΔνVertical Bar> or =20 km s -1 ) is near that of the component we identify as the ''18 km s -1 flow''. However, the centriods of the blue- and redshifted wings are displaced from each other by a few arcseconds, to the NW and NE of the position of the 18 km s -1 component. The mass-loss rates of the high velocity flow and the 18 km s -1 flow are similar

  4. Confronting the sound speed of dark energy with future cluster surveys

    DEFF Research Database (Denmark)

    Basse, Tobias; Eggers Bjaelde, Ole; Hannestad, Steen

    2012-01-01

    Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that, in combin......Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that......, in combination with Cosmic Microwave Background (CMB) observations from Planck, cluster surveys such as that in the ESA Euclid project will be able to determine a time-independent w with subpercent precision. Likewise, if the dark energy sound horizon falls within the length scales probed by the cluster survey......, then c_s^2 can be pinned down to within an order of magnitude. In the course of this work, we also investigate the process of dark energy virialisation in the presence of an arbitrary sound speed. We find that dark energy clustering and virialisation can lead to dark energy contributing to the total...

  5. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  6. A fast scanning probe for DIII--D

    International Nuclear Information System (INIS)

    Watkins, J.G.; Salmonson, J.; Moyer, R.; Doerner, R.; Lehmer, R.; Schmitz, L.; Hill, D.N.

    1992-01-01

    A fast reciprocating probe has been developed for DIII--D which can penetrate the separatrix during H mode with up to 5 MW of NBI heating. The probe has been designed to carry various sensor tips into the scrape-off layer at a velocity of 3 m/s and dwell motionless for a programmed period of time. The driving force is provided by a pneumatic cylinder charged with helium to facilitate greater mass flow. The first series of experiments have been done using a Langmuir probe head with five graphite tips to measure radial profiles of n e , T e , φ f , n e , and φ f . The amplitude and phase of the fluctuating quantities are measured by using specially constructed vacuum compatible 5-kV coaxial transmission lines which allow us to extend the measurements into the MHz range. TTZ ceramic bearings and fast stroke bellows were also specially designed for the DIII--D probe. Initial measurements will be presented

  7. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  8. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  9. Demonstration of slow sound propagation and acoustic transparency with a series of detuned resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2014-01-01

    We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency...... than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of 9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by using...

  10. Climatology of tropospheric vertical velocity spectra

    Science.gov (United States)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  11. Effects of stratification and fluctuations on sound propagation in the deep ocean

    International Nuclear Information System (INIS)

    March, R.H.

    1979-01-01

    It is noted that even in a homogeneous ocean, the effects of non-thermal noise and sound absorption limit the maximum effective range of detection of acoustic signals from particle cascades to distances of 2 to 10 kilometers, depending on the surface conditions prevailing and the directional characteristics of the detector. In the present paper, the effects of stratification and fluctuations in the sound velocity profile in the deep ocean over distances of this order are examined. Attention is given to two effects of potential significance, refraction and scintillation. It is found that neither effect has any significant consequences at ranges of less than 10 km

  12. Measurements of local liquid velocity and interfacial parameters of air-water bubbly flows in a horizontal tube

    International Nuclear Information System (INIS)

    Yang Jian; Zhang Mingyuan; Zhang Chaojie; Su Yuliang

    2002-01-01

    Distribution of local kinematic parameters of air-water bubbly flows in a horizontal tube with an ID of 35 mm was investigated. The local liquid velocity was measured with a cylindrical hot film probe, and local void fraction, bubble frequency and bubble velocity were measured with a double-sensor probe. It was found that the axial liquid velocity has a same profile as that of single liquid phase flow in the lower part of the tube, and it suffers a sudden reduction in the upper part of the tube. With increasing airflow rate, the liquid velocity would increase in the lower part of the tube, and further decrease at the upper part of the tube, respectively. Most bubbles are congested at the upper part of the tube, and the void fraction and bubble frequencies have similar profile and both are asymmetrical with the tube axis with their maximum values located near the upper tube wall

  13. Flowfield characterisation in the wake of a low-velocity heated sphere anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Olim, A.M. [Associacao para o Desenvolvimento da Aerodinamica Industrial (ADAI), Coimbra (Portugal); Riethmuller, M.L. [Von Karman Institute for Fluid Dynamics (VKI), St. Genese (Belgium); Gameiro da Silva, M.C. [Departamento de Engenharia Mecanica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra Polo II, Coimbra (Portugal)

    2002-06-01

    Heated sphere anemometers (HSA) are the most widely used instruments for low-velocity measurements in the heating, ventilation and air-conditioning industry. Experiments were conducted to characterise the flowfield around the spherically shaped sensor and upper probe assembly of a HSA. Particle image velocimetry was the main quantitative experimental technique. Measurements of the flowfield around a HSA probe and a 2:1 scaled-up model were performed in a uniform isothermal axisymmetrical jet air flow at Re around 350, based on sensor diameter, for different pitch angle incident flows. Additionally, extensive flow visualisation studies around scaled-up models of the HSA probe were performed. (orig.)

  14. A measurement of perpendicular current density in an aurora

    International Nuclear Information System (INIS)

    Bering, E.A.; Mozer, F.S.

    1975-01-01

    A Nike Tomahawk sounding rocket was launched into a 400-γ auroral substorm on February 7, 1972, from Esrange, Kiruna, Sweden. The rocket instrumentation included a split Langmuir probe plasma velocity detector and a double-probe electric field detector. Above 140-km altitude the electric field deduced from the ion flow velocity measurement and the electric field measured by the double probe agree to an accuracy within the uncertainties of the two measurements. The difference between the two measurements at altitudes below 140 km provides an in situ measurement of current density and conductivity. Alternatively, if values for the conductivity are assumed, the neutral wind velocity can be deduced. The height-integrated current was 0.11 A/m flowing at an azimuth of 276degree. The neutral winds were strong, exhibited substantial altitude variation in the east-west component, and were predominantly southward

  15. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    Science.gov (United States)

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  16. Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Kouji; Terashima, Osamu [Nagoya University, Department of Mechanical Science and Engineering, Nagoya (Japan); Kubo, Takashi [Meijo University, Faculty of Science and Technology, Nagoya (Japan)

    2012-11-15

    This paper presents a new experimental approach for simultaneous measurements of velocity and concentration in a turbulent liquid flow with a chemical reaction. For the simultaneous measurements, we developed a combined probe consisting of an I-type hot-film probe and an optical fiber probe based on the light absorption spectrometric method. In a turbulent planar liquid jet with a second-order chemical reaction (A+B{yields}R), streamwise velocity and concentrations of all reactive species are measured by the combined probe. The turbulent mass fluxes of the reactive species are estimated from the simultaneous measurements. The results show that the influence of the chemical reaction on the turbulent mass flux of the reactant species near the jet exit is different from its influence in other regions, and the turbulent mass flux of the product species has a negative value near the jet exit and a positive value in other regions. (orig.)

  17. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F J [Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain); Pitarke, J M [Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain)

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  18. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Pitarke, J.M.

    1994-01-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  19. Velocity-space tomography of the fast-ion distribution function

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Geiger, Benedikt

    2013-01-01

    probes certain regions in velocity-space, determined by the geometry of the set-up. Exploiting this, the fast-ion distribution function can be inferred using a velocity-space tomography method. This poster contains a tomography calculated from measured spectra from three different FIDA views at ASDEX......Fast ions play an important role in heating the plasma in a magnetic confinement fusion device. Fast-ion Dα(FIDA) spectroscopy diagnoses fast ions in small measurement volumes. Spectra measured by a FIDA diagnostic can be related to the 2D fast-ion velocity distribution function. A single FIDA view...... Upgrade. The quality of the tomography improves with the number of FIDA views simultaneously measuring the same volume. To investigate the potential benefits of including additional views (up to 18), tomographies are inferred from synthetic spectra calculated from a simulated distribution function...

  20. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  1. Third sound measurements of superfluid 4He films on multiwall carbon nanotubes below 1 K

    International Nuclear Information System (INIS)

    Menachekanian, Emin; Abraham, John B S; Chen, Bob; Iaia, Vito; Li, Andrew; Williams, Gary A

    2014-01-01

    Third sound is studied for superfluid films of 4He adsorbed on multiwall carbon nanotubes packed into an annular resonator. The third sound is generated with mechanical oscillation of the cell, and detected with carbon bolometers. A filling curve at temperatures near 250 mK shows oscillations in the third sound velocity, with maxima at the completion of the 4th and 5th atomic layers. Sharp changes in the Q factor of the third sound are found at partial layer fillings. Temperature sweeps at a number of fill points show strong broadening effects on the Kosterlitz-Thouless (KT) transition, and rapidly increasing dissipation, in qualitative agreement with the predictions of Machta and Guyer. At the 4th layer completion there is a sudden reduction of the transition temperature T KT , and then a recovery back to linear variation with temperature, although the slope is considerably smaller than the KT prediction

  2. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    Science.gov (United States)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2002-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.

  3. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  4. Evaluation of substitution monopole models for tire noise sound synthesis

    Science.gov (United States)

    Berckmans, D.; Kindt, P.; Sas, P.; Desmet, W.

    2010-01-01

    Due to the considerable efforts in engine noise reduction, tire noise has become one of the major sources of passenger car noise nowadays and the demand for accurate prediction models is high. A rolling tire is therefore experimentally characterized by means of the substitution monopole technique, suiting a general sound synthesis approach with a focus on perceived sound quality. The running tire is substituted by a monopole distribution covering the static tire. All monopoles have mutual phase relationships and a well-defined volume velocity distribution which is derived by means of the airborne source quantification technique; i.e. by combining static transfer function measurements with operating indicator pressure measurements close to the rolling tire. Models with varying numbers/locations of monopoles are discussed and the application of different regularization techniques is evaluated.

  5. Characteristics of sound radiation from turbulent premixed flames

    Science.gov (United States)

    Rajaram, Rajesh

    Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.

  6. Perceiving the vertical distances of surfaces by means of a hand-held probe.

    Science.gov (United States)

    Chan, T C; Turvey, M T

    1991-05-01

    Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.

  7. Probes, Moons, and Kinetic Plasma Wakes

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  8. Application of porous material to reduce aerodynamic sound from bluff bodies

    International Nuclear Information System (INIS)

    Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio

    2010-01-01

    Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)

  9. A novel calibration algorithm for five-hole pressure probe

    African Journals Online (AJOL)

    user

    Five-hole probes are used to measure the three components of velocity, inflow ... centre hole pressure labeled as 5. P and the off-axis holes labeled as 1. P , 2. P , 3 ..... of this study and is doing research in the flow control group of the institute.

  10. Theory of Langmuir probes in anisotropic plasmas

    International Nuclear Information System (INIS)

    Sudit, I.D.; Woods, R.C.

    1994-01-01

    A theory has been developed for electron retardation by Langmuir probes of several geometries in a general anisotropic plasma with arbitrary probe orientation and valid for any sheath thickness. Electron densities and electron velocity distribution functions (EVDFs) are obtained from the second derivative of probe I-V curves, as in Druyvesteyn's original method, which was developed for isotropic plasmas. Fedorov had extended the latter method in the context of a thin sheath approximation, to axisymmetric plasmas, in which the EVDF is expanded in a series of Legendary polynomials. In the present work an expansion in a series of spherical harmonics is employed, and the coordinate transformations are handled using the irreducible representation of the three dimensional rotation group. It is shown that the Volterra integral equations that must be solved to obtain the expansion coefficients of the EVDF from the second derivative data are no more complicated in the general case that hose for the axisymmetric plasma. Furthermore in the latter case the results can be shown to be equivalent to Fedrov's thin sheath expression. For the case of planar probes a formulation based on first derivatives of the I-V curves has been obtained. If data is obtained at enough different probe orientation of a one sided planar disc probe, any number of spherical harmonic coefficient functions may be obtained by inverting a set of linear equations and the complete EVDF deduced. For a cylindrical probe or a two-sided planar disc probe the integration of the second derivative of the probe current gives the exact electron density with any arbitrary probe orientation and any degree of plasma anisotropy

  11. Interaction of a ballistic probe with gaseous media

    International Nuclear Information System (INIS)

    Kucerovsky, Zden; Greason, William D

    2008-01-01

    Free-flying metal probes are used to determine charge densities in gaseous media containing free charge or low density plasma. The trajectory of the probe is ensured either by gravity or by propelling the probe to a certain velocity at the launch site. While travelling, the probe charge changes from its launch-site magnitude to that related to the space charge density existing along the trajectory. The degree to which the probe's arrival-site charge magnitude matches the space charge density in the area of interest depends on the probe shape and on the charge exchange processes between the probe body and the medium. The paper studies a probe acting as a free-flying charge carrier in air, and discusses the problems that may lead to an imbalance between the charge collected by the probe in the area of interest and the charge measured at the arrival site. The analysis and the described experiments are of the ballistic type: a small, triboelectrically pre-charged metal probe was propelled on a horizontal path, and the charge carried by the probe was measured at several points along the trajectory by means of contact-free induction rings; the initial and final charges were determined by static Faraday cups. A charge disparity was found under certain conditions, and its degree explained by the effects of the charge carrier potential. The studied probe charges ranged from 10 to 50 nF, and the fly-times needed to cross a one-meter path ranged from 20 to 40 ms. The probe to gas charge exchange experiments and their analysis yielded conditions under which the probe lost approximately 10 % of its charge. The results of our study may be of interest to those who intend to use the free-flying probe technique for the determination of space charge density.

  12. What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster? Probing the Velocity Field with Mock Observations

    Science.gov (United States)

    ZuHone, J. A.; Miller, E. D.; Bulbul, E.; Zhuravleva, I.

    2018-02-01

    Hitomi made the first direct measurements of galaxy cluster gas motions in the Perseus cluster, which implied that its core is fairly “quiescent,” with velocities less than ∼200 km s‑1, despite the presence of an active galactic nucleus and sloshing cold fronts. Building on previous work, we use synthetic Hitomi/X-ray Spectrometer (SXS) observations of the hot plasma of a simulated cluster with sloshing gas motions and varying viscosity to analyze its velocity structure in a similar fashion. We find that sloshing motions can produce line shifts and widths similar to those measured by Hitomi. We find these measurements are unaffected by the value of the gas viscosity, since its effects are only manifested clearly on angular scales smaller than the SXS ∼1‧ PSF. The PSF biases the line shift of regions near the core as much as ∼40–50 km s‑1, so it is crucial to model this effect carefully. We also infer that if sloshing motions dominate the observed velocity gradient, Perseus must be observed from a line of sight that is somewhat inclined from the plane of these motions, but one that still allows the spiral pattern to be visible. Finally, we find that assuming isotropy of motions can underestimate the total velocity and kinetic energy of the core in our simulation by as much as ∼60%. However, the total kinetic energy in our simulated cluster core is still less than 10% of the thermal energy in the core, in agreement with the Hitomi observations.

  13. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  14. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  15. Langmuir probe characteristic in a current - carrying magnetized plasma

    International Nuclear Information System (INIS)

    Stanojevic, M.; Cercek, M.; Gyergyek, T.

    1995-01-01

    Experimental investigation of the Langmuir probe characteristic is a magnetized plasma with an electron current along the magnetic field direction shows that the standard procedure for determination of the electron temperature and plasma density, which is applicable in a current - free magnetized plasma, gives erroneous results for these plasma parameters. However, more precise values of the plasma parameters can be calculated from the ion saturation currents and electron temperatures obtained with that procedure for two opposite orientations of the one - sided planar probe collecting surface with respect to the direction of the electron drift. With the existing theoretical models only the order of magnitude of the electron drift velocity can be accurately determined from the measured electron saturation currents for the two probe orientations. (author)

  16. Design study of an entry probe spectro-reflectometer

    Science.gov (United States)

    Sill, G. T.; Fink, U.

    1986-01-01

    A wind tunnel was built to simulate the rapid movement of an entry probe through the Jupiter atmosphere. Wind speeds range from 1 to 50 meters per second in a closed system. Wind velocity and temperature probes as well as a cryogenically cooled cold finger can be placed in the 6 inch diameter viewing section. The initial testing of the wind tunnel involved running sectional profiles through the observation port of air currents of 0.1 to 3.0 atmosphere. The velocity profile was very uniform throughout the cross section of the experimental port, with the exception of the wall effects. The deposition of cooled volatiles using the wind tunnel was not performed. However, measurements of the deposition of H2O ice on a cryogenically cooled thickness modulator were made under ambient conditions, namely room temperature and pressure. In the Frost Depositon Test Facility, ice deposition was measured at thicknesses of about a half millimeter and frost was produced whose thickness reflectivity could easily be measured by reflectance spectroscopy.

  17. Laser vibrometry measurements of vibration and sound fields of a bowed violin

    Science.gov (United States)

    Gren, Per; Tatar, Kourosh; Granström, Jan; Molin, N.-E.; Jansson, Erik V.

    2006-04-01

    Laser vibrometry measurements on a bowed violin are performed. A rotating disc apparatus, acting as a violin bow, is developed. It produces a continuous, long, repeatable, multi-frequency sound from the instrument that imitates the real bow-string interaction for a 'very long bow'. What mainly differs is that the back and forward motion of the real bow is replaced by the rotating motion with constant velocity of the disc and constant bowing force (bowing pressure). This procedure is repeatable. It is long lasting and allows laser vibrometry techniques to be used, which measure forced vibrations by bowing at all excited frequencies simultaneously. A chain of interacting parts of the played violin is studied: the string, the bridge and the plates as well as the emitted sound field. A description of the mechanics and the sound production of the bowed violin is given, i.e. the production chain from the bowed string to the produced tone.

  18. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  19. Laser measure of sea salinity, temperature and turbidity in depth

    Science.gov (United States)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  20. Perception of Animacy from the Motion of a Single Sound Object.

    Science.gov (United States)

    Nielsen, Rasmus Høll; Vuust, Peter; Wallentin, Mikkel

    2015-02-01

    Research in the visual modality has shown that the presence of certain dynamics in the motion of an object has a strong effect on whether or not the entity is perceived as animate. Cues for animacy are, among others, self-propelled motion and direction changes that are seemingly not caused by entities external to, or in direct contact with, the moving object. The present study aimed to extend this research into the auditory domain by determining if similar dynamics could influence the perceived animacy of a sound source. In two experiments, participants were presented with single, synthetically generated 'mosquito' sounds moving along trajectories in space, and asked to rate how certain they were that each sound-emitting entity was alive. At a random point on a linear motion trajectory, the sound source would deviate from its initial path and speed. Results confirm findings from the visual domain that a change in the velocity of motion is positively correlated with perceived animacy, and changes in direction were found to influence animacy judgment as well. This suggests that an ability to facilitate and sustain self-movement is perceived as a living quality not only in the visual domain, but in the auditory domain as well. © 2015 SAGE Publications.

  1. Means to remove electrode contamination effect of Langmuir probe measurement in space

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z. [Plasma and Space Science Center, National Cheng Kung University, No.1 Ta-Hsueh Rd., Tainan 70101, Taiwan (China)

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  2. Improvement of detection of stress corrosion cracks with ultrasonic phased array probes

    International Nuclear Information System (INIS)

    Wustenberg, H.; Mohrle, W.; Wegner, W.; Schenk, G.; Erhard, A.

    1986-01-01

    Probes with linear arrays can be used for the detection of stress corrosion cracks especially if the variability of the sound field is used to change the skewing angle of angle beam probes. The phased array concept can be used to produce a variable skewing angle or a variable angle of incidence depending on the orientation of the linear array on the wedge. This helps to adapt the direction of the ultrasonic beam to probable crack orientations. It has been demonstrated with artificial reflectors as well as with corrosion cracks, that the detection of misoriented cracks can be improved by this approach. The experiences gained during the investigations are encouraging the application of phased array probes for stress corrosion phenomena close to the heat effected zone of welds. Probes with variable skewing angles may find some interesting applications on welds in tubular structures e.g., at off shore constructions and on some difficult geometries within the primary circuit of nuclear power plants

  3. A new look at sound generation by blade/vortex interaction

    Science.gov (United States)

    Hardin, J. C.; Mason, J. P.

    1985-01-01

    As a preliminary attempt to understand the dynamics of blade/vortex interaction, the two-dimensional problem of a rectilinear vortex filament interacting with a Joukowski airfoil is analyzed in both the lifting and nonlifting cases. The vortex velocity components could be obtained analytically and integrated to determine the vortex trajectory. With this information, the aeroacoustic low-frequency Green's function approach could then be employed to calculate the sound produced during the encounter. The results indicate that the vortex path deviates considerably from simple convection due to the presence of the airfoil and that a reasonably sharp sound pulse is radiated during the interaction whose fundamental frequency is critically dependent upon whether the vortex passes above or below the airfoil. Determination of this gross parameter of the interaction is shown to be highly nonlinearly dependent upon airfoil circulation, vortex circulation, and initial position.

  4. The Effect of Superior Semicircular Canal Dehiscence on Intracochlear Sound Pressures

    Science.gov (United States)

    Nakajima, Hideko Heidi; Pisano, Dominic V.; Merchant, Saumil N.; Rosowski, John J.

    2011-11-01

    Semicircular canal dehiscence (SCD) is a pathological opening in the bony wall of the inner ear that can result in conductive hearing loss. The hearing loss is variable across patients, and the precise mechanism and source of variability is not fully understood. We use intracochlear sound pressure measurements in cadaveric preparations to study the effects of SCD size. Simultaneous measurement of basal intracochlear sound pressures in scala vestibuli (SV) and scala tympani (ST) quantifies the complex differential pressure across the cochlear partition, the stimulus that excites the partition. Sound-induced pressures in SV and ST, as well as stapes velocity and ear-canal pressure are measured simultaneously for various sizes of SCD followed by SCD patching. At low frequencies (<600 Hz) our results show that SCD decreases the pressure in both SV and ST, as well as differential pressure, and these effects become more pronounced as dehiscence size is increased. For frequencies above 1 kHz, the smallest pinpoint dehiscence can have the larger effect on the differential pressure in some ears. These effects due to SCD are reversible by patching the dehiscence.

  5. Density and velocity measurements of a sheath plasma from MPD thruster

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J.J.; Cho, T.S.; Choi, M.C.; Choi, E.H.; Cho, G.S.; Uhm, H.S.

    1999-07-01

    Magnetoplasma is the plasma that the electron and ion orbits are strongly confined by intense magnetic field. Recently, magnetoplasma dynamics (MPD) has been investigated in connection with applications to the rocket thruster in USA, Germany, etc. It can be widely applicable, including modification of satellite position and propulsion of the interplanetary space shuttle. A travel for a long distance journey is possible because a little amount of neutral gases is needed for the plasma source. Besides, this will provide a pollution free engine for future generations. MPD thruster is not a chemical engine. The authors have built a Mather type MPD thruster, which has 1 kV max charging, 10 kA max current flows, and has about 1 ms characteristic operation time. The Paschen curve of this thruster is measured and its minimum breakdown voltage occurs in the pressure range of 0.1 to 1 Torr. Langmuir and double probes are fabricated to diagnose the sheath plasma from the thruster. The temperature and density are calculated to be 2.5 eV and 10{sup 15} cm {sup {minus}3}, respectively, from the probe data. Making use of photo diode, an optical probe is fabricated to measure propagation velocity of the sheath plasma. The sheath plasma from the MPD thruster in the experiment propagates with velocity of 1 cm/{micro}s.

  6. Sound radiation contrast in MR phase images. Method for the representation of elasticity, sound damping, and sound impedance changes

    International Nuclear Information System (INIS)

    Radicke, Marcus

    2009-01-01

    The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm 2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [de

  7. Beliefs in the population about cracking sounds produced during spinal manipulation.

    Science.gov (United States)

    Demoulin, Christophe; Baeri, Damien; Toussaint, Geoffrey; Cagnie, Barbara; Beernaert, Axel; Kaux, Jean-François; Vanderthommen, Marc

    2018-03-01

    To examine beliefs about cracking sounds heard during high-velocity low-amplitude (HVLA) thrust spinal manipulation in individuals with and without personal experience of this technique. We included 100 individuals. Among them, 60 had no history of spinal manipulation, including 40 who were asymptomatic with or without a past history of spinal pain and 20 who had nonspecific spinal pain. The remaining 40 patients had a history of spinal manipulation; among them, 20 were asymptomatic and 20 had spinal pain. Participants attended a one-on-one interview during which they completed a questionnaire about their history of spinal manipulation and their beliefs regarding sounds heard during spinal manipulation. Mean age was 43.5±15.4years. The sounds were ascribed to vertebral repositioning by 49% of participants and to friction between two vertebras by 23% of participants; only 9% of participants correctly ascribed the sound to the formation of a gas bubble in the joint. The sound was mistakenly considered to indicate successful spinal manipulation by 40% of participants. No differences in beliefs were found between the groups with and without a history of spinal manipulation. Certain beliefs have documented adverse effects. This study showed a high prevalence of unfounded beliefs regarding spinal manipulation. These beliefs deserve greater attention from healthcare providers, particularly those who practice spinal manipulation. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  8. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.

    Science.gov (United States)

    Rosowski, John J; Bowers, Peter; Nakajima, Hideko H

    2018-03-01

    While most models of cochlear function assume the presence of only two windows into the mammalian cochlea (the oval and round windows), a position that is generally supported by several lines of data, there is evidence for additional sound paths into and out of the inner ear in normal mammals. In this report we review the existing evidence for and against the 'two-window' hypothesis. We then determine how existing data and inner-ear anatomy restrict transmission of sound through these additional sound pathways in cat by utilizing a well-tested model of the cat inner ear, together with anatomical descriptions of the cat cochlear and vestibular aqueducts (potential additional windows to the cochlea). We conclude: (1) The existing data place limits on the size of the cochlear and vestibular aqueducts in cat and are consistent with small volume-velocities through these ducts during ossicular stimulation of the cochlea, (2) the predicted volume velocities produced by aqueducts with diameters half the size of the bony diameters match the functional data within ±10 dB, and (3) these additional volume velocity paths contribute to the inner ear's response to non-acoustic stimulation and conductive pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of a Laser-Produced Plasma by Langmuir Probes

    DEFF Research Database (Denmark)

    Chang, C. T.; Hasimi, M.; Pant, H. C.

    1977-01-01

    -emission peak and the main plasma from the target. The flow velocity, density and electron temperature of the plasma were determined. The expansion of the plasma was found to be adiabatic, yielding gamma =5/3. The spatial distribution of the plasma was observed to be strongly anisotropic.......The structure, the parameters and the expansion of the plasma produced by focusing a 7 J, 20 ns Nd-glass laser on stainless-steel and glass targets suspended in a high-vacuum chamber were investigated by Langmuir probes. It was observed that the probe signals consisted of a photoelectric...

  10. Second sound shock waves in rotating superfluid helium

    International Nuclear Information System (INIS)

    Torczynski, J.R.

    1983-01-01

    Second sound shock waves have been used to examine the breakdown of superfluidity in bulk He II. The maximum counterflow velocity achieved in this manner was measured at a variety of temperatures and pressures. The results are found to agree with predictions of vortex nucleation theories (Langer and Fisher, 1967) in their pressure and temperature dependences although it was shown that dissipation occurred only near the heater. A simple scaling argument is suggested, assuming breakdown occurs near the heater. A vortex dynamics model of breakdown (following the method of Turner, private communication) is developed. To examine the effect of vorticity on breakdown, second sound shocks were produced in rotating helium. Experiments were performed in which the shocks propagated either along or normal to the axis of rotation, called axial and transverse cases, respectively. In both cases the decay was seen to increase monotonically with the rotation rate. Furthermore, the decay was ongoing rather than being confined to a narrow region near the heater. However, the extraordinary dissipation in the transverse case seemed to be related primarily to the arrival of secondary waves from the heater-sidewall boundary. An explanation of this difference is put forth in terms of vortex nucleation in the bulk fluid, using ideas similar to Crocco's Theorem. In order to examine the breakdown of superfluidity away from walls in nonrotation fluid, spherically converging second shocks were produced. The temperature jumps of the waves were measured, and exact numerical solutions of the two-fluid jump conditions (Moody, 1983) were used to calculate the relative velocity in each case

  11. Experimental study on liquid velocity in upward and downward two-phase flows

    International Nuclear Information System (INIS)

    Sun, X.; Paranjape, S.; Kim, S.; Ozar, B.; Ishii, M.

    2003-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral Laser Doppler Anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void weighted area-averaged drift velocity were obtained based on the definitions

  12. Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

    OpenAIRE

    Yoshio Kurosawa; Takao Yamaguchi

    2015-01-01

    High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy ...

  13. Common sole larvae survive high levels of pile-driving sound in controlled exposure experiments.

    Directory of Open Access Journals (Sweden)

    Loes J Bolle

    Full Text Available In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa(2 (zero to peak pressures up to 32 kPa and single pulse sound exposure levels up to 186 dB re 1µPa(2s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa(2s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised.

  14. Development of plasma diagnostics technologies - Measurement of transport= parameters in tokamak edge plasma by using electric transport probes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyu Sun; Chang, Do Hee; Sim, Yeon Gun; Kim, Jin Hee [Hanyang University, Seoul (Korea, Republic of)

    1995-08-01

    Electric transport probe system is developed for the measurement of electron temperature, floating potential, plasma density and flow velocity of= edge plasmas in the KT-2 medium size tokamak. Experiments have been performed in KT-1 small size tokamak. Electric transport probe is composed of a single probe(SP) and a Mach probe (MP). SP is used for the measurements of electron density, floating potential, and plasma density and measured values are {approx} 3*10{sup 11}/cm{sup -3}, -20 volts, 15 {approx} 25 eV. For the most discharges, respectively. MP is for the measurements of toroidal(M{sub T}) and poloidal(M{sub P}) flow velocities, and density, which are M{sub T} {approx_equal} .0.85, M{sub P} {approx_equal}. 0.17, n. {approx_equal} 2.1*10{sup 11} cm{sup -3}, respectively. A triple probe is also developed for the direct reading of T{sub e} and n{sub e}, and is used for DC, RF, and RF+DC plasma in APL of Hanyang university. 38 refs., 36 figs. (author)

  15. Parameterizing Sound: Design Considerations for an Environmental Sound Database

    Science.gov (United States)

    2015-04-01

    associated with, or produced by, a physical event or human activity and 2) sound sources that are common in the environment. Reproductions or sound...Rogers S. Confrontation naming of environmental sounds. Journal of Clinical and Experimental Neuropsychology . 2000;22(6):830–864. 14 VanDerveer NJ

  16. Visualisation of air–water bubbly column flow using array Ultrasonic Velocity Profiler

    Directory of Open Access Journals (Sweden)

    Munkhbat Batsaikhan

    2017-11-01

    Full Text Available In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry (PIV. Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.

  17. A particle velocity sensor to measure the sound from a structure in the presence of background noise

    NARCIS (Netherlands)

    de Bree, H.E.; Druyvesteyn, W.F.

    2005-01-01

    The performance (or quality) of a product is often checked by measuring the radiated sound (noise) from the vibrating structure. Often this test has to be done in an environment with background noise, which makes the measurement difficult. When using a (pressure) microphone the background noise can

  18. Automatic discrimination of bubbles and slugs in two-phase gas-liquid flow and measurement of the respective velocities

    International Nuclear Information System (INIS)

    Fitremann, J.M.; Guilpin, C.; Postaire, J.

    1976-01-01

    The measurement of the interface velocity in a two-phase gas-liquid flow is a difficult problem, owing to the dispersion of the velocity components of individual bubbles, gas-slugs, droplets, waves, etc. An entirely automatic method is presented, it gives the velocity of slugs and bubbles independently, by discrimination of local phase probe signals into a 'slug' signal and a 'bubble' signal feeding a shape-recognition program. Both discriminated void fractions are also calculated by the apparatus [fr

  19. Dispersive and damping properties of supersymmetric sound. 1

    International Nuclear Information System (INIS)

    Lebedev, V.V.; Smilga, A.V.

    1988-01-01

    It is shown that a supersymmetric medium at nonzero temperature possesses necessarily the massless fermionic collective excitation which we call phonino. Its appearance is due to the spontaneous SUSY breaking at T ≠ and is as general as the appearance of the sound. The phase velocity of phonino is C=P/E where P is the pressure and E is the energy density of the medium. The Wess-Zumino model is studied in detail. In the case of small temperature, T 2 , where g<<1 is the coupling constant, and small. The gauge supersymmetric theories are also discussed

  20. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    Science.gov (United States)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  1. DC Electric Field measurement in the Mid-latitude Ionosphere during MSTID by S-520-27 Sounding Rocket Experiments

    Science.gov (United States)

    Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Tanaka, M.; Abe, T.; Kumamoto, A.

    2015-12-01

    In the middle latitude ionospheric F region, mainly in summer, wave structures of electron density that have wave length of 100-200 km and period of one hour are observed. This phenomena is called Medium Scale Traveling Ionosphiric Disturbance; MSTID. MSTID has been observed by GPS receiving network, and its characteristic were studied. In the past, MSTID was thought to be generated by the Perkins instability, but its growth ratio was too small to be effective so far smaller than the real. Recently coupling process between ionospheric E and F regions are studied by using two radars and by computer simulations. Through these studies, we now have hypothesis that MSTID is generated by the combination of E-F region coupling and Perkins instability. The S-520-27 sounding rocket experiment on E-layer and F-layer was planned in order to verify this hypothesis. S-520-27 sounding rocket was launched at 23:57 JST on 20th July, 2013 from JAXA Uchinoura Space Center. S-520-27 sounding rocket reached 316km height. The S-520-27 payload was equipped with Electric Field Detector (EFD) with a two set of orthogonal double probes to measure DC electric field in the spin plane of the payload. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifier using the floating (unbiased) double probe technique. As a results of measurements of DC electric fields by the EFD, the natural electric field was about +/-5mV/m, and varied the direction from southeast to east. Then the electric field was mapped to the horizontal plane at 280km height along the geomagnetic field line. In this presentation, we show the detail result of DC electric field measurement by S-520-27 sounding rocket and then we discuss about the correlation between the natural electric field and TEC variation by using the GPS-TEC.

  2. Study on particle behavior in the expansion of fluidized bed using a simple optical probe. Kogaku probe wo mochiita ryudoso no bocho sonai ryushi kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y; Miyamoto, M [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering; Chimura, T [Toyota Motor Co. Ltd., Tokyo (Japan); Idei, Y [Ube Industries, Ltd., Tokyo (Japan)

    1991-09-25

    In order to clarify the relationship between the heat transfer rate and the expansion bed in a group of horizontal pipes in a freeboard region (an area of the heat-transfer pipe exposed above the height of static particle bed from the beginning) in a cold model of the fluidized bed, particle behavior was measured using an optical measuring method. The light axis position was set higher than the heat-transfer as X {sub p} in a direction perpendicular from the distributor, and the static bed height was set to L {sub c}. The frequency of particles and particle lumps coming to presence between the light axes is termed V {prime}{sub p}(time-averaged dimensionless amount of the optical probe output). The V {prime}{sub p} decreases with an increase in the flow velocity, and, when the difference between the probe tip and the static bed height, X {sub p}{minus} L {sub c} is small, it shows the minimum value at a certain flow velocity and then rises again. The root mean square value of the probe output, V {prime}{sub f} increased with an increase in the flow velocity, reached its maximum, then decreased to the minimum, and rose again. The flow velocity that takes the maximum heat transfer rate can be identified from the relationship among the dimensionless amount of the maximum expansion bed height and the average expansion bed height, the dimensionless height of X {sub p} when V {prime}{sub p} and V {prime}{sub f} obtained at each X {sub p} show the extreme values, and the dimensionless height of the heat-transfer pipes when the average transfer rate takes the maximum value. 6 refs., 5 figs.

  3. System and method for determining coolant level and flow velocity in a nuclear reactor

    Science.gov (United States)

    Brisson, Bruce William; Morris, William Guy; Zheng, Danian; Monk, David James; Fang, Biao; Surman, Cheryl Margaret; Anderson, David Deloyd

    2013-09-10

    A boiling water reactor includes a reactor pressure vessel having a feedwater inlet for the introduction of recycled steam condensate and/or makeup coolant into the vessel, and a steam outlet for the discharge of produced steam for appropriate work. A fuel core is located within a lower area of the pressure vessel. The fuel core is surrounded by a core shroud spaced inward from the wall of the pressure vessel to provide an annular downcomer forming a coolant flow path between the vessel wall and the core shroud. A probe system that includes a combination of conductivity/resistivity probes and/or one or more time-domain reflectometer (TDR) probes is at least partially located within the downcomer. The probe system measures the coolant level and flow velocity within the downcomer.

  4. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2010-05-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  5. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2009-09-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  6. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    International Nuclear Information System (INIS)

    Weyna, S

    2014-01-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above 'cut-off' frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  7. Velocity-pressure correlation measurements in complex free shear flows

    International Nuclear Information System (INIS)

    Naka, Yoshitsugu; Obi, Shinnosuke

    2009-01-01

    Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.

  8. Active control of sound transmission through a rectangular panel using point-force actuators and piezoelectric film sensors.

    Science.gov (United States)

    Sanada, Akira; Higashiyama, Kouji; Tanaka, Nobuo

    2015-01-01

    This study deals with the active control of sound transmission through a rectangular panel, based on single input, single output feedforward vibration control using point-force actuators and piezoelectric film sensors. It focuses on the phenomenon in which the sound power transmitted through a finite-sized panel drops significantly at some frequencies just below the resonance frequencies of the panel in the low-frequency range as a result of modal coupling cancellation. In a previous study, it was shown that when point-force actuators are located on nodal lines for the frequency at which this phenomenon occurs, a force equivalent to the incident sound wave can act on the panel. In this study, a practical method for sensing volume velocity using a small number of piezoelectric film strips is investigated. It is found that two quadratically shaped piezoelectric film strips, attached at the same nodal lines as those where the actuators were placed, can sense the volume velocity approximately in the low-frequency range. Results of simulations show that combining the proposed actuation method and the sensing method can achieve a practical control effect at low frequencies over a wide frequency range. Finally, experiments are carried out to demonstrate the validity and feasibility of the proposed method.

  9. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  10. The energy transport by the propagation of sound waves in wave guides with a moving medium

    NARCIS (Netherlands)

    le Grand, P.

    1977-01-01

    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.

  11. Measurement of local flow pattern in boiling R12 simulating PWR conditions with multiple optical probes

    International Nuclear Information System (INIS)

    Garnier, J.

    1998-01-01

    For a comprehensive approach of boiling crisis phenomenon in order to get more reliable predictions of critical heat flux in PWR core, a flow pattern study is under progress at CEA GRENOBLE (in a joint program with Electricite de France: EdF). The first aim is to get experimental results on flow structure in the range of thermal hydraulic parameters involved in the core of a PWR (pressure up to 16 MPa, heat flux about 1 MW/m 2 , mass velocity up to 5000 kg/s/m 2 . As critical heat flux is a local phenomenon and is the result of the flow development, the data has to be measured from the beginning of boiling until boiling crisis, and from the bulk flow until the boundary layer close to the heating walls. Therefore, these results will be useful in modeling not only boiling crisis phenomenon but also condensation in subcooled boiling, coalescence, splitting up, mass and energy transfers at interfaces, and so on. In a first step, the test section is a vertical tube 19.2 mm internal diameter with an axial uniform heat flux over a 3.5m length. The study is performed on the DEBORA loop with Freon 12 as coolant fluid. We assume that basic boiling phenomena (and the knowledge we get about them) only depend on the fluid properties by means of dimensionless parameters but not on the fluid itself. In a first part, we briefly recall that interfacial detection is the most important parameter of a flow pattern study. Therefore, the use of probes able to measure the Phase Indicator Function (P.I.F.) is necessary. A first study of flow conditions shows that the flow pattern is essentially a bubbly one with vapor particles of low diameter (about 300 clm) and high velocity (up to 7 m/s). These criteria induce that a multiple optical probe is the most appropriate tool provided we improve the technology. We detail the way to obtain probes able to detect small particles at high velocity. Each fiber is stretched to get a tip of 10 Clm with the cladding kept on 50 μm length which defines

  12. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  13. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recen...... generated by sources on the two sides of the hologram plane is also examined....

  14. Sound card based digital correlation detection of weak photoelectrical signals

    International Nuclear Information System (INIS)

    Tang Guanghui; Wang Jiangcheng

    2005-01-01

    A simple and low-cost digital correlation method is proposed to investigate weak photoelectrical signals, using a high-speed photodiode as detector, which is directly connected to a programmably triggered sound card analogue-to-digital converter and a personal computer. Two testing experiments, autocorrelation detection of weak flickering signals from a computer monitor under background of noisy outdoor stray light and cross-correlation measurement of the surface velocity of a motional tape, are performed, showing that the results are reliable and the method is easy to implement

  15. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  16. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    International Nuclear Information System (INIS)

    Manera, A.; Ozar, B.; Paranjape, S.; Ishii, M.; Prasser, H.-M.

    2009-01-01

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  17. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Research Center Dresden Rossendorf, Dresden (Germany)], E-mail: annalisa.manera@psi.ch; Ozar, B.; Paranjape, S.; Ishii, M. [Purdue University, West Lafayette (United States); Prasser, H.-M. [Research Center Dresden Rossendorf, Dresden (Germany); ETH Zuerich, Sonneggstrasse 3, 8092 Zuerich (Switzerland)

    2009-09-15

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  18. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    Science.gov (United States)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  19. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  20. The sound manifesto

    Science.gov (United States)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  1. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  2. Ground water flow velocity in the bank of the Columbia River, Hanford, Washington

    International Nuclear Information System (INIS)

    Ballard, S.

    1995-12-01

    To properly characterize the transport of contaminants from the sediments beneath the Hanford Site into the Columbia River, a suite of In Situ Permeable Flow Sensors was deployed to accurately characterize the hydrologic regime in the banks of the river. The three dimensional flow velocity was recorded on an hourly basis from mid May to mid July, 1994 and for one week in September. The first data collection interval coincided with the seasonal high water level in the river while the second interval reflected conditions during relatively low seasonal river stage. Two flow sensors located approximately 50 feet from the river recorded flow directions which correlated very well with river stage, both on seasonal and diurnal time scales. During time intervals characterized by falling river stage, the flow sensors recorded flow toward the river while flow away from the river was recorded during times of rising river stage. The flow sensor near the river in the Hanford Formation recorded a component of flow oriented vertically downward, probably reflecting the details of the hydrostratigraphy in close proximity to the probe. The flow sensor near the river in the Ringold Formation recorded an upward component of flow which dominated the horizontal components most of the time. The upward flow in the Ringold probably reflects regional groundwater flow into the river. The magnitudes of the flow velocities recorded by the flow sensors were lower than expected, probably as a result of drilling induced disturbance of the hydraulic properties of the sediments around the probes. The probes were installed with resonant sonic drilling which may have compacted the sediments immediately surrounding the probes, thereby reducing the hydraulic conductivity adjacent to the probes and diverting the groundwater flow away from the sensors

  3. Prediction of break-out sound from a rectangular cavity via an elastically mounted panel.

    Science.gov (United States)

    Wang, Gang; Li, Wen L; Du, Jingtao; Li, Wanyou

    2016-02-01

    The break-out sound from a cavity via an elastically mounted panel is predicted in this paper. The vibroacoustic system model is derived based on the so-called spectro-geometric method in which the solution over each sub-domain is invariably expressed as a modified Fourier series expansion. Unlike the traditional modal superposition methods, the continuity of the normal velocities is faithfully enforced on the interfaces between the flexible panel and the (interior and exterior) acoustic media. A fully coupled vibro-acoustic system is obtained by taking into account the strong coupling between the vibration of the elastic panel and the sound fields on the both sides. The typical time-consuming calculations of quadruple integrals encountered in determining the sound power radiation from a panel has been effectively avoided by reducing them, via discrete cosine transform, into a number of single integrals which are subsequently calculated analytically in a closed form. Several numerical examples are presented to validate the system model, understand the effects on the sound transmissions of panel mounting conditions, and demonstrate the dependence on the size of source room of the "measured" transmission loss.

  4. Early Sound Symbolism for Vowel Sounds

    Directory of Open Access Journals (Sweden)

    Ferrinne Spector

    2013-06-01

    Full Text Available Children and adults consistently match some words (e.g., kiki to jagged shapes and other words (e.g., bouba to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba. Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01. The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  5. Sound Art and Spatial Practices: Situating Sound Installation Art Since 1958

    OpenAIRE

    Ouzounian, Gascia

    2008-01-01

    This dissertation examines the emergence and development ofsound installation art, an under-recognized tradition that hasdeveloped between music, architecture, and media art practicessince the late 1950s. Unlike many musical works, which are concernedwith organizing sounds in time, sound installations organize sounds inspace; they thus necessitate new theoretical and analytical modelsthat take into consideration the spatial situated-ness of sound. Existingdiscourses on “spatial sound” privile...

  6. Coherent control of the group velocity in a dielectric slab doped with duplicated two-level atoms

    Science.gov (United States)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2016-01-01

    Coherent control of reflected and transmitted pulses is investigated theoretically through a slab doped with atoms in a duplicated two-level configuration. When a strong control field and a relatively weak probe field are employed, coherent control of the group velocity is achieved via changing the phase shift ϕ between control and probe fields. Furthermore, the peak values in the delay time of the reflected and transmitted pulses are also studied by varying the phase shift ϕ.

  7. Collective excitations in liquid and glassy 3-methylpentane

    KAUST Repository

    Benassi, Paola

    2015-09-28

    We present a detailed investigation of the terahertz vibrational dynamics of 3-methylpentane performed by means of high-resolution inelastic x-ray scattering (IXS). We probe the dynamics in a large temperature range, which includes the glass, the supercooled liquid, and the liquid phases. The characteristic frequency of the excitations follows a well-defined dispersion curve extending beyond 8nm−1 at all the investigated temperatures, indicating the persistence of a solidlike behavior also in the liquid phase. This implies the existence of a pseudo-Brillouin zone whose size compares surprisingly well with the periodicity inferred from the first sharp diffraction peak in the static structure factor. We show that, in the investigated temperature range, both sizes undergo a variation of about 15%–20%, comparable to that of the average intermolecular distance. We finally show that the IXS sound velocity coincides with the infinite frequency sound velocity previously inferred from visible and ultraviolet Brillouin spectroscopy data. This analysis confirms the role of the shear relaxation processes in determining the variation with frequency of the apparent sound velocity.

  8. Collective excitations in liquid and glassy 3-methylpentane

    KAUST Repository

    Benassi, Paola; Nardone, Michele; Giugni, Andrea; Baldi, Giacomo; Fontana, Aldo

    2015-01-01

    We present a detailed investigation of the terahertz vibrational dynamics of 3-methylpentane performed by means of high-resolution inelastic x-ray scattering (IXS). We probe the dynamics in a large temperature range, which includes the glass, the supercooled liquid, and the liquid phases. The characteristic frequency of the excitations follows a well-defined dispersion curve extending beyond 8nm−1 at all the investigated temperatures, indicating the persistence of a solidlike behavior also in the liquid phase. This implies the existence of a pseudo-Brillouin zone whose size compares surprisingly well with the periodicity inferred from the first sharp diffraction peak in the static structure factor. We show that, in the investigated temperature range, both sizes undergo a variation of about 15%–20%, comparable to that of the average intermolecular distance. We finally show that the IXS sound velocity coincides with the infinite frequency sound velocity previously inferred from visible and ultraviolet Brillouin spectroscopy data. This analysis confirms the role of the shear relaxation processes in determining the variation with frequency of the apparent sound velocity.

  9. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  10. Asymmetry reversal of ion collection by mach probes in flowing unmagnetized plasmas

    International Nuclear Information System (INIS)

    Ko, E; Hershkowitz, N

    2006-01-01

    Measurements of ion current in flowing unmagnetized plasmas were performed with planar and spherical Mach probes in two different devices, one a dc multi-dipole plasma device for subsonic flow within a presheath region and the other a double plasma device for supersonic flow. Asymmetry reversal, which is higher ion current to the downstream side of the probe compared with the upstream side current, was observed for high probe bias compared with the electron temperature, relatively low ion drift velocity and Debye length comparable to probe radius. These data are in qualitative agreement with a recent numerical calculation by Hutchinson. As suggested by Hutchinson, it was found that the current ratio depended on the plasma parameters, especially for finite Debye length and high probe bias. Asymmetry reversal emphasizes the lack of validity of using the current ratio except for narrow parameter ranges. This study is the first experiment to demonstrate the non-intuitive phenomenon predicted by Hutchinson's numerical calculation

  11. Sound a very short introduction

    CERN Document Server

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  12. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  13. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow

    International Nuclear Information System (INIS)

    Hibiki, T.; Hogsett, S.; Ishii, M.

    1998-01-01

    Double sensor probe and hotfilm anemometry methods were developed for measuring local flow characteristics in bubbly flow. The formulation for the interfacial area concentration measurement was obtained by improving the formulation derived by Kataoka and Ishii. The assumptions used in the derivation of the equation were verified experimentally. The interfacial area concentration measured by the double sensor probe agreed well with one by the photographic method. The filter to validate the hotfilm anemometry for measuring the liquid velocity and turbulent intensity in bubbly flow was developed based on removing the signal due to the passing bubbles. The local void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter, liquid velocity, and turbulent intensity of vertical upward air-water flow in a round tube with inner diameter of 50.8 mm were measured by using these methods. A total of 54 data sets were acquired consisting of three superficial gas flow rates, 0.039, 0.067, and 0.147 m/s, and three superficial liquid flow rates, 0.60, 1.00, and 1.30 m/s. The measurements were performed at the three locations: L/D=2, 32, and 62. This data is expected to be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. (author)

  14. Development of radio acoustic sounding method in Kharkov National University of Radio Electronics

    International Nuclear Information System (INIS)

    Proshkin, Y G; Kartashov, V M; Babkin, S I

    2008-01-01

    The analysis of the role of Kharkov National University of Radio Electronics in developing the atmosphere radio acoustic sounding (RAS) method within the period from 1968 to 2008 was carried out. As a part of the investigation program six experimental models of the sounding radio equipment were developed and manufactured. The atmosphere sounding methods were developed for measuring the base meteorological values. For the first time in the world practice, relevant comparative measurements of air temperature, wind velocity and direction were performed on a short base (about 150 m) using the centimetre RAS equipment and standard sensors of a high (300 m) meteorological mast. The RAS equipment was used for the purpose of meteorological support to investigations in the field of the atmosphere physics and applied problems. All instrumental, atmosphere and social factors, affecting operation the RAS systems, were generalized. It is shown that compact and mobile systems for remote monitoring of the atmospheric boundary layer with possible prompt obtaining of relevant information about base meteorological values in large volumes can be based on the RAS equipment

  15. Sounding rocket flight report: MUMP 9 and MUMP 10

    Science.gov (United States)

    Grassl, H. J.

    1971-01-01

    The results of the launching of two Marshall-University of Michigan Probes (MUMP 9 and MUMP 10), Nike-Tomahawk sounding rocket payloads, are summarized. The MUMP 9 paylaod included an omegatron mass analyzer, a molecular fluorescence densitometer, a mini-tilty filter, and a lunar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature in the altitude range from approximately 143 to 297 km over Wallops Island, Virginia, during January 1971. The MUMP 10 payload included an omegatron mass analyzer, an electron temperature probe (Spencer, Brace, and Carignan, 1962), a cryogenic densitometer, and a solar position sensor. This complement of instruments permitted the determination of the molecular nitrogen density and temperature and the charged particle density and temperature in the altitude range from approximately 145 to 290 km over Wallops Island, Virginia, during the afternoon preceding the MUMP 9 launch in January 1971. A general description of the payload kinematics, orientation analysis, and the technique for the reduction and analysis of the data is given.

  16. Application of advanced optical probe instrumentation in steam generator tube bundles

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Gouirand, J.M.; Haquet, J.F.; Ivars, J.F.

    1990-01-01

    The Department of Energy Transfer (DTE) of the French CEA has been developing for about 15 years optical probe techniques in order to better understand and predict nuclear components dealing with two-phase flows. More recently, in the scope of an International Program, the CEA has made an intensive use of bi-optical probes in order to very precisely investigate the distributions of void fraction and gas velocity in the secondary side of a Steam-generator mock-up operating with Freon 114 (80 degrees C, 9 x 10 5 Pa at nominal conditions). At the present time, the success of this program and the recent progress achieved in the technology of the probe, in particular to withstand higher pressures and temperatures allow us to reasonably think that this device will be soon available for industrial uses. So, this paper deals with the present state of the art of the technique within CEA and in particular it successively describes: what is required of a practical point of view when it comes to perform local measurements within tube bundles and what have been the technical choices to meet these requirements; how the bi-optical probe does operate with an emphasis on the signal processing description; how the whole device accuracy, i.e., the bi-optical probe plus its complete acquisition and signal processing chain, is determined by a calibration procedure comparing first separately then all together the different components to independent numerical and physical reference methods; typical examples of measurements of the emulsion fine structure within tube bundle subchannels as regards with void fraction, gas velocity and bubble granulometries; finally, the recent progress accomplished in terms of, higher reliability, resolution, pressure and temperature resistance

  17. Designing an array for performing Near-field Acoustic Holography with a small number of p-u probes

    DEFF Research Database (Denmark)

    Fernandez Comesaña, Daniel; Wen, Junjie; Fernandez Grande, Efren

    2016-01-01

    , such approaches usually require that a large number of transducers is spatially distributed over the area of interest. This paper describes some practical considerations for the design and optimization of a compact sensor array for performing NAH with a small number of sound intensity p-u probes. Two sensor...

  18. What is Sound?

    OpenAIRE

    Nelson, Peter

    2014-01-01

    What is sound? This question is posed in contradiction to the every-day understanding that sound is a phenomenon apart from us, to be heard, made, shaped and organised. Thinking through the history of computer music, and considering the current configuration of digital communi-cations, sound is reconfigured as a type of network. This network is envisaged as non-hierarchical, in keeping with currents of thought that refuse to prioritise the human in the world. The relationship of sound to musi...

  19. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  20. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  1. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  2. Characterization of type, position and dimension of flaws by transit time locus curves of ultrasonic inspections - ALOK. Pt. 2

    International Nuclear Information System (INIS)

    Grohs, B.; Barbian, O.A.; Kappes, W.; Paul, H.

    1981-01-01

    With automatic ultrasonic testing, flaws can be detected and described and thus characterized according to their type, position and dimensions. During scanning of a test object, the flaws are registered by many different pathways and many different acoustic irradiation directions. The transit time locus curve represents the distance between the relfecting points of a flaw and the source in dependence of the probe position; hence, information on flaw position and dimensions can be derived from this curve. If the sound velocity is known, the transit path can then be calculated from the transit time. This requires, above all, a constant sound velocity along the whole transit path. Various methods are presented for reconstructing the flaw border in the plane of incidence. (orig./RW) [de

  3. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    Science.gov (United States)

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  4. Clay-oil flocculation and its role in natural cleansing in Prince William Sound following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Bragg, J.R.; Yang, S.H.

    1995-01-01

    Natural interactions of fine mineral particles with residue oil and seawater, in a process called clay-oil flocculation, were found to create solids-stabilized oil-in-water emulsions on shoreline sediments at numerous locations in Prince William Sound following the Exxon Valdez spill. In laboratory tests using oiled sediment samples from Prince William Sound, these emulsions were shown to facilitate natural cleansing and dispersion of oil from sediments by moving water. To investigate the effect of flocculation on natural cleansing, studies were conducted to determine the hydrodynamic energy needed for seawater to remove flocculated oil residues from sediments sampled from shorelines. Water was pumped at different velocities through a column packed with oiled sediment, and the amount and composition of oil removed from the sediment were measured as functions of water velocity and sediment movement. In separate tests, oil removal was observed in a wave tank that generated wave heights less than and greater than needed to move sediments. 28 refs., 13 figs., 7 tabs

  5. Electron ring diagnostics with magnetic probes during roll-out and acceleration

    International Nuclear Information System (INIS)

    Schumacher, U.; Ulrich, M.

    1976-03-01

    Different methods using magnetic field probes to determine the properties of electron rings during their compression, roll-out and acceleration are presented. The results of the measurements of the electron number and the axial velocity and acceleration of the rings, as obtained with the various diagnostic devices, are discussed and compared. (orig.) [de

  6. Memory for product sounds: the effect of sound and label type.

    Science.gov (United States)

    Ozcan, Elif; van Egmond, René

    2007-11-01

    The (mnemonic) interactions between auditory, visual, and the semantic systems have been investigated using structurally complex auditory stimuli (i.e., product sounds). Six types of product sounds (air, alarm, cyclic, impact, liquid, mechanical) that vary in spectral-temporal structure were presented in four label type conditions: self-generated text, text, image, and pictogram. A memory paradigm that incorporated free recall, recognition, and matching tasks was employed. The results for the sound type suggest that the amount of spectral-temporal structure in a sound can be indicative for memory performance. Findings related to label type suggest that 'self' creates a strong bias for the retrieval and the recognition of sounds that were self-labeled; the density and the complexity of the visual information (i.e., pictograms) hinders the memory performance ('visual' overshadowing effect); and image labeling has an additive effect on the recall and matching tasks (dual coding). Thus, the findings suggest that the memory performances for product sounds are task-dependent.

  7. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  8. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  9. Human-inspired sound environment recognition system for assistive vehicles

    Science.gov (United States)

    González Vidal, Eduardo; Fredes Zarricueta, Ernesto; Auat Cheein, Fernando

    2015-02-01

    . The proposed sound-based system is very efficient at providing general descriptions of the environment. Such descriptions are focused on vulnerable situations described by the ICF. The volunteers answered a questionnaire regarding the importance of constraining the vehicle velocities in risky environments, showing that all the volunteers felt comfortable with the system and its performance.

  10. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    Kim, K.

    1986-01-01

    A detailed experimental study successfully demonstrates the acceleration of frozen hydrogen pellets by means of a fuseless two-stage electromagnetic railgun system. This system consists of a pneumatic hydrogen pellet injector, which freezes and pneumatically pre-accelerates (with high-pressure helium as the propellant gas) cylindrical 1.6-mm-dia by 2.15-mm-long hydrogen pellets, and a 60-cm-long, 1.6-mm-dia circular-bore electromagnetic railgun. The pellet is introduced into the railgun by means of a coupling piece, and a plasma-arc armature is created from the propellant gas by means of a very unique, fuseless, arc-initiation scheme. Railgun-accelerated hydrogen pellet velocities in excess of 1.6 km/s are achieved from pneumatically accelerated injection velocities of 800 m/s. Streak-camera and current-probe data show that the plasma-arc armature moves at a velocity proportional to the railgun current, I. Insight to this I-dependence is gained through the use of streak photography and current probes for varying bore geometries and gas pressures

  11. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  12. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.

    Science.gov (United States)

    Chen, Xingyuan; Miller, Gretchen R; Rubin, Yoram; Baldocchi, Dennis D

    2012-12-01

    The heat pulse method is widely used to measure water flux through plants; it works by using the speed at which a heat pulse is propagated through the system to infer the velocity of water through a porous medium. No systematic, non-destructive calibration procedure exists to determine the site-specific parameters necessary for calculating sap velocity, e.g., wood thermal diffusivity and probe spacing. Such parameter calibration is crucial to obtain the correct transpiration flux density from the sap flow measurements at the plant scale and subsequently to upscale tree-level water fluxes to canopy and landscape scales. The purpose of this study is to present a statistical framework for sampling and simultaneously estimating the tree's thermal diffusivity and probe spacing from in situ heat response curves collected by the implanted probes of a heat ratio measurement device. Conditioned on the time traces of wood temperature following a heat pulse, the parameters are inferred using a Bayesian inversion technique, based on the Markov chain Monte Carlo sampling method. The primary advantage of the proposed methodology is that it does not require knowledge of probe spacing or any further intrusive sampling of sapwood. The Bayesian framework also enables direct quantification of uncertainty in estimated sap flow velocity. Experiments using synthetic data show that repeated tests using the same apparatus are essential for obtaining reliable and accurate solutions. When applied to field conditions, these tests can be obtained in different seasons and can be automated using the existing data logging system. Empirical factors are introduced to account for the influence of non-ideal probe geometry on the estimation of heat pulse velocity, and are estimated in this study as well. The proposed methodology may be tested for its applicability to realistic field conditions, with an ultimate goal of calibrating heat ratio sap flow systems in practical applications.

  13. Can road traffic mask sound from wind turbines? Response to wind turbine sound at different levels of road traffic sound

    International Nuclear Information System (INIS)

    Pedersen, Eja; Berg, Frits van den; Bakker, Roel; Bouma, Jelte

    2010-01-01

    Wind turbines are favoured in the switch-over to renewable energy. Suitable sites for further developments could be difficult to find as the sound emitted from the rotor blades calls for a sufficient distance to residents to avoid negative effects. The aim of this study was to explore if road traffic sound could mask wind turbine sound or, in contrast, increases annoyance due to wind turbine noise. Annoyance of road traffic and wind turbine noise was measured in the WINDFARMperception survey in the Netherlands in 2007 (n=725) and related to calculated levels of sound. The presence of road traffic sound did not in general decrease annoyance with wind turbine noise, except when levels of wind turbine sound were moderate (35-40 dB(A) Lden) and road traffic sound level exceeded that level with at least 20 dB(A). Annoyance with both noises was intercorrelated but this correlation was probably due to the influence of individual factors. Furthermore, visibility and attitude towards wind turbines were significantly related to noise annoyance of modern wind turbines. The results can be used for the selection of suitable sites, possibly favouring already noise exposed areas if wind turbine sound levels are sufficiently low.

  14. Strain accumulation across the Prince William Sound asperity, Southcentral Alaska

    Science.gov (United States)

    Savage, J. C.; Svarc, J. L.; Lisowski, M.

    2015-03-01

    The surface velocities predicted by the conventional subduction model are compared to velocities measured in a GPS array (surveyed in 1993, 1995, 1997, 2000, and 2004) spanning the Prince William Sound asperity. The observed velocities in the comparison have been corrected to remove the contributions from postseismic (1964 Alaska earthquake) mantle relaxation. Except at the most seaward monument (located on Middleton Island at the seaward edge of the continental shelf, just 50 km landward of the deformation front in the Aleutian Trench), the corrected velocities qualitatively agree with those predicted by an improved, two-dimensional, back slip, subduction model in which the locked megathrust coincides with the plate interface identified by seismic refraction surveys, and the back slip rate is equal to the plate convergence rate. A better fit to the corrected velocities is furnished by either a back slip rate 20% greater than the plate convergence rate or a 30% shallower megathrust. The shallow megathrust in the latter fit may be an artifact of the uniform half-space Earth model used in the inversion. Backslip at the plate convergence rate on the megathrust mapped by refraction surveys would fit the data as well if the rigidity of the underthrust plate was twice that of the overlying plate, a rigidity contrast higher than expected. The anomalous motion at Middleton Island is attributed to continuous slip at near the plate convergence rate on a postulated, listric fault that splays off the megathrust at depth of about 12 km and outcrops on the continental slope south-southeast of Middleton Island.

  15. Strain accumulation across the Prince William Sound asperity, Southcentral Alaska

    Science.gov (United States)

    Savage, James C.; Svarc, Jerry L.; Lisowski, Michael

    2015-01-01

    The surface velocities predicted by the conventional subduction model are compared to velocities measured in a GPS array (surveyed in 1993, 1995, 1997, 2000, and 2004) spanning the Prince William Sound asperity. The observed velocities in the comparison have been corrected to remove the contributions from postseismic (1964 Alaska earthquake) mantle relaxation. Except at the most seaward monument (located on Middleton Island at the seaward edge of the continental shelf, just 50 km landward of the deformation front in the Aleutian Trench), the corrected velocities qualitatively agree with those predicted by an improved, two-dimensional, back slip, subduction model in which the locked megathrust coincides with the plate interface identified by seismic refraction surveys, and the back slip rate is equal to the plate convergence rate. A better fit to the corrected velocities is furnished by either a back slip rate 20% greater than the plate convergence rate or a 30% shallower megathrust. The shallow megathrust in the latter fit may be an artifact of the uniform half-space Earth model used in the inversion. Backslip at the plate convergence rate on the megathrust mapped by refraction surveys would fit the data as well if the rigidity of the underthrust plate was twice that of the overlying plate, a rigidity contrast higher than expected. The anomalous motion at Middleton Island is attributed to continuous slip at near the plate convergence rate on a postulated, listric fault that splays off the megathrust at depth of about 12 km and outcrops on the continental slope south-southeast of Middleton Island.

  16. Structure-borne sound structural vibrations and sound radiation at audio frequencies

    CERN Document Server

    Cremer, L; Petersson, Björn AT

    2005-01-01

    Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi

  17. Probing velocity dependent self-interacting dark matter with neutrino telescopes

    Science.gov (United States)

    Robertson, Denis S.; Albuquerque, Ivone F. M.

    2018-02-01

    Self-interacting dark matter models constitute an attractive solution to problems in structure formation on small scales. A simple realization of these models considers the dark force mediated by a light particle which can couple to the Standard Model through mixings with the photon or the Z boson. Within this scenario we investigate the sensitivity of the IceCube-DeepCore and PINGU neutrino telescopes to the associated muon neutrino flux produced by dark matter annihilations in the Sun. Despite the model's simplicity, several effects naturally appear: momentum suppressed capture by nuclei, velocity dependent dark matter self-capture, Sommerfeld enhanced annihilation, as well as the enhancement on the neutrino flux due to mediator late decays. Taking all these effects into account, we find that most of the model relevant parameter space can be tested by the three years of data already collected by the IceCube-DeepCore. We show that indirect detection through neutrinos can compete with the strong existing limits from direct detection experiments, specially in the case of isospin violation.

  18. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  19. InfoSound

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Gopinath, B.; Haberman, Gary O.

    1990-01-01

    The authors explore ways to enhance users' comprehension of complex applications using music and sound effects to present application-program events that are difficult to detect visually. A prototype system, Infosound, allows developers to create and store musical sequences and sound effects with...

  20. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  1. Velocities of gas and plasmas from real time holographic interferograms

    International Nuclear Information System (INIS)

    Deason, V.A.; Reynolds, L.D.; McIlwain, M.E.

    1985-01-01

    A truly noninvasive measurement technique for plasma velocity has not been demonstrated. Plasma velocities have been inferred using laser Doppler anemometry or photographic analysis of the position of smoke or small particles. This paper describes an alternate method based on the refractive index change created in a plasma by a gaseous probe material injected into the plasma. This disturbance of the refractive index can be monitored using interferometry. A multipass real time holographic interferometry system was used to follow the changes of the interferometric pattern, and the data was recorded using high speed cinematography. A transparent model of an industrial plasma torch was employed in these studies, and a number of different types of trace gas materials were used to track the plasma flow. Using a combination of multipass interferometry and a laser line absorbing gas, sufficient interferometric sensitivity was obtained to determine plasma velocities in the 100 m/s range. Based on these results, a working plasma torch was constructed. Further studies are planned using this torch and actual plasmas

  2. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    Science.gov (United States)

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  3. Development of the interfacial area concentration measurement method using a five sensor conductivity probe

    International Nuclear Information System (INIS)

    Euh, Dong Jin; Yun, Byong Jo; Song, Chul Hwa; Kwon, Tae Soon; Chung, Moon Ki; Lee, Un Chul

    2000-01-01

    The interfacial area concentration(IAC) is one of the most important parameters in the two-fluid model for two-phase flow analysis. The IAE can be measured by a local conductivity probe method that uses the difference of conductivity between water and air/steam. The number of sensors in the conductivity probe may be differently chosen by considering the flow regime of two-phase flow. The four sensor conductivity probe method predicts the IAC without any assumptions of the bubble shape. The local IAC can be obtained by measuring the three dimensional velocity vector elements at the measuring point, and the directional cosines of the sensors. The five sensor conductivity probe method proposed in this study is based on the four sensor probe method. With the five sensor probe, the local IAC for a given referred measuring area of the probe can be predicted more exactly than the four sensor prober. In this paper, the mathematical approach of the five sensor probe method for measuring the IAC is described, and a numerical simulation is carried out for ideal cap bubbles of which the sizes and locations are determined by a random number generator

  4. Vortex sound in bass-reflex ports of loudspeakers : part II. a method to estimate the point of separation

    NARCIS (Netherlands)

    Roozen, N.B.; Bockholts, M.; van Eck, P.; Hirschberg, A.

    1998-01-01

    In part I of this paper, the vortex shedding that may occur in a bass-reflex port of a loudspeaker system was discussed. At the Helmholtz frequency of the bass-reflex port, air is pumped in and out at rather high velocities, vortex shedding occurs at the end of the port, and blowing sounds are

  5. Light and Sound

    CERN Document Server

    Karam, P Andrew

    2010-01-01

    Our world is largely defined by what we see and hear-but our uses for light and sound go far beyond simply seeing a photo or hearing a song. A concentrated beam of light, lasers are powerful tools used in industry, research, and medicine, as well as in everyday electronics like DVD and CD players. Ultrasound, sound emitted at a high frequency, helps create images of a developing baby, cleans teeth, and much more. Light and Sound teaches how light and sound work, how they are used in our day-to-day lives, and how they can be used to learn about the universe at large.

  6. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form....

  7. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique.

    Science.gov (United States)

    Mondal, Ashok; Bhattacharya, P S; Saha, Goutam

    2011-01-01

    During the recording time of lung sound (LS) signals from the chest wall of a subject, there is always heart sound (HS) signal interfering with it. This obscures the features of lung sound signals and creates confusion on pathological states, if any, of the lungs. A novel method based on empirical mode decomposition (EMD) technique is proposed in this paper for reducing the undesired heart sound interference from the desired lung sound signals. In this, the mixed signal is split into several components. Some of these components contain larger proportions of interfering signals like heart sound, environmental noise etc. and are filtered out. Experiments have been conducted on simulated and real-time recorded mixed signals of heart sound and lung sound. The proposed method is found to be superior in terms of time domain, frequency domain, and time-frequency domain representations and also in listening test performed by pulmonologist.

  8. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  9. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  10. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  11. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  12. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Soukiassian, A; Tenne, D A; Schlom, D; Xi, X X; Cantarero, A

    2007-01-01

    We study high quality molecular-beam epitaxy grown BaTiO 3 /SrTiO 3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO 3 /SrTiO 3 layer thicknesses the effective sound velocities within each of the layers are obtained

  13. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Science.gov (United States)

    Bruchhausen, A.; Lanzillotti-Kimura, N. D.; Fainstein, A.; Soukiassian, A.; Tenne, D. A.; Schlom, D.; Xi, X. X.; Cantarero, A.

    2007-12-01

    We study high quality molecular-beam epitaxy grown BaTiO3/SrTiO3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO3/SrTiO3 layer thicknesses the effective sound velocities within each of the layers are obtained.

  14. Ocean current velocity, temperature and salinity collected during 2010 and 2011 in Vieques Sound and Virgin Passage (NODC Accession 0088063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Nortek 600kHz Aquadopp acoustic current profilers were deployed between March 2010 and April 2011 on shallow water moorings located in Vieques Sound, Puerto Rico,...

  15. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  16. Experimental Study on The Two-Phase Flow Characteristics Using Conductivity Probes And Laser Doppler Anemometry In A Vertical Pipe

    Science.gov (United States)

    Chiva, S.; Mendez, S.; Muñoz-Cobo, J. L.; Julia, J. E.; Hernandez, L.

    2007-06-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using Laser Doppler Anemometry (LDA). Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.491 m/s to 0.981 m/s and a void fraction up to 10 %. For each two-phase flow configuration twenty five radial position and three axial locations were measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions.

  17. Remembering that big things sound big: Sound symbolism and associative memory.

    Science.gov (United States)

    Preziosi, Melissa A; Coane, Jennifer H

    2017-01-01

    According to sound symbolism theory, individual sounds or clusters of sounds can convey meaning. To examine the role of sound symbolic effects on processing and memory for nonwords, we developed a novel set of 100 nonwords to convey largeness (nonwords containing plosive consonants and back vowels) and smallness (nonwords containing fricative consonants and front vowels). In Experiments 1A and 1B, participants rated the size of the 100 nonwords and provided definitions to them as if they were products. Nonwords composed of fricative/front vowels were rated as smaller than those composed of plosive/back vowels. In Experiment 2, participants studied sound symbolic congruent and incongruent nonword and participant-generated definition pairings. Definitions paired with nonwords that matched the size and participant-generated meanings were recalled better than those that did not match. When the participant-generated definitions were re-paired with other nonwords, this mnemonic advantage was reduced, although still reliable. In a final free association study, the possibility that plosive/back vowel and fricative/front vowel nonwords elicit sound symbolic size effects due to mediation from word neighbors was ruled out. Together, these results suggest that definitions that are sound symbolically congruent with a nonword are more memorable than incongruent definition-nonword pairings. This work has implications for the creation of brand names and how to create brand names that not only convey desired product characteristics, but also are memorable for consumers.

  18. Nuclear magnetic resonance and sound velocity measurements of chalk saturated with magnesium rich brine

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2013-01-01

    The use of low field Nuclear Magnetic Resonance (NMR) to determine petrophysical properties of reservoirs has proved to be a good technique. Together with sonic and electrical resistivity measurements, NMR can contribute to illustrate the changes on chalk elasticity due to different pore water...... solutions of the same ionic strength. Saturation with a solution that contained divalent ions caused a major shift on the distribution of the relaxation time. The changes were probably due to precipitats forming extra internal surface in the sample. Sonic velocities were relatively low in the MgCl2 solution...

  19. An Antropologist of Sound

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh

    2015-01-01

    PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology.......PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology....

  20. Transition from hydrodynamic to fast sound in a He-Ne mixture a neutron Brillouin scattering experiment

    CERN Document Server

    Bafile, U; Barocchi, F; Sampoli, M

    2002-01-01

    The presence of a fast-sound mode in the microscopic dynamics of the rare-gas mixture He-Ne, predicted by theoretical studies and molecular-dynamics simulations, was demonstrated by an inelastic neutron scattering experiment. In order to study the transition between the fast and the normal acoustic modes in the hydrodynamic regime, k values lower by about one order of magnitude than in the usual experiments have to be probed. We describe here the results of the first neutron Brillouin scattering experiment performed with this purpose on the same system already investigated at larger k. The results of both experiments, together with those of a new molecular-dynamics simulation, provide a complete and consistent description, still missing so far, of the onset of fast-sound propagation in a binary mixture. (orig.)

  1. Parametric excitation of the J=2+ modes by zero sound in superfluid 3He-B

    International Nuclear Information System (INIS)

    Sauls, J.A.; McKenzie, R.H.

    1991-01-01

    We discuss order-parameter collective modes in weakly inhomogeneous states of superfluid 3 He-B, i.e., states in which the scale of the inhomogeneities is considerably longer than the coherence length ξ 0 =v t /2πTc and the energy associated with the inhomogeneity is small compared to the condensation energy. The theory describes resonance phenomena between order-parameter modes and zero sound. We discuss two specific cases, both of which involve excitation of the J=2 + modes via a parametric field that lifts the selection rule due to particle-hole symmetry. In the case of a static superflow the modes with J=2 + , M=±1 couple to sound for qparallelH, and should be observable as Zeeman states with a maximum absorption that scales as the square of the superflow velocity. The J=2 + modes may also be excited parametrically in a three-wave resonance process involving two zero-sound phonons. We summarize the nonlinear response theory for two-phonon excitation of these modes. (orig.)

  2. Direct probing of evanescent field for characterization of porous terahertz fibers

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Afshar V., Shahraam; Nagel, Michael

    2011-01-01

    We develop a technique based on a micromachined photoconductive probe-tip to characterize a terahertz (THz) porous fiber. Losses less than 0.08 cm−1 are measured in the frequency range from 0.2 to 0.35 THz, with the minimum of 0.003 cm−1 at 0.24 THz. Normalized group velocity greater than 0.8, wh...

  3. Laser transit anemometer and Pitot probe comparative measurements in a sharp cone boundary layer at Mach 4

    Science.gov (United States)

    Hunter, W. W., Jr.; Ocheltree, S. L.; Russ, C. E., Jr.

    1991-01-01

    Laser transit anemometer (LTA) measurements of a 7 degree sharp cone boundary layer were conducted in the Air Force/AEDC Supersonic Tunnel A Mach 4 flow field. These measurements are compared with Pitot probe measurements and tricone theory provided by AEDC staff. Measurements were made both in laminar and turbulent boundary layers of the model. Comparison of LTA measurements with theory showed agreement to better than 1 percent for the laminar boundary layer cases. This level of agreement was obtained after small position corrections, 0.01 to 0.6 mm, were applied to the experimental data sets. Pitot probe data when compared with theory also showed small positioning errors. The Pitot data value was also limited due to probe interference with the flow near the model. The LTA turbulent boundary layer data indicated a power law dependence of 6.3 to 6.9. The LTA data was analyzed in the time (Tau) domain in which it was obtained and in the velocity domain. No significant differences were noted between Tau and velocity domain results except in one turbulent boundary layer case.

  4. Investigation of E x B transport with a multi-electrode probe in the plasma boundary of TEXTOR

    International Nuclear Information System (INIS)

    Ivanov, R.S.; Moyer, R.A.; Nieuwenhove, R. van; Oost, G. van; Fuchs, G.; Hoethker, K.; Samm, U.

    1991-01-01

    A movable multi-element Langmuir probe was implemented in TEXTOR in order to study properties of the edge and scrape-off plasma. The probe has five graphite electrode pins allowing the simultaneous measurement of main parameters such as plasma densities, electron temperatures, floating potentials, poloidal and radial electric fields. Both time-averaged and fluctuating quantities have been considered in order to evaluate the DC and turbulence-driven cross-field particle fluxes. The spectral analysis of the fluctuating floating potentials at spatially separated probe pins allows to determine the velocity associated with the rotations of the boundary plasma. The investigations have been focused on the variations of plasma boundary properties in plasmas with pure ohmic heating as well as auxiliary heating (ICRH). Special attention has been paid to the change of transport properties with the transition to a detached plasma. In particular, a significant reduction of the poloidal phase velocity at the limited edge has been observed for detached plasmas. Preliminary data on physical effects near the plasma boundary, which occur when the toroidal belt limiter (ALT-II) is biased, are reported. (orig.)

  5. Sound specificity effects in spoken word recognition: The effect of integrality between words and sounds

    DEFF Research Database (Denmark)

    Strori, Dorina; Zaar, Johannes; Cooke, Martin

    2017-01-01

    Recent evidence has shown that nonlinguistic sounds co-occurring with spoken words may be retained in memory and affect later retrieval of the words. This sound-specificity effect shares many characteristics with the classic voice-specificity effect. In this study, we argue that the sound......-specificity effect is conditional upon the context in which the word and sound coexist. Specifically, we argue that, besides co-occurrence, integrality between words and sounds is a crucial factor in the emergence of the effect. In two recognition-memory experiments, we compared the emergence of voice and sound...... from a mere co-occurrence context effect by removing the intensity modulation. The absence of integrality led to the disappearance of the sound-specificity effect. Taken together, the results suggest that the assimilation of background sounds into memory cannot be reduced to a simple context effect...

  6. Active sound reduction system and method

    NARCIS (Netherlands)

    2016-01-01

    The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound

  7. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    Science.gov (United States)

    Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.

    2009-01-01

    Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.

  8. Sound Symbolism in Basic Vocabulary

    Directory of Open Access Journals (Sweden)

    Søren Wichmann

    2010-04-01

    Full Text Available The relationship between meanings of words and their sound shapes is to a large extent arbitrary, but it is well known that languages exhibit sound symbolism effects violating arbitrariness. Evidence for sound symbolism is typically anecdotal, however. Here we present a systematic approach. Using a selection of basic vocabulary in nearly one half of the world’s languages we find commonalities among sound shapes for words referring to same concepts. These are interpreted as due to sound symbolism. Studying the effects of sound symbolism cross-linguistically is of key importance for the understanding of language evolution.

  9. Ion collection by probing objects in flowing magnetized plasmas

    International Nuclear Information System (INIS)

    Kyu-Sun, Chung.

    1989-04-01

    A new one-dimensional collisionless kinetic model is developed for the flow of ions to probing structures in drifting plasmas. The cross-field flow into the presheath is modelled by accounting consistently for particle exchange between the collection flux tube and the outer plasma. Numerical solutions of the self-consistent plasma/sheath equations are obtained with arbitrary external ion temperature and parallel plasma flow velocity. Results are presented of the spatial dependence of the ion distribution function as well as its moments (density, particle flux, temperature, and power flux). The ion current to the probe is obtained and the ratio of the upstream to downstream currents is found to be well represented by the form R = exp[Ku d ], where K = 1.66 for T i = T e and u d is the drift velocity in units of (T e /m i ) 1/2 . The results agree well with comparable recent fluid calculations but show substantial deviations from other models which ignore particle exchange out of the presheath. No evidence is found of the formation of shocks in the downstream wake, contrary to the implications of some fluid theories. We have also extended the previous kinetic model by generalizing cross-field transport and adding ionization to the source of the Boltzmann equation along the presheath. Ion sheath current density and ratio(R) of upstream to downstream current are obtained as a function of plasma drift velocity, equivalent viscosity, ion temperature, and ionization rate. Constants(K) in the form R = exp[Ku d ] are obtained in terms of viscosity, ion temperature, and ionization rate. The effect of an electrical bias applied to the object on the presheath characteristics is discussed

  10. Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas

    Science.gov (United States)

    Polzin, Kurt A.; Ratcliffe, Alicia C.

    2018-01-01

    The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the

  11. Vibrometry Assessment of the External Thermal Composite Insulation Systems Influence on the Façade Airborne Sound Insulation

    Directory of Open Access Journals (Sweden)

    Daniel Urbán

    2018-05-01

    Full Text Available This paper verifies the impact of the use of an external thermal composite system (ETICS on air-borne sound insulation. For optimum accuracy over a wide frequency range, classical microphone based transmission measurements are combined with accelerometer based vibrometry measurements. Consistency is found between structural resonance frequencies and bending wave velocity dispersion curves determined by vibrometry on the one hand and spectral features of the sound reduction index, the ETICS mass-spring-mass resonance induced dip in the acoustic insulation spectrum, and the coincidence induced dip on the other hand. Scanning vibrometry proves to be an effective tool for structural assessment in the design phase of ETICS systems. The measured spectra are obtained with high resolution in wide frequency range, and yield sound insulation values are not affected by the room acoustic features of the laboratory transmission rooms. The complementarity between the microphone and accelerometer based results allows assessing the effect of ETICS on the sound insulation spectrum in an extended frequency range from 20 Hz to 10 kHz. The modified engineering ΔR prediction model for frequency range up to coincidence frequency of external plaster layer is recommended. Values for the sound reduction index obtained by a modified prediction method are consistent with the measured data.

  12. Sounding the Alarm: An Introduction to Ecological Sound Art

    Directory of Open Access Journals (Sweden)

    Jonathan Gilmurray

    2016-12-01

    Full Text Available In recent years, a number of sound artists have begun engaging with ecological issues through their work, forming a growing movement of ˝ecological sound art˝. This paper traces its development, examines its influences, and provides examples of the artists whose work is currently defining this important and timely new field.

  13. Noise and noise disturbances from wind power plants - Tests with interactive control of sound parameters for more comfortable and less perceptible sounds; Buller och bullerstoerningar fraan vindkraftverk - Foersoek med interaktiv styrning av ljudparametrar foer behagligare och mindre maerkbara ljud

    Energy Technology Data Exchange (ETDEWEB)

    Persson-Waye, K.; Oehrstroem, E.; Bjoerkman, M.; Agge, A. [Goeteborg Univ. (Sweden). Dept. of Environmental Medicine

    2001-12-01

    In experimental pilot studies, a methodology has been worked out for interactively varying sound parameters in wind power plants. In the tests, 24 persons varied the center frequency of different band-widths, the frequency of a sinus-tone and the amplitude-modulation of a sinus-tone in order to create as comfortable a sound as possible. The variations build on the noise from the two wind turbines Bonus and Wind World. The variations were performed with a constant dba level. The results showed that the majority preferred a low-frequency tone (94 Hz and 115 Hz for Wind World and Bonus, respectively). The mean of the most comfortable amplitude-modulation varied between 18 and 22 Hz, depending on the ground frequency. The mean of the center-frequency for the different band-widths varied from 785 to 1104 Hz. In order to study the influence of the wind velocity on the acoustic character of the noise, a long-time measurement program has been performed. A remotely controlled system has been developed, where wind velocity, wind direction, temperature and humidity are registered simultaneously with the noise. Long-time registrations have been performed for four different wing turbines.

  14. Sound Stuff? Naïve materialism in middle-school students' conceptions of sound

    Science.gov (United States)

    Eshach, Haim; Schwartz, Judah L.

    2006-06-01

    Few studies have dealt with students’ preconceptions of sounds. The current research employs Reiner et al. (2000) substance schema to reveal new insights about students’ difficulties in understanding this fundamental topic. It aims not only to detect whether the substance schema is present in middle school students’ thinking, but also examines how students use the schema’s properties. It asks, moreover, whether the substance schema properties are used as islands of local consistency or whether one can identify more global coherent consistencies among the properties that the students use to explain the sound phenomena. In-depth standardized open-ended interviews were conducted with ten middle school students. Consistent with the substance schema, sound was perceived by our participants as being pushable, frictional, containable, or transitional. However, sound was also viewed as a substance different from the ordinary with respect to its stability, corpuscular nature, additive properties, and inertial characteristics. In other words, students’ conceptions of sound do not seem to fit Reiner et al.’s schema in all respects. Our results also indicate that students’ conceptualization of sound lack internal consistency. Analyzing our results with respect to local and global coherence, we found students’ conception of sound is close to diSessa’s “loosely connected, fragmented collection of ideas.” The notion that sound is perceived only as a “sort of a material,” we believe, requires some revision of the substance schema as it applies to sound. The article closes with a discussion concerning the implications of the results for instruction.

  15. Sound symbolism: the role of word sound in meaning.

    Science.gov (United States)

    Svantesson, Jan-Olof

    2017-09-01

    The question whether there is a natural connection between sound and meaning or if they are related only by convention has been debated since antiquity. In linguistics, it is usually taken for granted that 'the linguistic sign is arbitrary,' and exceptions like onomatopoeia have been regarded as marginal phenomena. However, it is becoming more and more clear that motivated relations between sound and meaning are more common and important than has been thought. There is now a large and rapidly growing literature on subjects as ideophones (or expressives), words that describe how a speaker perceives a situation with the senses, and phonaesthemes, units like English gl-, which occur in many words that share a meaning component (in this case 'light': gleam, glitter, etc.). Furthermore, psychological experiments have shown that sound symbolism in one language can be understood by speakers of other languages, suggesting that some kinds of sound symbolism are universal. WIREs Cogn Sci 2017, 8:e1441. doi: 10.1002/wcs.1441 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  16. Measurement of the dark matter velocity anisotropy profile in galaxy clusters

    International Nuclear Information System (INIS)

    Host, Ole

    2009-01-01

    Dark matter halos contribute the major part of the mass of galaxy clusters and the formation of these cosmological structures have been investigated in numerical simulations. Observations have been found to be in good agreement with the numerical predictions regarding the spatial distribution of dark matter, i.e. the mass profile. However, the dynamics of dark matter in halos has so far proved a greater challenge to probe observationally. We have used observations of 16 relaxed galaxy clusters to show that the dark matter velocity dispersion is larger along the radial direction than along the tangential, and that the magnitude of this velocity anisotropy β varies with radius. This measurement implies that the collective behaviour of dark matter particles is fundamentally different from that of baryonic particles and constrains the self-interaction per unit mass. The radial variation of the anisotropy velocity agrees with the predictions so that, on cluster scales, there is now excellent agreement between numerical predictions and observations regarding the phase space of dark matter.

  17. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Lanzillotti-Kimura, N D [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Fainstein, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Soukiassian, A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Tenne, D A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Schlom, D [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, E-46071 Valencia (Spain)

    2007-12-15

    We study high quality molecular-beam epitaxy grown BaTiO{sub 3}/SrTiO{sub 3} superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO{sub 3}/SrTiO{sub 3} layer thicknesses the effective sound velocities within each of the layers are obtained.

  18. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  19. Sound specificity effects in spoken word recognition: The effect of integrality between words and sounds.

    Science.gov (United States)

    Strori, Dorina; Zaar, Johannes; Cooke, Martin; Mattys, Sven L

    2018-01-01

    Recent evidence has shown that nonlinguistic sounds co-occurring with spoken words may be retained in memory and affect later retrieval of the words. This sound-specificity effect shares many characteristics with the classic voice-specificity effect. In this study, we argue that the sound-specificity effect is conditional upon the context in which the word and sound coexist. Specifically, we argue that, besides co-occurrence, integrality between words and sounds is a crucial factor in the emergence of the effect. In two recognition-memory experiments, we compared the emergence of voice and sound specificity effects. In Experiment 1 , we examined two conditions where integrality is high. Namely, the classic voice-specificity effect (Exp. 1a) was compared with a condition in which the intensity envelope of a background sound was modulated along the intensity envelope of the accompanying spoken word (Exp. 1b). Results revealed a robust voice-specificity effect and, critically, a comparable sound-specificity effect: A change in the paired sound from exposure to test led to a decrease in word-recognition performance. In the second experiment, we sought to disentangle the contribution of integrality from a mere co-occurrence context effect by removing the intensity modulation. The absence of integrality led to the disappearance of the sound-specificity effect. Taken together, the results suggest that the assimilation of background sounds into memory cannot be reduced to a simple context effect. Rather, it is conditioned by the extent to which words and sounds are perceived as integral as opposed to distinct auditory objects.

  20. Analysis, Synthesis, and Perception of Musical Sounds The Sound of Music

    CERN Document Server

    Beauchamp, James W

    2007-01-01

    Analysis, Synthesis, and Perception of Musical Sounds contains a detailed treatment of basic methods for analysis and synthesis of musical sounds, including the phase vocoder method, the McAulay-Quatieri frequency-tracking method, the constant-Q transform, and methods for pitch tracking with several examples shown. Various aspects of musical sound spectra such as spectral envelope, spectral centroid, spectral flux, and spectral irregularity are defined and discussed. One chapter is devoted to the control and synthesis of spectral envelopes. Two advanced methods of analysis/synthesis are given: "Sines Plus Transients Plus Noise" and "Spectrotemporal Reassignment" are covered. Methods for timbre morphing are given. The last two chapters discuss the perception of musical sounds based on discrimination and multidimensional scaling timbre models.

  1. Michael Jackson's Sound Stages

    OpenAIRE

    Morten Michelsen

    2012-01-01

    In order to discuss analytically spatial aspects of recorded sound William Moylan’s concept of ‘sound stage’ is developed within a musicological framework as part of a sound paradigm which includes timbre, texture and sound stage. Two Michael Jackson songs (‘The Lady in My Life’ from 1982 and ‘Scream’ from 1995) are used to: a) demonstrate the value of such a conceptualisation, and b) demonstrate that the model has its limits, as record producers in the 1990s began ignoring the conventions of...

  2. Probe sampling measurements and modeling of nitric oxide formation in ethane + air flames

    NARCIS (Netherlands)

    Dyakov, I.V.; Ruyck, de J.; Konnov, A.A.

    2007-01-01

    Burning velocity and probe sampling measurements of the concentrations of O2, CO2, CO and NO in the post-flame zone of ethane + air flames are reported. The heat flux method was used for stabilization of laminar, premixed, non-stretched flames on a perforated plate burner at 1 atm. Axial profiles of

  3. ABOUT SOUNDS IN VIDEO GAMES

    Directory of Open Access Journals (Sweden)

    Denikin Anton A.

    2012-12-01

    Full Text Available The article considers the aesthetical and practical possibilities for sounds (sound design in video games and interactive applications. Outlines the key features of the game sound, such as simulation, representativeness, interactivity, immersion, randomization, and audio-visuality. The author defines the basic terminology in study of game audio, as well as identifies significant aesthetic differences between film sounds and sounds in video game projects. It is an attempt to determine the techniques of art analysis for the approaches in study of video games including aesthetics of their sounds. The article offers a range of research methods, considering the video game scoring as a contemporary creative practice.

  4. A vorticity transport model to restore spatial gaps in velocity data

    Science.gov (United States)

    Ameli, Siavash; Shadden, Shawn

    2017-11-01

    Often measurements of velocity data do not have full spatial coverage in the probed domain or near boundaries. These gaps can be due to missing measurements or masked regions of corrupted data. These gaps confound interpretation, and are problematic when the data is used to compute Lagrangian or trajectory-based analyses. Various techniques have been proposed to overcome coverage limitations in velocity data such as unweighted least square fitting, empirical orthogonal function analysis, variational interpolation as well as boundary modal analysis. In this talk, we present a vorticity transport PDE to reconstruct regions of missing velocity vectors. The transport model involves both nonlinear anisotropic diffusion and advection. This approach is shown to preserve the main features of the flow even in cases of large gaps, and the reconstructed regions are continuous up to second order. We illustrate results for high-frequency radar (HFR) measurements of the ocean surface currents as this is a common application of limited coverage. We demonstrate that the error of the method is on the same order of the error of the original velocity data. In addition, we have developed a web-based gateway for data restoration, and we will demonstrate a practical application using available data. This work is supported by the NSF Grant No. 1520825.

  5. Sound [signal] noise

    DEFF Research Database (Denmark)

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  6. Ultra-low velocity zone heterogeneities at the core-mantle boundary from diffracted PKKPab waves

    Science.gov (United States)

    Ma, Xiaolong; Sun, Xinlei

    2017-08-01

    Diffracted waves around Earth's core could provide important information of the lowermost mantle that other seismic waves may not. We examined PKKPab diffraction waves from 52 earthquakes occurring at the western Pacific region and recorded by USArray to probe the velocity structure along the core-mantle boundary (CMB). These diffracted waves emerge at distances up to 10° past the theoretical cutoff epicentral distance and show comparable amplitudes. We measured the ray parameters of PKKPab diffraction waves by Radon transform analysis that is suitable for large-aperture arrays. These ray parameters show a wide range of values from 4.250 to 4.840 s/deg, suggesting strong lateral heterogeneities in sampling regions at the base of the mantle. We further estimated the P-wave velocity variations by converting these ray parameters and found the CMB regions beneath the northwestern edge of African Anomaly (Ritsma et al. in Science 286:1925-1928, 1999) and southern Sumatra Islands exhibit velocity reductions up to 8.5% relative to PREM. We suggest that these low velocity regions are Ultra-low velocity zones, which may be related to partial melt or iron-enriched solids.[Figure not available: see fulltext.

  7. Beneath sci-fi sound: primer, science fiction sound design, and American independent cinema

    OpenAIRE

    Johnston, Nessa

    2012-01-01

    Primer is a very low budget science-fiction film that deals with the subject of time travel; however, it looks and sounds quite distinctively different from other films associated with the genre. While Hollywood blockbuster sci-fi relies on “sound spectacle” as a key attraction, in contrast Primer sounds “lo-fi” and screen-centred, mixed to two channel stereo rather than the now industry-standard 5.1 surround sound. Although this is partly a consequence of the economics of its production, the...

  8. Formulating viscous hydrodynamics for large velocity gradients

    International Nuclear Information System (INIS)

    Pratt, Scott

    2008-01-01

    Viscous corrections to relativistic hydrodynamics, which are usually formulated for small velocity gradients, have recently been extended from Navier-Stokes formulations to a class of treatments based on Israel-Stewart equations. Israel-Stewart treatments, which treat the spatial components of the stress-energy tensor τ ij as dynamical objects, introduce new parameters, such as the relaxation times describing nonequilibrium behavior of the elements τ ij . By considering linear response theory and entropy constraints, we show how the additional parameters are related to fluctuations of τ ij . Furthermore, the Israel-Stewart parameters are analyzed for their ability to provide stable and physical solutions for sound waves. Finally, it is shown how these parameters, which are naturally described by correlation functions in real time, might be constrained by lattice calculations, which are based on path-integral formulations in imaginary time

  9. Sound classification of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2012-01-01

    National schemes for sound classification of dwellings exist in more than ten countries in Europe, typically published as national standards. The schemes define quality classes reflecting different levels of acoustical comfort. Main criteria concern airborne and impact sound insulation between...... dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...

  10. Vocal Imitations of Non-Vocal Sounds

    Science.gov (United States)

    Houix, Olivier; Voisin, Frédéric; Misdariis, Nicolas; Susini, Patrick

    2016-01-01

    Imitative behaviors are widespread in humans, in particular whenever two persons communicate and interact. Several tokens of spoken languages (onomatopoeias, ideophones, and phonesthemes) also display different degrees of iconicity between the sound of a word and what it refers to. Thus, it probably comes at no surprise that human speakers use a lot of imitative vocalizations and gestures when they communicate about sounds, as sounds are notably difficult to describe. What is more surprising is that vocal imitations of non-vocal everyday sounds (e.g. the sound of a car passing by) are in practice very effective: listeners identify sounds better with vocal imitations than with verbal descriptions, despite the fact that vocal imitations are inaccurate reproductions of a sound created by a particular mechanical system (e.g. a car driving by) through a different system (the voice apparatus). The present study investigated the semantic representations evoked by vocal imitations of sounds by experimentally quantifying how well listeners could match sounds to category labels. The experiment used three different types of sounds: recordings of easily identifiable sounds (sounds of human actions and manufactured products), human vocal imitations, and computational “auditory sketches” (created by algorithmic computations). The results show that performance with the best vocal imitations was similar to the best auditory sketches for most categories of sounds, and even to the referent sounds themselves in some cases. More detailed analyses showed that the acoustic distance between a vocal imitation and a referent sound is not sufficient to account for such performance. Analyses suggested that instead of trying to reproduce the referent sound as accurately as vocally possible, vocal imitations focus on a few important features, which depend on each particular sound category. These results offer perspectives for understanding how human listeners store and access long

  11. Influence of type of aortic valve prosthesis on coronary blood flow velocity.

    Science.gov (United States)

    Jelenc, Matija; Juvan, Katja Ažman; Medvešček, Nadja Tatjana Ružič; Geršak, Borut

    2013-02-01

    Severe aortic valve stenosis is associated with high resting and reduced hyperemic coronary blood flow. Coronary blood flow increases after aortic valve replacement (AVR); however, the increase depends on the type of prosthesis used. The present study investigates the influence of type of aortic valve prosthesis on coronary blood flow velocity. The blood flow velocity in the left anterior descending coronary artery (LAD) and the right coronary artery (RCA) was measured intraoperatively before and after AVR with a stentless bioprosthesis (Sorin Freedom Solo; n = 11) or a bileaflet mechanical prosthesis (St. Jude Medical Regent; n = 11). Measurements were made with an X-Plore epicardial Doppler probe (Medistim, Oslo, Norway) following induction of hyperemia with an adenosine infusion. Preoperative and postoperative echocardiography evaluations were used to assess valvular and ventricular function. Velocity time integrals (VTI) were measured from the Doppler signals and used to calculate the proportion of systolic VTI (SF), diastolic VTI (DF), and normalized systolic coronary blood flow velocities (NSF) and normalized diastolic coronary blood flow velocities (NDF). The systolic proportion of the LAD VTI increased after AVR with the St. Jude Medical Regent prosthesis, which produced higher LAD SF and NSF values than the Sorin Freedom Solo prosthesis (SF, 0.41 ± 0.09 versus 0.29 ± 0.13 [P = .04]; NSF, 0.88 ± 0.24 versus 0.55 ± 0.17 [P = .01]). No significant changes in the LAD velocity profile were noted after valve replacement with the Sorin Freedom Solo, despite a significant reduction in transvalvular gradient and an increase in the effective orifice area. AVR had no effect on the RCA flow velocity profile. The coronary flow velocity profile in the LAD was significantly influenced by the type of aortic valve prosthesis used. The differences in the LAD velocity profile probably reflect differences in valve design and the systolic transvalvular flow pattern.

  12. Small-size automated probe on the base of UAV with vertical takeoff and landing for meteorological support of environmentally hazardous objects

    International Nuclear Information System (INIS)

    Sitnikov, N.M.; Azarov, A.S.; Chekulaev, I.I.; Akmulin, D.V.; Sitnikova, V.I.; Katyunin, A.D.; Ulanovskij, A.Eh.

    2016-01-01

    Mock-up specimen of meteorological probe on the base of rotocopter is developed and its laboratory and field testings are carried out. The weight of the probe with 200 g airlift is near 1 kg. The probe is started up from the land, the further flight and landing occur in automatic mode. It allows to measure vertical distributions of meteorological parameters (temperature, pressure, moisture, wind velocity and direction) up to 1500 m. The given probe with equipment for measuring pollutant concentrations can be used for meteorological and ecological monitoring of environmentally hazardous objects (NPPs, chemical plants etc.) [ru

  13. Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances

    Science.gov (United States)

    Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.

    2017-12-01

    Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream

  14. Sound Art Situations

    DEFF Research Database (Denmark)

    Krogh Groth, Sanne; Samson, Kristine

    2017-01-01

    and combine theories from several fields. Aspects of sound art studies, performance studies and contemporary art studies are presented in order to theoretically explore the very diverse dimensions of the two sound art pieces: Visual, auditory, performative, social, spatial and durational dimensions become......This article is an analysis of two sound art performances that took place June 2015 in outdoor public spaces in the social housing area Urbanplanen in Copenhagen, Denmark. The two performances were On the production of a poor acoustics by Brandon LaBelle and Green Interactive Biofeedback...... Environments (GIBE) by Jeremy Woodruff. In order to investigate the complex situation that arises when sound art is staged in such contexts, the authors of this article suggest exploring the events through approaching them as ‘situations’ (Doherty 2009). With this approach it becomes possible to engage...

  15. The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    International Nuclear Information System (INIS)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-01-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas–liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas–liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas–liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas–liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy. (paper)

  16. Characteristic sounds facilitate visual search.

    Science.gov (United States)

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  17. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  18. Fluid Sounds

    DEFF Research Database (Denmark)

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  19. The influence of environmental sound training on the perception of spectrally degraded speech and environmental sounds.

    Science.gov (United States)

    Shafiro, Valeriy; Sheft, Stanley; Gygi, Brian; Ho, Kim Thien N

    2012-06-01

    Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients.

  20. Sound Surfing Network (SSN): Mobile Phone-based Sound Spatialization with Audience Collaboration

    OpenAIRE

    Park, Saebyul; Ban, Seonghoon; Hong, Dae Ryong; Yeo, Woon Seung

    2013-01-01

    SSN (Sound Surfing Network) is a performance system that provides a new musicalexperience by incorporating mobile phone-based spatial sound control tocollaborative music performance. SSN enables both the performer and theaudience to manipulate the spatial distribution of sound using the smartphonesof the audience as distributed speaker system. Proposing a new perspective tothe social aspect music appreciation, SSN will provide a new possibility tomobile music performances in the context of in...

  1. Sound Exposure of Symphony Orchestra Musicians

    DEFF Research Database (Denmark)

    Schmidt, Jesper Hvass; Pedersen, Ellen Raben; Juhl, Peter Møller

    2011-01-01

    dBA and their left ear was exposed 4.6 dB more than the right ear. Percussionists were exposed to high sound peaks >115 dBC but less continuous sound exposure was observed in this group. Musicians were exposed up to LAeq8h of 92 dB and a majority of musicians were exposed to sound levels exceeding......Background: Assessment of sound exposure by noise dosimetry can be challenging especially when measuring the exposure of classical orchestra musicians where sound originate from many different instruments. A new measurement method of bilateral sound exposure of classical musicians was developed...... and used to characterize sound exposure of the left and right ear simultaneously in two different symphony orchestras.Objectives: To measure binaural sound exposure of professional classical musicians and to identify possible exposure risk factors of specific musicians.Methods: Sound exposure was measured...

  2. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  3. Letter-Sound Reading: Teaching Preschool Children Print-to-Sound Processing

    Science.gov (United States)

    Wolf, Gail Marie

    2016-01-01

    This intervention study investigated the growth of letter sound reading and growth of consonant-vowel-consonant (CVC) word decoding abilities for a representative sample of 41 US children in preschool settings. Specifically, the study evaluated the effectiveness of a 3-step letter-sound teaching intervention in teaching preschool children to…

  4. Study of Heterogeneous Structure in Diesel Fuel Spray by Using Micro-Probe L2F

    Science.gov (United States)

    Sakaguchi, Daisaku; Yamamoto, Shohei; Ueki, Hironobu; Ishdia, Masahiro

    A L2F (Laser 2-Focus velocimeter) was applied for the measurements of the velocity and size of droplets in diesel fuel sprays. The micro-scale probe of the L2F has an advantage in avoiding the multiple scattering from droplets in a dense region of fuel sprays. A data sampling rate of 15MHz has been achieved in the L2F system for detecting almost all of the droplets which passed through the measurement probe. Diesel fuel was injected into the atmosphere by using a common rail injector. Measurement positions were located along the spray axis at 10, 15, 20, 25, and 30 mm from the nozzle exit. Measurement result showed that the velocity and size of droplets decreased and the number density of droplets increased along the spray axis. It was clearly shown that the mass flow rate in the spray was highest near the spray tip and was lower inside the spray.

  5. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  6. The influence of ski helmets on sound perception and sound localisation on the ski slope

    Directory of Open Access Journals (Sweden)

    Lana Ružić

    2015-04-01

    Full Text Available Objectives: The aim of the study was to investigate whether a ski helmet interferes with the sound localization and the time of sound perception in the frontal plane. Material and Methods: Twenty-three participants (age 30.7±10.2 were tested on the slope in 2 conditions, with and without wearing the ski helmet, by 6 different spatially distributed sound stimuli per each condition. Each of the subjects had to react when hearing the sound as soon as possible and to signalize the correct side of the sound arrival. Results: The results showed a significant difference in the ability to localize the specific ski sounds; 72.5±15.6% of correct answers without a helmet vs. 61.3±16.2% with a helmet (p < 0.01. However, the performance on this test did not depend on whether they were used to wearing a helmet (p = 0.89. In identifying the timing, at which the sound was firstly perceived, the results were also in favor of the subjects not wearing a helmet. The subjects reported hearing the ski sound clues at 73.4±5.56 m without a helmet vs. 60.29±6.34 m with a helmet (p < 0.001. In that case the results did depend on previously used helmets (p < 0.05, meaning that that regular usage of helmets might help to diminish the attenuation of the sound identification that occurs because of the helmets. Conclusions: Ski helmets might limit the ability of a skier to localize the direction of the sounds of danger and might interfere with the moment, in which the sound is firstly heard.

  7. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  8. 77 FR 37318 - Eighth Coast Guard District Annual Safety Zones; Sound of Independence; Santa Rosa Sound; Fort...

    Science.gov (United States)

    2012-06-21

    ...-AA00 Eighth Coast Guard District Annual Safety Zones; Sound of Independence; Santa Rosa Sound; Fort... Coast Guard will enforce a Safety Zone for the Sound of Independence event in the Santa Rosa Sound, Fort... during the Sound of Independence. During the enforcement period, entry into, transiting or anchoring in...

  9. Observation of E×B Flow Velocity Profile Change Using Doppler Reflectometry in HL-2A

    Institute of Scientific and Technical Information of China (English)

    XIAO Wei-Wen; ZOU Xiao-Lan; DING Xuan-Tong; DONG Jia-Qi; LIU Ze-Tian; SONG Shao-Dong; GAO Ya-Dong; YAO Liang-Hua; FENG Bei-Bin; SONG Xian-Ming; CHEN Cheng-Yuan; SUN Hong-Juan; LI Yong-Gao; YANG Qing-Wei; YAN Long-Wen; LIU Yi; DUAN Xu-Ru; PAN Chuan-Hong; LIU Yong

    2009-01-01

    A broadband,O-mode sweeping Doppler reflectometry designed for measuring plasma E×B flow velocity profiles is operated in HL-2A.The main feature of the Doppler reflectometry is its capability to be tuned to any selected frequency in total waveband from 26-40 GHz.This property enables us to probe several plasma layers within a short time interval during a discharge,permitting the characterization of the radial distribution of plasma fluctuations.The system allows us to extract important information about the velocity change layer,namely its spatial localization.In purely Ohmic discharge a change of the E×B flow velocity profiles has been observed in the region for 28 < r < 30cm if only the line average density exceeds 2.2×1019 m-3.The density gradient change is measured in the same region,too.

  10. On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nielsen, Stefan Kragh; Bindslev, Henrik

    2011-01-01

    the collective scattering in well-defined regions in velocity space, here dubbed interrogation regions. Since the CTS instrument measures entire spectra of scattered radiation, many different interrogation regions are probed simultaneously. We here give analytic expressions for weight functions describing...... the interrogation regions, and we show typical interrogation regions of the proposed ITER CTS system. The backscattering system with receivers on the low-field side is sensitive to fast ions with pitch |p| = |v/v| ... scattering system with receivers on the high-field side would be sensitive to co- and counter-passing fast ions in narrow interrogation regions with pitch |p| > 0.6–0.8. Additionally, we use weight functions to reconstruct 2D fast-ion distribution functions, given two projected 1D velocity distribution...

  11. Material sound source localization through headphones

    Science.gov (United States)

    Dunai, Larisa; Peris-Fajarnes, Guillermo; Lengua, Ismael Lengua; Montaña, Ignacio Tortajada

    2012-09-01

    In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not significantly increase.

  12. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  13. [SOUND CONTACTS] Aspects of touch and timbre in piano performance. The effects of key velocity, articulation and temporal duration on sound

    Directory of Open Access Journals (Sweden)

    Eleonora Kojucharov

    2015-02-01

    Full Text Available The concept of touch in piano pedagogy is generally described by using abstract adjectives often linked to imagination, leading to a blurred and controversial definition of the term touch, often confused with timbre. In the last decades, new data-collection technologies and MIDI-based analysis allowed researchers to measure key-control specific features in timbre nuances modeling [Goebl-Bresin-Galembo 2004; Bernays-Traube 2011; 2013]. Within the field of piano performance, the present study attempts to objectively describe piano touch and the means with which it can be controlled, by: (1 providing elements for an adequate scientific understanding of touch; (2 clarifying the relationship between touch and timbre; (3 defining the extent to which the parameters of key-velocity, tempo and articulation vary as a function of different types of touch.

  14. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Science.gov (United States)

    Song, Kai; Liu, Qi; Wang, Qi

    2011-01-01

    Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401

  15. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2011-02-01

    Full Text Available Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN. Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability.

  16. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  17. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  18. Assessment of the LV-C2 Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Antonio, Ernest J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flaherty, Julia E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    This document reports on a series of tests conducted to assess the proposed air sampling location for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste (LAW) C2V (LV-C2) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The tests were conducted on the LV-C2 scale model system. Based on the scale model tests, the location proposed for the air sampling probe in the scale model stack meets the requirements of the ANSI/HPS N13.1-1999 standard for velocity uniformity, flow angle, gas tracer and particle tracer uniformity. Additional velocity uniformity and flow angle tests on the actual stack will be necessary during cold startup to confirm the validity of the scale model results in representing the actual stack.

  19. Sounds of silence: How to animate virtual worlds with sound

    Science.gov (United States)

    Astheimer, Peter

    1993-01-01

    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.

  20. Remote determination of the velocity index and mean streamwise velocity profiles

    Science.gov (United States)

    Johnson, E. D.; Cowen, E. A.

    2017-09-01

    When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.

  1. How Pleasant Sounds Promote and Annoying Sounds Impede Health: A Cognitive Approach

    Directory of Open Access Journals (Sweden)

    Tjeerd C. Andringa

    2013-04-01

    Full Text Available This theoretical paper addresses the cognitive functions via which quiet and in general pleasurable sounds promote and annoying sounds impede health. The article comprises a literature analysis and an interpretation of how the bidirectional influence of appraising the environment and the feelings of the perceiver can be understood in terms of core affect and motivation. This conceptual basis allows the formulation of a detailed cognitive model describing how sonic content, related to indicators of safety and danger, either allows full freedom over mind-states or forces the activation of a vigilance function with associated arousal. The model leads to a number of detailed predictions that can be used to provide existing soundscape approaches with a solid cognitive science foundation that may lead to novel approaches to soundscape design. These will take into account that louder sounds typically contribute to distal situational awareness while subtle environmental sounds provide proximal situational awareness. The role of safety indicators, mediated by proximal situational awareness and subtle sounds, should become more important in future soundscape research.

  2. Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications.

    Science.gov (United States)

    Nordahl, Rolf; Turchet, Luca; Serafin, Stefania

    2011-09-01

    We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models. Two experiments were conducted. In the first experiment, the ability of subjects to recognize the surface they were exposed to was assessed. In the second experiment, the sound synthesis engine was enhanced with environmental sounds. Results show that, in some conditions, adding a soundscape significantly improves the recognition of the simulated environment.

  3. Temporal integration of sequential auditory events: silent period in sound pattern activates human planum temporale.

    Science.gov (United States)

    Mustovic, Henrietta; Scheffler, Klaus; Di Salle, Francesco; Esposito, Fabrizio; Neuhoff, John G; Hennig, Jürgen; Seifritz, Erich

    2003-09-01

    Temporal integration is a fundamental process that the brain carries out to construct coherent percepts from serial sensory events. This process critically depends on the formation of memory traces reconciling past with present events and is particularly important in the auditory domain where sensory information is received both serially and in parallel. It has been suggested that buffers for transient auditory memory traces reside in the auditory cortex. However, previous studies investigating "echoic memory" did not distinguish between brain response to novel auditory stimulus characteristics on the level of basic sound processing and a higher level involving matching of present with stored information. Here we used functional magnetic resonance imaging in combination with a regular pattern of sounds repeated every 100 ms and deviant interspersed stimuli of 100-ms duration, which were either brief presentations of louder sounds or brief periods of silence, to probe the formation of auditory memory traces. To avoid interaction with scanner noise, the auditory stimulation sequence was implemented into the image acquisition scheme. Compared to increased loudness events, silent periods produced specific neural activation in the right planum temporale and temporoparietal junction. Our findings suggest that this area posterior to the auditory cortex plays a critical role in integrating sequential auditory events and is involved in the formation of short-term auditory memory traces. This function of the planum temporale appears to be fundamental in the segregation of simultaneous sound sources.

  4. It sounds good!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Both the atmosphere and we ourselves are hit by hundreds of particles every second and yet nobody has ever heard a sound coming from these processes. Like cosmic rays, particles interacting inside the detectors at the LHC do not make any noise…unless you've decided to use the ‘sonification’ technique, in which case you might even hear the Higgs boson sound like music. Screenshot of the first page of the "LHC sound" site. A group of particle physicists, composers, software developers and artists recently got involved in the ‘LHC sound’ project to make the particles at the LHC produce music. Yes…music! The ‘sonification’ technique converts data into sound. “In this way, if you implement the right software you can get really nice music out of the particle tracks”, says Lily Asquith, a member of the ATLAS collaboration and one of the initiators of the project. The ‘LHC...

  5. Musical Sound, Instruments, and Equipment

    Science.gov (United States)

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  6. OMNIDIRECTIONAL SOUND SOURCE

    DEFF Research Database (Denmark)

    1996-01-01

    A sound source comprising a loudspeaker (6) and a hollow coupler (4) with an open inlet which communicates with and is closed by the loudspeaker (6) and an open outlet, said coupler (4) comprising rigid walls which cannot respond to the sound pressures produced by the loudspeaker (6). According...

  7. Probing η deformed backgrounds with Dp branes

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2018-03-01

    Full Text Available In this Letter, based on the notion of Gauge/Gravity duality we explore the low frequency behaviour associated with the retarded two point correlators in the ground state of the strongly correlated quantum liquid that is dual to η-deformed background in (2+1D. The massless charge carriers in the dual gauge theory are sourced due to some probe Nf flavour Dp brane configurations in the bulk. In our analysis we stick to the NS sector and compute the two point correlators by turning on fluctuations associated with the worldvolume gauge fields in the bulk spacetime. Our analysis reveals the existence of holographic zero sound modes for (1+1D QFTs those are dual to bosonic η deformed AdS3×S3 with vanishing RR fields.

  8. Product sounds : Fundamentals and application

    NARCIS (Netherlands)

    Ozcan-Vieira, E.

    2008-01-01

    Products are ubiquitous, so are the sounds emitted by products. Product sounds influence our reasoning, emotional state, purchase decisions, preference, and expectations regarding the product and the product's performance. Thus, auditory experience elicited by product sounds may not be just about

  9. Probing Mantle Heterogeneity Across Spatial Scales

    Science.gov (United States)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long

  10. Analysis of Kelvin Probe operational models with application to SR-POEM

    International Nuclear Information System (INIS)

    Popescu, Eugeniu M

    2011-01-01

    We present a study of several models on which Kelvin Probe (KP) instruments with flat and spherical tips rely for operation and for the determination of the contact potential difference (CPD). The study is part of the development of a high-performance KP instrument that will be used in investigations of the patch effect for the sounding rocket principle of equivalence measurement experiment. Using covariance analysis for each model we investigate its performance as imposed by the Cramer-Rao bounds and the biases introduced in the estimation of the CPD, as well as its applicability to instrument control. (papers)

  11. Jupiter Trojan's Shallow Subsurface: Direct Observation By Radar Sounding

    Science.gov (United States)

    Herique, A.; Plettemeier, D.; Beck, P.; Michel, P.; Kumamoto, A.; Kofman, W. W.

    2017-12-01

    Most of the Jupiter's Trojan are classified as spectral type P or D from visible and near-IR observations. Still, major question remain regarding theire origin and geological evolution: What ices are present in their interior, and in what amount? What is the abundance and the nature of the organic fraction? Did they experience some level of differentiation powered by 26Al? Answering theses question is the goal of the Solar-Power Sail JAXA mission [1, 2]. This mission plans to study the surface by remote sensing in the optical in IR domain. This probe will carry a large-sized lander with a drill to sample the constitutive material at meter depth in order to complement physical and chemical properties measured by on-board instruments. The sample return is an option under study.Radar sounding of the shallow subsurface would be envisaged in complement to this payload. Sounding radar could provide the structure of the first tens of meters of the Trojan surface. It will allow identifying layering, ice lens, and embedded block. It also will enable to reconnect the surface with the deep interior in order to identify exogenous / pristine material. For the surface package, the drilling and the sample return, radar sounding is a unique opportunity to support the selection of the landing site and to provide the greater geological context of the samples that will be returned to Earth.In this paper, we will detail the objective of this instrument and then we will outline the proposed instrument, which is inheriting from the radar developed for the AIDA/AIM mission.[1] Mori, O. et al., Science experiments on a Jupiter Trojan Asteroid in the solar powerd sail mission. LPSC 2016 - 1822.[2] Okada, T. et al., Science and Exploration of a Jupiter Trojan Asteroid in the solar-power sail mission. LPSC 2017 - 1828.

  12. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck Sound...

  13. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  14. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  15. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    International Nuclear Information System (INIS)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-01-01

    We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  16. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-12-01

    Here, we describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wave trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.

  17. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  18. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  19. Propagation and dispersion of electrostatic waves in the ionospheric E region

    Directory of Open Access Journals (Sweden)

    K. Iranpour

    1997-07-01

    Full Text Available Low-frequency electrostatic fluctuations in the ionospheric E region were detected by instruments on the ROSE rockets. The phase velocity and dispersion of plasma waves in the ionospheric E region are determined by band-pass filtering and cross-correlating data of the electric-field fluctuations detected by the probes on the ROSE F4 rocket. The results were confirmed by a different method of analysis of the same data. The results show that the waves propagate in the Hall-current direction with a velocity somewhat below the ion sound speed obtained for ionospheric conditions during the flight. It is also found that the waves are dispersive, with the longest wavelengths propagating with the lowest velocity.

  20. Sounding out the logo shot

    OpenAIRE

    Nicolai Jørgensgaard Graakjær

    2013-01-01

    This article focuses on how sound in combination with visuals (i.e. ‘branding by’) may possibly affect the signifying potentials (i.e. ‘branding effect’) of products and corporate brands (i.e. ‘branding of’) during logo shots in television commercials (i.e. ‘branding through’). This particular focus adds both to the understanding of sound in television commercials and to the understanding of sound brands. The article firstly presents a typology of sounds. Secondly, this typology is applied...

  1. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  2. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  3. SoleSound

    DEFF Research Database (Denmark)

    Zanotto, Damiano; Turchet, Luca; Boggs, Emily Marie

    2014-01-01

    This paper introduces the design of SoleSound, a wearable system designed to deliver ecological, audio-tactile, underfoot feedback. The device, which primarily targets clinical applications, uses an audio-tactile footstep synthesis engine informed by the readings of pressure and inertial sensors...... embedded in the footwear to integrate enhanced feedback modalities into the authors' previously developed instrumented footwear. The synthesis models currently implemented in the SoleSound simulate different ground surface interactions. Unlike similar devices, the system presented here is fully portable...

  4. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  5. High-frame-rate Imaging of a Carotid Bifurcation using a Low-complexity Velocity Estimation Approach

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Villagómez Hoyos, Carlos Armando; Ewertsen, Caroline

    2017-01-01

    In this paper, a 2-D vector flow imaging (VFI) method developed by combining synthetic aperture sequential beamforming and directional transverse oscillation is used to image a carotid bifurcation. Ninety-six beamformed lines are sent from the probe to the host system for each VFI frame, enabling...... the possibility of wireless transmission. The velocity is estimated using a relatively inexpensive 2-D phase-shift approach, and real-time performance can be achieved in mobile devices. However, high-frame-rate velocities can be obtained by sending the data to a cluster of computers. The objective of this study...... is to demonstrate the scalability of the method’s performance according to the needs of the user and the processing capabilities of the host system. In vivo measurements of a carotid bifurcation of a 54-year-old volunteer were conducted using a linear array transducer connected to the SARUS scanner. The velocities...

  6. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  7. System for actively reducing sound

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2005-01-01

    A system for actively reducing sound from a primary noise source, such as traffic noise, comprising: a loudspeaker connector for connecting to at least one loudspeaker for generating anti-sound for reducing said noisy sound; a microphone connector for connecting to at least a first microphone placed

  8. Method and Apparatus of Measuring Velocity and Sound Attenuation Coefficient in Bulk Materials Based on the Analysis of the Structure of Sound-Insulation Materials on the Basis of Perlite

    Science.gov (United States)

    Kapranov, B. I.; Mashanov, A. P.

    2017-04-01

    This paper presents the results of research and describes the apparatus for measuring the acoustic characteristics of bulk materials. Ultrasound, it has passed through a layer of bulk material, is further passes through an air gap. The presence of air gap prevents from measuring tract mechanical contacts, but complicates the measurement technology Studies were conducted on the example of measuring the acoustic characteristics of the widely used perlite-based sound-proofing material.

  9. Local measurements in two-phase flow using a double-sensor conductivity probes and laser doppler anemometry in a vertical pipe

    International Nuclear Information System (INIS)

    Chiva, S.; Julia, E.; Hernandez, L.; Mendez, S.; Munoz-Cobo, J.L.

    2007-01-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), and interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using laser Doppler anemometry. Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.29 m/s to 2 m/s and a void fraction up to 15%. For each two-phase flow configuration 15 radial position and three axial positions was measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions. Two theoretical calibration factors have been defined to relate the mean measurable parameter to the interfacial area concentrations obtained and the measured bubbles, including the missed bubbles. Those factors include the effects of bubble motions, and probe spacing. These calibration factors were obtained through new analytical and numerical method, using a Monte Carlo approach. (author)

  10. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  11. Measuring the 'complexity'of sound

    Indian Academy of Sciences (India)

    Sounds in the natural environment form an important class of biologically relevant nonstationary signals. We propose a dynamic spectral measure to characterize the spectral dynamics of such non-stationary sound signals and classify them based on rate of change of spectral dynamics. We categorize sounds with slowly ...

  12. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  13. Responses of the ear to low frequency sounds, infrasound and wind turbines.

    Science.gov (United States)

    Salt, Alec N; Hullar, Timothy E

    2010-09-01

    Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the

  14. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  15. Sound intensity as a function of sound insulation partition

    OpenAIRE

    Cvetkovic , S.; Prascevic , R.

    1994-01-01

    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...

  16. Two-Polarisation Physical Model of Bowed Strings with Nonlinear Contact and Friction Forces, and Application to Gesture-Based Sound Synthesis

    Directory of Open Access Journals (Sweden)

    Charlotte Desvages

    2016-05-01

    Full Text Available Recent bowed string sound synthesis has relied on physical modelling techniques; the achievable realism and flexibility of gestural control are appealing, and the heavier computational cost becomes less significant as technology improves. A bowed string sound synthesis algorithm is designed, by simulating two-polarisation string motion, discretising the partial differential equations governing the string’s behaviour with the finite difference method. A globally energy balanced scheme is used, as a guarantee of numerical stability under highly nonlinear conditions. In one polarisation, a nonlinear contact model is used for the normal forces exerted by the dynamic bow hair, left hand fingers, and fingerboard. In the other polarisation, a force-velocity friction curve is used for the resulting tangential forces. The scheme update requires the solution of two nonlinear vector equations. The dynamic input parameters allow for simulating a wide range of gestures; some typical bow and left hand gestures are presented, along with synthetic sound and video demonstrations.

  17. The influence of liquid-gas velocity ratio on the noise of the cooling tower

    Science.gov (United States)

    Yang, Bin; Liu, Xuanzuo; Chen, Chi; Zhao, Zhouli; Song, Jinchun

    2018-05-01

    The noise from the cooling tower has a great influence on psychological performance of human beings. The cooling tower noise mainly consists of fan noise, falling water noise and mechanical noise. This thesis used DES turbulence model with FH-W model to simulate the flow and sound pressure field in cooling tower based on CFD software FLUENT and analyzed the influence of different kinds noise, which affected by diverse factors, on the cooling tower noise. It can be concluded that the addition of cooling water can reduce the turbulence and vortex noise of the rotor fluid field in the cooling tower at some extent, but increase the impact noise of the liquid-gas two phase. In general, the cooling tower noise decreases with the velocity ratio of liquid to gas increasing, and reaches the lowest when the velocity ratio of liquid to gas is close to l.

  18. Heart Sound Localization and Reduction in Tracheal Sounds by Gabor Time-Frequency Masking

    OpenAIRE

    SAATCI, Esra; Akan, Aydın

    2018-01-01

    Background and aim: Respiratorysounds, i.e. tracheal and lung sounds, have been of great interest due to theirdiagnostic values as well as the potential of their use in the estimation ofthe respiratory dynamics (mainly airflow). Thus the aim of the study is topresent a new method to filter the heart sound interference from the trachealsounds. Materials and methods: Trachealsounds and airflow signals were collected by using an accelerometer from 10 healthysubjects. Tracheal sounds were then pr...

  19. Interactive physically-based sound simulation

    Science.gov (United States)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation

  20. 27 CFR 9.151 - Puget Sound.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Puget Sound. 9.151 Section... Sound. (a) Name. The name of the viticultural area described in this section is “Puget Sound.” (b) Approved maps. The appropriate maps for determining the boundary of the Puget Sound viticultural area are...