WorldWideScience

Sample records for sound sources similarities

  1. OMNIDIRECTIONAL SOUND SOURCE

    DEFF Research Database (Denmark)

    1996-01-01

    A sound source comprising a loudspeaker (6) and a hollow coupler (4) with an open inlet which communicates with and is closed by the loudspeaker (6) and an open outlet, said coupler (4) comprising rigid walls which cannot respond to the sound pressures produced by the loudspeaker (6). According...

  2. Seismic and Biological Sources of Ambient Ocean Sound

    Science.gov (United States)

    Freeman, Simon Eric

    Sound is the most efficient radiation in the ocean. Sounds of seismic and biological origin contain information regarding the underlying processes that created them. A single hydrophone records summary time-frequency information from the volume within acoustic range. Beamforming using a hydrophone array additionally produces azimuthal estimates of sound sources. A two-dimensional array and acoustic focusing produce an unambiguous two-dimensional `image' of sources. This dissertation describes the application of these techniques in three cases. The first utilizes hydrophone arrays to investigate T-phases (water-borne seismic waves) in the Philippine Sea. Ninety T-phases were recorded over a 12-day period, implying a greater number of seismic events occur than are detected by terrestrial seismic monitoring in the region. Observation of an azimuthally migrating T-phase suggests that reverberation of such sounds from bathymetric features can occur over megameter scales. In the second case, single hydrophone recordings from coral reefs in the Line Islands archipelago reveal that local ambient reef sound is spectrally similar to sounds produced by small, hard-shelled benthic invertebrates in captivity. Time-lapse photography of the reef reveals an increase in benthic invertebrate activity at sundown, consistent with an increase in sound level. The dominant acoustic phenomenon on these reefs may thus originate from the interaction between a large number of small invertebrates and the substrate. Such sounds could be used to take census of hard-shelled benthic invertebrates that are otherwise extremely difficult to survey. A two-dimensional `map' of sound production over a coral reef in the Hawaiian Islands was obtained using two-dimensional hydrophone array in the third case. Heterogeneously distributed bio-acoustic sources were generally co-located with rocky reef areas. Acoustically dominant snapping shrimp were largely restricted to one location within the area surveyed

  3. Microflown based monopole sound sources for reciprocal measurements

    NARCIS (Netherlands)

    Bree, H.E. de; Basten, T.G.H.

    2008-01-01

    Monopole sound sources (i.e. omni directional sound sources with a known volume velocity) are essential for reciprocal measurements used in vehicle interior panel noise contribution analysis. Until recently, these monopole sound sources use a sound pressure transducer sensor as a reference sensor. A

  4. Visualization of Broadband Sound Sources

    OpenAIRE

    Sukhanov Dmitry; Erzakova Nadezhda

    2016-01-01

    In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the...

  5. Visualization of Broadband Sound Sources

    Directory of Open Access Journals (Sweden)

    Sukhanov Dmitry

    2016-01-01

    Full Text Available In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the waveform, but determined by the bandwidth. Developed system allows to visualize sources with a resolution of up to 10 cm.

  6. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  7. Sound source localization and segregation with internally coupled ears

    DEFF Research Database (Denmark)

    Bee, Mark A; Christensen-Dalsgaard, Jakob

    2016-01-01

    to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla......, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating...

  8. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  9. The role of envelope shape in the localization of multiple sound sources and echoes in the barn owl.

    Science.gov (United States)

    Baxter, Caitlin S; Nelson, Brian S; Takahashi, Terry T

    2013-02-01

    Echoes and sounds of independent origin often obscure sounds of interest, but echoes can go undetected under natural listening conditions, a perception called the precedence effect. How does the auditory system distinguish between echoes and independent sources? To investigate, we presented two broadband noises to barn owls (Tyto alba) while varying the similarity of the sounds' envelopes. The carriers of the noises were identical except for a 2- or 3-ms delay. Their onsets and offsets were also synchronized. In owls, sound localization is guided by neural activity on a topographic map of auditory space. When there are two sources concomitantly emitting sounds with overlapping amplitude spectra, space map neurons discharge when the stimulus in their receptive field is louder than the one outside it and when the averaged amplitudes of both sounds are rising. A model incorporating these features calculated the strengths of the two sources' representations on the map (B. S. Nelson and T. T. Takahashi; Neuron 67: 643-655, 2010). The target localized by the owls could be predicted from the model's output. The model also explained why the echo is not localized at short delays: when envelopes are similar, peaks in the leading sound mask corresponding peaks in the echo, weakening the echo's space map representation. When the envelopes are dissimilar, there are few or no corresponding peaks, and the owl localizes whichever source is predicted by the model to be less masked. Thus the precedence effect in the owl is a by-product of a mechanism for representing multiple sound sources on its map.

  10. Similarity and pleasantness assessments of water-fountain sounds recorded in urban public spaces.

    Science.gov (United States)

    Ekman, Maria Rådsten; Lundén, Peter; Nilsson, Mats E

    2015-11-01

    Water fountains are potential tools for soundscape improvement, but little is known about their perceptual properties. To explore this, sounds were recorded from 32 fountains installed in urban parks. The sounds were recorded with a sound-field microphone and were reproduced using an ambisonic loudspeaker setup. Fifty-seven listeners assessed the sounds with regard to similarity and pleasantness. Multidimensional scaling of similarity data revealed distinct groups of soft variable and loud steady-state sounds. Acoustically, the soft variable sounds were characterized by low overall levels and high temporal variability, whereas the opposite pattern characterized the loud steady-state sounds. The perceived pleasantness of the sounds was negatively related to their overall level and positively related to their temporal variability, whereas spectral centroid was weakly correlated to pleasantness. However, the results of an additional experiment, using the same sounds set equal in overall level, found a negative relationship between pleasantness and spectral centroid, suggesting that spectral factors may influence pleasantness scores in experiments where overall level does not dominate pleasantness assessments. The equal-level experiment also showed that several loud steady-state sounds remained unpleasant, suggesting an inherently unpleasant sound character. From a soundscape design perspective, it may be advisable to avoid fountains generating such sounds.

  11. Parents accidentally substitute similar sounding sibling names more often than dissimilar names.

    Directory of Open Access Journals (Sweden)

    Zenzi M Griffin

    Full Text Available When parents select similar sounding names for their children, do they set themselves up for more speech errors in the future? Questionnaire data from 334 respondents suggest that they do. Respondents whose names shared initial or final sounds with a sibling's reported that their parents accidentally called them by the sibling's name more often than those without such name overlap. Having a sibling of the same gender, similar appearance, or similar age was also associated with more frequent name substitutions. Almost all other name substitutions by parents involved other family members and over 5% of respondents reported a parent substituting the name of a pet, which suggests a strong role for social and situational cues in retrieving personal names for direct address. To the extent that retrieval cues are shared with other people or animals, other names become available and may substitute for the intended name, particularly when names sound similar.

  12. Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements

    International Nuclear Information System (INIS)

    Yu Guang-Zheng; Xie Bo-Sun; Rao Dan

    2010-01-01

    The omnidirectional character is one of important requirements for the sound source used in near-field head-related transfer function (HRTF) measurements. Based on the analysis on the radiation sound pressure and directivity character of various spherical polyhedron sound sources, a spherical dodecahedral sound source with radius of 0.035m is proposed and manufactured. Theoretical and measured results indicate that the sound source is approximately omnidirectional below the frequency of 8 kHz. In addition, the sound source has reasonable magnitude response from 350Hz to 20kHz and linear phase characteristics. Therefore, it is suitable for the near-field HRTF measurements. (fundamental areas of phenomenology(including applications))

  13. Material sound source localization through headphones

    Science.gov (United States)

    Dunai, Larisa; Peris-Fajarnes, Guillermo; Lengua, Ismael Lengua; Montaña, Ignacio Tortajada

    2012-09-01

    In the present paper a study of sound localization is carried out, considering two different sounds emitted from different hit materials (wood and bongo) as well as a Delta sound. The motivation of this research is to study how humans localize sounds coming from different materials, with the purpose of a future implementation of the acoustic sounds with better localization features in navigation aid systems or training audio-games suited for blind people. Wood and bongo sounds are recorded after hitting two objects made of these materials. Afterwards, they are analysed and processed. On the other hand, the Delta sound (click) is generated by using the Adobe Audition software, considering a frequency of 44.1 kHz. All sounds are analysed and convolved with previously measured non-individual Head-Related Transfer Functions both for an anechoic environment and for an environment with reverberation. The First Choice method is used in this experiment. Subjects are asked to localize the source position of the sound listened through the headphones, by using a graphic user interface. The analyses of the recorded data reveal that no significant differences are obtained either when considering the nature of the sounds (wood, bongo, Delta) or their environmental context (with or without reverberation). The localization accuracies for the anechoic sounds are: wood 90.19%, bongo 92.96% and Delta sound 89.59%, whereas for the sounds with reverberation the results are: wood 90.59%, bongo 92.63% and Delta sound 90.91%. According to these data, we can conclude that even when considering the reverberation effect, the localization accuracy does not significantly increase.

  14. A particle velocity based method for separating all multi incoherent sound sources

    NARCIS (Netherlands)

    Winkel, J.C.; Yntema, Doekle Reinder; Druyvesteyn, W.F.; de Bree, H.E.

    2006-01-01

    In this paper we present a method to separate the contributions of different uncorrelated sound sources to the total sound field. When the contribution of each sound source to the total sound field is known, techniques with array-applications like direct sound field measurements or inverse acoustics

  15. Binaural Processing of Multiple Sound Sources

    Science.gov (United States)

    2016-08-18

    AFRL-AFOSR-VA-TR-2016-0298 Binaural Processing of Multiple Sound Sources William Yost ARIZONA STATE UNIVERSITY 660 S MILL AVE STE 312 TEMPE, AZ 85281...18-08-2016 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Jul 2012 to 14 Jul 2016 4. TITLE AND SUBTITLE Binaural Processing of...three topics cited above are entirely within the scope of the AFOSR grant. 15. SUBJECT TERMS Binaural hearing, Sound Localization, Interaural signal

  16. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  17. Task-Modulated Cortical Representations of Natural Sound Source Categories

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Kassuba, Tanja; Madsen, Kristoffer Hougaard

    2018-01-01

    In everyday sound environments, we recognize sound sources and events by attending to relevant aspects of an acoustic input. Evidence about the cortical mechanisms involved in extracting relevant category information from natural sounds is, however, limited to speech. Here, we used functional MRI...

  18. On the influence of microphone array geometry on HRTF-based Sound Source Localization

    DEFF Research Database (Denmark)

    Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

    2015-01-01

    The direction dependence of Head Related Transfer Functions (HRTFs) forms the basis for HRTF-based Sound Source Localization (SSL) algorithms. In this paper, we show how spectral similarities of the HRTFs of different directions in the horizontal plane influence performance of HRTF-based SSL...... algorithms; the more similar the HRTFs of different angles to the HRTF of the target angle, the worse the performance. However, we also show how the microphone array geometry can assist in differentiating between the HRTFs of the different angles, thereby improving performance of HRTF-based SSL algorithms....... Furthermore, to demonstrate the analysis results, we show the impact of HRTFs similarities and microphone array geometry on an exemplary HRTF-based SSL algorithm, called MLSSL. This algorithm is well-suited for this purpose as it allows to estimate the Direction-of-Arrival (DoA) of the target sound using any...

  19. Offshore dredger sounds: Source levels, sound maps, and risk assessment

    NARCIS (Netherlands)

    Jong, C.A.F. de; Ainslie, M.A.; Heinis, F.; Janmaat, J.

    2016-01-01

    The underwater sound produced during construction of the Port of Rotterdam harbor extension (Maasvlakte 2) was measured, with emphasis on the contribution of the trailing suction hopper dredgers during their various activities: dredging, transport, and discharge of sediment. Measured source levels

  20. Orientation Estimation and Signal Reconstruction of a Directional Sound Source

    DEFF Research Database (Denmark)

    Guarato, Francesco

    , one for each call emission, were compared to those calculated through a pre-existing technique based on interpolation of sound-pressure levels at microphone locations. The application of the method to the bat calls could provide knowledge on bat behaviour that may be useful for a bat-inspired sensor......Previous works in the literature about one tone or broadband sound sources mainly deal with algorithms and methods developed in order to localize the source and, occasionally, estimate the source bearing angle (with respect to a global reference frame). The problem setting assumes, in these cases......, omnidirectional receivers collecting the acoustic signal from the source: analysis of arrival times in the recordings together with microphone positions and source directivity cues allows to get information about source position and bearing. Moreover, sound sources have been included into sensor systems together...

  1. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.

    Science.gov (United States)

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2010-03-01

    In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.

  2. Spatial resolution limits for the localization of noise sources using direct sound mapping

    DEFF Research Database (Denmark)

    Comesana, D. Fernandez; Holland, K. R.; Fernandez Grande, Efren

    2016-01-01

    the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially...... extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring......One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has...

  3. Offshore dredger sound: source levels, sound maps and risk assessment (abstract)

    NARCIS (Netherlands)

    Jong, C.A.F. de; Ainslie, M.A.; Heinis, F.; Janmaat, J.

    2013-01-01

    The Port of Rotterdam is expanding to meet the growing demand to accommodate large cargo vessels. One of the licensing conditions was the monitoring of the underwater sound produced during its construction, with an emphasis on the establishment of acoustic source levels of the Trailing Suction

  4. A method for estimating the orientation of a directional sound source from source directivity and multi-microphone recordings: principles and application

    DEFF Research Database (Denmark)

    Guarato, Francesco; Jakobsen, Lasse; Vanderelst, Dieter

    2011-01-01

    Taking into account directivity of real sound sources makes it possible to try solving an interesting and biologically relevant problem: estimating the orientation in three-dimensional space of a directional sound source. The source, of known directivity, produces a broadband signal (in the ultra......Taking into account directivity of real sound sources makes it possible to try solving an interesting and biologically relevant problem: estimating the orientation in three-dimensional space of a directional sound source. The source, of known directivity, produces a broadband signal (in...

  5. When Does Between-Sequence Phonological Similarity Promote Irrelevant Sound Disruption?

    Science.gov (United States)

    Marsh, John E.; Vachon, Francois; Jones, Dylan M.

    2008-01-01

    Typically, the phonological similarity between to-be-recalled items and TBI auditory stimuli has no impact if recall in serial order is required. However, in the present study, the authors have shown that the free recall, but not serial recall, of lists of phonologically related to-be-remembered items was disrupted by an irrelevant sound stream…

  6. A location procedure for sound sources in reactor-technical enclosures

    International Nuclear Information System (INIS)

    Hamann, D.

    1982-07-01

    A passive method requiring one detector only has been developed for the location of sound emitting faults in nuclear power plant components. It is adapted for use in a frequency range the wavelength of which is of the same order of magnitude as characteristic dimensions of the considered enclosure. The location is performed in the following way: (1) For a fixed detector position the Auto Power Spectral Density (APSD) of the source to be located is measured. (2) For this detector position the APSD is calculated for the potential source locations. For this, the free-field APSD as well as the acoustic normal modes of the enclosure are necessary. (3) The measured APSD is compared with the theoretically obtained APSD's. (4) That APSD is determined which is most similar to the measured APSD, and consequently an information about the unknown source position is got. (author)

  7. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    Science.gov (United States)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  8. Reproduction of nearby sound sources using higher-order ambisonics with practical loudspeaker arrays

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2012-01-01

    the impact of two existing and a new proposed regularization function on the reproduced sound fields and on the main auditory cue for nearby sound sources outside the median plane, i.e, low-frequencies interaural level differences (ILDs). The proposed regularization function led to a better reproduction......In order to reproduce nearby sound sources with distant loudspeakers to a single listener, the near field compensated (NFC) method for higher-order Ambisonics (HOA) has been previously proposed. In practical realization, this method requires the use of regularization functions. This study analyzes...... of point source sound fields compared to existing regularization functions for NFC-HOA. Measurements in realistic playback environments showed that, for very close sources, significant ILDs for frequencies above about 250 Hz can be reproduced with NFC-HOA and the proposed regularization function whereas...

  9. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun; Jadhali, Rasha Al; Zhang, Likun; Wu, Ying

    2018-01-01

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation

  10. Reconstruction of sound source signal by analytical passive TR in the environment with airflow

    Science.gov (United States)

    Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu

    2017-03-01

    In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.

  11. Perceived loudness of spatially distributed sound sources

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2005-01-01

    psychoacoustic attributes into account. Therefore, a method for deriving loudness maps was developed in an earlier study [Song, Internoise2004, paper 271]. The present experiment investigates to which extent perceived loudness depends on the distribution of individual sound sources. Three loudspeakers were...... positioned 1.5 m from the centre of the listener’s head, one straight ahead, and two 10 degrees to the right and left, respectively. Six participants matched the loudness of either one, or two simultaneous sounds (narrow-band noises with 1-kHz, and 3.15-kHz centre frequencies) to a 2-kHz, 60-dB SPL narrow......-band noise placed in the frontal loudspeaker. The two sounds were either originating from the central speaker, or from the two offset loudspeakers. It turned out that the subjects perceived the noises to be softer when they were distributed in space. In addition, loudness was calculated from the recordings...

  12. The production and perception of emotionally expressive walking sounds: similarities between musical performance and everyday motor activity.

    Directory of Open Access Journals (Sweden)

    Bruno L Giordano

    Full Text Available Several studies have investigated the encoding and perception of emotional expressivity in music performance. A relevant question concerns how the ability to communicate emotions in music performance is acquired. In accordance with recent theories on the embodiment of emotion, we suggest here that both the expression and recognition of emotion in music might at least in part rely on knowledge about the sounds of expressive body movements. We test this hypothesis by drawing parallels between musical expression of emotions and expression of emotions in sounds associated with a non-musical motor activity: walking. In a combined production-perception design, two experiments were conducted, and expressive acoustical features were compared across modalities. An initial performance experiment tested for similar feature use in walking sounds and music performance, and revealed that strong similarities exist. Features related to sound intensity, tempo and tempo regularity were identified as been used similarly in both domains. Participants in a subsequent perception experiment were able to recognize both non-emotional and emotional properties of the sound-generating walkers. An analysis of the acoustical correlates of behavioral data revealed that variations in sound intensity, tempo, and tempo regularity were likely used to recognize expressed emotions. Taken together, these results lend support the motor origin hypothesis for the musical expression of emotions.

  13. The Environmental Cost of Marine Sound Sources

    NARCIS (Netherlands)

    Ainslie, M.A.; Dekeling, R.P.A.

    2011-01-01

    Cumulative acoustic exposure is used as an indicator for the risk of negative impact to animals as a consequence of exposure to underwater sound. The free-field energy of a single source, defined as the total acoustic energy that would exist in the source’s free field, is shown to be closely related

  14. Forced sound transmission through a finite-sized single leaf panel subject to a point source excitation.

    Science.gov (United States)

    Wang, Chong

    2018-03-01

    In the case of a point source in front of a panel, the wavefront of the incident wave is spherical. This paper discusses spherical sound waves transmitting through a finite sized panel. The forced sound transmission performance that predominates in the frequency range below the coincidence frequency is the focus. Given the point source located along the centerline of the panel, forced sound transmission coefficient is derived through introducing the sound radiation impedance for spherical incident waves. It is found that in addition to the panel mass, forced sound transmission loss also depends on the distance from the source to the panel as determined by the radiation impedance. Unlike the case of plane incident waves, sound transmission performance of a finite sized panel does not necessarily converge to that of an infinite panel, especially when the source is away from the panel. For practical applications, the normal incidence sound transmission loss expression of plane incident waves can be used if the distance between the source and panel d and the panel surface area S satisfy d/S>0.5. When d/S ≈0.1, the diffuse field sound transmission loss expression may be a good approximation. An empirical expression for d/S=0  is also given.

  15. Auralization of airborne sound insulation including the influence of source room

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2006-01-01

    The paper describes a simple and acoustically accurate method for the auralization of airborne sound insulation between two rooms by means of a room acoustic simulation software (ODEON). The method makes use of a frequency independent transparency of the transmitting surface combined...... with a frequency dependent power setting of the source in the source room. The acoustic properties in terms of volume and reverberation time as well as the area of the transmitting surface are all included in the simulation. The user only has to select the position of the source in the source room and the receiver...... of the transmitting surface is used for the simulation of sound transmission. Also the reduced clarity of the auralization due to the reverberance of the source room is inherent in the method. Currently the method is restricted to transmission loss data in octave bands....

  16. The effect of sound sources on soundscape appraisal

    NARCIS (Netherlands)

    van den Bosch, Kirsten; Andringa, Tjeerd

    2014-01-01

    In this paper we explore how the perception of sound sources (like traffic, birds, and the presence of distant people) influences the appraisal of soundscapes (as calm, lively, chaotic, or boring). We have used 60 one-minute recordings, selected from 21 days (502 hours) in March and July 2010.

  17. Analysis, Design and Implementation of an Embedded Realtime Sound Source Localization System Based on Beamforming Theory

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2009-12-01

    Full Text Available This project is intended to analyze, design and implement a realtime sound source localization system by using a mobile robot as the media. The implementated system uses 2 microphones as the sensors, Arduino Duemilanove microcontroller system with ATMega328p as the microprocessor, two permanent magnet DC motors as the actuators for the mobile robot and a servo motor as the actuator to rotate the webcam directing to the location of the sound source, and a laptop/PC as the simulation and display media. In order to achieve the objective of finding the position of a specific sound source, beamforming theory is applied to the system. Once the location of the sound source is detected and determined, the choice is either the mobile robot will adjust its position according to the direction of the sound source or only webcam will rotate in the direction of the incoming sound simulating the use of this system in a video conference. The integrated system has been tested and the results show the system could localize in realtime a sound source placed randomly on a half circle area (0 - 1800 with a radius of 0.3m - 3m, assuming the system is the center point of the circle. Due to low ADC and processor speed, achievable best angular resolution is still limited to 25o.

  18. Sound classification of dwellings in the Nordic countries – Differences and similarities between the five national schemes

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2012-01-01

    having several similarities. In 2012, status is that number and denotations of classes for dwellings are identical in the Nordic countries, but the structures of the standards and several details are quite different. Also the issues dealt with are different. Examples of differences are sound insulation...... for classification of such buildings. This paper presents and compares the main class criteria for sound insulation of dwellings and summarizes differences and similarities in criteria and in structures of standards. Classification schemes for dwellings also exist in several other countries in Europe......In all five Nordic countries, sound classification schemes for dwellings have been published in national standards being implemented and revised gradually since the late 1990s. The national classification criteria for dwellings originate from a common Nordic INSTA-B proposal from the 1990s, thus...

  19. Difficulty in Learning Similar-Sounding Words: A Developmental Stage or a General Property of Learning?

    Science.gov (United States)

    Pajak, Bozena; Creel, Sarah C.; Levy, Roger

    2016-01-01

    How are languages learned, and to what extent are learning mechanisms similar in infant native-language (L1) and adult second-language (L2) acquisition? In terms of vocabulary acquisition, we know from the infant literature that the ability to discriminate similar-sounding words at a particular age does not guarantee successful word-meaning…

  20. Chromatographic fingerprint similarity analysis for pollutant source identification

    International Nuclear Information System (INIS)

    Xie, Juan-Ping; Ni, Hong-Gang

    2015-01-01

    In the present study, a similarity analysis method was proposed to evaluate the source-sink relationships among environmental media for polybrominated diphenyl ethers (PBDEs), which were taken as the representative contaminants. Chromatographic fingerprint analysis has been widely used in the fields of natural products chemistry and forensic chemistry, but its application to environmental science has been limited. We established a library of various sources of media containing contaminants (e.g., plastics), recognizing that the establishment of a more comprehensive library allows for a better understanding of the sources of contamination. We then compared an environmental complex mixture (e.g., sediment, soil) with the profiles in the library. These comparisons could be used as the first step in source tracking. The cosine similarities between plastic and soil or sediment ranged from 0.53 to 0.68, suggesting that plastic in electronic waste is an important source of PBDEs in the environment, but it is not the only source. A similarity analysis between soil and sediment indicated that they have a source-sink relationship. Generally, the similarity analysis method can encompass more relevant information of complex mixtures in the environment than a profile-based approach that only focuses on target pollutants. There is an inherent advantage to creating a data matrix containing all peaks and their relative levels after matching the peaks based on retention times and peak areas. This data matrix can be used for source identification via a similarity analysis without quantitative or qualitative analysis of all chemicals in a sample. - Highlights: • Chromatographic fingerprint analysis can be used as the first step in source tracking. • Similarity analysis method can encompass more relevant information of pollution. • The fingerprints strongly depend on the chromatographic conditions. • A more effective and robust method for identifying similarities is required

  1. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2004-01-01

    considering reverberation time. However, for the three other parameters evaluated (sound pressure level, clarity index and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  2. Differences in directional sound source behavior and perception between assorted computer room models

    DEFF Research Database (Denmark)

    Vigeant, M. C.; Wang, L. M.; Rindel, Jens Holger

    2004-01-01

    time. However, for the three other parameters evaluated (sound-pressure level, clarity index, and lateral fraction), the changing diffusivity of the room does not diminish the importance of the directivity. The study therefore shows the importance of considering source directivity when using computer......Source directivity is an important input variable when using room acoustic computer modeling programs to generate auralizations. Previous research has shown that using a multichannel anechoic recording can produce a more natural sounding auralization, particularly as the number of channels...

  3. Sound source location in cavitating tip vortices

    International Nuclear Information System (INIS)

    Higuchi, H.; Taghavi, R.; Arndt, R.E.A.

    1985-01-01

    Utilizing an array of three hydrophones, individual cavitation bursts in a tip vortex could be located. Theoretically, four hydrophones are necessary. Hence the data from three hydrophones are supplemented with photographic observation of the cavitating tip vortex. The cavitation sound sources are found to be localized to within one base chord length from the hydrofoil tip. This appears to correspond to the region of initial tip vortex roll-up. A more extensive study with a four sensor array is now in progress

  4. The Reduction of Vertical Interchannel Crosstalk: The Analysis of Localisation Thresholds for Natural Sound Sources

    Directory of Open Access Journals (Sweden)

    Rory Wallis

    2017-03-01

    Full Text Available In subjective listening tests, natural sound sources were presented to subjects as vertically-oriented phantom images from two layers of loudspeakers, ‘height’ and ‘main’. Subjects were required to reduce the amplitude of the height layer until the position of the resultant sound source matched that of the same source presented from the main layer only (the localisation threshold. Delays of 0, 1 and 10 ms were applied to the height layer with respect to the main, with vertical stereophonic and quadraphonic conditions being tested. The results of the study showed that the localisation thresholds obtained were not significantly affected by sound source or presentation method. Instead, the only variable whose effect was significant was interchannel time difference (ICTD. For ICTD of 0 ms, the median threshold was −9.5 dB, which was significantly lower than the −7 dB found for both 1 and 10 ms. The results of the study have implications both for the recording of sound sources for three-dimensional (3D audio reproduction formats and also for the rendering of 3D images.

  5. Reproduction of nearby sources by imposing true interaural differences on a sound field control approach

    DEFF Research Database (Denmark)

    Badajoz, Javier; Chang, Ji-ho; Agerkvist, Finn T.

    2015-01-01

    In anechoic conditions, the Interaural Level Difference (ILD) is the most significant auditory cue to judge the distance to a sound source located within 1 m of the listener's head. This is due to the unique characteristics of a point source in its near field, which result in exceptionally high...... as Pressure Matching (PM), and a binaural control technique. While PM aims at reproducing the incident sound field, the objective of the binaural control technique is to ensure a correct reproduction of interaural differences. The combination of these two approaches gives rise to the following features: (i......, distance dependent ILDs. When reproducing the sound field of sources located near the head with line or circular arrays of loudspeakers, the reproduced ILDs are generally lower than expected, due to physical limitations. This study presents an approach that combines a sound field reproduction method, known...

  6. Improvements on the directional characteristics of a calibration sound source using the Boundary Element Method

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda; Barrera Figueroa, Salvador; Juhl, Peter Møller

    2008-01-01

    is of particular importance to achieve a sound field that reaches both microphones with the same level and that is sufficiently uniform at the microphone positions, in order to reduce the effect of misalignment. An existing sound source has been modeled using the Boundary Element Method, and the simulations have......The project Euromet-792 aims to investigate and improve methods for secondary free-field calibration of microphones. In this framework, the comparison method is being studied at DFM in relation to the more usual substitution method of microphone calibration. The design of the sound source...... been used to modify the source and make it suitable for this kind of calibration. It has been found that a central plug, already present in the device, can be re-shaped in such a way that makes the sound field on the microphone positions more uniform, even at rather high frequencies. Measurements have...

  7. Sound Photographs to reveal vehicle pass-by sources with a calibrated source-strength level

    NARCIS (Netherlands)

    Mast, A.; Dool, T.C. van den; Toorn, J.D. van der; Watts, G.

    2003-01-01

    In national and European discussions, it appears that the conventional sound measurement techniques are insufficient to answer some relevant questions with respect to source strength of road vehicles. An example of such a question is: What is the importance of tyre-road noise on the one hand and

  8. Similarities between the irrelevant sound effect and the suffix effect.

    Science.gov (United States)

    Hanley, J Richard; Bourgaize, Jake

    2018-03-29

    Although articulatory suppression abolishes the effect of irrelevant sound (ISE) on serial recall when sequences are presented visually, the effect persists with auditory presentation of list items. Two experiments were designed to test the claim that, when articulation is suppressed, the effect of irrelevant sound on the retention of auditory lists resembles a suffix effect. A suffix is a spoken word that immediately follows the final item in a list. Even though participants are told to ignore it, the suffix impairs serial recall of auditory lists. In Experiment 1, the irrelevant sound consisted of instrumental music. The music generated a significant ISE that was abolished by articulatory suppression. It therefore appears that, when articulation is suppressed, irrelevant sound must contain speech for it to have any effect on recall. This is consistent with what is known about the suffix effect. In Experiment 2, the effect of irrelevant sound under articulatory suppression was greater when the irrelevant sound was spoken by the same voice that presented the list items. This outcome is again consistent with the known characteristics of the suffix effect. It therefore appears that, when rehearsal is suppressed, irrelevant sound disrupts the acoustic-perceptual encoding of auditorily presented list items. There is no evidence that the persistence of the ISE under suppression is a result of interference to the representation of list items in a postcategorical phonological store.

  9. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  10. Community Response to Multiple Sound Sources: Integrating Acoustic and Contextual Approaches in the Analysis

    Directory of Open Access Journals (Sweden)

    Peter Lercher

    2017-06-01

    Full Text Available Sufficient data refer to the relevant prevalence of sound exposure by mixed traffic sources in many nations. Furthermore, consideration of the potential effects of combined sound exposure is required in legal procedures such as environmental health impact assessments. Nevertheless, current practice still uses single exposure response functions. It is silently assumed that those standard exposure-response curves accommodate also for mixed exposures—although some evidence from experimental and field studies casts doubt on this practice. The ALPNAP-study population (N = 1641 shows sufficient subgroups with combinations of rail-highway, highway-main road and rail-highway-main road sound exposure. In this paper we apply a few suggested approaches of the literature to investigate exposure-response curves and its major determinants in the case of exposure to multiple traffic sources. Highly/moderate annoyance and full scale mean annoyance served as outcome. The results show several limitations of the current approaches. Even facing the inherent methodological limitations (energy equivalent summation of sound, rating of overall annoyance the consideration of main contextual factors jointly occurring with the sources (such as vibration, air pollution or coping activities and judgments of the wider area soundscape increases the variance explanation from up to 8% (bivariate, up to 15% (base adjustments up to 55% (full contextual model. The added predictors vary significantly, depending on the source combination. (e.g., significant vibration effects with main road/railway, not highway. Although no significant interactions were found, the observed additive effects are of public health importance. Especially in the case of a three source exposure situation the overall annoyance is already high at lower levels and the contribution of the acoustic indicators is small compared with the non-acoustic and contextual predictors. Noise mapping needs to go down to

  11. Sound power emitted by a pure-tone source in a reverberation room

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Molares, Alfonso Rodriguez

    2009-01-01

    Energy considerations are of enormous practical importance in acoustics. In "energy acoustics," sources of noise are described in terms of the sound power they emit, the underlying assumption being that this property is independent of the particular environment where the sources are placed. Howev...

  12. Detection of aeroacoustic sound sources on aircraft and wind turbines

    NARCIS (Netherlands)

    Oerlemans, Stefan

    2009-01-01

    This thesis deals with the detection of aeroacoustic sound sources on aircraft and wind turbines using phased microphone arrays. First, the reliability of the array technique is assessed using airframe noise measurements in open and closed wind tunnels. It is demonstrated that quantitative acoustic

  13. The low-frequency sound power measuring technique for an underwater source in a non-anechoic tank

    Science.gov (United States)

    Zhang, Yi-Ming; Tang, Rui; Li, Qi; Shang, Da-Jing

    2018-03-01

    In order to determine the radiated sound power of an underwater source below the Schroeder cut-off frequency in a non-anechoic tank, a low-frequency extension measuring technique is proposed. This technique is based on a unique relationship between the transmission characteristics of the enclosed field and those of the free field, which can be obtained as a correction term based on previous measurements of a known simple source. The radiated sound power of an unknown underwater source in the free field can thereby be obtained accurately from measurements in a non-anechoic tank. To verify the validity of the proposed technique, a mathematical model of the enclosed field is established using normal-mode theory, and the relationship between the transmission characteristics of the enclosed and free fields is obtained. The radiated sound power of an underwater transducer source is tested in a glass tank using the proposed low-frequency extension measuring technique. Compared with the free field, the radiated sound power level of the narrowband spectrum deviation is found to be less than 3 dB, and the 1/3 octave spectrum deviation is found to be less than 1 dB. The proposed testing technique can be used not only to extend the low-frequency applications of non-anechoic tanks, but also for measurement of radiated sound power from complicated sources in non-anechoic tanks.

  14. A novel method for direct localized sound speed measurement using the virtual source paradigm

    DEFF Research Database (Denmark)

    Byram, Brett; Trahey, Gregg E.; Jensen, Jørgen Arendt

    2007-01-01

    ) mediums. The inhomogeneous mediums were arranged as an oil layer, one 6 mm thick and the other 11 mm thick, on top of a water layer. To complement the phantom studies, sources of error for spatial registration of virtual detectors were simulated. The sources of error presented here are multiple sound...... registered virtual detector. Between a pair of registered virtual detectors a spherical wave is propagated. By beamforming the received data the time of flight between the two virtual sources can be calculated. From this information the local sound speed can be estimated. Validation of the estimator used...... both phantom and simulation results. The phantom consisted of two wire targets located near the transducer's axis at depths of 17 and 28 mm. Using this phantom the sound speed between the wires was measured for a homogeneous (water) medium and for two inhomogeneous (DB-grade castor oil and water...

  15. Aerofoil broadband and tonal noise modelling using stochastic sound sources and incorporated large scale fluctuations

    Science.gov (United States)

    Proskurov, S.; Darbyshire, O. R.; Karabasov, S. A.

    2017-12-01

    The present work discusses modifications to the stochastic Fast Random Particle Mesh (FRPM) method featuring both tonal and broadband noise sources. The technique relies on the combination of incorporated vortex-shedding resolved flow available from Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation with the fine-scale turbulence FRPM solution generated via the stochastic velocity fluctuations in the context of vortex sound theory. In contrast to the existing literature, our method encompasses a unified treatment for broadband and tonal acoustic noise sources at the source level, thus, accounting for linear source interference as well as possible non-linear source interaction effects. When sound sources are determined, for the sound propagation, Acoustic Perturbation Equations (APE-4) are solved in the time-domain. Results of the method's application for two aerofoil benchmark cases, with both sharp and blunt trailing edges are presented. In each case, the importance of individual linear and non-linear noise sources was investigated. Several new key features related to the unsteady implementation of the method were tested and brought into the equation. Encouraging results have been obtained for benchmark test cases using the new technique which is believed to be potentially applicable to other airframe noise problems where both tonal and broadband parts are important.

  16. Maximum likelihood approach to “informed” Sound Source Localization for Hearing Aid applications

    DEFF Research Database (Denmark)

    Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

    2015-01-01

    Most state-of-the-art Sound Source Localization (SSL) algorithms have been proposed for applications which are "uninformed'' about the target sound content; however, utilizing a wireless microphone worn by a target talker, enables recent Hearing Aid Systems (HASs) to access to an almost noise......-free sound signal of the target talker at the HAS via the wireless connection. Therefore, in this paper, we propose a maximum likelihood (ML) approach, which we call MLSSL, to estimate the Direction of Arrival (DoA) of the target signal given access to the target signal content. Compared with other "informed...

  17. Detection of aeroacoustic sound sources on aircraft and wind turbines

    International Nuclear Information System (INIS)

    Oerlemans, S.

    2009-01-01

    This thesis deals with the detection of aeroacoustic sound sources on aircraft and wind turbines using phased microphone arrays. First, the reliability of the array technique is assessed using airframe noise measurements in open and closed wind tunnels. It is demonstrated that quantitative acoustic measurements are possible in both wind tunnels. Then, the array technique is applied to characterize the noise sources on two modern large wind turbines. It is shown that practically all noise emitted to the ground is produced by the outer part of the blades during their downward movement. This asymmetric source pattern, which causes the typical swishing noise during the passage of the blades, can be explained by trailing edge noise directivity and convective amplification. Next, a semi-empirical prediction method is developed for the noise from large wind turbines. The prediction code is successfully validated against the experimental results, not only with regard to sound levels, spectra, and directivity, but also with regard to the noise source distribution in the rotor plane and the temporal variation in sound level (swish). The validated prediction method is then applied to calculate wind turbine noise footprints, which show that large swish amplitudes can occur even at large distance. The influence of airfoil shape on blade noise is investigated through acoustic wind tunnel tests on a series of wind turbine airfoils. Measurements are carried out at various wind speeds and angles of attack, with and without upstream turbulence and boundary layer tripping. The speed dependence, directivity, and tonal behaviour are determined for both trailing edge noise and inflow turbulence noise. Finally, two noise reduction concepts are tested on a large wind turbine: acoustically optimized airfoils and trailing edge serrations. Both blade modifications yield a significant trailing edge noise reduction at low frequencies, but also cause increased tip noise at high frequencies

  18. The influence of signal parameters on the sound source localization ability of a harbor porpoise (Phocoena phocoena)

    NARCIS (Netherlands)

    Kastelein, R.A.; Haan, D.de; Verboom, W.C.

    2007-01-01

    It is unclear how well harbor porpoises can locate sound sources, and thus can locate acoustic alarms on gillnets. Therefore the ability of a porpoise to determine the location of a sound source was determined. The animal was trained to indicate the active one of 16 transducers in a 16-m -diam

  19. Towards a Synesthesia Laboratory: Real-time Localization and Visualization of a Sound Source for Virtual Reality Applications

    OpenAIRE

    Kose, Ahmet; Tepljakov, Aleksei; Astapov, Sergei; Draheim, Dirk; Petlenkov, Eduard; Vassiljeva, Kristina

    2018-01-01

    In this paper, we present our findings related to the problem of localization and visualization of a sound source placed in the same room as the listener. The particular effect that we aim to investigate is called synesthesia—the act of experiencing one sense modality as another, e.g., a person may vividly experience flashes of colors when listening to a series of sounds. Towards that end, we apply a series of recently developed methods for detecting sound source in a three-dimensional space ...

  20. A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS

    Science.gov (United States)

    Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto

    At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.

  1. Photoacoustic Sounds from Meteors.

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

  2. Sound Spectrum Influences Auditory Distance Perception of Sound Sources Located in a Room Environment

    Directory of Open Access Journals (Sweden)

    Ignacio Spiousas

    2017-06-01

    Full Text Available Previous studies on the effect of spectral content on auditory distance perception (ADP focused on the physically measurable cues occurring either in the near field (low-pass filtering due to head diffraction or when the sound travels distances >15 m (high-frequency energy losses due to air absorption. Here, we study how the spectrum of a sound arriving from a source located in a reverberant room at intermediate distances (1–6 m influences the perception of the distance to the source. First, we conducted an ADP experiment using pure tones (the simplest possible spectrum of frequencies 0.5, 1, 2, and 4 kHz. Then, we performed a second ADP experiment with stimuli consisting of continuous broadband and bandpass-filtered (with center frequencies of 0.5, 1.5, and 4 kHz and bandwidths of 1/12, 1/3, and 1.5 octave pink-noise clips. Our results showed an effect of the stimulus frequency on the perceived distance both for pure tones and filtered noise bands: ADP was less accurate for stimuli containing energy only in the low-frequency range. Analysis of the frequency response of the room showed that the low accuracy observed for low-frequency stimuli can be explained by the presence of sparse modal resonances in the low-frequency region of the spectrum, which induced a non-monotonic relationship between binaural intensity and source distance. The results obtained in the second experiment suggest that ADP can also be affected by stimulus bandwidth but in a less straightforward way (i.e., depending on the center frequency, increasing stimulus bandwidth could have different effects. Finally, the analysis of the acoustical cues suggests that listeners judged source distance using mainly changes in the overall intensity of the auditory stimulus with distance rather than the direct-to-reverberant energy ratio, even for low-frequency noise bands (which typically induce high amount of reverberation. The results obtained in this study show that, depending on

  3. New perspectives on mechanisms of sound generation in songbirds

    DEFF Research Database (Denmark)

    Goller, Franz; Larsen, Ole Næsbye

    2002-01-01

    -tone mechanism similar to human phonation with the labia forming a pneumatic valve. The classical avian model proposed that vibrations of the thin medial tympaniform membranes are the primary sound generating mechanism. As a direct test of these two hypotheses we ablated the medial tympaniform membranes in two......The physical mechanisms of sound generation in the vocal organ, the syrinx, of songbirds have been investigated mostly with indirect methods. Recent direct endoscopic observation identified vibrations of the labia as the principal sound source. This model suggests sound generation in a pulse...... atmosphere) as well as direct (labial vibration during tonal sound) measurements of syringeal vibrations support a vibration-based soundgenerating mechanism even for tonal sounds....

  4. Proximity sounding analysis for derechos and supercells: an assessment of similarities and differences

    Science.gov (United States)

    Doswell, Charles A.; Evans, Jeffry S.

    Proximity soundings (within 2 h and 167 km) of derechos (long-lived, widespread damaging convective windstorms) and supercells have been obtained. More than 65 derechos, accompanied by 115 proximity soundings, are identified during the years 1983 to 1993. The derechos have been divided into categories according to the synoptic situation: strong forcing (SF), weak forcing (WF), and "hybrid" cases (which are neither weakly nor strongly forced). Nearly 100 supercell proximity soundings have been found for the period 1998 to 2001, subdivided into nontornadic and tornadic supercells; tornadic supercells were further subdivided into those producing significant (>F1 rating) tornadoes and weak tornadoes (F0-F1 rating). WF derecho situations typically are characterized by warm, moist soundings with large convective available potential instability (CAPE) and relatively weak vertical wind shear. SF derechos usually have stronger wind shears, and cooler and less moist soundings with lower CAPE than the weakly forced cases. Most derechos exhibit strong storm-relative inflow at low levels. In WF derechos, this is usually the result of rapid convective system movement, whereas in SF derechos, storm-relative inflow at low levels is heavily influenced by relatively strong low-level windspeeds. "Hybrid" cases collectively are similar to an average of the SF and WF cases. Supercells occur in environments that are not all that dissimilar from those that produce SF derechos. It appears that some parameter combining instability and deep layer shear, such as the Energy-Helicity Index (EHI), can help discriminate between tornadic and nontornadic supercell situations. Soundings with significant tornadoes (F2 and greater) typically show high 0-1 km relative humidities, and strong 0-1 km shear. Results suggest it may not be easy to forecast the mode of severe thunderstorm activity (i.e., derecho versus supercell) on any particular day, given conditions that favor severe thunderstorm activity

  5. Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method

    Science.gov (United States)

    Yao, Jiachi; Xiang, Yang; Qian, Sichong; Li, Shengyang; Wu, Shaowei

    2017-11-01

    In order to separate and identify the combustion noise and the piston slap noise of a diesel engine, a noise source separation and identification method that combines a binaural sound localization method and blind source separation method is proposed. During a diesel engine noise and vibration test, because a diesel engine has many complex noise sources, a lead covering method was carried out on a diesel engine to isolate other interference noise from the No. 1-5 cylinders. Only the No. 6 cylinder parts were left bare. Two microphones that simulated the human ears were utilized to measure the radiated noise signals 1 m away from the diesel engine. First, a binaural sound localization method was adopted to separate the noise sources that are in different places. Then, for noise sources that are in the same place, a blind source separation method is utilized to further separate and identify the noise sources. Finally, a coherence function method, continuous wavelet time-frequency analysis method, and prior knowledge of the diesel engine are combined to further identify the separation results. The results show that the proposed method can effectively separate and identify the combustion noise and the piston slap noise of a diesel engine. The frequency of the combustion noise and the piston slap noise are respectively concentrated at 4350 Hz and 1988 Hz. Compared with the blind source separation method, the proposed method has superior separation and identification effects, and the separation results have fewer interference components from other noise.

  6. Numerical design and testing of a sound source for secondary calibration of microphones using the Boundary Element Method

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Juhl, Peter Møller; Barrera Figueroa, Salvador

    2009-01-01

    Secondary calibration of microphones in free field is performed by placing the microphone under calibration in an anechoic chamber with a sound source, and exposing it to a controlled sound field. A calibrated microphone is also measured as a reference. While the two measurements are usually made...... apart to avoid acoustic interaction. As a part of the project Euromet-792, aiming to investigate and improve methods for secondary free-field calibration of microphones, a sound source suitable for simultaneous secondary free-field calibration has been designed using the Boundary Element Method...... of the Danish Fundamental Metrology Institute (DFM). The design and verification of the source are presented in this communication....

  7. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    Science.gov (United States)

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    tuning functions in low-level auditory cortex underlie the perceived elevation of a sound source. Copyright © 2018 the authors 0270-6474/18/383252-13$15.00/0.

  8. Localization of Simultaneous Moving Sound Sources for Mobile Robot Using a Frequency-Domain Steered Beamformer Approach

    OpenAIRE

    Valin, Jean-Marc; Michaud, François; Hadjou, Brahim; Rouat, Jean

    2016-01-01

    Mobile robots in real-life settings would benefit from being able to localize sound sources. Such a capability can nicely complement vision to help localize a person or an interesting event in the environment, and also to provide enhanced processing for other capabilities such as speech recognition. In this paper we present a robust sound source localization method in three-dimensional space using an array of 8 microphones. The method is based on a frequency-domain implementation of a steered...

  9. Extended nonnegative tensor factorisation models for musical sound source separation.

    Science.gov (United States)

    FitzGerald, Derry; Cranitch, Matt; Coyle, Eugene

    2008-01-01

    Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  10. Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

    Directory of Open Access Journals (Sweden)

    Derry FitzGerald

    2008-01-01

    Full Text Available Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  11. Songbirds use pulse tone register in two voices to generate low-frequency sound

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Cooper, Brenton G.; Larsen, Ole Næsbye

    2007-01-01

    , the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation. The syrinx of anaesthetized crows shows a vibration pattern of the labia similar to that of the human vocal fry register. Acoustic pulses result from short opening of the labia, and pulse...... generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously...

  12. Active sound reduction system and method

    NARCIS (Netherlands)

    2016-01-01

    The present invention refers to an active sound reduction system and method for attenuation of sound emitted by a primary sound source, especially for attenuation of snoring sounds emitted by a human being. This system comprises a primary sound source, at least one speaker as a secondary sound

  13. Parameterizing Sound: Design Considerations for an Environmental Sound Database

    Science.gov (United States)

    2015-04-01

    associated with, or produced by, a physical event or human activity and 2) sound sources that are common in the environment. Reproductions or sound...Rogers S. Confrontation naming of environmental sounds. Journal of Clinical and Experimental Neuropsychology . 2000;22(6):830–864. 14 VanDerveer NJ

  14. Effects of Freestream Turbulence on Cavity Tone and Sound Source

    Directory of Open Access Journals (Sweden)

    Hiroshi Yokoyama

    2016-01-01

    Full Text Available To clarify the effects of freestream turbulence on cavity tones, flow and acoustic fields were directly predicted for cavity flows with various intensities of freestream turbulence. The freestream Mach number was 0.09 and the Reynolds number based on the cavity length was 4.0 × 104. The depth-to-length ratio of the cavity, D/L, was 0.5 and 2.5, where the acoustic resonance of a depth-mode occurs for D/L = 2.5. The incoming boundary layer was laminar. The results for the intensity of freestream turbulence of Tu = 2.3% revealed that the reduced level of cavity tones in a cavity flow with acoustic resonance (D/L=2.5 was greater than that without acoustic resonance (D/L=0.5. To clarify the reason for this, the sound source based on Lighthill’s acoustic analogy was computed, and the contributions of the intensity and spanwise coherence of the sound source to the reduction of the cavity tone were estimated. As a result, the effects of the reduction of spanwise coherence on the cavity tone were greater in the cavity flow with acoustic resonance than in that without resonance, while the effects of the intensity were comparable for both flows.

  15. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Science.gov (United States)

    Song, Kai; Liu, Qi; Wang, Qi

    2011-01-01

    Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE) and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN). Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability. PMID:22319401

  16. Olfaction and Hearing Based Mobile Robot Navigation for Odor/Sound Source Search

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2011-02-01

    Full Text Available Bionic technology provides a new elicitation for mobile robot navigation since it explores the way to imitate biological senses. In the present study, the challenging problem was how to fuse different biological senses and guide distributed robots to cooperate with each other for target searching. This paper integrates smell, hearing and touch to design an odor/sound tracking multi-robot system. The olfactory robot tracks the chemical odor plume step by step through information fusion from gas sensors and airflow sensors, while two hearing robots localize the sound source by time delay estimation (TDE and the geometrical position of microphone array. Furthermore, this paper presents a heading direction based mobile robot navigation algorithm, by which the robot can automatically and stably adjust its velocity and direction according to the deviation between the current heading direction measured by magnetoresistive sensor and the expected heading direction acquired through the odor/sound localization strategies. Simultaneously, one robot can communicate with the other robots via a wireless sensor network (WSN. Experimental results show that the olfactory robot can pinpoint the odor source within the distance of 2 m, while two hearing robots can quickly localize and track the olfactory robot in 2 min. The devised multi-robot system can achieve target search with a considerable success ratio and high stability.

  17. Competing sound sources reveal spatial effects in cortical processing.

    Directory of Open Access Journals (Sweden)

    Ross K Maddox

    Full Text Available Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song. However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations dominate responses of different neural subpopulations, helping to separate neural responses into independent representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate for selective spatial auditory attention.

  18. Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem

    DEFF Research Database (Denmark)

    Walton, Peggy L; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2017-01-01

    The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement...... to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization....

  19. Movement and Perceptual Strategies to Intercept Virtual Sound Sources.

    Directory of Open Access Journals (Sweden)

    Naeem eKomeilipoor

    2015-05-01

    Full Text Available To intercept a moving object, one needs to be in the right place at the right time. In order to do this, it is necessary to pick up and use perceptual information that specifies the time to arrival of an object at an interception point. In the present study, we examined the ability to intercept a laterally moving virtual sound object by controlling the displacement of a sliding handle and tested whether and how the interaural time difference (ITD could be the main source of perceptual information for successfully intercepting the virtual object. The results revealed that in order to accomplish the task, one might need to vary the duration of the movement, control the hand velocity and time to reach the peak velocity (speed coupling, while the adjustment of movement initiation did not facilitate performance. Furthermore, the overall performance was more successful when subjects employed a time-to-contact (tau coupling strategy. This result shows that prospective information is available in sound for guiding goal-directed actions.

  20. Source Similarity and Social Media Health Messages: Extending Construal Level Theory to Message Sources.

    Science.gov (United States)

    Young, Rachel

    2015-09-01

    Social media users post messages about health goals and behaviors to online social networks. Compared with more traditional sources of health communication such as physicians or health journalists, peer sources are likely to be perceived as more socially close or similar, which influences how messages are processed. This experimental study uses construal level theory of psychological distance to predict how mediated health messages from peers influence health-related cognition and behavioral intention. Participants were exposed to source cues that identified peer sources as being either highly attitudinally and demographically similar to or different from participants. As predicted by construal level theory, participants who perceived sources of social media health messages as highly similar listed a greater proportion of beliefs about the feasibility of health behaviors and a greater proportion of negative beliefs, while participants who perceived sources as more dissimilar listed a greater proportion of positive beliefs about the health behaviors. Results of the study could be useful in determining how health messages from peers could encourage individuals to set realistic health goals.

  1. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network.

    Science.gov (United States)

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  2. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Science.gov (United States)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  3. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Directory of Open Access Journals (Sweden)

    A. Neska

    2018-03-01

    Full Text Available This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding. The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  4. The effect of sound speed profile on shallow water shipping sound maps

    NARCIS (Netherlands)

    Sertlek, H.Ö.; Binnerts, B.; Ainslie, M.A.

    2016-01-01

    Sound mapping over large areas can be computationally expensive because of the large number of sources and large source-receiver separations involved. In order to facilitate computation, a simplifying assumption sometimes made is to neglect the sound speed gradient in shallow water. The accuracy of

  5. Sound Source Localization Through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    Directory of Open Access Journals (Sweden)

    Christoph Beck

    2016-10-01

    Full Text Available Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  6. Sound source measurement by using a passive sound insulation and a statistical approach

    Science.gov (United States)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  7. Perception by Operators of Approach and Withdrawal of Moving Sound Sources

    Science.gov (United States)

    1999-01-01

    Tucker, 1988; Strybel and Neal, 1994) or between stationary and moving sound sources or auditory images (Perrott and Musikant , 1977; Strybel and Neale...conditions of stimulation (Viskov, 1975; Perrott and Musikant , 1977; Strybel et al., 1989; Sabery and Perrott, 1990; Strybel et al., 1992; Strybel and...noise and its relation to masking and loudness// JASA, 1947. V.19. P. 609-619. 24. Perrott D.R., Musicant A.D. Minimum auditory movement angle: binaural

  8. Performance of an open-source heart sound segmentation algorithm on eight independent databases.

    Science.gov (United States)

    Liu, Chengyu; Springer, David; Clifford, Gari D

    2017-08-01

    Heart sound segmentation is a prerequisite step for the automatic analysis of heart sound signals, facilitating the subsequent identification and classification of pathological events. Recently, hidden Markov model-based algorithms have received increased interest due to their robustness in processing noisy recordings. In this study we aim to evaluate the performance of the recently published logistic regression based hidden semi-Markov model (HSMM) heart sound segmentation method, by using a wider variety of independently acquired data of varying quality. Firstly, we constructed a systematic evaluation scheme based on a new collection of heart sound databases, which we assembled for the PhysioNet/CinC Challenge 2016. This collection includes a total of more than 120 000 s of heart sounds recorded from 1297 subjects (including both healthy subjects and cardiovascular patients) and comprises eight independent heart sound databases sourced from multiple independent research groups around the world. Then, the HSMM-based segmentation method was evaluated using the assembled eight databases. The common evaluation metrics of sensitivity, specificity, accuracy, as well as the [Formula: see text] measure were used. In addition, the effect of varying the tolerance window for determining a correct segmentation was evaluated. The results confirm the high accuracy of the HSMM-based algorithm on a separate test dataset comprised of 102 306 heart sounds. An average [Formula: see text] score of 98.5% for segmenting S1 and systole intervals and 97.2% for segmenting S2 and diastole intervals were observed. The [Formula: see text] score was shown to increases with an increases in the tolerance window size, as expected. The high segmentation accuracy of the HSMM-based algorithm on a large database confirmed the algorithm's effectiveness. The described evaluation framework, combined with the largest collection of open access heart sound data, provides essential resources for

  9. A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization.

    Science.gov (United States)

    McCarthy, Lisa; Olsen, Kirk N

    2017-01-01

    Continuous increases of acoustic intensity (up-ramps) can indicate a looming (approaching) sound source in the environment, whereas continuous decreases of intensity (down-ramps) can indicate a receding sound source. From psychoacoustic experiments, an "adaptive perceptual bias" for up-ramp looming tonal stimuli has been proposed (Neuhoff, 1998). This theory postulates that (1) up-ramps are perceptually salient because of their association with looming and potentially threatening stimuli in the environment; (2) tonal stimuli are perceptually salient because of an association with single and potentially threatening biological sound sources in the environment, relative to white noise, which is more likely to arise from dispersed signals and nonthreatening/nonbiological sources (wind/ocean). In the present study, we extrapolated the "adaptive perceptual bias" theory and investigated its assumptions by measuring sound source localization in response to acoustic stimuli presented in azimuth to imply looming, stationary, and receding motion in depth. Participants (N = 26) heard three directions of intensity change (up-ramps, down-ramps, and steady state, associated with looming, receding, and stationary motion, respectively) and three levels of acoustic spectrum (a 1-kHz pure tone, the tonal vowel /ә/, and white noise) in a within-subjects design. We first hypothesized that if up-ramps are "perceptually salient" and capable of eliciting adaptive responses, then they would be localized faster and more accurately than down-ramps. This hypothesis was supported. However, the results did not support the second hypothesis. Rather, the white-noise and vowel conditions were localized faster and more accurately than the pure-tone conditions. These results are discussed in the context of auditory and visual theories of motion perception, auditory attentional capture, and the spectral causes of spatial ambiguity.

  10. Judging the similarity of soundscapes does not require categorization: evidence from spliced stimuli.

    Science.gov (United States)

    Aucouturier, Jean-Julien; Defreville, Boris

    2009-04-01

    This study uses an audio signal transformation, splicing, to create an experimental situation where human listeners judge the similarity of audio signals, which they cannot easily categorize. Splicing works by segmenting audio signals into 50-ms frames, then shuffling and concatenating these frames back in random order. Splicing a signal masks the identification of the categories that it normally elicits: For instance, human participants cannot easily identify the sound of cars in a spliced recording of a city street. This study compares human performance on both normal and spliced recordings of soundscapes and music. Splicing is found to degrade human similarity performance significantly less for soundscapes than for music: When two spliced soundscapes are judged similar to one another, the original recordings also tend to sound similar. This establishes that humans are capable of reconstructing consistent similarity relations between soundscapes without relying much on the identification of the natural categories associated with such signals, such as their constituent sound sources. This finding contradicts previous literature and points to new ways to conceptualize the different ways in which humans perceive soundscapes and music.

  11. The effect of multimicrophone noise reduction systems on sound source localization by users of binaural hearing aids.

    Science.gov (United States)

    Van den Bogaert, Tim; Doclo, Simon; Wouters, Jan; Moonen, Marc

    2008-07-01

    This paper evaluates the influence of three multimicrophone noise reduction algorithms on the ability to localize sound sources. Two recently developed noise reduction techniques for binaural hearing aids were evaluated, namely, the binaural multichannel Wiener filter (MWF) and the binaural multichannel Wiener filter with partial noise estimate (MWF-N), together with a dual-monaural adaptive directional microphone (ADM), which is a widely used noise reduction approach in commercial hearing aids. The influence of the different algorithms on perceived sound source localization and their noise reduction performance was evaluated. It is shown that noise reduction algorithms can have a large influence on localization and that (a) the ADM only preserves localization in the forward direction over azimuths where limited or no noise reduction is obtained; (b) the MWF preserves localization of the target speech component but may distort localization of the noise component. The latter is dependent on signal-to-noise ratio and masking effects; (c) the MWF-N enables correct localization of both the speech and the noise components; (d) the statistical Wiener filter approach introduces a better combination of sound source localization and noise reduction performance than the ADM approach.

  12. The meaning of city noises: Investigating sound quality in Paris (France)

    Science.gov (United States)

    Dubois, Daniele; Guastavino, Catherine; Maffiolo, Valerie; Guastavino, Catherine; Maffiolo, Valerie

    2004-05-01

    The sound quality of Paris (France) was investigated by using field inquiries in actual environments (open questionnaires) and using recordings under laboratory conditions (free-sorting tasks). Cognitive categories of soundscapes were inferred by means of psycholinguistic analyses of verbal data and of mathematical analyses of similarity judgments. Results show that auditory judgments mainly rely on source identification. The appraisal of urban noise therefore depends on the qualitative evaluation of noise sources. The salience of human sounds in public spaces has been demonstrated, in relation to pleasantness judgments: soundscapes with human presence tend to be perceived as more pleasant than soundscapes consisting solely of mechanical sounds. Furthermore, human sounds are qualitatively processed as indicators of human outdoor activities, such as open markets, pedestrian areas, and sidewalk cafe districts that reflect city life. In contrast, mechanical noises (mainly traffic noise) are commonly described in terms of physical properties (temporal structure, intensity) of a permanent background noise that also characterizes urban areas. This connotes considering both quantitative and qualitative descriptions to account for the diversity of cognitive interpretations of urban soundscapes, since subjective evaluations depend both on the meaning attributed to noise sources and on inherent properties of the acoustic signal.

  13. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    Science.gov (United States)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  14. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  15. Spectral and temporal cues for perception of material and action categories in impacted sound sources

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; McAdams, Stephen

    2016-01-01

    In two experiments, similarity ratings and categorization performance with recorded impact sounds representing three material categories (wood, metal, glass) being manipulated by three different categories of action (drop, strike, rattle) were examined. Previous research focusing on single impact...... correlated with the pattern of confusion in categorization judgments. Listeners tended to confuse materials with similar spectral centroids, and actions with similar temporal centroids and onset densities. To confirm the influence of these different features, spectral cues were removed by applying...

  16. Sound segregation via embedded repetition is robust to inattention.

    Science.gov (United States)

    Masutomi, Keiko; Barascud, Nicolas; Kashino, Makio; McDermott, Josh H; Chait, Maria

    2016-03-01

    The segregation of sound sources from the mixture of sounds that enters the ear is a core capacity of human hearing, but the extent to which this process is dependent on attention remains unclear. This study investigated the effect of attention on the ability to segregate sounds via repetition. We utilized a dual task design in which stimuli to be segregated were presented along with stimuli for a "decoy" task that required continuous monitoring. The task to assess segregation presented a target sound 10 times in a row, each time concurrent with a different distractor sound. McDermott, Wrobleski, and Oxenham (2011) demonstrated that repetition causes the target sound to be segregated from the distractors. Segregation was queried by asking listeners whether a subsequent probe sound was identical to the target. A control task presented similar stimuli but probed discrimination without engaging segregation processes. We present results from 3 different decoy tasks: a visual multiple object tracking task, a rapid serial visual presentation (RSVP) digit encoding task, and a demanding auditory monitoring task. Load was manipulated by using high- and low-demand versions of each decoy task. The data provide converging evidence of a small effect of attention that is nonspecific, in that it affected the segregation and control tasks to a similar extent. In all cases, segregation performance remained high despite the presence of a concurrent, objectively demanding decoy task. The results suggest that repetition-based segregation is robust to inattention. (c) 2016 APA, all rights reserved).

  17. Spherical loudspeaker array for local active control of sound.

    Science.gov (United States)

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  18. Sound localization and occupational noise

    Directory of Open Access Journals (Sweden)

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  19. Reconstruction of Sound Source Pressures in an Enclosure Using the Phased Beam Tracing Method

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Ih, Jeong-Guon

    2009-01-01

    . First, surfaces of an extended source are divided into reasonably small segments. From each source segment, one beam is projected into the field and all emitted beams are traced. Radiated beams from the source reach array sensors after traveling various paths including the wall reflections. Collecting...... all the pressure histories at the field points, source-observer relations can be constructed in a matrix-vector form for each frequency. By multiplying the measured field data with the pseudo-inverse of the calculated transfer function, one obtains the distribution of source pressure. An omni......-directional sphere and a cubic source in a rectangular enclosure were taken as examples in the simulation tests. A reconstruction error was investigated by Monte Carlo simulation in terms of field point locations. When the source information was reconstructed by the present method, it was shown that the sound power...

  20. Measurement of acoustic characteristics of Japanese Buddhist temples in relation to sound source location and direction.

    Science.gov (United States)

    Soeta, Yoshiharu; Shimokura, Ryota; Kim, Yong Hee; Ohsawa, Tomohiro; Ito, Ken

    2013-05-01

    Although temples are important buildings in the Buddhist community, the acoustic quality has not been examined in detail. Buddhist monks change the location and direction according to the ceremony, and associated acoustical changes have not yet been examined scientifically. To discuss the desired acoustics of temples, it is necessary to know the acoustic characteristics appropriate for each phase of a ceremony. In this study, acoustic measurements were taken at various source locations and directions in Japanese temples. A directional loudspeaker was used as the source to provide vocal acoustic fields, and impulse responses were measured and analyzed. The speech transmission index was higher and the interaural cross-correlation coefficient was lower for the sound source directed toward the side wall than that directed toward the altar. This suggests that the change in direction improves speech intelligibility, and the asymmetric property of direct sound and complex reflections from the altar and side wall increases the apparent source width. The large and coupled-like structure of the altar of a Buddhist temple may have reinforced the reverberation components and the table in the altar, which is called the "syumidan," may have decreased binaural coherence.

  1. Predicting outdoor sound

    CERN Document Server

    Attenborough, Keith; Horoshenkov, Kirill

    2014-01-01

    1. Introduction  2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium  3. Predicting the Acoustical Properties of Outdoor Ground Surfaces  4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models  5. Predicting Effects of Source Characteristics on Outdoor Sound  6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects  7. Influence of Source Motion on Ground Effect and Diffraction  8. Predicting Effects of Mixed Impedance Ground  9. Predicting the Performance of Outdoor Noise Barriers  10. Predicting Effects of Vegetation, Trees and Turbulence  11. Analytical Approximations including Ground Effect, Refraction and Turbulence  12. Prediction Schemes  13. Predicting Sound in an Urban Environment.

  2. Noise source emissions, Deaf Smith County site, Texas

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the noise environment expected from salt site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompass all phases of activity from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. The equipment inventory, including sound-power levels for each item, is included. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise-source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 2 refs

  3. A holistic approach to hydrocarbon source allocation in the subtidal sediments of Prince William Sound, Alaska, embayments

    International Nuclear Information System (INIS)

    Page, D.S.; Bence, A.E.; Burns, W.A.; Boehm, P.D.; Brown, J.S.; Douglas, G.S.

    2002-01-01

    The complex organic geochemistry record in the subtidal sediments of Prince William Sound, Alaska is a result of much industrial and human activity in the region. Recent oil spills and a regional background of natural petroleum hydrocarbons originating from active hydrocarbon systems in the northern Gulf of Alaska also contribute to the geochemical record. Pyrogenic and petrogenic polycyclic aromatic hydrocarbons (PAH) are introduced regularly to the subtidal sediments at sites of past and present human activities including villages, fish hatcheries, fish camps and recreational campsites as well as abandoned settlements, canneries, sawmills and mines. Hydrocarbon contributions are fingerprinted and quantified using a holistic approach where contributions from multiple sources is determined. The approach involves a good understanding of the history of the area to identify potential sources. It also involves extensive collection of representative samples and an accurate quantitative analysis of the source and sediment samples for PAH analytes and chemical biomarker compounds. Total organic carbon (TOC) does not work in restricted embayments because of a constrained least-square algorithm to determine hydrocarbon sources. It has been shown that sources contributing to the natural petrogenic background are present in Prince William Sound. In particular, pyrogenic hydrocarbons such as combustion products of diesel is significant where there was much human activity. In addition, petroleum produced from the Monterey Formation in California is present in Prince William Sound because in the past, oil and asphalt shipped from California was widely used for fuel. Low level residues of weathered Alaskan North Slope crude oil from the Exxon Valdez spill are also still present. 30 refs., 4 tabs., 2 figs

  4. Improvements on the directional characteristics of a calibration sound source using the Boundary Element Method

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Juhl, Peter Møller

    2008-01-01

    The project Euromet-792 aims to investigate and improve methods for secondary free-field calibration of microphones. In this framework, the comparison method is being studied at DFM in relation to the more usual substitution method of microphone calibration. The design of the sound source is of p...

  5. Noise source emissions, Richton Dome site, Mississippi

    International Nuclear Information System (INIS)

    1987-01-01

    Noise source data and use factors for modeling the environmental noise environment expected from salt-site repository activity were provided by Battelle Columbus Division. This report has been prepared for the purpose of documenting the development of the data provided to the Repository Project Management (RPM) organization. The data provided encompasses all phases of activity, from site preparation through construction of the exploratory shaft facility (ESF). Noise environments expected from construction and operation of transportation corridors associated with the activity were also modeled. Data for the construction of transportation corridors were provided. The equipment inventory, including sound-power levels for each item is included as Appendix A. Emission source terms provided by Parsons Brinckerhoff/PB-KBB for the ESF were used as a basis for the noise source emission inventory development. Where available, research results containing complete spectra were used. In cases where complete data were not available, a sound-pressure spectrum was synthesized from a characteristic spectrum shape from a similar piece of equipment. For example, a front-shovel excavator might be approximated by data from a front-end loader of similar horsepower range. Sound-power-level spectra were then calculated from the sound-pressure-level data. 14 refs

  6. System for actively reducing sound

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2005-01-01

    A system for actively reducing sound from a primary noise source, such as traffic noise, comprising: a loudspeaker connector for connecting to at least one loudspeaker for generating anti-sound for reducing said noisy sound; a microphone connector for connecting to at least a first microphone placed

  7. Analysis and Optimal Condition of the Rear-Sound-Aided Control Source in Active Noise Control

    Directory of Open Access Journals (Sweden)

    Karel Kreuter

    2011-01-01

    Full Text Available An active noise control scenario of simple ducts is considered. The previously suggested technique of using an single loudspeaker and its rear sound to cancel the upstream sound is further examined and compared to the bidirectional solution in order to give theoretical proof of its advantage. Firstly, a model with a new approach for taking damping effects into account is derived based on the electrical transmission line theory. By comparison with the old model, the new approach is validated, and occurring differences are discussed. Moreover, a numerical application with the consideration of damping is implemented for confirmation. The influence of the rear sound strength on the feedback-path system is investigated, and the optimal condition is determined. Finally, it is proven that the proposed source has an advantage of an extended phase lag and a time delay in the feedback-path system by both frequency-response analysis and numerical calculation of the time response.

  8. Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis.

    Science.gov (United States)

    Perez Carrillo, Alfonso; Bonada, Jordi; Patynen, Jukka; Valimaki, Vesa

    2011-08-01

    This work presents a method for measuring and computing violin-body directional frequency responses, which are used for violin sound synthesis. The approach is based on a frame-weighted deconvolution of excitation and response signals. The excitation, consisting of bowed glissandi, is measured with piezoelectric transducers built into the bridge. Radiation responses are recorded in an anechoic chamber with multiple microphones placed at different angles around the violin. The proposed deconvolution algorithm computes impulse responses that, when convolved with any source signal (captured with the same transducer), produce a highly realistic violin sound very similar to that of a microphone recording. The use of motion sensors allows for tracking violin movements. Combining this information with the directional responses and using a dynamic convolution algorithm, helps to improve the listening experience by incorporating the violinist motion effect in stereo.

  9. Understanding the Doppler effect by analysing spectrograms of the sound of a passing vehicle

    Science.gov (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey

    2017-11-01

    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a classroom, both theoretically and experimentally, to deepen students’ understanding of the Doppler effect. Included are our own experimental data (48 sound recordings) to allow others to reproduce the analysis, if they cannot repeat the whole experiment themselves. In addition to its educational purpose, this paper examines the percentage errors in our results. This enabled us to determine sources of error, allowing those conducting similar future investigations to optimize their accuracy.

  10. High frequency ion sound waves associated with Langmuir waves in type III radio burst source regions

    Directory of Open Access Journals (Sweden)

    G. Thejappa

    2004-01-01

    Full Text Available Short wavelength ion sound waves (2-4kHz are detected in association with the Langmuir waves (~15-30kHz in the source regions of several local type III radio bursts. They are most probably not due to any resonant wave-wave interactions such as the electrostatic decay instability because their wavelengths are much shorter than those of Langmuir waves. The Langmuir waves occur as coherent field structures with peak intensities exceeding the Langmuir collapse thresholds. Their scale sizes are of the order of the wavelength of an ion sound wave. These Langmuir wave field characteristics indicate that the observed short wavelength ion sound waves are most probably generated during the thermalization of the burnt-out cavitons left behind by the Langmuir collapse. Moreover, the peak intensities of the observed short wavelength ion sound waves are comparable to the expected intensities of those ion sound waves radiated by the burnt-out cavitons. However, the speeds of the electron beams derived from the frequency drift of type III radio bursts are too slow to satisfy the needed adiabatic ion approximation. Therefore, some non-linear process such as the induced scattering on thermal ions most probably pumps the beam excited Langmuir waves towards the lower wavenumbers, where the adiabatic ion approximation is justified.

  11. Sound reduction by metamaterial-based acoustic enclosure

    Directory of Open Access Journals (Sweden)

    Shanshan Yao

    2014-12-01

    Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  12. Sound reduction by metamaterial-based acoustic enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai, E-mail: hugeng@bit.edu.cn [Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education and School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  13. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments

    Directory of Open Access Journals (Sweden)

    Kotaro Hoshiba

    2017-11-01

    Full Text Available In search and rescue activities, unmanned aerial vehicles (UAV should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.

  14. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments.

    Science.gov (United States)

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G

    2017-11-03

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.

  15. A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks

    Directory of Open Access Journals (Sweden)

    Alejandra García-Hernández

    2017-11-01

    Full Text Available Human Activity Recognition (HAR is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location.

  16. A method for recognition of coexisting environmental sound sources based on the Fisher’s linear discriminant classifier

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Haddad, Karim; Song, Wookeun

    2015-01-01

    A method for sound recognition of coexisting environmental noise sources by applying pattern recognition techniques is developed. The investigated technique could benefit several areas of application, such as noise impact assessment, acoustic pollution mitigation and soundscape characterization...

  17. Optimal Prediction of Moving Sound Source Direction in the Owl.

    Directory of Open Access Journals (Sweden)

    Weston Cox

    2015-07-01

    Full Text Available Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.

  18. A Survey of Sound Source Localization Methods in Wireless Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Maximo Cobos

    2017-01-01

    Full Text Available Wireless acoustic sensor networks (WASNs are formed by a distributed group of acoustic-sensing devices featuring audio playing and recording capabilities. Current mobile computing platforms offer great possibilities for the design of audio-related applications involving acoustic-sensing nodes. In this context, acoustic source localization is one of the application domains that have attracted the most attention of the research community along the last decades. In general terms, the localization of acoustic sources can be achieved by studying energy and temporal and/or directional features from the incoming sound at different microphones and using a suitable model that relates those features with the spatial location of the source (or sources of interest. This paper reviews common approaches for source localization in WASNs that are focused on different types of acoustic features, namely, the energy of the incoming signals, their time of arrival (TOA or time difference of arrival (TDOA, the direction of arrival (DOA, and the steered response power (SRP resulting from combining multiple microphone signals. Additionally, we discuss methods not only aimed at localizing acoustic sources but also designed to locate the nodes themselves in the network. Finally, we discuss current challenges and frontiers in this field.

  19. Sound field separation with cross measurement surfaces.

    Directory of Open Access Journals (Sweden)

    Jin Mao

    Full Text Available With conventional near-field acoustical holography, it is impossible to identify sound pressure when the coherent sound sources are located on the same side of the array. This paper proposes a solution, using cross measurement surfaces to separate the sources based on the equivalent source method. Each equivalent source surface is built in the center of the corresponding original source with a spherical surface. According to the different transfer matrices between equivalent sources and points on holographic surfaces, the weighting of each equivalent source from coherent sources can be obtained. Numerical and experimental studies have been performed to test the method. For the sound pressure including noise after separation in the experiment, the calculation accuracy can be improved by reconstructing the pressure with Tikhonov regularization and the L-curve method. On the whole, a single source can be effectively separated from coherent sources using cross measurement.

  20. Phoneme Similarity and Confusability

    Science.gov (United States)

    Bailey, T.M.; Hahn, U.

    2005-01-01

    Similarity between component speech sounds influences language processing in numerous ways. Explanation and detailed prediction of linguistic performance consequently requires an understanding of these basic similarities. The research reported in this paper contrasts two broad classes of approach to the issue of phoneme similarity-theoretically…

  1. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  2. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  3. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  4. Spike-timing-based computation in sound localization.

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2010-11-01

    Full Text Available Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

  5. Source Separation of Heartbeat Sounds for Effective E-Auscultation

    Science.gov (United States)

    Geethu, R. S.; Krishnakumar, M.; Pramod, K. V.; George, Sudhish N.

    2016-03-01

    This paper proposes a cost effective solution for improving the effectiveness of e-auscultation. Auscultation is the most difficult skill for a doctor, since it can be acquired only through experience. The heart sound mixtures are captured by placing the four numbers of sensors at appropriate auscultation area in the body. These sound mixtures are separated to its relevant components by a statistical method independent component analysis. The separated heartbeat sounds can be further processed or can be stored for future reference. This idea can be used for making a low cost, easy to use portable instrument which will be beneficial to people living in remote areas and are unable to take the advantage of advanced diagnosis methods.

  6. [-25]A Similarity Analysis of Audio Signal to Develop a Human Activity Recognition Using Similarity Networks.

    Science.gov (United States)

    García-Hernández, Alejandra; Galván-Tejada, Carlos E; Galván-Tejada, Jorge I; Celaya-Padilla, José M; Gamboa-Rosales, Hamurabi; Velasco-Elizondo, Perla; Cárdenas-Vargas, Rogelio

    2017-11-21

    Human Activity Recognition (HAR) is one of the main subjects of study in the areas of computer vision and machine learning due to the great benefits that can be achieved. Examples of the study areas are: health prevention, security and surveillance, automotive research, and many others. The proposed approaches are carried out using machine learning techniques and present good results. However, it is difficult to observe how the descriptors of human activities are grouped. In order to obtain a better understanding of the the behavior of descriptors, it is important to improve the abilities to recognize the human activities. This paper proposes a novel approach for the HAR based on acoustic data and similarity networks. In this approach, we were able to characterize the sound of the activities and identify those activities looking for similarity in the sound pattern. We evaluated the similarity of the sounds considering mainly two features: the sound location and the materials that were used. As a result, the materials are a good reference classifying the human activities compared with the location.

  7. Recent paleoseismicity record in Prince William Sound, Alaska, USA

    Science.gov (United States)

    Kuehl, Steven A.; Miller, Eric J.; Marshall, Nicole R.; Dellapenna, Timothy M.

    2017-12-01

    Sedimentological and geochemical investigation of sediment cores collected in the deep (>400 m) central basin of Prince William Sound, along with geochemical fingerprinting of sediment source areas, are used to identify earthquake-generated sediment gravity flows. Prince William Sound receives sediment from two distinct sources: from offshore (primarily Copper River) through Hinchinbrook Inlet, and from sources within the Sound (primarily Columbia Glacier). These sources are found to have diagnostic elemental ratios indicative of provenance; Copper River Basin sediments were significantly higher in Sr/Pb and Cu/Pb, whereas Prince William Sound sediments were significantly higher in K/Ca and Rb/Sr. Within the past century, sediment gravity flows deposited within the deep central channel of Prince William Sound have robust geochemical (provenance) signatures that can be correlated with known moderate to large earthquakes in the region. Given the thick Holocene sequence in the Sound ( 200 m) and correspondingly high sedimentation rates (>1 cm year-1), this relationship suggests that sediments within the central basin of Prince William Sound may contain an extraordinary high-resolution record of paleoseismicity in the region.

  8. Statistics of natural binaural sounds.

    Directory of Open Access Journals (Sweden)

    Wiktor Młynarski

    Full Text Available Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD and level (ILD disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA. Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  9. Statistics of natural binaural sounds.

    Science.gov (United States)

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  10. Perception of Animacy from the Motion of a Single Sound Object.

    Science.gov (United States)

    Nielsen, Rasmus Høll; Vuust, Peter; Wallentin, Mikkel

    2015-02-01

    Research in the visual modality has shown that the presence of certain dynamics in the motion of an object has a strong effect on whether or not the entity is perceived as animate. Cues for animacy are, among others, self-propelled motion and direction changes that are seemingly not caused by entities external to, or in direct contact with, the moving object. The present study aimed to extend this research into the auditory domain by determining if similar dynamics could influence the perceived animacy of a sound source. In two experiments, participants were presented with single, synthetically generated 'mosquito' sounds moving along trajectories in space, and asked to rate how certain they were that each sound-emitting entity was alive. At a random point on a linear motion trajectory, the sound source would deviate from its initial path and speed. Results confirm findings from the visual domain that a change in the velocity of motion is positively correlated with perceived animacy, and changes in direction were found to influence animacy judgment as well. This suggests that an ability to facilitate and sustain self-movement is perceived as a living quality not only in the visual domain, but in the auditory domain as well. © 2015 SAGE Publications.

  11. SoleSound

    DEFF Research Database (Denmark)

    Zanotto, Damiano; Turchet, Luca; Boggs, Emily Marie

    2014-01-01

    This paper introduces the design of SoleSound, a wearable system designed to deliver ecological, audio-tactile, underfoot feedback. The device, which primarily targets clinical applications, uses an audio-tactile footstep synthesis engine informed by the readings of pressure and inertial sensors...... embedded in the footwear to integrate enhanced feedback modalities into the authors' previously developed instrumented footwear. The synthesis models currently implemented in the SoleSound simulate different ground surface interactions. Unlike similar devices, the system presented here is fully portable...

  12. Design of UAV-Embedded Microphone Array System for Sound Source Localization in Outdoor Environments †

    Science.gov (United States)

    Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.

    2017-01-01

    In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790

  13. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used

  14. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil

    OpenAIRE

    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo

    2000-01-01

    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  15. On Distributions of Emission Sources and Speed-of-Sound in Proton-Proton (Proton-Antiproton Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available The revised (three-source Landau hydrodynamic model is used in this paper to study the (pseudorapidity distributions of charged particles produced in proton-proton and proton-antiproton collisions at high energies. The central source is assumed to contribute with a Gaussian function which covers the rapidity distribution region as wide as possible. The target and projectile sources are assumed to emit isotropically particles in their respective rest frames. The model calculations obtained with a Monte Carlo method are fitted to the experimental data over an energy range from 0.2 to 13 TeV. The values of the squared speed-of-sound parameter in different collisions are then extracted from the width of the rapidity distributions.

  16. Human Sound Externalization in Reverberant Environments

    DEFF Research Database (Denmark)

    Catic, Jasmina

    In everyday environments, listeners perceive sound sources as externalized. In listening conditions where the spatial cues that are relevant for externalization are not represented correctly, such as when listening through headphones or hearing aids, a degraded perception of externalization may...... occur. In this thesis, the spatial cues that arise from a combined effect of filtering due to the head, torso, and pinna and the acoustic environment were analysed and the impact of such cues for the perception of externalization in different frequency regions was investigated. Distant sound sources...... were simulated via headphones using individualized binaural room impulse responses (BRIRs). An investigation of the influence of spectral content of a sound source on externalization showed that effective externalization cues are present across the entire frequency range. The fluctuation of interaural...

  17. An investigation of the usability of sound recognition for source separation of packaging wastes in reverse vending machines.

    Science.gov (United States)

    Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal

    2016-10-01

    In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Differential presence of anthropogenic compounds dissolved in the marine waters of Puget Sound, WA and Barkley Sound, BC.

    Science.gov (United States)

    Keil, Richard; Salemme, Keri; Forrest, Brittany; Neibauer, Jaqui; Logsdon, Miles

    2011-11-01

    Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 n g L(-1) on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound. Published by Elsevier Ltd.

  19. The effect of brain lesions on sound localization in complex acoustic environments.

    Science.gov (United States)

    Zündorf, Ida C; Karnath, Hans-Otto; Lewald, Jörg

    2014-05-01

    Localizing sound sources of interest in cluttered acoustic environments--as in the 'cocktail-party' situation--is one of the most demanding challenges to the human auditory system in everyday life. In this study, stroke patients' ability to localize acoustic targets in a single-source and in a multi-source setup in the free sound field were directly compared. Subsequent voxel-based lesion-behaviour mapping analyses were computed to uncover the brain areas associated with a deficit in localization in the presence of multiple distracter sound sources rather than localization of individually presented sound sources. Analyses revealed a fundamental role of the right planum temporale in this task. The results from the left hemisphere were less straightforward, but suggested an involvement of inferior frontal and pre- and postcentral areas. These areas appear to be particularly involved in the spectrotemporal analyses crucial for effective segregation of multiple sound streams from various locations, beyond the currently known network for localization of isolated sound sources in otherwise silent surroundings.

  20. Complex coevolution of wing, tail, and vocal sounds of courting male bee hummingbirds.

    Science.gov (United States)

    Clark, Christopher J; McGuire, Jimmy A; Bonaccorso, Elisa; Berv, Jacob S; Prum, Richard O

    2018-03-01

    Phenotypic characters with a complex physical basis may have a correspondingly complex evolutionary history. Males in the "bee" hummingbird clade court females with sound from tail-feathers, which flutter during display dives. On a phylogeny of 35 species, flutter sound frequency evolves as a gradual, continuous character on most branches. But on at least six internal branches fall two types of major, saltational changes: mode of flutter changes, or the feather that is the sound source changes, causing frequency to jump from one discrete value to another. In addition to their tail "instruments," males also court females with sound from their syrinx and wing feathers, and may transfer or switch instruments over evolutionary time. In support of this, we found a negative phylogenetic correlation between presence of wing trills and singing. We hypothesize this transference occurs because wing trills and vocal songs serve similar functions and are thus redundant. There are also three independent origins of self-convergence of multiple signals, in which the same species produces both a vocal (sung) frequency sweep, and a highly similar nonvocal sound. Moreover, production of vocal, learned song has been lost repeatedly. Male bee hummingbirds court females with a diverse, coevolving array of acoustic traits. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  1. An experimental test of the persuasive effect of source similarity in narrative and nonnarrative health blogs.

    Science.gov (United States)

    Lu, Amy Shirong

    2013-07-25

    Blogs, or websites containing online personal journals, are a form of popular personal communication with immense potential for health promotion. Narratives are stories with a beginning, middle, and end that provide information about the characters and plot. Source similarity refers to the degree to which the message source and each recipient are alike with respect to certain attributes. Narratives and source similarity have seldom been examined in tandem as strategies for health persuasion. Personal health blogs provide a suitable platform for such an investigation. This study examined the persuasive effects of message type and source similarity on participants' intentions to adopt a specific health behavior (running for exercise). A total of 150 participants were randomly assigned to conditions (n=25 per condition) in a completely crossed, 2 (message type: narrative and nonnarrative) × 3 (source similarity: no similarity, non-health-related similarity, and health-related similarity) between-subjects experiment. First, in an online questionnaire, participants provided personal information in 42 categories and rated the relatedness of each category to running and then completed pretest measures of the dependent variables. Based on their responses, 150 personal health blogs were created. Two weeks later, the initial participants read the blog created with their personal characteristics and completed a questionnaire online. The source similarity effect was stronger in nonnarrative than narrative blogs. When the blogs were nonnarrative, those with health-related similarities were more persuasive than those with non-health-related similarities. Narrative blogs generated more positive thoughts and stronger blogger identification than nonnarrative blogs. Health-related source similarity is key for persuasive health communication, especially when the messages are nonnarrative.

  2. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  3. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  4. Lexical and perceptual grounding of a sound ontology

    NARCIS (Netherlands)

    Lobanova, Anna; Spenader, Jennifer; Valkenier, Bea; Matousek,; Mautner, P

    2007-01-01

    Sound ontologies need to incorporate source unidentifiable sounds in an adequate and consistent manner. Computational lexical resources like WordNet have either inserted these descriptions into conceptual categories, or make no attempt to organize the terms for these sounds. This work attempts to

  5. Physics of thermo-acoustic sound generation

    Science.gov (United States)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  6. Techniques and instrumentation for the measurement of transient sound energy flux

    Science.gov (United States)

    Watkinson, P. S.; Fahy, F. J.

    1983-12-01

    The evaluation of sound intensity distributions, and sound powers, of essentially continuous sources such as automotive engines, electric motors, production line machinery, furnaces, earth moving machinery and various types of process plants were studied. Although such systems are important sources of community disturbance and, to a lesser extent, of industrial health hazard, the most serious sources of hearing hazard in industry are machines operating on an impact principle, such as drop forges, hammers and punches. Controlled experiments to identify major noise source regions and mechanisms are difficult because it is normally impossible to install them in quiet, anechoic environments. The potential for sound intensity measurement to provide a means of overcoming these difficulties has given promising results, indicating the possibility of separation of directly radiated and reverberant sound fields. However, because of the complexity of transient sound fields, a fundamental investigation is necessary to establish the practicability of intensity field decomposition, which is basic to source characterization techniques.

  7. The impact of the microphone position on the frequency analysis of snoring sounds.

    Science.gov (United States)

    Herzog, Michael; Kühnel, Thomas; Bremert, Thomas; Herzog, Beatrice; Hosemann, Werner; Kaftan, Holger

    2009-08-01

    Frequency analysis of snoring sounds has been reported as a diagnostic tool to differentiate between different sources of snoring. Several studies have been published presenting diverging results of the frequency analyses of snoring sounds. Depending on the position of the used microphones, the results of the frequency analysis of snoring sounds vary. The present study investigated the influence of different microphone positions on the outcome of the frequency analysis of snoring sounds. Nocturnal snoring was recorded simultaneously at six positions (air-coupled: 30 cm middle, 100 cm middle, 30 cm lateral to both sides of the patients' head; body contact: neck and parasternal) in five patients. The used microphones had a flat frequency response and a similar frequency range (10/40 Hz-18 kHz). Frequency analysis was performed by fast Fourier transformation and frequency bands as well as peak intensities (Peaks 1-5) were detected. Air-coupled microphones presented a wider frequency range (60 Hz-10 kHz) compared to contact microphones. The contact microphone at cervical position presented a cut off at frequencies above 300 Hz, whereas the contact microphone at parasternal position revealed a cut off above 100 Hz. On an exemplary base, the study demonstrates that frequencies above 1,000 Hz do appear in complex snoring patterns, and it is emphasised that high frequencies are imported for the interpretation of snoring sounds with respect to the identification of the source of snoring. Contact microphones might be used in screening devices, but for a natural analysis of snoring sounds the use of air-coupled microphones is indispensable.

  8. Sound response of superheated drop bubble detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Chen Zhe; Liu Chao; Ni Bangfa; Zhang Guiying; Zhao Changfa; Xiao Caijin; Liu Cunxiong; Nie Peng; Guan Yongjing

    2012-01-01

    The sound response of the bubble detectors to neutrons by using 252 Cf neutron source was described. Sound signals were filtered by sound card and PC. The short-time signal energy. FFT spectrum, power spectrum, and decay time constant were got to determine the authenticity of sound signal for bubbles. (authors)

  9. Visualizing Sound Directivity via Smartphone Sensors

    OpenAIRE

    Hawley, Scott H.; McClain Jr, Robert E.

    2017-01-01

    We present a fast, simple method for automated data acquisition and visualization of sound directivity, made convenient and accessible via a smartphone app, "Polar Pattern Plotter." The app synchronizes measurements of sound volume with the phone's angular orientation obtained from either compass, gyroscope or accelerometer sensors and produces a graph and exportable data file. It is generalizable to various sound sources and receivers via the use of an input-jack-adaptor to supplant the smar...

  10. Effects of Active and Passive Hearing Protection Devices on Sound Source Localization, Speech Recognition, and Tone Detection.

    Directory of Open Access Journals (Sweden)

    Andrew D Brown

    Full Text Available Hearing protection devices (HPDs such as earplugs offer to mitigate noise exposure and reduce the incidence of hearing loss among persons frequently exposed to intense sound. However, distortions of spatial acoustic information and reduced audibility of low-intensity sounds caused by many existing HPDs can make their use untenable in high-risk (e.g., military or law enforcement environments where auditory situational awareness is imperative. Here we assessed (1 sound source localization accuracy using a head-turning paradigm, (2 speech-in-noise recognition using a modified version of the QuickSIN test, and (3 tone detection thresholds using a two-alternative forced-choice task. Subjects were 10 young normal-hearing males. Four different HPDs were tested (two active, two passive, including two new and previously untested devices. Relative to unoccluded (control performance, all tested HPDs significantly degraded performance across tasks, although one active HPD slightly improved high-frequency tone detection thresholds and did not degrade speech recognition. Behavioral data were examined with respect to head-related transfer functions measured using a binaural manikin with and without tested HPDs in place. Data reinforce previous reports that HPDs significantly compromise a variety of auditory perceptual facilities, particularly sound localization due to distortions of high-frequency spectral cues that are important for the avoidance of front-back confusions.

  11. Validating a perceptual distraction model in a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    This paper focuses on validating a perceptual distraction model, which aims to predict user’s perceived distraction caused by audio-on-audio interference, e.g., two competing audio sources within the same listening space. Originally, the distraction model was trained with music-on-music stimuli...... using a simple loudspeaker setup, consisting of only two loudspeakers, one for the target sound source and the other for the interfering sound source. Recently, the model was successfully validated in a complex personal sound-zone system with speech-on-music stimuli. Second round of validations were...... conducted by physically altering the sound-zone system and running a set of new listening experiments utilizing two sound zones within the sound-zone system. Thus, validating the model using a different sound-zone system with both speech-on-music and music-on-speech stimuli sets. Preliminary results show...

  12. Interactive physically-based sound simulation

    Science.gov (United States)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation

  13. Bubbles That Change the Speed of Sound

    Science.gov (United States)

    Planinsic, Gorazd; Etkina, Eugenia

    2012-01-01

    The influence of bubbles on sound has long attracted the attention of physicists. In his 1920 book Sir William Bragg described sound absorption caused by foam in a glass of beer tapped by a spoon. Frank S. Crawford described and analyzed the change in the pitch of sound in a similar experiment and named the phenomenon the "hot chocolate effect."…

  14. A review of research progress in air-to-water sound transmission

    International Nuclear Information System (INIS)

    Peng Zhao-Hui; Zhang Ling-Shan

    2016-01-01

    International and domestic research progress in theory and experiment and applications of the air-to-water sound transmission are presented in this paper. Four classical numerical methods of calculating the underwater sound field generated by an airborne source, i.e., the ray theory, the wave solution, the normal-mode theory and the wavenumber integration approach, are introduced. Effects of two special conditions, i.e., the moving airborne source or medium and the rough air-water interface, on the air-to-water sound transmission are reviewed. In experimental studies, the depth and range distributions of the underwater sound field created by different kinds of airborne sources in near-field and far-field, the longitudinal horizontal correlation of underwater sound field and application methods for inverse problems are reviewed. (special topic)

  15. Phonological Similarity in Serial Recall: Constraints on Theories of Memory

    Science.gov (United States)

    Lewandowsky, Stephan; Farrell, Simon

    2008-01-01

    In short-term serial recall, similar-sounding items are remembered more poorly than items that do not sound alike. When lists mix similar and dissimilar items, performance on the dissimilar items is of considerable theoretical interest. Farrell and Lewandowsky [Farrell, S., & Lewandowsky, S. (2003). Dissimilar items benefit from phonological…

  16. Sources of underwater sound and their characterisation (abstract)

    NARCIS (Netherlands)

    Ainslie, M.A.; Jong, C.A.F. de

    2013-01-01

    After centuries of speculation, punctuated by occasional theoretical or experimental advances, the first intensive research into underwater sound took place 100 years ago, applied initially to provide advance warning of icebergs after the loss of RMS Titanic in 1912, and later to counter the U-boat

  17. Sound field reproduction as an equivalent acoustical scattering problem.

    Science.gov (United States)

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  18. Efficient techniques for wave-based sound propagation in interactive applications

    Science.gov (United States)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  19. The organization of words and environmental sounds in memory.

    Science.gov (United States)

    Hendrickson, Kristi; Walenski, Matthew; Friend, Margaret; Love, Tracy

    2015-03-01

    In the present study we used event-related potentials to compare the organization of linguistic and meaningful nonlinguistic sounds in memory. We examined N400 amplitudes as adults viewed pictures presented with words or environmental sounds that matched the picture (Match), that shared semantic features with the expected match (Near Violation), and that shared relatively few semantic features with the expected match (Far Violation). Words demonstrated incremental N400 amplitudes based on featural similarity from 300-700ms, such that both Near and Far Violations exhibited significant N400 effects, however Far Violations exhibited greater N400 effects than Near Violations. For environmental sounds, Far Violations but not Near Violations elicited significant N400 effects, in both early (300-400ms) and late (500-700ms) time windows, though a graded pattern similar to that of words was seen in the mid-latency time window (400-500ms). These results indicate that the organization of words and environmental sounds in memory is differentially influenced by featural similarity, with a consistently fine-grained graded structure for words but not sounds. Published by Elsevier Ltd.

  20. Reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Walton, Tim

    2014-01-01

    waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...

  1. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    International Nuclear Information System (INIS)

    Wicks, J.K.; Jackson, J.M.; Sturhahn, W.

    2010-01-01

    The sound velocities of (Mg .16 Fe .84 )O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Moessbauer spectroscopy. We found the sound velocities of (Mg .16 Fe .84 )O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary.

  2. Sources and levels of ambient ocean sound near the Antarctic Peninsula.

    Directory of Open Access Journals (Sweden)

    Robert P Dziak

    Full Text Available Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus and fin (B. physalus whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns, likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  3. Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

    Directory of Open Access Journals (Sweden)

    Ted W Cranford

    Full Text Available Hearing mechanisms in baleen whales (Mysticeti are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT scans. We CT scanned the head of a small fin whale (Balaenoptera physalus in a scanner designed for solid-fuel rocket motors. Our computer (finite element modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1 the skull-vibration enabled bone conduction mechanism and (2 a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.

  4. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    Science.gov (United States)

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  5. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    Science.gov (United States)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  6. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  7. Earthquake source scaling and self-similarity estimation from stacking P and S spectra

    Science.gov (United States)

    Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi

    2004-08-01

    We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.

  8. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project

  9. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    Science.gov (United States)

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  10. Loudness estimation of simultaneous sources using beamforming

    DEFF Research Database (Denmark)

    Song, Woo-keun; Ellermeier, Wolfgang; Minnaar, Pauli

    2006-01-01

    An algorithm is proposed for estimating the loudness of several simultaneous sound sources by means of microphone-array beamforming. The algorithm is derived from two listening experiments in which the loudness of two simultaneous sounds (narrow-band noises with 1-kHz and 3.15-kHz center...... frequencies) was matched to a single sound (2-kHz narrow-band noise). The simultaneous sounds were presented from either one sound source or two spatially separated sources, whereas the single sound was presented from the frontal direction. The results indicate that overall loudness can be calculated...... by summing the loudnesses of the individual sources according to a simple psychophysical relationship....

  11. The organization of words and environmental sounds in memory☆

    Science.gov (United States)

    Hendrickson, Kristi; Walenski, Matthew; Friend, Margaret; Love, Tracy

    2015-01-01

    In the present study we used event-related potentials to compare the organization of linguistic and meaningful nonlinguistic sounds in memory. We examined N400 amplitudes as adults viewed pictures presented with words or environmental sounds that matched the picture (Match), that shared semantic features with the expected match (Near Violation), and that shared relatively few semantic features with the expected match (Far Violation). Words demonstrated incremental N400 amplitudes based on featural similarity from 300–700 ms, such that both Near and Far Violations exhibited significant N400 effects, however Far Violations exhibited greater N400 effects than Near Violations. For environmental sounds, Far Violations but not Near Violations elicited significant N400 effects, in both early (300–400 ms) and late (500–700 ms) time windows, though a graded pattern similar to that of words was seen in the midlatency time window (400–500 ms). These results indicate that the organization of words and environmental sounds in memory is differentially influenced by featural similarity, with a consistently fine-grained graded structure for words but not sounds. PMID:25624059

  12. When Distance Matters: Perceptual Bias and Behavioral Response for Approaching Sounds in Peripersonal and Extrapersonal Space

    NARCIS (Netherlands)

    Camponogara, I.; Komeilipoor, N.; Cesari, P.

    2015-01-01

    Studies on sound perception show a tendency to overestimate the distance of an approaching sound source, leading to a faster reaction time compared to a receding sound source. Nevertheless, it is unclear whether motor preparation and execution change according to the perceived sound direction and

  13. By the sound of it. An ERP investigation of human action sound processing in 7-month-old infants

    Directory of Open Access Journals (Sweden)

    Elena Geangu

    2015-04-01

    Full Text Available Recent evidence suggests that human adults perceive human action sounds as a distinct category from human vocalizations, environmental, and mechanical sounds, activating different neural networks (Engel et al., 2009; Lewis et al., 2011. Yet, little is known about the development of such specialization. Using event-related potentials (ERP, this study investigated neural correlates of 7-month-olds’ processing of human action (HA sounds in comparison to human vocalizations (HV, environmental (ENV, and mechanical (MEC sounds. Relative to the other categories, HA sounds led to increased positive amplitudes between 470 and 570 ms post-stimulus onset at left anterior temporal locations, while HV led to increased negative amplitudes at the more posterior temporal locations in both hemispheres. Collectively, human produced sounds (HA + HV led to significantly different response profiles compared to non-living sound sources (ENV + MEC at parietal and frontal locations in both hemispheres. Overall, by 7 months of age human action sounds are being differentially processed in the brain, consistent with a dichotomy for processing living versus non-living things. This provides novel evidence regarding the typical categorical processing of socially relevant sounds.

  14. Acoustic analysis of trill sounds.

    Science.gov (United States)

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  15. Audio-Visual Fusion for Sound Source Localization and Improved Attention

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byoung Gi; Choi, Jong Suk; Yoon, Sang Suk; Choi, Mun Taek; Kim, Mun Sang [Korea Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Dai Jin [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2011-07-15

    Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection.

  16. Audio-Visual Fusion for Sound Source Localization and Improved Attention

    International Nuclear Information System (INIS)

    Lee, Byoung Gi; Choi, Jong Suk; Yoon, Sang Suk; Choi, Mun Taek; Kim, Mun Sang; Kim, Dai Jin

    2011-01-01

    Service robots are equipped with various sensors such as vision camera, sonar sensor, laser scanner, and microphones. Although these sensors have their own functions, some of them can be made to work together and perform more complicated functions. AudioFvisual fusion is a typical and powerful combination of audio and video sensors, because audio information is complementary to visual information and vice versa. Human beings also mainly depend on visual and auditory information in their daily life. In this paper, we conduct two studies using audioFvision fusion: one is on enhancing the performance of sound localization, and the other is on improving robot attention through sound localization and face detection

  17. Investigating the amplitude of interactive footstep sounds and soundscape reproduction

    DEFF Research Database (Denmark)

    Turchet, Luca; Serafin, Stefania

    2013-01-01

    In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which...... of soundscapes does not significantly affect the selected amplitude of footstep sounds. Similarly, the perception of the soundscapes amplitude is not significantly affected by the selected amplitude of footstep sounds....

  18. Radio thermal sounding of natural environments

    Science.gov (United States)

    Gauss, Martin; Lomukhin, Yuriy

    2017-11-01

    At the moment, methods of sounding a status of soil, plant, forest and aquatic environments using radiometry and radar methods are intensively used. The main source of information using radar sounding is the back reflection ratio. The radiometric method is used for detection of the brightness temperature. In this paper, a communication between the back reflection ratio and the brightness temperature is described. This communication is proportional.

  19. Efficient Geometric Sound Propagation Using Visibility Culling

    Science.gov (United States)

    Chandak, Anish

    2011-07-01

    Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying

  20. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    Science.gov (United States)

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  1. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  2. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    Science.gov (United States)

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  3. Sound quality indicators for urban places in Paris cross-validated by Milan data.

    Science.gov (United States)

    Ricciardi, Paola; Delaitre, Pauline; Lavandier, Catherine; Torchia, Francesca; Aumond, Pierre

    2015-10-01

    A specific smartphone application was developed to collect perceptive and acoustic data in Paris. About 3400 questionnaires were analyzed, regarding the global sound environment characterization, the perceived loudness of some emergent sources and the presence time ratio of sources that do not emerge from the background. Sound pressure level was recorded each second from the mobile phone's microphone during a 10-min period. The aim of this study is to propose indicators of urban sound quality based on linear regressions with perceptive variables. A cross validation of the quality models extracted from Paris data was carried out by conducting the same survey in Milan. The proposed sound quality general model is correlated with the real perceived sound quality (72%). Another model without visual amenity and familiarity is 58% correlated with perceived sound quality. In order to improve the sound quality indicator, a site classification was performed by Kohonen's Artificial Neural Network algorithm, and seven specific class models were developed. These specific models attribute more importance on source events and are slightly closer to the individual data than the global model. In general, the Parisian models underestimate the sound quality of Milan environments assessed by Italian people.

  4. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  5. Environmental quality of Long Island Sound: Assessment and management issues

    International Nuclear Information System (INIS)

    Wolfe, D.A.; Farrow, D.R.G.; Robertson, A.; Monahan, R.; Stacey, P.E.

    1991-01-01

    Estimated pollutant loadings to Long Island Sound (LIS) are presented and discussed in the context of current information on population trends and land-use characteristics within the drainage basin of the sound. For the conventional pollutants (BOD, N, and P) and for most of the metals examined, the fluxes to LIS from wastewater treatment plants approach or exceed the fluxes from riverine sources. Urban runoff is a significant source for only a few contaminants, such as lead and petroleum hydrocarbons. Atmospheric flux estimates made for other areas are extrapolated to LIS, and this source appears to be significant for lead, zinc, and polynuclear aromatic hydrocarbons, and chlorinated pesticides. Continued population growth is projected through 2010, both in the urban centers of the western sound and in the coastal counties surrounding the central and eastern portions of LIS. This growth will place increased pollution pressure on the sound and increased demands on already scarce coastal and estuarine land-use categories. Close interaction between environmental planners, managers, and scientists is required to identify effective control strategies for reducing existing pollutant stress to the sound and for minimizing the effects of future development

  6. Neuroanatomic organization of sound memory in humans.

    Science.gov (United States)

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  7. Vocal Imitations of Non-Vocal Sounds

    Science.gov (United States)

    Houix, Olivier; Voisin, Frédéric; Misdariis, Nicolas; Susini, Patrick

    2016-01-01

    Imitative behaviors are widespread in humans, in particular whenever two persons communicate and interact. Several tokens of spoken languages (onomatopoeias, ideophones, and phonesthemes) also display different degrees of iconicity between the sound of a word and what it refers to. Thus, it probably comes at no surprise that human speakers use a lot of imitative vocalizations and gestures when they communicate about sounds, as sounds are notably difficult to describe. What is more surprising is that vocal imitations of non-vocal everyday sounds (e.g. the sound of a car passing by) are in practice very effective: listeners identify sounds better with vocal imitations than with verbal descriptions, despite the fact that vocal imitations are inaccurate reproductions of a sound created by a particular mechanical system (e.g. a car driving by) through a different system (the voice apparatus). The present study investigated the semantic representations evoked by vocal imitations of sounds by experimentally quantifying how well listeners could match sounds to category labels. The experiment used three different types of sounds: recordings of easily identifiable sounds (sounds of human actions and manufactured products), human vocal imitations, and computational “auditory sketches” (created by algorithmic computations). The results show that performance with the best vocal imitations was similar to the best auditory sketches for most categories of sounds, and even to the referent sounds themselves in some cases. More detailed analyses showed that the acoustic distance between a vocal imitation and a referent sound is not sufficient to account for such performance. Analyses suggested that instead of trying to reproduce the referent sound as accurately as vocally possible, vocal imitations focus on a few important features, which depend on each particular sound category. These results offer perspectives for understanding how human listeners store and access long

  8. What the Toadfish Ear Tells the Toadfish Brain About Sound.

    Science.gov (United States)

    Edds-Walton, Peggy L

    2016-01-01

    Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.

  9. Evaluating Environmental Sounds from a Presence Perspective for Virtual Reality Applications

    DEFF Research Database (Denmark)

    Nordahl, Rolf

    2010-01-01

    We propose a methodology to design and evaluate environmental sounds for virtual environments. We propose to combine physically modeled sound events with recorded soundscapes. Physical models are used to provide feedback to users’ actions, while soundscapes reproduce the characteristic soundmarks...... as well as self-induced interactive sounds simulated using physical models. Results show that subjects’ motion in the environment is significantly enhanced when dynamic sound sources and sound of egomotion are rendered in the environment....

  10. Influence of sound source location on the behavior and physiology of the precedence effect in cats.

    Science.gov (United States)

    Dent, Micheal L; Tollin, Daniel J; Yin, Tom C T

    2009-08-01

    Psychophysical experiments on the precedence effect (PE) in cats have shown that they localize pairs of auditory stimuli presented from different locations in space based on the spatial position of the stimuli and the interstimulus delay (ISD) between the stimuli in a manner similar to humans. Cats exhibit localization dominance for pairs of transient stimuli with |ISDs| from approximately 0.4 to 10 ms, summing localization for |ISDs| 10 ms, which is the approximate echo threshold. The neural correlates to the PE have been described in both anesthetized and unanesthetized animals at many levels from auditory nerve to cortex. Single-unit recordings from the inferior colliculus (IC) and auditory cortex of cats demonstrate that neurons respond to both lead and lag sounds at ISDs above behavioral echo thresholds, but the response to the lag is reduced at shorter ISDs, consistent with localization dominance. Here the influence of the relative locations of the leading and lagging sources on the PE was measured behaviorally in a psychophysical task and physiologically in the IC of awake behaving cats. At all configurations of lead-lag stimulus locations, the cats behaviorally exhibited summing localization, localization dominance, and breakdown of fusion. Recordings from the IC of awake behaving cats show neural responses paralleling behavioral measurements. Both behavioral and physiological results suggest systematically shorter echo thresholds when stimuli are further apart in space.

  11. Active low frequency sound field control in a listening room using CABS (Controlled Acoustic Bass System) will also reduce the sound transmitted to neighbour rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2012-01-01

    Sound in rooms and transmission of sound between rooms gives the biggest problems at low frequencies. Rooms with rectangular boundaries have strong resonance frequencies and will give big spatial variations in sound pressure level (SPL) in the source room, and an increase in SPL of 20 dB at a wall...... Bass System) is a time based room correction system for reproduced sound using loudspeakers. The system can remove room modes at low frequencies, by active cancelling the reflection from at the rear wall to a normal stereo setup. Measurements in a source room using CABS and in two neighbour rooms have...... shown a reduction in sound transmission of up to 10 dB at resonance frequencies and a reduction at broadband noise of 3 – 5 dB at frequencies up to 100 Hz. The ideas and understanding of the CABS system will also be given....

  12. Effects of task-switching on neural representations of ambiguous sound input.

    Science.gov (United States)

    Sussman, Elyse S; Bregman, Albert S; Lee, Wei-Wei

    2014-11-01

    The ability to perceive discrete sound streams in the presence of competing sound sources relies on multiple mechanisms that organize the mixture of the auditory input entering the ears. Many studies have focused on mechanisms that contribute to integrating sounds that belong together into one perceptual stream (integration) and segregating those that come from different sound sources (segregation). However, little is known about mechanisms that allow us to perceive individual sound sources within a dynamically changing auditory scene, when the input may be ambiguous, and heard as either integrated or segregated. This study tested the question of whether focusing on one of two possible sound organizations suppressed representation of the alternative organization. We presented listeners with ambiguous input and cued them to switch between tasks that used either the integrated or the segregated percept. Electrophysiological measures indicated which organization was currently maintained in memory. If mutual exclusivity at the neural level was the rule, attention to one of two possible organizations would preclude neural representation of the other. However, significant MMNs were elicited to both the target organization and the unattended, alternative organization, along with the target-related P3b component elicited only to the designated target organization. Results thus indicate that both organizations (integrated and segregated) were simultaneously maintained in memory regardless of which task was performed. Focusing attention to one aspect of the sounds did not abolish the alternative, unattended organization when the stimulus input was ambiguous. In noisy environments, such as walking on a city street, rapid and flexible adaptive processes are needed to help facilitate rapid switching to different sound sources in the environment. Having multiple representations available to the attentive system would allow for such flexibility, needed in everyday situations to

  13. Evaluating Environmental Sounds from a Presence Perspective for Virtual Reality Applications

    Directory of Open Access Journals (Sweden)

    Nordahl Rolf

    2010-01-01

    Full Text Available We propose a methodology to design and evaluate environmental sounds for virtual environments. We propose to combine physically modeled sound events with recorded soundscapes. Physical models are used to provide feedback to users' actions, while soundscapes reproduce the characteristic soundmarks of an environment. In this particular case, physical models are used to simulate the act of walking in the botanical garden of the city of Prague, while soundscapes are used to reproduce the particular sound of the garden. The auditory feedback designed was combined with a photorealistic reproduction of the same garden. A between-subject experiment was conducted, where 126 subjects participated, involving six different experimental conditions, including both uni- and bimodal stimuli (auditory and visual. The auditory stimuli consisted of several combinations of auditory feedback, including static sound sources as well as self-induced interactive sounds simulated using physical models. Results show that subjects' motion in the environment is significantly enhanced when dynamic sound sources and sound of egomotion are rendered in the environment.

  14. Temporal Organization of Sound Information in Auditory Memory

    Directory of Open Access Journals (Sweden)

    Kun Song

    2017-06-01

    Full Text Available Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  15. Temporal Organization of Sound Information in Auditory Memory.

    Science.gov (United States)

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  16. Sound localization with head movement: implications for 3-d audio displays.

    Directory of Open Access Journals (Sweden)

    Ken Ian McAnally

    2014-08-01

    Full Text Available Previous studies have shown that the accuracy of sound localization is improved if listeners are allowed to move their heads during signal presentation. This study describes the function relating localization accuracy to the extent of head movement in azimuth. Sounds that are difficult to localize were presented in the free field from sources at a wide range of azimuths and elevations. Sounds remained active until the participants’ heads had rotated through windows ranging in width of 2°, 4°, 8°, 16°, 32°, or 64° of azimuth. Error in determining sound-source elevation and the rate of front/back confusion were found to decrease with increases in azimuth window width. Error in determining sound-source lateral angle was not found to vary with azimuth window width. Implications for 3-d audio displays: The utility of a 3-d audio display for imparting spatial information is likely to be improved if operators are able to move their heads during signal presentation. Head movement may compensate in part for a paucity of spectral cues to sound-source location resulting from limitations in either the audio signals presented or the directional filters (i.e., head-related transfer functions used to generate a display. However, head movements of a moderate size (i.e., through around 32° of azimuth may be required to ensure that spatial information is conveyed with high accuracy.

  17. Shape analysis of pulsed second sound in He II

    International Nuclear Information System (INIS)

    Worthington, T.; Yan, J.; Trefny, J.U.

    1976-01-01

    Second sound in He II has been observed using a heat pulse method. At temperatures where well-developed second sound is observed, the entire pulse shape can be understood if heat sources and geometrical effects are properly taken into account. 4 figures

  18. Microsoft C#.NET program and electromagnetic depth sounding for large loop source

    Science.gov (United States)

    Prabhakar Rao, K.; Ashok Babu, G.

    2009-07-01

    A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.

  19. An open access database for the evaluation of heart sound algorithms.

    Science.gov (United States)

    Liu, Chengyu; Springer, David; Li, Qiao; Moody, Benjamin; Juan, Ricardo Abad; Chorro, Francisco J; Castells, Francisco; Roig, José Millet; Silva, Ikaro; Johnson, Alistair E W; Syed, Zeeshan; Schmidt, Samuel E; Papadaniil, Chrysa D; Hadjileontiadis, Leontios; Naseri, Hosein; Moukadem, Ali; Dieterlen, Alain; Brandt, Christian; Tang, Hong; Samieinasab, Maryam; Samieinasab, Mohammad Reza; Sameni, Reza; Mark, Roger G; Clifford, Gari D

    2016-12-01

    In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.

  20. Second Sound for Heat Source Localization

    CERN Document Server

    Vennekate, Hannes; Uhrmacher, Michael; Quadt, Arnulf; Grosse-Knetter, Joern

    2011-01-01

    Defects on the surface of superconducting cavities can limit their accelerating gradient by localized heating. This results in a phase transition to the normal conduction state | a quench. A new application, involving Oscillating Superleak Transducers (OST) to locate such quench inducing heat spots on the surface of the cavities, has been developed by D. Hartill et al. at Cornell University in 2008. The OSTs enable the detection of heat transfer via second sound in super uid helium. This thesis presents new results on the analysis of their signal. Its behavior has been studied for dierent circumstances at setups at the University of Gottingen and at CERN. New approaches for an automated signal processing have been developed. Furthermore, a rst test setup for a single-cell Superconducting Proton Linac (SPL) cavity has been prepared. Recommendations of a better signal retrieving for its operation are presented.

  1. Regularization in global sound equalization based on effort variation

    DEFF Research Database (Denmark)

    Stefanakis, Nick; Sarris, John; Jacobsen, Finn

    2009-01-01

    . Effort variation equalization involves modifying the conventional cost function in sound equalization, which is based on minimizing least-squares reproduction errors, by adding a term that is proportional to the squared deviations between complex source strengths, calculated independently for the sources......Sound equalization in closed spaces can be significantly improved by generating propagating waves that are naturally associated with the geometry, as, for example, plane waves in rectangular enclosures. This paper presents a control approach termed effort variation regularization based on this idea...

  2. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    Science.gov (United States)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  3. Time characteristics of distortion product otoacoustic emissions recovery function after moderate sound exposure

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2006-01-01

    Exposure to sound of moderate level temporarily attenuates the amplitude of distortion product otoacoustic emissions (DPOAEs). These changes are similar to the changes observed in absolute hearing thresholds after similar sound exposures. To be able to assess changes over time across a broad...

  4. Human-assisted sound event recognition for home service robots.

    Science.gov (United States)

    Do, Ha Manh; Sheng, Weihua; Liu, Meiqin

    This paper proposes and implements an open framework of active auditory learning for a home service robot to serve the elderly living alone at home. The framework was developed to realize the various auditory perception capabilities while enabling a remote human operator to involve in the sound event recognition process for elderly care. The home service robot is able to estimate the sound source position and collaborate with the human operator in sound event recognition while protecting the privacy of the elderly. Our experimental results validated the proposed framework and evaluated auditory perception capabilities and human-robot collaboration in sound event recognition.

  5. Replacing the Orchestra? - The Discernibility of Sample Library and Live Orchestra Sounds.

    Directory of Open Access Journals (Sweden)

    Reinhard Kopiez

    Full Text Available Recently, musical sounds from pre-recorded orchestra sample libraries (OSL have become indispensable in music production for the stage or popular charts. Surprisingly, it is unknown whether human listeners can identify sounds as stemming from real orchestras or OSLs. Thus, an internet-based experiment was conducted to investigate whether a classic orchestral work, produced with sounds from a state-of-the-art OSL, could be reliably discerned from a live orchestra recording of the piece. It could be shown that the entire sample of listeners (N = 602 on average identified the correct sound source at 72.5%. This rate slightly exceeded Alan Turing's well-known upper threshold of 70% for a convincing, simulated performance. However, while sound experts tended to correctly identify the sound source, participants with lower listening expertise, who resembled the majority of music consumers, only achieved 68.6%. As non-expert listeners in the experiment were virtually unable to tell the real-life and OSL sounds apart, it is assumed that OSLs will become more common in music production for economic reasons.

  6. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  7. Effects of Interaural Level and Time Differences on the Externalization of Sound

    DEFF Research Database (Denmark)

    Dau, Torsten; Catic, Jasmina; Santurette, Sébastien

    Distant sound sources in our environment are perceived as externalized and are thus properly localized in both direction and distance. This is due to the acoustic filtering by the head, torso, and external ears, which provides frequency dependent shaping of binaural cues, such as interaural level...... differences (ILDs) and interaural time differences (ITDs). Further, the binaural cues provided by reverberation in an enclosed space may also contribute to externalization. While these spatial cues are available in their natural form when listening to real-world sound sources, hearing-aid signal processing...... is consistent with the physical analysis that showed that a decreased distance to the sound source also reduced the fluctuations in ILDs....

  8. Review of sound card photogates

    International Nuclear Information System (INIS)

    Gingl, Zoltan; Mingesz, Robert; Mellar, Janos; Makra, Peter

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card - an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  9. A model for calculating specular and diffuse reflections in outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.

    2006-01-01

    In many practical outdoor situations, the direct sound path between a noise source and a receiver is screened by an obstacle. In these situations indirect sound paths become important, in particular reflections of sound waves. Reflections may occur at objects such as a vertical wall, but also at the

  10. Characterizing large river sounds: Providing context for understanding the environmental effects of noise produced by hydrokinetic turbines.

    Science.gov (United States)

    Bevelhimer, Mark S; Deng, Z Daniel; Scherelis, Constantin

    2016-01-01

    Underwater noise associated with the installation and operation of hydrokinetic turbines in rivers and tidal zones presents a potential environmental concern for fish and marine mammals. Comparing the spectral quality of sounds emitted by hydrokinetic turbines to natural and other anthropogenic sound sources is an initial step at understanding potential environmental impacts. Underwater recordings were obtained from passing vessels and natural underwater sound sources in static and flowing waters. Static water measurements were taken in a lake with minimal background noise. Flowing water measurements were taken at a previously proposed deployment site for hydrokinetic turbines on the Mississippi River, where sounds created by flowing water are part of all measurements, both natural ambient and anthropogenic sources. Vessel sizes ranged from a small fishing boat with 60 hp outboard motor to an 18-unit barge train being pushed upstream by tugboat. As expected, large vessels with large engines created the highest sound levels, which were, on average, 40 dB greater than the sound created by an operating hydrokinetic turbine. A comparison of sound levels from the same sources at different distances using both spherical and cylindrical sound attenuation functions suggests that spherical model results more closely approximate observed sound attenuation.

  11. Spatial aspects of sound quality - and by multichannel systems subjective assessment of sound reproduced by stereo

    DEFF Research Database (Denmark)

    Choisel, Sylvain

    the fidelity with which sound reproduction systems can re-create the desired stereo image, a laser pointing technique was developed to accurately collect subjects' responses in a localization task. This method is subsequently applied in an investigation of the effects of loudspeaker directivity...... on the perceived direction of panned sources. The second part of the thesis addresses the identification of auditory attributes which play a role in the perception of sound reproduced by multichannel systems. Short musical excerpts were presented in mono, stereo and several multichannel formats to evoke various...

  12. EXTRACTION OF SPATIAL PARAMETERS FROM CLASSIFIED LIDAR DATA AND AERIAL PHOTOGRAPH FOR SOUND MODELING

    Directory of Open Access Journals (Sweden)

    S. Biswas

    2012-07-01

    Full Text Available Prediction of outdoor sound levels in 3D space is important for noise management, soundscaping etc. Sound levels at outdoor can be predicted using sound propagation models which need terrain parameters. The existing practices of incorporating terrain parameters into models are often limited due to inadequate data or inability to determine accurate sound transmission paths through a terrain. This leads to poor accuracy in modelling. LIDAR data and Aerial Photograph (or Satellite Images provide opportunity to incorporate high resolution data into sound models. To realize this, identification of building and other objects and their use for extraction of terrain parameters are fundamental. However, development of a suitable technique, to incorporate terrain parameters from classified LIDAR data and Aerial Photograph, for sound modelling is a challenge. Determination of terrain parameters along various transmission paths of sound from sound source to a receiver becomes very complex in an urban environment due to the presence of varied and complex urban features. This paper presents a technique to identify the principal paths through which sound transmits from source to receiver. Further, the identified principal paths are incorporated inside the sound model for sound prediction. Techniques based on plane cutting and line tracing are developed for determining principal paths and terrain parameters, which use various information, e.g., building corner and edges, triangulated ground, tree points and locations of source and receiver. The techniques developed are validated through a field experiment. Finally efficacy of the proposed technique is demonstrated by developing a noise map for a test site.

  13. Analysis of acoustic sound signal for ONB measurement

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, H. I.; Han, K. Y.; Chai, H. T.; Park, C.

    2003-01-01

    The onset of nucleate boiling (ONB) was measured in a test fuel bundle composed of several fuel element simulators (FES) by analysing the aquatic sound signals. In order measure ONBs, a hydrophone, a pre-amplifier, and a data acquisition system to acquire/process the aquatic signal was prepared. The acoustic signal generated in the coolant is converted to the current signal through the microphone. When the signal is analyzed in the frequency domain, each sound signal can be identified according to its origin of sound source. As the power is increased to a certain degree, a nucleate boiling is started. The frequent formation and collapse of the void bubbles produce sound signal. By measuring this sound signal one can pinpoint the ONB. Since the signal characteristics is identical for different mass flow rates, this method can be applicable for ascertaining ONB

  14. Urban sound energy reduction by means of sound barriers

    Science.gov (United States)

    Iordache, Vlad; Ionita, Mihai Vlad

    2018-02-01

    In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.

  15. Urban sound energy reduction by means of sound barriers

    Directory of Open Access Journals (Sweden)

    Iordache Vlad

    2018-01-01

    Full Text Available In urban environment, various heating ventilation and air conditioning appliances designed to maintain indoor comfort become urban acoustic pollution vectors due to the sound energy produced by these equipment. The acoustic barriers are the recommended method for the sound energy reduction in urban environment. The current sizing method of these acoustic barriers is too difficult and it is not practical for any 3D location of the noisy equipment and reception point. In this study we will develop based on the same method a new simplified tool for acoustic barriers sizing, maintaining the same precision characteristic to the classical method. Abacuses for acoustic barriers sizing are built that can be used for different 3D locations of the source and the reception points, for several frequencies and several acoustic barrier heights. The study case presented in the article represents a confirmation for the rapidity and ease of use of these abacuses in the design of the acoustic barriers.

  16. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    extended. Additionally, we designed a sound insulator so as to realize a similar distribution of the particle velocity to that obtained using the optimized window function. Sound radiation was suppressed using a sound insulator put above the vibrating surface in the simulation using the three-dimensional finite element method. On the basis of this finding, it was suggested that near-field acoustic communication which suppressed sound radiation can be realized by applying the optimized window function to the particle velocity field.

  17. Hearing abilities and sound reception of broadband sounds in an adult Risso's dolphin (Grampus griseus).

    Science.gov (United States)

    Mooney, T Aran; Yang, Wei-Cheng; Yu, Hsin-Yi; Ketten, Darlene R; Jen, I-Fan

    2015-08-01

    While odontocetes do not have an external pinna that guides sound to the middle ear, they are considered to receive sound through specialized regions of the head and lower jaw. Yet odontocetes differ in the shape of the lower jaw suggesting that hearing pathways may vary between species, potentially influencing hearing directionality and noise impacts. This work measured the audiogram and received sensitivity of a Risso's dolphin (Grampus griseus) in an effort to comparatively examine how this species receives sound. Jaw hearing thresholds were lowest (most sensitive) at two locations along the anterior, midline region of the lower jaw (the lower jaw tip and anterior part of the throat). Responses were similarly low along a more posterior region of the lower mandible, considered the area of best hearing in bottlenose dolphins. Left- and right-side differences were also noted suggesting possible left-right asymmetries in sound reception or differences in ear sensitivities. The results indicate best hearing pathways may vary between the Risso's dolphin and other odontocetes measured. This animal received sound well, supporting a proposed throat pathway. For Risso's dolphins in particular, good ventral hearing would support their acoustic ecology by facilitating echo-detection from their proposed downward oriented echolocation beam.

  18. Reassessment of the hydrocarbons in Prince William Sound and the Gulf of Alaska : identifying the source using partial least squares

    International Nuclear Information System (INIS)

    Mudge, S.M.

    2001-01-01

    Since the Exxon Valdez oil spill in Prince William Sound, Alaska there has been much discussion regarding the clean-up and long term fate of the oil. There has also been debate regarding the origin of the background hydrocarbons present within Prince William Sound (PWS) and the Gulf of Alaska (GoA). There is evidence that background (pre-spill) hydrocarbons may come from either nearby coal deposits or from natural oil seeps and eroding source rocks in the region. This paper presented a study in which the multivariate statistical methodology of the Partial Least Squares (PLS) was used to reassess the percentage contribution of coal, seep oil, shales and rivers to the hydrocarbon loading in the GoA. Data was provided by researchers at the National Ocean and Atmospheric Administration (NOAA) and the Bowdoin College, for Exxon. The data was analysed using selected sites as sources in order to develop signatures. The signatures were based on 40 and 136 compounds respectively, including the polyaromatic hydrocarbon (PAH) and terpane biomarkers from the Exxon data. The key components describing the sources were fitted to the data for other sites around the GoA to determine the proportion of the variability described by each source. The large complex datasets can be used to develop complex fingerprints for sources rather than using relatively simplistic ratios between selected compounds. The results indicate that 30 per cent of the signature is common between each source and that the small PAHs are the best diagnostic compounds in the model for the oil signature and the large PAHs are good for coal. Naphthalene, methyl and dimethyl naphthalene are the best markers for the seep oil signature. For the pre-spill background, coals and shales are best defined by the larger PAHs such as perylene and benzo(ghi)perylene. In general, the average partitioning between the two sources across all the sampling sites within the region indicated that 53 per cent is attributable to the

  19. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    Science.gov (United States)

    Pine, Matthew K; Jeffs, Andrew G; Radford, Craig A

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  20. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae.

    Directory of Open Access Journals (Sweden)

    Matthew K Pine

    Full Text Available It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21-31% compared to silent control treatments, 38-47% compared to tidal turbine sound treatments, and 46-60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment.

  1. Improving Robustness against Environmental Sounds for Directing Attention of Social Robots

    DEFF Research Database (Denmark)

    Thomsen, Nicolai Bæk; Tan, Zheng-Hua; Lindberg, Børge

    2015-01-01

    This paper presents a multi-modal system for finding out where to direct the attention of a social robot in a dialog scenario, which is robust against environmental sounds (door slamming, phone ringing etc.) and short speech segments. The method is based on combining voice activity detection (VAD......) and sound source localization (SSL) and furthermore apply post-processing to SSL to filter out short sounds. The system is tested against a baseline system in four different real-world experiments, where different sounds are used as interfering sounds. The results are promising and show a clear improvement....

  2. Similarity analysis for the high-pressure inductively coupled plasma source

    International Nuclear Information System (INIS)

    Vanden-Abeele, D; Degrez, G

    2004-01-01

    It is well known that the optimal operating parameters of an inductively coupled plasma (ICP) torch strongly depend upon its dimensions. To understand this relationship better, we derive a dimensionless form of the equations governing the behaviour of high-pressure ICPs. The requirement of similarity then naturally leads to expressions for the operating parameters as a function of the plasma radius. In addition to the well-known scaling law for frequency, surprising results appear for the dependence of the mass flow rate, dissipated power and operating pressure upon the plasma radius. While the obtained laws do not appear to be in good agreement with empirical results in the literature, their correctness is supported by detailed numerical calculations of ICP sources of varying diameters. The approximations of local thermodynamic equilibrium and negligible radiative losses restrict the validity of our results and can be responsible for the disagreement with empirical data. The derived scaling laws are useful for the design of new plasma torches and may provide explanations for the unsteadiness observed in certain existing ICP sources

  3. "Bouba" and "Kiki" in Namibia? A Remote Culture Make Similar Shape-Sound Matches, but Different Shape-Taste Matches to Westerners

    Science.gov (United States)

    Bremner, Andrew J.; Caparos, Serge; Davidoff, Jules; de Fockert, Jan; Linnell, Karina J.; Spence, Charles

    2013-01-01

    Western participants consistently match certain shapes with particular speech sounds, tastes, and flavours. Here we demonstrate that the "Bouba-Kiki effect", a well-known shape-sound symbolism effect commonly observed in Western participants, is also observable in the Himba of Northern Namibia, a remote population with little exposure to…

  4. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach †

    Science.gov (United States)

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  5. Source-sink estimates of genetic introgression show influence of hatchery strays on wild chum salmon populations in Prince William Sound, Alaska.

    Directory of Open Access Journals (Sweden)

    James R Jasper

    Full Text Available The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta in Prince William Sound (PWS, Alaska, with 135 single nucleotide polymorphism (SNP markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960's for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964-1982 with frequencies in contemporary samples (2008-2010 and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.

  6. Turbine Sound May Influence the Metamorphosis Behaviour of Estuarine Crab Megalopae

    Science.gov (United States)

    Pine, Matthew K.; Jeffs, Andrew G.; Radford, Craig A.

    2012-01-01

    It is now widely accepted that a shift towards renewable energy production is needed in order to avoid further anthropogenically induced climate change. The ocean provides a largely untapped source of renewable energy. As a result, harvesting electrical power from the wind and tides has sparked immense government and commercial interest but with relatively little detailed understanding of the potential environmental impacts. This study investigated how the sound emitted from an underwater tidal turbine and an offshore wind turbine would influence the settlement and metamorphosis of the pelagic larvae of estuarine brachyuran crabs which are ubiquitous in most coastal habitats. In a laboratory experiment the median time to metamorphosis (TTM) for the megalopae of the crabs Austrohelice crassa and Hemigrapsus crenulatus was significantly increased by at least 18 h when exposed to either tidal turbine or sea-based wind turbine sound, compared to silent control treatments. Contrastingly, when either species were subjected to natural habitat sound, observed median TTM decreased by approximately 21–31% compared to silent control treatments, 38–47% compared to tidal turbine sound treatments, and 46–60% compared to wind turbine sound treatments. A lack of difference in median TTM in A. crassa between two different source levels of tidal turbine sound suggests the frequency composition of turbine sound is more relevant in explaining such responses rather than sound intensity. These results show that estuarine mudflat sound mediates natural metamorphosis behaviour in two common species of estuarine crabs, and that exposure to continuous turbine sound interferes with this natural process. These results raise concerns about the potential ecological impacts of sound generated by renewable energy generation systems placed in the nearshore environment. PMID:23240063

  7. Assessing and optimizing infra-sound networks to monitor volcanic eruptions

    International Nuclear Information System (INIS)

    Tailpied, Dorianne

    2016-01-01

    Understanding infra-sound signals is essential to monitor compliance with the Comprehensive Nuclear-Test ban Treaty, and also to demonstrate the potential of the global monitoring infra-sound network for civil and scientific applications. The main objective of this thesis is to develop a robust tool to estimate and optimize the performance of any infra-sound network to monitor explosive sources such as volcanic eruptions. Unlike previous studies, the developed method has the advantage to consider realistic atmospheric specifications along the propagation path, source frequency and noise levels at the stations. It allows to predict the attenuation and the minimum detectable source amplitude. By simulating the performances of any infra-sound networks, it is then possible to define the optimal configuration of the network to monitor a specific region, during a given period. When carefully adding a station to the existing network, performance can be improved by a factor of 2. However, it is not always possible to complete the network. A good knowledge of detection capabilities at large distances is thus essential. To provide a more realistic picture of the performance, we integrate the atmospheric longitudinal variability along the infra-sound propagation path in our simulations. This thesis also contributes in providing a confidence index taking into account the uncertainties related to propagation and atmospheric models. At high frequencies, the error can reach 40 dB. Volcanic eruptions are natural, powerful and valuable calibrating sources of infra-sound, worldwide detected. In this study, the well instrumented volcanoes Yasur, in Vanuatu, and Etna, in Italy, offer a unique opportunity to validate our attenuation model. In particular, accurate comparisons between near-field recordings and far-field detections of these volcanoes have helped to highlight the potential of our simulation tool to remotely monitor volcanoes. Such work could significantly help to prevent

  8. On Sound: Reconstructing a Zhuangzian Perspective of Music

    Directory of Open Access Journals (Sweden)

    So Jeong Park

    2015-12-01

    Full Text Available A devotion to music in Chinese classical texts is worth noticing. Early Chinese thinkers saw music as a significant part of human experience and a core practice for philosophy. While Confucian endorsement of ritual and music has been discussed in the field, Daoist understanding of music was hardly explored. This paper will make a careful reading of the Xiánchí 咸池 music story in the Zhuangzi, one of the most interesting, but least noticed texts, and reconstruct a Zhuangzian perspective from it. While sounds had been regarded as mere building blocks of music and thus depreciated in the hierarchical understanding of music in the mainstream discourse of early China, sound is the alpha and omega of music in the Zhuangzian perspective. All kinds of sounds, both human and natural, are invited into musical discourse. Sound is regarded as the real source of our being moved by music, and therefore, musical consummation is depicted as embodiment through sound.

  9. The propagation of sound in narrow street canyons

    Science.gov (United States)

    Iu, K. K.; Li, K. M.

    2002-08-01

    This paper addresses an important problem of predicting sound propagation in narrow street canyons with width less than 10 m, which are commonly found in a built-up urban district. Major noise sources are, for example, air conditioners installed on building facades and powered mechanical equipment for repair and construction work. Interference effects due to multiple reflections from building facades and ground surfaces are important contributions in these complex environments. Although the studies of sound transmission in urban areas can be traced back to as early as the 1960s, the resulting mathematical and numerical models are still unable to predict sound fields accurately in city streets. This is understandable because sound propagation in city streets involves many intriguing phenomena such as reflections and scattering at the building facades, diffusion effects due to recessions and protrusions of building surfaces, geometric spreading, and atmospheric absorption. This paper describes the development of a numerical model for the prediction of sound fields in city streets. To simplify the problem, a typical city street is represented by two parallel reflecting walls and a flat impedance ground. The numerical model is based on a simple ray theory that takes account of multiple reflections from the building facades. The sound fields due to the point source and its images are summed coherently such that mutual interference effects between contributing rays can be included in the analysis. Indoor experiments are conducted in an anechoic chamber. Experimental data are compared with theoretical predictions to establish the validity and usefulness of this simple model. Outdoor experimental measurements have also been conducted to further validate the model. copyright 2002 Acoustical Society of America.

  10. Neuromorphic Audio-Visual Sensor Fusion on a Sound-Localising Robot

    Directory of Open Access Journals (Sweden)

    Vincent Yue-Sek Chan

    2012-02-01

    Full Text Available This paper presents the first robotic system featuring audio-visual sensor fusion with neuromorphic sensors. We combine a pair of silicon cochleae and a silicon retina on a robotic platform to allow the robot to learn sound localisation through self-motion and visual feedback, using an adaptive ITD-based sound localisation algorithm. After training, the robot can localise sound sources (white or pink noise in a reverberant environment with an RMS error of 4 to 5 degrees in azimuth. In the second part of the paper, we investigate the source binding problem. An experiment is conducted to test the effectiveness of matching an audio event with a corresponding visual event based on their onset time. The results show that this technique can be quite effective, despite its simplicity.

  11. A unified approach for the spatial enhancement of sound

    Science.gov (United States)

    Choi, Joung-Woo; Jang, Ji-Ho; Kim, Yang-Hann

    2005-09-01

    This paper aims to control the sound field spatially, so that the desired or target acoustic variable is enhanced within a zone where a listener is located. This is somewhat analogous to having manipulators that can draw sounds in any place. This also means that one can somehow see the controlled shape of sound in frequency or in real time. The former assures its practical applicability, for example, listening zone control for music. The latter provides a mean of analyzing sound field. With all these regards, a unified approach is proposed that can enhance selected acoustic variables using multiple sources. Three kinds of acoustic variables that have to do with magnitude and direction of sound field are formulated and enhanced. The first one, which has to do with the spatial control of acoustic potential energy, enables one to make a zone of loud sound over an area. Otherwise, one can control directional characteristic of sound field by controlling directional energy density, or one can enhance the magnitude and direction of sound at the same time by controlling acoustic intensity. Throughout various examples, it is shown that these acoustic variables can be controlled successfully by the proposed approach.

  12. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  13. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  14. Aerodynamic sound of flow past an airfoil

    Science.gov (United States)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  15. Human-based percussion and self-similarity detection in electroacoustic music

    Science.gov (United States)

    Mills, John Anderson, III

    Electroacoustic music is music that uses electronic technology for the compositional manipulation of sound, and is a unique genre of music for many reasons. Analyzing electroacoustic music requires special measures, some of which are integrated into the design of a preliminary percussion analysis tool set for electroacoustic music. This tool set is designed to incorporate the human processing of music and sound. Models of the human auditory periphery are used as a front end to the analysis algorithms. The audio properties of percussivity and self-similarity are chosen as the focus because these properties are computable and informative. A collection of human judgments about percussion was undertaken to acquire clearly specified, sound-event dimensions that humans use as a percussive cue. A total of 29 participants was asked to make judgments about the percussivity of 360 pairs of synthesized snare-drum sounds. The grouped results indicate that of the dimensions tested rise time is the strongest cue for percussivity. String resonance also has a strong effect, but because of the complex nature of string resonance, it is not a fundamental dimension of a sound event. Gross spectral filtering also has an effect on the judgment of percussivity but the effect is weaker than for rise time and string resonance. Gross spectral filtering also has less effect when the stronger cue of rise time is modified simultaneously. A percussivity-profile algorithm (PPA) is designed to identify those instants in pieces of music that humans also would identify as percussive. The PPA is implemented using a time-domain, channel-based approach and psychoacoustic models. The input parameters are tuned to maximize performance at matching participants' choices in the percussion-judgment collection. After the PPA is tuned, the PPA then is used to analyze pieces of electroacoustic music. Real electroacoustic music introduces new challenges for the PPA, though those same challenges might affect

  16. Sound Stories for General Music

    Science.gov (United States)

    Cardany, Audrey Berger

    2013-01-01

    Language and music literacy share a similar process of understanding that progresses from sensory experience to symbolic representation. The author identifies Bruner’s modes of understanding as they relate to using narrative in the music classroom to enhance music reading at iconic and symbolic levels. Two sound stories are included for…

  17. Sound Beams with Shockwave Pulses

    Science.gov (United States)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  18. A cross-language study of the speech sounds in Yorùbá and Malay: Implications for Second Language Acquisition

    Directory of Open Access Journals (Sweden)

    Boluwaji Oshodi

    2013-07-01

    Full Text Available Acquiring a language begins with the knowledge of its sounds system which falls under the branch of linguistics known as phonetics. The knowledge of the sound system becomes very important to prospective learners particularly L2 learners whose L1 exhibits different sounds and features from the target L2 because this knowledge is vital in order to internalise the correct pronunciation of words. This study examined and contrasted the sound systems of Yorùbá a Niger-Congo language spoken in Nigeria to that of Malay (Peninsular variety, an Austronesian language spoken in Malaysia with emphasis on the areas of differences. The data for this study were collected from ten participants; five native female Malay speakers who are married to Yorùbá native speakers but live in Malaysia and five Yorùbá native speakers who reside in Nigeria. The findings revealed that speakers from both sides have difficulties with sounds and features in the L2 which are not attested in their L1 and they tended to substitute them for similar ones in their L1 through transfer. This confirms the fact that asymmetry between the sound systems of L1 and L2 is a major source of error in L2 acquisition.

  19. Bubbles that Change the Speed of Sound

    Science.gov (United States)

    Planinšič, Gorazd; Etkina, Eugenia

    2012-11-01

    The influence of bubbles on sound has long attracted the attention of physicists. In his 1920 book Sir William Bragg described sound absorption caused by foam in a glass of beer tapped by a spoon. Frank S. Crawford described and analyzed the change in the pitch of sound in a similar experiment and named the phenomenon the "hot chocolate effect."2 In this paper we describe a simple and robust experiment that allows an easy audio and visual demonstration of the same effect (unfortunately without the chocolate) and offers several possibilities for student investigations. In addition to the demonstration of the above effect, the experiments described below provide an excellent opportunity for students to devise and test explanations with simple equipment.

  20. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    Science.gov (United States)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  1. Speed of sound measurements of liquid C1–C4 alkanols

    International Nuclear Information System (INIS)

    Dávila, María J.; Gedanitz, Holger; Span, Roland

    2016-01-01

    Highlights: • Speeds of sound in alkanols were measured in a wide temperature and pressure range. • A pulse-echo method with a double path type sensor was employed. • A double polynomial equation was used to fit the experimental speed of sound data. • The accurate results were compared with available literature sources. - Abstract: Speed of sound measurements were made in methanol, ethanol, propan-1-ol, and butan-1-ol in the temperature range from (253.15 to 353.15) K at pressures up to 30 MPa by use of a pulse-echo method with a double path type sensor. The expanded overall uncertainty (k = 2) in speed of sound measurements are estimated to be 0.026% for methanol, 0.03% for ethanol, 0.013% for propan-1-ol and 0.01% for butan-1-ol. A double polynomial equation for the speed of sound with inputs of temperature and pressure has been fitted from the experimental results. These were compared with available literature sources and fundamental equations of state, showing good agreement among them to comparable alcohol purities and experimental uncertainties.

  2. The sound symbolism bootstrapping hypothesis for language acquisition and language evolution.

    Science.gov (United States)

    Imai, Mutsumi; Kita, Sotaro

    2014-09-19

    Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Effects of interaural level differences on the externalization of sound

    DEFF Research Database (Denmark)

    Catic, Jasmina; Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Distant sound sources in our environment are perceived as externalized and are thus properly localized in both direction and distance. This is due to the acoustic filtering by the head, torso, and external ears, which provides frequency-dependent shaping of binaural cues such as interaural level...... differences (ILDs) and interaural time differences (ITDs). In rooms, the sound reaching the two ears is further modified by reverberant energy, which leads to increased fluctuations in short-term ILDs and ITDs. In the present study, the effect of ILD fluctuations on the externalization of sound......, for sounds that contain frequencies above about 1 kHz the ILD fluctuations were found to be an essential cue for externalization....

  4. Externalization versus Internalization of Sound in Normal-hearing and Hearing-impaired Listeners

    DEFF Research Database (Denmark)

    Ohl, Björn; Laugesen, Søren; Buchholz, Jörg

    2010-01-01

    The externalization of sound, i. e. the perception of auditory events as being located outside of the head, is a natural phenomenon for normalhearing listeners, when perceiving sound coming from a distant physical sound source. It is potentially useful for hearing in background noise......, but the relevant cues might be distorted by a hearing impairment and also by the processing of the incoming sound through hearing aids. In this project, two intuitive tests in natural real-life surroundings were developed, which capture the limits of the perception of externalization. For this purpose...

  5. Temporal and Spatial Comparisons of Underwater Sound Signatures of Different Reef Habitats in Moorea Island, French Polynesia.

    Directory of Open Access Journals (Sweden)

    Frédéric Bertucci

    Full Text Available As environmental sounds are used by larval fish and crustaceans to locate and orientate towards habitat during settlement, variations in the acoustic signature produced by habitats could provide valuable information about habitat quality, helping larvae to differentiate between potential settlement sites. However, very little is known about how acoustic signatures differ between proximate habitats. This study described within- and between-site differences in the sound spectra of five contiguous habitats at Moorea Island, French Polynesia: the inner reef crest, the barrier reef, the fringing reef, a pass and a coastal mangrove forest. Habitats with coral (inner, barrier and fringing reefs were characterized by a similar sound spectrum with average intensities ranging from 70 to 78 dB re 1 μPa.Hz(-1. The mangrove forest had a lower sound intensity of 70 dB re 1 μPa.Hz(-1 while the pass was characterized by a higher sound level with an average intensity of 91 dB re 1 μPa.Hz(-1. Habitats showed significantly different intensities for most frequencies, and a decreasing intensity gradient was observed from the reef to the shore. While habitats close to the shore showed no significant diel variation in sound intensities, sound levels increased at the pass during the night and barrier reef during the day. These two habitats also appeared to be louder in the North than in the West. These findings suggest that daily variations in sound intensity and across-reef sound gradients could be a valuable source of information for settling larvae. They also provide further evidence that closely related habitats, separated by less than 1 km, can differ significantly in their spectral composition and that these signatures might be typical and conserved along the coast of Moorea.

  6. Mercury in Long Island Sound sediments

    Science.gov (United States)

    Varekamp, J.C.; Buchholtz ten Brink, Marilyn R.; Mecray, E.I.; Kreulen, B.

    2000-01-01

    Mercury (Hg) concentrations were measured in 394 surface and core samples from Long Island Sound (LIS). The surface sediment Hg concentration data show a wide spread, ranging from 600 ppb Hg in westernmost LIS. Part of the observed range is related to variations in the bottom sedimentary environments, with higher Hg concentrations in the muddy depositional areas of central and western LIS. A strong residual trend of higher Hg values to the west remains when the data are normalized to grain size. Relationships between a tracer for sewage effluents (C. perfringens) and Hg concentrations indicate that between 0-50 % of the Hg is derived from sewage sources for most samples from the western and central basins. A higher percentage of sewage-derived Hg is found in samples from the westernmost section of LIS and in some local spots near urban centers. The remainder of the Hg is carried into the Sound with contaminated sediments from the watersheds and a small fraction enters the Sound as in situ atmospheric deposition. The Hg-depth profiles of several cores have well-defined contamination profiles that extend to pre-industrial background values. These data indicate that the Hg levels in the Sound have increased by a factor of 5-6 over the last few centuries, but Hg levels in LIS sediments have declined in modern times by up to 30 %. The concentrations of C. perfringens increased exponentially in the top core sections which had declining Hg concentrations, suggesting a recent decline in Hg fluxes that are unrelated to sewage effluents. The observed spatial and historical trends show Hg fluxes to LIS from sewage effluents, contaminated sediment input from the Connecticut River, point source inputs of strongly contaminated sediment from the Housatonic River, variations in the abundance of Hg carrier phases such as TOC and Fe, and focusing of sediment-bound Hg in association with westward sediment transport within the Sound.

  7. Assessment of the health effects of low-frequency sounds and infra-sounds from wind farms. ANSES Opinion. Collective expertise report

    International Nuclear Information System (INIS)

    Lepoutre, Philippe; Avan, Paul; Cheveigne, Alain de; Ecotiere, David; Evrard, Anne-Sophie; Hours, Martine; Lelong, Joel; Moati, Frederique; Michaud, David; Toppila, Esko; Beugnet, Laurent; Bounouh, Alexandre; Feltin, Nicolas; Campo, Pierre; Dore, Jean-Francois; Ducimetiere, Pierre; Douki, Thierry; Flahaut, Emmanuel; Gaffet, Eric; Lafaye, Murielle; Martinsons, Christophe; Mouneyrac, Catherine; Ndagijimana, Fabien; Soyez, Alain; Yardin, Catherine; Cadene, Anthony; Merckel, Olivier; Niaudet, Aurelie; Cadene, Anthony; Saddoki, Sophia; Debuire, Brigitte; Genet, Roger

    2017-03-01

    The French Agency for Food, Environmental and Occupational Health and Safety (ANSES) reiterates that wind turbines emit infra-sounds (sound below 20 Hz) and low-frequency sounds. There are also other sources of infra-sound emissions that can be natural (wind in particular) or anthropogenic (heavy-goods vehicles, heat pumps, etc.). The measurement campaigns undertaken during the expert appraisal enabled these emissions from three wind farms to be characterised. In general, only very high intensities of infra-sound can be heard or perceived by humans. At the minimum distance (of 500 metres) separating homes from wind farm sites set out by the regulations, the infra-sounds produced by wind turbines do not exceed hearing thresholds. Therefore, the disturbance related to audible noise potentially felt by people around wind farms mainly relates to frequencies above 50 Hz. The expert appraisal showed that mechanisms for health effects grouped under the term 'vibro-acoustic disease', reported in certain publications, have no serious scientific basis. There have been very few scientific studies on the potential health effects of infra-sounds and low frequencies produced by wind turbines. The review of these experimental and epidemiological data did not find any adequate scientific arguments for the occurrence of health effects related to exposure to noise from wind turbines, other than disturbance related to audible noise and a nocebo effect, which can help explain the occurrence of stress-related symptoms experienced by residents living near wind farms. However, recently acquired knowledge on the physiology of the cochlea-vestibular system has revealed physiological effects in animals induced by exposure to high-intensity infra-sounds. These effects, while plausible in humans, have yet to be demonstrated for exposure to levels comparable to those observed in residents living near wind farms. Moreover, the connection between these physiological effects and the occurrence of

  8. The sound field of a rotating dipole in a plug flow.

    Science.gov (United States)

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  9. On the sound insulation of acoustic metasurface using a sub-structuring approach

    Science.gov (United States)

    Yu, Xiang; Lu, Zhenbo; Cheng, Li; Cui, Fangsen

    2017-08-01

    The feasibility of using an acoustic metasurface (AMS) with acoustic stop-band property to realize sound insulation with ventilation function is investigated. An efficient numerical approach is proposed to evaluate its sound insulation performance. The AMS is excited by a reverberant sound source and the standardized sound reduction index (SRI) is numerically investigated. To facilitate the modeling, the coupling between the AMS and the adjacent acoustic fields is formulated using a sub-structuring approach. A modal based formulation is applied to both the source and receiving room, enabling an efficient calculation in the frequency range from 125 Hz to 2000 Hz. The sound pressures and the velocities at the interface are matched by using a transfer function relation based on ;patches;. For illustration purposes, numerical examples are investigated using the proposed approach. The unit cell constituting the AMS is constructed in the shape of a thin acoustic chamber with tailored inner structures, whose stop-band property is numerically analyzed and experimentally demonstrated. The AMS is shown to provide effective sound insulation of over 30 dB in the stop-band frequencies from 600 to 1600 Hz. It is also shown that the proposed approach has the potential to be applied to a broad range of AMS studies and optimization problems.

  10. Sound produced by an oscillating arc in a high-pressure gas

    Science.gov (United States)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  11. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  12. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    Science.gov (United States)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  13. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  14. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  15. Sound of a cup with and without instant coffee

    Science.gov (United States)

    Morrison, Andrew; Rossing, Thomas D.

    2002-05-01

    An empty coffee cup, like an ancient Chinese two-tone bell, emits two distinctly different tones, depending upon where it is tapped. When it is filled with hot water, and some instant coffee is added, however, a whole new set of sounds is heard when the cup is tapped. The pitch rises an octave or more as the foam clears due to the dramatic change in the speed of sound in the bubble-filled liquid. A similar, but smaller, effect was noted in beer by Bragg [The World of Sound (1968)] and in hot chocolate by Crawford [Am. J. Phys. (1982)]. We describe the modes of vibration in a coffee cup and the sound emitted by a coffee cup as filled with instant coffee as the bubble density changes.

  16. Submarine groundwater discharge driven nitrogen fluxes to Long Island Sound, NY: Terrestrial vs. marine sources

    Science.gov (United States)

    Tamborski, J. J.; Cochran, J. K.; Bokuniewicz, H. J.

    2017-12-01

    Bottom-waters in Smithtown Bay (Long Island Sound, NY) are subject to hypoxic conditions every summer despite limited nutrient inputs from waste-water and riverine sources, while modeling estimates of groundwater inputs are thought to be insignificant. Terrestrial and marine fluxes of submarine groundwater discharge (SGD) were quantified to Smithtown Bay using mass balances of 222Rn, 224Ra, 226Ra and 228Ra during the spring and summer of 2014/2015, in order to track this seasonal transition period. Intertidal pore waters from a coastal bluff (terrestrial SGD) and from a barrier beach (marine SGD) displayed substantial differences in N concentrations and sources, traced using a multi-isotope approach (222Rn, Ra, δ15N-NO3-, δ18O-NO3-). NO3- in terrestrial SGD did not display any seasonality and was derived from residential septic systems and fertilizer. Marine SGD N concentrations varied month-to-month because of mixing between oxic seawater and hypoxic saline pore waters; N concentrations were greatest during the summer, when NO3- was derived from the remineralization of organic matter. Short-lived 222Rn and 224Ra SGD fluxes were used to determine remineralized N loads along tidal recirculation flow paths, while long-lived 228Ra was used to trace inputs of anthropogenic N in terrestrial SGD. 228Ra-derived terrestrial N load estimates were between 20 and 55% lower than 224Ra-derived estimates (excluding spring 2014); 228Ra may be a more appropriate tracer of terrestrial SGD N loads. Terrestrial SGD NO3- (derived from 228Ra) to Smithtown Bay varied from (1.40-12.8) ∗ 106 mol N y-1, with comparable marine SGD NO3- fluxes of (1.70-6.79) ∗ 106 mol N y-1 derived from 222Rn and 224Ra. Remineralized N loads were greater during the summer compared with spring, and these may be an important driver toward the onset of seasonal hypoxic conditions in Smithtown Bay and western Long Island Sound. Seawater recirculation through the coastal aquifer can rival the N load from

  17. The effects of similarity, parasocial identification, and source credibility in obesity public service announcements on diet and exercise self-efficacy.

    Science.gov (United States)

    Phua, Joe

    2016-05-01

    This study examined the effect of the audience's similarity to, and parasocial identification with, spokespersons in obesity public service announcements, on perceived source credibility, and diet and exercise self-efficacy. The results (N = 200) indicated that perceived similarity to the spokesperson was significantly associated with three dimensions of source credibility (competence, trustworthiness, and goodwill), each of which in turn influenced parasocial identification with the spokesperson. Parasocial identification also exerted a positive impact on the audiences' diet and exercise self-efficacy. Additionally, significant differences were found between overweight viewers and non-overweight viewers on perceived similarity, parasocial identification with the spokesperson, and source credibility. © The Author(s) 2014.

  18. Source splitting via the point source method

    International Nuclear Information System (INIS)

    Potthast, Roland; Fazi, Filippo M; Nelson, Philip A

    2010-01-01

    We introduce a new algorithm for source identification and field splitting based on the point source method (Potthast 1998 A point-source method for inverse acoustic and electromagnetic obstacle scattering problems IMA J. Appl. Math. 61 119–40, Potthast R 1996 A fast new method to solve inverse scattering problems Inverse Problems 12 731–42). The task is to separate the sound fields u j , j = 1, ..., n of n element of N sound sources supported in different bounded domains G 1 , ..., G n in R 3 from measurements of the field on some microphone array—mathematically speaking from the knowledge of the sum of the fields u = u 1 + ... + u n on some open subset Λ of a plane. The main idea of the scheme is to calculate filter functions g 1 ,…, g n , n element of N, to construct u l for l = 1, ..., n from u| Λ in the form u l (x) = ∫ Λ g l,x (y)u(y)ds(y), l=1,... n. (1) We will provide the complete mathematical theory for the field splitting via the point source method. In particular, we describe uniqueness, solvability of the problem and convergence and stability of the algorithm. In the second part we describe the practical realization of the splitting for real data measurements carried out at the Institute for Sound and Vibration Research at Southampton, UK. A practical demonstration of the original recording and the splitting results for real data is available online

  19. Metrics for Polyphonic Sound Event Detection

    Directory of Open Access Journals (Sweden)

    Annamaria Mesaros

    2016-05-01

    Full Text Available This paper presents and discusses various metrics proposed for evaluation of polyphonic sound event detection systems used in realistic situations where there are typically multiple sound sources active simultaneously. The system output in this case contains overlapping events, marked as multiple sounds detected as being active at the same time. The polyphonic system output requires a suitable procedure for evaluation against a reference. Metrics from neighboring fields such as speech recognition and speaker diarization can be used, but they need to be partially redefined to deal with the overlapping events. We present a review of the most common metrics in the field and the way they are adapted and interpreted in the polyphonic case. We discuss segment-based and event-based definitions of each metric and explain the consequences of instance-based and class-based averaging using a case study. In parallel, we provide a toolbox containing implementations of presented metrics.

  20. Development of Sound Localization Strategies in Children with Bilateral Cochlear Implants.

    Directory of Open Access Journals (Sweden)

    Yi Zheng

    Full Text Available Localizing sounds in our environment is one of the fundamental perceptual abilities that enable humans to communicate, and to remain safe. Because the acoustic cues necessary for computing source locations consist of differences between the two ears in signal intensity and arrival time, sound localization is fairly poor when a single ear is available. In adults who become deaf and are fitted with cochlear implants (CIs sound localization is known to improve when bilateral CIs (BiCIs are used compared to when a single CI is used. The aim of the present study was to investigate the emergence of spatial hearing sensitivity in children who use BiCIs, with a particular focus on the development of behavioral localization patterns when stimuli are presented in free-field horizontal acoustic space. A new analysis was implemented to quantify patterns observed in children for mapping acoustic space to a spatially relevant perceptual representation. Children with normal hearing were found to distribute their responses in a manner that demonstrated high spatial sensitivity. In contrast, children with BiCIs tended to classify sound source locations to the left and right; with increased bilateral hearing experience, they developed a perceptual map of space that was better aligned with the acoustic space. The results indicate experience-dependent refinement of spatial hearing skills in children with CIs. Localization strategies appear to undergo transitions from sound source categorization strategies to more fine-grained location identification strategies. This may provide evidence for neural plasticity, with implications for training of spatial hearing ability in CI users.

  1. The Sound Quality of Cochlear Implants: Studies With Single-sided Deaf Patients.

    Science.gov (United States)

    Dorman, Michael F; Natale, Sarah Cook; Butts, Austin M; Zeitler, Daniel M; Carlson, Matthew L

    2017-09-01

    The goal of the present study was to assess the sound quality of a cochlear implant for single-sided deaf (SSD) patients fit with a cochlear implant (CI). One of the fundamental, unanswered questions in CI research is "what does an implant sound like?" Conventional CI patients must use the memory of a clean signal, often decades old, to judge the sound quality of their CIs. In contrast, SSD-CI patients can rate the similarity of a clean signal presented to the CI ear and candidate, CI-like signals presented to the ear with normal hearing. For Experiment 1 four types of stimuli were created for presentation to the normal hearing ear: noise vocoded signals, sine vocoded signals, frequency shifted, sine vocoded signals and band-pass filtered, natural speech signals. Listeners rated the similarity of these signals to unmodified signals sent to the CI on a scale of 0 to 10 with 10 being a complete match to the CI signal. For Experiment 2 multitrack signal mixing was used to create natural speech signals that varied along multiple dimensions. In Experiment 1 for eight adult SSD-CI listeners, the best median similarity rating to the sound of the CI for noise vocoded signals was 1.9; for sine vocoded signals 2.9; for frequency upshifted signals, 1.9; and for band pass filtered signals, 5.5. In Experiment 2 for three young listeners, combinations of band pass filtering and spectral smearing lead to ratings of 10. The sound quality of noise and sine vocoders does not generally correspond to the sound quality of cochlear implants fit to SSD patients. Our preliminary conclusion is that natural speech signals that have been muffled to one degree or another by band pass filtering and/or spectral smearing provide a close, but incomplete, match to CI sound quality for some patients.

  2. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    Science.gov (United States)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design

  3. A comparison of two different sound intensity measurement principles

    DEFF Research Database (Denmark)

    Jacobsen, Finn; de Bree, Hans-Elias

    2005-01-01

    , and compares the two measurement principles with particular regard to the sources of error in sound power determination. It is shown that the phase calibration of intensity probes that combine different transducers is very critical below 500 Hz if the measurement surface is very close to the source under test...

  4. Control of Toxic Chemicals in Puget Sound, Phase 3: Study of Atmospheric Deposition of Air Toxics to the Surface of Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Brandenberger, Jill M.; Louchouarn, Patrick; Kuo, Li-Jung; Crecelius, Eric A.; Cullinan, Valerie I.; Gill, Gary A.; Garland, Charity R.; Williamson, J. B.; Dhammapala, R.

    2010-07-05

    The results of the Phase 1 Toxics Loading study suggested that runoff from the land surface and atmospheric deposition directly to marine waters have resulted in considerable loads of contaminants to Puget Sound (Hart Crowser et al. 2007). The limited data available for atmospheric deposition fluxes throughout Puget Sound was recognized as a significant data gap. Therefore, this study provided more recent or first reported atmospheric deposition fluxes of PAHs, PBDEs, and select trace elements for Puget Sound. Samples representing bulk atmospheric deposition were collected during 2008 and 2009 at seven stations around Puget Sound spanning from Padilla Bay south to Nisqually River including Hood Canal and the Straits of Juan de Fuca. Revised annual loading estimates for atmospheric deposition to the waters of Puget Sound were calculated for each of the toxics and demonstrated an overall decrease in the atmospheric loading estimates except for polybrominated diphenyl ethers (PBDEs) and total mercury (THg). The median atmospheric deposition flux of total PBDE (7.0 ng/m2/d) was higher than that of the Hart Crowser (2007) Phase 1 estimate (2.0 ng/m2/d). The THg was not significantly different from the original estimates. The median atmospheric deposition flux for pyrogenic PAHs (34.2 ng/m2/d; without TCB) shows a relatively narrow range across all stations (interquartile range: 21.2- 61.1 ng/m2/d) and shows no influence of season. The highest median fluxes for all parameters were measured at the industrial location in Tacoma and the lowest were recorded at the rural sites in Hood Canal and Sequim Bay. Finally, a semi-quantitative apportionment study permitted a first-order characterization of source inputs to the atmosphere of the Puget Sound. Both biomarker ratios and a principal component analysis confirmed regional data from the Puget Sound and Straits of Georgia region and pointed to the predominance of biomass and fossil fuel (mostly liquid petroleum products such

  5. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  6. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    Science.gov (United States)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  7. Did you hear that? The role of stimulus similarity and uncertainty in auditory change deafness

    Directory of Open Access Journals (Sweden)

    Kelly eDickerson

    2014-10-01

    Full Text Available Change deafness, the auditory analog to change blindness, occurs when salient and behaviorally relevant changes to sound sources are missed. Missing significant changes in the environment can have serious consequences, however, this effect, has remained little more than a lab phenomenon and a party trick. It is only recently that researchers have begun to explore the nature of these profound errors in change perception. Despite a wealth of examples of the change blindness phenomenon, work on change deafness remains fairly limited. The purpose of the current paper is to review the state of the literature on change deafness and propose an explanation of change deafness that relies on factors related to stimulus information rather than attentional or memory limits. To achieve this, work on across several auditory research domains, including environmental sound classification, informational masking and change deafness are synthesized to present a unified perspective on the perception of change errors in complex, dynamic sound environments. We hope to extend previous research by describing how it may be possible to predict specific patters of change perception errors based on varying degrees of similarity in stimulus features and uncertainty about which stimuli and features are important for a given perceptual decision.

  8. Prediction model for sound transmission from machinery in buildings: feasible approaches and problems to be solved

    NARCIS (Netherlands)

    Gerretsen, E.

    2000-01-01

    Prediction models for the airborne and impact sound transmission in buildings have recently been established (EN 12354- 1&2:1999). However, these models do not cover technical installations and machinery as a source of sound in buildings. Yet these can cause unacceptable sound levels and it is

  9. Proximal mechanisms for sound production in male Pacific walruses

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Reichmuth, Colleen

    2012-01-01

    features more similar to those found in industrial work places than in nature. The patterned knocks and bells that comprise male songs are not thought to be true vocalizations, but rather, sounds produced with structures other than the vocal tract and larynx. To determine how male walruses produce and emit......The songs of male walruses during the breeding season have been noted to have some of the most unusual characteristics that have been observed among mammalian sounds. In contrast to the more guttural vocalizations of most other carnivores, their acoustic displays have impulsive and metallic...... anatomical origins of knocking and bell sounds and gained a mechanistic understanding of how these sounds are generated within the body and transmitted to the environment. These pathways are illustrated with acoustic and video data and considered with respect to the unique biology of this species....

  10. Western classical music development: a statistical analysis of composers similarity, differentiation and evolution.

    Science.gov (United States)

    Georges, Patrick

    2017-01-01

    This paper proposes a statistical analysis that captures similarities and differences between classical music composers with the eventual aim to understand why particular composers 'sound' different even if their 'lineages' (influences network) are similar or why they 'sound' alike if their 'lineages' are different. In order to do this we use statistical methods and measures of association or similarity (based on presence/absence of traits such as specific 'ecological' characteristics and personal musical influences) that have been developed in biosystematics, scientometrics, and bibliographic coupling. This paper also represents a first step towards a more ambitious goal of developing an evolutionary model of Western classical music.

  11. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    Science.gov (United States)

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  12. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  13. Interactive Sound Propagation using Precomputation and Statistical Approximations

    Science.gov (United States)

    Antani, Lakulish

    Acoustic phenomena such as early reflections, diffraction, and reverberation have been shown to improve the user experience in interactive virtual environments and video games. These effects arise due to repeated interactions between sound waves and objects in the environment. In interactive applications, these effects must be simulated within a prescribed time budget. We present two complementary approaches for computing such acoustic effects in real time, with plausible variation in the sound field throughout the scene. The first approach, Precomputed Acoustic Radiance Transfer, precomputes a matrix that accounts for multiple acoustic interactions between all scene objects. The matrix is used at run time to provide sound propagation effects that vary smoothly as sources and listeners move. The second approach couples two techniques---Ambient Reverberance, and Aural Proxies---to provide approximate sound propagation effects in real time, based on only the portion of the environment immediately visible to the listener. These approaches lie at different ends of a space of interactive sound propagation techniques for modeling sound propagation effects in interactive applications. The first approach emphasizes accuracy by modeling acoustic interactions between all parts of the scene; the second approach emphasizes efficiency by only taking the local environment of the listener into account. These methods have been used to efficiently generate acoustic walkthroughs of architectural models. They have also been integrated into a modern game engine, and can enable realistic, interactive sound propagation on commodity desktop PCs.

  14. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  15. Airframe related aeroacoustics of transport aircraft� -research into prediction and reduction of sound radiation-�

    OpenAIRE

    Delfs, Jan Werner

    2013-01-01

    As the sound generation in turbofan engines has decreased the significance of airframe related sound has increased. For example in landing approach the sound associated with the airframe may even dominate the overall sound radiation of an aircraft. The influence of the airframe on aerosound is threefold: i) Airframe components subjected to either their own turbulent boundary layer flow or to installation related turbulent flow act as sources of sound, ii) The aerodynamic influence of the airf...

  16. Effects of incongruent auditory and visual room-related cues on sound externalization

    DEFF Research Database (Denmark)

    Carvajal, Juan Camilo Gil; Santurette, Sébastien; Cubick, Jens

    Sounds presented via headphones are typically perceived inside the head. However, the illusion of a sound source located out in space away from the listener’s head can be generated with binaural headphone-based auralization systems by convolving anechoic sound signals with a binaural room impulse...... response (BRIR) measured with miniature microphones placed in the listener’s ear canals. Sound externalization of such virtual sounds can be very convincing and robust but there have been reports that the illusion might break down when the listening environment differs from the room in which the BRIRs were...... recorded [1,2,3]. This may be due to incongruent auditory cues between the recording and playback room during sound reproduction [2]. Alternatively, an expectation effect caused by the visual impression of the room may affect the position of the perceived auditory image [3]. Here, we systematically...

  17. Effects of lung elasticity on the sound propagation in the lung

    International Nuclear Information System (INIS)

    Yoneda, Takahiro; Wada, Shigeo; Nakamura, Masanori; Horii, Noriaki; Mizushima, Koichiro

    2011-01-01

    Sound propagation in the lung was simulated for gaining insight into its acoustic properties. A thorax model consisting of lung parenchyma, thoracic bones, trachea and other tissues was made from human CT images. Acoustic nature of the lung parenchyma and bones was expressed with the Biot model of poroelastic material, whereas trachea and tissues were modeled with gas and an elastic material. A point sound source of white noises was placed in the first bifurcation of trachea. The sound propagation in the thorax model was simulated in a frequency domain. The results demonstrated the significant attenuation of sound especially in frequencies larger than 1,000 Hz. Simulations with a stiffened lung demonstrated suppression of the sound attenuation for higher frequencies observed in the normal lung. These results indicate that the normal lung has the nature of a low-pass filter, and stiffening helps the sound at higher frequencies to propagate without attenuations. (author)

  18. Sound Localization Strategies in Three Predators

    DEFF Research Database (Denmark)

    Carr, Catherine E; Christensen-Dalsgaard, Jakob

    2015-01-01

    . Despite the similar organization of their auditory systems, archosaurs and lizards use different strategies for encoding the ITDs that underlie localization of sound in azimuth. Barn owls encode ITD information using a place map, which is composed of neurons serving as labeled lines tuned for preferred......In this paper, we compare some of the neural strategies for sound localization and encoding interaural time differences (ITDs) in three predatory species of Reptilia, alligators, barn owls and geckos. Birds and crocodilians are sister groups among the extant archosaurs, while geckos are lepidosaurs...... spatial locations, while geckos may use a meter strategy or population code composed of broadly sensitive neurons that represent ITD via changes in the firing rate....

  19. Root phonotropism: Early signalling events following sound perception in Arabidopsis roots.

    Science.gov (United States)

    Rodrigo-Moreno, Ana; Bazihizina, Nadia; Azzarello, Elisa; Masi, Elisa; Tran, Daniel; Bouteau, François; Baluska, Frantisek; Mancuso, Stefano

    2017-11-01

    Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within  minutes) an increase in cytosolic Ca 2+ , possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K + efflux. Taken together these results suggest that changes in ion fluxes (Ca 2+ and K + ) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Numerical Analysis of Indoor Sound Quality Evaluation Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-Tuan Chou

    2013-01-01

    Full Text Available Indoors sound field distribution is important to Room Acoustics, but the field suffers numerous problems, for example, multipath propagation and scattering owing to sound absorption by furniture and other aspects of décor. Generally, an ideal interior space must have a sound field with clear quality. This provides both the speaker and the listener with a pleasant conversational environment. This investigation uses the Finite Element Method to assess the acoustic distribution based on the indoor space and chamber volume. In this situation, a fixed sound source at different frequencies is used to simulate the acoustic characteristics of the indoor space. This method considers the furniture and decoration sound absorbing material and thus different sound absorption coefficients and configurations. The preliminary numerical simulation provides a method that can forecast the distribution of sound in an indoor room in complex situations. Consequently, it is possible to arrange interior furnishings and appliances to optimize acoustic distribution and environmental friendliness. Additionally, the analytical results can also be used to calculate the Reverberation Time and speech intelligibility for specified indoor space.

  1. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners with Bilateral and with Hearing-Preservation Cochlear Implants

    Science.gov (United States)

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Cook, Sarah J.; Gifford, Rene H.

    2016-01-01

    Purpose: To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Methods: Eleven bilateral listeners with MED-EL…

  2. Sound radiation contrast in MR phase images. Method for the representation of elasticity, sound damping, and sound impedance changes

    International Nuclear Information System (INIS)

    Radicke, Marcus

    2009-01-01

    The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm 2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [de

  3. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Särkkä, Anna-Kaisa; Salmi, Juha; Alho, Kimmo

    2008-06-01

    Event-related brain potentials (ERPs) and magnetic fields (ERFs) were used to compare brain activity associated with selective attention to sound location or pitch in humans. Sixteen healthy adults participated in the ERP experiment, and 11 adults in the ERF experiment. In different conditions, the participants focused their attention on a designated sound location or pitch, or pictures presented on a screen, in order to detect target sounds or pictures among the attended stimuli. In the Attend Location condition, the location of sounds varied randomly (left or right), while their pitch (high or low) was kept constant. In the Attend Pitch condition, sounds of varying pitch (high or low) were presented at a constant location (left or right). Consistent with previous ERP results, selective attention to either sound feature produced a negative difference (Nd) between ERPs to attended and unattended sounds. In addition, ERPs showed a more posterior scalp distribution for the location-related Nd than for the pitch-related Nd, suggesting partially different generators for these Nds. The ERF source analyses found no source distribution differences between the pitch-related Ndm (the magnetic counterpart of the Nd) and location-related Ndm in the superior temporal cortex (STC), where the main sources of the Ndm effects are thought to be located. Thus, the ERP scalp distribution differences between the location-related and pitch-related Nd effects may have been caused by activity of areas outside the STC, perhaps in the inferior parietal regions.

  4. Mass balance constraints on the sources of the petrogenic hydrocarbon background in offshore sediments of Prince William Sound and the Gulf of Alaska

    International Nuclear Information System (INIS)

    Page, D.S.; Boehm, P.D.; Douglas, G.S.; Brown, J.S.; Bence, A.E.; Burns, W.A.

    2000-01-01

    A comprehensive sampling program was conducted in 1999 in the offshore sediments of Prince William Sound and the Gulf of Alaska to verify a recent claim that eroding coal beds are the source of petrogenic hydrocarbons background in the area. Samples taken in 1993 and 1994 were reanalyzed to determine concentrations of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Three Bering River coal samples plus 10 archived source-rock and 3 archived Gulf of Alaska seep and field oil samples from exploration activities in the 1960s and 1970s were also analyzed. The linear combination of the analyte distributions of 18 representative sources that most likely matched the compositions of each sample was derived using the least-squares method. Some of the potential contributing sources which were examined for this study included seep oil, eroding source rocks, eroding coal beds, glacial flour, recent terrestrial sources and human activity. It was determined that the recent claim was incorrect. Eroding Tertiary petroleum source rocks and residues of seep oils are the main sources of hydrocarbon background in the area, rather than area coals or residues from the Exxon Valdez oil spill. 10 refs., 2 tabs., 3 figs

  5. Horizontal sound localization in cochlear implant users with a contralateral hearing aid.

    Science.gov (United States)

    Veugen, Lidwien C E; Hendrikse, Maartje M E; van Wanrooij, Marc M; Agterberg, Martijn J H; Chalupper, Josef; Mens, Lucas H M; Snik, Ad F M; John van Opstal, A

    2016-06-01

    Interaural differences in sound arrival time (ITD) and in level (ILD) enable us to localize sounds in the horizontal plane, and can support source segregation and speech understanding in noisy environments. It is uncertain whether these cues are also available to hearing-impaired listeners who are bimodally fitted, i.e. with a cochlear implant (CI) and a contralateral hearing aid (HA). Here, we assessed sound localization behavior of fourteen bimodal listeners, all using the same Phonak HA and an Advanced Bionics CI processor, matched with respect to loudness growth. We aimed to determine the availability and contribution of binaural (ILDs, temporal fine structure and envelope ITDs) and monaural (loudness, spectral) cues to horizontal sound localization in bimodal listeners, by systematically varying the frequency band, level and envelope of the stimuli. The sound bandwidth had a strong effect on the localization bias of bimodal listeners, although localization performance was typically poor for all conditions. Responses could be systematically changed by adjusting the frequency range of the stimulus, or by simply switching the HA and CI on and off. Localization responses were largely biased to one side, typically the CI side for broadband and high-pass filtered sounds, and occasionally to the HA side for low-pass filtered sounds. HA-aided thresholds better than 45 dB HL in the frequency range of the stimulus appeared to be a prerequisite, but not a guarantee, for the ability to indicate sound source direction. We argue that bimodal sound localization is likely based on ILD cues, even at frequencies below 1500 Hz for which the natural ILDs are small. These cues are typically perturbed in bimodal listeners, leading to a biased localization percept of sounds. The high accuracy of some listeners could result from a combination of sufficient spectral overlap and loudness balance in bimodal hearing. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mapping Strategies and Sound Engine Design for an Augmented Hybrid Piano

    DEFF Research Database (Denmark)

    Dahlstedt, Palle

    2015-01-01

    Based on a combination of novel mapping techniques and carefully designed sound engines, I present an augmented hybrid piano specifically designed for improvisation. The mapping technique, originally developed for other control interfaces but here adapted to the piano keyboard, is based...... on a dynamic vectorization of control parameters, allowing both wild sonic exploration and minute intimate expression. The original piano sound is used as the sole sound source, subjected to processing techniques such as virtual resonance strings, dynamic buffer shuffling, and acoustic and virtual feedback....... Thanks to speaker and microphone placement, the acoustic and processed sounds interact in both directions and blend into one new instrument. This also allows for unorthodox playing (knocking, plucking, shouting). Processing parameters are controlled from the keyboard playing alone, allowing intuitive...

  7. Development of Prediction Tool for Sound Absorption and Sound Insulation for Sound Proof Properties

    OpenAIRE

    Yoshio Kurosawa; Takao Yamaguchi

    2015-01-01

    High frequency automotive interior noise above 500 Hz considerably affects automotive passenger comfort. To reduce this noise, sound insulation material is often laminated on body panels or interior trim panels. For a more effective noise reduction, the sound reduction properties of this laminated structure need to be estimated. We have developed a new calculate tool that can roughly calculate the sound absorption and insulation properties of laminate structure and handy ...

  8. Robust Sounds of Activities of Daily Living Classification in Two-Channel Audio-Based Telemonitoring

    Directory of Open Access Journals (Sweden)

    David Maunder

    2013-01-01

    Full Text Available Despite recent advances in the area of home telemonitoring, the challenge of automatically detecting the sound signatures of activities of daily living of an elderly patient using nonintrusive and reliable methods remains. This paper investigates the classification of eight typical sounds of daily life from arbitrarily positioned two-microphone sensors under realistic noisy conditions. In particular, the role of several source separation and sound activity detection methods is considered. Evaluations on a new four-microphone database collected under four realistic noise conditions reveal that effective sound activity detection can produce significant gains in classification accuracy and that further gains can be made using source separation methods based on independent component analysis. Encouragingly, the results show that recognition accuracies in the range 70%–100% can be consistently obtained using different microphone-pair positions, under all but the most severe noise conditions.

  9. Deformation of a sound field caused by a manikin

    DEFF Research Database (Denmark)

    Weinrich, Søren G.

    1981-01-01

    around the head at distances of 1 cm to 2 m, measured from the tip of the nose. The signals were pure tones at 1, 2, 4, 6, 8, and 10 kHz. It was found that the presence of the manikin caused changes in the SPL of the sound field of at most ±2.5 dB at a distance of 1 m from the surface of the manikin....... Only over an interval of approximately 20 ° behind the manikin (i.e., opposite the sound source) did the manikin cause much larger changes, up to 9 dB. These changes are caused by destructive interference between sounds coming from opposite sides of the manikin. In front of the manikin, the changes...

  10. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2010-05-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  11. Making fictions sound real - On film sound, perceptual realism and genre

    Directory of Open Access Journals (Sweden)

    Birger Langkjær

    2009-09-01

    Full Text Available This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences.

  12. Relating auditory attributes of multichannel sound to preference and to physical parameters

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian Maria

    2006-01-01

    playing a role in sound quality evaluation. Eight selected attributes are quantified by a panel of 39 listeners using paired-comparison judgments and probabilistic choice models, and related to overall preference. A multiple-regression model predicts preference well, and some similarities are observed......Sound reproduced by multichannel systems is affected by many factors giving rise to various sensations, or auditory attributes. Relating specific attributes to overall preference and to physical measures of the sound field provides valuable information for a better understanding of the parameters...

  13. Sound Localization in Patients With Congenital Unilateral Conductive Hearing Loss With a Transcutaneous Bone Conduction Implant.

    Science.gov (United States)

    Vyskocil, Erich; Liepins, Rudolfs; Kaider, Alexandra; Blineder, Michaela; Hamzavi, Sasan

    2017-03-01

    There is no consensus regarding the benefit of implantable hearing aids in congenital unilateral conductive hearing loss (UCHL). This study aimed to measure sound source localization performance in patients with congenital UCHL and contralateral normal hearing who received a new bone conduction implant. Evaluation of within-subject performance differences for sound source localization in a horizontal plane. Tertiary referral center. Five patients with atresia of the external auditory canal and contralateral normal hearing implanted with transcutaneous bone conduction implant at the Medical University of Vienna were tested. Activated/deactivated implant. Sound source localization test; localization performance quantified using the root mean square (RMS) error. Sound source localization ability was highly variable among individual subjects, with RMS errors ranging from 21 to 40 degrees. Horizontal plane localization performance in aided conditions showed statistically significant improvement compared with the unaided conditions, with RMS errors ranging from 17 to 27 degrees. The mean RMS error decreased by a factor of 0.71 (p conduction implant. Some patients with congenital UCHL might be capable of developing improved horizontal plane localization abilities with the binaural cues provided by this device.

  14. Training of tonal similarity ratings in non-musicians: a "rapid learning" approach.

    Science.gov (United States)

    Oechslin, Mathias S; Läge, Damian; Vitouch, Oliver

    2012-01-01

    Although cognitive music psychology has a long tradition of expert-novice comparisons, experimental training studies are rare. Studies on the learning progress of trained novices in hearing harmonic relationships are still largely lacking. This paper presents a simple training concept using the example of tone/triad similarity ratings, demonstrating the gradual progress of non-musicians compared to musical experts: In a feedback-based "rapid learning" paradigm, participants had to decide for single tones and chords whether paired sounds matched each other well. Before and after the training sessions, they provided similarity judgments for a complete set of sound pairs. From these similarity matrices, individual relational sound maps, intended to display mental representations, were calculated by means of non-metric multidimensional scaling (NMDS), and were compared to an expert model through procrustean transformation. Approximately half of the novices showed substantial learning success, with some participants even reaching the level of professional musicians. Results speak for a fundamental ability to quickly train an understanding of harmony, show inter-individual differences in learning success, and demonstrate the suitability of the scaling method used for learning research in music and other domains. Results are discussed in the context of the "giftedness" debate.

  15. Training of tonal similarity ratings in non-musicians: a rapid learning approach

    Directory of Open Access Journals (Sweden)

    Mathias S Oechslin

    2012-05-01

    Full Text Available Although music psychology has a long tradition of expert-novice comparisons, experimental training studies are rare. Studies on the learning progress of trained novices in hearing harmonic relationships are still largely lacking. This paper presents a simple training concept using the example of tone/triad similarity ratings, demonstrating the gradual progress of non-musicians compared to musical experts: In a feedback-based rapid learning paradigm, participants had to decide for single tones and chords whether paired sounds matched each other well. Before and after the training sessions, they provided similarity judgments for a complete set of sound pairs. From these similarity matrices, individual relational sound maps, aiming to map the mental representations, were calculated by means of non-metric multidimensional scaling (NMDS, which were compared to an expert model through procrustean transformation. Approximately half of the novices showed substantial learning success, with some participants even reaching the level of professional musicians. Results speak for a fundamental ability to quickly train an understanding of harmony, show inter-individual differences in learning success, and demonstrate the suitability of the scaling method used for music psychological research. Results are discussed in the context of the giftedness debate.

  16. Applying the EBU R128 loudness standard in live-streaming sound sculptures

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.; Rothmann, Daniel

    2017-01-01

    to preserve a natural sounding dynamic image from the varying sound sources that can be played back under varying conditions, an adaptation of the EBU R128 loudness measurement recommendation, originally developed for levelling non-real-time broadcast material, has been applied. The paper describes the Pure......This paper describes the development of a loudness-based compressor for live audio streams. The need for this device arose while developing the public sound art project The Overheard, which involves mixing together several live audio streams through a web based mixing interface. In order...

  17. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.

    Science.gov (United States)

    Padilla-Ortiz, Ana L; Ibarra, David

    2018-01-01

    Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.

  18. Development of the Database for Environmental Sound Research and Application (DESRA: Design, Functionality, and Retrieval Considerations

    Directory of Open Access Journals (Sweden)

    Brian Gygi

    2010-01-01

    Full Text Available Theoretical and applied environmental sounds research is gaining prominence but progress has been hampered by the lack of a comprehensive, high quality, accessible database of environmental sounds. An ongoing project to develop such a resource is described, which is based upon experimental evidence as to the way we listen to sounds in the world. The database will include a large number of sounds produced by different sound sources, with a thorough background for each sound file, including experimentally obtained perceptual data. In this way DESRA can contain a wide variety of acoustic, contextual, semantic, and behavioral information related to an individual sound. It will be accessible on the Internet and will be useful to researchers, engineers, sound designers, and musicians.

  19. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  20. Perception of environmental sounds by experienced cochlear implant patients

    Science.gov (United States)

    Shafiro, Valeriy; Gygi, Brian; Cheng, Min-Yu; Vachhani, Jay; Mulvey, Megan

    2011-01-01

    Objectives Environmental sound perception serves an important ecological function by providing listeners with information about objects and events in their immediate environment. Environmental sounds such as car horns, baby cries or chirping birds can alert listeners to imminent dangers as well as contribute to one's sense of awareness and well being. Perception of environmental sounds as acoustically and semantically complex stimuli, may also involve some factors common to the processing of speech. However, very limited research has investigated the abilities of cochlear implant (CI) patients to identify common environmental sounds, despite patients' general enthusiasm about them. This project (1) investigated the ability of patients with modern-day CIs to perceive environmental sounds, (2) explored associations among speech, environmental sounds and basic auditory abilities, and (3) examined acoustic factors that might be involved in environmental sound perception. Design Seventeen experienced postlingually-deafened CI patients participated in the study. Environmental sound perception was assessed with a large-item test composed of 40 sound sources, each represented by four different tokens. The relationship between speech and environmental sound perception, and the role of working memory and some basic auditory abilities were examined based on patient performance on a battery of speech tests (HINT, CNC, and individual consonant and vowel tests), tests of basic auditory abilities (audiometric thresholds, gap detection, temporal pattern and temporal order for tones tests) and a backward digit recall test. Results The results indicated substantially reduced ability to identify common environmental sounds in CI patients (45.3%). Except for vowels, all speech test scores significantly correlated with the environmental sound test scores: r = 0.73 for HINT in quiet, r = 0.69 for HINT in noise, r = 0.70 for CNC, r = 0.64 for consonants and r = 0.48 for vowels. HINT and

  1. An objective measure for the sensitivity of room impulse response and its link to a diffuse sound field

    DEFF Research Database (Denmark)

    Prislan, Rok; Brunskog, Jonas; Jacobsen, Finn

    2014-01-01

    This study is relevant to acoustic measurements in reverberation rooms such as measurements of sound transmission, sound absorption, and sound power levels of noise sources. The study presents a quantitative measure for the diffuseness in a room, which is first introduced theoretically and sub...

  2. Investigation of hydraulic transmission noise sources

    Science.gov (United States)

    Klop, Richard J.

    Advanced hydrostatic transmissions and hydraulic hybrids show potential in new market segments such as commercial vehicles and passenger cars. Such new applications regard low noise generation as a high priority, thus, demanding new quiet hydrostatic transmission designs. In this thesis, the aim is to investigate noise sources of hydrostatic transmissions to discover strategies for designing compact and quiet solutions. A model has been developed to capture the interaction of a pump and motor working in a hydrostatic transmission and to predict overall noise sources. This model allows a designer to compare noise sources for various configurations and to design compact and inherently quiet solutions. The model describes dynamics of the system by coupling lumped parameter pump and motor models with a one-dimensional unsteady compressible transmission line model. The model has been verified with dynamic pressure measurements in the line over a wide operating range for several system structures. Simulation studies were performed illustrating sensitivities of several design variables and the potential of the model to design transmissions with minimal noise sources. A semi-anechoic chamber has been designed and constructed suitable for sound intensity measurements that can be used to derive sound power. Measurements proved the potential to reduce audible noise by predicting and reducing both noise sources. Sound power measurements were conducted on a series hybrid transmission test bench to validate the model and compare predicted noise sources with sound power.

  3. A framework for automatic heart sound analysis without segmentation

    Directory of Open Access Journals (Sweden)

    Tungpimolrut Kanokvate

    2011-02-01

    Full Text Available Abstract Background A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs. Method Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS. The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors. Result The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR, and 0.90 under impulse noise up to 0.3 s duration. Conclusion The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.

  4. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  5. Behavioral response of manatees to variations in environmental sound levels

    Science.gov (United States)

    Miksis-Olds, Jennifer L.; Wagner, Tyler

    2011-01-01

    Florida manatees (Trichechus manatus latirostris) inhabit coastal regions because they feed on the aquatic vegetation that grows in shallow waters, which are the same areas where human activities are greatest. Noise produced from anthropogenic and natural sources has the potential to affect these animals by eliciting responses ranging from mild behavioral changes to extreme aversion. Sound levels were calculated from recordings made throughout behavioral observation periods. An information theoretic approach was used to investigate the relationship between behavior patterns and sound level. Results indicated that elevated sound levels affect manatee activity and are a function of behavioral state. The proportion of time manatees spent feeding and milling changed in response to sound level. When ambient sound levels were highest, more time was spent in the directed, goal-oriented behavior of feeding, whereas less time was spent engaged in undirected behavior such as milling. This work illustrates how shifts in activity of individual manatees may be useful parameters for identifying impacts of noise on manatees and might inform population level effects.

  6. Theoretical analysis of sound transmission loss through graphene sheets

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-01-01

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials

  7. Theoretical analysis of sound transmission loss through graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Ni, Qing-Qing [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  8. The role of similarity cues in the development of trustin sources of information about GM food

    NARCIS (Netherlands)

    Meijnders, Anneloes; Midden, Cees; Olofsson, Anna; Öhman, Susanna; Matthes, Jörg; Bondarenko, Olha; Gutteling, Jan; Rusanen, Maria

    In evaluating complex new technologies, people are usually dependent on information provided by others, for example, experts or journalists, and have to determine whether they can trust these information sources. This article focuses on similarity as the basis for trust. The first experiment (N =

  9. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-01-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab

  10. Physiological correlates of sound localization in a parasitoid fly, Ormia ochracea

    Science.gov (United States)

    Oshinsky, Michael Lee

    A major focus of research in the nervous system is the investigation of neural circuits. The question of how neurons connect to form functional units has driven modern neuroscience research from its inception. From the beginning, the neural circuits of the auditory system and specifically sound localization were used as a model system for investigating neural connectivity and computation. Sound localization lends itself to this task because there is no mapping of spatial information on a receptor sheet as in vision. With only one eye, an animal would still have positional information for objects. Since the receptor sheet in the ear is frequency oriented and not spatially oriented, positional information for a sound source does not exist with only one ear. The nervous system computes the location of a sound source based on differences in the physiology of the two ears. In this study, I investigated the neural circuits for sound localization in a fly, Ormia ochracea (Diptera, Tachinidae, Ormiini), which is a parasitoid of crickets. This fly possess a unique mechanically coupled hearing organ. The two ears are contained in one air sac and a cuticular bridge, that has a flexible spring-like structure at its center, connects them. This mechanical coupling preprocesses the sound before it is detected by the nervous system and provides the fly with directional information. The subject of this study is the neural coding of the location of sound stimuli by a mechanically coupled auditory system. In chapter 1, I present the natural history of an acoustic parasitoid and I review the peripheral processing of sound by the Ormian ear. In chapter 2, I describe the anatomy and physiology of the auditory afferents. I present this physiology in the context of sound localization. In chapter 3, I describe the directional dependent physiology for the thoracic local and ascending acoustic interneurons. In chapter 4, I quantify the threshold and I detail the kinematics of the phonotactic

  11. Optical Reading and Playing of Sound Signals from Vinyl Records

    OpenAIRE

    Hensman, Arnold; Casey, Kevin

    2007-01-01

    While advanced digital music systems such as compact disk players and MP3 have become the standard in sound reproduction technology, critics claim that conversion to digital often results in a loss of sound quality and richness. For this reason, vinyl records remain the medium of choice for many audiophiles involved in specialist areas. The waveform cut into a vinyl record is an exact replica of the analogue version from the original source. However, while some perceive this media as reproduc...

  12. Characteristics and prediction of sound level in extra-large spaces

    OpenAIRE

    Wang, C.; Ma, H.; Wu, Y.; Kang, J.

    2018-01-01

    This paper aims to examine sound fields in extra-large spaces, which are defined in this paper as spaces used by people, with a volume approximately larger than 125,000m 3 and absorption coefficient less than 0.7. In such spaces inhomogeneous reverberant energy caused by uneven early reflections with increasing volume has a significant effect on sound fields. Measurements were conducted in four spaces to examine the attenuation of the total and reverberant energy with increasing source-receiv...

  13. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    Science.gov (United States)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  14. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  15. Direct Measurement of the Speed of Sound Using a Microphone and a Speaker

    Science.gov (United States)

    Gómez-Tejedor, José A.; Castro-Palacio, Juan C.; Monsoriu, Juan A.

    2014-01-01

    We present a simple and accurate experiment to obtain the speed of sound in air using a conventional speaker and a microphone connected to a computer. A free open source digital audio editor and recording computer software application allows determination of the time-of-flight of the wave for different distances, from which the speed of sound is…

  16. Context effects on processing widely deviant sounds in newborn infants

    Directory of Open Access Journals (Sweden)

    Gábor Péter Háden

    2013-09-01

    Full Text Available Detecting and orienting towards sounds carrying new information is a crucial feature of the human brain that supports adaptation to the environment. Rare, acoustically widely deviant sounds presented amongst frequent tones elicit large event related brain potentials (ERPs in neonates. Here we tested whether these discriminative ERP responses reflect only the activation of fresh afferent neuronal populations (i.e., neuronal circuits not affected by the tones or they also index the processing of contextual mismatch between the rare and the frequent sounds.In two separate experiments, we presented sleeping newborns with 150 different environmental sounds and the same number of white noise bursts. Both sounds served either as deviants in an oddball paradigm with the frequent standard stimulus a tone (Novel/Noise deviant, or as the standard stimulus with the tone as deviant (Novel/Noise standard, or they were delivered alone with the same timing as the deviants in the oddball condition (Novel/Noise alone.Whereas the ERP responses to noise–deviants elicited similar responses as the same sound presented alone, the responses elicited by environmental sounds in the corresponding conditions morphologically differed from each other. Thus whereas the ERP response to the noise sounds can be explained by the different refractory state of stimulus specific neuronal populations, the ERP response to environmental sounds indicated context sensitive processing. These results provide evidence for an innate tendency of context dependent auditory processing as well as a basis for the different developmental trajectories of processing acoustical deviance and contextual novelty.

  17. Coupled simulation of meteorological parameters and sound intensity in a narrow valley

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, D. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere; Gross, G. [Hannover Univ. (Germany). Inst. fuer Meteorologie und Klimatologie

    1997-07-01

    A meteorological mesoscale model is used to simulate the inhomogeneous distribution of temperature and the appertaining development of thermal wind systems in a narrow two-dimensional valley during the course of a cloud-free day. A simple sound particle model takes up the simulated meteorological fields and calculates the propagation of noise which originates from a line source at one of the slopes of this valley. The coupled modeling system ensures consistency of topography, meteorological parameters and the sound field. The temporal behaviour of the sound intensity level across the valley is examined. It is only governed by the time-dependent meteorology. The results show remarkable variations of the sound intensity during the course of a day depending on the location in the valley. (orig.) 23 refs.

  18. The sound manifesto

    Science.gov (United States)

    O'Donnell, Michael J.; Bisnovatyi, Ilia

    2000-11-01

    Computing practice today depends on visual output to drive almost all user interaction. Other senses, such as audition, may be totally neglected, or used tangentially, or used in highly restricted specialized ways. We have excellent audio rendering through D-A conversion, but we lack rich general facilities for modeling and manipulating sound comparable in quality and flexibility to graphics. We need coordinated research in several disciplines to improve the use of sound as an interactive information channel. Incremental and separate improvements in synthesis, analysis, speech processing, audiology, acoustics, music, etc. will not alone produce the radical progress that we seek in sonic practice. We also need to create a new central topic of study in digital audio research. The new topic will assimilate the contributions of different disciplines on a common foundation. The key central concept that we lack is sound as a general-purpose information channel. We must investigate the structure of this information channel, which is driven by the cooperative development of auditory perception and physical sound production. Particular audible encodings, such as speech and music, illuminate sonic information by example, but they are no more sufficient for a characterization than typography is sufficient for characterization of visual information. To develop this new conceptual topic of sonic information structure, we need to integrate insights from a number of different disciplines that deal with sound. In particular, we need to coordinate central and foundational studies of the representational models of sound with specific applications that illuminate the good and bad qualities of these models. Each natural or artificial process that generates informative sound, and each perceptual mechanism that derives information from sound, will teach us something about the right structure to attribute to the sound itself. The new Sound topic will combine the work of computer

  19. Experimental analysis of considering the sound pressure distribution pattern at the ear canal entrance as an unrevealed head-related localization clue

    Institute of Scientific and Technical Information of China (English)

    TONG Xin; QI Na; MENG Zihou

    2018-01-01

    By analyzing the differences between binaural recording and real listening,it was deduced that there were some unrevealed auditory localization clues,and the sound pressure distribution pattern at the entrance of ear canal was probably a clue.It was proved through the listening test that the unrevealed auditory localization clues really exist with the reduction to absurdity.And the effective frequency bands of the unrevealed localization clues were induced and summed.The result of finite element based simulations showed that the pressure distribution at the entrance of ear canal was non-uniform,and the pattern was related to the direction of sound source.And it was proved that the sound pressure distribution pattern at the entrance of the ear canal carried the sound source direction information and could be used as an unrevealed localization cluc.The frequency bands in which the sound pressure distribution patterns had significant differences between front and back sound source directions were roughly matched with the effective frequency bands of unrevealed localization clues obtained from the listening tests.To some extent,it supports the hypothesis that the sound pressure distribution pattern could be a kind of unrevealed auditory localization clues.

  20. Exploiting Deep Neural Networks and Head Movements for Robust Binaural Localization of Multiple Sources in Reverberant Environments

    DEFF Research Database (Denmark)

    Ma, Ning; May, Tobias; Brown, Guy J.

    2017-01-01

    This paper presents a novel machine-hearing system that exploits deep neural networks (DNNs) and head movements for robust binaural localization of multiple sources in reverberant environments. DNNs are used to learn the relationship between the source azimuth and binaural cues, consisting...... of the complete cross-correlation function (CCF) and interaural level differences (ILDs). In contrast to many previous binaural hearing systems, the proposed approach is not restricted to localization of sound sources in the frontal hemifield. Due to the similarity of binaural cues in the frontal and rear...

  1. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  2. Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements?

    DEFF Research Database (Denmark)

    Nemeth, Erwin; Dabelsteen, Torben; Pedersen, Simon Boel

    2006-01-01

    that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations......In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar...... to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations...

  3. Spatial filtering of audible sound with acoustic landscapes

    Science.gov (United States)

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun; Cheng, Jianchun

    2017-07-01

    Acoustic metasurfaces manipulate waves with specially designed structures and achieve properties that natural materials cannot offer. Similar surfaces work in audio frequency range as well and lead to marvelous acoustic phenomena that can be perceived by human ears. Being intrigued by the famous Maoshan Bugle phenomenon, we investigate large scale metasurfaces consisting of periodic steps of sizes comparable to the wavelength of audio frequency in both time and space domains. We propose a theoretical method to calculate the scattered sound field and find that periodic corrugated surfaces work as spatial filters and the frequency selective character can only be observed at the same side as the incident wave. The Maoshan Bugle phenomenon can be well explained with the method. Finally, we demonstrate that the proposed method can be used to design acoustical landscapes, which transform impulsive sound into famous trumpet solos or other melodious sound.

  4. Wind turbine sound pressure level calculations at dwellings.

    Science.gov (United States)

    Keith, Stephen E; Feder, Katya; Voicescu, Sonia A; Soukhovtsev, Victor; Denning, Allison; Tsang, Jason; Broner, Norm; Leroux, Tony; Richarz, Werner; van den Berg, Frits

    2016-03-01

    This paper provides calculations of outdoor sound pressure levels (SPLs) at dwellings for 10 wind turbine models, to support Health Canada's Community Noise and Health Study. Manufacturer supplied and measured wind turbine sound power levels were used to calculate outdoor SPL at 1238 dwellings using ISO [(1996). ISO 9613-2-Acoustics] and a Swedish noise propagation method. Both methods yielded statistically equivalent results. The A- and C-weighted results were highly correlated over the 1238 dwellings (Pearson's linear correlation coefficient r > 0.8). Calculated wind turbine SPLs were compared to ambient SPLs from other sources, estimated using guidance documents from the United States and Alberta, Canada.

  5. Task-irrelevant novel sounds improve attentional performance in children with and without ADHD

    Directory of Open Access Journals (Sweden)

    Jana eTegelbeckers

    2016-01-01

    Full Text Available Task-irrelevant salient stimuli involuntarily capture attention and can lead to distraction from an ongoing task, especially in children with ADHD. However, there has been tentative evidence that the presentation of novel sounds can have beneficial effects on cognitive performance. In the present study, we aimed to investigate the influence of novel sounds compared to no sound and a repeatedly presented standard sound on attentional performance in children and adolescents with and without ADHD. We therefore had 32 patients with ADHD and 32 typically developing children and adolescents (8 to 13 years executed a flanker task in which each trial was preceded either by a repeatedly presented standard sound (33%, an unrepeated novel sound (33% or no auditory stimulation (33%. Task-irrelevant novel sounds facilitated attentional performance similarly in children with and without ADHD, as indicated by reduced omission error rates, reaction times, and reaction time variability without compromising performance accuracy. By contrast, standard sounds, while also reducing omission error rates and reaction times, led to increased commission error rates. Therefore, the beneficial effect of novel sounds exceeds cueing of the target display by potentially increased alerting and/or enhanced behavioral control.

  6. Early Sound Symbolism for Vowel Sounds

    Directory of Open Access Journals (Sweden)

    Ferrinne Spector

    2013-06-01

    Full Text Available Children and adults consistently match some words (e.g., kiki to jagged shapes and other words (e.g., bouba to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba. Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01. The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  7. Sound Art and Spatial Practices: Situating Sound Installation Art Since 1958

    OpenAIRE

    Ouzounian, Gascia

    2008-01-01

    This dissertation examines the emergence and development ofsound installation art, an under-recognized tradition that hasdeveloped between music, architecture, and media art practicessince the late 1950s. Unlike many musical works, which are concernedwith organizing sounds in time, sound installations organize sounds inspace; they thus necessitate new theoretical and analytical modelsthat take into consideration the spatial situated-ness of sound. Existingdiscourses on “spatial sound” privile...

  8. Sound Scattering and Its Reduction by a Janus Sphere Type

    Directory of Open Access Journals (Sweden)

    Deliya Kim

    2014-01-01

    Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.

  9. Graphemes Sharing Phonetic Features Tend to Induce Similar Synesthetic Colors

    OpenAIRE

    Kang, Mi-Jeong; Kim, Yeseul; Shin, Ji-Young; Kim, Chai-Youn

    2017-01-01

    Individuals with grapheme-color synesthesia experience idiosyncratic colors when viewing achromatic letters or digits. Despite large individual differences in grapheme-color association, synesthetes tend to associate graphemes sharing a perceptual feature with similar synesthetic colors. Sound has been suggested as one such feature. In the present study, we investigated whether graphemes of which representative phonemes have similar phonetic features tend to be associated with analogous synes...

  10. Second harmonic sound field after insertion of a biological tissue sample

    Science.gov (United States)

    Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo

    2002-01-01

    Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.

  11. Evaluation of substitution monopole models for tire noise sound synthesis

    Science.gov (United States)

    Berckmans, D.; Kindt, P.; Sas, P.; Desmet, W.

    2010-01-01

    Due to the considerable efforts in engine noise reduction, tire noise has become one of the major sources of passenger car noise nowadays and the demand for accurate prediction models is high. A rolling tire is therefore experimentally characterized by means of the substitution monopole technique, suiting a general sound synthesis approach with a focus on perceived sound quality. The running tire is substituted by a monopole distribution covering the static tire. All monopoles have mutual phase relationships and a well-defined volume velocity distribution which is derived by means of the airborne source quantification technique; i.e. by combining static transfer function measurements with operating indicator pressure measurements close to the rolling tire. Models with varying numbers/locations of monopoles are discussed and the application of different regularization techniques is evaluated.

  12. Active equalisation of the sound field in an extended region of a room

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo

    1997-01-01

    studied by means of an idealised frequency domain model. The analysis is based on the calculation of the complex source strengths that minimise the difference between the actual sound pressure and the desired sound pressure in the listening area. Results in relation to the position of the sources......, the frequency range, and the size and location of the listening area are presented. However, the frequency-domain approach results in non-causal impulse responses that can be realised only at the expense of a delay. Therefore, this analysis is supplemented with a study of the equalisation carried out...

  13. Recycling ceramic industry wastes in sound absorbing materials

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2016-10-01

    Full Text Available The scope of this investigation is to develop a material mainly composed (80% w/w of ceramic wastes that can be applied in the manufacture of road traffic noise reducing devices. The characterization of the product has been carried out attending to its acoustic, physical and mechanical properties, by measuring the sound absorption coefficient at normal incidence, the open void ratio, density and compressive strength. Since the sound absorbing behavior of a porous material is related to the size of the pores and the thickness of the specimen tested, the influence of the particle grain size of the ceramic waste and the thickness of the samples tested on the properties of the final product has been analyzed. The results obtained have been compared to a porous concrete made of crushed granite aggregate as a reference commercial material traditionally used in similar applications. Compositions with coarse particles showed greater sound absorption properties than compositions made with finer particles, besides presenting better sound absorption behavior than the reference porous concrete. Therefore, a ceramic waste-based porous concrete can be potentially recycled in the highway noise barriers field.

  14. Sound a very short introduction

    CERN Document Server

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  15. Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate.

    Science.gov (United States)

    Rossi, Tullio; Connell, Sean D; Nagelkerken, Ivan

    2016-03-16

    Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats. © 2016 The Author(s).

  16. Physiological and psychological assessment of sound

    Science.gov (United States)

    Yanagihashi, R.; Ohira, Masayoshi; Kimura, Teiji; Fujiwara, Takayuki

    The psycho-physiological effects of several sound stimulations were investigated to evaluate the relationship between a psychological parameter, such as subjective perception, and a physiological parameter, such as the heart rate variability (HRV). Eight female students aged 21-22 years old were tested. Electrocardiogram (ECG) and the movement of the chest-wall for estimating respiratory rate were recorded during three different sound stimulations; (1) music provided by a synthesizer (condition A); (2) birds twitters (condition B); and (3) mechanical sounds (condition C). The percentage power of the low-frequency (LF; 0.05<=0.15 Hz) and high-frequency (HF; 0.15<=0.40 Hz) components in the HRV (LF%, HF%) were assessed by a frequency analysis of time-series data for 5 min obtained from R-R intervals in the ECG. Quantitative assessment of subjective perception was also described by a visual analog scale (VAS). The HF% and VAS value for comfort in C were significantly lower than in either A and/or B. The respiratory rate and VAS value for awakening in C were significantly higher than in A and/or B. There was a significant correlation between the HF% and the value of the VAS, and between the respiratory rate and the value of the VAS. These results indicate that mechanical sounds similar to C inhibit the para-sympathetic nervous system and promote a feeling that is unpleasant but alert, also suggesting that the HRV reflects subjective perception.

  17. Sound stream segregation: a neuromorphic approach to solve the "cocktail party problem" in real-time.

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M; Afshar, Saeed; Hamilton, Tara J; Tapson, Jonathan C; Shamma, Shihab A; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the "cocktail party effect." It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and

  18. Maritime Protection of Critical Infrastructure Assets in the Campeche Sound

    National Research Council Canada - National Science Library

    Tiburcio, Felix M

    2005-01-01

    Following the 9/11 terrorist events in the United States the Mexican Navy developed strategies designed to prevent similar attacks on the strategic facilities located in the Campeche Sound in the Gulf of Mexico...

  19. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  20. A Green Soundscape Index (GSI): The potential of assessing the perceived balance between natural sound and traffic noise.

    Science.gov (United States)

    Kogan, Pablo; Arenas, Jorge P; Bermejo, Fernando; Hinalaf, María; Turra, Bruno

    2018-06-13

    Urban soundscapes are dynamic and complex multivariable environmental systems. Soundscapes can be organized into three main entities containing the multiple variables: Experienced Environment (EE), Acoustic Environment (AE), and Extra-Acoustic Environment (XE). This work applies a multidimensional and synchronic data-collecting methodology at eight urban environments in the city of Córdoba, Argentina. The EE was assessed by means of surveys, the AE by acoustic measurements and audio recordings, and the XE by photos, video, and complementary sources. In total, 39 measurement locations were considered, where data corresponding to 61 AE and 203 EE were collected. Multivariate analysis and GIS techniques were used for data processing. The types of sound sources perceived, and their extents make up part of the collected variables that belong to the EE, i.e. traffic, people, natural sounds, and others. Sources explaining most of the variance were traffic noise and natural sounds. Thus, a Green Soundscape Index (GSI) is defined here as the ratio of the perceived extents of natural sounds to traffic noise. Collected data were divided into three ranges according to GSI value: 1) perceptual predominance of traffic noise, 2) balanced perception, and 3) perceptual predominance of natural sounds. For each group, three additional variables from the EE and three from the AE were applied, which reported significant differences, especially between ranges 1 and 2 with 3. These results confirm the key role of perceiving natural sounds in a town environment and also support the proposal of a GSI as a valuable indicator to classify urban soundscapes. In addition, the collected GSI-related data significantly helps to assess the overall soundscape. It is noted that this proposed simple perceptual index not only allows one to assess and classify urban soundscapes but also contributes greatly toward a technique for separating environmental sound sources. Copyright © 2018 Elsevier B

  1. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    Science.gov (United States)

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources.

  2. What is Sound?

    OpenAIRE

    Nelson, Peter

    2014-01-01

    What is sound? This question is posed in contradiction to the every-day understanding that sound is a phenomenon apart from us, to be heard, made, shaped and organised. Thinking through the history of computer music, and considering the current configuration of digital communi-cations, sound is reconfigured as a type of network. This network is envisaged as non-hierarchical, in keeping with currents of thought that refuse to prioritise the human in the world. The relationship of sound to musi...

  3. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  4. A Loudness Function for Maintaining Spectral Balance at Changing Sound Pressure Levels

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal

    Our perception of loudness is a function of frequency as well as sound pressure level as described in ISO226:2003: Normal Equal Loudness Level Contours, which describes the needed sound pressure level for pure tones to be perceived equally loud. At a music performance, this is taking care...... of by the sound engineer by listening to the individual sound sources and adjust and equalize them to the wanted spectral balance including the whole chain of audio equipment and surroundings. At a live venue the sound pressure level will normally change during a concert, and typically increase over time......B is doubling of the effect to the loudspeakers). A level depending digital loudness function has been made based on ISO226:2003, and will be demonstrated. It can maintain the spectral balance at alternating levels and is based on fractional order digital filters. Tutorial. Abstract T3.3 (30th August 16:00 - 17...

  5. Investigating emotional contagion in dogs (Canis familiaris) to emotional sounds of humans and conspecifics.

    Science.gov (United States)

    Huber, Annika; Barber, Anjuli L A; Faragó, Tamás; Müller, Corsin A; Huber, Ludwig

    2017-07-01

    Emotional contagion, a basic component of empathy defined as emotional state-matching between individuals, has previously been shown in dogs even upon solely hearing negative emotional sounds of humans or conspecifics. The current investigation further sheds light on this phenomenon by directly contrasting emotional sounds of both species (humans and dogs) as well as opposed valences (positive and negative) to gain insights into intra- and interspecies empathy as well as differences between positively and negatively valenced sounds. Different types of sounds were played back to measure the influence of three dimensions on the dogs' behavioural response. We found that dogs behaved differently after hearing non-emotional sounds of their environment compared to emotional sounds of humans and conspecifics ("Emotionality" dimension), but the subjects responded similarly to human and conspecific sounds ("Species" dimension). However, dogs expressed more freezing behaviour after conspecific sounds, independent of the valence. Comparing positively with negatively valenced sounds of both species ("Valence" dimension), we found that, independent of the species from which the sound originated, dogs expressed more behavioural indicators for arousal and negatively valenced states after hearing negative emotional sounds. This response pattern indicates emotional state-matching or emotional contagion for negative sounds of humans and conspecifics. It furthermore indicates that dogs recognized the different valences of the emotional sounds, which is a promising finding for future studies on empathy for positive emotional states in dogs.

  6. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  7. [A Method of Synthesizing Tinnitus Rehabilitation Sound Based on Pentatonic Scale and Chaos].

    Science.gov (United States)

    Chen, Jiemei; He, Peiyu; Pan, Fan

    2015-12-01

    Tinnitus is a common clinical symptom and its occurrence rate is high. It seriously affects life quality of the patients. Scientific researches show that listening some similar and none-repetitive music can relieve tinnitus to some extent. The overall music accorded with self-similarity character by the direct mapping method based on chaos. However, there were often the same tones continuous repeating a few times and tone mutations. To solve the problem, this paper proposes a new method for tinnitus rehabilitation sound synthesis based on pentatonic scale, chaos and musical instrument digital interface (MIDI). Experimental results showed that the tinnitus rehabilitation sounds were not only self-similar and incompletely reduplicate, but also no sudden changes. Thus, it has a referential significance for tinnitus treatment.

  8. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  9. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task

    Science.gov (United States)

    Vinnik, Ekaterina; Honey, Christian; Schnupp, Jan; Diamond, Mathew E.

    2012-01-01

    To investigate how hippocampal neurons encode sound stimuli, and the conjunction of sound stimuli with the animal's position in space, we recorded from neurons in the CA1 region of hippocampus in rats while they performed a sound discrimination task. Four different sounds were used, two associated with water reward on the right side of the animal and the other two with water reward on the left side. This allowed us to separate neuronal activity related to sound identity from activity related to response direction. To test the effect of spatial context on sound coding, we trained rats to carry out the task on two identical testing platforms at different locations in the same room. Twenty-one percent of the recorded neurons exhibited sensitivity to sound identity, as quantified by the difference in firing rate for the two sounds associated with the same response direction. Sensitivity to sound identity was often observed on only one of the two testing platforms, indicating an effect of spatial context on sensory responses. Forty-three percent of the neurons were sensitive to response direction, and the probability that any one neuron was sensitive to response direction was statistically independent from its sensitivity to sound identity. There was no significant coding for sound identity when the rats heard the same sounds outside the behavioral task. These results suggest that CA1 neurons encode sound stimuli, but only when those sounds are associated with actions. PMID:22219030

  10. Directional loudness in an anechoic sound field, head-related transfer functions, and binaural summation

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    planes. Matches were obtained via a two-interval, adaptive forced-choice (2AFC) procedure for three center frequencies (0.4, 1 and 5 kHz) and two overall levels (45 and 65 dB SPL). The results showed that loudness is not constant over sound incidence angles, with directional sensitivity varying over......The effect of sound incidence angle on loudness was investigated using real sound sources positioned in an anechoic chamber. Eight normal-hearing listeners produced loudness matches between a frontal reference location and seven sources placed at other directions, both in the horizontal and median...... a range of up to 10 dB, exhibiting considerable frequency dependence, but only minor effects of overall level. The pattern of results varied substantially between subjects, but was largely accounted for by variations in individual head-related transfer functions. Modeling of binaural loudness based...

  11. Perception of acoustic scale and size in musical instrument sounds.

    Science.gov (United States)

    van Dinther, Ralph; Patterson, Roy D

    2006-10-01

    There is size information in natural sounds. For example, as humans grow in height, their vocal tracts increase in length, producing a predictable decrease in the formant frequencies of speech sounds. Recent studies have shown that listeners can make fine discriminations about which of two speakers has the longer vocal tract, supporting the view that the auditory system discriminates changes on the acoustic-scale dimension. Listeners can also recognize vowels scaled well beyond the range of vocal tracts normally experienced, indicating that perception is robust to changes in acoustic scale. This paper reports two perceptual experiments designed to extend research on acoustic scale and size perception to the domain of musical sounds: The first study shows that listeners can discriminate the scale of musical instrument sounds reliably, although not quite as well as for voices. The second experiment shows that listeners can recognize the family of an instrument sound which has been modified in pitch and scale beyond the range of normal experience. We conclude that processing of acoustic scale in music perception is very similar to processing of acoustic scale in speech perception.

  12. Auditory Attentional Capture: Effects of Singleton Distractor Sounds

    Science.gov (United States)

    Dalton, Polly; Lavie, Nilli

    2004-01-01

    The phenomenon of attentional capture by a unique yet irrelevant singleton distractor has typically been studied in visual search. In this article, the authors examine whether a similar phenomenon occurs in the auditory domain. Participants searched sequences of sounds for targets defined by frequency, intensity, or duration. The presence of a…

  13. Memory for product sounds: the effect of sound and label type.

    Science.gov (United States)

    Ozcan, Elif; van Egmond, René

    2007-11-01

    The (mnemonic) interactions between auditory, visual, and the semantic systems have been investigated using structurally complex auditory stimuli (i.e., product sounds). Six types of product sounds (air, alarm, cyclic, impact, liquid, mechanical) that vary in spectral-temporal structure were presented in four label type conditions: self-generated text, text, image, and pictogram. A memory paradigm that incorporated free recall, recognition, and matching tasks was employed. The results for the sound type suggest that the amount of spectral-temporal structure in a sound can be indicative for memory performance. Findings related to label type suggest that 'self' creates a strong bias for the retrieval and the recognition of sounds that were self-labeled; the density and the complexity of the visual information (i.e., pictograms) hinders the memory performance ('visual' overshadowing effect); and image labeling has an additive effect on the recall and matching tasks (dual coding). Thus, the findings suggest that the memory performances for product sounds are task-dependent.

  14. 33 CFR 167.1702 - In Prince William Sound: Prince William Sound Traffic Separation Scheme.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false In Prince William Sound: Prince William Sound Traffic Separation Scheme. 167.1702 Section 167.1702 Navigation and Navigable Waters COAST....1702 In Prince William Sound: Prince William Sound Traffic Separation Scheme. The Prince William Sound...

  15. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source.

    Science.gov (United States)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-10-10

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.

  16. Thermal management of thermoacoustic sound projectors using a free-standing carbon nanotube aerogel sheet as a heat source

    International Nuclear Information System (INIS)

    Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B

    2014-01-01

    Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1–10 5 Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz–10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed. (paper)

  17. Long Range Sound Propagation over Sea: Application to Wind Turbine Noise

    Energy Technology Data Exchange (ETDEWEB)

    Boue, Matieu

    2007-12-13

    The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on

  18. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  19. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging periodicity-tagged segregation of competing speech in rooms

    Directory of Open Access Journals (Sweden)

    Mark eSayles

    2015-01-01

    Full Text Available The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once, in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation. Brainstem circuits help segregate these complex acoustic mixtures into auditory objects. Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0 modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous.We examine the ability of 129 single units in the ventral cochlear nucleus of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels’ spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels’ spectral energy into two streams (corresponding to the two vowels, on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging

  20. The role of similarity cues in the development of trust in sources of information about GM Food

    NARCIS (Netherlands)

    Meijnders, A.L.; Midden, C.J.H.; Öhman, S.; Matthes, J.

    2009-01-01

    In evaluating complex new technologies, people are usually dependent on information provided by others, for example, experts or journalists, and have to determine whether they can trust these information sources. This article focuses on similarity as the basis for trust. The first experiment (N =

  1. Sound insulation of composite cylindrical shells: a comparison between a laminated and a sandwich cylinder

    OpenAIRE

    Yuan, Chongxin; Roozen, Bert; Bergsma, Otto; Beukers, Adriaan

    2012-01-01

    The fuselages of aircraft are modeled as a cylinder in this paper, and the sound insulations of a sandwich cylinder and a laminated cylinder are studied both experimentally and numerically. The cylinders are excited by an acoustic pressure and a mechanical force respectively. Results show that under acoustic excitation, the sandwich cylinder and the laminated one have a similar sound insulation below 3000 Hz, but the sandwich cylinder has a much larger sound insulation at higher frequencies. ...

  2. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  3. In Search of the Golden Age Hip-Hop Sound (1986–1996

    Directory of Open Access Journals (Sweden)

    Ben Duinker

    2017-09-01

    Full Text Available The notion of a musical repertoire's "sound" is frequently evoked in journalism and scholarship, but what parameters comprise such a sound? This question is addressed through a statistically-driven corpus analysis of hip-hop music released during the genre's Golden Age era. The first part of the paper presents a methodology for developing, transcribing, and analyzing a corpus of 100 hip-hop tracks released during the Golden Age. Eight categories of aurally salient musical and production parameters are analyzed: tempo, orchestration and texture, harmony, form, vocal and lyric profiles, global and local production effects, vocal doubling and backing, and loudness and compression. The second part of the paper organizes the analysis data into three trend categories: trends of change (parameters that change over time, trends of prevalence (parameters that remain generally constant across the corpus, and trends of similarity (parameters that are similar from song to song. These trends form a generalized model of the Golden Age hip-hop sound which considers both global (the whole corpus and local (unique songs within the corpus contexts. By operationalizing "sound" as the sum of musical and production parameters, aspects of popular music that are resistant to traditional music-analytical methods can be considered.

  4. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    International Nuclear Information System (INIS)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)

  5. Automatic adventitious respiratory sound analysis: A systematic review.

    Directory of Open Access Journals (Sweden)

    Renard Xaviero Adhi Pramono

    Full Text Available Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD, and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established.To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works.A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016 and IEEExplore (1984-2016 databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification.Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated.Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved.A total of 77 reports from the literature were included in this review. 55 (71.43% of the studies focused on wheeze, 40 (51.95% on crackle, 9 (11.69% on stridor, 9

  6. Automatic adventitious respiratory sound analysis: A systematic review.

    Science.gov (United States)

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  7. Winter sound-level characterization of the Deaf Smith County location in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1984-03-01

    A description of sound levels and sound sources in the Deaf Smith County location in the Palo Duro Basin during a period representative of the winter season is presented. Data were collected during the period February 26 through March 1, 1983. 4 references, 1 figure, 3 tables

  8. Can road traffic mask sound from wind turbines? Response to wind turbine sound at different levels of road traffic sound

    International Nuclear Information System (INIS)

    Pedersen, Eja; Berg, Frits van den; Bakker, Roel; Bouma, Jelte

    2010-01-01

    Wind turbines are favoured in the switch-over to renewable energy. Suitable sites for further developments could be difficult to find as the sound emitted from the rotor blades calls for a sufficient distance to residents to avoid negative effects. The aim of this study was to explore if road traffic sound could mask wind turbine sound or, in contrast, increases annoyance due to wind turbine noise. Annoyance of road traffic and wind turbine noise was measured in the WINDFARMperception survey in the Netherlands in 2007 (n=725) and related to calculated levels of sound. The presence of road traffic sound did not in general decrease annoyance with wind turbine noise, except when levels of wind turbine sound were moderate (35-40 dB(A) Lden) and road traffic sound level exceeded that level with at least 20 dB(A). Annoyance with both noises was intercorrelated but this correlation was probably due to the influence of individual factors. Furthermore, visibility and attitude towards wind turbines were significantly related to noise annoyance of modern wind turbines. The results can be used for the selection of suitable sites, possibly favouring already noise exposed areas if wind turbine sound levels are sufficiently low.

  9. BR-Explorer: A sound and complete FCA-based retrieval algorithm (Poster)

    OpenAIRE

    Messai , Nizar; Devignes , Marie-Dominique; Napoli , Amedeo; Smaïl-Tabbone , Malika

    2006-01-01

    In this paper we present BR-Explorer, a sound and complete biological data sources retrieval algorithm based on Formal Concept Analysis and domain ontologies. BR-Explorer addresses the problem of retrieving the relevant data sources for a given query. Initially, a formal context representing the relation between biological data sources and their metadata is provided and its corresponding concept lattice is built. Then BR-Explorer starts by generating the formal concept for the considered quer...

  10. Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae: first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae

    Directory of Open Access Journals (Sweden)

    Kéver Loïc

    2012-12-01

    Full Text Available Abstract Background Many Ophidiidae are active in dark environments and display complex sonic apparatus morphologies. However, sound recordings are scarce and little is known about acoustic communication in this family. This paper focuses on Ophidion rochei which is known to display an important sexual dimorphism in swimbladder and anterior skeleton. The aims of this study were to compare the sound producing morphology, and the resulting sounds in juveniles, females and males of O. rochei. Results Males, females, and juveniles possessed different morphotypes. Females and juveniles contrasted with males because they possessed dramatic differences in morphology of their sonic muscles, swimbladder, supraoccipital crest, and first vertebrae and associated ribs. Further, they lacked the ‘rocker bone’ typically found in males. Sounds from each morphotype were highly divergent. Males generally produced non harmonic, multiple-pulsed sounds that lasted for several seconds (3.5 ± 1.3 s with a pulse period of ca. 100 ms. Juvenile and female sounds were recorded for the first time in ophidiids. Female sounds were harmonic, had shorter pulse period (±3.7 ms, and never exceeded a few dozen milliseconds (18 ± 11 ms. Moreover, unlike male sounds, female sounds did not have alternating long and short pulse periods. Juvenile sounds were weaker but appear to be similar to female sounds. Conclusions Although it is not possible to distinguish externally male from female in O. rochei, they show a sonic apparatus and sounds that are dramatically different. This difference is likely due to their nocturnal habits that may have favored the evolution of internal secondary sexual characters that help to distinguish males from females and that could facilitate mate choice by females. Moreover, the comparison of different morphotypes in this study shows that these morphological differences result from a peramorphosis that takes place during the development of

  11. Structure-borne sound structural vibrations and sound radiation at audio frequencies

    CERN Document Server

    Cremer, L; Petersson, Björn AT

    2005-01-01

    Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi

  12. Training of Tonal Similarity Ratings in Non-Musicians: A “Rapid Learning” Approach

    Science.gov (United States)

    Oechslin, Mathias S.; Läge, Damian; Vitouch, Oliver

    2012-01-01

    Although cognitive music psychology has a long tradition of expert–novice comparisons, experimental training studies are rare. Studies on the learning progress of trained novices in hearing harmonic relationships are still largely lacking. This paper presents a simple training concept using the example of tone/triad similarity ratings, demonstrating the gradual progress of non-musicians compared to musical experts: In a feedback-based “rapid learning” paradigm, participants had to decide for single tones and chords whether paired sounds matched each other well. Before and after the training sessions, they provided similarity judgments for a complete set of sound pairs. From these similarity matrices, individual relational sound maps, intended to display mental representations, were calculated by means of non-metric multidimensional scaling (NMDS), and were compared to an expert model through procrustean transformation. Approximately half of the novices showed substantial learning success, with some participants even reaching the level of professional musicians. Results speak for a fundamental ability to quickly train an understanding of harmony, show inter-individual differences in learning success, and demonstrate the suitability of the scaling method used for learning research in music and other domains. Results are discussed in the context of the “giftedness” debate. PMID:22629252

  13. Sound stream segregation: a neuromorphic approach to solve the “cocktail party problem” in real-time

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M.; Afshar, Saeed; Hamilton, Tara J.; Tapson, Jonathan C.; Shamma, Shihab A.; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the “cocktail party effect.” It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation

  14. Sound stream segregation: a neuromorphic approach to solve the ‘cocktail party problem’ in real-time

    Directory of Open Access Journals (Sweden)

    Chetan Singh Thakur

    2015-09-01

    Full Text Available The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the ‘cocktail party effect’. It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA. This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR of the segregated stream (90, 77 and 55 dB for simple tone, complex tone and speech, respectively as compared to the SNR of the mixture waveform (0 dB. This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for

  15. Attention to memory: orienting attention to sound object representations.

    Science.gov (United States)

    Backer, Kristina C; Alain, Claude

    2014-01-01

    Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.

  16. Sound field simulation and acoustic animation in urban squares

    Science.gov (United States)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  17. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  18. Understanding the Doppler Effect by Analysing Spectrograms of the Sound of a Passing Vehicle

    Science.gov (United States)

    Lubyako, Dmitry; Martinez-Piedra, Gordon; Ushenin, Arthur; Ushenin, Arthur; Denvir, Patrick; Dunlop, John; Hall, Alex; Le Roux, Gus; van Someren, Laurence; Weinberger, Harvey

    2017-01-01

    The purpose of this paper is to demonstrate how the Doppler effect can be analysed to deduce information about a moving source of sound waves. Specifically, we find the speed of a car and the distance of its closest approach to an observer using sound recordings from smartphones. A key focus of this paper is how this can be achieved in a…

  19. InfoSound

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Gopinath, B.; Haberman, Gary O.

    1990-01-01

    The authors explore ways to enhance users' comprehension of complex applications using music and sound effects to present application-program events that are difficult to detect visually. A prototype system, Infosound, allows developers to create and store musical sequences and sound effects with...

  20. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  1. An apparatus for the determination of speeds of sound in fluids

    International Nuclear Information System (INIS)

    Gedanitz, Holger; Davila, Maria J.; Baumhoegger, Elmar; Span, Roland

    2010-01-01

    An apparatus for accurate measurements of the sound velocity in fluids is described, which is based on the pulse-echo technique, and operates up to 30 MPa in the temperature range between (250 and 350) K. The expanded uncertainties (k = 2) in the speed of sound measurements are 0.006%, 6 mK in the temperature, 2.1 hPa in the pressure up to 3 MPa, and 23.9 hPa above this value. Measurements of the speed of sound for nitrogen from (250 to 350) K and for water at temperatures between (303.15 and 323.15) K are presented at pressures up to 30 MPa to validate the new apparatus. The expanded overall uncertainty of the measurements on nitrogen and water were estimated to be 0.011% and 0.006%, respectively. The speed of sound of both fluids was compared with literature sources showing an excellent agreement among them, with relative deviations lower than 0.01% in nitrogen and 0.006% in water.

  2. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.

    Science.gov (United States)

    Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk

    2016-09-27

    A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  3. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Etto L. Salomons

    2016-09-01

    Full Text Available A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1 the window length for our classifiers is increased, and (2 if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  4. Serial recall of rhythms and verbal sequences: Impacts of concurrent tasks and irrelevant sound.

    Science.gov (United States)

    Hall, Debbora; Gathercole, Susan E

    2011-08-01

    Rhythmic grouping enhances verbal serial recall, yet very little is known about memory for rhythmic patterns. The aim of this study was to compare the cognitive processes supporting memory for rhythmic and verbal sequences using a range of concurrent tasks and irrelevant sounds. In Experiment 1, both concurrent articulation and paced finger tapping during presentation and during a retention interval impaired rhythm recall, while letter recall was only impaired by concurrent articulation. In Experiments 2 and 3, irrelevant sound consisted of irrelevant speech or tones, changing-state or steady-state sound, and syncopated or paced sound during presentation and during a retention interval. Irrelevant speech was more damaging to rhythm and letter recall than was irrelevant tone sound, but there was no effect of changing state on rhythm recall, while letter recall accuracy was disrupted by changing-state sound. Pacing of sound did not consistently affect either rhythm or letter recall. There are similarities in the way speech and rhythms are processed that appear to extend beyond reliance on temporal coding mechanisms involved in serial-order recall.

  5. Speed of Sound in Hadronic matter using Non-extensive Statistics

    CERN Document Server

    Khuntia, Arvind; Garg, Prakhar; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    The speed of sound ($c_s$) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems, which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different $q$-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in non-extensive case for $c^{2}_s$ by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly present that the temperature where the mass cut-off starts, varies with the $q$-parameter which hints at a relation between the d...

  6. Light and Sound

    CERN Document Server

    Karam, P Andrew

    2010-01-01

    Our world is largely defined by what we see and hear-but our uses for light and sound go far beyond simply seeing a photo or hearing a song. A concentrated beam of light, lasers are powerful tools used in industry, research, and medicine, as well as in everyday electronics like DVD and CD players. Ultrasound, sound emitted at a high frequency, helps create images of a developing baby, cleans teeth, and much more. Light and Sound teaches how light and sound work, how they are used in our day-to-day lives, and how they can be used to learn about the universe at large.

  7. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    Sound is a part of architecture, and sound is complex. Upon this, sound is invisible. How is it then possible to design visual objects that interact with the sound? This paper addresses the problem of how to get access to the complexity of sound and how to make textile material revealing the form...... goemetry by analysing the sound pattern at a specific spot. This analysis is done theoretically with algorithmic systems and practical with waves in water. The paper describes the experiments and the findings, and explains how an analysis of sound can be catched in a textile form....

  8. Sound Propagation Considerations for a Deep-Ocean Acoustic Network

    Science.gov (United States)

    2009-12-01

    classic “ tea cup” surveillance volume for a bottom sensor. 27 Figure 18. TL of a 100-Hz, 3995-m source using a 4000-m Munk sound speed profile B...18. LTJG Pongaskorn Sommai, Royal Thai Navy Naval Postgraduate School Monterey, California 19. ENS William Jenkins, USN Naval Postgraduate School

  9. A generalized sound extrapolation method for turbulent flows

    Science.gov (United States)

    Zhong, Siyang; Zhang, Xin

    2018-02-01

    Sound extrapolation methods are often used to compute acoustic far-field directivities using near-field flow data in aeroacoustics applications. The results may be erroneous if the volume integrals are neglected (to save computational cost), while non-acoustic fluctuations are collected on the integration surfaces. In this work, we develop a new sound extrapolation method based on an acoustic analogy using Taylor's hypothesis (Taylor 1938 Proc. R. Soc. Lon. A 164, 476-490. (doi:10.1098/rspa.1938.0032)). Typically, a convection operator is used to filter out the acoustically inefficient components in the turbulent flows, and an acoustics dominant indirect variable Dcp‧ is solved. The sound pressure p' at the far field is computed from Dcp‧ based on the asymptotic properties of the Green's function. Validations results for benchmark problems with well-defined sources match well with the exact solutions. For aeroacoustics applications: the sound predictions by the aerofoil-gust interaction are close to those by an earlier method specially developed to remove the effect of vortical fluctuations (Zhong & Zhang 2017 J. Fluid Mech. 820, 424-450. (doi:10.1017/jfm.2017.219)); for the case of vortex shedding noise from a cylinder, the off-body predictions by the proposed method match well with the on-body Ffowcs-Williams and Hawkings result; different integration surfaces yield close predictions (of both spectra and far-field directivities) for a co-flowing jet case using an established direct numerical simulation database. The results suggest that the method may be a potential candidate for sound projection in aeroacoustics applications.

  10. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique.

    Science.gov (United States)

    Mondal, Ashok; Bhattacharya, P S; Saha, Goutam

    2011-01-01

    During the recording time of lung sound (LS) signals from the chest wall of a subject, there is always heart sound (HS) signal interfering with it. This obscures the features of lung sound signals and creates confusion on pathological states, if any, of the lungs. A novel method based on empirical mode decomposition (EMD) technique is proposed in this paper for reducing the undesired heart sound interference from the desired lung sound signals. In this, the mixed signal is split into several components. Some of these components contain larger proportions of interfering signals like heart sound, environmental noise etc. and are filtered out. Experiments have been conducted on simulated and real-time recorded mixed signals of heart sound and lung sound. The proposed method is found to be superior in terms of time domain, frequency domain, and time-frequency domain representations and also in listening test performed by pulmonologist.

  11. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  12. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  13. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  14. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  15. [High-frequency components of occlusal sound in sliding movement].

    Science.gov (United States)

    Nagai, K

    1990-03-01

    We postulated that high-frequency components of the occlusal sound occurring due to the characteristic vibration of teeth can be useful data for confirmation of the stability in occlusion, and studied the high-frequency components in the cases both of an experimental sliding movement and a normal occlusion. The results obtained were as follows. 1. A study on high-frequency components of the occlusal sound in an experimental sliding movement. 1) A study on wave type of the occlusal sound revealed one damped oscillation in an impact form and two in a slide form. 2) Spectrum analysis of the damped oscillation showed a similar spectrum pattern with a peak existing between 16KHz or more and 17KHz or less in both impact and slide cases. 2. A study on high-frequency components of the occlusal sound in a normal occlusion case. 1) The wave type in occlusal sound we have observed in a normal occlusion group and in a prosthetic or operative group was as follows: One damped oscillation shown in an impact form and two damped oscillation in a slide form which were the same as those shown in the case where an interference device was attached. 2) Duration of the sliding movement was short in a normal occlusion group, but was prolonged in a prosthetic or operative group. 3) The incidence of the wave type in occlusal sound was 56.7% in a prosthetic or operative group as compared to 87.8% in a normal occlusion group in an impact form. In contrast, the incidence was 43.3% in a prosthetic or operative group as compared to 12.2% in a normal occlusion group in a slide form. Such difference in the incidence between the wave types suggested that high-frequency components of occlusal sound can be an index for judgement of the stability in occlusion.

  16. Consistent modelling of wind turbine noise propagation from source to receiver

    DEFF Research Database (Denmark)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine...... propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine....... and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound...

  17. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  18. Remembering that big things sound big: Sound symbolism and associative memory.

    Science.gov (United States)

    Preziosi, Melissa A; Coane, Jennifer H

    2017-01-01

    According to sound symbolism theory, individual sounds or clusters of sounds can convey meaning. To examine the role of sound symbolic effects on processing and memory for nonwords, we developed a novel set of 100 nonwords to convey largeness (nonwords containing plosive consonants and back vowels) and smallness (nonwords containing fricative consonants and front vowels). In Experiments 1A and 1B, participants rated the size of the 100 nonwords and provided definitions to them as if they were products. Nonwords composed of fricative/front vowels were rated as smaller than those composed of plosive/back vowels. In Experiment 2, participants studied sound symbolic congruent and incongruent nonword and participant-generated definition pairings. Definitions paired with nonwords that matched the size and participant-generated meanings were recalled better than those that did not match. When the participant-generated definitions were re-paired with other nonwords, this mnemonic advantage was reduced, although still reliable. In a final free association study, the possibility that plosive/back vowel and fricative/front vowel nonwords elicit sound symbolic size effects due to mediation from word neighbors was ruled out. Together, these results suggest that definitions that are sound symbolically congruent with a nonword are more memorable than incongruent definition-nonword pairings. This work has implications for the creation of brand names and how to create brand names that not only convey desired product characteristics, but also are memorable for consumers.

  19. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    Science.gov (United States)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2004-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  20. An Antropologist of Sound

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh

    2015-01-01

    PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology.......PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology....

  1. The Voice of the Heart: Vowel-Like Sound in Pulmonary Artery Hypertension

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-04-01

    Full Text Available Increased blood pressure in the pulmonary artery is referred to as pulmonary hypertension and often is linked to loud pulmonic valve closures. For the purpose of this paper, it was hypothesized that pulmonary circulation vibrations will create sounds similar to sounds created by vocal cords during speech and that subjects with pulmonary artery hypertension (PAH could have unique sound signatures across four auscultatory sites. Using a digital stethoscope, heart sounds were recorded at the cardiac apex, 2nd left intercostal space (2LICS, 2nd right intercostal space (2RICS, and 4th left intercostal space (4LICS undergoing simultaneous cardiac catheterization. From the collected heart sounds, relative power of the frequency band, energy of the sinusoid formants, and entropy were extracted. PAH subjects were differentiated by applying the linear discriminant analysis with leave-one-out cross-validation. The entropy of the first sinusoid formant decreased significantly in subjects with a mean pulmonary artery pressure (mPAp ≥ 25 mmHg versus subjects with a mPAp < 25 mmHg with a sensitivity of 84% and specificity of 88.57%, within a 10-s optimized window length for heart sounds recorded at the 2LICS. First sinusoid formant entropy reduction of heart sounds in PAH subjects suggests the existence of a vowel-like pattern. Pattern analysis revealed a unique sound signature, which could be used in non-invasive screening tools.

  2. Numerical study of the aerodynamics of sound sources in a bass-reflex port

    Directory of Open Access Journals (Sweden)

    V.M. Garcia-Alcaide

    2017-01-01

    Full Text Available The aim of this paper is to study the aerodynamics phenomena of a bass-reflex port that causes noise in the audible frequency range. After discarding structural and mechanical vibration issues, the hypothesis considered is that vortex shedding is the source of the noise. Experimental and numerical evidences of the vortex, an analysis of its noise and the similarities between real and simulated performance are presented. The numerically simulated cases with the original geometry are excited at different frequencies and with modifications of the port geometry. Likewise, the internal performance of an enclosure with a closed port was simulated. The simulations have been performed with axisymmetrical geometries using the open-source OpenFOAM® toolbox. Moreover, experimental measurements were carried out. First, acoustic signal experiments were done to analyse the response of the bass-reflex ports. Secondly, a structure vibration measurement was conducted in order to exclude the cabinet structure vibration as a source of the noise in question. A good agreement was found between numerical and experimental results, especially in the frequency band of the detected noise, i.e. the 1000–1500 Hz range. Despite no remarkable improvement being made with the geometry changes explored, the presented CFD approach has proved a useful and cost-effective tool to address this kind of phenomenon.

  3. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds

    Science.gov (United States)

    Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David

    2013-01-01

    The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161

  4. Acoustic resonators for the reduction of sound radiation and transmission

    NARCIS (Netherlands)

    Hannink, M.H.C.

    2007-01-01

    Noise is a frequently encountered problem in modern society. One of the environments where the presence of noise causes a deterioration in people’s comfort is in aircraft cabins. For modern aircraft flying at cruise conditions, the main sound source is the turbulent boundary layer around the

  5. Insights into Optimal Soft Start and Shutdown Procedures for Stationary or Moving Sound Sources

    NARCIS (Netherlands)

    Ainslie, M.A.; Benda-Beckmann, A.M. von

    2012-01-01

    To reduce the risk of impact on marine life of underwater sound generated by anthropogenic activities (such as offshore construction, seismic surveys and sonar searches), various mitigation measures are often put in place. Two commonly adopted mitigation measures are the soft start (or "ramp-up" –

  6. Speed of sound in hadronic matter using non-extensive Tsallis statistics

    International Nuclear Information System (INIS)

    Khuntia, Arvind; Sahoo, Pragati; Garg, Prakhar; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    The speed of sound (c_s) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first-order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different q-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in the non-extensive case for c"2_s by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly show that the temperature where the mass cut-off starts varies with the q-parameter which hints at a relation between the degree of non-equilibrium and the limiting temperature of the system. It is shown that for values of q above approximately 1.13 all criticality disappears in the speed of sound, i.e. the decrease in the value of the speed of sound, observed at lower values of q, disappears completely. (orig.)

  7. Speed of sound in hadronic matter using non-extensive Tsallis statistics

    Energy Technology Data Exchange (ETDEWEB)

    Khuntia, Arvind; Sahoo, Pragati; Garg, Prakhar; Sahoo, Raghunath [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Science, Simrol, M.P. (India); Cleymans, Jean [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa)

    2016-09-15

    The speed of sound (c{sub s}) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first-order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different q-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in the non-extensive case for c{sup 2}{sub s} by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly show that the temperature where the mass cut-off starts varies with the q-parameter which hints at a relation between the degree of non-equilibrium and the limiting temperature of the system. It is shown that for values of q above approximately 1.13 all criticality disappears in the speed of sound, i.e. the decrease in the value of the speed of sound, observed at lower values of q, disappears completely. (orig.)

  8. Irrelevant sound disrupts speech production: exploring the relationship between short-term memory and experimentally induced slips of the tongue.

    Science.gov (United States)

    Saito, Satoru; Baddeley, Alan

    2004-10-01

    To explore the relationship between short-term memory and speech production, we developed a speech error induction technique. The technique, which was adapted from a Japanese word game, exposed participants to an auditory distractor word immediately before the utterance of a target word. In Experiment 1, the distractor words that were phonologically similar to the target word led to a greater number of errors in speaking the target than did the dissimilar distractor words. Furthermore, the speech error scores were significantly correlated with memory span scores. In Experiment 2, memory span scores were again correlated with the rate of the speech errors that were induced from the task-irrelevant speech sounds. Experiment 3 showed a strong irrelevant-sound effect in the serial recall of nonwords. The magnitude of the irrelevant-sound effects was not affected by phonological similarity between the to-be-remembered nonwords and the irrelevant-sound materials. Analysis of recall errors in Experiment 3 also suggested that there were no essential differences in recall error patterns between the dissimilar and similar irrelevant-sound conditions. We proposed two different underlying mechanisms in immediate memory, one operating via the phonological short-term memory store and the other via the processes underpinning speech production.

  9. Sound specificity effects in spoken word recognition: The effect of integrality between words and sounds

    DEFF Research Database (Denmark)

    Strori, Dorina; Zaar, Johannes; Cooke, Martin

    2017-01-01

    Recent evidence has shown that nonlinguistic sounds co-occurring with spoken words may be retained in memory and affect later retrieval of the words. This sound-specificity effect shares many characteristics with the classic voice-specificity effect. In this study, we argue that the sound......-specificity effect is conditional upon the context in which the word and sound coexist. Specifically, we argue that, besides co-occurrence, integrality between words and sounds is a crucial factor in the emergence of the effect. In two recognition-memory experiments, we compared the emergence of voice and sound...... from a mere co-occurrence context effect by removing the intensity modulation. The absence of integrality led to the disappearance of the sound-specificity effect. Taken together, the results suggest that the assimilation of background sounds into memory cannot be reduced to a simple context effect...

  10. Not all carp are created equal: Impacts of broadband sound on common carp swimming behavior

    Science.gov (United States)

    Murchy, Kelsie; Vetter, Brooke J.; Brey, Marybeth; Amberg, Jon J.; Gaikowski, Mark; Mensinger, Allen F.

    2016-01-01

    Bighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix) (hereafter: bigheaded carps), and common carp (Cyprinus carpio) are invasive fish causing negative impacts throughout their North American range. To control their movements, non-physical barriers are being developed. Broadband sound (0.06 to 10 kHz) has shown potential as an acoustic deterrent for bigheaded carps, but the response of common carp to broadband sound has not been evaluated. Since common carp are ostariophysians, possessing Weberian ossicles similar to bigheaded carps, it is possible that sound can be used as an acoustical deterrent for all three species. Behavioral responses to a broadband sound were evaluated for common carp in an outdoor concrete pond. Common carp responded a median of 3.0 (1st Q: 1.0, 3rd Q: 6.0) consecutive times to the broadband sound which was lower than silver carp and bighead carp to the same stimulus. The current study shows that common carp demonstrate an inconsistent negative phonotaxis response to a broadband sound, and seem to habituate to the sound quickly.

  11. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  12. Sound Symbolism in Basic Vocabulary

    Directory of Open Access Journals (Sweden)

    Søren Wichmann

    2010-04-01

    Full Text Available The relationship between meanings of words and their sound shapes is to a large extent arbitrary, but it is well known that languages exhibit sound symbolism effects violating arbitrariness. Evidence for sound symbolism is typically anecdotal, however. Here we present a systematic approach. Using a selection of basic vocabulary in nearly one half of the world’s languages we find commonalities among sound shapes for words referring to same concepts. These are interpreted as due to sound symbolism. Studying the effects of sound symbolism cross-linguistically is of key importance for the understanding of language evolution.

  13. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  14. Sounding the Alarm: An Introduction to Ecological Sound Art

    Directory of Open Access Journals (Sweden)

    Jonathan Gilmurray

    2016-12-01

    Full Text Available In recent years, a number of sound artists have begun engaging with ecological issues through their work, forming a growing movement of ˝ecological sound art˝. This paper traces its development, examines its influences, and provides examples of the artists whose work is currently defining this important and timely new field.

  15. Conditioning Influences Audio-Visual Integration by Increasing Sound Saliency

    Directory of Open Access Journals (Sweden)

    Fabrizio Leo

    2011-10-01

    Full Text Available We investigated the effect of prior conditioning of an auditory stimulus on audiovisual integration in a series of four psychophysical experiments. The experiments factorially manipulated the conditioning procedure (picture vs monetary conditioning and multisensory paradigm (2AFC visual detection vs redundant target paradigm. In the conditioning sessions, subjects were presented with three pure tones (= conditioned stimulus, CS that were paired with neutral, positive, or negative unconditioned stimuli (US, monetary: +50 euro cents,.–50 cents, 0 cents; pictures: highly pleasant, unpleasant, and neutral IAPS. In a 2AFC visual selective attention paradigm, detection of near-threshold Gabors was improved by concurrent sounds that had previously been paired with a positive (monetary or negative (picture outcome relative to neutral sounds. In the redundant target paradigm, sounds previously paired with positive (monetary or negative (picture outcomes increased response speed to both auditory and audiovisual targets similarly. Importantly, prior conditioning did not increase the multisensory response facilitation (ie, (A + V/2 – AV or the race model violation. Collectively, our results suggest that prior conditioning primarily increases the saliency of the auditory stimulus per se rather than influencing audiovisual integration directly. In turn, conditioned sounds are rendered more potent for increasing response accuracy or speed in detection of visual targets.

  16. Acoustic Holography With Incoherent Sources

    NARCIS (Netherlands)

    Druyvesteyn, W.F.; Raangs, R.

    2005-01-01

    In near field acoustic holography the sound field is scanned near the surface of the vibrating object; from these measurements the vibration of the structure can be calculated. In the case of correlated sources one reference signal is sufficient. When incoherent sources are present the separation of

  17. Sound Stuff? Naïve materialism in middle-school students' conceptions of sound

    Science.gov (United States)

    Eshach, Haim; Schwartz, Judah L.

    2006-06-01

    Few studies have dealt with students’ preconceptions of sounds. The current research employs Reiner et al. (2000) substance schema to reveal new insights about students’ difficulties in understanding this fundamental topic. It aims not only to detect whether the substance schema is present in middle school students’ thinking, but also examines how students use the schema’s properties. It asks, moreover, whether the substance schema properties are used as islands of local consistency or whether one can identify more global coherent consistencies among the properties that the students use to explain the sound phenomena. In-depth standardized open-ended interviews were conducted with ten middle school students. Consistent with the substance schema, sound was perceived by our participants as being pushable, frictional, containable, or transitional. However, sound was also viewed as a substance different from the ordinary with respect to its stability, corpuscular nature, additive properties, and inertial characteristics. In other words, students’ conceptions of sound do not seem to fit Reiner et al.’s schema in all respects. Our results also indicate that students’ conceptualization of sound lack internal consistency. Analyzing our results with respect to local and global coherence, we found students’ conception of sound is close to diSessa’s “loosely connected, fragmented collection of ideas.” The notion that sound is perceived only as a “sort of a material,” we believe, requires some revision of the substance schema as it applies to sound. The article closes with a discussion concerning the implications of the results for instruction.

  18. Sound symbolism: the role of word sound in meaning.

    Science.gov (United States)

    Svantesson, Jan-Olof

    2017-09-01

    The question whether there is a natural connection between sound and meaning or if they are related only by convention has been debated since antiquity. In linguistics, it is usually taken for granted that 'the linguistic sign is arbitrary,' and exceptions like onomatopoeia have been regarded as marginal phenomena. However, it is becoming more and more clear that motivated relations between sound and meaning are more common and important than has been thought. There is now a large and rapidly growing literature on subjects as ideophones (or expressives), words that describe how a speaker perceives a situation with the senses, and phonaesthemes, units like English gl-, which occur in many words that share a meaning component (in this case 'light': gleam, glitter, etc.). Furthermore, psychological experiments have shown that sound symbolism in one language can be understood by speakers of other languages, suggesting that some kinds of sound symbolism are universal. WIREs Cogn Sci 2017, 8:e1441. doi: 10.1002/wcs.1441 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  19. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs.

    Science.gov (United States)

    Ponnath, Abhilash; Farris, Hamilton E

    2014-01-01

    Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.

  20. Sound specificity effects in spoken word recognition: The effect of integrality between words and sounds.

    Science.gov (United States)

    Strori, Dorina; Zaar, Johannes; Cooke, Martin; Mattys, Sven L

    2018-01-01

    Recent evidence has shown that nonlinguistic sounds co-occurring with spoken words may be retained in memory and affect later retrieval of the words. This sound-specificity effect shares many characteristics with the classic voice-specificity effect. In this study, we argue that the sound-specificity effect is conditional upon the context in which the word and sound coexist. Specifically, we argue that, besides co-occurrence, integrality between words and sounds is a crucial factor in the emergence of the effect. In two recognition-memory experiments, we compared the emergence of voice and sound specificity effects. In Experiment 1 , we examined two conditions where integrality is high. Namely, the classic voice-specificity effect (Exp. 1a) was compared with a condition in which the intensity envelope of a background sound was modulated along the intensity envelope of the accompanying spoken word (Exp. 1b). Results revealed a robust voice-specificity effect and, critically, a comparable sound-specificity effect: A change in the paired sound from exposure to test led to a decrease in word-recognition performance. In the second experiment, we sought to disentangle the contribution of integrality from a mere co-occurrence context effect by removing the intensity modulation. The absence of integrality led to the disappearance of the sound-specificity effect. Taken together, the results suggest that the assimilation of background sounds into memory cannot be reduced to a simple context effect. Rather, it is conditioned by the extent to which words and sounds are perceived as integral as opposed to distinct auditory objects.

  1. Psychological restoration can depend on stimulus-source attribution: A challenge for the evolutionary account?

    Directory of Open Access Journals (Sweden)

    Andreas Haga

    2016-11-01

    Full Text Available Visiting or viewing nature environments can have restorative psychological effects, while exposure to the built environment typically has less positive effects. A classic view is that this difference in restorative potential of nature and built environments depends on differences in the intrinsic characteristics of the stimuli. In addition, an evolutionary account is often assumed whereby restoration is believed to be a hardwired response to nature’s stimulus-features. Here, we propose the novel hypothesis that the restorative effects of a stimulus do not entirely depend on the stimulus-features per se, but also on the meaning that people assign to the stimulus. Participants conducted cognitively demanding tests prior to and after a brief pause. During the pause, the participants were exposed to an ambiguous sound consisting of pink noise with white noise interspersed. Participants in the nature sound-source condition were told that the sound originated from a nature scene with a waterfall; participants in the industrial sound-source condition were told that the sound originated from an industrial environment with machinery; and participants in the control condition were told nothing about the sound origin. Self-reported mental exhaustion showed that participants in the nature sound-source condition were more psychologically restored after the pause than participants in the industrial sound-source condition. One potential interpretation of the results is that restoration from nature experiences depends on learned, positive associations with nature; not only on hardwired responses shaped by evolution.

  2. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  3. Analysis, Synthesis, and Perception of Musical Sounds The Sound of Music

    CERN Document Server

    Beauchamp, James W

    2007-01-01

    Analysis, Synthesis, and Perception of Musical Sounds contains a detailed treatment of basic methods for analysis and synthesis of musical sounds, including the phase vocoder method, the McAulay-Quatieri frequency-tracking method, the constant-Q transform, and methods for pitch tracking with several examples shown. Various aspects of musical sound spectra such as spectral envelope, spectral centroid, spectral flux, and spectral irregularity are defined and discussed. One chapter is devoted to the control and synthesis of spectral envelopes. Two advanced methods of analysis/synthesis are given: "Sines Plus Transients Plus Noise" and "Spectrotemporal Reassignment" are covered. Methods for timbre morphing are given. The last two chapters discuss the perception of musical sounds based on discrimination and multidimensional scaling timbre models.

  4. Detecting interferences with iOS applications to measure speed of sound

    Science.gov (United States)

    Yavuz, Ahmet; Kağan Temiz, Burak

    2016-01-01

    Traditional experiments measuring the speed of sound consist of studying harmonics by changing the length of a glass tube closed at one end. In these experiments, the sound source and observer are outside of the tube. In this paper, we propose the modification of this old experiment by studying destructive interference in a pipe using a headset, iPhone and iPad. The iPhone is used as an emitter with signal generator application and the iPad is used as the receiver with a spectrogram application. Two experiments are carried out for measures: the emitter inside of the tube with the receiver outside, and vice versa. We conclude that it is even possible to adequately and easily measure the speed of sound using a cup or a can of coke with the method described in this paper.

  5. Michael Jackson's Sound Stages

    OpenAIRE

    Morten Michelsen

    2012-01-01

    In order to discuss analytically spatial aspects of recorded sound William Moylan’s concept of ‘sound stage’ is developed within a musicological framework as part of a sound paradigm which includes timbre, texture and sound stage. Two Michael Jackson songs (‘The Lady in My Life’ from 1982 and ‘Scream’ from 1995) are used to: a) demonstrate the value of such a conceptualisation, and b) demonstrate that the model has its limits, as record producers in the 1990s began ignoring the conventions of...

  6. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    Science.gov (United States)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  7. Magnetospheric radio sounding

    International Nuclear Information System (INIS)

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu

    1977-01-01

    Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)

  8. Hemispheric lateralization in an analysis of speech sounds. Left hemisphere dominance replicated in Japanese subjects.

    Science.gov (United States)

    Koyama, S; Gunji, A; Yabe, H; Oiwa, S; Akahane-Yamada, R; Kakigi, R; Näätänen, R

    2000-09-01

    Evoked magnetic responses to speech sounds [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M. Vainio, P. Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.] were recorded from 13 Japanese subjects (right-handed). Infrequently presented vowels ([o]) among repetitive vowels ([e]) elicited the magnetic counterpart of mismatch negativity, MMNm (Bilateral, nine subjects; Left hemisphere alone, three subjects; Right hemisphere alone, one subject). The estimated source of the MMNm was stronger in the left than in the right auditory cortex. The sources were located posteriorly in the left than in the right auditory cortex. These findings are consistent with the results obtained in Finnish [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M.Vainio, P.Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.][T. Rinne, K. Alho, P. Alku, M. Holi, J. Sinkkonen, J. Virtanen, O. Bertrand and R. Näätänen, Analysis of speech sounds is left-hemisphere predominant at 100-150 ms after sound onset. Neuroreport, 10 (1999) 1113-1117.] and English [K. Alho, J.F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko and R.J. Ilmoniemi, Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 258 (1998) 9-12.] subjects. Instead of the P1m observed in Finnish [M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi and R. Näätänen, Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage, 9 (1999) 330-336.] and English [K. Alho, J. F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko

  9. Observations of the sound producing organs in achelate lobster larvae

    Directory of Open Access Journals (Sweden)

    John A. Fornshell

    2017-06-01

    Full Text Available The Achelata, lobsters lacking claws and having a phyllosoma larva, are divided into two families, the Palinuridae or spiny lobsters and the Scyllaridae or slipper lobsters. Within the Palinuridae adults of two groups were identified by Parker (1884, the Stridentesthat are capable of producing sounds, and the Silentesthat are not known to produce sounds. The Stridentes employ a file-like structure on the dorsal surface of the cephalon and a plectrum consisting of a series of ridges on the proximal segment of the second antenna to produce their sounds. All species of Achelata hatch as an unpigmented thin phyllosoma larva. The phyllosoma larva of the Stridentes have a presumptive file-like structure on the dorsal cephalon. A similar file-like structure is found on the cephalon of one species of Silentes, Palinurellus wienckki, and some but not all of the phyllosoma larvae of the Scyllaridae. No presumptive plectrum is found on the second antenna of any of the phyllosoma larvae. Presence of a presumptive file-like structure on phyllosoma larvae of Silentes and Scyllaridae suggests that the ability to produce sounds may have been lost secondarily in the Silentes and Scyllaridae.

  10. ABOUT SOUNDS IN VIDEO GAMES

    Directory of Open Access Journals (Sweden)

    Denikin Anton A.

    2012-12-01

    Full Text Available The article considers the aesthetical and practical possibilities for sounds (sound design in video games and interactive applications. Outlines the key features of the game sound, such as simulation, representativeness, interactivity, immersion, randomization, and audio-visuality. The author defines the basic terminology in study of game audio, as well as identifies significant aesthetic differences between film sounds and sounds in video game projects. It is an attempt to determine the techniques of art analysis for the approaches in study of video games including aesthetics of their sounds. The article offers a range of research methods, considering the video game scoring as a contemporary creative practice.

  11. The Effect of Blindness on Long-Term Episodic Memory for Odors and Sounds

    Directory of Open Access Journals (Sweden)

    Stina Cornell Kärnekull

    2018-06-01

    Full Text Available We recently showed that compared with sighted, early blind individuals have better episodic memory for environmental sounds, but not odors, after a short retention interval (∼ 8 – 9 min. Few studies have investigated potential effects of blindness on memory across long time frames, such as months or years. Consequently, it was unclear whether compensatory effects may vary as a function of retention interval. In this study, we followed-up participants (N = 57 out of 60 approximately 1 year after the initial testing and retested episodic recognition for environmental sounds and odors, and identification ability. In contrast to our previous findings, the early blind participants (n = 14 performed at a similar level as the late blind (n = 13 and sighted (n = 30 participants for sound recognition. Moreover, the groups had similar recognition performance of odors and identification ability of odors and sounds. These findings suggest that episodic odor memory is unaffected by blindness after both short and long retention intervals. However, the effect of blindness on episodic memory for sounds may vary as a function of retention interval, such that early blind individuals have an advantage over sighted across short but not long time frames. We speculate that the finding of a differential effect of blindness on auditory episodic memory across retention intervals may be related to different memory strategies at initial and follow-up assessments. In conclusion, this study suggests that blindness does not influence auditory or olfactory episodic memory as assessed after a long retention interval.

  12. Modeling Noise Sources and Propagation in External Gear Pumps

    Directory of Open Access Journals (Sweden)

    Sangbeom Woo

    2017-07-01

    Full Text Available As a key component in power transfer, positive displacement machines often represent the major source of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of improving the performance of current hydraulic systems, as well as applying fluid power systems to a wider range of applications. The present work aims at developing modeling techniques on the topic of noise generation caused by external gear pumps for high pressure applications, which can be useful and effective in investigating the interaction between noise sources and radiated noise and establishing the design guide for a quiet pump. In particular, this study classifies the internal noise sources into four types of effective load functions and, in the proposed model, these load functions are applied to the corresponding areas of the pump case in a realistic way. Vibration and sound radiation can then be predicted using a combined finite element and boundary element vibro-acoustic model. The radiated sound power and sound pressure for the different operating conditions are presented as the main outcomes of the acoustic model. The noise prediction was validated through comparison with the experimentally measured sound power levels.

  13. 10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression

    Directory of Open Access Journals (Sweden)

    Patrick Neff

    2017-05-01

    Full Text Available Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM sounds (two pure tones, noise, music, and frequency modulated (FM sounds and unmodulated sounds (pure tone, noise regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively.Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min, and loudness (reduced by 30 dB and linear fade out. Repeated measures mixed model analyses of variance (ANOVA were calculated to assess differences in loudness growth between the stimuli for each block separately.Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes with strongest suppression right after stimulus offset [F(6, 1331 = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink

  14. The role of similarity cues in the development of trust in sources of information about GM food.

    Science.gov (United States)

    Meijnders, Anneloes; Midden, Cees; Olofsson, Anna; Ohman, Susanna; Matthes, Jörg; Bondarenko, Olha; Gutteling, Jan; Rusanen, Maria

    2009-08-01

    In evaluating complex new technologies, people are usually dependent on information provided by others, for example, experts or journalists, and have to determine whether they can trust these information sources. This article focuses on similarity as the basis for trust. The first experiment (N = 261) confirmed that a journalist writing about genetically modified (GM) food was trusted more when his attitude was congruent with that of his readers. In addition, the experiment showed that this effect was mediated by the perceived similarity of the journalist. The second experiment (N = 172) revealed that trust in a journalist writing about the focal domain of GM food was even influenced by him expressing a congruent attitude in an unrelated domain. This result supports a general similarity account of the congruence effect on trust, as opposed to a confirmatory bias account.

  15. The Keyimage Method of Learning Sound-Symbol Correspondences: A Case Study of Learning Written Khmer

    Directory of Open Access Journals (Sweden)

    Elizabeth Lavolette

    2009-01-01

    Full Text Available I documented my strategies for learning sound-symbol correspondences during a Khmer course. I used a mnemonic strategy that I call the keyimage method. In this method, a character evokes an image (the keyimage, which evokes the corresponding sound. For example, the keyimage for the character 2 could be a swan with its head tucked in. This evokes the sound "kaw" that a swan makes, which sounds similar to the Khmer sound corresponding to 2. The method has some similarities to the keyword method. Considering the results of keyword studies, I hypothesize that the keyimage method is more effective than rote learning and that peer-generated keyimages are more effective than researcher- or teacher-generated keyimages, which are more effective than learner-generated ones. In Dr. Andrew Cohen's plenary presentation at the Hawaii TESOL 2007 conference, he mentioned that more case studies are needed on learning strategies (LSs. One reason to study LSs is that what learners do with input to produce output is unclear, and knowing what strategies learners use may help us understand that process (Dornyei, 2005, p. 170. Hopefully, we can use that knowledge to improve language learning, perhaps by teaching learners to use the strategies that we find. With that in mind, I have examined the LSs that I used in studying Khmer as a foreign language, focusing on learning the syllabic alphabet.

  16. Sound [signal] noise

    DEFF Research Database (Denmark)

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  17. Beneath sci-fi sound: primer, science fiction sound design, and American independent cinema

    OpenAIRE

    Johnston, Nessa

    2012-01-01

    Primer is a very low budget science-fiction film that deals with the subject of time travel; however, it looks and sounds quite distinctively different from other films associated with the genre. While Hollywood blockbuster sci-fi relies on “sound spectacle” as a key attraction, in contrast Primer sounds “lo-fi” and screen-centred, mixed to two channel stereo rather than the now industry-standard 5.1 surround sound. Although this is partly a consequence of the economics of its production, the...

  18. Masking release by combined spatial and masker-fluctuation effects in the open sound field.

    Science.gov (United States)

    Middlebrooks, John C

    2017-12-01

    In a complex auditory scene, signals of interest can be distinguished from masking sounds by differences in source location [spatial release from masking (SRM)] and by differences between masker-alone and masker-plus-signal envelopes. This study investigated interactions between those factors in release of masking of 700-Hz tones in an open sound field. Signal and masker sources were colocated in front of the listener, or the signal source was shifted 90° to the side. In Experiment 1, the masker contained a 25-Hz-wide on-signal band plus flanking bands having envelopes that were either mutually uncorrelated or were comodulated. Comodulation masking release (CMR) was largely independent of signal location at a higher masker sound level, but at a lower level CMR was reduced for the lateral signal location. In Experiment 2, a brief signal was positioned at the envelope maximum (peak) or minimum (dip) of a 50-Hz-wide on-signal masker. Masking was released in dip more than in peak conditions only for the 90° signal. Overall, open-field SRM was greater in magnitude than binaural masking release reported in comparable closed-field studies, and envelope-related release was somewhat weaker. Mutual enhancement of masking release by spatial and envelope-related effects tended to increase with increasing masker level.

  19. International perception of lung sounds: a comparison of classification across some European borders

    OpenAIRE

    Aviles Solis, Juan Carlos; Vanbelle, Sophie; Halvorsen, Peder Andreas; Francis, Nick; Cals, Jochem W L; Andreeva, Elena A; Marques, Alda; Piirila, Paivi; Pasterkamp, Hans; Melbye, Hasse

    2017-01-01

    Source at http://dx.doi.org/10.1136/bmjresp-2017-000250 Introduction: Lung auscultation is helpful in the diagnosis of lung and heart diseases; however, the diagnostic value of lung sounds may be questioned due to interobserver variation. This situation may also impair clinical research in this area to generate evidence-based knowledge about the role that chest auscultation has in a modern clinical setting. The recording and visual display of lung sounds is a method that is both repeatab...

  20. Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas

    International Nuclear Information System (INIS)

    Perelomova, A.

    2010-01-01

    Two dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place, are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into thermal mode and internal vibrational degrees of freedom of a relaxing gas. The final dynamic equations are instantaneous; they include a quadratic nonlinear acoustic source, reflecting the nonlinear character of interaction of low-frequency acoustic and non-acoustic motions of the fluid. All types of sound, periodic or aperiodic, may serve as an acoustic source of both phenomena. The low-frequency sound is considered in this study. Some conclusions about temporal behavior of non-acoustic modes caused by periodic and aperiodic sound are made. Under certain conditions, acoustic cooling takes place instead of heating. (author)

  1. Sound classification of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2012-01-01

    National schemes for sound classification of dwellings exist in more than ten countries in Europe, typically published as national standards. The schemes define quality classes reflecting different levels of acoustical comfort. Main criteria concern airborne and impact sound insulation between...... dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...

  2. Gaze Duration Biases for Colours in Combination with Dissonant and Consonant Sounds: A Comparative Eye-Tracking Study with Orangutans.

    Science.gov (United States)

    Mühlenbeck, Cordelia; Liebal, Katja; Pritsch, Carla; Jacobsen, Thomas

    2015-01-01

    Research on colour preferences in humans and non-human primates suggests similar patterns of biases for and avoidance of specific colours, indicating that these colours are connected to a psychological reaction. Similarly, in the acoustic domain, approach reactions to consonant sounds (considered as positive) and avoidance reactions to dissonant sounds (considered as negative) have been found in human adults and children, and it has been demonstrated that non-human primates are able to discriminate between consonant and dissonant sounds. Yet it remains unclear whether the visual and acoustic approach-avoidance patterns remain consistent when both types of stimuli are combined, how they relate to and influence each other, and whether these are similar for humans and other primates. Therefore, to investigate whether gaze duration biases for colours are similar across primates and whether reactions to consonant and dissonant sounds cumulate with reactions to specific colours, we conducted an eye-tracking study in which we compared humans with one species of great apes, the orangutans. We presented four different colours either in isolation or in combination with consonant and dissonant sounds. We hypothesised that the viewing time for specific colours should be influenced by dissonant sounds and that previously existing avoidance behaviours with regard to colours should be intensified, reflecting their association with negative acoustic information. The results showed that the humans had constant gaze durations which were independent of the auditory stimulus, with a clear avoidance of yellow. In contrast, the orangutans did not show any clear gaze duration bias or avoidance of colours, and they were also not influenced by the auditory stimuli. In conclusion, our findings only partially support the previously identified pattern of biases for and avoidance of specific colours in humans and do not confirm such a pattern for orangutans.

  3. Is 1/f sound more effective than simple resting in reducing stress response?

    Science.gov (United States)

    Oh, Eun-Joo; Cho, Il-Young; Park, Soon-Kwon

    2014-01-01

    It has been previously demonstrated that listening to 1/f sound effectively reduces stress. However, these findings have been inconsistent and further study on the relationship between 1/f sound and the stress response is consequently necessary. The present study examined whether sound with 1/f properties (1/f sound) affects stress-induced electroencephalogram (EEG) changes. Twenty-six subjects who voluntarily participated in the study were randomly assigned to the experimental or control group. Data from four participants were excluded because of EEG artifacts. A mental arithmetic task was used as a stressor. Participants in the experiment group listened to 1/f sound for 5 minutes and 33 seconds, while participants in the control group sat quietly for the same duration. EEG recordings were obtained at various points throughout the experiment. After the experiment, participants completed a questionnaire on the affective impact of the 1/f sound. The results indicated that the mental arithmetic task effectively induced a stress response measurable by EEG. Relative theta power at all electrode sites was significantly lower than baseline in both the control and experimental group. Relative alpha power was significantly lower, and relative beta power was significantly higher in the T3 and T4 areas. Secondly, 1/f sound and simple resting affected task-associated EEG changes in a similar manner. Finally, participants reported in the questionnaire that they experienced a positive feeling in response to the 1/f sound. Our results suggest that a commercialized 1/f sound product is not more effective than simple resting in alleviating the physiological stress response.

  4. Sound Art Situations

    DEFF Research Database (Denmark)

    Krogh Groth, Sanne; Samson, Kristine

    2017-01-01

    and combine theories from several fields. Aspects of sound art studies, performance studies and contemporary art studies are presented in order to theoretically explore the very diverse dimensions of the two sound art pieces: Visual, auditory, performative, social, spatial and durational dimensions become......This article is an analysis of two sound art performances that took place June 2015 in outdoor public spaces in the social housing area Urbanplanen in Copenhagen, Denmark. The two performances were On the production of a poor acoustics by Brandon LaBelle and Green Interactive Biofeedback...... Environments (GIBE) by Jeremy Woodruff. In order to investigate the complex situation that arises when sound art is staged in such contexts, the authors of this article suggest exploring the events through approaching them as ‘situations’ (Doherty 2009). With this approach it becomes possible to engage...

  5. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    Science.gov (United States)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  6. Characteristic sounds facilitate visual search.

    Science.gov (United States)

    Iordanescu, Lucica; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru

    2008-06-01

    In a natural environment, objects that we look for often make characteristic sounds. A hiding cat may meow, or the keys in the cluttered drawer may jingle when moved. Using a visual search paradigm, we demonstrated that characteristic sounds facilitated visual localization of objects, even when the sounds carried no location information. For example, finding a cat was faster when participants heard a meow sound. In contrast, sounds had no effect when participants searched for names rather than pictures of objects. For example, hearing "meow" did not facilitate localization of the word cat. These results suggest that characteristic sounds cross-modally enhance visual (rather than conceptual) processing of the corresponding objects. Our behavioral demonstration of object-based cross-modal enhancement complements the extensive literature on space-based cross-modal interactions. When looking for your keys next time, you might want to play jingling sounds.

  7. The effect of interaural-level-difference fluctuations on the externalization of sound

    DEFF Research Database (Denmark)

    Catic, Jasmina; Santurette, Sébastien; Buchholz, Jörg M.

    2013-01-01

    Real-world sound sources are usually perceived as externalized and thus properly localized in both direction and distance. This is largely due to (1) the acoustic filtering by the head, torso, and pinna, resulting in modifications of the signal spectrum and thereby a frequency-dependent shaping...... of interaural cues and (2) interaural cues provided by the reverberation inside an enclosed space. This study first investigated the effect of room reverberation on the spectro-temporal behavior of interaural level differences (ILDs) by analyzing dummy-head recordings of speech played at different distances...... in a standard listening room. Next, the effect of ILD fluctuations on the degree of externalization was investigated in a psychoacoustic experiment performed in the same listening room. Individual binaural impulse responses were used to simulate a distant sound source delivered via headphones. The ILDs were...

  8. Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film.

    Science.gov (United States)

    Lee, Kyoung-Ryul; Jang, Sung Hwan; Jung, Inhwa

    2018-08-10

    We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 V pp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.

  9. Determining the speed of sound in the air by sound wave interference

    Science.gov (United States)

    Silva, Abel A.

    2017-07-01

    Mechanical waves propagate through material media. Sound is an example of a mechanical wave. In fluids like air, sound waves propagate through successive longitudinal perturbations of compression and decompression. Audible sound frequencies for human ears range from 20 to 20 000 Hz. In this study, the speed of sound v in the air is determined using the identification of maxima of interference from two synchronous waves at frequency f. The values of v were correct to 0 °C. The experimental average value of {\\bar{ν }}\\exp =336 +/- 4 {{m}} {{{s}}}-1 was found. It is 1.5% larger than the reference value. The standard deviation of 4 m s-1 (1.2% of {\\bar{ν }}\\exp ) is an improved value by the use of the concept of the central limit theorem. The proposed procedure to determine the speed of sound in the air aims to be an academic activity for physics classes of scientific and technological courses in college.

  10. Fluid Sounds

    DEFF Research Database (Denmark)

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  11. The influence of environmental sound training on the perception of spectrally degraded speech and environmental sounds.

    Science.gov (United States)

    Shafiro, Valeriy; Sheft, Stanley; Gygi, Brian; Ho, Kim Thien N

    2012-06-01

    Perceptual training with spectrally degraded environmental sounds results in improved environmental sound identification, with benefits shown to extend to untrained speech perception as well. The present study extended those findings to examine longer-term training effects as well as effects of mere repeated exposure to sounds over time. Participants received two pretests (1 week apart) prior to a week-long environmental sound training regimen, which was followed by two posttest sessions, separated by another week without training. Spectrally degraded stimuli, processed with a four-channel vocoder, consisted of a 160-item environmental sound test, word and sentence tests, and a battery of basic auditory abilities and cognitive tests. Results indicated significant improvements in all speech and environmental sound scores between the initial pretest and the last posttest with performance increments following both exposure and training. For environmental sounds (the stimulus class that was trained), the magnitude of positive change that accompanied training was much greater than that due to exposure alone, with improvement for untrained sounds roughly comparable to the speech benefit from exposure. Additional tests of auditory and cognitive abilities showed that speech and environmental sound performance were differentially correlated with tests of spectral and temporal-fine-structure processing, whereas working memory and executive function were correlated with speech, but not environmental sound perception. These findings indicate generalizability of environmental sound training and provide a basis for implementing environmental sound training programs for cochlear implant (CI) patients.

  12. Categorization of common sounds by cochlear implanted and normal hearing adults.

    Science.gov (United States)

    Collett, E; Marx, M; Gaillard, P; Roby, B; Fraysse, B; Deguine, O; Barone, P

    2016-05-01

    Auditory categorization involves grouping of acoustic events along one or more shared perceptual dimensions which can relate to both semantic and physical attributes. This process involves both high level cognitive processes (categorization) and low-level perceptual encoding of the acoustic signal, both of which are affected by the use of a cochlear implant (CI) device. The goal of this study was twofold: I) compare the categorization strategies of CI users and normal hearing listeners (NHL) II) investigate if any characteristics of the raw acoustic signal could explain the results. 16 experienced CI users and 20 NHL were tested using a Free-Sorting Task of 16 common sounds divided into 3 predefined categories of environmental, musical and vocal sounds. Multiple Correspondence Analysis (MCA) and Hierarchical Clustering based on Principal Components (HCPC) show that CI users followed a similar categorization strategy to that of NHL and were able to discriminate between the three different types of sounds. However results for CI users were more varied and showed less inter-participant agreement. Acoustic analysis also highlighted the average pitch salience and average autocorrelation peak as being important for the perception and categorization of the sounds. The results therefore show that on a broad level of categorization CI users may not have as many difficulties as previously thought in discriminating certain kinds of sound; however the perception of individual sounds remains challenging. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Characteristics of sound radiation from turbulent premixed flames

    Science.gov (United States)

    Rajaram, Rajesh

    Turbulent combustion processes are inherently unsteady and, thus, a source of acoustic radiation, which occurs due to the unsteady expansion of reacting gases. While prior studies have extensively characterized the total sound power radiated by turbulent flames, their spectral characteristics are not well understood. The objective of this research work is to measure the flow and acoustic properties of an open turbulent premixed jet flame and explain the spectral trends of combustion noise. The flame dynamics were characterized using high speed chemiluminescence images of the flame. A model based on the solution of the wave equation with unsteady heat release as the source was developed and was used to relate the measured chemiluminescence fluctuations to its acoustic emission. Acoustic measurements were performed in an anechoic environment for several burner diameters, flow velocities, turbulence intensities, fuels, and equivalence ratios. The acoustic emissions are shown to be characterized by four parameters: peak frequency (Fpeak), low frequency slope (beta), high frequency slope (alpha) and Overall Sound Pressure Level (OASPL). The peak frequency (Fpeak) is characterized by a Strouhal number based on the mean velocity and a flame length. The transfer function between the acoustic spectrum and the spectrum of heat release fluctuations has an f2 dependence at low frequencies, while it converged to a constant value at high frequencies. Furthermore, the OASPL was found to be characterized by (Fpeak mfH)2, which resembles the source term in the wave equation.

  14. Sound Surfing Network (SSN): Mobile Phone-based Sound Spatialization with Audience Collaboration

    OpenAIRE

    Park, Saebyul; Ban, Seonghoon; Hong, Dae Ryong; Yeo, Woon Seung

    2013-01-01

    SSN (Sound Surfing Network) is a performance system that provides a new musicalexperience by incorporating mobile phone-based spatial sound control tocollaborative music performance. SSN enables both the performer and theaudience to manipulate the spatial distribution of sound using the smartphonesof the audience as distributed speaker system. Proposing a new perspective tothe social aspect music appreciation, SSN will provide a new possibility tomobile music performances in the context of in...

  15. Sound Exposure of Symphony Orchestra Musicians

    DEFF Research Database (Denmark)

    Schmidt, Jesper Hvass; Pedersen, Ellen Raben; Juhl, Peter Møller

    2011-01-01

    dBA and their left ear was exposed 4.6 dB more than the right ear. Percussionists were exposed to high sound peaks >115 dBC but less continuous sound exposure was observed in this group. Musicians were exposed up to LAeq8h of 92 dB and a majority of musicians were exposed to sound levels exceeding......Background: Assessment of sound exposure by noise dosimetry can be challenging especially when measuring the exposure of classical orchestra musicians where sound originate from many different instruments. A new measurement method of bilateral sound exposure of classical musicians was developed...... and used to characterize sound exposure of the left and right ear simultaneously in two different symphony orchestras.Objectives: To measure binaural sound exposure of professional classical musicians and to identify possible exposure risk factors of specific musicians.Methods: Sound exposure was measured...

  16. Localizing semantic interference from distractor sounds in picture naming: A dual-task study.

    Science.gov (United States)

    Mädebach, Andreas; Kieseler, Marie-Luise; Jescheniak, Jörg D

    2017-10-13

    In this study we explored the locus of semantic interference in a novel picture-sound interference task in which participants name pictures while ignoring environmental distractor sounds. In a previous study using this task (Mädebach, Wöhner, Kieseler, & Jescheniak, in Journal of Experimental Psychology: Human Perception and Performance, 43, 1629-1646, 2017), we showed that semantically related distractor sounds (e.g., BARKING dog ) interfere with a picture-naming response (e.g., "horse") more strongly than unrelated distractor sounds do (e.g., DRUMMING drum ). In the experiment reported here, we employed the psychological refractory period (PRP) approach to explore the locus of this effect. We combined a geometric form classification task (square vs. circle; Task 1) with the picture-sound interference task (Task 2). The stimulus onset asynchrony (SOA) between the tasks was systematically varied (0 vs. 500 ms). There were three central findings. First, the semantic interference effect from distractor sounds was replicated. Second, picture naming (in Task 2) was slower with the short than with the long task SOA. Third, both effects were additive-that is, the semantic interference effects were of similar magnitude at both task SOAs. This suggests that the interference arises during response selection or later stages, not during early perceptual processing. This finding corroborates the theory that semantic interference from distractor sounds reflects a competitive selection mechanism in word production.

  17. Letter-Sound Reading: Teaching Preschool Children Print-to-Sound Processing

    Science.gov (United States)

    Wolf, Gail Marie

    2016-01-01

    This intervention study investigated the growth of letter sound reading and growth of consonant-vowel-consonant (CVC) word decoding abilities for a representative sample of 41 US children in preschool settings. Specifically, the study evaluated the effectiveness of a 3-step letter-sound teaching intervention in teaching preschool children to…

  18. A Sparsity-Based Approach to 3D Binaural Sound Synthesis Using Time-Frequency Array Processing

    Science.gov (United States)

    Cobos, Maximo; Lopez, JoseJ; Spors, Sascha

    2010-12-01

    Localization of sounds in physical space plays a very important role in multiple audio-related disciplines, such as music, telecommunications, and audiovisual productions. Binaural recording is the most commonly used method to provide an immersive sound experience by means of headphone reproduction. However, it requires a very specific recording setup using high-fidelity microphones mounted in a dummy head. In this paper, we present a novel processing framework for binaural sound recording and reproduction that avoids the use of dummy heads, which is specially suitable for immersive teleconferencing applications. The method is based on a time-frequency analysis of the spatial properties of the sound picked up by a simple tetrahedral microphone array, assuming source sparseness. The experiments carried out using simulations and a real-time prototype confirm the validity of the proposed approach.

  19. How male sound pressure level influences phonotaxis in virgin female Jamaican field crickets (Gryllus assimilis

    Directory of Open Access Journals (Sweden)

    Karen Pacheco

    2014-06-01

    Full Text Available Understanding female mate preference is important for determining the strength and direction of sexual trait evolution. The sound pressure level (SPL acoustic signalers use is often an important predictor of mating success because higher sound pressure levels are detectable at greater distances. If females are more attracted to signals produced at higher sound pressure levels, then the potential fitness impacts of signalling at higher sound pressure levels should be elevated beyond what would be expected from detection distance alone. Here we manipulated the sound pressure level of cricket mate attraction signals to determine how female phonotaxis was influenced. We examined female phonotaxis using two common experimental methods: spherical treadmills and open arenas. Both methods showed similar results, with females exhibiting greatest phonotaxis towards loud sound pressure levels relative to the standard signal (69 vs. 60 dB SPL but showing reduced phonotaxis towards very loud sound pressure level signals relative to the standard (77 vs. 60 dB SPL. Reduced female phonotaxis towards supernormal stimuli may signify an acoustic startle response, an absence of other required sensory cues, or perceived increases in predation risk.

  20. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  1. The influence of ski helmets on sound perception and sound localisation on the ski slope

    Directory of Open Access Journals (Sweden)

    Lana Ružić

    2015-04-01

    Full Text Available Objectives: The aim of the study was to investigate whether a ski helmet interferes with the sound localization and the time of sound perception in the frontal plane. Material and Methods: Twenty-three participants (age 30.7±10.2 were tested on the slope in 2 conditions, with and without wearing the ski helmet, by 6 different spatially distributed sound stimuli per each condition. Each of the subjects had to react when hearing the sound as soon as possible and to signalize the correct side of the sound arrival. Results: The results showed a significant difference in the ability to localize the specific ski sounds; 72.5±15.6% of correct answers without a helmet vs. 61.3±16.2% with a helmet (p < 0.01. However, the performance on this test did not depend on whether they were used to wearing a helmet (p = 0.89. In identifying the timing, at which the sound was firstly perceived, the results were also in favor of the subjects not wearing a helmet. The subjects reported hearing the ski sound clues at 73.4±5.56 m without a helmet vs. 60.29±6.34 m with a helmet (p < 0.001. In that case the results did depend on previously used helmets (p < 0.05, meaning that that regular usage of helmets might help to diminish the attenuation of the sound identification that occurs because of the helmets. Conclusions: Ski helmets might limit the ability of a skier to localize the direction of the sounds of danger and might interfere with the moment, in which the sound is firstly heard.

  2. 77 FR 37318 - Eighth Coast Guard District Annual Safety Zones; Sound of Independence; Santa Rosa Sound; Fort...

    Science.gov (United States)

    2012-06-21

    ...-AA00 Eighth Coast Guard District Annual Safety Zones; Sound of Independence; Santa Rosa Sound; Fort... Coast Guard will enforce a Safety Zone for the Sound of Independence event in the Santa Rosa Sound, Fort... during the Sound of Independence. During the enforcement period, entry into, transiting or anchoring in...

  3. Reduction of noise in the neonatal intensive care unit using sound-activated noise meters.

    Science.gov (United States)

    Wang, D; Aubertin, C; Barrowman, N; Moreau, K; Dunn, S; Harrold, J

    2014-11-01

    To determine if sound-activated noise meters providing direct audit and visual feedback can reduce sound levels in a level 3 neonatal intensive care unit (NICU). Sound levels (in dB) were compared between a 2-month period with noise meters present but without visual signal fluctuation and a subsequent 2 months with the noise meters providing direct audit and visual feedback. There was a significant increase in the percentage of time the sound level in the NICU was below 50 dB across all patient care areas (9.9%, 8.9% and 7.3%). This improvement was not observed in the desk area where there are no admitted patients. There was no change in the percentage of time the NICU was below 45 or 55 dB. Sound-activated noise meters seem effective in reducing sound levels in patient care areas. Conversations may have moved to non-patient care areas preventing a similar change there. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Eluding the Physical Constraints in a Nonlinear Interaction Sound Synthesis Model for Gesture Guidance

    Directory of Open Access Journals (Sweden)

    Etienne Thoret

    2016-06-01

    Full Text Available In this paper, a flexible control strategy for a synthesis model dedicated to nonlinear friction phenomena is proposed. This model enables to synthesize different types of sound sources, such as creaky doors, singing glasses, squeaking wet plates or bowed strings. Based on the perceptual stance that a sound is perceived as the result of an action on an object we propose a genuine source/filter synthesis approach that enables to elude physical constraints induced by the coupling between the interacting objects. This approach makes it possible to independently control and freely combine the action and the object. Different implementations and applications related to computer animation, gesture learning for rehabilitation and expert gestures are presented at the end of this paper.

  5. Neural Decoding of Bistable Sounds Reveals an Effect of Intention on Perceptual Organization.

    Science.gov (United States)

    Billig, Alexander J; Davis, Matthew H; Carlyon, Robert P

    2018-03-14

    Auditory signals arrive at the ear as a mixture that the brain must decompose into distinct sources based to a large extent on acoustic properties of the sounds. An important question concerns whether listeners have voluntary control over how many sources they perceive. This has been studied using pure high (H) and low (L) tones presented in the repeating pattern HLH-HLH-, which can form a bistable percept heard either as an integrated whole (HLH-) or as segregated into high (H-H-) and low (-L-) sequences. Although instructing listeners to try to integrate or segregate sounds affects reports of what they hear, this could reflect a response bias rather than a perceptual effect. We had human listeners (15 males, 12 females) continuously report their perception of such sequences and recorded neural activity using MEG. During neutral listening, a classifier trained on patterns of neural activity distinguished between periods of integrated and segregated perception. In other conditions, participants tried to influence their perception by allocating attention either to the whole sequence or to a subset of the sounds. They reported hearing the desired percept for a greater proportion of time than when listening neutrally. Critically, neural activity supported these reports; stimulus-locked brain responses in auditory cortex were more likely to resemble the signature of segregation when participants tried to hear segregation than when attempting to perceive integration. These results indicate that listeners can influence how many sound sources they perceive, as reflected in neural responses that track both the input and its perceptual organization. SIGNIFICANCE STATEMENT Can we consciously influence our perception of the external world? We address this question using sound sequences that can be heard either as coming from a single source or as two distinct auditory streams. Listeners reported spontaneous changes in their perception between these two interpretations while

  6. Office noise: Can headphones and masking sound attenuate distraction by background speech?

    Science.gov (United States)

    Jahncke, Helena; Björkeholm, Patrik; Marsh, John E; Odelius, Johan; Sörqvist, Patrik

    2016-11-22

    Background speech is one of the most disturbing noise sources at shared workplaces in terms of both annoyance and performance-related disruption. Therefore, it is important to identify techniques that can efficiently protect performance against distraction. It is also important that the techniques are perceived as satisfactory and are subjectively evaluated as effective in their capacity to reduce distraction. The aim of the current study was to compare three methods of attenuating distraction from background speech: masking a background voice with nature sound through headphones, masking a background voice with other voices through headphones and merely wearing headphones (without masking) as a way to attenuate the background sound. Quiet was deployed as a baseline condition. Thirty students participated in an experiment employing a repeated measures design. Performance (serial short-term memory) was impaired by background speech (1 voice), but this impairment was attenuated when the speech was masked - and in particular when it was masked by nature sound. Furthermore, perceived workload was lowest in the quiet condition and significantly higher in all other sound conditions. Notably, the headphones tested as a sound-attenuating device (i.e. without masking) did not protect against the effects of background speech on performance and subjective work load. Nature sound was the only masking condition that worked as a protector of performance, at least in the context of the serial recall task. However, despite the attenuation of distraction by nature sound, perceived workload was still high - suggesting that it is difficult to find a masker that is both effective and perceived as satisfactory.

  7. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  8. Sounds of silence: How to animate virtual worlds with sound

    Science.gov (United States)

    Astheimer, Peter

    1993-01-01

    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.

  9. Reduction of interior sound fields in flexible cylinders by active vibration control

    Science.gov (United States)

    Jones, J. D.; Fuller, C. R.

    1988-01-01

    The mechanisms of interior sound reduction through active control of a thin flexible shell's vibrational response are presently evaluated in view of an analytical model. The noise source is a single exterior acoustic monopole. The active control model is evaluated for harmonic excitation; the results obtained indicate spatially-averaged noise reductions in excess of 20 dB over the source plane, for acoustic resonant conditions inside the cavity.

  10. How Pleasant Sounds Promote and Annoying Sounds Impede Health: A Cognitive Approach

    Directory of Open Access Journals (Sweden)

    Tjeerd C. Andringa

    2013-04-01

    Full Text Available This theoretical paper addresses the cognitive functions via which quiet and in general pleasurable sounds promote and annoying sounds impede health. The article comprises a literature analysis and an interpretation of how the bidirectional influence of appraising the environment and the feelings of the perceiver can be understood in terms of core affect and motivation. This conceptual basis allows the formulation of a detailed cognitive model describing how sonic content, related to indicators of safety and danger, either allows full freedom over mind-states or forces the activation of a vigilance function with associated arousal. The model leads to a number of detailed predictions that can be used to provide existing soundscape approaches with a solid cognitive science foundation that may lead to novel approaches to soundscape design. These will take into account that louder sounds typically contribute to distal situational awareness while subtle environmental sounds provide proximal situational awareness. The role of safety indicators, mediated by proximal situational awareness and subtle sounds, should become more important in future soundscape research.

  11. Sound synthesis and evaluation of interactive footsteps and environmental sounds rendering for virtual reality applications.

    Science.gov (United States)

    Nordahl, Rolf; Turchet, Luca; Serafin, Stefania

    2011-09-01

    We propose a system that affords real-time sound synthesis of footsteps on different materials. The system is based on microphones, which detect real footstep sounds from subjects, from which the ground reaction force (GRF) is estimated. Such GRF is used to control a sound synthesis engine based on physical models. Two experiments were conducted. In the first experiment, the ability of subjects to recognize the surface they were exposed to was assessed. In the second experiment, the sound synthesis engine was enhanced with environmental sounds. Results show that, in some conditions, adding a soundscape significantly improves the recognition of the simulated environment.

  12. Abrupt uplift within the past 1700 years at Southern Puget Sound, Washington

    Science.gov (United States)

    Bucknam, R.C.; Hemphill-Haley, E.; Leopold, E.B.

    1992-01-01

    Shorelines rose as much as 7 meters along southern Puget Sound and Hood Canal between 500 and 1700 years ago. Evidence for this uplift consists of elevated wave-cut shore platforms near Seattle and emerged, peat-covered tidal flats as much as 60 kilometers to the southwest. The uplift was too rapid for waves to leave intermediate shorelines on even the best preserved platform. The tidal flats also emerged abruptly; they changed into freshwater swamps and meadows without first becoming tidal marshes. Where uplift was greatest, it adjoined an inferred fault that crosses Puget Sound at Seattle and it probably accompanied reverse slip on that fault 1000 to 1100 years ago. The uplift and probable fault slip show that the crust of the North America plate contains potential sources of damaging earthquakes in the Puget Sound region.

  13. It sounds good!

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Both the atmosphere and we ourselves are hit by hundreds of particles every second and yet nobody has ever heard a sound coming from these processes. Like cosmic rays, particles interacting inside the detectors at the LHC do not make any noise…unless you've decided to use the ‘sonification’ technique, in which case you might even hear the Higgs boson sound like music. Screenshot of the first page of the "LHC sound" site. A group of particle physicists, composers, software developers and artists recently got involved in the ‘LHC sound’ project to make the particles at the LHC produce music. Yes…music! The ‘sonification’ technique converts data into sound. “In this way, if you implement the right software you can get really nice music out of the particle tracks”, says Lily Asquith, a member of the ATLAS collaboration and one of the initiators of the project. The ‘LHC...

  14. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)

    2017-06-21

    The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.

  15. Sound Toll Registers Online and the eighteenth century Baltic coffee commerce

    NARCIS (Netherlands)

    Veluwenkamp, Jan; Draper, Maarten

    2014-01-01

    The ‘Sound Toll Registers Online’ project of the University of Groningen is the subject of this article. Jan Willem Veluwenkamp and Maarten Draper discuss the history, aims and achievements of the project. The possibilities and prospects of this new source are illustrated by a case study on Baltic

  16. Musical Sound, Instruments, and Equipment

    Science.gov (United States)

    Photinos, Panos

    2017-12-01

    'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.

  17. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  18. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  19. The upper lithostratigraphic unit of ANDRILL AND-2A core (Southern McMurdo Sound, Antarctica): local Pleistocene volcanic sources, paleoenvironmental implications and subsidence in the southern Victoria Land Basin

    Science.gov (United States)

    Del Carlo, P.; Panter, K. S.; Bassett, K. N.; Bracciali, L.; di Vincenzo, G.; Rocchi, S.

    2009-12-01

    We report results from the study of the uppermost 37 meters of the Southern McMurdo Sound (SMS) AND-2A drillcore, corresponding to the lithostratigraphic unit 1 (LSU 1), the most volcanogenic unit within the core. Nearly all of LSU 1 consists of volcanic breccia and sandstone that is a mixture of near primary volcanic material dominated by lava and vitric clasts with minor exotic material derived from distal basement sources. Lava clasts and glass are mafic and range from strongly alkaline (basanite, tephrite) to moderately alkaline (alkali basalt, hawaiite) compositions that are similar to nearby land deposits. 40Ar-39Ar laser step-heating analyses on groundmass separated from lava clasts yield Pleistocene ages (692±38 and 793±63, ±2σ internal errors). Volcanoes of the Dailey Island group, located ~13 km SW of the drillsite, are a possible source for the volcanic materials based on their close proximity, similar composition and age. A basanite lava flow on Juergens Island yields a comparable Pleistocene age of 775±22 ka. Yet there is evidence to suggest that the volcanic source is much closer to the drillsite and that the sediments were deposited in much shallower water relative to the present-day water depth of 384 mbsl. Evidence for local volcanic activity is based in part on the common occurrence of delicate vitriclasts (e.g. glass shards and Pele’s hair) and a minimally reworked ~2 meter thick monomict breccia that is interpreted to have formed by autobrecciating lava. In addition, conical-shaped seamounts and high frequency magnetic anomalies encompass the drillsite and extend south including the volcanoes of the Dailey Islands. Sedimentary features and structures indicate shallow water sedimentation for the whole of LSU 1. Rippled asymmetric cross-laminated sands and hummocky cross-stratification occur intermittently throughout LSU 1 and indicate water depths shallower than 100 meters. The occurrence of ooliths and layers containing siderite and Fe

  20. Decoding the neural signatures of emotions expressed through sound.

    Science.gov (United States)

    Sachs, Matthew E; Habibi, Assal; Damasio, Antonio; Kaplan, Jonas T

    2018-03-01

    Effective social functioning relies in part on the ability to identify emotions from auditory stimuli and respond appropriately. Previous studies have uncovered brain regions engaged by the affective information conveyed by sound. But some of the acoustical properties of sounds that express certain emotions vary remarkably with the instrument used to produce them, for example the human voice or a violin. Do these brain regions respond in the same way to different emotions regardless of the sound source? To address this question, we had participants (N = 38, 20 females) listen to brief audio excerpts produced by the violin, clarinet, and human voice, each conveying one of three target emotions-happiness, sadness, and fear-while brain activity was measured with fMRI. We used multivoxel pattern analysis to test whether emotion-specific neural responses to the voice could predict emotion-specific neural responses to musical instruments and vice-versa. A whole-brain searchlight analysis revealed that patterns of activity within the primary and secondary auditory cortex, posterior insula, and parietal operculum were predictive of the affective content of sound both within and across instruments. Furthermore, classification accuracy within the anterior insula was correlated with behavioral measures of empathy. The findings suggest that these brain regions carry emotion-specific patterns that generalize across sounds with different acoustical properties. Also, individuals with greater empathic ability have more distinct neural patterns related to perceiving emotions. These results extend previous knowledge regarding how the human brain extracts emotional meaning from auditory stimuli and enables us to understand and connect with others effectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Product sounds : Fundamentals and application

    NARCIS (Netherlands)

    Ozcan-Vieira, E.

    2008-01-01

    Products are ubiquitous, so are the sounds emitted by products. Product sounds influence our reasoning, emotional state, purchase decisions, preference, and expectations regarding the product and the product's performance. Thus, auditory experience elicited by product sounds may not be just about

  2. Aging Affects Adaptation to Sound-Level Statistics in Human Auditory Cortex.

    Science.gov (United States)

    Herrmann, Björn; Maess, Burkhard; Johnsrude, Ingrid S

    2018-02-21

    Optimal perception requires efficient and adaptive neural processing of sensory input. Neurons in nonhuman mammals adapt to the statistical properties of acoustic feature distributions such that they become sensitive to sounds that are most likely to occur in the environment. However, whether human auditory responses adapt to stimulus statistical distributions and how aging affects adaptation to stimulus statistics is unknown. We used MEG to study how exposure to different distributions of sound levels affects adaptation in auditory cortex of younger (mean: 25 years; n = 19) and older (mean: 64 years; n = 20) adults (male and female). Participants passively listened to two sound-level distributions with different modes (either 15 or 45 dB sensation level). In a control block with long interstimulus intervals, allowing neural populations to recover from adaptation, neural response magnitudes were similar between younger and older adults. Critically, both age groups demonstrated adaptation to sound-level stimulus statistics, but adaptation was altered for older compared with younger people: in the older group, neural responses continued to be sensitive to sound level under conditions in which responses were fully adapted in the younger group. The lack of full adaptation to the statistics of the sensory environment may be a physiological mechanism underlying the known difficulty that older adults have with filtering out irrelevant sensory information. SIGNIFICANCE STATEMENT Behavior requires efficient processing of acoustic stimulation. Animal work suggests that neurons accomplish efficient processing by adjusting their response sensitivity depending on statistical properties of the acoustic environment. Little is known about the extent to which this adaptation to stimulus statistics generalizes to humans, particularly to older humans. We used MEG to investigate how aging influences adaptation to sound-level statistics. Listeners were presented with sounds drawn from

  3. Towards a more sonically inclusive museum practice: a new definition of the ‘sound object’

    Directory of Open Access Journals (Sweden)

    John Kannenberg

    2017-11-01

    Full Text Available As museums continue to search for new ways to attract visitors, recent trends within museum practice have focused on providing audiences with multisensory experiences. Books such as 2014’s The Multisensory Museum present preliminary strategies by which museums might help visitors engage with collections using senses beyond the visual. In this article, an overview of the multisensory roots of museum display and an exploration of the shifting definition of ‘object’ leads to a discussion of Pierre Schaeffer’s musical term objet sonore – the ‘sound object’, which has traditionally stood for recorded sounds on magnetic tape used as source material for electroacoustic musical composition. A problematic term within sound studies, this article proposes a revised definition of ‘sound object’, shifting it from experimental music into the realm of the author’s own experimental curatorial practice of establishing The Museum of Portable Sound, an institution dedicated to the collection and display of sounds as cultural objects. Utilising Brian Kane’s critique of Schaeffer, Christoph Cox and Casey O’Callaghan’s thoughts on sonic materialism, Dan Novak and Matt Sakakeeny’s anthropological approach to sound theory, and art historian Alexander Nagel’s thoughts on the origins of art forgery, this article presents a new working definition of the sound object as a museological (rather than a musical concept.

  4. Sources of Nutrients to Nearshore Areas of a Eutrophic Estuary: Implications for Nutrient-Enhanced Acidification in Puget Sound

    Science.gov (United States)

    Pacella, S. R.

    2016-02-01

    Ocean acidification has recently been highlighted as a major stressor for coastal organisms. Further work is needed to assess the role of anthropogenic nutrient additions in eutrophied systems on local biological processes, and how this interacts with CO2 emission-driven acidification. This study sought to distinguish changes in pH caused by natural versus anthropogenically affected processes. We quantified the variability in water column pH attributable to primary production and respiration fueled by anthropogenically derived nitrogen in a shallow nearshore area. Two study sites were located in shallow subtidal areas of the Snohomish River estuary, a eutrophic system located in central Puget Sound, Washington. These sites were chosen due to the presence of heavy agricultural activity, urbanized areas with associated waste water treatment, as well as influence from deep, high CO2 marine waters transported through the Strait of Juan de Fuca and upwelled into the area during spring and summer. Data was collected from July-December 2015 utilizing continuous moorings and discrete water column sampling. Analysis of stable isotopes, δ15N, δ18O-NO3, δ15N-NH4, was used to estimate the relative contributions of anthropogenic versus upwelled marine nitrogen sources. Continuous monitoring of pH, dissolved oxygen, temperature, and salinity was conducted at both study sites to link changes in nutrient source and availability with changes in pH. We predicted that isotope data would indicate greater contributions of nitrogen from agriculture and wastewater rather than upwelling in the shallow, nearshore study sites. This study seeks to distinguish the relative magnitude of pH change stimulated by anthropogenic versus natural sources of nitrogen to inform public policy decisions in critically important nearshore ecosystems.

  5. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    Science.gov (United States)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  6. Food approach conditioning and discrimination learning using sound cues in benthic sharks.

    Science.gov (United States)

    Vila Pouca, Catarina; Brown, Culum

    2018-07-01

    The marine environment is filled with biotic and abiotic sounds. Some of these sounds predict important events that influence fitness while others are unimportant. Individuals can learn specific sound cues and 'soundscapes' and use them for vital activities such as foraging, predator avoidance, communication and orientation. Most research with sounds in elasmobranchs has focused on hearing thresholds and attractiveness to sound sources, but very little is known about their abilities to learn about sounds, especially in benthic species. Here we investigated if juvenile Port Jackson sharks could learn to associate a musical stimulus with a food reward, discriminate between two distinct musical stimuli, and whether individual personality traits were linked to cognitive performance. Five out of eight sharks were successfully conditioned to associate a jazz song with a food reward delivered in a specific corner of the tank. We observed repeatable individual differences in activity and boldness in all eight sharks, but these personality traits were not linked to the learning performance assays we examined. These sharks were later trained in a discrimination task, where they had to distinguish between the same jazz and a novel classical music song, and swim to opposite corners of the tank according to the stimulus played. The sharks' performance to the jazz stimulus declined to chance levels in the discrimination task. Interestingly, some sharks developed a strong side bias to the right, which in some cases was not the correct side for the jazz stimulus.

  7. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck Sound...

  8. Acoustic sources of opportunity in the marine environment - Applied to source localization and ocean sensing

    Science.gov (United States)

    Verlinden, Christopher M.

    Controlled acoustic sources have typically been used for imaging the ocean. These sources can either be used to locate objects or characterize the ocean environment. The processing involves signal extraction in the presence of ambient noise, with shipping being a major component of the latter. With the advent of the Automatic Identification System (AIS) which provides accurate locations of all large commercial vessels, these major noise sources can be converted from nuisance to beacons or sources of opportunity for the purpose of studying the ocean. The source localization method presented here is similar to traditional matched field processing, but differs in that libraries of data-derived measured replicas are used in place of modeled replicas. In order to account for differing source spectra between library and target vessels, cross-correlation functions are compared instead of comparing acoustic signals directly. The library of measured cross-correlation function replicas is extrapolated using waveguide invariant theory to fill gaps between ship tracks, fully populating the search grid with estimated replicas allowing for continuous tracking. In addition to source localization, two ocean sensing techniques are discussed in this dissertation. The feasibility of estimating ocean sound speed and temperature structure, using ship noise across a drifting volumetric array of hydrophones suspended beneath buoys, in a shallow water marine environment is investigated. Using the attenuation of acoustic energy along eigenray paths to invert for ocean properties such as temperature, salinity, and pH is also explored. In each of these cases, the theory is developed, tested using numerical simulations, and validated with data from acoustic field experiments.

  9. Towards Personalized Medicine: Leveraging Patient Similarity and Drug Similarity Analytics

    Science.gov (United States)

    Zhang, Ping; Wang, Fei; Hu, Jianying; Sorrentino, Robert

    2014-01-01

    The rapid adoption of electronic health records (EHR) provides a comprehensive source for exploratory and predictive analytic to support clinical decision-making. In this paper, we investigate how to utilize EHR to tailor treatments to individual patients based on their likelihood to respond to a therapy. We construct a heterogeneous graph which includes two domains (patients and drugs) and encodes three relationships (patient similarity, drug similarity, and patient-drug prior associations). We describe a novel approach for performing a label propagation procedure to spread the label information representing the effectiveness of different drugs for different patients over this heterogeneous graph. The proposed method has been applied on a real-world EHR dataset to help identify personalized treatments for hypercholesterolemia. The experimental results demonstrate the effectiveness of the approach and suggest that the combination of appropriate patient similarity and drug similarity analytics could lead to actionable insights for personalized medicine. Particularly, by leveraging drug similarity in combination with patient similarity, our method could perform well even on new or rarely used drugs for which there are few records of known past performance. PMID:25717413

  10. Sound Control in the Physic Lab in the Polyacryl Company and Studying the Noise Reduction by Means of Different Absorbents

    Directory of Open Access Journals (Sweden)

    Harandi

    1999-03-01

    Full Text Available Studying noise effect at the workplace has more various aspects than other factors. So it is not surprising that its adverse impact on the physical and mental state of the society has been detected to some extent. There is a significant correlation between the hearing loss and the noise pollution of the workplaces. The most important ways to lessen and control the impact of noise are: substituting the noisy equipments with ones that produce less noise, correcting noise sources and isolating the sound source. In the current study we tried to control the noise level by using various sound absorbents and measured sound level by using these different substances. The results of these measurements have reported in the current article in details.

  11. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  12. Development of sound absorption measuring system with acoustic chamber; Kogata kyuon koka sokutei sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, M.; Noba, M. [Toyota Motor Corp., Aichi (Japan); Matsuoka, H. [Nippon Soken, Inc., Tokyo (Japan)

    1998-05-01

    In order to measure sound absorption performance necessary to develop sound absorption materials, development was made on a device consisting of a small sound box capable of measurement inexpensively and easily, as a measure against the reverberation chamber method. In order to obtain stabilized diffusion sound internally, the sound box has a shape of asymmetric seven-side body in which sides do not face squarely with each other. The box was so sized that a large number of resonant vibration postures can be constituted at the targeted frequency simultaneously in the box. The box has a commercially available cone speaker with good acoustic output characteristics in frequency range of higher than 500 Hz installed on an inner side of the box. The sound source uses a method to derive sound absorption rate from difference of sound pressure levels. In order to eliminate need of averaging treatment by using a multi-point measurement inside the box, a discussion was given to provide an opening on part of the box to place the sound receiving point outside the opening. A square test piece is placed on the floor 0.5 meter or more away from the speaker in the box. As a result of the experiment, it was verified that the sound absorption rate obtained by this device corresponds well with that by the reverberation chamber method. The size of the test piece was also found adequate. 2 refs., 11 figs., 1 tab.

  13. A COMPUTER PROGRAM FOR INTERPRETATION OF THE DATA OF VERTICAL ELECTRICAL SOUNDING VEZ-4A

    Directory of Open Access Journals (Sweden)

    D. G. Koliushko

    2017-06-01

    Full Text Available Purpose. Creating a computer program for interpreting the results of vertical sounding the soil in the form of multilayer model most typical for Ukraine. Methodology. The algorithm of the program is constructed on determination the soil structure with the help of the method of point source current, method of analogy and method of equivalent. The option of automatic interpretation based on Hook-Jeeves method. The program is implemented in the programming language Delphi. Results. The computer program «VEZ-4A» has a possibility of the interactive and automatic interpretation sounding results in the multi-layered geoelectrical model. Originality. In first time the computer program for analyzing and interpreting results of the soil sounding by Wenner configuration was created on the base of the analytical solution for field of current point source located in four-, three- or two-layer structure. In paper the review is presented and basic functions of our program are analyzed. Practical value. The program «VEZ-4A» is created and adapted for use in the electromagnetic diagnostics of grounding of existing power plants and substations.

  14. Acoustic Source Localization and Beamforming: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Chen Joe C

    2003-01-01

    Full Text Available We consider the theoretical and practical aspects of locating acoustic sources using an array of microphones. A maximum-likelihood (ML direct localization is obtained when the sound source is near the array, while in the far-field case, we demonstrate the localization via the cross bearing from several widely separated arrays. In the case of multiple sources, an alternating projection procedure is applied to determine the ML estimate of the DOAs from the observed data. The ML estimator is shown to be effective in locating sound sources of various types, for example, vehicle, music, and even white noise. From the theoretical Cramér-Rao bound analysis, we find that better source location estimates can be obtained for high-frequency signals than low-frequency signals. In addition, large range estimation error results when the source signal is unknown, but such unknown parameter does not have much impact on angle estimation. Much experimentally measured acoustic data was used to verify the proposed algorithms.

  15. Opo lidar sounding of trace atmospheric gases in the 3 – 4 μm spectral range

    Directory of Open Access Journals (Sweden)

    Romanovskii Oleg A.

    2018-01-01

    Full Text Available The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO generation to lidar sounding of the atmosphere in the spectral range 3–4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG is based on differential absorption lidar (DIAL method and differential optical absorption spectroscopy (DOAS. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  16. Analysis of radiation fields in tomography on diffusion gaseous sound

    International Nuclear Information System (INIS)

    Bekman, I.N.

    1999-01-01

    Perspectives of application of equilibrium and stationary variants of diffusion tomography with radioactive gaseous sounds for spatial reconstruction of heterogeneous media in materials technology were considered. The basic attention were allocated to creation of simple algorithms of detection of sound accumulation on the background of monotonically varying concentration field. Algorithms of transformation of two-dimensional radiation field in three-dimensional distribution of radiation sources were suggested. The methods of analytical elongation of concentration field permitting separation of regional anomalies on the background of local ones and vice verse were discussed. It was shown that both equilibrium and stationary variants of diffusion tomography detect the heterogeneity of testing material, provide reduction of spatial distribution of elements of its structure and give an estimation of relative degree of defectiveness

  17. Summer sound-level characterization of the Deaf Smith County and Swisher County locations in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1984-03-01

    A description of sound levels and sound sources in the Deaf Smith County and Swisher County locations in the Palo Duro Basin during a period representative of the summer season is presented. Included are data collected during the period August 4 through 8, 1982, for both locations. 3 references, 2 figures, 3 tables

  18. Sounding out the logo shot

    OpenAIRE

    Nicolai Jørgensgaard Graakjær

    2013-01-01

    This article focuses on how sound in combination with visuals (i.e. ‘branding by’) may possibly affect the signifying potentials (i.e. ‘branding effect’) of products and corporate brands (i.e. ‘branding of’) during logo shots in television commercials (i.e. ‘branding through’). This particular focus adds both to the understanding of sound in television commercials and to the understanding of sound brands. The article firstly presents a typology of sounds. Secondly, this typology is applied...

  19. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  20. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....