WorldWideScience

Sample records for sound speed flow

  1. Sound speed during the QCD phase transition

    International Nuclear Information System (INIS)

    Nagasawa, Michiyasu; Yokoyama, Jun'ichi

    1998-01-01

    The Jeans scale is estimated during the coexistence epoch of quark-gluon and hadron phases in the first-order QCD phase transition. It is shown that, contrary to previous claims, reduction of the sound speed is so little that the phase transition does not affect evolution of cosmological density fluctuations appreciably. (author)

  2. Speed of sound in the solar interior

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, J.; Rhodes, E.J. Jr.

    1985-01-01

    Frequencies of solar 5-min oscillations can be used to determine directly the sound speed of the solar interior. The determination described does not depend on a solar model, but relies only on a simple asymptotic description of the oscillations in terms of trapped acoustic waves. (author)

  3. Arctic Ocean Model Intercomparison Using Sound Speed

    Science.gov (United States)

    Dukhovskoy, D. S.; Johnson, M. A.

    2002-05-01

    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  4. Canonical sound speed profile for the central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; PrasannaKumar, S.; Somayajulu, Y.K.; Sastry, J.S.; De Figueiredo, R.J.P.

    Following Munk's canonical theory, an algorithm has been presented for computing sound channel parameters in the western and southern Bay of Bengal. The estimated canonical sound speed profile using these parameters has been compared with computed...

  5. Speed of sound in biodiesel produced by low power ultrasound

    Science.gov (United States)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Felix, R. P. B.

    2018-03-01

    The quality control of the biodiesel produced is an important issue to be addressed for every manufacturer or retailer. The speed of sound is a property that has an influence on the quality of the produced fuel. This work presents the evaluation about the speed of sound in biodiesel produced with the aid of low power ultrasound in the frequencies of 1 MHz and 3 MHz. The speed of sound was measured by pulse-echo technique. The ultrasonic frequency used during reaction affects the speed of sound in biodiesel. The larger expanded uncertainty for adjusted curve was 4.9 m.s-1.

  6. Bubbles That Change the Speed of Sound

    Science.gov (United States)

    Planinsic, Gorazd; Etkina, Eugenia

    2012-01-01

    The influence of bubbles on sound has long attracted the attention of physicists. In his 1920 book Sir William Bragg described sound absorption caused by foam in a glass of beer tapped by a spoon. Frank S. Crawford described and analyzed the change in the pitch of sound in a similar experiment and named the phenomenon the "hot chocolate effect."…

  7. Reconstruction of sound speed profile through natural generalized inverse technique

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Murty, C.S.

    An acoustic model has been developed for reconstruction of vertical sound speed in a near stable or stratified ocean. Generalized inverse method is utilised in the model development. Numerical experiments have been carried out to account...

  8. Spherical collapse in quintessence models with zero speed of sound

    International Nuclear Information System (INIS)

    Creminelli, Paolo; D'Amico, Guido; Noreña, Jorge; Senatore, Leonardo; Vernizzi, Filippo

    2010-01-01

    We study the spherical collapse model in the presence of quintessence with negligible speed of sound. This case is particularly motivated for w Q /Ω m . This gives a distinctive modification of the total mass function at low redshift

  9. Measuring the speed of sound in air using smartphone applications

    Science.gov (United States)

    Yavuz, A.

    2015-05-01

    This study presents a revised version of an old experiment available in many textbooks for measuring the speed of sound in air. A signal-generator application in a smartphone is used to produce the desired sound frequency. Nodes of sound waves in a glass pipe, of which one end is immersed in water, are more easily detected, so results can be obtained more quickly than from traditional acoustic experiments using tuning forks.

  10. Adaptive sound speed correction for abdominal ultrasonography: preliminary results

    Science.gov (United States)

    Jin, Sungmin; Kang, Jeeun; Song, Tai-Kyung; Yoo, Yangmo

    2013-03-01

    Ultrasonography has been conducting a critical role in assessing abdominal disorders due to its noninvasive, real-time, low cost, and deep penetrating capabilities. However, for imaging obese patients with a thick fat layer, it is challenging to achieve appropriate image quality with a conventional beamforming (CON) method due to phase aberration caused by the difference between sound speeds (e.g., 1580 and 1450m/s for liver and fat, respectively). For this, various sound speed correction (SSC) methods that estimate the accumulated sound speed for a region-of interest (ROI) have been previously proposed. However, with the SSC methods, the improvement in image quality was limited only for a specific depth of ROI. In this paper, we present the adaptive sound speed correction (ASSC) method, which can enhance the image quality for whole depths by using estimated sound speeds from two different depths in the lower layer. Since these accumulated sound speeds contain the respective contributions of layers, an optimal sound speed for each depth can be estimated by solving contribution equations. To evaluate the proposed method, the phantom study was conducted with pre-beamformed radio-frequency (RF) data acquired with a SonixTouch research package (Ultrasonix Corp., Canada) with linear and convex probes from the gel pad-stacked tissue mimicking phantom (Parker Lab. Inc., USA and Model539, ATS, USA) whose sound speeds are 1610 and 1450m/s, respectively. From the study, compared to the CON and SSC methods, the ASSC method showed the improved spatial resolution and information entropy contrast (IEC) for convex and linear array transducers, respectively. These results indicate that the ASSC method can be applied for enhancing image quality when imaging obese patients in abdominal ultrasonography.

  11. Bubbles that Change the Speed of Sound

    Science.gov (United States)

    Planinšič, Gorazd; Etkina, Eugenia

    2012-11-01

    The influence of bubbles on sound has long attracted the attention of physicists. In his 1920 book Sir William Bragg described sound absorption caused by foam in a glass of beer tapped by a spoon. Frank S. Crawford described and analyzed the change in the pitch of sound in a similar experiment and named the phenomenon the "hot chocolate effect."2 In this paper we describe a simple and robust experiment that allows an easy audio and visual demonstration of the same effect (unfortunately without the chocolate) and offers several possibilities for student investigations. In addition to the demonstration of the above effect, the experiments described below provide an excellent opportunity for students to devise and test explanations with simple equipment.

  12. Cavitating Orifice: Flow regime transitions and low frequency sound production

    NARCIS (Netherlands)

    Testud, P.; Moussou, P.; Hirschberg, A.; Aurégan, Y.

    2005-01-01

    Detailed data are provided for the broadband noise in a cavitating pipe flow through a circular orifice in water. Experiments are performed under industrial conditions, i.e., with a pressure drop varying from 3 to 30 bars and a cavitation number in the range 0.10 = s = 0.77. The speed of sound

  13. Device for precision measurement of speed of sound in a gas

    Science.gov (United States)

    Kelner, Eric; Minachi, Ali; Owen, Thomas E.; Burzynski, Jr., Marion; Petullo, Steven P.

    2004-11-30

    A sensor for measuring the speed of sound in a gas. The sensor has a helical coil, through which the gas flows before entering an inner chamber. Flow through the coil brings the gas into thermal equilibrium with the test chamber body. After the gas enters the chamber, a transducer produces an ultrasonic pulse, which is reflected from each of two faces of a target. The time difference between the two reflected signals is used to determine the speed of sound in the gas.

  14. In vivo breast sound-speed imaging with ultrasound tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTITUTE; Duric, Neb [KARMANOS CANCER INSTITUTE; Littrup, Peter [KARMONOS CANCER INSTITUTE

    2009-01-01

    We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density categories 1-4. For all four breast types from fatty to dense, the improvements for average sharpness (in the unit of (m{center_dot} s) {sup -1}) of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4 fold compared to the straight ray tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast parenchyma as 1422 {+-} 9 mls (mean{+-} SD) and1487 {+-} 21 mls, respectively. Based on 32 lesions in a cohort of 61 patients, we also found that the mean sound-speed for malignant breast lesions (1548{+-}17 mls) was higher, on average, than that of benign ones (1513{+-}27 mls) (one-sided psound-speed tomograms can be used to assess breast density (, and therefore, breast cancer risk), as well as detect and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor clinical response of breast cancer patients to neo-adjuvant chemotherapy.

  15. Using a High-Speed Camera to Measure the Speed of Sound

    Science.gov (United States)

    Hack, William Nathan; Baird, William H.

    2012-01-01

    The speed of sound is a physical property that can be measured easily in the lab. However, finding an inexpensive and intuitive way for students to determine this speed has been more involved. The introduction of affordable consumer-grade high-speed cameras (such as the Exilim EX-FC100) makes conceptually simple experiments feasible. Since the…

  16. The effect of sound speed profile on shallow water shipping sound maps

    NARCIS (Netherlands)

    Sertlek, H.Ö.; Binnerts, B.; Ainslie, M.A.

    2016-01-01

    Sound mapping over large areas can be computationally expensive because of the large number of sources and large source-receiver separations involved. In order to facilitate computation, a simplifying assumption sometimes made is to neglect the sound speed gradient in shallow water. The accuracy of

  17. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  18. Relationship between breast sound speed and mammographic percent density

    Science.gov (United States)

    Sak, Mark; Duric, Nebojsa; Boyd, Norman; Littrup, Peter; Myc, Lukasz; Faiz, Muhammad; Li, Cuiping; Bey-Knight, Lisa

    2011-03-01

    Despite some shortcomings, mammography is currently the standard of care for breast cancer screening and diagnosis. However, breast ultrasound tomography is a rapidly developing imaging modality that has the potential to overcome the drawbacks of mammography. It is known that women with high breast densities have a greater risk of developing breast cancer. Measuring breast density is accomplished through the use of mammographic percent density, defined as the ratio of fibroglandular to total breast area. Using an ultrasound tomography (UST) prototype, we created sound speed images of the patient's breast, motivated by the fact that sound speed in a tissue is proportional to the density of the tissue. The purpose of this work is to compare the acoustic performance of the UST system with the measurement of mammographic percent density. A cohort of 251 patients was studied using both imaging modalities and the results suggest that the volume averaged breast sound speed is significantly related to mammographic percent density. The Spearman correlation coefficient was found to be 0.73 for the 175 film mammograms and 0.69 for the 76 digital mammograms obtained. Since sound speed measurements do not require ionizing radiation or physical compression, they have the potential to form the basis of a safe, more accurate surrogate marker of breast density.

  19. Universal formula for the holographic speed of sound

    Science.gov (United States)

    Anabalón, Andrés; Andrade, Tomás; Astefanesei, Dumitru; Mann, Robert

    2018-06-01

    We consider planar hairy black holes in five dimensions with a real scalar field in the Breitenlohner-Freedman window and derive a universal formula for the holographic speed of sound for any mixed boundary conditions of the scalar field. As an example, we numerically construct the most general class of planar black holes coupled to a single scalar field in the consistent truncation of type IIB supergravity that preserves the SO (3) × SO (3) R-symmetry group of the gauge theory. For this particular family of solutions, we find that the speed of sound exceeds the conformal value. From a phenomenological point of view, the fact that the conformal bound can be violated by choosing the right mixed boundary conditions is relevant for the existence of neutron stars with a certain mass-size relationship for which a large value of the speed of sound codifies a stiff equation of state. In the way, we also shed light on a puzzle regarding the appearance of the scalar charges in the first law. Finally, we generalize the formula of the speed of sound to arbitrary dimensional scalar-metric theories whose parameters lie within the Breitenlohner-Freedman window.

  20. Compressive Sound Speed Profile Inversion Using Beamforming Results

    OpenAIRE

    Youngmin Choo; Woojae Seong

    2018-01-01

    Sound speed profile (SSP) significantly affects acoustic propagation in the ocean. In this work, the SSP is inverted using compressive sensing (CS) combined with beamforming to indicate the direction of arrivals (DOAs). The travel times and the positions of the arrivals can be approximately linearized using their Taylor expansion with the shape function coefficients that parameterize the SSP. The linear relation between the travel times/positions and the shape function coefficients enables CS...

  1. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S G [Physics Department, University of Auckland (New Zealand); Huenerbein, S v; Waddington, D [Research Institute for the Built and Human Environment, University of Salford (United Kingdom)], E-mail: s.vonhunerbein@salford.ac.uk

    2008-05-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group.

  2. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    International Nuclear Information System (INIS)

    Bradley, S G; Huenerbein, S v; Waddington, D

    2008-01-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group

  3. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  4. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  5. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    Science.gov (United States)

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  6. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  7. Spherical collapse of dark energy with an arbitrary sound speed

    International Nuclear Information System (INIS)

    Basse, Tobias; Bjælde, Ole Eggers; Wong, Yvonne Y.Y.

    2011-01-01

    We consider a generic type of dark energy fluid, characterised by a constant equation of state parameter w and sound speed c s , and investigate the impact of dark energy clustering on cosmic structure formation using the spherical collapse model. Along the way, we also discuss in detail the evolution of dark energy perturbations in the linear regime. We find that the introduction of a finite sound speed into the picture necessarily induces a scale-dependence in the dark energy clustering, which in turn affects the dynamics of the spherical collapse in a scale-dependent way. As with other, more conventional fluids, we can define a Jeans scale for the dark energy clustering, and hence a Jeans mass M J for the dark matter which feels the effect of dark energy clustering via gravitational interactions. For bound objects (halos) with masses M >> M J , the effect of dark energy clustering is maximal. For those with M J , the dark energy component is effectively homogeneous, and its role in the formation of these structures is reduced to its effects on the Hubble expansion rate. To compute quantitatively the virial density and the linearly extrapolated threshold density, we use a quasi-linear approach which is expected to be valid up to around the Jeans mass. We find an interesting dependence of these quantities on the halo mass M, given some w and c s . The dependence is the strongest for masses lying in the vicinity of M ∼ M J . Observing this M-dependence will be a tell-tale sign that dark energy is dynamic, and a great leap towards pinning down its clustering properties

  8. Aerodynamic sound of flow past an airfoil

    Science.gov (United States)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  9. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  10. Direct Measurement of the Speed of Sound Using a Microphone and a Speaker

    Science.gov (United States)

    Gómez-Tejedor, José A.; Castro-Palacio, Juan C.; Monsoriu, Juan A.

    2014-01-01

    We present a simple and accurate experiment to obtain the speed of sound in air using a conventional speaker and a microphone connected to a computer. A free open source digital audio editor and recording computer software application allows determination of the time-of-flight of the wave for different distances, from which the speed of sound is…

  11. Sound speed structure in the Arabian Sea and the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Navelkar, G.S.; Murty, T.V.R.; Somayajulu, Y.K.; Murty, C.S.

    Sound speed computed from annual mean temperature and salinity data of Levitus reveals that spatial variation in the Arabian Sea is greater than that in the Bay of Bengal. Maximum spatial variation of sound speed in the Arabian Sea noticed between...

  12. Approach to Improve Speed of Sound Calculation within PC-SAFT Framework

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Maribo-Mogensen, Bjørn; Thomsen, Kaj

    2012-01-01

    An extensive comparison of SRK, CPA and PC-SAFT for speed of sound in normal alkanes has been performed. The results reveal that PC-SAFT captures the curvature of speed of sound better than cubic EoS but the accuracy is not satisfactory. Two approaches have been proposed to improve PC-SAFT’s accu...... keeping acceptable accuracy for the primary properties, i.e. vapor pressure (2.1%) and liquid density (1.5%). The two approaches have also been applied to methanol, and both give very good results.......An extensive comparison of SRK, CPA and PC-SAFT for speed of sound in normal alkanes has been performed. The results reveal that PC-SAFT captures the curvature of speed of sound better than cubic EoS but the accuracy is not satisfactory. Two approaches have been proposed to improve PC......-SAFT’s accuracy for speed of sound: (i) putting speed of sound data into parameter estimation; (ii) putting speed of sound data into both universal constants regression and parameter estimation. The results have shown that the second approach can significantly improve the speed of sound (3.2%) prediction while...

  13. Compressive Sound Speed Profile Inversion Using Beamforming Results

    Directory of Open Access Journals (Sweden)

    Youngmin Choo

    2018-05-01

    Full Text Available Sound speed profile (SSP significantly affects acoustic propagation in the ocean. In this work, the SSP is inverted using compressive sensing (CS combined with beamforming to indicate the direction of arrivals (DOAs. The travel times and the positions of the arrivals can be approximately linearized using their Taylor expansion with the shape function coefficients that parameterize the SSP. The linear relation between the travel times/positions and the shape function coefficients enables CS to reconstruct the SSP. The conventional objective function in CS is modified to simultaneously exploit the information from the travel times and positions. The SSP is estimated using CS with beamforming of ray arrivals in the SWellEx-96 experimental environment, and the performance is evaluated using the correlation coefficient and mean squared error (MSE between the true and recovered SSPs, respectively. Five hundred synthetic SSPs were generated by randomly choosing the SSP dictionary components, and more than 80 percent of all the cases have correlation coefficients over 0.7 and MSE along depth is insignificant except near the sea surface, which shows the validity of the proposed method.

  14. Spherical collapse in quintessence models with zero speed of sound

    CERN Document Server

    Creminelli, Paolo; Noreña, Jorge; Senatore, Leonardo; Vernizzi, Filippo

    2010-01-01

    We study the spherical collapse model in the presence of quintessence with zero speed of sound. This case is particularly motivated for w<-1 as it is required by stability. As pressure gradients are negligible, quintessence follows dark matter during the collapse. The spherical overdensity behaves as a separate closed FLRW universe, so that its evolution can be studied exactly. We derive the critical overdensity for collapse and we use the extended Press-Schechter theory to study how the clustering of quintessence affects the dark matter mass function. The effect is dominated by the modification of the linear dark matter growth function. A larger effect occurs on the total mass function, which includes the quintessence overdensities. Indeed, here quintessence constitutes a third component of virialized objects, together with baryons and dark matter, and contributes to the total halo mass by a fraction ~ (1+w) Omega_Q / Omega_m. This gives a distinctive modification of the total mass function at low redshif...

  15. An approach to get thermodynamic properties from speed of sound

    International Nuclear Information System (INIS)

    Núñez, M A; Medina, L A

    2017-01-01

    An approach for estimating thermodynamic properties of gases from the speed of sound u, is proposed. The square u 2 , the compression factor Z and the molar heat capacity at constant volume C V are connected by two coupled nonlinear partial differential equations. Previous approaches to solving this system differ in the conditions used on the range of temperature values [T min ,T max ]. In this work we propose the use of Dirichlet boundary conditions at T min , T max . The virial series of the compression factor Z = 1+Bρ+Cρ 2 +… and other properties leads the problem to the solution of a recursive set of linear ordinary differential equations for the B, C. Analytic solutions of the B equation for Argon are used to study the stability of our approach and previous ones under perturbation errors of the input data. The results show that the approach yields B with a relative error bounded basically by that of the boundary values and the error of other approaches can be some orders of magnitude lager. (paper)

  16. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  17. Electromagnetic application device for flow rate/flow speed control

    International Nuclear Information System (INIS)

    Yoshioka, Senji.

    1994-01-01

    Electric current and magnetic field are at first generated in a direction perpendicular to a flow channel of a fluid, and forces generated by electromagnetic interaction of the current and the magnetic field are combined and exerted on the fluid, to control the flow rate and the flow speed thereby decreasing flowing pressure loss. In addition, an electric current generation means and a magnetic field generation means integrated together are disposed to a structural component constituting the flow channel, and they are combined to attain the aimed effect. The current generating means forms a potential difference by supplying electric power to a pair of electrodes as a cathode and an anode by using structures disposed along the channel, to generate an electric field or electric current in a direction perpendicular to the flow channel. The magnetic field generating means forms a counter current (reciprocal current) by using structures disposed along the flow channel, to generate synthesized or emphasized magnetic field. The fluid can be applied with a force in the direction of the flowing direction by the electromagnetic interaction of the electric current and the magnetic field, thereby capable of propelling the fluid. Accordingly, the flowrate/flowing speed can be controlled inside of the flow channel and flowing pressure loss can be decreased. (N.H.)

  18. Speed of sound as a function of temperature for ultrasonic propagation in soybean oil

    Science.gov (United States)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    Ultrasound has been used for characterization of liquid in several productive sectors and research. This work presents the studied about the behavior of the speed of sound in soybean oil with increasing temperature. The pulse echo technique allowed observing that the speed of sound decreases linearly with increasing temperature in the range 20 to 50 °C at 1 MHz. As result, a characteristic function capable to reproduce the speed of sound behavior in soybean oil, as a function of temperature was established, with the respective measurement uncertainty.

  19. Flow Studies of Decelerators at Supersonic Speeds

    Science.gov (United States)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  20. Advanced calibration, adjustment, and operation of a density and sound speed analyzer

    International Nuclear Information System (INIS)

    Fortin, Tara J.; Laesecke, Arno; Freund, Malte; Outcalt, Stephanie

    2013-01-01

    Highlights: ► Detail important considerations for reference quality measurements of thermophysical property data with benchtop instruments. ► Density and speed of sound of isooctane and speed of sound of toluene at (278 K to 343 K) and atmospheric pressure. ► Experimental data compared to available literature data and equations of state. - Abstract: Benchtop measurement systems have emerged as powerful tools in the ongoing quest for thermophysical property data. We demonstrate that these instruments can yield results of high quality if operated in an informed manner. The importance of sample purity, reproducibility over repeatability, expanded calibration and adjustment protocols, and rigorous uncertainty estimates are emphasized. We report measurement results at ambient atmospheric pressure and temperatures from 343 K to 278 K, including expanded uncertainty estimates, for the density and speed of sound of isooctane and for the speed of sound of toluene. These data are useful for validating the performance of such instruments.

  1. Heat of combustion, sound speed and component fluctuations in natural gas

    International Nuclear Information System (INIS)

    Burstein, L.; Ingman, D.

    1998-01-01

    The heat of combustion and sound speed of natural gas were studied as a function of random fluctuation of the gas fractions. A method of sound speed determination was developed and used for over 50,000 possible variants of component concentrations in four- and five- component mixtures. A test on binary (methane-ethane) and multicomponent (Gulf Coast) gas mixtures under standard pressure and moderate temperatures shows satisfactory predictability of sound speed on the basis of the binary virial coefficients, sound speeds and heat capacities of the pure components. Uncertainty in the obtained values does not exceed that of the pure component data. The results of comparison between two natural gas mixtures - with and without nonflammable components - are reported

  2. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    Science.gov (United States)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  3. Speed of sound in hadronic matter using non-extensive Tsallis statistics

    International Nuclear Information System (INIS)

    Khuntia, Arvind; Sahoo, Pragati; Garg, Prakhar; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    The speed of sound (c_s) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first-order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different q-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in the non-extensive case for c"2_s by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly show that the temperature where the mass cut-off starts varies with the q-parameter which hints at a relation between the degree of non-equilibrium and the limiting temperature of the system. It is shown that for values of q above approximately 1.13 all criticality disappears in the speed of sound, i.e. the decrease in the value of the speed of sound, observed at lower values of q, disappears completely. (orig.)

  4. Speed of sound in hadronic matter using non-extensive Tsallis statistics

    Energy Technology Data Exchange (ETDEWEB)

    Khuntia, Arvind; Sahoo, Pragati; Garg, Prakhar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Science, Simrol, M.P. (India); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-09-15

    The speed of sound (c{sub s}) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first-order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different q-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in the non-extensive case for c{sup 2}{sub s} by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly show that the temperature where the mass cut-off starts varies with the q-parameter which hints at a relation between the degree of non-equilibrium and the limiting temperature of the system. It is shown that for values of q above approximately 1.13 all criticality disappears in the speed of sound, i.e. the decrease in the value of the speed of sound, observed at lower values of q, disappears completely. (orig.)

  5. Determination of the thermodynamic properties of water from the speed of sound

    International Nuclear Information System (INIS)

    Trusler, J.P. Martin; Lemmon, Eric W.

    2017-01-01

    Highlights: • We analyse error propagation in thermodynamic integration of fluid-phase sound speed data. • A new correlation of the speed of sound in liquid water is derived. • Thermodynamic integration is carried out for pure water. • Derived properties considered include density, isobaric expansivity and isobaric specific heat capacity. - Abstract: Thermodynamic properties of compressed liquids may be obtained from measurements of the speed of sound by means of thermodynamic integration subject to initial values of density and isobaric specific heat capacity along a single low-pressure isobar. In this paper, we present an analysis of the errors in the derived properties arising from perturbations in both the speed-of-sound surface and the initial values. These errors are described in first order by a pair of partial differential equations that we integrate for the example case of water with various scenarios for the errors in the sound speed and the initial values. The analysis shows that errors in either the speed of sound or the initial values of density that are rapidly oscillating functions of temperature have a disproportionately large influence on the derived properties, especially at low temperatures. In view of this, we have obtained a more accurate empirical representation of the recent experimental speed-of-sound data for water [Lin and Trusler, J. Chem. Phys. 136, (2012) 094511] and use this in a new thermodynamic integration to obtain derived properties including density, isobaric heat capacity and isobaric thermal expansivity at temperatures between (253.15 and 473.15) K at pressures up to 400 MPa. The densities obtained in this way are in very close agreement with those reported by Lin and Trusler, but the isobaric specific heat capacity and the isobaric expansivity both differ significantly in the extremes of low temperatures and high pressures.

  6. Detecting Temporal Change in Dynamic Sounds: On the Role of Stimulus Duration, Speed, and Emotion

    Directory of Open Access Journals (Sweden)

    Annett eSchirmer

    2016-01-01

    Full Text Available For dynamic sounds, such as vocal expressions, duration often varies alongside speed. Compared to longer sounds, shorter sounds unfold more quickly. Here, we asked whether listeners implicitly use this confound when representing temporal regularities in their environment. In addition, we explored the role of emotions in this process. Using a mismatch negativity (MMN paradigm, we asked participants to watch a silent movie while passively listening to a stream of task-irrelevant sounds. In Experiment 1, one surprised and one neutral vocalization were compressed and stretched to create stimuli of 378 and 600 ms duration. Stimuli were presented in four blocks, two of which used surprised and two of which used neutral expressions. In one surprised and one neutral block, short and long stimuli served as standards and deviants, respectively. In the other two blocks, the assignment of standards and deviants was reversed. We observed a climbing MMN-like negativity shortly after deviant onset, which suggests that listeners implicitly track sound speed and detect speed changes. Additionally, this MMN-like effect emerged earlier and was larger for long than short deviants, suggesting greater sensitivity to duration increments or slowing down than to decrements or speeding up. Last, deviance detection was facilitated in surprised relative to neutral blocks, indicating that emotion enhances temporal processing. Experiment 2 was comparable to Experiment 1 with the exception that sounds were spectrally rotated to remove vocal emotional content. This abolished the emotional processing benefit, but preserved the other effects. Together, these results provide insights into listener sensitivity to sound speed and raise the possibility that speed biases duration judgments implicitly in a feed-forward manner. Moreover, this bias may be amplified for duration increments relative to decrements and within an emotional relative to a neutral stimulus context.

  7. Speed of sound as a function of temperature and pressure for propane derivatives

    International Nuclear Information System (INIS)

    Yebra, Francisco; Zemánková, Katerina; Troncoso, Jacobo

    2017-01-01

    Highlights: • New speed of sound data for six propane derivatives is reported. • Temperature and pressure ranges: (283.15–343.15) K and (0.1–95) MPa. • Data are compared with those available for other propane derivatives. • Temperature and pressure dependencies of sound speed are analyzed. - Abstract: The speed of sound in the temperature and pressure intervals (283.15–343.15) K and (0.1–95) MPa was measured for nitropropane, propionitrile, 1,2-dichloropropane, 1,3-dichloropropane, propylamine and propionic acid. An apparatus based on the acoustic wave time of flight determination, with a fully automatized temperature and pressure control, was used to this aim. The speed of sound derivatives against temperature and pressure, as well as the nonlinear acoustic coefficient was obtained from experimental values. The results are analyzed and compared with previously reported data for other propane derivatives: propane, 1-propanol, propanone, d-propanone, and several fluoropropanes. All obtained magnitudes are rationalized basing on the physicochemical properties of these fluids. Nearness to critical point and molar mass are revealed as key factors as regards the speed of sound behavior against temperature and pressure.

  8. Speed of sound measurements of liquid C1–C4 alkanols

    International Nuclear Information System (INIS)

    Dávila, María J.; Gedanitz, Holger; Span, Roland

    2016-01-01

    Highlights: • Speeds of sound in alkanols were measured in a wide temperature and pressure range. • A pulse-echo method with a double path type sensor was employed. • A double polynomial equation was used to fit the experimental speed of sound data. • The accurate results were compared with available literature sources. - Abstract: Speed of sound measurements were made in methanol, ethanol, propan-1-ol, and butan-1-ol in the temperature range from (253.15 to 353.15) K at pressures up to 30 MPa by use of a pulse-echo method with a double path type sensor. The expanded overall uncertainty (k = 2) in speed of sound measurements are estimated to be 0.026% for methanol, 0.03% for ethanol, 0.013% for propan-1-ol and 0.01% for butan-1-ol. A double polynomial equation for the speed of sound with inputs of temperature and pressure has been fitted from the experimental results. These were compared with available literature sources and fundamental equations of state, showing good agreement among them to comparable alcohol purities and experimental uncertainties.

  9. Acoustic metacages for sound shielding with steady air flow

    Science.gov (United States)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2018-03-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.

  10. SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY

    International Nuclear Information System (INIS)

    Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jørgen

    2012-01-01

    Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.

  11. Apparatus for measuring speed through the Doppler frequency shift of sound

    Science.gov (United States)

    Schier, Walter

    2011-04-01

    The Doppler frequency shift of sound apparatus is based on a one meter diameter rotary table with a "button" speaker at its outer edge. A semicircular waveguide encloses half the periphery and has a microphone pickup on its wall at the midpoint. The tangential speed of the button speaker can be determined two ways for comparison. One method calculates speed from the frequency shift of sound, the other uses the repeat sound pattern. Agreement to one percent is possible at speeds of about 25 mph. In the lab the microphone output is fed successively to pairs of students at ten computer stations. Students must also perform an exercise in their lab report that introduces them to the red shifted wavelengths of receding galaxies at determined distances from the earth thus introducing them to Hubble's law, the concept of the "Big Bang", and their estimate of the age of the universe.

  12. Direct speed of sound measurement within the atmosphere during a national holiday in New Zealand

    Science.gov (United States)

    Vollmer, M.

    2018-05-01

    Measuring the speed of sound belongs to almost any physics curriculum. Two methods dominate, measuring resonance phenomena of standing waves or time-of-flight measurements. The second type is conceptually simpler, however, performing such experiments with dimensions of meters usually requires precise electronic time measurement equipment if accurate results are to be obtained. Here a time-of-flight measurement from a video recording is reported with a dimension of several km and an accuracy for the speed of sound of the order of 1%.

  13. Effect of Traffic Noise and Relaxations Sounds on Pedestrian Walking Speed

    Directory of Open Access Journals (Sweden)

    Marek Franěk

    2018-04-01

    Full Text Available Exposure to noise in everyday urban life is considered to be an environmental stressor. A specific outcome of reactions to environmental stress is a fast pace of life that also includes a faster pedestrian walking speed. The present study examined the effect of listening to annoying acoustical stimuli (traffic noise compared with relaxation sounds (forest birdsong on walking speed in a real outdoor urban environment. The participants (N = 83 walked along an urban route of 1.8 km. They listened to either traffic noise or forest birdsong, or they walked without listening to any acoustical stimuli in the control condition. The results showed that participants listening to traffic noise walked significantly faster on the route than both the participants listening to forest birdsong sounds and the participants in the control condition. Participants who listened to forest birdsong walked slightly slower than those under control conditions; however, this difference was not significant. Analysis of the walk experience showed that participants who listened to forest birdsong during the walk liked the route more than those who listened to traffic sounds. The study demonstrated that exposure to traffic noise led to an immediate increase in walking speed. It was also shown that exposure to noise may influence participants’ perception of an environment. The same environment may be more liked in the absence of noise or in the presence of relaxation sounds. The study also documented the positive effect of listening to various kinds of relaxation sounds while walking in an outdoor environment with traffic noise.

  14. Speed of Sound in Hadronic matter using Non-extensive Statistics

    CERN Document Server

    Khuntia, Arvind; Garg, Prakhar; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    The speed of sound ($c_s$) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems, which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different $q$-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in non-extensive case for $c^{2}_s$ by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly present that the temperature where the mass cut-off starts, varies with the $q$-parameter which hints at a relation between the d...

  15. Time-of-Flight Measurement of the Speed of Sound in a Metal Bar

    Science.gov (United States)

    Ganci, Salvatore

    2016-01-01

    A simple setup was designed for a "time-of-flight" measurement of the sound speed in a metal bar. The experiment requires low cost components and is very simple to understand by students. A good use of it is as a demonstration experiment.

  16. Speed of sound reflects Young's modulus as assessed by microstructural finite element analysis

    NARCIS (Netherlands)

    Bergh, van den J.P.W.; Lenthe, van G.H.; Hermus, A.R.M.M.; Corstens, F.H.M.; Smals, A.G.H.; Huiskes, H.W.J.

    2000-01-01

    We analyzed the ability of the quantitative ultrasound (QUS) parameter, speed of sound (SOS), and bone mineral density (BMD), as measured by dual-energy X-ray absorptiometry (DXA), to predict Young's modulus, as assessed by microstructural finite element analysis (muFEA) from microcomputed

  17. Smartphone-Aided Measurements of the Speed of Sound in Different Gaseous Mixtures

    Science.gov (United States)

    Parolin, Sara Orsola; Pezzi, Giovanni

    2013-01-01

    Here we describe classroom-based procedures aiming at the estimation of the speed of sound in different gas mixtures with the help of a plastic drain pipe and two iPhones or iPod touches. The procedures were conceived to be performed with simple and readily available tools.

  18. Precision measurement of the speed of sound and thermodynamic properties of gases

    International Nuclear Information System (INIS)

    Benedetto, G.; Gavioso, R.M.; Spagnolo, R.

    1999-01-01

    The speed of sound in pure fluids and mixtures is a characteristic and important physical propriety which depends of several intensive thermodynamic variables. This fact indicates that it can be calculated using the appropriate thermodynamic properties of the fluid. Alternatively, experimental evaluation of the speed of sound can be used to determine several fundamental thermophysical properties. Recently, very accurate measurements of the speed of sound in dilute gases have found relevant applications: 1) the last experimental determinations of the value of the universal gas constant R, by measurements in argon, at the triple point of water (1,2); 2) revision of the thermodynamic temperature scales in different temperature ranges (3-5); 3) derivation of the state of many pure gases, which includes methane, helium and ethylene (6-7); 4)determination of the heat capacities and densities of pure gases and mixture (8-16). The aim of this paper is to provide an extensive review of the measurement of the speed of sound in gases and of its theoretical basis, giving prominence to the relevant metrological aspects involved in the determination of this physical quantity

  19. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    Science.gov (United States)

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  20. 40 CFR 205.54-1 - Low speed sound emission test procedures.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Low speed sound emission test procedures. 205.54-1 Section 205.54-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205...

  1. A novel method for direct localized sound speed measurement using the virtual source paradigm

    DEFF Research Database (Denmark)

    Byram, Brett; Trahey, Gregg E.; Jensen, Jørgen Arendt

    2007-01-01

    ) mediums. The inhomogeneous mediums were arranged as an oil layer, one 6 mm thick and the other 11 mm thick, on top of a water layer. To complement the phantom studies, sources of error for spatial registration of virtual detectors were simulated. The sources of error presented here are multiple sound...... registered virtual detector. Between a pair of registered virtual detectors a spherical wave is propagated. By beamforming the received data the time of flight between the two virtual sources can be calculated. From this information the local sound speed can be estimated. Validation of the estimator used...... both phantom and simulation results. The phantom consisted of two wire targets located near the transducer's axis at depths of 17 and 28 mm. Using this phantom the sound speed between the wires was measured for a homogeneous (water) medium and for two inhomogeneous (DB-grade castor oil and water...

  2. Detecting interferences with iOS applications to measure speed of sound

    Science.gov (United States)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-01-01

    Traditional experiments measuring the speed of sound consist of studying harmonics by changing the length of a glass tube closed at one end. In these experiments, the sound source and observer are outside of the tube. In this paper, we propose the modification of this old experiment by studying destructive interference in a pipe using a headset, iPhone and iPad. The iPhone is used as an emitter with signal generator application and the iPad is used as the receiver with a spectrogram application. Two experiments are carried out for measures: the emitter inside of the tube with the receiver outside, and vice versa. We conclude that it is even possible to adequately and easily measure the speed of sound using a cup or a can of coke with the method described in this paper.

  3. Simulation of sound waves using the Lattice Boltzmann Method for fluid flow: Benchmark cases for outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.; Lohman, W.J.A.; Zhou, H.

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:

  4. Effects of small variations of speed of sound in optoacoustic tomographic imaging

    International Nuclear Information System (INIS)

    Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel

    2014-01-01

    Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtained with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media

  5. Rat muscle blood flows during high-speed locomotion

    International Nuclear Information System (INIS)

    Armstrong, R.B.; Laughlin, M.H.

    1985-01-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance

  6. Speed scaling for weighted flow time

    NARCIS (Netherlands)

    Bansal, N.; Pruhs, K.R.; Stein, C.

    2007-01-01

    In addition to the traditional goal of efficiently managing time and space, many computers now need to efficiently manage power usage. For example, Intel's SpeedStep and AMD's PowerNOW technologies allow the Windows XP operating system to dynamically change the speed of the processor to prolong

  7. Statistical inference of seabed sound-speed structure in the Gulf of Oman Basin.

    Science.gov (United States)

    Sagers, Jason D; Knobles, David P

    2014-06-01

    Addressed is the statistical inference of the sound-speed depth profile of a thick soft seabed from broadband sound propagation data recorded in the Gulf of Oman Basin in 1977. The acoustic data are in the form of time series signals recorded on a sparse vertical line array and generated by explosive sources deployed along a 280 km track. The acoustic data offer a unique opportunity to study a deep-water bottom-limited thickly sedimented environment because of the large number of time series measurements, very low seabed attenuation, and auxiliary measurements. A maximum entropy method is employed to obtain a conditional posterior probability distribution (PPD) for the sound-speed ratio and the near-surface sound-speed gradient. The multiple data samples allow for a determination of the average error constraint value required to uniquely specify the PPD for each data sample. Two complicating features of the statistical inference study are addressed: (1) the need to develop an error function that can both utilize the measured multipath arrival structure and mitigate the effects of data errors and (2) the effect of small bathymetric slopes on the structure of the bottom interacting arrivals.

  8. An apparatus for the determination of speeds of sound in fluids

    International Nuclear Information System (INIS)

    Gedanitz, Holger; Davila, Maria J.; Baumhoegger, Elmar; Span, Roland

    2010-01-01

    An apparatus for accurate measurements of the sound velocity in fluids is described, which is based on the pulse-echo technique, and operates up to 30 MPa in the temperature range between (250 and 350) K. The expanded uncertainties (k = 2) in the speed of sound measurements are 0.006%, 6 mK in the temperature, 2.1 hPa in the pressure up to 3 MPa, and 23.9 hPa above this value. Measurements of the speed of sound for nitrogen from (250 to 350) K and for water at temperatures between (303.15 and 323.15) K are presented at pressures up to 30 MPa to validate the new apparatus. The expanded overall uncertainty of the measurements on nitrogen and water were estimated to be 0.011% and 0.006%, respectively. The speed of sound of both fluids was compared with literature sources showing an excellent agreement among them, with relative deviations lower than 0.01% in nitrogen and 0.006% in water.

  9. Confronting the sound speed of dark energy with future cluster surveys

    DEFF Research Database (Denmark)

    Basse, Tobias; Eggers Bjaelde, Ole; Hannestad, Steen

    2012-01-01

    Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that, in combin......Future cluster surveys will observe galaxy clusters numbering in the hundred thousands. We consider this work how these surveys can be used to constrain dark energy parameters: in particular, the equation of state parameter w and the non-adiabatic sound speed c_s^2. We demonstrate that......, in combination with Cosmic Microwave Background (CMB) observations from Planck, cluster surveys such as that in the ESA Euclid project will be able to determine a time-independent w with subpercent precision. Likewise, if the dark energy sound horizon falls within the length scales probed by the cluster survey......, then c_s^2 can be pinned down to within an order of magnitude. In the course of this work, we also investigate the process of dark energy virialisation in the presence of an arbitrary sound speed. We find that dark energy clustering and virialisation can lead to dark energy contributing to the total...

  10. Determinants of the reliability of ultrasound tomography sound speed estimates as a surrogate for volumetric breast density

    Energy Technology Data Exchange (ETDEWEB)

    Khodr, Zeina G.; Pfeiffer, Ruth M.; Gierach, Gretchen L., E-mail: GierachG@mail.nih.gov [Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive MSC 9774, Bethesda, Maryland 20892 (United States); Sak, Mark A.; Bey-Knight, Lisa [Karmanos Cancer Institute, Wayne State University, 4100 John R, Detroit, Michigan 48201 (United States); Duric, Nebojsa; Littrup, Peter [Karmanos Cancer Institute, Wayne State University, 4100 John R, Detroit, Michigan 48201 and Delphinus Medical Technologies, 46701 Commerce Center Drive, Plymouth, Michigan 48170 (United States); Ali, Haythem; Vallieres, Patricia [Henry Ford Health System, 2799 W Grand Boulevard, Detroit, Michigan 48202 (United States); Sherman, Mark E. [Division of Cancer Prevention, National Cancer Institute, Department of Health and Human Services, 9609 Medical Center Drive MSC 9774, Bethesda, Maryland 20892 (United States)

    2015-10-15

    Purpose: High breast density, as measured by mammography, is associated with increased breast cancer risk, but standard methods of assessment have limitations including 2D representation of breast tissue, distortion due to breast compression, and use of ionizing radiation. Ultrasound tomography (UST) is a novel imaging method that averts these limitations and uses sound speed measures rather than x-ray imaging to estimate breast density. The authors evaluated the reproducibility of measures of speed of sound and changes in this parameter using UST. Methods: One experienced and five newly trained raters measured sound speed in serial UST scans for 22 women (two scans per person) to assess inter-rater reliability. Intrarater reliability was assessed for four raters. A random effects model was used to calculate the percent variation in sound speed and change in sound speed attributable to subject, scan, rater, and repeat reads. The authors estimated the intraclass correlation coefficients (ICCs) for these measures based on data from the authors’ experienced rater. Results: Median (range) time between baseline and follow-up UST scans was five (1–13) months. Contributions of factors to sound speed variance were differences between subjects (86.0%), baseline versus follow-up scans (7.5%), inter-rater evaluations (1.1%), and intrarater reproducibility (∼0%). When evaluating change in sound speed between scans, 2.7% and ∼0% of variation were attributed to inter- and intrarater variation, respectively. For the experienced rater’s repeat reads, agreement for sound speed was excellent (ICC = 93.4%) and for change in sound speed substantial (ICC = 70.4%), indicating very good reproducibility of these measures. Conclusions: UST provided highly reproducible sound speed measurements, which reflect breast density, suggesting that UST has utility in sensitively assessing change in density.

  11. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  12. Aeroacoustic modelling of low-speed flows

    Energy Technology Data Exchange (ETDEWEB)

    Wen Zhong Shen; Noerkaer Soerensen, Jens

    1998-08-01

    A new numerical algorithm for acoustic noise generation is developed. The approach involves two steps comprising an incompressible flow part and inviscid acoustic part. The acoustic part can be started at any time of the incompressible computation. The formulation can be applied both for isentropic flows and non-isentropic flows. The model is validated for the cases of an isentropic pulsating sphere and non-isentropic flows past a circular cylinder and a NACA 0015 airfoil. The computations show that the generated acoustic frequencies have the form 1/m of the basic frequency of incompressible flow. (au) 15 refs.

  13. The sound field of a rotating dipole in a plug flow.

    Science.gov (United States)

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  14. Speed of sound in hadronic matter using non-extensive statistics

    International Nuclear Information System (INIS)

    Khuntia, Arvind; Sahoo, Pragati; Garg, Prakhar; Sahoo, Raghunath; Jean Cleymans

    2015-01-01

    The evolution of the dense matter formed in high energy hadronic and nuclear collisions is controlled by the initial energy density and temperature. The expansion of the system is due to the very high initial pressure with lowering of temperature and energy density. The pressure (P) and energy density (ϵ) are related through speed of sound (c 2 s ) under the condition of local thermal equilibrium. The speed of sound plays a crucial role in hydrodynamical expansion of the dense matter created and the critical behaviour of the system evolving from deconfined Quark Gluon Phase (QGP) to confined hadronic phase. There have been several experimental and theoretical studies in this direction. The non-extensive Tsallis statistics gives better description of the transverse momentum spectra of the produced particles created in high energy p + p (p¯) and e + + e - collisions

  15. Hydrodynamics of phase transition fronts and the speed of sound in the plasma

    International Nuclear Information System (INIS)

    Leitao, Leonardo; Mégevand, Ariel

    2015-01-01

    The growth of bubbles in cosmological first-order phase transitions involves nontrivial hydrodynamics. For that reason, the study of the propagation of phase transition fronts often requires several approximations. A frequently used approximation consists in describing the two phases as being composed only of radiation and vacuum energy (the so-called bag equation of state). We show that, in realistic models, the speed of sound in the low-temperature phase is generally smaller than that of radiation, and we study the hydrodynamics in such a situation. We find in particular that a new kind of hydrodynamical solution may be possible, which does not arise in the bag model. We obtain analytic results for the efficiency of the transfer of latent heat to bulk motions of the plasma, as a function of the speed of sound in each phase

  16. Hydrodynamics of phase transition fronts and the speed of sound in the plasma

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Leonardo, E-mail: lleitao@mdp.edu.ar; Mégevand, Ariel, E-mail: megevand@mdp.edu.ar

    2015-02-15

    The growth of bubbles in cosmological first-order phase transitions involves nontrivial hydrodynamics. For that reason, the study of the propagation of phase transition fronts often requires several approximations. A frequently used approximation consists in describing the two phases as being composed only of radiation and vacuum energy (the so-called bag equation of state). We show that, in realistic models, the speed of sound in the low-temperature phase is generally smaller than that of radiation, and we study the hydrodynamics in such a situation. We find in particular that a new kind of hydrodynamical solution may be possible, which does not arise in the bag model. We obtain analytic results for the efficiency of the transfer of latent heat to bulk motions of the plasma, as a function of the speed of sound in each phase.

  17. Sound speed models for a noncondensible gas-steam-water mixture

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1984-01-01

    An analytical expression is derived for the homogeneous equilibrium speed of sound in a mixture of noncondensible gas, steam, and water. The expression is based on the Gibbs free energy interphase equilibrium condition for a Gibbs-Dalton mixture in contact with a pure liquid phase. Several simplified models are discussed including the homogeneous frozen model. These idealized models can be used as a reference for data comparison and also serve as a basis for empirically corrected nonhomogeneous and nonequilibrium models

  18. SOUND-SPEED TOMOGRAPHY USING FIRST-ARRIVAL TRANSMISSION ULTRASOUND FOR A RING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; QUAN, YOULI [Los Alamos National Laboratory

    2007-01-31

    Sound-speed tomography images can be used for cancer detection and diagnosis. Tumors have generally higher sound speeds than the surrounding tissue. Quality and resolution of tomography images are primarily determined by the insonification/illumination aperture of ultrasound and the capability of the tomography method for accurately handling heterogeneous nature of the breast. We investigate the capability of an efficient time-of-flight tomography method using transmission ultrasound from a ring array for reconstructing sound-speed images of the breast. The method uses first arrival times of transmitted ultrasonic signals emerging from non-beamforming ultrasound transducers located around a ring. It properly accounts for ray bending within the breast by solving the eikonal equation using a finite-difference scheme. We test and validate the time-of-flight transmission tomography method using synthetic data for numerical breast phantoms containing various objects. In our simulation, the objects are immersed in water within a ring array. Two-dimensional synthetic data are generated using a finite-difference scheme to solve acoustic-wave equation in heterogeneous media. We study the reconstruction accuracy of the tomography method for objects with different sizes and shapes as well as different perturbations from the surrounding medium. In addition, we also address some specific data processing issues related to the tomography. Our tomography results demonstrate that the first-arrival transmission tomography method can accurately reconstruct objects larger than approximately five wavelengths of the incident ultrasound using a ring array.

  19. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    Energy Technology Data Exchange (ETDEWEB)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G., E-mail: akosovichev@solar.stanford.edu [Stanford University, HEPL, Stanford, CA 94305 (United States)

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  20. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    International Nuclear Information System (INIS)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-01-01

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  1. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  2. Reducing the impact of speed dispersion on subway corridor flow.

    Science.gov (United States)

    Qiao, Jing; Sun, Lishan; Liu, Xiaoming; Rong, Jian

    2017-11-01

    The rapid increase in the volume of subway passengers in Beijing has necessitated higher requirements for the safety and efficiency of subway corridors. Speed dispersion is an important factor that affects safety and efficiency. This paper aims to analyze the management control methods for reducing pedestrian speed dispersion in subways. The characteristics of the speed dispersion of pedestrian flow were analyzed according to field videos. The control measurements which were conducted by placing traffic signs, yellow marking, and guardrail were proposed to alleviate speed dispersion. The results showed that the methods of placing traffic signs, yellow marking, and a guardrail improved safety and efficiency for all four volumes of pedestrian traffic flow, and the best-performing control measurement was guardrails. Furthermore, guardrails' optimal position and design measurements were explored. The research findings provide a rationale for subway managers in optimizing pedestrian traffic flow in subway corridors. Copyright © 2017. Published by Elsevier Ltd.

  3. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  4. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  5. Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects

    International Nuclear Information System (INIS)

    Abreu, H; Hernandez, H; Nunez, L A

    2007-01-01

    Using the concept of cracking we explore the influence that density fluctuations and local anisotropy have on the stability of local and non-local anisotropic matter configurations in general relativity. This concept, conceived to describe the behavior of a fluid distribution just after its departure from equilibrium, provides an alternative approach to consider the stability of self-gravitating compact objects. We show that potentially unstable regions within a configuration can be identified as a function of the difference of propagations of sound along tangential and radial directions. In fact, it is found that these regions could occur when, at a particular point within the distribution, the tangential speed of sound is greater than the radial one

  6. Inversion for Sound Speed Profile by Using a Bottom Mounted Horizontal Line Array in Shallow Water

    International Nuclear Information System (INIS)

    Feng-Hua, Li; Ren-He, Zhang

    2010-01-01

    Ocean acoustic tomography is an appealing technique for remote monitoring of the ocean environment. In shallow water, matched field processing (MFP) with a vertical line array is one of the widely used methods for inverting the sound speed profile (SSP) of water column. The approach adopted is to invert the SSP with a bottom mounted horizontal line array (HLA) based on MFP. Empirical orthonormal functions are used to express the SSP, and perturbation theory is used in the forward sound field calculation. This inversion method is applied to the data measured in a shallow water acoustic experiment performed in 2003. Successful results show that the bottom mounted HLA is able to estimate the SSP. One of the most important advantages of the inversion method with bottom mounted HLA is that the bottom mounted HLA can keep a stable array shape and is safe in a relatively long period. (fundamental areas of phenomenology (including applications))

  7. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  8. Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples

    DEFF Research Database (Denmark)

    Cushing, Kevin W.; Garofalo, Fabio; Magnusson, Cecilia

    2017-01-01

    . The density of the microparticles is determined by using a neutrally buoyant selection process that involves centrifuging of microparticles suspended in different density solutions, CsCl for microbeads and Percoll for cells. The speed of sound at 3 MHz in the neutrally buoyant suspensions is measured...... and fixed cells, such as red blood cells, white blood cells, DU-145 prostate cancer cells, MCF-7 breast cancer cells, and LU-HNSCC-25 head and-neck squamous carcinoma cells in phosphate buffered saline. The results show agreement with published data obtained by other methods....

  9. Oral and Hand Movement Speeds Are Associated with Expressive Language Ability in Children with Speech Sound Disorder

    Science.gov (United States)

    Peter, Beate

    2012-01-01

    This study tested the hypothesis that children with speech sound disorder have generalized slowed motor speeds. It evaluated associations among oral and hand motor speeds and measures of speech (articulation and phonology) and language (receptive vocabulary, sentence comprehension, sentence imitation), in 11 children with moderate to severe SSD…

  10. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  11. Sound speed in the Mediterranean Sea: an analysis from a climatological data set

    Directory of Open Access Journals (Sweden)

    S. Salon

    2003-03-01

    Full Text Available This paper presents an analysis of sound speed distribution in the Mediterranean Sea based on climatological temperature and salinity data. In the upper layers, propagation is characterised by upward refraction in winter and an acoustic channel in summer. The seasonal cycle of the Mediterranean and the presence of gyres and fronts create a wide range of spatial and temporal variabilities, with relevant differences between the western and eastern basins. It is shown that the analysis of a climatological data set can help in defining regions suitable for successful monitoring by means of acoustic tomography. Empirical Orthogonal Functions (EOF decomposition on the profiles, performed on the seasonal cycle for some selected areas, demonstrates that two modes account for more than 98% of the variability of the climatological distribution. Reduced order EOF analysis is able to correctly represent sound speed profiles within each zone, thus providing the a priori knowledge for Matched Field Tomography. It is also demonstrated that salinity can affect the tomographic inversion, creating a higher degree of complexity than in the open oceans.Key words. Oceanography: general (marginal and semi-enclosed seas; ocean acoustics

  12. Load flow analysis for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhao, Menghua; Blaabjerg, Frede

    2009-01-01

    factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed...... and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated......A serial AC-DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many...

  13. Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations

    Science.gov (United States)

    Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S.

    2018-06-01

    The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only up to one to two times the nuclear saturation density, using accurate many-body methods that employ nuclear interactions from chiral effective field theory constrained by scattering data. In this work, we use physically motivated ansatzes for the speed of sound c S at high density to extend microscopic calculations of neutron-rich matter to the highest densities encountered in stable NS cores. We show how existing and expected astrophysical constraints on NS masses and radii from X-ray observations can constrain the speed of sound in the NS core. We confirm earlier expectations that c S is likely to violate the conformal limit of {c}S2≤slant {c}2/3, possibly reaching values closer to the speed of light c at a few times the nuclear saturation density, independent of the nuclear Hamiltonian. If QCD obeys the conformal limit, we conclude that the rapid increase of c S required to accommodate a 2 M ⊙ NS suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even between one and two times the nuclear saturation density. For typical NSs with masses in the range of 1.2–1.4 M ⊙, we find radii between 10 and 14 km, and the smallest possible radius of a 1.4 M ⊙ NS consistent with constraints from nuclear physics and observations is 8.4 km. We also discuss how future observations could constrain the EOS and guide theoretical developments in nuclear physics.

  14. Numerical analysis of flow induced noise propagation in supercavitating vehicles at subsonic speeds.

    Science.gov (United States)

    Ramesh, Sai Sudha; Lim, Kian Meng; Zheng, Jianguo; Khoo, Boo Cheong

    2014-04-01

    Flow supercavitation begins when fluid is accelerated over a sharp edge, usually at the nose of an underwater vehicle, where phase change occurs and causes low density gaseous cavity to gradually envelop the whole object (supercavity) and thereby enabling higher speeds of underwater vehicles. The process of supercavity inception/development by means of "natural cavitation" and its sustainment through ventilated cavitation result in turbulence and fluctuations at the water-vapor interface that manifest themselves as major sources of hydrodynamic noise. Therefore in the present context, three main sources are investigated, namely, (1) flow generated noise due to turbulent pressure fluctuations around the supercavity, (2) small scale pressure fluctuations at the vapor-water interface, and (3) pressure fluctuations due to direct impingement of ventilated gas-jets on the supercavity wall. An understanding of their relative contributions toward self-noise is very crucial for the efficient operation of high frequency acoustic sensors that facilitate the vehicle's guidance system. Qualitative comparisons of acoustic pressure distribution resulting from aforementioned sound sources are presented by employing a recently developed boundary integral method. By using flow data from a specially developed unsteady computational fluid dynamics solver for simulating supercavitating flows, the boundary-element method based acoustic solver was developed for computing flow generated sound.

  15. Unsteady flow simulations of Pelton turbine at different rotational speeds

    Directory of Open Access Journals (Sweden)

    Minsuk Choi

    2015-11-01

    Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.

  16. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 2, the correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Fischer, H.B; Matthes, C.; Beuthan, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  17. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; Part 2, The correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Fischer, H.B.; Mattes, Chr.; Beutha, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  18. Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system

    Science.gov (United States)

    Nuster, Robert; Paltauf, Guenther

    2017-07-01

    CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.

  19. Photoacoustically Measured Speeds of Sound of Liquid HBO2: On Unlocking the Fuel Potential of Boron

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S; Crowhurst, J; Armstrong, M; ., N T

    2010-03-24

    Elucidation of geodynamic, geochemical, and shock induced processes is often limited by challenges to accurately determine molecular fluid equations of state (EOS). High pressure liquid state reactions of carbon species underlie physiochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. Here we introduce a versatile photoacoustic technique developed to measure accurate and precise speeds of sound (SoS) of high pressure molecular fluids and fluid mixtures. SoS of an intermediate boron oxide, HBO{sub 2} are measured up to 0.5 GPa along the 277 C isotherm. A polarized Exponential-6 interatomic potential form, parameterized using our SoS data, enables EOS determinations and corresponding semi-empirical evaluations of > 2000 C thermodynamic states including energy release from bororganic formulations. Our thermochemical model propitiously predicts boronated hydrocarbon shock Hugoniot results.

  20. Non-Gaussianity in multi-sound-speed disformally coupled inflation

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Longden, Chris [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Koivisto, Tomi, E-mail: C.vandeBruck@sheffield.ac.uk, E-mail: tomi.koivisto@nordita.org, E-mail: cjlongden1@sheffield.ac.uk [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-02-01

    Most, if not all, scalar-tensor theories are equivalent to General Relativity with a disformally coupled matter sector. In extra-dimensional theories such a coupling can be understood as a result of induction of the metric on a brane that matter is confined to. This article presents a first look at the non-Gaussianities in disformally coupled inflation, a simple two-field model that features a novel kinetic interaction. Cases with both canonical and Dirac-Born-Infeld (DBI) kinetic terms are taken into account, the latter motivated by the possible extra-dimensional origin of the disformality. The computations are carried out for the equilateral configuration in the slow-roll regime, wherein it is found that the non-Gaussianity is typically rather small and negative. This is despite the fact that the new kinetic interaction causes the perturbation modes to propagate with different sounds speeds, which may both significantly deviate from unity during inflation.

  1. Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Zafarani-Moattar, Mohammed Taghi [Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Research Institute of Fundamental Sciences, Tabriz 51664 (Iran, Islamic Republic of)], E-mail: zafarani47@yahoo.com; Shekaari, Hemayat [Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Research Institute of Fundamental Sciences, Tabriz 51664 (Iran, Islamic Republic of)

    2007-12-15

    Densities, {rho}, and speed of sound, u, of the solutions of LiBr with non-aqueous solvents (methanol, ethanol, 2-propanol, acetone, and acetonitrile) having a wide range of dielectric constants were measured at T = 298.15 K. Also, these measurements were made for the system (LiBr + N,N-dimethylacetamide) at T = 323.15 K. For the investigated systems, the limiting values for apparent molar volume, V{sub {phi}}{sup 0}, and the apparent molar isentropic compressibility, {kappa}{sub {phi}}{sup 0}, were obtained from the Redlich-Mayer and an abbreviated form of the Pitzer equations. The Pitzer and NRTL equations were satisfactorily used for the correlation of apparent molar volumes, V{sub {phi}}, and the apparent molar isentropic compressibility, {kappa}{sub {phi}}, values of the studied systems.

  2. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 1, the calculation of sound speed of slurries and hardened porous material

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2011-01-01

    This article focuses on the computation of the sound velocity through slurries and hardened products. The purpose is to use the sound velocity to quantify the composition of the fresh slurry as well as the hardening and hardened - porous - material. Therefore the volumetric models for hydration of

  3. Insights from field observations into controls on flow front speed in submarine sediment flows

    Science.gov (United States)

    Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.

    2017-12-01

    Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.

  4. Volumetric and sound speed study of ammonium-based ionic liquid mixtures with ethanol

    International Nuclear Information System (INIS)

    Santos, Ângela F.S.; Moita, Maria-Luísa C.J.; Silva, João F.C.C.; Lampreia, Isabel M.S.

    2017-01-01

    Highlights: • Densities and sound speeds were measured at five temperatures in three ammonium-based ionic liquids mixtures with ethanol. • Excess molar and limiting molar and partial molar properties were derived and interpreted. • Specific interactions and packing effects were compared in the three systems. • Reduced variables were used to highlight differences in cation size and solvophilic effects. - Abstract: Thermodynamic studies embracing molecular interactions between ionic liquids (ILs) and molecular solvents are scarce and are required to explore molecular interactions and structural effects with interest in engineering applications. Ammonium-based are interesting ILs since they can be tailored to provide information concerning both chain length and solvophobic/solvophilic effects. In this work from accurately measured density and sound speed data in the systems ethanol + {[N 4111 ]; [N 4441 ] or [choline]}[NTf 2 ] derived quantities such as excess partial molar volumes and isentropic compressions including their limiting values were obtained. The reasoning of the results permitted to conclude that while in the [N 4441 ][NTf 2 ] case packing effects due to the difference in size of the components prevail, in the other two cases specific interaction ethanol–cation explains both the lower minimums in the excess properties and the higher magnitude of the negative limiting excess partial molar, volumes and isentropic compression values in the mixture containing [N 4111 ][NTf 2 ] in relation to [N 4441 ][NTf 2 ] and the negative limiting partial molar isentropic compression in the [choline][NTf 2 ] case in contrast with positive values for the other two ILs.

  5. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  6. High frequency components of tracheal sound are emphasized during prolonged flow limitation

    International Nuclear Information System (INIS)

    Tenhunen, M; Huupponen, E; Saastamoinen, A; Kulkas, A; Himanen, S-L; Rauhala, E

    2009-01-01

    A nasal pressure transducer, which is used to study nocturnal airflow, also provides information about the inspiratory flow waveform. A round flow shape is presented during normal breathing. A flattened, non-round shape is found during hypopneas and it can also appear in prolonged episodes. The significance of this prolonged flow limitation is still not established. A tracheal sound spectrum has been analyzed further in order to achieve additional information about breathing during sleep. Increased sound frequencies over 500 Hz have been connected to obstruction of the upper airway. The aim of the present study was to examine the tracheal sound signal content of prolonged flow limitation and to find out whether prolonged flow limitation would consist of abundant high frequency activity. Sleep recordings of 36 consecutive patients were examined. The tracheal sound spectral analysis was performed on 10 min episodes of prolonged flow limitation, normal breathing and periodic apnea-hypopnea breathing. The highest total spectral amplitude, implicating loudest sounds, occurred during flow-limited breathing which also presented loudest sounds in all frequency bands above 100 Hz. In addition, the tracheal sound signal during flow-limited breathing constituted proportionally more high frequency activities compared to normal breathing and even periodic apnea-hypopnea breathing

  7. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  8. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  9. Limb muscle sound speed estimation by ultrasound computed tomography excluding receivers in bone shadow

    Science.gov (United States)

    Qu, Xiaolei; Azuma, Takashi; Lin, Hongxiang; Takeuchi, Hideki; Itani, Kazunori; Tamano, Satoshi; Takagi, Shu; Sakuma, Ichiro

    2017-03-01

    Sarcopenia is the degenerative loss of skeletal muscle ability associated with aging. One reason is the increasing of adipose ratio of muscle, which can be estimated by the speed of sound (SOS), since SOSs of muscle and adipose are different (about 7%). For SOS imaging, the conventional bent-ray method iteratively finds ray paths and corrects SOS along them by travel-time. However, the iteration is difficult to converge for soft tissue with bone inside, because of large speed variation. In this study, the bent-ray method is modified to produce SOS images for limb muscle with bone inside. The modified method includes three steps. First, travel-time is picked up by a proposed Akaike Information Criterion (AIC) with energy term (AICE) method. The energy term is employed for detecting and abandoning the transmissive wave through bone (low energy wave). It results in failed reconstruction for bone, but makes iteration convergence and gives correct SOS for skeletal muscle. Second, ray paths are traced using Fermat's principle. Finally, simultaneous algebraic reconstruction technique (SART) is employed to correct SOS along ray paths, but excluding paths with low energy wave which may pass through bone. The simulation evaluation was implemented by k-wave toolbox using a model of upper arm. As the result, SOS of muscle was 1572.0+/-7.3 m/s, closing to 1567.0 m/s in the model. For vivo evaluation, a ring transducer prototype was employed to scan the cross sections of lower arm and leg of a healthy volunteer. And the skeletal muscle SOSs were 1564.0+/-14.8 m/s and 1564.1±18.0 m/s, respectively.

  10. Discordant effect of body mass index on bone mineral density and speed of sound

    Directory of Open Access Journals (Sweden)

    Hagag Philippe

    2003-07-01

    Full Text Available Abstract Background Increased BMI may affect the determination of bone mineral density (BMD by dual X-ray absorptiometry (DXA and speed of sound (SOS measured across bones. Preliminary data suggest that axial SOS is less affected by soft tissue. The purpose of this study is to evaluate the effect of body mass index (BMI on BMD and SOS measured along bones. Methods We compared axial BMD determined by DXA with SOS along the phalanx, radius and tibia in 22 overweight (BMI > 27 kg/m2, and 11 lean (BMI = 21 kg/m2 postmenopausal women. Serum bone specific alkaline phosphatase and urinary deoxypyridinoline excretion determined bone turnover. Results Mean femoral neck – but not lumbar spine BMD was higher in the overweight – as compared with the lean group (0.70 ± 0.82, -0.99 ± 0.52, P P Conclusions The high BMI of postmenopausal women may result in spuriously high BMD. SOS measured along bones may be a more appropriate means for evaluating bones of overweight women.

  11. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  12. Determining the Time of Flight and Speed of Sound on Different types of Edible Oil

    Science.gov (United States)

    Azman, N. A.; Hamid, S. B. Abd

    2017-11-01

    Edible oil is most often plant-based oils that have been extracted from various seeds. There are cases where the fully virgin edible oil was found to be a fraud. The adulterated edible oil indicates the intentional, fraudulent addition of extraneous, improper or cheaper ingredients puts into the oil or the dilution or removal of some valuable ingredient of the oil in order to increase profits. Hence, decrease the reliability of the Malaysian food product quality. This research was done by using the method of time of flight obtained using the Texas Instrument board, TDC1000-TDC7200 EVM connected to an ultrasonic transducer with 1 MHz frequency. The authors measured the time of flight and temperatures controlled from 20°C to 40°C of five vegetable oils (olive oil, sunflower oil, corn oil, coconut oil, and mustard oil). The value is observed and compared with other research from the literature review. From the study, time of flight values decreases exponentially while speed of sound value increases. This relationship will be useful in spectrum unfolding method to investigate the adulteration in different type of edible oil.This research outcome is to investigate the quality value of the different type of edible oil while eliminates the issues where the quality of Malaysian food product is not reliable.

  13. 101-SY waste sample speed of sound/rheology testing for sonic probe program

    International Nuclear Information System (INIS)

    Cannon, N.S.

    1994-01-01

    One problem faced in the clean-up operation at Hanford is that a number of radioactive waste storage tanks are experiencing a periodic buildup and release of potentially explosive gases. The best known example is Tank 241-SY-101 (commonly referred to as 101-SY) in which hydrogen gas periodically built up within the waste to the point that increased buoyancy caused a roll-over event, in which the gas was suddenly released in potentially explosive concentrations (if an ignition source were present). The sonic probe concept is to generate acoustic vibrations in the 101-SY tank waste at nominally 100 Hz, with sufficient amplitude to cause the controlled release of hydrogen bubbles trapped in the waste. The sonic probe may provide a potentially cost-effective alternative to large mixer pumps now used for hydrogen mitigation purposes. Two important parameters needed to determine sonic probe effectiveness and design are the speed of sound and yield stress of the tank waste. Tests to determine these parameters in a 240 ml sample of 101-SY waste (obtained near the tank bottom) were performed, and the results are reported

  14. Flow in a Low Specific Speed Centrifugal Pump Using PIV

    Directory of Open Access Journals (Sweden)

    Cui Dai

    2013-01-01

    Full Text Available The interflow plays important roles in centrifugal pump design. In order to study the effect of rotation and z-axis on internal flow, two-dimensional particle image velocimetry (PIV measurements have been performed to measure the steady velocity field on three planes in all impeller passages of a low specific-speed centrifugal pump. The results show that the relative velocity flows in blade passages are obviously different in terms of the positions of the blade relative to the tongue. The interaction between the impeller and tongue changes the occurrence and development of low velocity region with time. From shroud to hub, the relative velocity gradually increases, and the minimum value moves toward the suction surface. On the midplane, the magnitude increases with increased flow rate from pressure surface to suction surface, while at the shroud and hub, the measured velocity first increases with decreased flow rate from the blade pressure surface to nearly ζ = 0.5 to 0.6.

  15. Preconditioned Conjugate Gradient methods for low speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  16. Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N. [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation); Thomas, H. M. [Research Group Complex Plasma, DLR, Oberpfaffenhofen, 82234 Wessling (Germany); Ivlev, A. V.; Morfill, G. E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85748 Garching (Germany); Schwabe, M. [Department of Chemical and Biomolecular Engineering, Graves Lab, D75 Tan Hall, University of California, Berkeley, CA 94720 (United States)

    2015-02-15

    We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas.

  17. Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions

    International Nuclear Information System (INIS)

    Zhukhovitskii, D. I.; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Schwabe, M.

    2015-01-01

    We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas

  18. Short period sound speed oscillation measured by intensive XBT survey and its role on GNSS/acoustic positioning

    Science.gov (United States)

    Kido, M.; Matsui, R.; Imano, M.; Honsho, C.

    2017-12-01

    In the GNSS/acoustic measurement, sound speed in ocean plays a key role of accuracy of final positioning. We have shown than longer period sound speed undulation can be properly estimated from GNSS-A analysis itself in our previous work. In this work, we have carried out intensive XBT measurement to get temporal variation of sound speed in short period to be compared with GNSS-A derived one. In the individual temperature profile obtained by intensive XBT measurements (10 minutes interval up to 12 times of cast), clear vertical oscillation up to 20 m of amplitude in the shallow part were observed. These can be interpreted as gravitational internal wave with short-period and hence short wavelength anomaly. Kido et al. (2007) proposed that horizontal variation of the ocean structure can be considered employing five or more transponders at once if the structure is expressed by two quantities, i.e., horizontal gradient in x/y directions. However, this hypothesis requires that the variation must has a large spatial scale (> 2-5km) so that the horizontal variation can be regarded as linear within the extent of acoustic path to seafloor transponders. Therefore the wavelength of the above observed internal wave is getting important. The observed period of internal wave was 30-60 minute. However its wavelength cannot be directly measured. It must be estimate based on density profile of water column. In the comparison between sound speed change and positioning, the delay of their phases were 90 degree, which indicates that most steep horizontal slope of internal wave correspond to largest apparent positioning shift.

  19. Predicting Free Flow Speed and Crash Risk of Bicycle Traffic Flow Using Artificial Neural Network Models

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-01-01

    Full Text Available Free flow speed is a fundamental measure of traffic performance and has been found to affect the severity of crash risk. However, the previous studies lack analysis and modelling of impact factors on bicycles’ free flow speed. The main focus of this study is to develop multilayer back propagation artificial neural network (BPANN models for the prediction of free flow speed and crash risk on the separated bicycle path. Four different models with considering different combinations of input variables (e.g., path width, traffic condition, bicycle type, and cyclists’ characteristics were developed. 459 field data samples were collected from eleven bicycle paths in Hangzhou, China, and 70% of total samples were used for training, 15% for validation, and 15% for testing. The results show that considering the input variables of bicycle types and characteristics of cyclists will effectively improve the accuracy of the prediction models. Meanwhile, the parameters of bicycle types have more significant effect on predicting free flow speed of bicycle compared to those of cyclists’ characteristics. The findings could contribute for evaluation, planning, and management of bicycle safety.

  20. Resurrecting the Power-law, Intermediate, and Logamediate Inflations in the DBI Scenario with Constant Sound Speed

    Science.gov (United States)

    Amani, Roonak; Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars

    2018-02-01

    We investigate the power-law, intermediate, and logamediate inflationary models in the framework of DBI non-canonical scalar field with constant sound speed. In the DBI setting, we first represent the power spectrum of both scalar density and tensor gravitational perturbations. Then, we derive different inflationary observables including the scalar spectral index n s , the running of the scalar spectral index {{dn}}s/d{ln}k, and the tensor-to-scalar ratio r. We show that the 95% CL constraint of the Planck 2015 T + E data on the non-Gaussianity parameter {f}{NL}{DBI} leads to the sound speed bound {c}s≥slant 0.087 in the DBI inflation. Moreover, our results imply that, although the predictions of the power-law, intermediate, and logamediate inflations in the standard canonical framework (c s = 1) are not consistent with the Planck 2015 data, in the DBI scenario with constant sound speed {c}srunning of the scalar spectral index and find that it is compatible with the 95% CL constraint from the Planck 2015 TT,TE,EE+lowP data.

  1. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  2. Development of Optophone with No Diaphragm and Application to Sound Measurement in Jet Flow

    Directory of Open Access Journals (Sweden)

    Yoshito Sonoda

    2012-01-01

    Full Text Available The optophone with no diaphragm, which can detect sound waves without disturbing flow of air and sound field, is presented as a novel sound measurement technique and the present status of development is reviewed in this paper. The method is principally based on the Fourier optics and the sound signal is obtained by detecting ultrasmall diffraction light generated from phase modulation by sounds. The principle and theory, which have been originally developed as a plasma diagnostic technique to measure electron density fluctuations in the nuclear fusion research, are briefly introduced. Based on the theoretical analysis, property and merits as a wave-optical sound detection are presented, and the fundamental experiments and results obtained so far are reviewed. It is shown that sounds from about 100 Hz to 100 kHz can be simultaneously detected by a visible laser beam, and the method is very useful to sound measurement in aeroacoustics. Finally, present main problems of the optophone for practical uses in sound and/or noise measurements and the image of technology expected in the future are shortly shown.

  3. Sound Control-Flow Graph Extraction for Java Programs with Exceptions

    NARCIS (Netherlands)

    Amighi, A.; de Carvalho Gomes, Pedro; Gurov, Dilian; Huisman, Marieke; Eleftherakis, George; Hinchey, Mike; Holcombe, Mike

    2012-01-01

    We present an algorithm to extract control-flow graphs from Java bytecode, considering exceptional flows. We then establish its correctness: the behavior of the extracted graphs is shown to be a sound over-approximation of the behavior of the original programs. Thus, any temporal safety property

  4. Sound transmission in slowly varying circular and annular ducts with flow

    NARCIS (Netherlands)

    Rienstra, S.W.

    1999-01-01

    Sound transmission through straight circular ducts with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion. A natural extension for ducts with axially slowly varying properties (diameter and mean flow, wall impedance) is a

  5. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  6. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland and Diagnostic Imaging Center, Kuopio University Hospital, P.O. Box 100, Kuopio FI-70029 (Finland); Malo, M. K. H., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Liukkonen, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211 (Finland); Karjalainen, J. P., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi [Bone Index Finland Ltd., P.O. Box 1188, Kuopio FI-70211 (Finland)

    2016-05-15

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated

  7. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone

    International Nuclear Information System (INIS)

    Eneh, C. T. M.; Töyräs, J.; Jurvelin, J. S.; Malo, M. K. H.; Liukkonen, J.; Karjalainen, J. P.

    2016-01-01

    Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessment by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R"2 ≥ 0.493, p < 0.01 and R"2 ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo

  8. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    Science.gov (United States)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  9. Flow speed measurement using two-point collective light scattering

    International Nuclear Information System (INIS)

    Heinemeier, N.P.

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au)

  10. Flow speed measurement using two-point collective light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, N.P

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au) 1 tab., 51 ills., 29 refs.

  11. Canonical sound speed profile and related ray acoustic parameters in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; Rao, B.P.; SuryaPrakash, S.; Chandramouli, P.; Murthy, K.S.R.; Prasad, K.V.S.R.

    Following Munk's canonical theory, canonical parameters (i.e., B the stratification scale and epsilon the perturbation coefficient) in adiabatic ocean are obtained using SOFAR channel parameters (i.e., C sound velocity at the channel axis, Z sub(1...

  12. the factors that affect the free flow speed on an arterial in ilorin, nigeria

    African Journals Online (AJOL)

    user

    lower average free flow speed of commercial saloon cars on wet pavement than on dry pavement, with 12% percentage ... average space mean speed in a low volume traffic stream when ..... travel way width and number of traffic control units.

  13. Inductive flow meter for measuring the speed of flow and gas volume contained in a flow of liquid metal

    International Nuclear Information System (INIS)

    Mueller, S.

    1980-01-01

    The speed of flow of the sodium is measured in two closely adjacent flow crossections using pairs of electrodes in the field of two disc-shaped permanent magnets made of AlNiCo 450, by means of measurements of running time of speed fluctuations. The result of the measurement is independent of the temperature of the sensor and the temperature of the sodium. The same arrangement makes it possible to determine the proportion by volume of the fission gas in sodium with a limiting freequency of several kHz. (DG) [de

  14. CTD and sound speed profile data acquired in support of hydrographic multibeam surveys to meet NOAA/NOS, Office of Coast Survey charting requirements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multiple sensors are used to acquire sound speed profiles in the survey areas assigned to the ships and navigation response teams. Some vessels have CTDs and acquire...

  15. AC-DC integrated load flow calculation for variable speed offshore wind farms

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....

  16. Modelling Free Flow Speed on Two-Lane Rural Highways in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Ivan Lovrić

    2014-04-01

    Full Text Available Free flow speed is used as a parameter in transportation planning and capacity analysis models, as well as speed-flow diagrams. Many of these models suggest estimating free flow speed according to measurements from similar highways, which is not a practical method for use in B&H. This paper first discusses problems with using these methodologies in conditions prevailing in B&H and then presents a free flow speed evaluation model developed from a comprehensive field survey conducted on nine homogeneous sections of state and regional roads.

  17. Free-flow speeds for representative road and terrain types

    CSIR Research Space (South Africa)

    Schutte, IC

    2009-06-02

    Full Text Available Speed plays an important role in the justification of road infrstructure projects. It affects both vehicle operating cost and travel time cost. If incorrecr values for speed are used in the economic analyses of transport projects, incorrect...

  18. On the significance of density-induced speed of sound variations on US-guided radiotherapy

    International Nuclear Information System (INIS)

    Fontanarosa, Davide; Meer, Skadi van der; Verhaegen, Frank

    2012-01-01

    Purpose: To show the effect of speed of sound (SOS) aberration on ultrasound guided radiotherapy (US-gRT) as a function of implemented workflow. US systems assume that SOS is constant in human soft tissues (at a value of 1540 m/s), while its actual nonuniform distribution produces small but systematic errors of up to a few millimeters in the positions of scanned structures. When a coregistered computerized tomography (CT) scan is available, the US image can be corrected for SOS aberration. Typically, image guided radiotherapy workflows implementing US systems only provide a CT scan at the simulation (SIM) stage. If changes occur in geometry or density distribution between SIM and treatment (TX) stage, SOS aberration can change accordingly, with a final impact on the measured position of structures which is dependent on the workflow adopted. Methods: Four basic scenarios were considered of possible changes between SIM and TX: (1) No changes, (2) only patient position changes (rigid rotation-translation), (3) only US transducer position changes (constrained on patient's surface), and (4) patient tissues thickness changes. Different SOS aberrations may arise from the different scenarios, according to the specific US-gRT workflow used: intermodality (INTER) where TX US scans are compared to SIM CT scans; intramodality (INTRA) where TX US scans are compared to SIM US scans; and INTERc and INTRAc where all US images are corrected for SOS aberration (using density information provided by SIM CT). For an experimental proof of principle, the effect of tissues thickness change was simulated in the different workflows: a dual layered phantom was filled with layers of sunflower oil (SOS 1478 m/s), water (SOS 1482 m/s), and 20% saline solution (SOS 1700 m/s). The phantom was US scanned, the layer thicknesses were increased and the US scans were repeated. The errors resulting from the different workflows were compared. Results: Theoretical considerations show that workflows

  19. Dust mobilization by high-speed vapor flow under LOVA

    International Nuclear Information System (INIS)

    Matsuki, K.; Suzuki, S.; Ebara, S.; Yokomine, T.; Shimizu, A.

    2006-01-01

    In the safety analysis on the International Thermonuclear Experimental Reactor (ITER), the ingress of coolant (ICE) event and the loss of vacuum (LOVA) event are considered as one of the most serious accident. On the assumption of LOVA occurring after ICE, it is inferable that activated dusts are under the wet condition. Transport behavior of in-vessel activated dusts under the wet condition is not well understood in comparison with the dry case. In this study, we experimentally investigated the entrainment behavior of dust under LOVA after ICE. We measured dust entrainment by high-speed humid airflow with phase change. Graphite dusts and glass beads are used as substitutions for mobile inventory. The relations among the relative humidity, the entrainment of particles in the exhaust gas flow and the adhesion rate of dust particles on the pipe wall have been made clear, as has the distribution profile of dust deposition on the pipe wall. The entrainment ratio decreased as the relative humidity increased and increased as the initial pressure difference increased

  20. Acoustics flow analysis in circular duct using sound intensity and dynamic mode decomposition

    International Nuclear Information System (INIS)

    Weyna, S

    2014-01-01

    Sound intensity generation in hard-walled duct with acoustic flow (no mean-flow) is treated experimentally and shown graphically. In paper, numerous methods of visualization illustrating the vortex flow (2D, 3D) can graphically explain diffraction and scattering phenomena occurring inside the duct and around open end area. Sound intensity investigation in annular duct gives a physical picture of sound waves in any duct mode. In the paper, modal energy analysis are discussed with particular reference to acoustics acoustic orthogonal decomposition (AOD). The image of sound intensity fields before and above 'cut-off' frequency region are found to compare acoustic modes which might resonate in duct. The experimental results show also the effects of axial and swirling flow. However acoustic field is extremely complicated, because pressures in non-propagating (cut-off) modes cooperate with the particle velocities in propagating modes, and vice versa. Measurement in cylindrical duct demonstrates also the cut-off phenomenon and the effect of reflection from open end. The aim of experimental study was to obtain information on low Mach number flows in ducts in order to improve physical understanding and validate theoretical CFD and CAA models that still may be improved.

  1. Experimental Comparison of Speed : Fuel-flow and Speed-area Controls on a Turbojet Engine for Small Step Disturbances

    Science.gov (United States)

    Wenzel, L M; Hart, C E; Craig, R T

    1957-01-01

    Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.

  2. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    Science.gov (United States)

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Evaluation of sounds for hybrid and electric vehicles operating at low speed

    Science.gov (United States)

    2012-10-22

    Electric vehicles (EV) and hybrid electric vehicles (HEVs), operated at low speeds may reduce auditory cues used by pedestrians to assess the state of nearby traffic creating a safety issue. This field study compares the auditory detectability of num...

  4. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten

    2015-01-01

    We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...

  5. Persistent flow and third-sound waves in the He-II film

    International Nuclear Information System (INIS)

    Verbeek, H.J.

    1980-01-01

    The author describes experiments performed on persistent film-flow in He-II film. Data obtained using the third-sound technique is presented. The experiments demonstrate unequivocally the reality of persistent currents in the He-II film. (Auth.)

  6. Measurement of the thermal diffusivity and speed of sound of hydrothermal solutions via the laser-induced grating technique

    International Nuclear Information System (INIS)

    Butenhoff, T.J.

    1994-01-01

    Hydrothermal processing is being developed as a method for organic destruction for the Hanford Site in Washington. Hydrothermal processing refers to the redox reactions of chemical compounds in supercritical or near-supercritical aqueous solutions. In order to design reactors for the hydrothermal treatment of complicated mixtures found in the Hanford wastes, engineers need to know the thermophysical properties of the solutions under hydrothermal conditions. The author used the laser-induced grating technique to measure the thermal diffusivity and speed of sound of hydrothermal solutions. In this non-invasive optical technique, a transient grating is produced in the hydrothermal solution by optical absorption from two crossed time-coincident nanosecond laser pulses. The grating is probed by measuring the diffraction efficiency of a third laser beam. The grating relaxes via thermal diffusion, and the thermal diffusivity can be determined by measuring the decay of the grating diffraction efficiency as a function of the pump-probe delay time. In addition, intense pump pulses produce counterpropagating acoustic waves that appear as large undulations in the transient grating decay spectrum. The speed of sound in the sample is simply the grating fringe spacing divided by the undulation period. The cell is made from a commercial high pressure fitting and is equipped with two diamond windows for optical access. Results are presented for dilute dye/water solutions with T = 400 C and pressures between 20 and 70 MPa

  7. On the phantom barrier crossing and the bounds on the speed of sound in non-minimal derivative coupling theories

    Science.gov (United States)

    Quiros, Israel; Gonzalez, Tame; Nucamendi, Ulises; García-Salcedo, Ricardo; Horta-Rangel, Francisco Antonio; Saavedra, Joel

    2018-04-01

    In this paper we investigate the so-called ‘phantom barrier crossing’ issue in a cosmological model based on the scalar–tensor theory with non-minimal derivative coupling to the Einstein tensor. Special attention will be paid to the physical bounds on the squared sound speed. The numeric results are geometrically illustrated by means of a qualitative procedure of analysis that is based on the mapping of the orbits in the phase plane onto the surfaces that represent physical quantities in the extended phase space, that is: the phase plane complemented with an additional dimension relative to the given physical parameter. We find that the cosmological model based on the non-minimal derivative coupling theory—this includes both the quintessence and the pure derivative coupling cases—has serious causality problems related to superluminal propagation of the scalar and tensor perturbations. Even more disturbing is the finding that, despite the fact that the underlying theory is free of the Ostrogradsky instability, the corresponding cosmological model is plagued by the Laplacian (classical) instability related with negative squared sound speed. This instability leads to an uncontrollable growth of the energy density of the perturbations that is inversely proportional to their wavelength. We show that, independent of the self-interaction potential, for positive coupling the tensor perturbations propagate superluminally, while for negative coupling a Laplacian instability arises. This latter instability invalidates the possibility for the model to describe the primordial inflation.

  8. Sound amplification at a rectangular T-junction with merging mean flows

    Science.gov (United States)

    Du, Lin; Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2016-04-01

    This paper reports a numerical study on the aeroacoustic response of a rectangular T-junction with merging mean flows. The primary motivation of the work is to explain the high sound amplification, recently seen experimentally, when introducing a small merging bias flow. The acoustic results are found solving the compressible Linearized Navier-Stokes Equations (LNSEs) in the frequency domain, where the base flow is first obtained using RANS with a k-ε turbulence model. The model predicts the measured scattering data well, including the amplitude and Strouhal number for the peak amplification, if the effect of eddy viscosity damping is included. It is found that the base flow changes significantly with the presence of a small bias flow. Compared to pure grazing flow a strong unstable shear layer is created in the downstream main duct starting from the T-junction trailing edge. This means that the main region of vortex-sound interaction is moved away from the junction to a downstream region much larger than the junction width. To analyze the sound amplification in this region Howe's energy corollary and the growth of acoustic density are used.

  9. Modeling of speed distribution for mixed bicycle traffic flow

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2015-11-01

    Full Text Available Speed is a fundamental measure of traffic performance for highway systems. There were lots of results for the speed characteristics of motorized vehicles. In this article, we studied the speed distribution for mixed bicycle traffic which was ignored in the past. Field speed data were collected from Hangzhou, China, under different survey sites, traffic conditions, and percentages of electric bicycle. The statistics results of field data show that the total mean speed of electric bicycles is 17.09 km/h, 3.63 km/h faster and 27.0% higher than that of regular bicycles. Normal, log-normal, gamma, and Weibull distribution models were used for testing speed data. The results of goodness-of-fit hypothesis tests imply that the log-normal and Weibull model can fit the field data very well. Then, the relationships between mean speed and electric bicycle proportions were proposed using linear regression models, and the mean speed for purely electric bicycles or regular bicycles can be obtained. The findings of this article will provide effective help for the safety and traffic management of mixed bicycle traffic.

  10. Respiratory flow-sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea.

    Science.gov (United States)

    Yadollahi, Azadeh; Montazeri, Aman; Azarbarzin, Ali; Moussavi, Zahra

    2013-03-01

    Tracheal respiratory sound analysis is a simple and non-invasive way to study the pathophysiology of the upper airway and has recently been used for acoustic estimation of respiratory flow and sleep apnea diagnosis. However in none of the previous studies was the respiratory flow-sound relationship studied in people with obstructive sleep apnea (OSA), nor during sleep. In this study, we recorded tracheal sound, respiratory flow, and head position from eight non-OSA and 10 OSA individuals during sleep and wakefulness. We compared the flow-sound relationship and variations in model parameters from wakefulness to sleep within and between the two groups. The results show that during both wakefulness and sleep, flow-sound relationship follows a power law but with different parameters. Furthermore, the variations in model parameters may be representative of the OSA pathology. The other objective of this study was to examine the accuracy of respiratory flow estimation algorithms during sleep: we investigated two approaches for calibrating the model parameters using the known data recorded during either wakefulness or sleep. The results show that the acoustical respiratory flow estimation parameters change from wakefulness to sleep. Therefore, if the model is calibrated using wakefulness data, although the estimated respiratory flow follows the relative variations of the real flow, the quantitative flow estimation error would be high during sleep. On the other hand, when the calibration parameters are extracted from tracheal sound and respiratory flow recordings during sleep, the respiratory flow estimation error is less than 10%.

  11. Reading drift in flow rate sensors caused by steady sound waves

    International Nuclear Information System (INIS)

    Maximiano, Celso; Nieble, Marcio D.; Migliavacca, Sylvana C.P.; Silva, Eduardo R.F.

    1995-01-01

    The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs

  12. Speed

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Speed. The rate of information transferred per second is the speed of the information. Measured in bits per second. Need for speed on the net: You-Tube phenomenon; IPTV; 3D Video telephony. Online gaming; HDTV.

  13. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most

  14. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  15. Sound attenuation of a finite length dissipative flow duct silencer with internal mean flow in the absorbent

    Science.gov (United States)

    Cummings, A.; Chang, I.-J.

    1988-11-01

    Internal mean flow within the pores of a bulk-reacting porous acoustic absorbent, driven by mean static pressure gradients, is shown here to be an important feature of the acoustics of dissipative silencers in flow ducts, particularly in the case of internal combustion engine exhaust silencers. Theoretical treatments are presented here, both to describe the effect of internal flow on the bulk acoustic perties of the porous medium and to find the effect of the absorbent in situ, in the form of the sound transmission loss of the silencer. The measured transmission loss of an experimental silencer is compared to predicted data and good agreement between the two is obtained. The effects of mean fluid flow in the central passage and internal flow in the absorbent are separately demonstrated.

  16. Lattice Boltzmann simulations of sound directivity of a cylindrical pipe with mean flow

    International Nuclear Information System (INIS)

    Shi, Yong; Scavone, Gary P; Silva, Andrey R da

    2013-01-01

    This paper proposes a numerical scheme based on the lattice Boltzmann method to tackle the classical problem of sound radiation directivity of pipes issuing subsonic mean flows. The investigation is focused on normal mode radiation, which allows the use of a two-dimensional lattice with an axisymmetric condition at the pipe’s longitudinal axis. The numerical results are initially verified against an exact analytical solution for the sound radiation directivity of an unflanged pipe in the absence of a mean flow, which shows a very good agreement. Thereafter, the sound directivity results in the presence of a subsonic mean flow are compared with both analytical models and experimental data. The results are in good agreement, particularly for low values of the Helmholtz number ka. Moreover, the phenomenon known as ‘zone of relative silence’ was observed, even for mean flows associated with very low Mach numbers, though discrepancies were also observed in the comparison between the numerical results and the analytical predictions. A thorough discussion on the scheme implementation and numerical results is provided in the paper. (paper)

  17. On Distributions of Emission Sources and Speed-of-Sound in Proton-Proton (Proton-Antiproton Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available The revised (three-source Landau hydrodynamic model is used in this paper to study the (pseudorapidity distributions of charged particles produced in proton-proton and proton-antiproton collisions at high energies. The central source is assumed to contribute with a Gaussian function which covers the rapidity distribution region as wide as possible. The target and projectile sources are assumed to emit isotropically particles in their respective rest frames. The model calculations obtained with a Monte Carlo method are fitted to the experimental data over an energy range from 0.2 to 13 TeV. The values of the squared speed-of-sound parameter in different collisions are then extracted from the width of the rapidity distributions.

  18. Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements

    Science.gov (United States)

    Matthews, Thomas P.; Anastasio, Mark A.

    2017-12-01

    The initial pressure and speed of sound (SOS) distributions cannot both be stably recovered from photoacoustic computed tomography (PACT) measurements alone. Adjunct ultrasound computed tomography (USCT) measurements can be employed to estimate the SOS distribution. Under the conventional image reconstruction approach for combined PACT/USCT systems, the SOS is estimated from the USCT measurements alone and the initial pressure is estimated from the PACT measurements by use of the previously estimated SOS. This approach ignores the acoustic information in the PACT measurements and may require many USCT measurements to accurately reconstruct the SOS. In this work, a joint reconstruction method where the SOS and initial pressure distributions are simultaneously estimated from combined PACT/USCT measurements is proposed. This approach allows accurate estimation of both the initial pressure distribution and the SOS distribution while requiring few USCT measurements.

  19. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  20. Photoacoustically Measured Speeds of Sound and the Equation of State of HBO2: On Understanding Detonation with Boron Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zaug, J M; Bastea, S; Crowhurst, J; Armstrong, M; Fried, L; Teslich, N

    2010-03-09

    Elucidation of geodynamic, geochemical, and shock induced processes is limited by challenges to accurately determine molecular fluid equations of state (EOS). High pressure liquid state reactions of carbon species underlie physiochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. In this proceedings paper we introduce a versatile photoacoustic technique developed to measure accurate and precise speeds of sound (SoS) of high pressure molecular fluids and fluid mixtures. SoS of an intermediate boron oxide, HBO{sub 2} are measured up to 0.5 GPa along the 277 C isotherm. A polarized exponential-6 interatomic potential form, parameterized using our SoS data, enables EOS determinations and corresponding semi-empirical evaluations of >2000 C thermodynamic states including energy release from bororganic formulations. Our thermochemical model propitiously predicts boronated hydrocarbon shock Hugoniot results.

  1. Study of densities, viscosities, and speeds of sound of binary liquid mixtures of butan-1-ol with n-alkanes (C6, C8, and C10) at T = (298.15, 303.15, and 308.15) K

    International Nuclear Information System (INIS)

    Dubey, Gyan Prakash; Sharma, Monika; Dubey, Neelima

    2008-01-01

    The densities (ρ) and speeds of sound (u) have been measured over the whole composition range for (butan-1-ol with hexane, or octane, or decane) at T = (298.15, 303.15, and 308.15) K and atmospheric pressure along with the properties of the pure components. Viscosities (η) of these binary mixtures have also been measured over the entire composition range at T 298.15 K. Experimental values of density, viscosity and speed of sound have been used to evaluate excess properties viz. excess molar volumes (V E ), deviation in viscosity (Δη), deviation in speeds of sound (Δu), deviation in isentropic compressibility (Δκ s ) and excess Gibbs free energy of activation of viscous flow (ΔG *E ). The excess properties have been correlated using the Redlich-Kister polynomial equation. The sign and magnitude of these excess properties have been used to interpret the results in terms of intermolecular interactions and structural effects. The viscosity data have also been correlated by Grunberg and Nissan, Tamura-Kurata, and Hind correlation equations

  2. Excess molar volumes, viscosities, and speeds of sound of the ternary mixture {l_brace}1-heptanol (1)+trichloroethylene (2)+methylcyclohexane (3){r_brace} at T=298.15K

    Energy Technology Data Exchange (ETDEWEB)

    Iloukhani, Hossein [Department of Chemistry, Faculty of Science, University of Bu-Ali Sina, Hamedan 65174 (Iran, Islamic Republic of)]. E-mail: iloukhani@basu.ac.ir; Samiey, Babak [Department of Chemistry, Faculty of Science, University of Lorestan, Khoramabad (Iran, Islamic Republic of)

    2007-02-15

    Densities ({rho}), viscosities ({eta}), and speeds of sound (u) of the ternary mixture (1-heptanol+trichloroethylene+methylcyclohexane) and the involved binary mixtures (1-heptanol+trichloroethylene) (1-heptanol+methylcyclohexane), and (trichloroethylene+methylcyclohexane) at 298.15K were measured over the whole composition range. The data obtained are used to calculate excess molar volumes (V{sup E}), excess isobaric thermal expansivity ({alpha}{sup E}), viscosity deviations ({delta}{eta}), excess Gibbs free energies of activation of viscous flow ({delta}G{sup *E}), and excess isentropic compressibilities ({kappa}{sub S}{sup E}) of the binary and ternary mixtures. The data of the binary systems were fitted to the Redlich-Kister equation while the best correlation method for the ternary system was found using the Nagata equation. Viscosities, speeds of sound and isentropic compressibilities of the binary and ternary mixtures have been correlated by means of several empirical and semi-empirical equations. The best correlation method for viscosities of binary systems is found using the Iulan et al. equation and for the ternary system using the McAllister equation. The best correlation method for speeds of sound and isentropic compressibilities of the binary systems is found using the IMR and for the ternary system using the IMR and JR.

  3. PDF methods for combustion in high-speed turbulent flows

    Science.gov (United States)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  4. The influence of current speed and vegetation density on flow structure in two macrotidal eelgrass canopies

    Science.gov (United States)

    Lacy, Jessica R.; Wyllie-Echeverria, Sandy

    2011-01-01

    The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).

  5. Low-flow characteristics of streams in the Puget Sound region, Washington

    Science.gov (United States)

    Hidaka, F.T.

    1973-01-01

    Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by

  6. Densities, speeds of sound and viscosities of binary mixtures of tetrahydrofuran with 1-hexanol, 1-octanol and 1-decanol at T = (298.15 to 313.15) K

    International Nuclear Information System (INIS)

    Dubey, Gyan Prakash; Kumar, Rajiv

    2014-01-01

    Highlights: • Thermodynamic study for the binary liquid mixtures has been made. has been made. • Excess molar volumes, deviations of speed of sound and excess molar isentropic compressibilities were determined. • Discussion has been carried out on the basis of types of interactions between the liquid molecules based on derived properties. -- Abstract: Density ρ, and speed of sound u, have been measured for the binary mixtures of tetrahydrofuran (C 4 H 8 O) with 1-hexanol, (C 6 H 14 O), 1-octanol, (C 8 H 18 O) and 1-decanol, (C 10 H 22 O) over the entire composition range at T = (298.15, 303.15, 308.15 and 313.15) K and at atmospheric pressure while viscosity, η was measured at T = (298.15, 303.15, 308.15) K and at atmospheric pressure. The experimental density and speed of sound values were used to calculate the excess molar volumes VmE, deviations in speed of sound u D and excess molar isentropic compressibility K S,m E , while the viscosity data were used to compute excess Gibbs energy of activation of viscous flow, ΔG *E at 298.15, 303.15 and 308.15 K. The values of VmE, u D and K S,m E were fitted to the Redlich–Kister polynomial equation and the viscosity data have been correlated by using the equations of Grunberg–Nissan, Tamura–Kurata, Hind et al., Heric–Brewer (three parameter) and McAllister (four body interactions) and have been used to discuss the presence of significant interactions between cyclic ether and alcohols

  7. Aerodynamic study of sounding rocket flows using Chimera and patched multiblock meshes

    Directory of Open Access Journals (Sweden)

    João Alves de Oliveira Neto

    2011-01-01

    Full Text Available Aerodynamic flow simulations over a typical sounding rocket are presented in this paper. The work is inserted in the effort of developing computational tools necessary to simulate aerodynamic flows over configurations of interest for Instituto de Aeronáutica e Espaço of Departamento de Ciência e Tecnologia Aeroespacial. Sounding rocket configurations usually require fairly large fins and, quite frequently, have more than one set of fins. In order to be able to handle such configurations, the present paper presents a novel methodology which combines both Chimera and patched multiblock grids in the discretization of the computational domain. The flows of interest are modeled using the 3-D Euler equations and the work describes the details of discretization procedure, which uses a finite difference approach for structure, body-conforming, multiblock grids. The method is used to calculate the aerodynamics of a sounding rocket vehicle. The results indicate that the present approach can be a powerful aerodynamic analysis and design tool.

  8. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  9. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  10. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    Science.gov (United States)

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and : Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale : demonstration of ...

  11. The speed of sound in a gas–vapour bubbly liquid

    Science.gov (United States)

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  12. The speed of sound in a gas-vapour bubbly liquid.

    Science.gov (United States)

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  13. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    DEFF Research Database (Denmark)

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.

    2013-01-01

    This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC) that chan...

  14. assessment of traffic flow on enugu highways using speed density

    African Journals Online (AJOL)

    HOD

    Corresponding author, tel: +234 – 806 – 435 – 0200 ... construction, maintenance and optimization of the highways using the ...... Research Part A: Policy and Practice 29(4), 273-281. 1995. ... relationships: Quality and Theory of Traffic Flow.

  15. External mean flow influence on sound transmission through finite clamped double-wall sandwich panels

    Science.gov (United States)

    Liu, Yu; Catalan, Jean-Cédric

    2017-09-01

    This paper studies the influence of an external mean flow on the sound transmission through finite clamped double-wall sandwich panels lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials and various configurations of coupling the poroelastic layer to the facing plates are considered. The clamped boundary of finite panels are dealt with by the modal superposition theory and the weighted residual (Garlekin) method, leading to a matrix equation solution for the sound transmission loss (STL) through the structure. The theoretical model is validated against existing theories of infinite sandwich panels with and without an external flow. The numerical results of a single incident wave show that the external mean flow has significant effects on the STL which are coupled with the clamped boundary effect dominating in the low-frequency range. The external mean flow also influences considerably the limiting incidence angle of the panel system and the effect of the incidence angle on the STL. However, the influences of the azimuthal angle and the external flow orientation are negligible.

  16. Perceived enjoyment, concentration, intention, and speed violation behavior: Using flow theory and theory of planned behavior.

    Science.gov (United States)

    Atombo, Charles; Wu, Chaozhong; Zhang, Hui; Wemegah, Tina D

    2017-10-03

    Road accidents are an important public health concern, and speeding is a major contributor. Although flow theory (FLT) is a valid model for understanding behavior, currently the nature of the roles and interplay of FLT constructs within the theory of planned behavior (TPB) framework when attempting to explain the determinants of motivations for intention to speed and speeding behavior of car drivers is not yet known. The study aims to synthesize TPB and FLT in explaining drivers of advanced vehicles intentions to speed and speed violation behaviors and evaluate factors that are critical for explaining intention and behavior. The hypothesized model was validated using a sample collected from 354 fully licensed drivers of advanced vehicles, involving 278 males and 76 females on 2 occasions separated by a 3-month interval. During the first of the 2 occasions, participants completed questionnaire measures of TPB and FLT variables. Three months later, participants' speed violation behaviors were assessed. The study observed a significant positive relationship between the constructs. The proposed model accounted for 51 and 45% of the variance in intention to speed and speed violation behavior, respectively. The independent predictors of intention were enjoyment, attitude, and subjective norm. The independent predictors of speed violation behavior were enjoyment, concentration, intention, and perceived behavioral control. The findings suggest that safety interventions for preventing speed violation behaviors should be aimed at underlying beliefs influencing the speeding behaviors of drivers of advanced vehicles. Furthermore, perceived enjoyment is of equal importance to driver's intention, influencing speed violation behavior.

  17. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  18. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    Kang, Kuk Jeong; Ko, Sung Ho; Lee, Dong Soo

    2008-01-01

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  19. A study on impulsive sound attenuation for a high-pressure blast flow field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kuk Jeong [Agency for Defence Development, Daejeon (Korea, Republic of); Ko, Sung Ho; Lee, Dong Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-01-15

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  20. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  1. Particle deposition in low-speed, high-turbulence flows

    DEFF Research Database (Denmark)

    Reck, Mads; Larsen, Poul Scheel; Ullum, U.

    2002-01-01

    The experimental and numerical study considers the concentration of airborne particulate contaminants, such as spores of spoilage fungi, and their deposition on a surface, in a petri dish, and on a warm box-shaped product placed in a food-processing environment. Field measurements by standard...... field measurements. Particle deposition is shown to be associated with near-wall coherent structures. Flow reversal, simulated by impulsive start, is shown to give higher deposition rates than steady mean flows. Key word index: Spoilage fungi; spores; food processing plant; deposition flux; large eddy...

  2. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  3. Effect of variations in air speed on cross-flow cylinder frosting

    International Nuclear Information System (INIS)

    Monaghan, P.F.; Cassidy, S.F.; Oosthuizen, P.H.

    1990-01-01

    In this paper the effect of fluctuating air speed on frost growth and heat transfer to a cylinder in cross-flow is discussed. Frost-growth of up to 20 hours is simulated using an experimentally validated finite difference computer model. Graphical results are presented for frost mass, frost depth, frost surface temperature and heat transfer versus time under both steady and fluctuating air speed conditions. In general, it is found that a thinner, more dense frost layer develops under fluctuating air speed conditions giving improved heat transfer. This phenomenon may be explained by the increased frequency of frost surface thaw/freeze cycles when fluctuating air speed conditions prevail

  4. Experimental investigation of a blunt trailing edge flow field with application to sound generation

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Daniel W. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, B026 Hessert Laboratory, Notre Dame, IN (United States); Morris, Scott C. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, 109 Hessert Laboratory, Notre Dame, IN (United States)

    2006-11-15

    The unsteady lift generated by turbulence at the trailing edge of an airfoil is a source of radiated sound. The objective of the present research was to measure the velocity field in the near wake region of an asymmetric beveled trailing edge in order to determine the flow mechanisms responsible for the generation of trailing edge noise. Two component velocity measurements were acquired using particle image velocimetry. The chord Reynolds number was 1.9 x 10{sup 6}. The data show velocity field realizations that were typical of a wake flow containing an asymmetric periodic vortex shedding. A phase average decomposition of the velocity field with respect to this shedding process was utilized to separate the large scale turbulent motions that occurred at the vortex shedding frequency (i.e., those responsible for the production of tonal noise) from the smaller scale turbulent motions, which were interpreted to be responsible for the production of broadband sound. The small scale turbulence was found to be dependent on the phase of the vortex shedding process implying a dependence of the broadband sound generated by the trailing edge on the phase of the vortex shedding process. (orig.)

  5. Immersive Environments: Using Flow and Sound to Blur Inhabitant and Surroundings

    Science.gov (United States)

    Laverty, Luke

    Following in the footsteps of motif-reviving, aesthetically-focused Postmodern and deconstructivist architecture, purely computer-generated formalist contemporary architecture (i.e. blobitecture) has been reduced to vast, empty sculptural, and therefore, purely ocularcentric gestures for their own sake. Taking precedent over the deliberate relation to the people inhabiting them beyond scaleless visual stimulation, the forms become separated from and hostile toward their inhabitants; a boundary appears. This thesis calls for a reintroduction of human-centered design beyond Modern functionalism and ergonomics and Postmodern form and metaphor into architecture by exploring ecological psychology (specifically how one becomes attached to objects) and phenomenology (specifically sound) in an attempt to reach a contemporary human scale using the technology of today: the physiological mind. Psychologist Dr. Mihaly Csikszentmihalyi's concept of flow---when one becomes so mentally immersed within the current activity and immediate surroundings that the boundary between inhabitant and environment becomes transparent through a form of trance---is the embodiment of this thesis' goal, but it is limited to only specific moments throughout the day and typically studied without regard to the environment. Physiologically, the area within the brain---the medial prefrontal cortex---stimulated during flow experiences is also stimulated by the synthesis of sound, memory, and emotion. By exploiting sound (a sense not typically focused on within phenomenology) as a form of constant nuance within the everyday productive dissonance, the engagement and complete concentration on one's own interpretation of this sensory input affords flow experiences and, therefore, a blurred boundary with one's environment. This thesis aims to answer the question: How does the built environment embody flow? The above concept will be illustrated within a ubiquitous building type---the everyday housing tower

  6. Radiated sound and turbulent motions in a blunt trailing edge flow field

    International Nuclear Information System (INIS)

    Shannon, Daniel W.; Morris, Scott C.; Mueller, Thomas J.

    2006-01-01

    The dipole sound produced by edge scattering of pressure fluctuations at a trailing edge is most often an undesirable effect in turbomachinery and control surface flows. The ability to model the flow mechanisms associated with the production of trailing edge acoustics is important for the quiet design of such devices. The objective of the present research was to experimentally measure flow field and acoustic variables in order to develop an understanding of the mechanisms that generate trailing edge noise. The results of these experiments have provided insight into the causal relationships between the turbulent flow field, unsteady surface pressure, and radiated far field acoustics. Experimental methods used in this paper include particle image velocimetry (PIV), unsteady surface pressures, and far field acoustic pressures. The model investigated had an asymmetric 45 o beveled trailing edge. Reynolds numbers based on chord ranged from 1.2 x 10 6 to 1.9 x 10 6 . It was found that the small-scale turbulent motions in the vicinity of the trailing edge were modulated by a large scale von Karman wake instability. The broadband sound produced by these motions was also found to be dependant on the 'phase' of the wake instability

  7. Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows

    Science.gov (United States)

    2013-08-13

    October 2008 - December 2013 4. TITLE AND SUBTITLE Advancement and Application of Multi-Phase CFD Modeling to High Speed Supercavitating Flows...influence cavity hysteresis behavior. These observations are used to guide improved supercavitating -vehicle analyses including numerical predictions...experiments, and modeling 15. SUBJECT TERMS supercavitation , computational fluid dynamics, multiphase flow 16. SECURITY CLASSIFICATION OF: a

  8. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  9. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  10. Assessment of the transition strip effect in the transonic flow over the sounding rocket Sonda III

    International Nuclear Information System (INIS)

    Filho, J B P Falcão; Reis, M L C C; Francisco, C P F; Silva, L M

    2016-01-01

    Measurements of normalized pressure distribution are carried out over a 1:8 scale half-model of the Sonda III sounding rocket. The objective is to analyze the effect of the implementation of transition devices on the flow over the vehicle. Measurements show that the presence of the transition devices affect pressure distributions in different Mach numbers around the inter-stage region of Sonda III depending on its location and independently of the turbulent transition method employed. The study of these effects plays a significant role for future developments, since transition phenomena and the modification of the boundary layer behaviour due to the expansion can alter the load distributions and the turbulent structures of the flow. Furthermore, the experimental verification of such phenomena is crucial for the correct implementation of computational fluid dynamics calculations, as they might be able to capture the correct flow behaviour in these regions. (paper)

  11. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  12. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    International Nuclear Information System (INIS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Ji, Yuanyuan; Yu, Hang; Thakor, Nitish V; Li, Nan

    2015-01-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia. (letter)

  13. Honeybees' speed depends on dorsal as well as lateral, ventral and frontal optic flows.

    Directory of Open Access Journals (Sweden)

    Geoffrey Portelli

    Full Text Available Flying insects use the optic flow to navigate safely in unfamiliar environments, especially by adjusting their speed and their clearance from surrounding objects. It has not yet been established, however, which specific parts of the optical flow field insects use to control their speed. With a view to answering this question, freely flying honeybees were trained to fly along a specially designed tunnel including two successive tapering parts: the first part was tapered in the vertical plane and the second one, in the horizontal plane. The honeybees were found to adjust their speed on the basis of the optic flow they perceived not only in the lateral and ventral parts of their visual field, but also in the dorsal part. More specifically, the honeybees' speed varied monotonically, depending on the minimum cross-section of the tunnel, regardless of whether the narrowing occurred in the horizontal or vertical plane. The honeybees' speed decreased or increased whenever the minimum cross-section decreased or increased. In other words, the larger sum of the two opposite optic flows in the horizontal and vertical planes was kept practically constant thanks to the speed control performed by the honeybees upon encountering a narrowing of the tunnel. The previously described ALIS ("AutopiLot using an Insect-based vision System" model nicely matches the present behavioral findings. The ALIS model is based on a feedback control scheme that explains how honeybees may keep their speed proportional to the minimum local cross-section of a tunnel, based solely on optic flow processing, without any need for speedometers or rangefinders. The present behavioral findings suggest how flying insects may succeed in adjusting their speed in their complex foraging environments, while at the same time adjusting their distance not only from lateral and ventral objects but also from those located in their dorsal visual field.

  14. Gene-dietary fat interaction, bone mineral density and bone speed of sound in Children: a twin study in China

    Science.gov (United States)

    Huang, Tao; Liu, Huijuan; Zhao, Wei; Li, Ji; Wang, Youfa

    2015-01-01

    Scope Dietary fat correlates with bone mineral density (BMD). We tested the association between fat intake and BMD, and tested if fat intake modified the degree of genetic influence on BMD and bone speed of sound (SOS). Methods and results We included 622 twins aged 7–15 y from South China. Data on anthropometry, dietary intake, BMD, and SOS were collected. Quantitative genetic analyses of structural equation models were fit using the Mx statistical package. The within-pair intra-class correlations (ICC) for BMD in DZ twins were nearly half of that for MZ twins (ICC=0.39 vs 0.70). The heritability of BMD and SOS were 71% and 79%. Phenotypic correlation between fat intake and SOS was significant (r=−0.19, p=0.04). SOS was negatively correlated with fat intake in boys (r=−0.11, p=0.05), but not in girls. Full Cholesky decomposition models showed SOS has a strong genetic correlation with fat intake (rA =−0.88, 95% CI=−0.94, 0.01); the environmental correlation between fat intake and SOS was weak (rE =−0.04, 95% CI=−0.20, 0.13). Fat intake modified the additive genetic effects on BMD. Conclusion Genetic factors explained 71% and 79% of individual variance in BMD and SOS, respectively. Low fat intake counteracts genetic predisposition to low BMD. PMID:25546604

  15. Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites

    International Nuclear Information System (INIS)

    Fontanarosa, Davide; Meer, Skadi van der; Bloemen-van Gurp, Esther; Stroian, Gabriela; Verhaegen, Frank

    2012-01-01

    Purpose: The purpose of this work is to assess the magnitude of speed of sound (SOS) aberrations in three-dimensional ultrasound (US) imaging systems in image guided radiotherapy. The discrepancy between the fixed SOS value of 1540 m/s assumed by US systems in human soft tissues and its actual nonhomogeneous distribution in patients produces small but systematic errors of up to a few millimeters in the positions of scanned structures. Methods: A correction, provided by a previously published density-based algorithm, was applied to a set of five prostate, five liver, and five breast cancer patients. The shifts of the centroids of target structures and the change in shape were evaluated. Results: After the correction the prostate cases showed shifts up to 3.6 mm toward the US probe, which may explain largely the reported positioning discrepancies in the literature on US systems versus other imaging modalities. Liver cases showed the largest changes in volume of the organ, up to almost 9%, and shifts of the centroids up to more than 6 mm either away or toward the US probe. Breast images showed systematic small shifts of the centroids toward the US probe with a maximum magnitude of 1.3 mm. Conclusions: The applied correction in prostate and liver cancer patients shows positioning errors of several mm due to SOS aberration; the errors are smaller in breast cancer cases, but possibly becoming more important when breast tissue thickness increases.

  16. Sound speed and thermal property measurements of inert materials: laser spectroscopy and the diamond-anvil cell

    Energy Technology Data Exchange (ETDEWEB)

    Zaug, J.M.

    1997-07-01

    An indispensable companion to dynamical physics experimentation, static high-pressure diamond-anvil cell research continues to evolve, with laser diagnostic, as an accurate and versatile experimental deep planetary properties have bootstrapped each other in a process that has produced even higher pressures; consistently improved calibrations of temperature and pressure under static and dynamic conditions; and unprecedented data and understanding of materials, their elasticity, equations of state (EOS), and transport properties under extreme conditions. A collection of recent pressure and/or temperature dependent acoustic and thermal measurements and deduced mechanical properties and EOS data are summarized for a wide range of materials including H2, H2O, H2S, D2S, CO2, CH4, N2O, CH3OH,, SiO2, synthetic lubricants, PMMA, single crystal silicates, and ceramic superconductors. Room P&T sound speed measurements are presented for the first time on single crystals of beta-HMX. New high-pressure and temperature diamond cell designed and pressure calibrant materials are reviewed.

  17. Measured anisotropic air flow resistivity and sound attenuation of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    Department of Mechanical Engineering, Technical University of Denmark, Bygning 358, DK 2800 Lyngby, Denmark The air flow resistivity of glass wool has been measured in different directions. The glass wool was delivered from the manufacturer as slabs measuring 100×600×900 mm3, where the surface 600...... 7.75 kPa s m**2. A formula for prediction of resistivity for other densities is given. By comparing measured values of sound attenuation with results calculated from resistivity data, it is demonstrated that the measured attenuation can be predicted in a simple manner. ©2002 Acoustical Society...

  18. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  19. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    Science.gov (United States)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  20. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    Science.gov (United States)

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  1. Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors

    OpenAIRE

    Kim, Woohyun; Braun, James E.

    2012-01-01

    The use of variable-speed compressors in heat pumps and air conditioners has increased in recent years in order to improve comfort and energy efficiency. At the same time, there is a trend towards embedding more sensors in this type of equipment to facilitate real-time energy monitoring and diagnostics. Although compressor mass flow rate and power consumption are useful indices for performance monitoring and diagnostics, they are expensive to measure. The virtual variable-speed compressor sen...

  2. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  3. Loss reduction in axial-flow compressors through low-speed model testing

    Science.gov (United States)

    Wisler, D. C.

    1984-01-01

    A systematic procedure for reducing losses in axial-flow compressors is presented. In this procedure, a large, low-speed, aerodynamic model of a high-speed core compressor is designed and fabricated based on aerodynamic similarity principles. This model is then tested at low speed where high-loss regions associated with three-dimensional endwall boundary layers flow separation, leakage, and secondary flows can be located, detailed measurements made, and loss mechanisms determined with much greater accuracy and much lower cost and risk than is possible in small, high-speed compressors. Design modifications are made by using custom-tailored airfoils and vector diagrams, airfoil endbends, and modified wall geometries in the high-loss regions. The design improvements resulting in reduced loss or increased stall margin are then scaled to high speed. This paper describes the procedure and presents experimental results to show that in some cases endwall loss has been reduced by as much as 10 percent, flow separation has been reduced or eliminated, and stall margin has been substantially improved by using these techniques.

  4. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  5. A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts

    NARCIS (Netherlands)

    Rienstra, S.W.; Eversman, W.

    2001-01-01

    An explicit, analytical, multiple-scales solution for modal sound transmission through slowly varying ducts with mean flow and acoustic lining is tested against a numerical finite-element solution solving the same potential flow equations. The test geometry taken is representative of a high-bypass

  6. The transmission spectrum of sound through a phononic crystal subjected to liquid flow

    DEFF Research Database (Denmark)

    Declercq, Nico F.; Chehami, Lynda; Moiseyenko, Rayisa P.

    2018-01-01

    paths of waves. A similar behavior of acoustic waves in phononic crystals (PCs) has been observed. Additionally, ultrasonic waves in a periodic structure are used for sensing purposes, such as acoustic waveguides and acoustic lenses, to control, direct, and manipulate sound.2,3 The reported experiments...... the cylinders acts as the crystal matrix. Assuming a sound speed in water of 1480 m/s, incident ultrasound with a wavelength corresponding to the lattice constant would have a frequency on the order of 1 MHz. Steel (rods) and water (host medium) were chosen here as the constituent materials of the crystal due......-transmission experiments using an emitting and a receiving transducer, namely, two Valpey-Fisher IS0104GP transducers with a nominal center frequency of and a beamwidth of approximately 10 mm. Two types of experiments have been performed on the crystal: through-transmission measurements in the ΓΓX direction and in the ΓΓM...

  7. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  8. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2013-01-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  9. Positivity-preserving space-time CE/SE scheme for high speed flows

    KAUST Repository

    Shen, Hua

    2017-03-02

    We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.

  10. Positivity-preserving space-time CE/SE scheme for high speed flows

    KAUST Repository

    Shen, Hua; Parsani, Matteo

    2017-01-01

    We develop a space-time conservation element and solution element (CE/SE) scheme using a simple slope limiter to preserve the positivity of the density and pressure in computations of inviscid and viscous high-speed flows. In general, the limiter works with all existing CE/SE schemes. Here, we test the limiter on a central Courant number insensitive (CNI) CE/SE scheme implemented on hybrid unstructured meshes. Numerical examples show that the proposed limiter preserves the positivity of the density and pressure without disrupting the conservation law; it also improves robustness without losing accuracy in solving high-speed flows.

  11. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Guianvarc' h, Cecile; Pitre, Laurent [Laboratoire Commun de Metrologie LNE/Cnam, 61 rue du Landy, 93210 La Plaine Saint Denis (France); Gavioso, Roberto M.; Benedetto, Giuliana [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin (Italy); Bruneau, Michel [Laboratoire d' Acoustique de l' Universite du Maine UMR CNRS 6613, av. Olivier Messiaen, 72085 Le Mans Cedex 9 (France)

    2009-07-15

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  12. Standard practice for construction of a stepped block and its use to estimate errors produced by speed-of-sound measurement systems for use on solids

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice provides a means for evaluating both systematic and random errors for ultrasonic speed-of-sound measurement systems which are used for evaluating material characteristics associated with residual stress and which may also be used for nondestructive measurements of the dynamic elastic moduli of materials. Important features and construction details of a reference block crucial to these error evaluations are described. This practice can be used whenever the precision and bias of sound speed values are in question. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. The influence of air flow speed on fire propagation in object

    Directory of Open Access Journals (Sweden)

    Jevtić Radoje

    2015-01-01

    Full Text Available Fire presents the process of the uncontrolled combustion that makes material damage and endangers human lives. It is important to know the factors that fire depends on for success projecting and realization of fire protection systems. One of such factors is different air flow that could be presented as wind, draft and the like. The simulation of different air flow speeds and its influences on fire propagation in object were analyzed in this paper.

  14. Application of PIV to the Measurement of High Speed Jet Flows

    Science.gov (United States)

    Lourenco, L.

    1999-01-01

    The Particle Image Velocimetry, PIV, has been implemented for the investigation of high-speed jet flows at the NASA Langley Research Center. In this approach the velocity (displacement) is found as the location of a peak in the correlation map of particle images acquired in quick succession. In the study, the technique for the correct seeding of the flow field were developed and implemented and the operational parameters influencing the accuracy of the measurement have been optimized.

  15. SORTING CAPABILITIES OF CASTINGS FROM NODULAR AND GRAY IRON BY THE STRUCTURE BY THE RESULT OF THE MEASUREMENT OF THE MAGNETIC PARAMETERS AND THE SPEED OF SOUND

    Directory of Open Access Journals (Sweden)

    S. G. Sandomirskiy

    2013-01-01

    Full Text Available The results of the analysis of the influence of changes in the structure of the metal substrate and form of graphite inclusions in cast iron on the magnetic coercive sensitive parameter and the speed of sound are given. The efficiency of shared use of the results of magnetic and ultrasonic measurements to control the shape of inclusions in ductile iron and pearlite content in its metal matrix is shown.

  16. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    International Nuclear Information System (INIS)

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  17. A novel application of Recursive Equation Method for determining thermodynamic properties of single phase fluids from density and speed-of-sound measurements

    International Nuclear Information System (INIS)

    Lago, S.; Giuliano Albo, P.A.

    2013-01-01

    Highlights: ► A novel method for calculating the isobaric specific heat capacity is presented. ► Heat capacity (C p ) was determined only by speed-of-sound and density measurements. ► (C p ) temperature dependence has been related to speed-of-sound by a new expression. ► Heat capacity for water, nonane, undecane, and rapeseed oil methyl ester are obtained. -- Abstract: The determination of thermal quantities from mechanical properties is still a challenge in the thermodynamic field. In this work, the authors suggest a preliminary numerical calculation which allows to determine the constant pressure specific heat capacity, starting from density and speed-of-sound experimental values, as input data. This method is a variant of the well characterized Recursive Equation Method (REM) [1] and permits to develop empirical equations of state for single phase fluids. In particular, the isobaric specific heat capacity has been obtained, in a wide range of temperatures and pressures, for pure water, n-nonane, n-undecane, and rapeseed oil methyl ester. The results have been compared with those available in the literature, when it was possible. Moreover, the typical uncertainty of heat capacity has been estimated to be in the order of 1.5%; however it has been shown that it can be improved when proper distributions of the experimental points are available

  18. Flipping the analytical coin : closing the information flow loop in high speed (real time) analysis

    NARCIS (Netherlands)

    K.E. Shahroudi

    1997-01-01

    textabstractAnalysis modules tend to be set up as one way flow of information, i.e a clear distinction between cause and effect or input and output. However, as the speed of analysis approaches real time (or faster than movie rate), it becomes increasingly difficult for an external user to

  19. Characterization of Diamond Nanoparticles by High-Speed Micro-Thermal Field-Flow Fractionation

    Czech Academy of Sciences Publication Activity Database

    Janča, Josef

    2015-01-01

    Roč. 20, č. 8 (2015), s. 671-680 ISSN 1023-666X R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : diamond nanoparticles * high-speed microfluidic separation * micro-thermal field-flow fractionation, * article size distribution Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.515, year: 2015

  20. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    Science.gov (United States)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  1. Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution

    Directory of Open Access Journals (Sweden)

    Weitiao Wu

    2013-01-01

    Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.

  2. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  3. Discussion of various flow calculation methods in high-speed centrifuges

    International Nuclear Information System (INIS)

    Louvet, P.; Cortet, C.

    1979-01-01

    The flow in high-speed centrifuges for the separation of uranium isotopes has been studied in the frame of linearized theory for long years. Three different methods have been derived for viscous compressible flow with small Ekman numbers and high Mach numbers: - numerical solution of flow equation by finite element method and Gaussian elimination (Centaure Code), - boundary layer theory using matched asymptotic expansions, - the so called eigenfunction method slightly modified. The mathematical assumptions, the easiness and the accuracy of the computations are compared. Numerical applications are performed successively for thermal countercurrent centrifuges with or without injections

  4. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    Science.gov (United States)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  5. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  6. On-Chip Enucleation of Bovine Oocytes using Microrobot-Assisted Flow-Speed Control

    Directory of Open Access Journals (Sweden)

    Akihiko Ichikawa

    2013-06-01

    Full Text Available In this study, we developed a microfluidic chip with a magnetically driven microrobot for oocyte enucleation. A microfluidic system was specially designed for enucleation, and the microrobot actively controls the local flow-speed distribution in the microfluidic chip. The microrobot can adjust fluid resistances in a channel and can open or close the channel to control the flow distribution. Analytical modeling was conducted to control the fluid speed distribution using the microrobot, and the model was experimentally validated. The novelties of the developed microfluidic system are as follows: (1 the cutting speed improved significantly owing to the local fluid flow control; (2 the cutting volume of the oocyte can be adjusted so that the oocyte undergoes less damage; and (3 the nucleus can be removed properly using the combination of a microrobot and hydrodynamic forces. Using this device, we achieved a minimally invasive enucleation process. The average enucleation time was 2.5 s and the average removal volume ratio was 20%. The proposed new system has the advantages of better operation speed, greater cutting precision, and potential for repeatable enucleation.

  7. Flow and free running speed characterization of dental air turbine handpieces.

    Science.gov (United States)

    Dyson, J E; Darvell, B W

    1999-09-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.

  8. Development and numerical analysis of low specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Li, H F; Huo, Y W; Pan, Z B; Zhou, W C; He, M H

    2012-01-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  9. Development and numerical analysis of low specific speed mixed-flow pump

    Science.gov (United States)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  10. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    Directory of Open Access Journals (Sweden)

    Stefano Salati

    2010-09-01

    Full Text Available Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field.

  11. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Mads M.; Larsen, Torben J.; Madsen, Helge Aa

    2017-01-01

    In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can...... be performed from a few hours or days of measurements. In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup...... anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation...

  12. Speeds of Sound, Isentropic Compressibilities and Refractive Indices for Some Binary Mixtures of Nitromethane with Chloroalkane at Temperatures from 298.15 to 318.15 K. Comparison with Theories

    Czech Academy of Sciences Publication Activity Database

    Dragoescu, D.; Gheorghe, D.; Bendová, Magdalena; Wagner, Zdeněk

    2015-01-01

    Roč. 385, JAN 15 (2015), s. 105-109 ISSN 0378-3812 Institutional support: RVO:67985858 Keywords : speeds of sound * isentropic comprehenssibilities * refractive indices Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.846, year: 2015

  13. Water temperature, salinity, and sound speed data collected by CTD and XBT from the R/V Falkor in the NW Hawaiian Islands 2014-03 to 2014-06 (NCEI Accession 0137765)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical parameters (water temperature, salinity, and sound speed) were measured as high-resolution profiles at select locations and times using CTD and XBT...

  14. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    NARCIS (Netherlands)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-01-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular

  15. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    Michael, Clive; Howard, John

    2000-01-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  16. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Clive; Howard, John [Australian National Univ., Plasma Research Laboratory, Canberra (Australia)

    2000-03-01

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  17. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    OpenAIRE

    Krakov, M. S.; Nikiforov, I. V.

    2012-01-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depen...

  18. High speed photography for investigating kiloampere discharges in supersonic air flows

    International Nuclear Information System (INIS)

    Jones, G.R.; Strachan, D.

    1975-01-01

    Examples of the use of conventional high speed photographic techniques are given for obtaining information about the behaviour of high current arc discharges in different gas flow fields. The photographic records yield information about the extent of both the luminous arc core and the surrounding heated volume of gas. A knowledge of these parameters leads to a better understanding of arc discharges which occur in gas blast circuit breakers. (author)

  19. Energy transformation, transfer, and release dynamics in high speed turbulent flows

    Science.gov (United States)

    2017-03-01

    Secondly, a new high -order (4 th -order) convective flux formulation was developed that uses the tabulated information, yet produces a fully consistent...Klippenstein 2012 Comprehensive H2/O2 Kinetic Model for High - Pressure Combustion. Int. J. Chem. Kinetics 44:444-474. Cabot, W.H., A.W. Cook, P.L. Miller, D.E...AFRL-AFOSR-VA-TR-2017-0054 Energy Transformation, Transfer, and Release Dynamics in High -Speed Turbulent Flows Paul Dimotakis CALIFORNIA INSTITUTE

  20. Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method

    Directory of Open Access Journals (Sweden)

    Vojtíšek Michal

    2014-10-01

    Full Text Available Measurement of real driving emissions (RDE from internal combustion engines under real-world operation using portable, onboard monitoring systems (PEMS is becoming an increasingly important tool aiding the assessment of the effects of new fuels and technologies on environment and human health. The knowledge of exhaust flow is one of the prerequisites for successful RDE measurement with PEMS. One of the simplest approaches for estimating the exhaust flow from virtually any engine is its computation from the intake air flow, which is calculated from measured engine rpm and intake manifold charge pressure and temperature using a generic speed-density algorithm, applicable to most contemporary four-cycle engines. In this work, a generic speed-density algorithm was compared against several reference methods on representative European production engines - a gasoline port-injected automobile engine, two turbocharged diesel automobile engines, and a heavy-duty turbocharged diesel engine. The overall results suggest that the uncertainty of the generic speed-density method is on the order of 10% throughout most of the engine operating range, but increasing to tens of percent where high-volume exhaust gas recirculation is used. For non-EGR engines, such uncertainty is acceptable for many simpler and screening measurements, and may be, where desired, reduced by engine-specific calibration.

  1. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the

  2. Experimental densities, refractive indices, and speeds of sound of 12 binary mixtures containing alkanes and aromatic compounds at T = 313.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gomez, Elena; Gonzalez, Begona; Dominguez, Angeles

    2009-01-01

    Densities, speeds of sound, and refractive indices of 12 binary systems of alkanes (hexane, heptane, octane, and nonane) with aromatics (benzene, or toluene, or ethylbenzene) at T = 313.15 K and at atmospheric pressure were determined over the whole composition range, and are presented in this paper. From the experimental results, the derived and excess properties (isentropic compressibility, excess molar volumes, and excess molar isentropic compressibility) at T = 313.15 K were calculated and satisfactorily fitted to the Redlich-Kister equation.

  3. Excess volumes and speeds of sound of mixtures of 1,2-dibromoethane with chlorinated ethanes and ethenes at 303.15 K

    International Nuclear Information System (INIS)

    Renuka Kumari, S.; Venkateswarlu, P.; Prabhakar, G.

    2005-01-01

    Excess volumes V E , speeds of sound u and isentropic compressibilities K s at 303.15 K are reported for five binary mixtures containing 1,2-dibromoethane as common component and 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, trichloroethene and tetrachlorothene as non-common component. The excess volume data suggests that increase in the number of chlorine atoms on ethane decreases V E , while when on ethene increases the V E . Further, the data suggest that the molecular interactions are stronger in + chlorinated ethanes than in + chlorinated ethenes

  4. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    Science.gov (United States)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  5. Free flow wind speed from a blade-mounted flow sensor

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben Juul; Aagaard Madsen, Helge

    2018-01-01

    This paper presents a method for obtaining the free-inflow velocities from a 3-D flow sensor mounted on the blade of a wind turbine. From its position on the rotating blade, e.g. one-third from the tip, a blade-mounted flow sensor (BMFS) is able to provide valuable information about the turbulent...... sheared inflow in different regions of the rotor. At the rotor, however, the inflow is affected by the wind turbine, and in most cases the wind of interest is the inflow that the wind turbine is exposed to, i.e. the free-inflow velocities. The current method applies a combination of aerodynamic models...... and procedures to estimate the induced velocities, i.e. the disturbance of the flow field caused by the wind turbine. These velocities are subtracted from the flow velocities measured by the BMFS to obtain the free-inflow velocities. Aeroelastic codes, like HAWC2, typically use a similar approach to calculate...

  6. Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays

    Science.gov (United States)

    Gorny, Lee James

    Flow-excited, tunable quarter-wavelength resonators can be integrated into the shrouds of ducted subsonic axial fans. This study explores their effectiveness in reducing propagations of tonal noise by means of acoustic wave cancellation. Resonators are a non-intrusive method of generating a secondary sound field near the plane of a rotor. As they can be strategically tuned to reduce radiated noise at the blade passage frequency (BPF) and its harmonics, resonators can be useful for a variety of applications to quiet existing and future turbomachinery. Experiments have demonstrated that a single quarter wave resonator is effective in reducing unidirectional plane wave propagations for long wavelength ducted applications while an array is effective for shorter wavelength or un-ducted facilities where shrouded fans are used. Testing conducted at Center for Acoustics and Vibrations (CAV) at the Pennsylvania State University the Deutsches Zentrum fur Luft und Raumfahrt (DLR) in Berlin, Germany demonstrated that resonator arrays were effective in attenuating shorter wavelength plane-wave and higher order modal propagations of blade tone noise. A chiller fan enclosure, constructed in the CAV laboratory emulated an industrial chiller in its operation. Using this facility, resonators were observed to attenuate blade tone noise from a non-ideal ducted geometry. The approaches used in this study evolved from Helmholtz resonators to conventional quarter wave tubes, to mouth tunable resonators, and finally to back-wall tunable resonators. These developments in tuning allowed for independent control of a resonator's magnitude and phase of the secondary sound field produced by the resonators. It was demonstrated that the use of two tunable resonator chambers oriented axially on either side of the blade region enables a dipole-like secondary sound field to be passively generated and bi-directional attenuations of plane wave noise to be achieved. Tonal attenuations of 28 dB were

  7. A quasi-one-dimensional theory of sound propagation in lined ducts with mean flow

    Science.gov (United States)

    Dokumaci, Erkan

    2018-04-01

    Sound propagation in ducts with locally-reacting liners has received the attention of many authors proposing two- and three-dimensional solutions of the convected wave equation and of the Pridmore-Brown equation. One-dimensional lined duct models appear to have received less attention. The present paper proposes a quasi-one-dimensional theory for lined uniform ducts with parallel sheared mean flow. The basic assumption of the theory is that the effects of refraction and wall compliance on the fundamental mode remain within ranges in which the acoustic fluctuations are essentially uniform over a duct section. This restricts the model to subsonic low Mach numbers and Helmholtz numbers of less than about unity. The axial propagation constants and the wave transfer matrix of the duct are given by simple explicit expressions and can be applied with no-slip, full-slip or partial slip boundary conditions. The limitations of the theory are discussed and its predictions are compared with the fundamental mode solutions of the convected wave equation, the Pridmore-Brown equation and measurements where available.

  8. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding

    Energy Technology Data Exchange (ETDEWEB)

    Dowdeswell, J A; Evans, S [Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER (United Kingdom)

    2004-10-01

    Radio-echo sounding (RES), utilizing a variety of radio frequencies, was developed to allow glaciologists to measure the thickness of ice sheets and glaciers. We review the nature of electromagnetic wave propagation in ice and snow, including the permittivity of ice, signal attenuation and volume scattering, along with reflection from rough and specular surfaces. The variety of instruments used in RES of polar ice sheets and temperate glaciers is discussed. The applications and insights that a knowledge of ice thickness, and the wider nature of the form and flow of ice sheets, provides are also considered. The thickest ice measured is 4.7 km in East Antarctica. The morphology of the Antarctic and Greenland ice sheets, and many of the smaller ice caps and glaciers of the polar regions, has been investigated using RES. These findings are being used in three-dimensional numerical models of the response of the cryosphere to environmental change. In addition, the distribution and character of internal and basal reflectors within ice sheets contains information on, for example, ice-sheet layering and its chrono-stratigraphic significance, and has enabled the discovery and investigation of large lakes beneath the Antarctic Ice Sheet. Today, RES from ground-based and airborne platforms remains the most effective tool for measuring ice thickness and internal character.

  9. A matrix-free implicit treatment for all speed flows on unstructured grids

    International Nuclear Information System (INIS)

    Kloczko, Th.

    2006-03-01

    The aim of this research work is the development of an efficient implicit scheme for computing compressible and low-speed flows on unstructured meshes. The first part is devoted to the review and analysis of some standard block-implicit treatments for the two-dimensional Euler and Navier-Stokes equations with a view to identify the best candidate for a fair comparison with the matrix-free treatment. The second part forms the main original contribution of this research work. It describes and analyses a matrix-free treatment that can be applied to any type of flow (inviscid/viscous, low Mach/highly compressible, steady/unsteady). The third part deals with the implementation of this treatment within the CAST3M code, and the demonstration of its advantages over existing techniques for computing applications of interest for the CEA: low-Mach number steady and unsteady flows in a Tee junction for example

  10. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    Energy Technology Data Exchange (ETDEWEB)

    Perelomova, Anna [Gdansk University of Technology, Faculty of Applied Physics and Mathematics, ul. Narutowicza 11/12, 80-952 Gdansk (Poland)]. E-mail: anpe@mif.pg.gda.pl

    2006-08-28

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,{rho}) and caloric e(p,{rho}) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  11. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    Science.gov (United States)

    Perelomova, Anna

    2006-08-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed.

  12. Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound

    International Nuclear Information System (INIS)

    Perelomova, Anna

    2006-01-01

    The equation of energy balance is subdivided into two dynamics equations, one describing evolution of the dominative sound, and the second one responsible for acoustic heating. The first one is the famous KZK equation, and the second one is a novel equation governing acoustic heating. The novel dynamic equation considers both periodic and non-periodic sound. Quasi-plane geometry of flow is supposed. Subdividing is provided on the base of specific links of every mode. Media with arbitrary thermic T(p,ρ) and caloric e(p,ρ) equations of state are considered. Individual roles of thermal conductivity and viscosity in the heating induced by aperiodic sound in the ideal gases and media different from ideal gases are discussed

  13. Volumetric studies to examine the interactions of imidazolium based ionic liquids with water by means of density and speed of sound measurements

    International Nuclear Information System (INIS)

    Lal, Bhajan; Sahin, Melike; Ayranci, Erol

    2012-01-01

    Highlights: ► Imidazolium based ionic liquids in water were investigated thermodynamically. ► Densities and speeds of sound were measured for these systems. ► Apparent molar volumes and isentropic compressions were calculated. ► Apparent molar isobaric expansions at infinite dilution were derived. ► The results were interpreted in terms of ionic liquid–water interactions. - Abstract: Densities and speeds of sound for aqueous solutions of ionic liquids having 1-butyl-3-methylimidazolium as cation and chloride, bromide, iodide, acetate, tetrafluoroborate, and trifluoromethanesulfonate as anions were accurately measured at various concentrations and temperatures. The data were used in evaluating thermodynamic properties as apparent molar volumes and apparent molar isentropic compressions. Infinite dilution values of these properties were determined using appropriate extrapolation procedures utilizing Debye–Hückel limiting law for electrolyte solutions. Apparent molar isobaric expansions at infinite dilutions were also evaluated from the temperature dependence of apparent molar volumes. The results were interpreted in terms of ionic liquid–water interactions.

  14. Healing and relaxation in flows of helium II. Part II. First, second, and fourth sound

    International Nuclear Information System (INIS)

    Hills, R.N.; Roberts, P.H.

    1978-01-01

    In Part I of this series, a theory of helium II incorporating the effects of quantum healing and relaxation was developed. In this paper, the propagation of first, second, and fourth sound is discussed. Particular attention is paid to sound propagation in the vicinity of the lambda point where the effects of relaxation and quantum healing become important

  15. Numerical analysis of high-speed liquid lithium free-surface flow

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Heinzel, Volker; Stieglitz, Robert

    2012-01-01

    Highlights: ► The free surface behavior of a high speed lithium jet is investigated by means of a CFD LES analysis. ► The study is aiming to validate adequate LES technique. ► The Osaka University experiments with liquid lithium jet have been simulated. ► Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. ► Calculation results show a good qualitative and a quantitative agreement with the experimental data. - Abstract: The free-surface stability of the target of the International Fusion Material Irradiation Facility (IFMIF) is one of the crucial issues, since the spatio-temporal behavior of the free-surface determines the neutron flux to be generated. This article investigates the relation between the evolution of a wall boundary layer in a convergent nozzle and the free surface shape of a high speed lithium jet by means of a CFD LES analysis using the Osaka University experiments. The study is aiming to validate adequate LES technique to analyze the individual flow phenomena observed. Four cases with jet flow velocities of 4, 9, 13 and 15 m/s are analyzed. First analyses of calculation results show that the simulation exhibits a good qualitative and a quantitative agreement with the experimental data, which allows in the future a more realistic prediction of the IFMIF target behavior.

  16. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    Science.gov (United States)

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  17. Supercavitating flow around high-speed underwater projectile near free surface induced by air entrainment

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-03-01

    Full Text Available Cavitating flow near free surface is a complicated issue and may provide new inspiration on high-speed surface cruising. This study observes stable supercavitating flow as a new phenomenon in a launch experiment of axisymmetric projectile when the upper side of the projectile coincides with the free surface. A numerical approach is established using large eddy-simulation and volume-of-fluid methods, and good agreements are achieved between numerical and experimental results. Supercavity formation mechanism is revealed by analyzing the experiment photographs and the iso-surface of 90% water volume fraction in numerical results. The entrainment of a large amount of air into the cavity can cause the pressure inside the cavity to similarly increase with the pressure outside the cavity, which makes the actual cavitation number close to zero and is similar to supercavitation. Cases with various headforms of the projectile and cavitation numbers on the cavitating flow, as well as the drag reduction effects are further examined. Results indicate that the present strategy near the free surface could possibly be a new effective approach for high-speed cruising after vigorous design optimization in the future.

  18. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material

    Science.gov (United States)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2014-03-01

    Sound transmission through a system of double shells, lined with poroelastic material in the presence of external mean flow, is studied. The porous material is modeled as an equivalent fluid because shear wave contributions are known to be insignificant. This is achieved by accounting for the energetically most dominant wave types in the calculations. The transmission characteristics of the sandwich construction are presented for different incidence angles and Mach numbers over a wide frequency range. It is noted that the transmission loss exhibits three dips on the frequency axis as opposed to flat panels where there are only two such frequencies—results are discussed in the light of these observations. Flow is shown to decrease the transmission loss below the ring frequency, but increase this above the ring frequency due to the negative stiffness and the damping effect added by the flow. In the absence of external mean flow, porous material provides superior insulation for most part of the frequency band of interest. However, in the presence of external flow, this is true only below the ring frequency—above this frequency, the presence of air gap in sandwich constructions is the dominant factor that determines the acoustic performance. In the absence of external flow, an air gap always improves sound insulation.

  19. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  20. A new phase coding method using a slice selection gradient for high speed flow velocity meaurements in NMR tomography

    International Nuclear Information System (INIS)

    Oh, C.H.; Cho, Z.H.; California Univ., Irvine

    1986-01-01

    A new phase coding method using a selection gradient for high speed NMR flow velocity measurements is introduced and discussed. To establish a phase-velocity relationship of flow under the slice selection gradient and spin-echo RF pulse, the Bloch equation was numerically solved under the assumption that only one directional flow exists, i.e. in the direction of slice selection. Details of the numerical solution of the Bloch equation and techniques related to the numerical computations are also given. Finally, using the numerical calculation, high speed flow velocity measurement was attempted and found to be in good agreement with other complementary controlled measurements. (author)

  1. Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control

    International Nuclear Information System (INIS)

    Kim, J.-H.; Nishihara, M.; Adamovich, I.V.; Samimy, M.; Gorbatov, S.V.; Pliavaka, F.V.

    2010-01-01

    Recently developed localized arc filament plasma actuators (LAFPAs) have shown tremendous control authority in high-speed and high Reynolds number flow for mixing enhancement and noise mitigation. Previously, these actuators were powered by a high-voltage pulsed DC plasma generator with low energy coupling efficiency of 5-10%. In the present work, a new custom-designed 8-channel pulsed radio frequency (RF) plasma generator has been developed to power up to 8 plasma actuators operated over a wide range of forcing frequencies (up to 50 kHz) and duty cycles (1-50%), and at high energy coupling efficiency (up to 80-85%). This reduces input electrical power requirements by approximately an order of magnitude, down to 12 W per actuator operating at 10% duty cycle. The new pulsed RF plasma generator is scalable to a system with a large number of channels. Performance of pulsed RF plasma actuators used for flow control was studied in a Mach 0.9 circular jet with a Reynolds number of about 623,000 and compared with that of pulsed DC actuators. Eight actuators were distributed uniformly on the perimeter of a 2.54-cm diameter circular nozzle extension. Both types of actuators coupled approximately the same amount of power to the flow, but with drastically different electrical inputs to the power supplies. Particle image velocimetry measurements showed that jet centerline Mach number decay produced by DC and RF actuators operating at the same forcing frequencies and duty cycles is very similar. At a forcing Strouhal number near 0.3, close to the jet column instability frequency, well-organized periodic structures, with similar patterns and dimensions, were generated in the jets forced by both DC and RF actuators. Far-field acoustic measurements demonstrated similar trends in the overall sound pressure level (OASPL) change produced by both types of actuators, resulting in OASPL reduction up to 1.2-1.5 dB in both cases. We conclude that pulsed RF actuators demonstrate flow

  2. Design and performance of an experiment for the investigation of open capillary channel flows. Sounding rocket experiment TEXUS-41

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Uwe; Dreyer, Michael E. [University of Bremen, Sounding Rocket Experiment TEXUS-41 Center of Applied Space Technology and Microgravity (ZARM), Bremen (Germany)

    2007-05-15

    In this paper we report on the set-up and the performance of an experiment for the investigation of flow-rate limitations in open capillary channels under low-gravity conditions (microgravity). The channels consist of two parallel plates bounded by free liquid surfaces along the open sides. In the case of steady flow the capillary pressure of the free surface balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. A maximum flow rate is achieved when the adjusted volumetric flow rate exceeds a certain limit leading to a collapse of the free surfaces. The flow is convective (inertia) dominated, since the viscous forces are negligibly small compared to the convective forces. In order to investigate this type of flow an experiment aboard the sounding rocket TEXUS-41 was performed. The aim of the investigation was to achieve the profiles of the free liquid surfaces and to determine the maximum flow rate of the steady flow. For this purpose a new approach to the critical flow condition by enlarging the channel length was applied. The paper is focussed on the technical details of the experiment and gives a review of the set-up, the preparation of the flight procedures and the performance. Additionally the typical appearance of the flow indicated by the surface profiles is presented as a basis for a separate continuative discussion of the experimental results. (orig.)

  3. Sound speed of isobaric heat capacity in the saturated and superheated vapour of cesium, rubidium and potassium

    International Nuclear Information System (INIS)

    Novikov, I.I.; Roschupkin, V.V.

    1985-01-01

    The paper reviews the work carried out on the thermodynamic properties of alkali metal vapours. The most systematic investigations concern the sound velocity measurements for saturated and superheated vapours of caesium, for saturated vapour of rubidium, and for superheated vapour of potassium. The Joule-Thompson coefficient has been studied in caesium vapour, and the isobaric heat capacity of potassium vapour has also been examined. The experimental methods for all these experiments are described, and the data obtained are presented in tabular form. (U.K.)

  4. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    Science.gov (United States)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  5. Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped

    Science.gov (United States)

    Krakov, M. S.; Nikiforov, I. V.

    2012-09-01

    Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10-4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s.

  6. Inversion of Flow Depth and Speed from Tsunami Deposits using TsuSedMod

    Science.gov (United States)

    Spiske, M.; Weiss, R.; Roskosch, J.; Bahlburg, H.

    2008-12-01

    The global evolution of a tsunami wave train can be expressed by the sum of local effects along a tsunami- wave beam. The near-shore evolution of tsunami is very complex as the waves interact with the sea-bottom sediments. Filtered through offshore and onshore erosion and deposition, this evolution is recorded in the coastal area by topographical changes, local erosion and tsunami deposits. Recordable sedimentary on-site features include grain-size distributions and horizontal thickness trends. Immediately after an event, indicators of flow depth and run up extent, such as water marks on buildings and vegetation, debris and plastic bags caught in trees and swash lines, can be measured in the field. A direct measurement of the overland flow velocity is usually not possible. However, regarding recent tsunami events, videos of surveillance cameras or witness accounts helped to estimate the characteristics of overland flow. For historical and paleotsunami events such information is not directly available. Jaffe & Gelfenbaum (2007) developed an inversion model (TsuSedMod) to estimate flow depth and speed based upon the grain-size distribution and the thickness of onshore tsunami sediments. This model assumes a steady distribution of sediment in the water column, for which the appication of the Rouse equation is possible. Further simplifications, especially concerning the turbulence structure, are based on the mixing- length theory by Prandtl, the standard approximation in physical sedimentology. We calculated flow depths for sediments left behind by the 2004 Sumatra-Tsunami in India and Kenya (Weiss & Bahlburg, 2006; Bahlburg & Weiss, 2007) and by the 2006 Java-Tsunami on Java (Piepenbreier et al., 2007), using the model of Jaffe and Gelfenbaum (2007). Estimated flow depth were compared with measured data to extend the validation procedure. This extension is needed to gain confidence and understanding before the next step is taken to compute the near

  7. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  8. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  9. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  10. Calibration of a γ- Re θ transition model and its application in low-speed flows

    Science.gov (United States)

    Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song

    2014-12-01

    The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.

  11. Flow establishment behind blunt bodies at hypersonic speeds in a shock tunnel

    Science.gov (United States)

    Park, G.; Hruschka, R.; Gai, S. L.; Neely, A. J.

    2008-11-01

    An investigation of flow establishment behind two blunt bodies, a circular cylinder and a 45° half-angle blunted-cone was conducted. Unlike previous studies which relied solely on surface measurements, the present study combines these with unique high-speed visualisation to image the establishment of the flow structure in the base region. Test flows were generated using a free-piston shock tunnel at a nominal Mach number of 10. The freestream unit Reynolds numbers considered were 3.02x105/m and 1.17x106/m at total enthalpies of 13.35MJ/kg and 3.94MJ/kg, respectively. In general, the experiments showed that it takes longer to establish steady heat flux than pressure. The circular cylinder data showed that the near wake had a slight Reynolds number effect, where the size of the near wake was smaller for the high enthalpy flow condition. The blunted-cone data showed that the heat flux and pressures reached steady states in the near wake at similar times for both high and low enthalpy conditions.

  12. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  13. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    Science.gov (United States)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  14. Preconditioned conjugate-gradient methods for low-speed flow calculations

    Science.gov (United States)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  15. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    Science.gov (United States)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  16. Prediction of the vapor–liquid equilibria and speed of sound in binary systems of 1-alkanols and n-alkanes with the simplified PC-SAFT equation of state

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Thomsen, Kaj; Yan, Wei

    2013-01-01

    (or other derivative properties) with satisfactory accuracy over wide temperature, pressure and composition conditions. This work presents the prediction of the vapor–liquid equilibria and speed of sound in binary mixtures of 1-alkanols and n-alkanes using the simplified PC-SAFT equation of state...... of sound with a satisfactory accuracy for 1-alkanols and n-alkanes binary systems within the PC-SAFT framework....

  17. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  18. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  19. Surface tension, density, and speed of sound for the ternary mixture {l_brace}diethyl carbonate + p-xylene + decane{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Mosteiro, Laura; Casas, Lidia M. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain); Legido, Jose L. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Vigo, Lagoas Marcosende s/n, 36310 Vigo (Spain)], E-mail: xllegido@uvigo.es

    2009-05-15

    This paper reports the results of a new experimental study of thermophysical properties for the ternary mixture of {l_brace}diethyl carbonate + p-xylene + decane{r_brace}. Surface tension has been measured at 298.15 K and, density and speed of sound have been measured in the temperature range T = (288.15 to 308.15) K. Excess molar volumes, excess isentropic compressibilities, and surface tension deviations, have been calculated from experimental data. Surface tension deviations have been correlated with Cibulka equation and Nagata and Tamura equation was used for the other excess properties. Good accuracy has been obtained. These excess magnitudes are discussed qualitatively in terms of the nature and type of intermolecular interactions of the components involved.

  20. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    Science.gov (United States)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-03-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.

  1. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  2. Development of a Dual-PIV system for high-speed flow applications

    Science.gov (United States)

    Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre

    2015-10-01

    A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.

  3. Spherical resonator for vapor-phase speed of sound and measurements of 1,1,1,2,2,3,3-heptafluoro-3-methoxypropane (RE347mcc) and trans-1,3,3,3-tetrafluoropropene [R1234ze(E)

    International Nuclear Information System (INIS)

    Perkins, Richard A.; McLinden, Mark O.

    2015-01-01

    Highlights: • A spherical acoustic resonator for gas-phase speed of sound over the range T = (265 to 500) K, p < 10 MPa is described. • The sphere diameter was calibrated with argon and measurements on methane and ethane verified the performance of the system. • The sound speed of RE347mcc was measured over the range T = (325 to 500) K, p < 1.6 MPa. • The sound speed of R1234ze(E) was measured over the range T = (280 to 420) K, p < 2.8 MPa. • The average combined, expanded uncertainties for sound speed were 0.035 m · s"−"1 for RE347mcc and 0.064 m · s"−"1 for R1234ze(E). - Abstract: We describe an apparatus to measure the speed of sound of gas samples at temperatures from (265 to 500) K with pressures up to 10 MPa. The speed of sound was determined from the frequency of the three lowest-order radial resonance modes for the gas in a spherical cavity machined from type 321 stainless steel for corrosion resistance. The spherical resonator was contained in an isothermal copper block that was maintained at the temperature of interest by a multilayer thermostat with vacuum insulation. The dimensions of the spherical cavity were characterized as a function of temperature and pressure though calibration measurements with high-purity argon. The performance of the apparatus was demonstrated with measurements of high-purity methane and ethane. Measurements of the sound speed of 1,1,1,2,2,3,3-heptafluoro-3-methoxypropane (RE347mcc) are reported at temperatures from (325 to 500) K with pressures up to 1.6 MPa. Measurements on trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) are reported at temperatures from (280 to 420) K with pressures up to 2.8 MPa. The average relative combined expanded uncertainties of the measured sound speed for RE347mcc and R1234ze(E) are (0.029 and 0.041)%, respectively.

  4. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Science.gov (United States)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  5. Development and application of a particle image velocimeter for high-speed flows

    Science.gov (United States)

    Molezzi, M. J.; Dutton, J. C.

    1992-01-01

    A particle image velocimetry (PIV) system has been developed for use in high-speed separated air flows. The image acquisition system uses two 550 mJ/pulse Nd:YAG lasers and is fully controlled by a host Macintosh computer. The interrogation system is also Macintosh-based and performs interrogations at approximately 2.3 sec/spot and 4.0 sec/spot when using the Young's fringe and autocorrelation methods, respectively. The system has been proven in preliminary experiments using known-displacement simulated PIV photographs and a simple axisymmetric jet flow. Further results have been obtained in a transonic wind tunnel operating at Mach 0.4 to 0.5 (135 m/s to 170 m/s). PIV experiments were done with an empty test section to provide uniform flow data for comparison with pressure and LDV data, then with a two-dimensional base model, revealing features of the von Karman vortex street wake and underlying small scale turbulence.

  6. A comparative numerical analysis of linear and nonlinear aerodynamic sound generation by vortex disturbances in homentropic constant shear flows

    International Nuclear Information System (INIS)

    Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George; Khujadze, George; Tevzadze, Alexander

    2015-01-01

    Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber

  7. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.

    Science.gov (United States)

    Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E

    2017-10-09

    To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.

  8. RICE: a computer program for multicomponent chemically reactive flows at all speeds

    International Nuclear Information System (INIS)

    Rivard, W.C.; Farmer, O.A.; Butler, T.D.

    1974-11-01

    The fluid dynamics of chemically reactive mixtures are calculated at arbitrary flow speeds with the RICE program. The dynamics are governed by the two-dimensional, time-dependent Navier-Stokes equations together with the species transport equations and the mass-action rate equations for the chemical reactions. The mass and momentum equations for the mixture are solved implicitly by the ICE technique. The equations for total energy and species transport are solved explicitly while the chemical rate equations are solved implicitly with a time step that may be a submultiple of the hydrodynamic time step. Application is made to continuous wave HF chemical lasers to compute the supersonic mixing and chemical reactions that take place in the lasing cavity. (U.S.)

  9. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    Science.gov (United States)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  10. Tribological properties of high-speed steel treated by compression plasma flow

    International Nuclear Information System (INIS)

    Cherenda, K.K.; Uglov, V.V.; Anishchik, V.M.; Stalmashonak, A.K.; Astashinski, V.M.

    2004-01-01

    Full text: The investigation of tribological properties of two high-speed steels AISI M2 and AISI Tl treated by the nitrogen compression plasma flow was the main aim of this work. Two types of samples were investigated before and after quenching. The plasma flow was received in a magneto-plasma compressor. The impulse duration was ∼100 μs, the number of impulses varied in the range of 1-5, the nitrogen pressure in the chamber was 400-4000 Pa, the energy absorbed by the sample was 2-10 J/cm 2 per impulse. Tribological properties were examined by means of a tribometer TAYl under conditions of dry friction. The Vickers's microhardness was measured by a hard meter PMT3. X-ray diffraction analysis, Auger electron spectroscopy, scanning electron microscopy and energy dispersion microanalysis were used for samples characterization. The earlier conducted investigations showed that the compression plasma flow suited well for the improvement of tribological properties of iron and low-alloyed steels due to the formation of hardening nitrides in the near surface layer. It was found that in the case of high-speed steels only not quenched samples had increased hardness after treatment. The latter can be explained by the formation of hardening nitrides though the phase analysis did not clearly reveal their presence. The element composition confirmed the presence of nitrogen in the surface layer with the concentration up to 30 at. %. The treatment of quenched samples almost always resulted in the hardness decrease due to the dissolution or partial dissolution of alloying elements carbides: M 6 C, MC, M 23 C 6 . The rate of carbides dissolution increased with the growth of the energy absorbed by the sample. The treated samples showed a lower value of the friction coefficient than the untreated one. It could be explained by the formation of nitrogenous austenite which was found out by the phase analysis. At the same time the compression plasma flow strongly influenced surface

  11. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    Science.gov (United States)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  12. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    Science.gov (United States)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two

  13. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    Science.gov (United States)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  14. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    Science.gov (United States)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  15. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    Science.gov (United States)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  16. Effects of Bell Speed and Flow Rate on Evaporation of Water Spray from a Rotary Bell Atomizer

    Directory of Open Access Journals (Sweden)

    Rajan Ray

    2015-05-01

    Full Text Available A phase doppler anemometer (PDA was used to determine the effects of evaporation on water spray for three rotary bell atomizer operational variable parameters: shaping air, bell speed and liquid flow. Shaping air was set at either 200 standard liters per minute (L/min or 300 L/min, bell speed was set to 30, 40 or 50 thousand rotations per minute (krpm and water flow rate was varied between 100, 200 or 300 cubic centimeters per minute (cm3/min. The total evaporation between 22.5 and 37.5 cm from the atomizer (cm3/s was calculated for all the combinations of those variables. Evaporation rate increased with higher flow rate and bell speed but no statistically significant effects were obtained for variable shaping air on interactions between parameters.

  17. Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds

    Science.gov (United States)

    Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.

    2012-01-01

    An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.

  18. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    Science.gov (United States)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  19. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    -fluid interactions in these high-speed flows special high performance techniques are required. The present work is an investigation into the applicability of magnified digital in-line holography with ultra-high-speed recording for the study of three-dimensional supersonic particle-laden flows. An optical setup...... × 10mm calibration grid and 120 μm particles on a glass plate. In the case with the calibration grid it is found that accurate determination of the depthwise position is possible. However, when applying the same technique to the particle target, significant problems are encountered. © 2012...

  20. Fully automatized apparatus for determining speed of sound for liquids in the temperature and pressure interval (283.15–343.15) K and (0.1–95) MPa

    International Nuclear Information System (INIS)

    Yebra, Francisco; Troncoso, Jacobo; Romaní, Luis

    2017-01-01

    Highlights: • An apparatus for measuring speed of sound of liquids is described. • Pressure and temperature control is fully automatized. • Uncertainty of the measurements is estimated in 0.1%. • Comparison with literature data confirms the reliability of the methodology. - Abstract: An instrument for determining the speed of sound as a function of temperature and pressure for liquids is described. It was totally automatized: pressure and temperature values are controlled and time of flight of the ultrasonic wave data were acquired using a digital system which automatically made all required actions. The instrument calibration was made only at atmospheric pressure using high quality data of water and methanol. For higher pressures, the calibration parameters were predicted using a model for the high pressure cell, through finite-element calculations (FEM), in order to realistically determine the changes in the cell induced by the compression. Uncertainties in pressure and temperature were 20 mK and 0.1 MPa, respectively and in speed of sound it was estimated to be about 0.1%. The speeds of sound for water, methanol, hexane, heptane, octane, toluene, ethanol and 1-propanol were determined in the temperature and pressure ranges (283.15–343.15) K and (0.1–95) MPa. Comparison with literature data reveals the high reliability of the experimental procedure.

  1. Matching optical flow to motor speed in virtual reality while running on a treadmill

    Science.gov (United States)

    Lafortuna, Claudio L.; Mugellini, Elena; Abou Khaled, Omar

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed–i.e., treadmill’s speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care. PMID:29641564

  2. Irrigant flow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using high-speed imaging.

    Science.gov (United States)

    Boutsioukis, C; Verhaagen, B; Versluis, M; Kastrinakis, E; van der Sluis, L W M

    2010-05-01

    To compare the results of a Computational Fluid Dynamics (CFD) simulation of the irrigant flow within a prepared root canal, during final irrigation with a syringe and a needle, with experimental high-speed visualizations and theoretical calculations of an identical geometry and to evaluate the effect of off-centre positioning of the needle inside the root canal. A CFD model was created to simulate irrigant flow from a side-vented needle inside a prepared root canal. Calculations were carried out for four different positions of the needle inside a prepared root canal. An identical root canal model was made from poly-dimethyl-siloxane (PDMS). High-speed imaging of the flow seeded with particles and Particle Image Velocimetry (PIV) were combined to obtain the velocity field inside the root canal experimentally. Computational, theoretical and experimental results were compared to assess the validity of the computational model. Comparison between CFD computations and experiments revealed good agreement in the velocity magnitude and vortex location and size. Small lateral displacements of the needle inside the canal had a limited effect on the flow field. High-speed imaging experiments together with PIV of the flow inside a simulated root canal showed a good agreement with the CFD model, even though the flow was unsteady. Therefore, the CFD model is able to predict reliably the flow in similar domains.

  3. Sound transmission through panels and shells filled with porous material in the presence of external flow

    OpenAIRE

    Zhou, Jie

    2014-01-01

    With increasingly tighter regulations on noise exposure during flight, aircraft designers have been compelled to innovate structures that minimise noise transmission into the cabin space. Porous material is widely used as a passive noise control medium because of their light weight, low cost, and broad band sound abatement effectiveness. The present work, inspired by the need to be able to predict noise transmission characteristics for commonly used constructions, incorporates the effect of f...

  4. A prediction of 3-D viscous flow and performance of the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Moore, John; Moore, Joan G.

    1990-01-01

    A prediction of the three-dimensional turbulent flow in the NASA Low-Speed Centrifugal Compressor Impeller has been made. The calculation was made for the compressor design conditions with the specified uniform tip clearance gap. The predicted performance is significantly worse than that predicted in the NASA design study. This is explained by the high tip leakage flow in the present calculation and by the different model adopted for tip leakage flow mixing. The calculation gives an accumulation of high losses in the shroud/pressure-side quadrant near the exit of the impeller. It also predicts a region of meridional backflow near the shroud wall. Both of these flow features should be extensive enough in the NASA impeller to allow detailed flow measurements, leading to improved flow modeling. Recommendations are made for future flow studies in the NASA impeller.

  5. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  6. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    Science.gov (United States)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the

  7. Carotid flow pulsatility is higher in women with greater decrement in gait speed during multi-tasking.

    Science.gov (United States)

    Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael

    2017-05-01

    Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas [Technische Univ. Muenchen, Lehrstuhl fuer Thermodynamik, Garching (Germany)

    2004-04-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life - and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability. (Author)

  9. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas

    2004-01-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life- and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability

  10. Using wind speed from a blade-mounted flow sensor for power and load assessment on modern wind turbines

    Directory of Open Access Journals (Sweden)

    M. M. Pedersen

    2017-11-01

    Full Text Available In this paper an alternative method to evaluate power performance and loads on wind turbines using a blade-mounted flow sensor is investigated. The hypothesis is that the wind speed measured at the blades has a high correlation with the power and loads such that a power or load assessment can be performed from a few hours or days of measurements.In the present study a blade-mounted five-hole pitot tube is used as the flow sensor as an alternative to the conventional approach, where the reference wind speed is either measured at a nearby met mast or on the nacelle using lidar technology or cup anemometers. From the flow sensor measurements, an accurate estimate of the wind speed at the rotor plane can be obtained. This wind speed is disturbed by the presence of the wind turbine, and it is therefore different from the free-flow wind speed. However, the recorded wind speed has a high correlation with the actual power production as well as the flap-wise loads as it is measured close to the blade where the aerodynamic forces are acting.Conventional power curves are based on at least 180 h of 10 min mean values, but using the blade-mounted flow sensor both the observation average time and the overall assessment time can potentially be shortened. The basis for this hypothesis is that the sensor is able to provide more observations with higher accuracy, as the sensor follows the rotation of the rotor and because of the high correlation between the flow at the blades and the power production. This is the research question addressed in this paper.The method is first tested using aeroelastic simulations where the dependence of the radial position and effect of multiple blade-mounted flow sensors are also investigated. Next the method is evaluated on the basis of full-scale measurements on a pitch-regulated, variable-speed 3.6 MW wind turbine.It is concluded that the wind speed derived from the blade-mounted flow sensor is highly correlated with the

  11. On Pseudorapidity Distribution and Speed of Sound in High Energy Heavy Ion Collisions Based on a New Revised Landau Hydrodynamic Model

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available We propose a new revised Landau hydrodynamic model to study systematically the pseudorapidity distributions of charged particles produced in heavy ion collisions over an energy range from a few GeV to a few TeV per nucleon pair. The interacting system is divided into three sources, namely, the central, target, and projectile sources, respectively. The large central source is described by the Landau hydrodynamic model and further revised by the contributions of the small target/projectile sources. The modeling results are in agreement with the available experimental data at relativistic heavy ion collider, large hadron collider, and other energies for different centralities. The value of square speed of sound parameter in different collisions has been extracted by us from the widths of rapidity distributions. Our results show that, in heavy ion collisions at energies of the two colliders, the central source undergoes a phase transition from hadronic gas to quark-gluon plasma liquid phase; meanwhile, the target/projectile sources remain in the state of hadronic gas. The present work confirms that the quark-gluon plasma is of liquid type rather than being of a gas type.

  12. Numerical research on rotating speed influence and flow state distribution of water-lubricated thrust bearing

    International Nuclear Information System (INIS)

    Deng Xiao; Deng Liping; Huang Wei

    2015-01-01

    Water-lubricated thrust bearing is one of the key parts in canned motor pump, for example, the RCP in AP1000, and it functions to balance axial loads. A calculation model which can handle all flow state lubrication performance for water-lubricated thrust bearing has been presented. The model first includes laminar and turbulent Reynolds' equation. Then to get continuous viscosity coefficients cross critical Reynolds number, a transition zone which ranges based on engineering experience is put up, through which Hermite interpolation is employed. The model is numerically solved in finite difference method with uniform grids. To accelerate the calculation process, multigrid method and line relaxation is adopted within the iteration procedure. A medium sized water-lubricated tilting pad thrust bearing is exampled to verify the calculation model. Results suggest that as rotating speed enlarges, lubrication state distribution of the thrust bearing gradually tends to turbulent lubrication from the intersection corner of pad outer diameter and pad inlet to the opposite, minimum water film thickness increases approximately linearly, maximum water film pressure has little change, meanwhile the friction power grows nearly in exponential law which could result in bad effect by yielding much more heat. (author)

  13. An Analysis of Flow in Rotating Passage of Large Radial-Inlet Centrifugal Compressor at Tip Speed of 700 Feet Per Second

    National Research Council Canada - National Science Library

    Prian, Vasily

    1951-01-01

    An analysis was made of the flow in the rotating passages of a 48-inch diameter radial-inlet centrifugal impeller at a tip speed of 700 feet per second in order to provide more knowledge on the flow...

  14. A study on the performance and internal flow characteristics of a very low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Choi, Young Do; Kurokawa, Junichi; Lee, Young Ho

    2005-01-01

    In the very low specific speed range (n s < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there experts to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increases the slip factor with the reduction of theoretical head

  15. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    Science.gov (United States)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  16. First- and Second-level Bayesian Inference of Flow Resistivity of Sound Absorber and Room’s Influence

    DEFF Research Database (Denmark)

    Choi, Sang-Hyeon; Lee, Ikjin; Jeong, Cheol-Ho

    2016-01-01

    Sabine absorption coefficient is a widely used one deduced from reverberation time measurements via the Sabine equation. First- and second-level Bayesian analysis are used to estimate the flow resistivity of a sound absorber and the influences of the test chambers from Sabine absorption...... coefficients measured in 13 different reverberation chambers. The first-level Bayesian analysis is more general than the second-level Bayesian analysis. Sharper posterior distribution can be acquired by the second-level Bayesian analysis than the one by the first-level Bayesian analysis because more data...... are used to set more reliable prior distribution. The estimated room’s influences by the first- and the second-level Bayesian analyses are similar to the estimated results by the mean absolute error minimization....

  17. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  18. A study of energy dissipation and critical speed of granular flow in a rotating cylinder

    Science.gov (United States)

    Dragomir, Sergiu C.; Sinnott, Mathew D.; Semercigil, S. Eren; Turan, Özden F.

    2014-12-01

    Tuned vibration absorbers may improve the safety of flexible structures which are prone to excessive oscillation magnitudes under dynamic loads. A novel absorber design proposes sloshing of granular material in a rotating cylinder where the granular material is the energy dissipating agent. As the conventional dissipative elements require maintenance due to the nature of their function, the new design may represent a virtually maintenance free alternative. The angular speed of the cylinder containing particles has a critical centrifuging speed, after which particles remain permanently in contact with the walls and there can be no further dissipation. Until the critical speed, however, dissipation increases proportionally with the angular speed. It is then vital to know the value of the critical speed as the limit of dissipation. The focus of the present study is on determination of the critical centrifuge speed. This critical speed is also of practical importance in bulk-material handling rotary mills, such as dryers and crushers. Experiments and numerical simulations, using Discrete Element Method, are used to determine the critical centrifuging speed. In addition, predictions are given and guidelines are offered for the choice of material properties to maximize the energy dissipation. As a result of a parametric study, the coefficient of friction is found to have the greatest significance on the centrifuging speed.

  19. Supercomputer implementation of finite element algorithms for high speed compressible flows. Progress report, period ending 30 June 1986

    International Nuclear Information System (INIS)

    Thornton, E.A.; Ramakrishnan, R.

    1986-06-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

  20. NASA low-speed centrifugal compressor for 3-D viscous code assessment and fundamental flow physics research

    Science.gov (United States)

    Hathaway, M. D.; Wood, J. R.; Wasserbauer, C. A.

    1991-01-01

    A low speed centrifugal compressor facility recently built by the NASA Lewis Research Center is described. The purpose of this facility is to obtain detailed flow field measurements for computational fluid dynamic code assessment and flow physics modeling in support of Army and NASA efforts to advance small gas turbine engine technology. The facility is heavily instrumented with pressure and temperature probes, both in the stationary and rotating frames of reference, and has provisions for flow visualization and laser velocimetry. The facility will accommodate rotational speeds to 2400 rpm and is rated at pressures to 1.25 atm. The initial compressor stage being tested is geometrically and dynamically representative of modern high-performance centrifugal compressor stages with the exception of Mach number levels. Preliminary experimental investigations of inlet and exit flow uniformly and measurement repeatability are presented. These results demonstrate the high quality of the data which may be expected from this facility. The significance of synergism between computational fluid dynamic analysis and experimentation throughout the development of the low speed centrifugal compressor facility is demonstrated.

  1. Direct measurements of acoustic damping and sound amplification in corrugated pipes with flow

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; Vijlbrief, O.; Lunde, K.

    2015-01-01

    The flow-induced pulsations in corrugated pipes result from a feedback loop between an acoustic resonator and the noise amplification at each shear layer in the axisymmetric cavities forming the corrugations. The quality factor of the resonator is determined by the reflection coefficients at the

  2. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.

    Science.gov (United States)

    Marsac, L; Chauvet, D; La Greca, R; Boch, A-L; Chaumoitre, K; Tanter, M; Aubry, J-F

    2017-09-01

    Transcranial brain therapy has recently emerged as a non-invasive strategy for the treatment of various neurological diseases, such as essential tremor or neurogenic pain. However, treatments require millimetre-scale accuracy. The use of high frequencies (typically ≥1 MHz) decreases the ultrasonic wavelength to the millimetre scale, thereby increasing the clinical accuracy and lowering the probability of cavitation, which improves the safety of the technique compared with the use of low-frequency devices that operate at 220 kHz. Nevertheless, the skull produces greater distortions of high-frequency waves relative to low-frequency waves. High-frequency waves require high-performance adaptive focusing techniques, based on modelling the wave propagation through the skull. This study sought to optimise the acoustical modelling of the skull based on computed tomography (CT) for a 1 MHz clinical brain therapy system. The best model tested in this article corresponded to a maximum speed of sound of 4000 m.s -1 in the skull bone, and it restored 86% of the optimal pressure amplitude on average in a collection of six human skulls. Compared with uncorrected focusing, the optimised non-invasive correction led to an average increase of 99% in the maximum pressure amplitude around the target and an average decrease of 48% in the distance between the peak pressure and the selected target. The attenuation through the skulls was also assessed within the bandwidth of the transducers, and it was found to vary in the range of 10 ± 3 dB at 800 kHz and 16 ± 3 dB at 1.3 MHz.

  3. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    DEFF Research Database (Denmark)

    Nettles, M.; Larsen, T. B.; Elósegui, P.

    2008-01-01

    Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major...... iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior...... at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur. Citation: Nettles, M., et al. (2008), Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland....

  4. Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1: Unstructured-Grid Solver for High Speed Flows

    Science.gov (United States)

    White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki

    2017-01-01

    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on

  5. Measurement of liquid film flow on nuclear rod bundle in micro-scale by using very high speed camera system

    Science.gov (United States)

    Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.

  6. Development of Localized Arc Filament RF Plasma Actuators for High-Speed and High Reynolds Number Flow Control

    Science.gov (United States)

    2010-01-01

    high-speed flows is problematic due to their low forcing frequency (for mechanical actuators) and low forcing amplitude (for piezo actuators...very low fraction of DC power is coupled to the actuators (5-10%), with the rest of the power dissipated in massive ballast resistors acting as heat... resistors . The use of high-power resistors also significantly increases the weight and size of the plasma generator and makes scaling to a large number of

  7. The screening of sound in a subsonic flow by a cylindrical airbubble layer and a semi-infinite tube

    NARCIS (Netherlands)

    Grand, Pieter le

    1971-01-01

    The problem here under discussion lies in the field of sound waves in layered media. The presence of a layer with a velocity of sound less than that of the surroundings will enable sound waves to travel along great distances. In this domain many investigations have been made e. g. in connection with

  8. Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Mahesh Varpe

    2013-01-01

    Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.

  9. Reading drift in flow rate sensors caused by steady sound waves; Desvios de leitura em sensores de vazao provocados por ondas sonoras estacionarias

    Energy Technology Data Exchange (ETDEWEB)

    Maximiano, Celso; Nieble, Marcio D. [Coordenadoria para Projetos Especiais (COPESP), Sao Paulo, SP (Brazil); Migliavacca, Sylvana C.P.; Silva, Eduardo R.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    The use of thermal sensors very common for the measurement of small flows of gases. In this kind of sensor a little tube forming a bypass is heated symmetrically, then the temperature distribution in the tube modifies with the mass flow along it. When a stationary wave appears in the principal tube it causes an oscillation of pressure around the average value. The sensor, located between two points of the principal tube, indicates not only the principal mass flow, but also that one caused by the difference of pressure induced by the sound wave. When the gas flows at low pressures the equipment indicates a value that do not correspond to the real. Tests and essays were realized by generating a sound wave in the principal tube, without mass flow, and the sensor detected flux. In order to solve this problem a wave-damper was constructed, installed and tested in the system and it worked satisfactory eliminating with efficiency the sound wave. (author). 2 refs., 3 figs.

  10. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  11. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  12. A coupled implicit method for chemical non-equilibrium flows at all speeds

    Science.gov (United States)

    Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho

    1993-01-01

    The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.

  13. Modified Motor Vehicles Travel Speed Models on the Basis of Curb Parking Setting under Mixed Traffic Flow

    Directory of Open Access Journals (Sweden)

    Zhenyu Mei

    2012-01-01

    Full Text Available The ongoing controversy about in what condition should we set the curb parking has few definitive answers because comprehensive research in this area has been lacking. Our goal is to present a set of heuristic urban street speed functions under mixed traffic flow by taking into account impacts of curb parking. Two impacts have been defined to classify and quantify the phenomena of motor vehicles' speed dynamics in terms of curb parking. The first impact is called Space impact, which is caused by the curb parking types. The other one is the Time impact, which results from the driver maneuvering in or out of parking space. In this paper, based on the empirical data collected from six typical urban streets in Nanjing, China, two models have been proposed to describe these phenomena for one-way traffic and two-way traffic, respectively. An intensive experiment has been conducted in order to calibrate and validate these proposed models, by taking into account the complexity of the model parameters. We also provide guidelines in terms of how to cluster and calculate those models' parameters. Results from these models demonstrated promising performance of modeling motor vehicles' speed for mixed traffic flow under the influence of curb parking.

  14. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  15. Deriving the pattern speed using dynamical modelling of gas flows in barred galaxies .

    NARCIS (Netherlands)

    Pérez, I.; Freeman, K. C.; Fux, R.; Zurita, A.

    2011-01-01

    In this paper we analyse the methodology to derive the bar pattern speed from dynamical simulations. The results are robust to the changes in the vertical-scale height and in the mass-to-light (M/L) ratios. There is a small range of parameters for which the kinematics can be fitted. We have also

  16. On sound transmission through double-walled cylindrical shells lined with poroelastic material: Comparison with Zhou's results and further effect of external mean flow

    Science.gov (United States)

    Liu, Yu; He, Chuanbo

    2015-12-01

    In this discussion, the corrections to the errors found in the derivations and the numerical code of a recent analytical study (Zhou et al. Journal of Sound and Vibration 333 (7) (2014) 1972-1990) on sound transmission through double-walled cylindrical shells lined with poroelastic material are presented and discussed, as well as the further effect of the external mean flow on the transmission loss. After applying the corrections, the locations of the characteristic frequencies of thin shells remain unchanged, as well as the TL results above the ring frequency where BU and UU remain the best configurations in sound insulation performance. In the low-frequency region below the ring frequency, however, the corrections attenuate the TL amplitude significantly for BU and UU, and hence the BB configuration exhibits the best performance which is consistent with previous observations for flat sandwich panels.

  17. Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2013-01-01

    Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.

  18. Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hideaki [IHI Corporation, Yokoham (Japan)

    2013-06-15

    Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.

  19. Using Flow Regime Lightning and Sounding Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    Science.gov (United States)

    Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott

    2007-01-01

    mesoscale detail of the forecast. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.

  20. Simultaneous two-phase flow measurement of spray mixing process by means of high-speed two-color PIV

    International Nuclear Information System (INIS)

    Zhang, Ming; Xu, Min; Hung, David L S

    2014-01-01

    In this article, a novel high-speed two-color PIV optical diagnostic technique has been developed and applied to simultaneously measure the velocity flow-fields of a multi-hole spark-ignition direct injection (SIDI) fuel injector spray and its ambient gas in a high-pressure constant volume chamber. To allow for the phase discrimination between the fuel droplets and ambient gas, a special tracer-filter system was designed. Fluorescent seeding particles with Sauter mean diameter (SMD) of 4.8 µm were used to trace the gas inside the chamber. With a single high-speed Nd:YLF laser sheet (527 nm) as the incident light source, the Mie-scattering signal marked the phase of the fuel spray, while the fluorescent signal generated from the seeding particles tracked the phase of ambient gas. A high-speed camera, with an image-doubler (mounted in front of the camera lens) that divided the camera pixels into two parts focusing on the same field of view, was used to collect the Mie-scattering signal and LIF (laser induced fluorescence) signal simultaneously with two carefully selected optical filters. To accommodate the large dynamic range of velocities in the two phases (1–2 orders of magnitude difference), two separation times (dt) were introduced. This technique was successfully applied to the liquid spray and ambient gas two-phase flow measurement. The measurement accuracy was compared with those from LDV (laser Doppler velocimetry) measurement and good agreement was obtained. Ambient gas motion surrounding the fuel spray was investigated and characterized into three zones. The momentum transfer process between the fuel spray and ambient gas in each zone was analyzed. The two-phase flow interaction under various superheated conditions was investigated. A strengthened momentum transfer from the liquid spray to the ambient was observed with increased superheat degree. (paper)

  1. Phase-measuring laser holographic interferometer for use in high speed flows

    Science.gov (United States)

    Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig

    Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.

  2. Coupling Analysis of Low-Speed Multiphase Flow and High-Frequency Electromagnetic Field in a Complex Pipeline Structure

    Directory of Open Access Journals (Sweden)

    Xiaokai Huo

    2014-01-01

    Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.

  3. Experimental and analytical studies on high-speed plane jet along concave wall simulating IFMIF Li target flow

    International Nuclear Information System (INIS)

    Nakamura, H.; Ida, M.; Kato, Y.; Maekawa, H.; Katsuta, H.; Itoh, K.; Kukita, Y.

    1998-01-01

    As part of the conceptual design activity (CDA) of the international fusion materials irradiation facility (IFMIF), the characteristics of the high-speed liquid lithium (Li) plane jet target flow have been studied by water experiments and numerical analyses for both heating and non-heating conditions. The simulated prototypal-size water flows were stable over the entire length of ∝130 mm at the average velocity up to 17 m/s. The jet flow had a specific radial velocity profile, close to that of free-vortex flow, because of a static pressure distribution in the jet thickness due to centrifugal force. Detailed velocity measurement revealed that this flow condition is penetrating into the upstream reducer nozzle up to a distance ∼ the jet thickness. The numerical analyses using a two-dimensional Cartesian-coordinate model were successful to predict the velocity profile transient around the nozzle exit, though underestimated the development of the velocity profile and the jet thickness. (orig.)

  4. High-temperature epoxidation of soybean oil in flow : speeding up elemental reactions wanted and unwanted

    NARCIS (Netherlands)

    Cortese, B.; Croon, de M.H.J.M.; Hessel, V.

    2012-01-01

    The soybean oil epoxidation reaction is investigated theoretically through kinetic modeling of temperature effects enabled through flow processing under superheated conditions. Different from previous studies on such processing, here a complex reaction network superimposed by multiphase transport is

  5. Speed of sound in saturated aliphatic alcohols (propan-2-ol, butan-2-ol, and 2-methylpropan-1-ol) and alkanediols (ethane-1,2-diol, propane-1,2- and -1,3-diol) at temperature between 253.15 K and 353.15 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Dávila, María J.; Gedanitz, Holger; Span, Roland

    2016-01-01

    Highlights: • Speed of sound measurements were made in aliphatic alcohols and alkanediols. • Speeds of sound were measured in a wide temperature and pressure range. • A pulse-echo method with a double path type sensor operating at 8 MHz was employed. • A double polynomial equation was used to fit the experimental speed of sound data. • The accurate results were compared with available literature sources. - Abstract: Speeds of sound have been measured in three saturated aliphatic alcohols (propan-2-ol, butan-2-ol, and 2-methylpropan-1-ol) and three alkanediols (ethane-1,2-diol, propane-1,2- and -1,3-diol) in the temperature range from (253.15 to 353.15) K and pressures up to 30 MPa by use of a pulse-echo method with a double path type sensor operating at 8 MHz. The expanded overall uncertainties (k = 2) in the speed of sound measurements are estimated to be 0.013% for propan-2-ol, 0.019% for butan-2-ol, 0.01% for 2-methylpropan-1-ol, 0.009% for ethane-1,2-diol, 0.02% for propane-1,2-diol, and 0.07% for propane-1,3-diol. Experimental speeds of sound data were correlated with the temperature and pressure with an empirical double polynomial equation. Our results were also compared with the available literature data and a satisfactory agreement was found.

  6. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    laminar-turbulent transition on slender bodies in a hypersonic flow at small angles of attack is caused by amplification of acoustic waves trapped in...x decreases and slowly approaches the no-blow distribution. These CFD data demonstrate that the injection strongly affects the near-wall flow...conclusion. Figure 10 shows that the spatial growth rates ( )  are maximal for mode 0 corresponding to the Mack second mode – typical for hypersonic

  7. Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method

    OpenAIRE

    Vojtíšek Michal; Kotek Martin

    2014-01-01

    Measurement of real driving emissions (RDE) from internal combustion engines under real-world operation using portable, onboard monitoring systems (PEMS) is becoming an increasingly important tool aiding the assessment of the effects of new fuels and technologies on environment and human health. The knowledge of exhaust flow is one of the prerequisites for successful RDE measurement with PEMS. One of the simplest approaches for estimating the exhaust flow from virtually any engine is its comp...

  8. Upwind scheme for acoustic disturbances generated by low-speed flows

    DEFF Research Database (Denmark)

    Ekaterinaris, J.A.

    1997-01-01

    , compressible how equations, A numerical method for the solution of the equations governing the acoustic field is presented. The primitive variable form of the governing equations is used for the numerical solution. Time integration is performed with a fourth-order, Runge-Kutta method, Discretization...... of the primitive variables space derivatives is obtained with a high-order, upwind-biased numerical scheme. Upwinding of these convective fluxes is performed according to the eigenvalue sign of the coefficient matrices. Nonreflecting boundary conditions are applied to properly convect outgoing waves away from...... the computational domain. Solutions are obtained for the acoustic field generated by a pair of corotating point vortices. Computed results are compared with the existing analytic solution for the sound field....

  9. Numerical study of the influence of flow blockage on the aerodynamic coefficients of models in low-speed wind tunnels

    Science.gov (United States)

    Bui, V. T.; Kalugin, V. T.; Lapygin, V. I.; Khlupnov, A. I.

    2017-11-01

    With the use of ANSYS Fluent software and ANSYS ICEM CFD calculation grid generator, the flows past a wing airfoil, an infinite cylinder, and 3D blunted bodies located in the open and closed test sections of low-speed wind tunnels were calculated. The mathematical model of the flows included the Reynolds equations and the SST model of turbulence. It was found that the ratios between the aerodynamic coefficients in the test section and in the free (unbounded) stream could be fairly well approximated with a piecewise-linear function of the blockage factor, whose value weakly depended on the angle of attack. The calculated data and data gained in the analysis of previously reported experimental studies proved to be in a good agreement. The impact of the extension of the closed test section on the airfoil lift force is analyzed.

  10. Laser Anemometer Measurements of the Three-Dimensional Rotor Flow Field in the NASA Low-Speed Centrifugal Compressor

    Science.gov (United States)

    Hathaway, Michael D.; Chriss, Randall M.; Strazisar, Anthony J.; Wood, Jerry R.

    1995-01-01

    A laser anemometer system was used to provide detailed surveys of the three-dimensional velocity field within the NASA low-speed centrifugal impeller operating with a vaneless diffuser. Both laser anemometer and aerodynamic performance data were acquired at the design flow rate and at a lower flow rate. Floor path coordinates, detailed blade geometry, and pneumatic probe survey results are presented in tabular form. The laser anemometer data are presented in the form of pitchwise distributions of axial, radial, and relative tangential velocity on blade-to-blade stream surfaces at 5-percent-of-span increments, starting at 95-percent-of-span from the hub. The laser anemometer data are also presented as contour and wire-frame plots of throughflow velocity and vector plots of secondary velocities at all measurement stations through the impeller.

  11. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    Science.gov (United States)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  12. Assertion based verification methodology for HDL designs of primary sodium pump speed and eddy current flow measurement systems of PFBR

    International Nuclear Information System (INIS)

    Misra, M.K.; Menon, Saritha P.; Thirugnana Murthy, D.

    2013-01-01

    With the growing complexity and size of digital designs, functional verification has become a huge challenge. The validation and testing process accounts for a significant percentage of the overall development effort and cost for electronic systems. Many studies have shown that up to 70% of the design development time and resources are spent on functional verification. Functional errors manifest themselves very early in the design flow, and unless they are detected upfront, they can result in severe consequences - both financially and from a safety viewpoint. This paper covers the various types of verification methodologies and focuses on Assertion Based Verification Methodology for HDL designs, taking as case studies, the Primary Sodium Pump Speed and Eddy Current Flow Measurement Systems of PFBR. (author)

  13. Integrating terrestrial and marine records of the LGM in McMurdo Sound, Antarctica: implications for grounded ice expansion, ice flow, and deglaciation of the Ross Sea Embayment

    Science.gov (United States)

    Christ, A. J.; Marchant, D. R.

    2017-12-01

    During the LGM, grounded glacier ice filled the Ross Embayment and deposited glacial drift on volcanic islands and peninsulas in McMurdo Sound, as well as along coastal regions of the Transantarctic Mountains (TAM), including the McMurdo Dry Valleys and Royal Society Range. The flow geometry and retreat history of this ice remains debated, with contrasting views yielding divergent implications for both the fundamental cause of Antarctic ice expansion as well as the interaction and behavior of ice derived from East and West Antarctica during late Quaternary time. We present terrestrial geomorphologic evidence that enables the reconstruction of former ice elevations, ice-flow paths, and ice-marginal environments in McMurdo Sound. Radiocarbon dates of fossil algae interbedded with ice-marginal sediments provide a coherent timeline for local ice retreat. These data are integrated with marine-sediment records and multi-beam data to reconstruct late glacial dynamics of grounded ice in McMurdo Sound and the western Ross Sea. The combined dataset suggest a dominance of ice flow toward the TAM in McMurdo Sound during all phases of glaciation, with thick, grounded ice at or near its maximum extent between 19.6 and 12.3 calibrated thousands of years before present (cal. ka). Our data show no significant advance of locally derived ice from the TAM into McMurdo Sound, consistent with the assertion that Late Pleistocene expansion of grounded ice in McMurdo Sound, and throughout the wider Ross Embayment, occurs in response to lower eustatic sea level and the resulting advance of marine-based outlet glaciers and ice streams (and perhaps also reduced oceanic heat flux), rather than local increases in precipitation and ice accumulation. Finally, when combined with allied data across the wider Ross Embayment, which show that widespread deglaciation outside McMurdo Sound did not commence until 13.1 ka, the implication is that retreat of grounded glacier ice in the Ross Embayment did

  14. Densities and speeds of sound for binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    Villares, A.; Martin, S.; Haro, M.; Giner, B.; Artigas, H.

    2004-01-01

    This paper reports densities and speeds of sound for the binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K. Excess volumes and excess isentropic compressibility coefficients have been calculated from experimental data and fitted by means of a Redlich-Kister type equation. The ERAS model has been used to calculate the excess volumes of the four systems at both temperatures

  15. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing

    2015-03-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.

  16. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Groeschel, Friedrich; Stieglitz, Robert

    2016-01-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10 −3 Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  17. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, Sergej, E-mail: sergej.gordeev@kit.edu; Groeschel, Friedrich; Stieglitz, Robert

    2016-11-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10{sup −3} Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  18. Advanced high speed X-ray CT scanner for measurement and visualization of multi-phase flow

    International Nuclear Information System (INIS)

    Hori, Keiichi; Fujimoto, Tetsuro; Kawanishi, Kohei; Nishikawa, Hideo

    1998-01-01

    The development of an ultra-fast X-ray computed tomography (CT) scanner has been performed. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. A concept of electrical switching of electron beam of X-ray generation unit is adopted to reduce the scanning time instead of a mechanical motion adopted by a conventional CT scanner. The mechanical motion is a major obstacle to improve the scanning speed. A prototype system with a scanning time of 3.6 milliseconds was developed at first. And, the feasibility was confirmed to measure the dynamic events of two-phase flow. However, faster scanning speed is generally required for the practical use in the thermalhydraulics research field. Therefore, the development of advanced type has been performed. This advanced type can operate under the scanning time of 0.5 milliseconds and is applicable for the measurement of the multi-phase flow with velocity up to 4-5 m/s. (author)

  19. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Energy Technology Data Exchange (ETDEWEB)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M. [City University London, School of Mathematics Computer Science and Engineering, London (United Kingdom); Santini, M. [University of Bergamo, Department of Engineering, Bergamo (Italy)

    2016-11-15

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  20. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Science.gov (United States)

    Mitroglou, N.; Lorenzi, M.; Santini, M.; Gavaises, M.

    2016-11-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions.

  1. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    International Nuclear Information System (INIS)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M.; Santini, M.

    2016-01-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  2. Psychomotor Performance Effects Upon Elementary School Children by Sex and Perceptual Speed Ability of Three Compressions of an Instructional Sound Motion Picture.

    Science.gov (United States)

    Masterson, James; And Others

    Forty-eight sixth-grade students were studied to determine their response to selected compressions of the narration of an instructional sound motion picture. A 4:10 color film with a 158 wpm recorded narration was shown at 25, 33-1/3 and 50 percent compression rates; performance time and quality were measured immediately and after 12-day…

  3. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  4. Assessment of Power Potential of Tidal Currents and Impacts of Power Extraction on Flow Speeds in Indonesia

    Science.gov (United States)

    Orhan, K.; Mayerle, R.

    2016-12-01

    A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.

  5. Influence of Wind Speed on Heat Flow through Polypropylene Insulating Material

    Institute of Scientific and Technical Information of China (English)

    SUN Yu-chai; CHENG Zhong-hao; FENG Xun-wei

    2006-01-01

    The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed.A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.

  6. Development of a Three-Dimensional Unstructured Euler Solver for High-Speed Flows

    Directory of Open Access Journals (Sweden)

    Tudorel Petronel AFILIPOAE

    2015-12-01

    Full Text Available This paper addresses the solution of the compressible Euler equations on hexahedral meshes for supersonic and hypersonic flows. Spatial discretization is accomplished by a cell-centered finite-volume formulation which employs two different upwind schemes for the computation of convective fluxes. Second-order solutions are attained through a linear state reconstruction technique that yields highly resolved flows in smooth regions while providing a sharp and clean resolution of shocks. The solution gradients required for the higher-order spatial discretization are estimated by a least-square method while Venkatakrishnan limiter is employed to preserve monotonicity and avoid oscillations in the presence of shocks. Furthermore, solutions are advanced in time by an explicit third-order Runge-Kutta scheme and convergence to steady state is accelerated using implicit residual smoothing. Flow around a circular arc in a channel and flow past a circular cylinder are studied and results are presented for various Mach numbers together with comparisons to theoretical and experimental data where possible.

  7. High-efficiency particulate air filter behavior at high-speed flows

    International Nuclear Information System (INIS)

    Tang, P.K.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1984-04-01

    This paper presents a filter model based on the principle of fluid flow through porous media. The model includes both laminar and turbulent effects. The coefficients used in the model are determined empirically based on existing data. Deviation from the model is discussed

  8. Numerical modeling of the flow conditions in a closed-circuit low-speed wind tunnel

    NARCIS (Netherlands)

    Moonen, P.; Blocken, B.J.E.; Roels, S.; Carmeliet, J.E.

    2006-01-01

    A methodology for numerically simulating the flow conditions in closed-circuit wind tunnels is developed as a contribution to the general philosophy of incorporating Computational Fluid Dynamics (CFD) in wind tunnel design and testing and to CFD validation studies. The methodology is applied to the

  9. Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation

    Science.gov (United States)

    Ostoich, Christopher Mark

    Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve- hicles fitting this description are subject to severe thermal and fluid dynamic loading from multiple sources such as aerothermal heating, propulsion sys- tem exhaust, and high dynamic pressures. The combination of low-margin design requirements and extreme environmental conditions emphasizes the occurrence of fluid-thermal-structural coupling. Numerous attempts to field such vehicles have been unsuccessful over the past half-century due par- tially to the inability of traditional design and analysis practices to predict the structural response in this flight regime. In this thesis, a high-fidelity computational approach is used to examine the fluid-structural response of aerospace structures in high-speed flows. The method is applied to two cases: one involving a fluid-thermal interaction problem in a hypersonic flow and the other a fluid-structure interaction study involving a turbulent boundary layer and a compliant panel. The coupled fluid-thermal investigation features a nominally rigid alu- minum spherical dome fixed to a ceramic panel holder placed in a Mach 6.59 laminar boundary layer. The problem was originally studied by Glass and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot High Temperature Tunnel and is motivated by thermally bowed body panels designed for the National Aerospace Plane. In this work, the compressible Navier-Stokes equations for a thermally perfect gas and the transient heat equation in the structure are solved simultaneously using two high-fidelity solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are within 10% of the measured values in the dome interior with greater differ- ences found near the dome edges where uncertainties concerning the exper- imental model's construction likely influence the thermal dynamics. On the flat panel holder, the local surface heat fluxes approach those on the wind- ward dome face

  10. Ventilation of high-speed flows, an alternating methodology for the ventilator design

    International Nuclear Information System (INIS)

    Saldarriaga V, Juan G.; Navarrete, J.; Galeano B, Luis A.

    1996-01-01

    This article is about a research developed at Universidad de los Andes on the ventilation of high velocity flows as prevention against cavitations erosion. The research was a consequence of the results found in the physical model of the Guavio River Hydroelectric Project near Bogota and was based in a general model study of a spillway with ventilation system, which did not represent a particular prototype. In the Guavio study one conclusion was obtained:in every ventilation system there are three unknowns which are the air discharge injected to the water flow (design object variable), the sub pressure under the water jet and the jump length of that jet. In the research those three variables were studied using dimensional analysis and multivariable regressions in order to find a set of three equations that allow the design of this type of structures. The new equations are more general than those reported in technical literature

  11. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  12. Relaxation with high-speed plasma flows and singularity analysis in MHD equilibrium

    International Nuclear Information System (INIS)

    Shiraishi, Junya; Ohsaki, Shuichi; Yoshida, Zensho

    2004-01-01

    Relaxation model that leads to plasma confinement with rigid-rotation is presented. This model applies to Jupiter's magnetosphere. It is shown that the invariance of canonical angular momentum of electron fluid, which is realized by axisymmetry through self-organization process, yields plasma confinement. including poloidal flows in equilibrium equation makes the problem rather complicated. Singularity due to the poloidal flow is focused on. It is shown that the singular equation for equilibrium has the same structure as the equation for linear Alfven wave. Since the singular solution for equilibrium equation is physically inadequate, the singularity may be removed by another physical effect. The Hall-effect is taken into account as a singular perturbation that removes the singularity of equilibrium equation for ideal magnetohydrodynamics. (author)

  13. Analysis of high-speed rotating flow inside gas centrifuge casing

    Science.gov (United States)

    Pradhan, Sahadev

    2017-11-01

    The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

  14. The characterisation of diesel nozzle flow using high speed imaging of elastic light scattering

    OpenAIRE

    Lockett, R. D.; Liverani, L.; Thaker, D.; Jeshani, M.; Tait, N. P.

    2013-01-01

    Two identical, conventional six-hole, valve-covered orifice (VCO) diesel injectors have been modified in order to provide optical access to the region below the needle, and the nozzle-flow passages. This has been achieved through the removal of the metal tips, and their replacement with transparent acrylic tips of identical geometry. \\ud \\ud These two identical injectors were employed in order to offer comparability between the measurements. One of them had a dark, anodised inner surface at t...

  15. Longitudinal Plasmoid in High-Speed Vortex Gas Flow Created by Capacity HF Discharge

    Science.gov (United States)

    2010-10-28

    interferometer with high space resolution, PIV method, FTIR spectrometer, optical spectrometer, pressure sensors with high time resolution, IR pyrometer and...of strong LP-vortex interaction. Intensive acoustic waves are created by CHFD in swirl flow in this regime. 38. Study of control of a longitudinal...quartz tube, 4- HF ball electrode, 5- Tesla’s transformer, 6- microwave interferometer, 7- video camera, 8-optical pyrometer , 9-pressure sensor, 10

  16. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    Science.gov (United States)

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  17. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow

    Directory of Open Access Journals (Sweden)

    R. C. Hendricks

    2001-01-01

    Full Text Available The Trapped Vortex Combustor (TVC potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO performance. Computational fluid dynamics (CFD simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.

  18. Supercritical droplet dynamics and emission in low speed cross-flows

    International Nuclear Information System (INIS)

    Chae, J. W.; Yang, H. S.; Yoon, W. S.

    2008-01-01

    Droplet dynamics and emission of a supercritical droplet in crossing gas stream are numerically investigated. Effects of ambient pressure and velocity of nitrogen gas on the dynamics of the supercritical oxygen droplet are parametrically examined. Unsteady conservative axisymmetric Navier-Stokes equations in curvilinear coordinates are preconditioned and solved by dual-time stepping method. A unified property evaluation scheme based on a fundamental equation of state and extended corresponding-state principle is established to deal with thermodynamic non-idealities and transport anomalies. At lower pressures and velocities of nitrogen cross flows, both the diffusion and the convection are important in determining the droplet dynamics. Relative flow motion causes a secondary breakup and cascading vortices, and the droplet lifetime is reduced with increasing in ambient pressure. At higher ambient pressures and velocities, however, the droplet dynamics become convection-controlled while the secondary breakup is hindered by reduced diffusivity of the oxygen. Gas-phase mixing depends on the convection and diffusion velocities in conjunction with corresponding droplet deformation and flow interaction. Supercritical droplet dynamics and emission is not similar with respect to the pressure and velocity of the ambient gas and thus provides no scale

  19. Experimental Studies of Flow Separation of the NACA 2412 Airfoil at Low Speeds

    Science.gov (United States)

    Seetharam, H. C.; Rodgers, E. J.; Wentz, W. H., Jr.

    1997-01-01

    Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.

  20. Speeds of sound in {(1 - x)CH4 + xN2} with x = (0.10001, 0.19999, and 0.5422) at temperatures between 170 K and 400 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Estela-Uribe, J.F.; Trusler, J.P.M.; Chamorro, C.R.; Segovia, J.J.; Martin, M.C.; Villamanan, M.A.

    2006-01-01

    The speed of sound in {(1 - x)CH 4 + xN 2 } has been measured with a spherical acoustic resonator. Two mixtures with x = (0.10001 and 0.19999) were studied along isotherms at temperatures between 220 K and 400 K with pressures up to 20 MPa; a few additional measurements at p = (25 and 30) MPa are also reported. A third mixture with x = 0.5422 was studied along pseudo-isochores at amount-of-substance densities between 0.2 mol . dm -3 and 5 mol . dm -3 . Corrections for molecular vibrational relaxation are discussed in detail and relaxation times are reported. The overall uncertainty of the measured speeds of sound is estimated to be not worse than ±0.02%, except for those measurements in the mixture with x = 0.5422 that lie along the pseduo-isochore at the highest amount-of-substance density. The results have been compared with the predictions of several equations of state used for natural gas systems

  1. Improved choked flow model for MARS code

    International Nuclear Information System (INIS)

    Chung, Moon Sun; Lee, Won Jae; Ha, Kwi Seok; Hwang, Moon Kyu

    2002-01-01

    Choked flow calculation is improved by using a new sound speed criterion for bubbly flow that is derived by the characteristic analysis of hyperbolic two-fluid model. This model was based on the notion of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speed in the bubbly flow regime that agrees well with the existing experimental data. The present sound speed shows more reasonable result in the extreme case than the Nguyens did. The present choked flow criterion derived by the present sound speed is employed in the MARS code and assessed by using the Marviken choked flow tests. The assessment results without any adjustment made by some discharge coefficients demonstrate more accurate predictions of choked flow rate in the bubbly flow regime than those of the earlier choked flow calculations. By calculating the Typical PWR (SBLOCA) problem, we make sure that the present model can reproduce the reasonable transients of integral reactor system

  2. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

    Science.gov (United States)

    Tan, Dongyue; Lee, Tung Lik; Khong, Jia Chuan; Connolley, Thomas; Fezzaa, Kamel; Mi, Jiawei

    2015-07-01

    The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively.

  3. The Effects of Uncertainty in Speed-Flow Curve Parameters on a Large-Scale Model

    DEFF Research Database (Denmark)

    Manzo, Stefano; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2014-01-01

    -delay functions express travel time as a function of traffic flows and the theoretical capacity of the modeled facility. The U.S. Bureau of Public Roads (BPR) formula is one of the most extensively applied volume delay functions in practice. This study investigated uncertainty in the BPR parameters. Initially......-stage Danish national transport model. The results clearly highlight the importance to modeling purposes of taking into account BPR formula parameter uncertainty, expressed as a distribution of values rather than assumed point values. Indeed, the model output demonstrates a noticeable sensitivity to parameter...

  4. A new particle-like method for high-speed flows with chemical non-equilibrium

    Directory of Open Access Journals (Sweden)

    Fábio Rodrigues Guzzo

    2010-04-01

    Full Text Available The present work is concerned with the numerical simulation of hypersonic blunt body flows with chemical non-equilibrium. New theoretical and numerical formulations for coupling the chemical reaction to the fluid dynamics are presented and validated. The fluid dynamics is defined for a stationary unstructured mesh and the chemical reaction process is defined for “finite quantities” moving through the stationary mesh. The fluid dynamics is modeled by the Euler equations and the chemical reaction rates by the Arrhenius law. Ideal gases are considered. The thermodynamical data are based on JANNAF tables and Burcat’s database. The algorithm proposed by Liou, known as AUSM+, is implemented in a cell-centered based finite volume method and in an unstructured mesh context. Multidimensional limited MUSCL interpolation method is used to perform property reconstructions and to achieve second-order accuracy in space. The minmod limiter is used. The second order accuracy, five stage, Runge-Kutta time-stepping scheme is employed to perform the time march for the fluid dynamics. The numerical code VODE, which is part of the CHEMKIN-II package, is adopted to perform the time integration for the chemical reaction equations. The freestream reacting fluid is composed of H2 and air at the stoichiometric ratio. The emphasis of the present paper is on the description of the new methodology for handling the coupling of chemical and fluid mechanic processes, and its validation by comparison with the standard time-splitting procedure. The configurations considered are the hypersonic flow over a wedge, in which the oblique detonation wave is induced by an oblique shock wave, and the hypersonic flow over a blunt body. Differences between the solutions obtained with each formulation are presented and discussed, including the effects of grid refinement in each case. The primary objective of such comparisons is the validation of the proposed methodology. Moreover, for

  5. A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows

    Science.gov (United States)

    Tinoco, R. O.; Goldstein, E. B.; Coco, G.

    2016-12-01

    We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.

  6. Multi-Scale Visualization Analysis of Bus Flow Average Travel Speed in Qingdao

    Science.gov (United States)

    Yong, HAN; Man, GAO; Xiao-Lei, ZHANG; Jie, LI; Ge, CHEN

    2016-11-01

    Public transportation is a kind of complex spatiotemporal behaviour. The traffic congestion and environmental pollution caused by the increase in private cars is becoming more and more serious in our city. Spatiotemporal data visualization is an effective tool for studying traffic, transforming non-visual data into recognizable images, which can reveal where/when congestion is formed, developed and disappeared in space and time simultaneously. This paper develops a multi-scale visualization of average travel speed derived from floating bus data, to enable congestion on urban bus networks to be shown and analyzed. The techniques of R language, Echarts, WebGL are used to draw statistical pictures and 3D wall map, which show the congestion in Qingdao from the view of space and time. The results are as follows:(1) There is a more severely delay in Shibei and Shinan areas than Licun and Laoshan areas; (2) The high congestion usually occurs on Hong Kong Middle Road, Shandong Road, Nanjing Road, Liaoyang West Road and Taiping Road;(3) There is a similar law from Monday to Sunday that the congestion is severer in the morning and evening rush hours than other hours; (4) On Monday morning the severity of congestion is higher than on Friday morning, and on Friday evening the severity is higher than on Monday evening. The research results will help to improve the public transportation of Qingdao.

  7. Bed Evolution under Rapidly Varying Flows by a New Method for Wave Speed Estimation

    Directory of Open Access Journals (Sweden)

    Khawar Rehman

    2016-05-01

    Full Text Available This paper proposes a sediment-transport model based on coupled Saint-Venant and Exner equations. A finite volume method of Godunov type with predictor-corrector steps is used to solve a set of coupled equations. An efficient combination of approximate Riemann solvers is proposed to compute fluxes associated with sediment-laden flow. In addition, a new method is proposed for computing the water depth and velocity values along the shear wave. This method ensures smooth solutions, even for flows with high discontinuities, and on domains with highly distorted grids. The numerical model is tested for channel aggradation on a sloping bottom, dam-break cases at flume-scale and reach-scale with flat bottom configurations and varying downstream water depths. The proposed model is tested for predicting the position of hydraulic jump, wave front propagation, and for predicting magnitude of bed erosion. The comparison between results based on the proposed scheme and analytical, experimental, and published numerical results shows good agreement. Sensitivity analysis shows that the model is computationally efficient and virtually independent of mesh refinement.

  8. Numerical Simulation of a Nanosecond-Pulse Discharge for High-Speed Flow Control

    Science.gov (United States)

    Poggie, Jonathan; Adamovich, Igor

    2012-10-01

    Numerical calculations were carried out to examine the physics of the operation of a nanosecond-pulse, single dielectric barrier discharge in a configuration with planar symmetry. This simplified configuration was chosen as a vehicle to develop a physics based nanosecond discharge model, including realistic air plasma chemistry and compressible bulk gas flow. First, a reduced plasma kinetic model was developed by carrying out a sensitivity analysis of zero-dimensional plasma computations with an extended chemical kinetic model. Transient, one- dimensional discharge computations were then carried out using the reduced kinetic model, incorporating a drift-diffusion formulation for each species, a self-consistent computation of the electric potential using the Poisson equation, and a mass-averaged gas dynamic formulation for the bulk gas motion. Discharge parameters (temperature, pressure, and input waveform) were selected to be representative of recent experiments on bow shock control with a nanosecond discharge in a Mach 5 cylinder flow. The computational results qualitatively reproduce many of the features observed in the experiments, including the rapid thermalization of the input electrical energy and the consequent formation of a weak shock wave. At breakdown, input electrical energy is rapidly transformed (over roughly 1 ns) into ionization products, dissociation products, and electronically excited particles, with subsequent thermalization over a relatively longer time-scale (roughly 10 μs).

  9. On equivalency of various expressions for speed of wave propagation for compressible liquid flows with heat transfer

    International Nuclear Information System (INIS)

    Chawla, T.C.

    1978-01-01

    It is demonstrated that for a compressible flow model with heat transfer, the introduction of a specific state equation to supplement the continuity, momentum an enthalpy equations, leads to a very specific form of an expression for a speed of wave propagation. Consequently, the numerous expressions obtained for various choices of state equations are not easily identifiable and, therefore, can not be evaluated directly in terms of measurable properties. By use of the various thermodynamic relationships, it has been shown that these expressions are all equivalent and are identifiable as isentropic sonic velocity. As a corollary to this demonstration, expressions have also been obtained in terms of measurable properties for various thermodynamic-state variables occurring in the coefficients of the governing equations. These expressions are required if loss in accuracy owing to noise introduced in the direct numerical differentiation of the derivatives that these state-variables represent is to be avoided. (author)

  10. "V-junction": a novel structure for high-speed generation of bespoke droplet flows.

    Science.gov (United States)

    Ding, Yun; Casadevall i Solvas, Xavier; deMello, Andrew

    2015-01-21

    We present the use of microfluidic "V-junctions" as a droplet generation strategy that incorporates enhanced performance characteristics when compared to more traditional "T-junction" formats. This includes the ability to generate target-sized droplets from the very first one, efficient switching between multiple input samples, the production of a wide range of droplet sizes (and size gradients) and the facile generation of droplets with residence time gradients. Additionally, the use of V-junction droplet generators enables the suspension and subsequent resumption of droplet flows at times defined by the user. The high degree of operational flexibility allows a wide range of droplet sizes, payloads, spacings and generation frequencies to be obtained, which in turn provides for an enhanced design space for droplet-based experimentation. We show that the V-junction retains the simplicity of operation associated with T-junction formats, whilst offering functionalities normally associated with droplet-on-demand technologies.

  11. Femtosecond two-photon laser-induced fluorescence of krypton for high-speed flow imaging.

    Science.gov (United States)

    Wang, Yejun; Capps, Cade; Kulatilaka, Waruna D

    2017-02-15

    Ultrashort-pulse (femtosecond-duration) two-photon laser-induced fluorescence (fs-TPLIF) of an inert gas tracer krypton (Kr) is investigated. A detailed spectroscopic study of fluorescence channels followed by the 5p'←←4p excitation of Kr at 204.1 nm is reported. The experimental line positions in the 750-840 nm emission region agree well with the NIST Atomic Spectra Database. The present work provides an accurate listing of relative line strengths in this spectral region. In the range of laser pulse energies investigated, a quadratic dependence was observed between the Kr-TPLIF signal and the laser pulse energy. The single-laser-shot 2D TPLIF images recorded in an unsteady jet demonstrate the potential of using fs excitation at 204.1 nm for mixing and flow diagnostic studies using Kr as an inert gas tracer.

  12. Stability management of high speed axial flow compressor stage through axial extensions of bend skewed casing treatment

    Directory of Open Access Journals (Sweden)

    DilipkumarBhanudasji Alone

    2016-09-01

    Full Text Available This paper presents the experimental results to understand the performance of moderately loaded high speed single stage transonic axial flow compressor subjected to various configurations of axial extensions of bend skewed casing treatment with moderate porosity. The bend skewed casing treatment of 33% porosity was coupled with rectangular plenum chamber of depth equal to the slots depth. The five axial extensions of 20%, 40%, 60%, 80% and 100% were used for the experimental evaluations of compressor performance. The main objective was to identify the optimum extension of the casing treatment with reference to rotor leading edge which results in maximum stall margin improvements with minimum loss in the stage efficiency. At each axial extension the compressor performance is distinctive. The improvement in the stall margin was very significant at some axial extensions with 4%–5% penalty in the stage efficiency. The compressors stage shows recovery in terms of efficiency at lower axial extensions of 20% and 40% with increase in the peak stage efficiency. Measurements of flow parameters showed the typical behaviors at near stall flow conditions. Hot wire sensor was placed at the rotor upstream in the tip region to capture the oscillations in the inlet axial and tangential velocities at stall conditions. In the absence of casing treatment the compressor exhibit abrupt stall with very high oscillations in the inlet axial and tangential velocity of the flow. The extents of oscillations reduce with bend skewed casing treatment. Few measurements were also performed in the plenum chamber and salient results are presented in this paper.

  13. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  14. Estimating the energy-saving benefit of reduced-flow and/or multi-speed commercial kitchen ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.; Schmid, F.; Spata, A.J.

    1999-07-01

    Kitchen exhaust ventilation systems are recognized as a major energy user within commercial food service facilities and restaurants. Minimizing the design ventilation rate of an appliance/hood system by optimizing hood performance in the laboratory is a viable strategy for reducing the makeup air heating and cooling loads as well as the exhaust and supply fan energy. Cutting back the exhaust flow under conditions of noncooking (appliance idle) can further reduce the energy load associated with a kitchen ventilation system. An optimized, two-speed exhaust system was installed within the scope of an energy-efficient, quick service restaurant (QSR) design and demonstration project. This paper evaluates the energy benefit of this variable-flow strategy as well as the savings associated with reducing the design ventilation rate (compared to an off-the-shelf exhaust hood). The paper describes a new public-domain software tool for estimating heating and cooling loads associated with the makeup air requirements of commercial kitchens. This bin-based software provides ASHRAE engineers with an alternative to hand calculations or more sophisticated hour-by-hour simulation. The dramatic impact that both makeup air set point and geographic location have on the outdoor air load is illustrated. The paper concludes with an industry-wide projection of energy savings associated with optimizing the design and operation of commercial kitchen ventilation (CKV) systems.

  15. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  16. NASA Langley Low Speed Aeroacoustic Wind Tunnel: Background Noise and Flow Survey Results Prior to FY05 Construction of Facilities Modifications

    Science.gov (United States)

    Booth, Earl R., Jr.; Henderson, Brenda S.

    2005-01-01

    The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.

  17. Densities, excess molar volumes, speeds of sound and isothermal compressibilities for {2-(2-hexyloxyethoxy)ethanol + n-alkanol} systems at temperatures between (288.15 and 308.15) K

    International Nuclear Information System (INIS)

    Pal, Amalendu; Gaba, Rekha

    2008-01-01

    The densities, ρ and the speeds of sound, u, for {2-(2-hexyloxyethoxy)ethanol (C 6 E 2 ) + methanol, +1-propanol, +1-pentanol, and +1-heptanol} have been measured as a function of composition using an Anton-Paar DSA 5000 densimeter at temperatures (288.15, 293.15, 298.15, 303.15, and 308.15) K and atmospheric pressure over the whole concentration range. The ρ and u values were used to calculate excess molar volumes, V E , and excess molar isentropic compressibility, K S,m E , respectively. Also, thermal expansivity, α, partial molar volume, V-bar i , and partial molar volume of the components at infinite dilution, V-bar i 0 , have been calculated. The variation of these properties with composition and temperature of the mixtures are discussed in terms of molecular interactions

  18. An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets

    OpenAIRE

    Bogey , Christophe; Bailly , Christophe

    2007-01-01

    International audience; Noise generation is investigated in subsonic isothermal round jets at Mach numbers M =0.6 and M =0.9, with Reynolds numbers ReD =1700 and ReD 105, using causality methods on data provided by large-eddy simulations. The correlations between broadband sound pressure signals and broadband turbulence signals along the jet axis and the shear layer are calculated. The normalized correlations are found to be significant between the pressure emitted in the downstream direction...

  19. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method

    Science.gov (United States)

    Broglia, Riccardo; Durante, Danilo

    2017-11-01

    This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to

  20. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.

    Science.gov (United States)

    Ren, Ziyu; Yang, Xingbang; Wang, Tianmiao; Wen, Li

    2016-02-08

    Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.

  1. Reducing travel delay by in-car advice on speed, headway and lane use based on downstream traffic flow conditions - a simulation study

    NARCIS (Netherlands)

    Schakel, W.J.; Klunder, G.; van Arem, B.; Harmsen, E.; Hagenzieker, M.P.

    2012-01-01

    A new advisory ADAS system is implemented in micro simulation to asses the effects on traffic flow as well as on safety. The system uses loop detector data from which situations may be recognized where advices are given to drivers in-car. Advice is given on speed, headway and lane use. Effectively

  2. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  3. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    Zhang, Y X; Su, M; Hou, H C; Song, P F

    2013-01-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  4. Analysis of Metal Flow Behavior and Residual Stress Formation of Complex Functional Profiles under High-Speed Cold Roll-Beating

    Directory of Open Access Journals (Sweden)

    Fengkui Cui

    2018-01-01

    Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.

  5. Inferring the high-pressure strength of copper by measurement of longitudinal sound speed in a symmetric impact and release experiment

    Science.gov (United States)

    Rothman, Stephen; Edwards, Rhys; Vogler, Tracy J.; Furnish, M. D.

    2012-03-01

    Velocity-time histories of free- or windowed-surfaces have been used to calculate wave speeds and hence deduce the shear moduli for materials at high pressure. This is important to high velocity impact phenomena, e.g. shaped-charge jets, long rod penetrators, and other projectile/armour interactions. Historically the shock overtake method has required several experiments with different depths of material to account for the effect of the surface on the arrival time of the release. A characteristics method, previously used for analysis of isentropic compression experiments, has been modified to account for the effect of the surface interactions, thus only one depth of material is required. This analysis has been applied to symmetric copper impacts performed at Sandia National Laboratory's Star Facility. A shear modulus of 200GPa, at a pressure of ~180GPa, has been estimated. These results are in broad agreement with previous work by Hayes et al.

  6. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  7. Applicability of linearized-theory attached-flow methods to design and analysis of flap systems at low speeds for thin swept wings with sharp leading edges

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1987-01-01

    Low-speed experimental force and data on a series of thin swept wings with sharp leading edges and leading and trailing-edge flaps are compared with predictions made using a linearized-theory method which includes estimates of vortex forces. These comparisons were made to assess the effectiveness of linearized-theory methods for use in the design and analysis of flap systems in subsonic flow. Results demonstrate that linearized-theory, attached-flow methods (with approximate representation of vortex forces) can form the basis of a rational system for flap design and analysis. Even attached-flow methods that do not take vortex forces into account can be used for the selection of optimized flap-system geometry, but design-point performance levels tend to be underestimated unless vortex forces are included. Illustrative examples of the use of these methods in the design of efficient low-speed flap systems are included.

  8. Bayesian inference of the flow resistivity of a sound absorber and the room's influence on the Sabine absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Choi, Sang-Hyeon; Lee, Ikjin

    2017-01-01

    A Bayesian analysis is applied to determine the flow resistivity of a porous sample and the influence of the test chamber based on measured Sabine absorption coefficient data. The Sabine absorption coefficient measured in a reverberation chamber according to ISO 354 is influenced by the test...... chamber significantly, whereas the flow resistivity is a rather reproducible material property, from which the absorptive characteristics can be calculated through reliable models. Using Sabine absorption coefficients measured in 13 European reverberation chambers, the maximum a posteriori...... and the uncertainty of the flow resistivity and the test chamber’s influence are estimated. Inclusion of more than one chamber’s absorption data helps the flow resistivity converge towards a reliable value with a standard deviation below 17%...

  9. Two-dimensional magnetic field evolution measurements and plasma flow speed estimates from the coaxial thruster experiment

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Gerwin, R.A.; Schoenberg, K.F.; Scheuer, J.T.; Hoyt, R.P.; Henins, I.

    1994-01-01

    Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernandez et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to v z ∼10 7 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer

  10. Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: A case study in the Puget Sound, Washington, USA

    Science.gov (United States)

    Zank, Ben; Bagstad, Kenneth J.; Voigt, Brian; Villa, Ferdinando

    2016-01-01

    Urban expansion and its associated landscape modifications are important drivers of changes in ecosystem service (ES). This study examined the effects of two alternative land use-change development scenarios in the Puget Sound region of Washington State on natural capital stocks and ES flows. Land-use change model outputs served as inputs to five ES models developed using the Artificial Intelligence for Ecosystem Services (ARIES) platform. While natural capital stocks declined under managed (1.3–5.8%) and unmanaged (2.8–11.8%) development scenarios, ES flows increased by 18.5–56% and 23.2–55.7%, respectively. Human development of natural landscapes reduced their capacity for service provision, while simultaneously adding beneficiaries, particularly along the urban fringe. Using global and local Moran’s I, we identified three distinct patterns of change in ES due to projected landuse change. For services with location-dependent beneficiaries – open space proximity, viewsheds, and flood regulation – urbanization led to increased clustering and hot-spot intensities. ES flows were greatest in the managed land-use change scenario for open space proximity and flood regulation, and in the unmanaged land-use change scenario for viewsheds—a consequence of the differing ES flow mechanisms underpinning these services. We observed a third pattern – general declines in service provision – for carbon storage and sediment retention, where beneficiaries in our analysis were not location dependent. Contrary to past authors’ finding of ES declines under urbanization, a more nuanced analysis that maps and quantifies ES provision, beneficiaries, and flows better identifies gains and losses for specific ES beneficiaries as urban areas expand.

  11. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  12. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  13. Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters

    Science.gov (United States)

    Dokumaci, E.

    1995-05-01

    The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics.

  14. Outflow of traffic from the national capital Kuala Lumpur to the north, south and east coast highways using flow, speed and density relationships

    Institute of Scientific and Technical Information of China (English)

    Nik Hashim Nik Mustapha; Nik Nur Wahidah Nik Hashim

    2016-01-01

    The functional relationships between flow (veh/km), density (veh/h) and speed (km/h) in traffic congestion have a long history of research. However, their findings and techniques persist to be relevant to this day. The analysis is pertinent, particularly in finding the best fit for the three major highways in Malaysia, namely the KL-Karak Highway, KL-Seremban Highway and KL-Ipoh Highway. The trans-logarithm function of density—speed model was compared to the classical models of Greenshields, Greenberg, Underwood and Drake et al. using data provided by the Transport Statistics Malaysia 2014. The results of regression analysis revealed that the Greenshields and Greenberg models were statistically signifi-cant. The trans-logarithm function was also tested and the results were nonetheless without exception. Its usefulness in addition to statistical significance related to the derived economic concepts of maximum speed and the related number of vehicles, flow and density and the limits of free speed were relevant in comparing the individual levels of traffic congestion between highways. For instance, KL-Karak Highway was least congested compared to KL-Seremban Highway and KL-Ipoh Highway. Their maximum speeds, based on three lanes carriage capacity of one direction, were 33.4 km/h for KL-Karak, 15.9 km/h for KL-Seremban, and 21.1 km/h for KL-Ipoh. Their corresponding flows were approxi-mated at 1080.9 veh/h, 1555.4 veh/h, and 1436.6 veh/h.

  15. Outflow of traffic from the national capital Kuala Lumpur to the north, south and east coast highways using flow, speed and density relationships

    Directory of Open Access Journals (Sweden)

    Nik Hashim Nik Mustapha

    2016-12-01

    Full Text Available The functional relationships between flow (veh/km, density (veh/h and speed (km/h in traffic congestion have a long history of research. However, their findings and techniques persist to be relevant to this day. The analysis is pertinent, particularly in finding the best fit for the three major highways in Malaysia, namely the KL-Karak Highway, KL-Seremban Highway and KL-Ipoh Highway. The trans-logarithm function of density–speed model was compared to the classical models of Greenshields, Greenberg, Underwood and Drake et al. using data provided by the Transport Statistics Malaysia 2014. The results of regression analysis revealed that the Greenshields and Greenberg models were statistically significant. The trans-logarithm function was also tested and the results were nonetheless without exception. Its usefulness in addition to statistical significance related to the derived economic concepts of maximum speed and the related number of vehicles, flow and density and the limits of free speed were relevant in comparing the individual levels of traffic congestion between highways. For instance, KL-Karak Highway was least congested compared to KL-Seremban Highway and KL-Ipoh Highway. Their maximum speeds, based on three lanes carriage capacity of one direction, were 33.4 km/h for KL-Karak, 15.9 km/h for KL-Seremban, and 21.1 km/h for KL-Ipoh. Their corresponding flows were approximated at 1080.9 veh/h, 1555.4 veh/h, and 1436.6 veh/h.

  16. Influence of air flow, temperature and agitation speed in the batch acetification process to obtain orange vinegar (Citrus sinensis var.W. Navel

    Directory of Open Access Journals (Sweden)

    María Ferreyra

    2012-03-01

    Full Text Available This paper describes the influence of process variables to produce orange vinegar. Orange juice was fermented with Saccharomyces cerevisiae until reach 14% v/v. The biooxidation was carried out with Acetobacter sp., in submerge culture using a laboratory scale fermentor. In order to avoid the inhibitory effect of ethanol on acetic acid bacteria, the orange wine was diluted to 6% v/v with a mineral solution. It was performed a factorial design 2k to study the influence of variables. It was studied air flow rate/agitation at levels of 0.3-0.6 vvm and 200-400 rpm and the effect of air flow rate/temperature at 0.4-0.6 vvm and 25- 30°C, respectively. Duplicate treatments were carried out and the results were evaluated in terms of productivity and fermentation yield. Statistical design (p-value<0.05 was analyzed using Statgraphics Centurion XV Corporate software. Treatments performed at 200 rpm and different air flow levels, did not show significant differences on acetification rate. At higher agitation speed and air flow rates, the productivity was high. The best yields were obtained at lower air flows levels and higher agitation speed. Temperature did not present statistically differences on studied variables. The best yield was obtained at 400 rpm and 0.3 vvm at 25°C. It can be concluded that agitation speed plays an important role for a better acetification rate however higher air flow rates causes less yields.

  17. Numerical Investigation on the Effects of Self-Excited Tip Flow Unsteadiness and Blade Row Interactions on the Performance Predictions of Low Speed and Transonic Compressor Rotors

    Science.gov (United States)

    Lee, Daniel H.

    The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.

  18. TOMOGRAPHY OF PLASMA FLOWS IN THE UPPER SOLAR CONVECTION ZONE USING TIME-DISTANCE INVERSION COMBINING RIDGE AND PHASE-SPEED FILTERING

    International Nuclear Information System (INIS)

    Švanda, Michal

    2013-01-01

    The consistency of time-distance inversions for horizontal components of the plasma flow on supergranular scales in the upper solar convection zone is checked by comparing the results derived using two k-ω filtering procedures—ridge filtering and phase-speed filtering—commonly used in time-distance helioseismology. I show that both approaches result in similar flow estimates when finite-frequency sensitivity kernels are used. I further demonstrate that the performance of the inversion improves (in terms of a simultaneously better averaging kernel and a lower noise level) when the two approaches are combined together in one inversion. Using the combined inversion, I invert for horizontal flows in the upper 10 Mm of the solar convection zone. The flows connected with supergranulation seem to be coherent only for the top ∼5 Mm; deeper down there is a hint of change of the convection scales toward structures larger than supergranules

  19. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  20. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  1. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  2. Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows

    Science.gov (United States)

    Sammy, Mo

    2010-01-01

    Active flow control is often used to manipulate flow instabilities to achieve a desired goal (e.g. prevent separation, enhance mixing, reduce noise, etc.). Instability frequencies normally scale with flow velocity scale and inversely with flow length scale (U/l). In a laboratory setting for such flow experiments, U is high, but l is low, resulting in high instability frequency. In addition, high momentum and high background noise & turbulence in the flow necessitate high amplitude actuation. Developing a high amplitude and high frequency actuator is a major challenge. Ironically, these requirements ease up in application (but other issues arise).

  3. Deuterium isotope differences in 2-propanone (CH3)2CO/(CD3)2CO: a high-pressure sound-speed, density, and heat capacities study

    International Nuclear Information System (INIS)

    Szydlowski, J.; Gomes de Azevedo, R.; Rebelo, L.P.N.; Esperanca, J.M.S.S.; Guedes, H.J.R.

    2005-01-01

    A new high-pressure, non-intrusive ultrasonic microcell [J. Chem. Thermodyn. 36 (2004) 211-222] was used to carry out sound-speed measurements in deuteriated 2-propanone (acetone-d 6 ) in broad ranges of temperature (288 6 . (p, ρ, T) data for acetone-d 6 were also determined but in a narrower T, p range (298 to 333 K; 0.1 to 60 MPa). In this interval, several thermodynamic properties were thus determined, such as: isentropic (κ s ) and isothermal (κ T ) compressibility, isobaric thermal expansivity (α p ), isobaric (c p ) and isochoric (c v ) specific heat capacity, and the thermal pressure coefficient (γ v ). Comparisons with our data for acetone-h 6 enabled us to establish the magnitude and sign of deuterium isotope effects for identical properties. These effects are a consequence of distinct vibrational mode frequencies in an isotope-invariant force constants' field. Molar heat capacities and their isotope effects were theoretically determined by employing an Einstein-like model for the vibrational frequencies of acetone-h 6 and acetone-d 6

  4. Density,Viscosity,Refractive Index,and Speed of Sound in Binary Mixtures of Pyridine and 1-Alkanols(C6,C7,C8,C10)at 303.15 K

    Institute of Scientific and Technical Information of China (English)

    ALI Anwar; TARIQ Mohd; NABI Firdosa; SHAHJAHAN

    2008-01-01

    The densities(ρ),viscosities(η),refractive indices(nD),and speeds of sound(u),of binary mixtures of pyridine with 1-hexanoi,1-heptanol,1-octanol and 1-decanol,including those of pure liquids,were measured over the entire composition range at 303.15 K and atmospheric pressure.From these experimental data,the values of excess molar volumes(VE),deviations in isentropic compressibilities(△ks),viscosities(△η),molar refractions(△Rm),apparent and partial molar volumes(Vφ,2 and V0φ,2 ),apparent and partial molar compressibilities(Kφ,2 and K0φ,2 ),of alkanols in pyridine and their corresponding deviations(△V and △K)were calculated.The variations of these parameters with composition of the mixtures suggest that the strength of interactions in these mixtures follow the order:1-hexanol 1-heptanol 1-octanol 1-decanol.All the excess and deviation functions were fitted to Redlich-Kister polynomial equation to determine the fitting coefficients and the standard deviations.

  5. Tactile/kinesthetic stimulation (TKS) increases tibial speed of sound and urinary osteocalcin (U-MidOC and unOC) in premature infants (29-32weeks PMA).

    Science.gov (United States)

    Haley, S; Beachy, J; Ivaska, K K; Slater, H; Smith, S; Moyer-Mileur, L J

    2012-10-01

    Preterm delivery (kinesthetic stimulation (TKS), a form of infant massage that incorporates kinesthetic movement, would increase bone strength and markers of bone accretion in preterm infants. Preterm, AGA infants (29-32 weeks) were randomly assigned to TKS (N=20) or Control (N=20). Twice daily TKS was provided 6 days per week for 2 weeks. Control infants received the same care without TKS treatment. Treatment was masked to parents, health care providers, and study personnel. Baseline and week two measures were collected for tibial speed of sound (tSOS, m/sec), a surrogate for bone strength, by quantitative ultrasound (Sunlight8000) and urine markers of bone metabolism, pyridinium crosslinks and osteocalcin (U-MidOC and unOC). Infant characteristics at birth and study entry as well as energy/nutrient intake were similar between TKS and Control. TKS intervention attenuated the decrease in tSOS observed in Control infants (p<0.05). Urinary pyridinium crosslinks decreased over time in both TKS and CTL (p<0.005). TKS infants experienced greater increases in urinary osteocalcin (U-MidOC, p<0.001 and unOC, p<0.05). We conclude that TKS improves bone strength in premature infants by attenuating the decrease that normally follows preterm birth. Further, biomarkers of bone metabolism suggest a modification in bone turnover in TKS infants in favor of bone accretion. Taken together, we speculate that TKS improves bone mineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I. [Universidade Federal de Itajuba (UNIFEI), Itajuba (Brazil); Neves, F. Jr. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba (Brazil); Franca, F.A. [Universidade Estadual de Campinas (UNICAMP), Campinas (Brazil)

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  7. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  8. Desflurane usage during anesthesia with and without N2O using FLOW-i Automatic Gas Control with three different wash-in speeds.

    Science.gov (United States)

    De Medts, Robrecht; Carette, Rik; De Wolf, Andre M; Hendrickx, Jan F A

    2017-06-09

    AGC ® (Automatic Gas Control) is the FLOW-i's automated low flow tool (Maquet, Solna, Sweden) that target controls the inspired O 2 (F I O 2 ) and end-expired desflurane concentration (F A des) while (by design) exponentially decreasing fresh gas flow (FGF) during wash-in to a maintenance default FGF of 300 mL min -1 . It also offers a choice of wash-in speeds for the inhaled agents. We examined AGC performance and hypothesized that the use of lower wash-in speeds and N 2 O both reduce desflurane usage (Vdes). After obtaining IRB approval and patient consent, 78 ASA I-II patients undergoing abdominal surgery were randomly assigned to 1 of 6 groups (n = 13 each), depending on carrier gas (O 2 /air or O 2 /N 2 O) and wash-in speed (AGC speed 2, 4, or 6) of desflurane, resulting in groups air/2, air/4, air/6, N 2 O/2, N 2 O/4, and N 2 O/6. The target for F I O 2 was set at 35%, while the F A des target was selected so that the AGC displayed 1.3 MAC (corrected for the additive affect of N 2 O if used). AGC was activated upon starting mechanical ventilation. Varvel's criteria were used to describe performance of achieving the targets. Patient demographics, end-expired N 2 O concentration, MAC, FGF, and Vdes were compared using ANOVA. Data are presented as mean ± standard deviation, except for Varvel's criteria (median ± quartiles). Patient demographics did not differ among the groups. Median performance error was -2-0% for F I O 2 and -3-1% for F A des; median absolute performance error was 1-2% for F I O 2 and 0-3% for F A des. MAC increased faster in N 2 O groups, but total MAC decreased 0.1-0.25 MAC below that in the O 2 /air groups after 60 min. The effect of wash-in speed on Vdes faded over time. N 2 O decreased Vdes by 62%. AGC performance for O 2 and desflurane targeting is excellent. After 1 h, the wash-in speeds tested are unlikely to affect desflurane usage. N 2 O usage decreases Vdes proportionally with its reduction in F A tdes.

  9. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    Science.gov (United States)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow

  10. Effectiveness of Motorcycle speed controlled by speed hump

    Directory of Open Access Journals (Sweden)

    Pornsiri Urapa

    2014-09-01

    Full Text Available Speed humps are one of the traffic calming measures widely accepted to control vehicle speed in the local road. Humps standards from the western countries are designed mainly for the passenger car. This study, therefore, aims to reveal the effectiveness of speed hump to control the motorcycle speed. This study observes the free-flow speed of the riders at the total of 20 speed bumps and humps. They are 0.3-14.8 meter in width and 5-18 centimeter in height. The results reveal that the 85th percentile speeds reduce 15-65 percent when crossing the speed bumps and speed humps. Besides, this study develops the speed model to predict the motorcycle mean speed and 85th percentile speed. It is found that speed humps follow the ITE standard can control motorcycle crossing speeds to be 25-30 Kph which are suitable to travel on the local road.

  11. Sound speeds vision through preparation, not integration

    NARCIS (Netherlands)

    Los, S.A.; van der Burg, E.

    2013-01-01

    In manual choice reaction time (RT) tasks, people respond faster to a visual target stimulus when it is accompanied by a task-irrelevant tone than when it is presented alone. This intersensory facilitation effect is often attributed to multisensory integration, but here we show it to be a reflection

  12. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  13. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  14. High Speed Schlieren Studies of Flow Over Mercury Atlas Vehicle in the Langley 2-Foot Transonic Aeroplasticity Tunnel

    Science.gov (United States)

    1960-01-01

    Test conditions for the studies are: Mach number varying continuously from approximately 0.8 to 1.1 and Reynolds number (based on maximum diameter of Atlas) approximately 0.451 x 10(exp 6). Camera speed is 2000 frames per second.

  15. Density, speed of sound, viscosity and refractive index properties of aqueous solutions of vitamins B1.HCl and B6.HCl at temperatures (278.15, 288.15, and 298.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Deshmukh, Dinesh W.; Paliwal, Lalitmohan J.

    2013-01-01

    Highlights: ► Study of aqueous solutions of vitamins B 1 .HCl and B 6 .HCl at different temperatures has been presented. ► These are important vitamins. ► Different interactions among solute and solvents have been investigated. ► The results are interpreted in terms of water structure making and breaking effects due to cations. -- Abstract: The experimental values of density (ρ), speed of sound (u), absolute viscosity (η) and refractive index (n D ) properties are reported for aqueous solutions of thiamine hydrochloride (vitamin B 1 .HCl) and pyridoxine hydrochloride (vitamin B 6 .HCl) within the concentration range (0.01 to 0.55) mol ⋅ kg −1 at three different temperatures, viz. T/K = 278.15, 288.15, and 298.15. Using experimental data, different derived parameters such as the apparent molar volume of solute (ϕ V ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (ϕ KS ) and relative viscosity of solution (η r ) have been computed. The limiting values of apparent molar volume (ϕ V 0 ) and apparent molar isentropic compressibility (ϕ KS 0 ) have been obtained. The limiting apparent molar expansivity (ϕ E 0 ) of solute, coefficient of thermal expansion (α ∗ ) and hydration numbers (n h ) of above vitamins in the aqueous medium have also been estimated. The experimental values of relative viscosity are used to calculate the Jones–Dole equation viscosity A and B coefficients for the hydrochlorides. The temperature coefficients of B i.e. (dB/dT) for these solutes have been used to study water structure making and breaking effects due to cations. Further, a discussion is made on the basis of solute–solute and solute–solvent interactions

  16. Influence of treatment with alendronate on the speed of sound, an ultrasound parameter, of the calcaneus in postmenopausal Japanese women with osteoporosis: a clinical practice-based observational study

    Directory of Open Access Journals (Sweden)

    Iwamoto J

    2012-06-01

    Full Text Available Jun Iwamoto,1 Tetsuya Takada,2 Yoshihiro Sato,3 Hideo Matsumoto11Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, 2Department of Internal Medicine, Hiyoshi Medical Clinic, Kanagawa, 3Department of Neurology, Mitate Hospital, Fukuoka, JapanPurpose: The influence of alendronate (ALN treatment on the quantitative ultrasound parameters of the calcaneus remains to be established in Japanese patients. The aim of the present clinical practice-based observational study was to examine the influence of ALN treatment for 1 year on the speed of sound (SOS of the calcaneus and bone turnover markers in postmenopausal Japanese women with osteoporosis.Patients and methods: Forty-five postmenopausal Japanese women with osteoporosis who had received treatment with ALN for more than 1 year were enrolled in the study. The SOS and bone turnover markers were monitored over 1 year of ALN treatment.Results: The urinary levels of cross-linked N-terminal telopeptides of type I collagen and serum levels of alkaline phosphatase decreased significantly from the baseline values (–44.9% at 3 months and –22.2% at 12 months, respectively. The SOS increased modestly, but significantly, from the baseline value (0.6% at both 6 and 12 months. The percentage decrease in the urinary levels of cross-linked N-terminal telopeptides of type I collagen at 3 months was significantly correlated with the percentage increase in the SOS only at 6 months (correlation coefficient, 0.299.Conclusion: The present study confirmed that ALN treatment suppressed bone turnover, producing a clinically significant increase in the SOS of the calcaneus in postmenopausal Japanese women with osteoporosis.Keywords: postmenopausal osteoporosis, quantitative ultrasound (QUS, SOS, bone turnover, biochemical markers

  17. Effect of the submergence, the bed form geometry, and the speed of the surface water flow on the mitigation of pesticides in agricultural ditches

    Science.gov (United States)

    Boutron, Olivier; Margoum, Christelle; Chovelon, Jean-Marc; Guillemain, CéLine; Gouy, VéRonique

    2011-08-01

    Pesticides, which have been extensively used in agriculture, have become a major environmental issue, especially regarding surface and groundwater contamination. Of particular importance are vegetated farm drainage ditches, which can play an important role in the mitigation of pesticide contamination by adsorption onto ditch bed substrates. This role is, however, poorly understood, especially regarding the influence of hydrodynamic parameters, which make it difficult to promote best management practice of these systems. We have assessed the influence of three of these parameters (speed of the surface water flow, submergence, and geometrical characteristics of the bed forms) on the transfer and adsorption of selected pesticides (isoproturon, diuron, tebuconazole, and azoxystrobin) into the bed substrate by performing experiments with a tilted experimental flume, using hemp fibers as a standard of natural organic substrates that are found at the bottom of agricultural ditches. Results show the transfer of pesticides from surface water flow into bed substrate is favored, both regarding the amounts transferred into the bed substrate and the kinetics of the transfer, when the surface water speed and the submergence increase and when the bed forms are made of rectangular shapes. Extrapolation of flume data over a distance of several hundred meters suggests that an interesting possibility for improving the mitigation of pesticides in ditches would be to increase the submergence and to favor bed forms that tend to enhance perturbations and subsequent infiltration of the surface water flow.

  18. Material flows of mobile phones and accessories in Nigeria: Environmental implications and sound end-of-life management options

    International Nuclear Information System (INIS)

    Osibanjo, Oladele; Nnorom, Innocent Chidi

    2008-01-01

    Presently, Nigeria is one of the fastest growing Telecom markets in the world. The country's teledensity increased from a mere 0.4 in 1999 to 10 in 2005 following the liberalization of the Telecom sector in 2001. More than 25 million new digital mobile lines have been connected by June 2006. Large quantities of mobile phones and accessories including secondhand and remanufactured products are being imported to meet the pent-up demand. This improvement in mobile telecom services resulted in the preference of mobile telecom services to fixed lines. Consequently, the contribution of fixed lines decreased from about 95% in year 2000 to less than 10% in March 2005. This phenomenal progress in information technology has resulted in the generation of large quantities of electronic waste (e-waste) in the country. Abandoned fixed line telephone sets estimated at 120,000 units are either disposed or stockpiled. Increasing quantities of waste mobile phones estimated at 8 million units by 2007, and accessories will be generated. With no material recovery facility for e-waste and/or appropriate solid waste management infrastructure in place, these waste materials end up in open dumps and unlined landfills. These practices create the potential for the release of toxic metals and halocarbons from batteries, printed wiring boards, liquid crystal display and plastic housing units. This paper presents an overview of the developments in the Nigerian Telecom sector, the material in-flow of mobile phones, and the implications of the management practices for wastes from the Telecom sector in the country

  19. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device: constant versus increasing pump speed: a pilot study

    DEFF Research Database (Denmark)

    Brassard, Patrice; Jensen, Annette S; Nordsborg, Nikolai

    2011-01-01

    with work rate would increase organ blood flow. Methods and Results- Invasively determined CO and leg blood flow and Doppler-determined cerebral perfusion were measured during 2 incremental cycle exercise tests on the same day in 8 patients provided with a HeartMate II LVAD. In random order, patients...

  20. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Marashdeh, Qussai [Tech4imaging LLC, Columbus, OH (United States)

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  1. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    Science.gov (United States)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  2. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    OpenAIRE

    Riza Rahmat; Kurniawan Dicky; Wicaksono Arif Budi

    2018-01-01

    NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV M...

  3. A comparative pressure analysis of air flow between horizontal and V-Tail of UAV MALE of NACA0012H with speed variation

    Directory of Open Access Journals (Sweden)

    Riza Rahmat

    2018-01-01

    Full Text Available NACA0012H is an airfoil type that could be used for Unmanned Aerial Vehicle Medium Altitude Long Endurance. This experiment was used to analyze stress in the surface of Tail of UAV MALE that was caused by air flow. The experiment was conducted using Computational Fluid Dynamics Software. Two designs of tail, horizontal and V-tail, were considered to simulate pressure occurred on the surface of leading edge, chamber and trailing edge. The simulation was developed varying the speed of the UAV MALE. The results showed that pressure occurred on the surface of horizontal tail higher than pressure on the V-tail.

  4. Speeding up the flash calculations in two-phase compositional flow simulations - The application of sparse grids

    KAUST Repository

    Wu, Yuanqing; Kowitz, Christoph; Sun, Shuyu; Salama, Amgad

    2015-01-01

    Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from

  5. Small Sub-micron-Particle Position-Resolving Laser-Doppler Velocimeter for High-Speed Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objectives of this proposed work are to develop and prove the use of LDV and CompLDV for particle-position-resolving and flow velocity profile...

  6. Development and Application of Advanced Optical Diagnostics for the Study of High Speed Flows in Micro Systems

    National Research Council Canada - National Science Library

    Lempert, Walter

    2000-01-01

    .... In particular, Molecular Tagging Velocimetry (MTV) measurements have been performed, using acetone vapor as a molecular tracer, in the flow produced by a 1 mm diameter, pressure matched, sonic nozzle...

  7. Linear theory of sound waves with evaporation and condensation

    International Nuclear Information System (INIS)

    Inaba, Masashi; Watanabe, Masao; Yano, Takeru

    2012-01-01

    An asymptotic analysis of a boundary-value problem of the Boltzmann equation for small Knudsen number is carried out for the case when an unsteady flow of polyatomic vapour induces reciprocal evaporation and condensation at the interface between the vapour and its liquid phase. The polyatomic version of the Boltzmann equation of the ellipsoidal statistical Bhatnagar–Gross–Krook (ES-BGK) model is used and the asymptotic expansions for small Knudsen numbers are applied on the assumptions that the Mach number is sufficiently small compared with the Knudsen number and the characteristic length scale divided by the characteristic time scale is comparable with the speed of sound in a reference state, as in the case of sound waves. In the leading order of approximation, we derive a set of the linearized Euler equations for the entire flow field and a set of the boundary-layer equations near the boundaries (the vapour–liquid interface and simple solid boundary). The boundary conditions for the Euler and boundary-layer equations are obtained at the same time when the solutions of the Knudsen layers on the boundaries are determined. The slip coefficients in the boundary conditions are evaluated for water vapour. A simple example of the standing sound wave in water vapour bounded by a liquid water film and an oscillating piston is demonstrated and the effect of evaporation and condensation on the sound wave is discussed. (paper)

  8. Photoacoustic Sounds from Meteors.

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

  9. Fluid Sounds

    DEFF Research Database (Denmark)

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  10. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    Science.gov (United States)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  11. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  12. Nuclear sound

    International Nuclear Information System (INIS)

    Wambach, J.

    1991-01-01

    Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)

  13. Wood for sound.

    Science.gov (United States)

    Wegst, Ulrike G K

    2006-10-01

    The unique mechanical and acoustical properties of wood and its aesthetic appeal still make it the material of choice for musical instruments and the interior of concert halls. Worldwide, several hundred wood species are available for making wind, string, or percussion instruments. Over generations, first by trial and error and more recently by scientific approach, the most appropriate species were found for each instrument and application. Using material property charts on which acoustic properties such as the speed of sound, the characteristic impedance, the sound radiation coefficient, and the loss coefficient are plotted against one another for woods. We analyze and explain why spruce is the preferred choice for soundboards, why tropical species are favored for xylophone bars and woodwind instruments, why violinists still prefer pernambuco over other species as a bow material, and why hornbeam and birch are used in piano actions.

  14. An experimental study on the aeroacoustics of wall-bounded flows : Sound emission from a wall-mounted cavity, coupling of time-resolved PIV and acoustic analogies

    NARCIS (Netherlands)

    Koschatzky, V.

    2011-01-01

    This thesis deals with the problem of noise. Sound is a constant presence in our lives. Most of the times it is something wanted and it serves a purpose, such as communication through speech or entertainment by listening to music. On the other hand, quite often sound is an annoying and unwanted

  15. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    Science.gov (United States)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s-1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m-1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m-1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  16. High speed capillary zone electrophoresis-mass spectrometry via an electrokinetically pumped sheath flow interface for rapid analysis of amino acids and a protein digest.

    Science.gov (United States)

    Schiavone, Nicole M; Sarver, Scott A; Sun, Liangliang; Wojcik, Roza; Dovichi, Norman J

    2015-06-01

    While capillary zone electrophoresis (CZE) has been used to produce very rapid and efficient separations, coupling these high-speed separations with mass spectrometry (MS) has been challenging. Now, with much faster and sensitive mass spectrometers, it is possible to take full advantage of the CZE speed and reconstruct the fast migrating peaks. Here are three high-speed CZE-MS analyses via an electrokinetically pumped sheath-flow interface. The first separation demonstrates CZE-ESI-MS of an amino acid mixture with a 2-min separation, >50,000 theoretical plates, low micromolar concentration detection limits, and subfemtomole mass detection limits (LTQ XL mass spectrometer). The second separation with our recently improved third-generation CE-MS interface illustrates a 20 amino acid separation in ∼7min with an average over 200,000 plate counts, and results in almost-baseline resolution of structural isomers, leucine and isoleucine. The third separation is of a BSA digest with a reproducible CZE separation and mass spectrometry detection in 2min. CZE-MS/MS analysis of the BSA digest identified 31 peptides, produced 52% sequence coverage, and generated a peak capacity of ∼40 across the 1-min separation window (Q-Exactive mass spectrometer). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Turbulence modification in bubbly upward pipe flow. Extraction of time resolved turbulent microscopic structure by high speed PIV

    International Nuclear Information System (INIS)

    Yoshimura, Koki; Minato, Daiju; Sato, Yohei; Hishida, Koichi

    2004-01-01

    The objective of the present study is to obtain detailed information on the effects of bubbles on modification of turbulent structure by time-series measurements using a high speed time-resolved PIV. The experiments were carried out in a fully-developed vertical pipe with upflow of water at the Reynolds number of 9700 and the void fraction of 0.5%. It is observed that turbulence production was decreased and the dissipation rate was enhanced in the whole domain. We analyzed the effects of bubbles on modification of the energy cascade process from power spectra of velocity fluctuation of the continuous phase. (author)

  18. Low speed/low rarefaction flow simulation in micro/nano cavity using DSMC method with small number of particles per cell

    International Nuclear Information System (INIS)

    Amiri-Jaghargh, Ali; Roohi, Ehsan; Niazmand, Hamid; Stefanov, Stefan

    2012-01-01

    The aim of this study is to extend the validity of the simplified Bernoulli-trials (SBT)/dual grid algorithm, newly proposed by Stefanov, as a suitable alternative of the standard collision scheme in the direct simulation Monte Carlo (DSMC) method, for solving low speed/low Knudsen number rarefied micro/nano flows. The main advantage of the SBT algorithm is to provide accurate calculations using much smaller number of particles per cell, i.e., ≈ 1. Compared to the original development of SBT [1], we extend the application of the SBT scheme to the near continuum rarefied flows, i.e., Kn = 0.005, where NTC scheme requires a relatively large sample size. Comparing the results of the SBT/dual grid scheme with NTC, it is shown that the SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as well as surface parameters such as velocity slip and temperature jump. Nonlinear flux-corrected transport algorithm (FCT) is also employed as a filter to extract the smooth solution from the noisy DSMC calculation for low-speed/low-Knudsen number DSMC calculations. The results indicate that combination of SBT/dual grid and FTC filtering can decrease the total sample size needed to reach smooth solution without losing significant accuracy.

  19. COMPUTER MODELING IN DEFORM-3D FOR ANALYSIS OF PLASTIC FLOW IN HIGH-SPEED HOT EXTRUSION OF BIMETALLIC FORMATIVE PARTS OF DIE TOOLING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2015-01-01

    Full Text Available The modern development of industrial production is closely connected with the use of science-based and high technologies to ensure competitiveness of the manufactured products on the world market. There is also much tension around an energy- and resource saving problem which can be solved while introducing new technological processes and  creation of new materials that provide productivity increase through automation and improvement of tool life. Development and implementation of such technologies are rather often considered as time-consuming processes  which are connected with complex calculations and experimental investigations. Implementation of a simulation modelling for materials processing using modern software products serves an alternative to experimental and theoretical methods of research.The aim of this paper is to compare experimental results while obtaining bimetallic samples of a forming tool through the method of speed hot extrusion and the results obtained with the help of computer simulation using DEFORM-3D package and a finite element method. Comparative analysis of plastic flow of real and model samples has shown that the obtained models provide high-quality and reliable picture of plastic flow during high-speed hot extrusion. Modeling in DEFORM-3D make it possible to eliminate complex calculations and significantly reduce a number of experimental studies while developing new technological processes.

  20. Predation by the Dwarf Seahorse on Copepods: Quantifying Motion and Flows Using 3D High Speed Digital Holographic Cinematography - When Seahorses Attack!

    Science.gov (United States)

    Gemmell, Brad; Sheng, Jian; Buskey, Ed

    2008-11-01

    Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.

  1. Gap Winds in a Fjord: Howe Sound, British Columbia.

    Science.gov (United States)

    Jackson, Peter L.

    1993-01-01

    Gap, outflow, or Squamish wind, is the cold low level seaward flow of air through fjords which dissect the coastal mountain barrier of northwestern North America. These flows, occurring mainly during winter, can be strong, threatening safety, economic activity and comfort. Howe Sound gap winds were studied using a combination of observations and several types of models. Observations of winds in Howe Sound showed that gap wind strength varied considerably along the channel, across the channel and vertically. Generally, winds increase down the channel, are strongest along the eastern side, and are below 1000 m depth. Observations were unable to answer all questions about gap winds due to data sparseness, particularly in the vertical direction. Therefore, several modelling approaches were used. The modelling began with a complete 3-dimensional quasi-Boussinesq model (CSU RAMS) and ended with the creation and testing of models which are conceptually simpler, and more easily interpreted and manipulated. A gap wind simulation made using RAMS was shown to be mostly successful by statistical evaluation compared to other mesoscale simulations, and by visual inspection of the fields. The RAMS output, which has very high temporal and spatial resolution, provided much additional information about the details of gap flow. In particular, RAMS results suggested a close analogy between gap wind and hydraulic channel flow, with hydraulic features such as supercritical flow and hydraulic jumps apparent. These findings imply gap wind flow could potentially be represented by much simpler models. The simplest possible models containing pressure gradient, advection and friction but not incorporating hydraulic effects, were created, tested, and found lacking. A hydraulic model, which in addition incorporates varying gap wind height and channel geometry, was created and shown to successfully simulate gap winds. Force balance analysis from RAMS and the hydraulic model showed that pressure

  2. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  3. Second Sound

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...

  4. PARTICLE-IN-CELL SIMULATION OF A STRONG DOUBLE LAYER IN A NONRELATIVISTIC PLASMA FLOW: ELECTRON ACCELERATION TO ULTRARELATIVISTIC SPEEDS

    International Nuclear Information System (INIS)

    Dieckmann, Mark E.; Bret, Antoine

    2009-01-01

    Two charge- and current-neutral plasma beams are modeled with a one-dimensional particle-in-cell simulation. The beams are uniform and unbounded. The relative speed between both beams is 0.4c. One beam is composed of electrons and protons, and the other of protons and negatively charged oxygen (dust). All species have the temperature 9.1 keV. A Buneman instability develops between the electrons of the first beam and the protons of the second beam. The wave traps the electrons, which form plasmons. The plasmons couple energy into the ion acoustic waves, which trap the protons of the second beam. A structure similar to a proton phase-space hole develops, which grows through its interaction with the oxygen and the heated electrons into a rarefaction pulse. This pulse drives a double layer, which accelerates a beam of electrons to about 50 MeV, which is comparable to the proton kinetic energy. The proton distribution eventually evolves into an electrostatic shock. Beams of charged particles moving at such speeds may occur in the foreshock of supernova remnant (SNR) shocks. This double layer is thus potentially relevant for the electron acceleration (injection) into the diffusive shock acceleration by SNR shocks.

  5. Peripheral Quantitative Computed Tomography (pQCT), Broad Band Ultrasound Attenuation (BUA) and Speed of Sound (SOS) in a population of normal females aged from 8 to 20 years

    International Nuclear Information System (INIS)

    Bagni, B.; Corazzari, T.; Bagni, I.; Garuti, F.; Franceschetto, A.; Casolo, A.; Pansini, F.

    2002-01-01

    Aim: To evaluate, in a population of young healthy females aged from 8 to 20 years the bone mass peak (or density), the normal ranges versus age and menarche-age using two method: pQCT (peripheral Quantitative Computed Tomography) and ultrasound absorptiometry. Material and Methods: From 1998 to 2000 selective measurement of Bone Mineral Density (BMD) of trabecular bone at the ultradistal radius using pQCT, BUA (Broad Band Attenuation) and SOS ( Speed Of Sound) was carried out on 426 healthy females (aged from 8 to 20 years) in north Italy. BMD were measured using a single photon miniaturized tomographic scanner in the ultradistal radius, SOS and BUA were measured at the same time, using a water bath device obtaining parametric bidimensional images of BUA and SOS. The population studied refers to normal females free of bone metabolism alteration, in pre and post-pubertal status. Results: A normal range of BMD, BUA and SOS versus age and menarche age were established. A linear correlation was found between BUA and BMD measured with pQCT. SOS does not show any correlation with BMD. The pre-puberty and the post-puberty groups show statistically significant differences between SOS, BUA and BMD. We found the peak bone density (measured with pQCT) in the trabecular bone at the ultradistal radius at 15 years of age (mean menarche age of 10 years). The same position of the peak was found for BUA, for SOS the situation is not well defined. The analytical fitting of the data highlights a polynomial correlation of BMD vs. age, SOS vs. age, BUA vs. age. Conclusions: It appears that the sexual growth influences the position of peak bone density. The results obtained show a statistically significant correlation between BUA and BMD versus age, the menarche-age and the period of exposure of bone tissue to the oestrogen. After all, pQCT and ultrasound are useful techniques to evaluate bone density and structure also in a growing population. The results of this study shows the

  6. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  7. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  8. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    Energy Technology Data Exchange (ETDEWEB)

    Sukanto, H., E-mail: masheher@uns.ac.id; Budiana, E. P., E-mail: budiana.e@gmail.com; Putra, B. H. H., E-mail: benedictus.hendy@gmail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta, Indonesia 57126 (Indonesia)

    2016-03-29

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  9. Sound Clocks and Sonic Relativity

    Science.gov (United States)

    Todd, Scott L.; Menicucci, Nicolas C.

    2017-10-01

    Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.

  10. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  11. Sound Visualisation

    OpenAIRE

    Dolenc, Peter

    2013-01-01

    This thesis contains a description of a construction of subwoofer case that has an extra functionality of being able to produce special visual effects and display visualizations that match the currently playing sound. For this reason, multiple lighting elements made out of LED (Light Emitting Diode) diodes were installed onto the subwoofer case. The lighting elements are controlled by dedicated software that was also developed. The software runs on STM32F4-Discovery evaluation board inside a ...

  12. Experimental investigation of the effects of heat release on mixing processes and flow structure in a high-speed subsonic turbulent H{sub 2} jet

    Energy Technology Data Exchange (ETDEWEB)

    Theron, M.; Bellenoue, M. [Laboratoire de Combustion et de Detonique, CNRS UPR 9028, Poitiers (France)

    2006-06-15

    In this paper, we explore the effects of heat release on mixing and flow structure in a high-speed subsonic turbulent H{sub 2} jet in an air coflow. Heat release effects are determined from the comparison of nonreacting and reacting jet behavior, boundary conditions being identical in both cases. Experiments are performed in a wind tunnel specifically designed for this purpose. Planar laser induced fluorescence on OH radicals and on acetone (seeded in the hydrogen jet) are used to characterize the cartography of scalars, and laser Doppler velocimetry is used to characterize velocity profiles in the far field of the H{sub 2} jet. Results show significant effects of heat release on mixing and flow structure, indicating an overall reduction of mixing and entrainment in the reacting jet compared to the nonreacting jet. First, a change is observed in the orientation of coherent structures originating from Kelvin-Helmholtz type instabilities, and responsible for air entrainment within the jet, which appear 'flatter' in the jet flame. Then, the flame length is increased over what would be predicted from the intersection of the mean stoichiometric contour with the centerline of the nonreacting jet. And finally, the longitudinal average velocity decrease along the jet axis is quicker in the nonreacting jet, and nondimensional transverse velocity fluctuations are about half as high in the reacting jet as in the nonreacting jet, indicating a reduction of the turbulence intensity of the flow in this direction in the jet flame. (author)

  13. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    International Nuclear Information System (INIS)

    Harvel, G.D.; Hori, K.; Kawanishi, K.

    1995-01-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,θ) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined

  14. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Harvel, G.D. [McMaster Univ., Ontario (Canada)]|[Combustion and Heat Transfer Lab., Takasago (Japan); Hori, K.; Kawanishi, K. [Combustion and Heat Transfer Lab., Takasago (Japan)] [and others

    1995-09-01

    A Real-Time Neutron Radiography (RTNR) system and a high speed X-ray Computed tomography (X-CT) system are compared for measurement of two-phase flow. Each system is used to determine the flow regime, and the void fraction distribution in a vertical annulus flow channel. A standard optical video system is also used to observe the flow regime. The annulus flow channel is operated as a bubble column and measurements obtained for gas flow rates from 0.0 to 30.01/min. The flow regimes observed by all three measurement systems through image analysis shows that the two-dimensional void fraction distribution can be obtained. The X-CT system is shown to have a superior temporal resolution capable of resolving the void fraction distribution in an (r,{theta}) plane in 33.0 ms. Void fraction distribution for bubbly flow and slug flow is determined.

  15. High speed photography of the plasma flow and the projectiles in the T.U.M. hypervelocity accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.; Kuczera, H.; Schroeder, B.

    1979-01-01

    The hypervelocity accelerator at the Technische Universitaet Muenchen, FRG, accelerates small projectiles (0.1 to 1.0 mm diameter) to velocities around 20 km/s. The photographic equipment consists of two Cordin single-frame image converter cameras and one TRW image converter camera with streak units and multiple-frame units. They are used for plasma flow diagnostics and the measurement of the position and the velocity of the projectiles. The single-frame cameras are triggered with a Laser light bar and the photographic measurement of the projectile velocity will be compared with Doppler-Radar. (author)

  16. Experimental Studies of the Aerothermal Characteristics of the Project Orion CEV heat Shield in High Speed Transitional and Turbulent Flows

    Science.gov (United States)

    Wadhams, T.P.; MacLean, M.; Holden, M.S.; Cassady, A.M.

    2009-01-01

    An experimental program has been completed by CUBRC exploring laminar, transitional, and turbulent flows over a 7.0% scale model of the Project ORION CEV geometry. This program was executed primarily to answer questions concerning the increase in heat transfer on the windward, or "hot shoulder" of the CEV heat shield from laminar to turbulent flow. To answer these questions CUBRC constructed and instrumented a 14.0 inch diameter Project ORION CEV model and ran a range of Reynolds numbers based on diameter from 1.0 to over 40 million at a Mach number of 8.0. These Reynolds numbers were selected to cover laminar to turbulent heating data on the "hot shoulder". Data obtained during these runs will be used to guide design decisions as they apply to heat shield thickness and extent. Several experiments at higher enthalpies were achieved to obtain data for code validation with real gas effects and transition. CUBRC also performed computation studies of these experiments to aid in the data reduction process and study turbulence modeling.

  17. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    International Nuclear Information System (INIS)

    Lee, Sangyeop; Lindsay, Lucas

    2017-01-01

    Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. The dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.

  18. Cross-B convection of artificially created, negative-ion clouds and plasma depressions: Low-speed flow

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1988-01-01

    A negative-ion, positive-ion plasma produced by the release of an electron attachment chemical into the F region becomes electrically polarized by the collisions with neutrals moving across magnetic field lines. The resulting electric field causes E x B drift of the two ion species and the residual electrons. The cross-field flow of the modified ionosphere is computed using a two-dimensional numerical simulation which includes electron attachment and mutual neutralization chemistry, self-consistent electric fields, and three-species plasma transport. The velocity of the plasma is initially in the direction of the neutral wind because the negative-ion cloud is a Pedersen conductivity enhancement. As the positive and negative ions react, the Pedersen conductivity becomes depressed below the ambient value and the velocity of the plasma reverses direction. A plasma hole remains after the positive and negative ions have mutually neutralized. The E x B gradient drift instability produces irregularities on the upwind edge of the hole. These processes may be observed experimentally with optical and backscatter-radar diagnostics

  19. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  20. Development of N_2O-MTV for low-speed flow and in-situ deployment to an integral effect test facility

    Science.gov (United States)

    André, Matthieu A.; Burns, Ross A.; Danehy, Paul M.; Cadell, Seth R.; Woods, Brian G.; Bardet, Philippe M.

    2018-01-01

    A molecular tagging velocity (MTV) technique is developed to non-intrusively measure velocity in an integral effect test (IET) facility simulating a high-temperature helium-cooled nuclear reactor in accident scenarios. In these scenarios, the velocities are expected to be low, on the order of 1 m/s or less, which forces special requirements on the MTV tracer selection. Nitrous oxide (N_2O) is identified as a suitable seed gas to generate NO tracers capable of probing the flow over a large range of pressure, temperature, and flow velocity. The performance of N_2O-MTV is assessed in the laboratory at temperature and pressure ranging from 295 to 781 K and 1 to 3 atm. MTV signal improves with a temperature increase, but decreases with a pressure increase. Velocity precision down to 0.004 m/s is achieved with a probe time of 40 ms at ambient pressure and temperature. Measurement precision is limited by tracer diffusion, and absorption of the tag laser beam by the seed gas. Processing by cross-correlation of single-shot images with high signal-to-noise ratio reference images improves the precision by about 10% compared to traditional single-shot image correlations. The instrument is then deployed to the IET facility. Challenges associated with heat, vibrations, safety, beam delivery, and imaging are addressed in order to successfully operate this sensitive instrument in-situ. Data are presented for an isothermal depressurized conduction cooldown. Velocity profiles from MTV reveal a complex flow transient driven by buoyancy, diffusion, and instability taking place over short (30 min) time scales at sub-meter per second speed. The precision of the in-situ results is estimated at 0.027, 0.0095, and 0.006 m/s for a probe time of 5, 15, and 35 ms, respectively.

  1. Sound knowledge

    DEFF Research Database (Denmark)

    Kauffmann, Lene Teglhus

    as knowledge based on reflexive practices. I chose ‘health promotion’ as the field for my research as it utilises knowledge produced in several research disciplines, among these both quantitative and qualitative. I mapped out the institutions, actors, events, and documents that constituted the field of health...... of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... result of a rigorous and standardized research method. However, this anthropological analysis shows that evidence and evidence-based is a hegemonic ‘way of knowing’ that sometimes transposes everyday reasoning into an epistemological form. However, the empirical material shows a variety of understandings...

  2. NASA low speed centrifugal compressor

    Science.gov (United States)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  3. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  4. Propagation of sound in oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Advilkar, P.J.

    prestigious institute. I am privileged to express my sincere thanks to JRF’s Roshin Sir, Bajish Sir, for training me both practically and theoretically about various techniques, without which my work would not have reached its completion. I am equally... wrote his Mathematical Principles of Natural Philosophy which included the first mathematical treatment of sound. The modern study of underwater acoustics can be considered to have started in early 19 th century. In 1826, on Lake Geneva, the speed...

  5. Sound Probabilistic #SAT with Projection

    Directory of Open Access Journals (Sweden)

    Vladimir Klebanov

    2016-10-01

    Full Text Available We present an improved method for a sound probabilistic estimation of the model count of a boolean formula under projection. The problem solved can be used to encode a variety of quantitative program analyses, such as concerning security of resource consumption. We implement the technique and discuss its application to quantifying information flow in programs.

  6. Speeds of sound in {l_brace}(1 - x)CH{sub 4} + xN{sub 2}{r_brace} with x = (0.10001, 0.19999, and 0.5422) at temperatures between 170 K and 400 K and pressures up to 30 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Estela-Uribe, J.F. [Facultad de Ingenieria, Universidad Javeriana-Cali, Calle 18, 118-250 Cali (Colombia); Trusler, J.P.M. [Department of Chemical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)]. E-mail: m.trusler@imperial.ac.uk; Chamorro, C.R. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Segovia, J.J. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Martin, M.C. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain); Villamanan, M.A. [Grupo de Termodinamica y Calibracion (TERMOCAL), Dpto. Ingenieria Energetica y Fluidomecanica, E.T.S. de Ingenieros Industriales, Universidad de Valladolid, E-47071 Valladolid (Spain)

    2006-07-15

    The speed of sound in {l_brace}(1 - x)CH{sub 4} + xN{sub 2}{r_brace} has been measured with a spherical acoustic resonator. Two mixtures with x = (0.10001 and 0.19999) were studied along isotherms at temperatures between 220 K and 400 K with pressures up to 20 MPa; a few additional measurements at p = (25 and 30) MPa are also reported. A third mixture with x = 0.5422 was studied along pseudo-isochores at amount-of-substance densities between 0.2 mol . dm{sup -3} and 5 mol . dm{sup -3}. Corrections for molecular vibrational relaxation are discussed in detail and relaxation times are reported. The overall uncertainty of the measured speeds of sound is estimated to be not worse than {+-}0.02%, except for those measurements in the mixture with x = 0.5422 that lie along the pseduo-isochore at the highest amount-of-substance density. The results have been compared with the predictions of several equations of state used for natural gas systems.

  7. The sounds of science

    Science.gov (United States)

    Carlowicz, Michael

    As scientists carefully study some aspects of the ocean environment, are they unintentionally distressing others? That is a question to be answered by Robert Benson and his colleagues in the Center for Bioacoustics at Texas A&M University.With help from a 3-year, $316,000 grant from the U.S. Office of Naval Research, Benson will study how underwater noise produced by naval operations and other sources may affect marine mammals. In Benson's study, researchers will generate random sequences of low-frequency, high-intensity (180-decibel) sounds in the Gulf of Mexico, working at an approximate distance of 1 km from sperm whale herds. Using an array of hydrophones, the scientists will listen to the characteristic clicks and whistles of the sperm whales to detect changes in the animals' direction, speed, and depth, as derived from fluctuations in their calls.

  8. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  9. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  10. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  11. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  12. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  13. Little Sounds

    Directory of Open Access Journals (Sweden)

    Baker M. Bani-Khair

    2017-10-01

    Full Text Available The Spider and the Fly   You little spider, To death you aspire... Or seeking a web wider, To death all walking, No escape you all fighters… Weak and fragile in shape and might, Whatever you see in the horizon, That is destiny whatever sight. And tomorrow the spring comes, And the flowers bloom, And the grasshopper leaps high, And the frogs happily cry, And the flies smile nearby, To that end, The spider has a plot, To catch the flies by his net, A mosquito has fallen down in his net, Begging him to set her free, Out of that prison, To her freedom she aspires, Begging...Imploring...crying,  That is all what she requires, But the spider vows never let her free, His power he admires, Turning blind to light, And with his teeth he shall bite, Leaving her in desperate might, Unable to move from site to site, Tied up with strings in white, Wrapped up like a dead man, Waiting for his grave at night,   The mosquito says, Oh little spider, A stronger you are than me in power, But listen to my words before death hour, Today is mine and tomorrow is yours, No escape from death... Whatever the color of your flower…     Little sounds The Ant The ant is a little creature with a ferocious soul, Looking and looking for more and more, You can simply crush it like dead mold, Or you can simply leave it alone, I wonder how strong and strong they are! Working day and night in a small hole, Their motto is work or whatever you call… A big boon they have and joy in fall, Because they found what they store, A lesson to learn and memorize all in all, Work is something that you should not ignore!   The butterfly: I’m the butterfly Beautiful like a blue clear sky, Or sometimes look like snow, Different in colors, shapes and might, But something to know that we always die, So fragile, weak and thin, Lighter than a glimpse and delicate as light, Something to know for sure… Whatever you have in life and all these fields, You are not happier than a butterfly

  14. Characteristics of sound radiation from turbulent premixed flames

    Science.gov (United States)

    Rajaram, Rajesh

    Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.

  15. Ultrasound sounding in air by fast-moving receiver

    Science.gov (United States)

    Sukhanov, D.; Erzakova, N.

    2018-05-01

    A method of ultrasound imaging in the air for a fast receiver. The case, when the speed of movement of the receiver can not be neglected with respect to the speed of sound. In this case, the Doppler effect is significant, making it difficult for matched filtering of the backscattered signal. The proposed method does not use a continuous repetitive noise-sounding signal. generalized approach applies spatial matched filtering in the time domain to recover the ultrasonic tomographic images.

  16. Subtyping Children with Speech Sound Disorders by Endophenotypes

    Science.gov (United States)

    Lewis, Barbara A.; Avrich, Allison A.; Freebairn, Lisa A.; Taylor, H. Gerry; Iyengar, Sudha K.; Stein, Catherine M.

    2011-01-01

    Purpose: The present study examined associations of 5 endophenotypes (i.e., measurable skills that are closely associated with speech sound disorders and are useful in detecting genetic influences on speech sound production), oral motor skills, phonological memory, phonological awareness, vocabulary, and speeded naming, with 3 clinical criteria…

  17. Speed, speed variation and crash relationships for urban arterials.

    Science.gov (United States)

    Wang, Xuesong; Zhou, Qingya; Quddus, Mohammed; Fan, Tianxiang; Fang, Shou'en

    2018-04-01

    Speed and speed variation are closely associated with traffic safety. There is, however, a dearth of research on this subject for the case of urban arterials in general, and in the context of developing nations. In downtown Shanghai, the traffic conditions in each direction are very different by time of day, and speed characteristics during peak hours are also greatly different from those during off-peak hours. Considering that traffic demand changes with time and in different directions, arterials in this study were divided into one-way segments by the direction of flow, and time of day was differentiated and controlled for. In terms of data collection, traditional fixed-based methods have been widely used in previous studies, but they fail to capture the spatio-temporal distributions of speed along a road. A new approach is introduced to estimate speed variation by integrating spatio-temporal speed fluctuation of a single vehicle with speed differences between vehicles using taxi-based high frequency GPS data. With this approach, this paper aims to comprehensively establish a relationship between mean speed, speed variation and traffic crashes for the purpose of formulating effective speed management measures, specifically using an urban dataset. From a total of 234 one-way road segments from eight arterials in Shanghai, mean speed, speed variation, geometric design features, traffic volume, and crash data were collected. Because the safety effects of mean speed and speed variation may vary at different segment lengths, arterials with similar signal spacing density were grouped together. To account for potential correlations among these segments, a hierarchical Poisson log-normal model with random effects was developed. Results show that a 1% increase in mean speed on urban arterials was associated with a 0.7% increase in total crashes, and larger speed variation was also associated with increased crash frequency. Copyright © 2018 Elsevier Ltd. All rights

  18. Cracking investigation of Monju emergency generator C unit cylinder liner. Cylinder liner soundness confirmation by a fall cause of the materials strength of the cylinder liner and the supersonic wave speed

    International Nuclear Information System (INIS)

    Kobayashi, Takanori; Sakon, Miyoji; Takada, Osamu; Hatori, Masakazu; Sakamoto, Tsutomu; Sato, Toshiyuki; Kazama, Akihito; Ishizawa, Yoshihiro; Igawa, Katsuhisa; Nakae, Hideo

    2012-02-01

    I confirmed a leak of the effluent gas from cylinder part during a load examination after the check of the emergency generator C unit on December 28, 2010 of the facilities check average and confirmed crack in No.8 cylinder liner part. As a result, because it was not performed oil pressure management properly without attaching an oil pressure gauge when I removed cylinder liner about the cause, crack occurred by having been able to write excessive stress for the cylinder liner and reached damage. By a process of this investigation, a fall of the materials strength of some cylinder liner was confirmed, but because a lead ingredient got mixed with materials by a casting process at the time of the production of the cylinder liner, as for this, Widmannstaetten graphite occurred, and it became clear that materials strength fell. In addition, I performed inspection by the supersonic wave velocity measurement as technique to distinguish this Widmannstaetten graphite easily and confirmed that I was effective. Because this report was the knowledge that there were little inspection contents which modified soundness confirmation technique of the cylinder liner with the possibility of materials strength fall of the cylinder liner by the Widmannstaetten graphite outbreak and the mixture of lead for a report example in the field of cast iron, I gathered it in this report. (author)

  19. Effect of scanning speed and powder flow rate on the evolving properties of laser metal deposited Ti-6Al-4V/Cu composites

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-01-01

    Full Text Available In laser metal deposition (LMD), good bonding between two similar or dissimilar materials can be achieved if the interrelationships between the processing parameters are well understood. LMD was conducted by varying the scanning speed and keeping...

  20. Parallel-plate third sound waveguides with fixed and variable plate spacings for the study of fifth sound in superfluid helium

    International Nuclear Information System (INIS)

    Jelatis, G.J.

    1983-01-01

    Third sound in superfluid helium four films has been investigated using two parallel-plate waveguides. These investigations led to the observation of fifth sound, a new mode of sound propagation. Both waveguides consisted of two parallel pieces of vitreous quartz. The sound speed was obtained by measuring the time-of-flight of pulsed third sound over a known distance. Investigations from 1.0-1.7K were possible with the use of superconducting bolometers, which measure the temperature component of the third sound wave. Observations were initially made with a waveguide having a plate separation fixed at five microns. Adiabatic third sound was measured in the geometry. Isothermal third sound was also observed, using the usual, single-substrate technique. Fifth sound speeds, calculated from the two-fluid theory of helium and the speeds of the two forms of third sound, agreed in size and temperature dependence with theoretical predictions. Nevertheless, only equivocal observations of fifth sound were made. As a result, the film-substrate interaction was examined, and estimates of the Kapitza conductance were made. Assuming the dominance of the effects of this conductance over those due to the ECEs led to a new expression for fifth sound. A reanalysis of the initial data was made, which contained no adjustable parameters. The observation of fifth sound was seen to be consistent with the existence of an anomalously low boundary conductance