WorldWideScience

Sample records for sound signal amplitudes

  1. Investigating the amplitude of interactive footstep sounds and soundscape reproduction

    DEFF Research Database (Denmark)

    Turchet, Luca; Serafin, Stefania

    2013-01-01

    In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which...... of soundscapes does not significantly affect the selected amplitude of footstep sounds. Similarly, the perception of the soundscapes amplitude is not significantly affected by the selected amplitude of footstep sounds....

  2. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    Science.gov (United States)

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  3. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  4. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  5. Cascaded Amplitude Modulations in Sound Texture Perception

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2017-01-01

    . In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture...... model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures....... In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model...

  6. Jump in the amplitude of a sound wave associated with contraction of a nitrogen discharge

    International Nuclear Information System (INIS)

    Galechyan, G.A.; Mkrtchyan, A.R.; Tavakalyan, L.B.

    1993-01-01

    The use of a sound wave created by an external source and directed along the positive column of a nitrogen discharge in order to make the discharge pass to the contracted state is studied experimentally. A phenomenon involving a jump in the sound wave amplitude, caused by the discharge contraction, is observed and studied. It is established that the amplitude of the sound wave as a function of the discharge current near the jump exhibits hysteresis. It is shown that in the field of a high-intensity sound wave causing the discharge to expand eliminates the jump in the sound amplitude. The dependence of the growth time of the sound amplitude caused by the jump in this quantity on the sound wave intensity is determined. 24 refs., 4 figs., 1 tab

  7. The transmission of finite amplitude sound beam in multi-layered biological media

    Science.gov (United States)

    Liu, Xiaozhou; Li, Junlun; Yin, Chang; Gong, Xiufen; Zhang, Dong; Xue, Honghui

    2007-02-01

    Based on the Khokhlov Zabolotskaya Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.

  8. The transmission of finite amplitude sound beam in multi-layered biological media

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaozhou [Key Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)]. E-mail: xzliu@nju.edu.cn; Li, Junlun [Key Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Yin, Chang [Key Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Gong, Xiufen [Key Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Zhang, Dong [Key Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Xue, Honghui [Key Lab of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China)

    2007-02-19

    Based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.

  9. The transmission of finite amplitude sound beam in multi-layered biological media

    International Nuclear Information System (INIS)

    Liu, Xiaozhou; Li, Junlun; Yin, Chang; Gong, Xiufen; Zhang, Dong; Xue, Honghui

    2007-01-01

    Based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media

  10. Fluctuations of radio occultation signals in sounding the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    V. Kan

    2018-02-01

    Full Text Available We discuss the relationships that link the observed fluctuation spectra of the amplitude and phase of signals used for the radio occultation sounding of the Earth's atmosphere, with the spectra of atmospheric inhomogeneities. Our analysis employs the approximation of the phase screen and of weak fluctuations. We make our estimates for the following characteristic inhomogeneity types: (1 the isotropic Kolmogorov turbulence and (2 the anisotropic saturated internal gravity waves. We obtain the expressions for the variances of the amplitude and phase fluctuations of radio occultation signals as well as their estimates for the typical parameters of inhomogeneity models. From the GPS/MET observations, we evaluate the spectra of the amplitude and phase fluctuations in the altitude interval from 4 to 25 km in the middle and polar latitudes. As indicated by theoretical and experimental estimates, the main contribution into the radio signal fluctuations comes from the internal gravity waves. The influence of the Kolmogorov turbulence is negligible. We derive simple relationships that link the parameters of internal gravity waves and the statistical characteristics of the radio signal fluctuations. These results may serve as the basis for the global monitoring of the wave activity in the stratosphere and upper troposphere.

  11. Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.

    Science.gov (United States)

    van Doren, Thomas Walter

    1993-01-01

    This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.

  12. Second sound tracking system

    Science.gov (United States)

    Yang, Jihee; Ihas, Gary G.; Ekdahl, Dan

    2017-10-01

    It is common that a physical system resonates at a particular frequency, whose frequency depends on physical parameters which may change in time. Often, one would like to automatically track this signal as the frequency changes, measuring, for example, its amplitude. In scientific research, one would also like to utilize the standard methods, such as lock-in amplifiers, to improve the signal to noise ratio. We present a complete He ii second sound system that uses positive feedback to generate a sinusoidal signal of constant amplitude via automatic gain control. This signal is used to produce temperature/entropy waves (second sound) in superfluid helium-4 (He ii). A lock-in amplifier limits the oscillation to a desirable frequency and demodulates the received sound signal. Using this tracking system, a second sound signal probed turbulent decay in He ii. We present results showing that the tracking system is more reliable than those of a conventional fixed frequency method; there is less correlation with temperature (frequency) fluctuation when the tracking system is used.

  13. The shock formation distance in a bounded sound beam of finite amplitude.

    Science.gov (United States)

    Tao, Chao; Ma, Jian; Zhu, Zhemin; Du, Gonghuan; Ping, Zihong

    2003-07-01

    This paper investigates the shock formation distance in a bounded sound beam of finite amplitude by solving the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation using frequency-domain numerical method. Simulation results reveal that, besides the nonlinearity and absorption, the diffraction is another important factor that affects the shock formation of a bounded sound beam. More detailed discussions of the shock formation in a bounded sound beam, such as the waveform of sound pressure and the spatial distribution of shock formation, are also presented and compared for different parameters.

  14. Reduction of heart sound interference from lung sound signals using empirical mode decomposition technique.

    Science.gov (United States)

    Mondal, Ashok; Bhattacharya, P S; Saha, Goutam

    2011-01-01

    During the recording time of lung sound (LS) signals from the chest wall of a subject, there is always heart sound (HS) signal interfering with it. This obscures the features of lung sound signals and creates confusion on pathological states, if any, of the lungs. A novel method based on empirical mode decomposition (EMD) technique is proposed in this paper for reducing the undesired heart sound interference from the desired lung sound signals. In this, the mixed signal is split into several components. Some of these components contain larger proportions of interfering signals like heart sound, environmental noise etc. and are filtered out. Experiments have been conducted on simulated and real-time recorded mixed signals of heart sound and lung sound. The proposed method is found to be superior in terms of time domain, frequency domain, and time-frequency domain representations and also in listening test performed by pulmonologist.

  15. 33 CFR 67.20-10 - Sound signal.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Sound signal. 67.20-10 Section 67... AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Class âAâ Requirements § 67.20-10 Sound signal. (a) The owner of a Class “A” structure shall: (1) Install a sound signal that has a rated range...

  16. Analysis of acoustic sound signal for ONB measurement

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, H. I.; Han, K. Y.; Chai, H. T.; Park, C.

    2003-01-01

    The onset of nucleate boiling (ONB) was measured in a test fuel bundle composed of several fuel element simulators (FES) by analysing the aquatic sound signals. In order measure ONBs, a hydrophone, a pre-amplifier, and a data acquisition system to acquire/process the aquatic signal was prepared. The acoustic signal generated in the coolant is converted to the current signal through the microphone. When the signal is analyzed in the frequency domain, each sound signal can be identified according to its origin of sound source. As the power is increased to a certain degree, a nucleate boiling is started. The frequent formation and collapse of the void bubbles produce sound signal. By measuring this sound signal one can pinpoint the ONB. Since the signal characteristics is identical for different mass flow rates, this method can be applicable for ascertaining ONB

  17. Analyses of the mechanisms of amplitude modulation of aero-acoustic wind turbine sound

    DEFF Research Database (Denmark)

    Fischer, Andreas; Aagaard Madsen, Helge; Kragh, Knud Abildgaard

    2014-01-01

    This paper explores the source mechanism which cause amplitude modulation of the emitted sound of a wind turbine at large distances from the turbine, named as other amplitude modulation. Measurements of the fluctuating surface pressure on a 2.3MW wind turbine showed a considerable variation over...... give further evidence that transient stall is a main mechanism to cause other amplitude modulation. Wind shear was identified as a critical condition to cause angle of attack variations. Dierent control strategies to mitigate other amplitude modulation were proposed....

  18. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds

    Science.gov (United States)

    Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David

    2013-01-01

    The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161

  19. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    Science.gov (United States)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  20. An Alternative Method for Tilecal Signal Detection and Amplitude Estimation

    CERN Document Server

    Sotto-Maior Peralva, B; The ATLAS collaboration; Manhães de Andrade Filho, L; Manoel de Seixas, J

    2011-01-01

    The Barrel Hadronic calorimeter of ATLAS (Tilecal) is a detector used in the reconstruction of hadrons, jets, muons and missing transverse energy from the proton-proton collisions at the Large Hadron Collider (LHC). It comprises 10,000 channels in four readout partitions and each calorimeter cell is made of two readout channels for redundancy. The energy deposited by the particles produced in the collisions is read out by the several readout channels and its value is estimated by an optimal filtering algorithm, which reconstructs the amplitude and the time of the digitized signal pulse sampled every 25 ns. This work deals with signal detection and amplitude estimation for the Tilecal under low signal-to-noise ratio (SNR) conditions. It explores the applicability (at the cell level) of a Matched Filter (MF), which is known to be the optimal signal detector in terms of the SNR. Moreover, it investigates the impact of signal detection when summing both signals from the same cell before estimating the amplitude, ...

  1. 10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression

    Directory of Open Access Journals (Sweden)

    Patrick Neff

    2017-05-01

    Full Text Available Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM sounds (two pure tones, noise, music, and frequency modulated (FM sounds and unmodulated sounds (pure tone, noise regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively.Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min, and loudness (reduced by 30 dB and linear fade out. Repeated measures mixed model analyses of variance (ANOVA were calculated to assess differences in loudness growth between the stimuli for each block separately.Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes with strongest suppression right after stimulus offset [F(6, 1331 = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink

  2. Comparison of Travel-Time and Amplitude Measurements for Deep-Focusing Time-Distance Helioseismology

    Science.gov (United States)

    Pourabdian, Majid; Fournier, Damien; Gizon, Laurent

    2018-04-01

    The purpose of deep-focusing time-distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time-distance helioseismology.

  3. Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA

    Science.gov (United States)

    Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng

    2011-12-01

    The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.

  4. Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation.

    Science.gov (United States)

    Azami, Hamed; Escudero, Javier

    2016-05-01

    Signal segmentation and spike detection are two important biomedical signal processing applications. Often, non-stationary signals must be segmented into piece-wise stationary epochs or spikes need to be found among a background of noise before being further analyzed. Permutation entropy (PE) has been proposed to evaluate the irregularity of a time series. PE is conceptually simple, structurally robust to artifacts, and computationally fast. It has been extensively used in many applications, but it has two key shortcomings. First, when a signal is symbolized using the Bandt-Pompe procedure, only the order of the amplitude values is considered and information regarding the amplitudes is discarded. Second, in the PE, the effect of equal amplitude values in each embedded vector is not addressed. To address these issues, we propose a new entropy measure based on PE: the amplitude-aware permutation entropy (AAPE). AAPE is sensitive to the changes in the amplitude, in addition to the frequency, of the signals thanks to it being more flexible than the classical PE in the quantification of the signal motifs. To demonstrate how the AAPE method can enhance the quality of the signal segmentation and spike detection, a set of synthetic and realistic synthetic neuronal signals, electroencephalograms and neuronal data are processed. We compare the performance of AAPE in these problems against state-of-the-art approaches and evaluate the significance of the differences with a repeated ANOVA with post hoc Tukey's test. In signal segmentation, the accuracy of AAPE-based method is higher than conventional segmentation methods. AAPE also leads to more robust results in the presence of noise. The spike detection results show that AAPE can detect spikes well, even when presented with single-sample spikes, unlike PE. For multi-sample spikes, the changes in AAPE are larger than in PE. We introduce a new entropy metric, AAPE, that enables us to consider amplitude information in the

  5. Reflection and Transmission of a Focused Finite Amplitude Sound Beam Incident on a Curved Interface

    Science.gov (United States)

    Makin, Inder Raj Singh

    Reflection and transmission of a finite amplitude focused sound beam at a weakly curved interface separating two fluid-like media are investigated. The KZK parabolic wave equation, which accounts for thermoviscous absorption, diffraction, and nonlinearity, is used to describe the high intensity focused beam. The first part of the work deals with the quasilinear analysis of a weakly nonlinear beam after its reflection and transmission from a curved interface. A Green's function approach is used to define the field integrals describing the primary and the nonlinearly generated second harmonic beam. Closed-form solutions are obtained for the primary and second harmonic beams when a Gaussian amplitude distribution at the source is assumed. The second part of the research uses a numerical frequency domain solution of the KZK equation for a fully nonlinear analysis of the reflected and transmitted fields. Both piston and Gaussian sources are considered. Harmonic components generated in the medium due to propagation of the focused beam are evaluated, and formation of shocks in the reflected and transmitted beams is investigated. A finite amplitude focused beam is observed to be modified due to reflection and transmission from a curved interface in a manner distinct from that in the case of a small signal beam. Propagation curves, beam patterns, phase plots and time waveforms for various parameters defining the source and media pairs are presented, highlighting the effect of the interface curvature on the reflected and transmitted beams. Relevance of the current work to biomedical applications of ultrasound is discussed.

  6. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  7. Coding of amplitude-modulated signals in the cochlear nucleus of a grass frog

    Science.gov (United States)

    Bibikov, N. G.

    2002-07-01

    To study the mechanisms that govern the coding of temporal features of complex sound signals, responses of single neurons located in the dorsal nucleus of the medulla oblongata (the cochlear nucleus) of a curarized grass frog ( Rana temporaria) to pure tone bursts and amplitude modulated tone bursts with a modulation frequency of 20 Hz and modulation depths of 10 and 80% were recorded. The carrier frequency was equal to the characteristic frequency of a neuron, the average signal level was 20 30 dB above the threshold, and the signal duration was equal to ten full modulation periods. Of the 133 neurons studied, 129 neurons responded to 80% modulated tone bursts by discharges that were phase-locked with the envelope waveform. At this modulation depth, the best phase locking was observed for neurons with the phasic type of response to tone bursts. For tonic neurons with low characteristic frequencies, along with the reproduction of the modulation, phase locking with the carrier frequency of the signal was observed. At 10% amplitude modulation, phasic neurons usually responded to only the onset of a tone burst. Almost all tonic units showed a tendency to reproduce the envelope, although the efficiency of the reproduction was low, and for half of these neurons, it was below the reliability limit. Some neurons exhibited a more efficient reproduction of the weak modulation. For almost half of the neurons, a reliable improvement was observed in the phase locking of the response during the tone burst presentation (from the first to the tenth modulation period). The cooperative histogram of a set of neurons responding to 10% modulated tone bursts within narrow ranges of frequencies and intensities retains the information on the dynamics of the envelope variation. The data are compared with the results obtained from the study of the responses to similar signals in the acoustic midbrain center of the same object and also with the psychophysical effect of a differential

  8. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency

    Science.gov (United States)

    Branstetter, Brian K.; DeLong, Caroline M.; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519

  9. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus and Humans with Transformations in Amplitude, Duration and Frequency.

    Directory of Open Access Journals (Sweden)

    Brian K Branstetter

    Full Text Available Bottlenose dolphins (Tursiops truncatus use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A in response to a specific sound (sound A for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.

  10. A New Approach to Eliminate High Amplitude Artifacts in EEG Signals

    Directory of Open Access Journals (Sweden)

    Ana Rita Teixeira

    2016-09-01

    Full Text Available High amplitude artifacts represent a problem during EEG recordings in neuroscience research. Taking this into account, this paper proposes a method to identify high amplitude artifacts with no requirement for visual inspection, electrooscillogram (EOG reference channel or user assigned parameters. A potential solution to the high amplitude artifacts (HAA elimination is presented based on blind source separation methods. The assumption underlying the selection of components is that HAA are independent of the EEG signal and different HAA can be generated during the EEG recordings. Therefore, the number of components related to HAA is variable and depends on the processed signal, which means that the method is adaptable to the input signal. The results show, when removing the HAA artifacts, the delta band is distorted but all the other frequency bands are preserved. A case study with EEG signals recorded while participants performed on the Halstead Category Test (HCT is presented. After HAA removal, data analysis revealed, as expected, an error-related frontal ERP wave: the feedback-related negativity (FRN in response to feedback stimuli.

  11. Sounds of Modified Flight Feathers Reliably Signal Danger in a Pigeon.

    Science.gov (United States)

    Murray, Trevor G; Zeil, Jochen; Magrath, Robert D

    2017-11-20

    In his book on sexual selection, Darwin [1] devoted equal space to non-vocal and vocal communication in birds. Since then, vocal communication has become a model for studies of neurobiology, learning, communication, evolution, and conservation [2, 3]. In contrast, non-vocal "instrumental music," as Darwin called it, has only recently become subject to sustained inquiry [4, 5]. In particular, outstanding work reveals how feathers, often highly modified, produce distinctive sounds [6-9], and suggests that these sounds have evolved at least 70 times, in many orders [10]. It remains to be shown, however, that such sounds are signals used in communication. Here we show that crested pigeons (Ochyphaps lophotes) signal alarm with specially modified wing feathers. We used video and feather-removal experiments to demonstrate that the highly modified 8 th primary wing feather (P8) produces a distinct note during each downstroke. The sound changes with wingbeat frequency, so that birds fleeing danger produce wing sounds with a higher tempo. Critically, a playback experiment revealed that only if P8 is present does the sound of escape flight signal danger. Our results therefore indicate, nearly 150 years after Darwin's book, that modified feathers can be used for non-vocal communication, and they reveal an intrinsically reliable alarm signal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A homology sound-based algorithm for speech signal interference

    Science.gov (United States)

    Jiang, Yi-jiao; Chen, Hou-jin; Li, Ju-peng; Zhang, Zhan-song

    2015-12-01

    Aiming at secure analog speech communication, a homology sound-based algorithm for speech signal interference is proposed in this paper. We first split speech signal into phonetic fragments by a short-term energy method and establish an interference noise cache library with the phonetic fragments. Then we implement the homology sound interference by mixing the randomly selected interferential fragments and the original speech in real time. The computer simulation results indicated that the interference produced by this algorithm has advantages of real time, randomness, and high correlation with the original signal, comparing with the traditional noise interference methods such as white noise interference. After further studies, the proposed algorithm may be readily used in secure speech communication.

  13. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    Science.gov (United States)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  14. Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2009-01-01

    to demonstrate amplitude regeneration of a distorted RZ-DPSK signal in a gain-saturated FOPA. An optical signal-to-noise ratio penalty of 3.5 dB after amplitude distortion is shown to be reduced to 0.2 dB after the FOPA, thus clearly demonstrating the regenerative nature of saturated FOPAs for RZ-DPSK modulation....

  15. Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis

    Science.gov (United States)

    Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert

    2005-12-01

    A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.

  16. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    Science.gov (United States)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  17. Reconstruction of sound source signal by analytical passive TR in the environment with airflow

    Science.gov (United States)

    Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu

    2017-03-01

    In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.

  18. Applications of Hilbert Spectral Analysis for Speech and Sound Signals

    Science.gov (United States)

    Huang, Norden E.

    2003-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed, and the natural applications are to speech and sound signals. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time, which give sharp identifications of imbedded structures. This method invention can be used to process all acoustic signals. Specifically, it can process the speech signals for Speech synthesis, Speaker identification and verification, Speech recognition, and Sound signal enhancement and filtering. Additionally, as the acoustical signals from machinery are essentially the way the machines are talking to us. Therefore, the acoustical signals, from the machines, either from sound through air or vibration on the machines, can tell us the operating conditions of the machines. Thus, we can use the acoustic signal to diagnosis the problems of machines.

  19. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    Science.gov (United States)

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  20. Effects of amplitude modulation on perception of wind turbine noise

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seong, Yeol Wan [Ammunition Engineering Team, Defense Agency for Technology and Quality, Daejeon (Korea, Republic of); Lee, Seung Hoon [Aerodynamics Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Hong, Ji Young [Transportation Environmental Research Team, Green Transport and Logistics Institute, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2016-10-15

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation.

  1. Effects of amplitude modulation on perception of wind turbine noise

    International Nuclear Information System (INIS)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young; Seong, Yeol Wan; Lee, Seung Hoon; Hong, Ji Young

    2016-01-01

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation

  2. Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing

    Science.gov (United States)

    Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.

    2018-03-01

    In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.

  3. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  4. Fish protection at water intakes using a new signal development process and sound system

    International Nuclear Information System (INIS)

    Loeffelman, P.H.; Klinect, D.A.; Van Hassel, J.H.

    1991-01-01

    American Electric Power Company, Inc., is exploring the feasibility of using a patented signal development process and sound system to guide aquatic animals with underwater sound. Sounds from animals such as chinook salmon, steelhead trout, striped bass, freshwater drum, largemouth bass, and gizzard shad can be used to synthesize a new signal to stimulate the animal in the most sensitive portion of its hearing range. AEP's field tests during its research demonstrate that adult chinook salmon, steelhead trout and warmwater fish, and steelhead trout and chinook salmon smolts can be repelled with a properly-tuned system. The signal development process and sound system is designed to be transportable and use animals at the site to incorporate site-specific factors known to affect underwater sound, e.g., bottom shape and type, water current, and temperature. This paper reports that, because the overall goal of this research was to determine the feasibility of using sound to divert fish, it was essential that the approach use a signal development process which could be customized to animals and site conditions at any hydropower plant site

  5. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  6. Numerical Solution of the Kzk Equation for Pulsed Finite Amplitude Sound Beams in Thermoviscous Fluids

    Science.gov (United States)

    Lee, Yang-Sub

    A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.

  7. Measurement and classification of heart and lung sounds by using LabView for educational use.

    Science.gov (United States)

    Altrabsheh, B

    2010-01-01

    This study presents the design, development and implementation of a simple low-cost method of phonocardiography signal detection. Human heart and lung signals are detected by using a simple microphone through a personal computer; the signals are recorded and analysed using LabView software. Amplitude and frequency analyses are carried out for various phonocardiography pathological cases. Methods for automatic classification of normal and abnormal heart sounds, murmurs and lung sounds are presented. Various cases of heart and lung sound measurement are recorded and analysed. The measurements can be saved for further analysis. The method in this study can be used by doctors as a detection tool aid and may be useful for teaching purposes at medical and nursing schools.

  8. Variability of phase and amplitude fronts due to horizontal refraction in shallow water.

    Science.gov (United States)

    Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F

    2018-01-01

    The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.

  9. Does twitter song amplitude signal male arousal in redwings (Turdus iliacus)?

    DEFF Research Database (Denmark)

    Lampe, H.M.; Balsby, T.J.S.; Espmark, Y.O.

    2010-01-01

    Bird songs may vary in amplitude for several reasons. Variations due to differences in environmental conditions are well known but whether signal information varies with song amplitude is less well known. In some species quiet songs are heard as a soft twitter. These twitter songs are common...... in Turdus species and may be used during escalated close range encounters when a quiet song will attract less attention from others. Male redwings (T. iliacus) sing a terminating twitter part that is quieter and highly variable both between and within males compared with the introductory motif part....... The twitter song of redwings, however, is often louder than the twitter in other Turdus species, especially during escalated song encounters. The seasonal variation in twitter duration also suggests that the twitter may signal increased aggression. We tested how male redwings responded to an assumed...

  10. Modulator-free quadrature amplitude modulation signal synthesis

    Science.gov (United States)

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O'Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-12-01

    The ability to generate high-speed on-off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s-1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on-off-keyed 10 Gbit s-1 systems and is absolutely prohibitive for today’s (>)100 Gbit s-1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions.

  11. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds II: single-neuron recordings

    Science.gov (United States)

    Marquardt, Torsten; Stange, Annette; Pecka, Michael; Grothe, Benedikt; McAlpine, David

    2014-01-01

    Recently, with the use of an amplitude-modulated binaural beat (AMBB), in which sound amplitude and interaural-phase difference (IPD) were modulated with a fixed mutual relationship (Dietz et al. 2013b), we demonstrated that the human auditory system uses interaural timing differences in the temporal fine structure of modulated sounds only during the rising portion of each modulation cycle. However, the degree to which peripheral or central mechanisms contribute to the observed strong dominance of the rising slope remains to be determined. Here, by recording responses of single neurons in the medial superior olive (MSO) of anesthetized gerbils and in the inferior colliculus (IC) of anesthetized guinea pigs to AMBBs, we report a correlation between the position within the amplitude-modulation (AM) cycle generating the maximum response rate and the position at which the instantaneous IPD dominates the total neural response. The IPD during the rising segment dominates the total response in 78% of MSO neurons and 69% of IC neurons, with responses of the remaining neurons predominantly coding the IPD around the modulation maximum. The observed diversity of dominance regions within the AM cycle, especially in the IC, and its comparison with the human behavioral data suggest that only the subpopulation of neurons with rising slope dominance codes the sound-source location in complex listening conditions. A comparison of two models to account for the data suggests that emphasis on IPDs during the rising slope of the AM cycle depends on adaptation processes occurring before binaural interaction. PMID:24554782

  12. Sound [signal] noise

    DEFF Research Database (Denmark)

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  13. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    Science.gov (United States)

    Krupka, M.; Kalal, M.; Dostal, J.; Dudzak, R.; Juha, L.

    2017-08-01

    Classical interferometry became widely used method of active optical diagnostics. Its more advanced version, allowing reconstruction of three sets of data from just one especially designed interferogram (so called complex interferogram) was developed in the past and became known as complex interferometry. Along with the phase shift, which can be also retrieved using classical interferometry, the amplitude modifications of the probing part of the diagnostic beam caused by the object under study (to be called the signal amplitude) as well as the contrast of the interference fringes can be retrieved using the complex interferometry approach. In order to partially compensate for errors in the reconstruction due to imperfections in the diagnostic beam intensity structure as well as for errors caused by a non-ideal optical setup of the interferometer itself (including the quality of its optical components), a reference interferogram can be put to a good use. This method of interferogram analysis of experimental data has been successfully implemented in practice. However, in majority of interferometer setups (especially in the case of the ones employing the wavefront division) the probe and the reference part of the diagnostic beam would feature different intensity distributions over their respective cross sections. This introduces additional error into the reconstruction of the signal amplitude and the fringe contrast, which cannot be resolved using the reference interferogram only. In order to deal with this error it was found that additional separately recorded images of the intensity distribution of the probe and the reference part of the diagnostic beam (with no signal present) are needed. For the best results a sufficient shot-to-shot stability of the whole diagnostic system is required. In this paper, efficiency of the complex interferometry approach for obtaining the highest possible accuracy of the signal amplitude reconstruction is verified using the computer

  14. Ready...go: Amplitude of the FMRI signal encodes expectation of cue arrival time.

    Directory of Open Access Journals (Sweden)

    Xu Cui

    2009-08-01

    Full Text Available What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI, we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA. Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the "go" signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a "countdown" condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in "no-go" conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals.

  15. Causes and consequences of song amplitude adjustment in a territorial bird: a case study in nightingales

    Directory of Open Access Journals (Sweden)

    Brumm Henrik

    2004-01-01

    Full Text Available Vocal amplitude, one of the crucial factors for the exchange of acoustic signals, has been neglected in studies of animal communication, but recent studies on song variation in Common Nightingales Luscinia megarhynchos have revealed new insights into its importance in the singing behavior of territorial birds. In nightingales song amplitude is not maximized per se, but is individually regulated according to the level of masking background noise. Also, birds adjust their vocal intensity according to social variables, as in male-male interactions. Moreover, during such interactions, males exploited the directionality of their songs to broadcast them in the direction of the intended receivers ensuring the most effective signal transmission. Studies of the development of this typical long-range signaling suggest that sound level is highly interrelated with overall developmental progression and learning, and thus should be viewed as an integral part of song ontogeny. I conclude that song amplitude is a dynamic feature of the avian signal system, which is individually regulated according to the ecological demands of signal transmission and the social context of communication.

  16. Root phonotropism: Early signalling events following sound perception in Arabidopsis roots.

    Science.gov (United States)

    Rodrigo-Moreno, Ana; Bazihizina, Nadia; Azzarello, Elisa; Masi, Elisa; Tran, Daniel; Bouteau, François; Baluska, Frantisek; Mancuso, Stefano

    2017-11-01

    Sound is a fundamental form of energy and it has been suggested that plants can make use of acoustic cues to obtain information regarding their environments and alter and fine-tune their growth and development. Despite an increasing body of evidence indicating that it can influence plant growth and physiology, many questions concerning the effect of sound waves on plant growth and the underlying signalling mechanisms remains unknown. Here we show that in Arabidopsis thaliana, exposure to sound waves (200Hz) for 2 weeks induced positive phonotropism in roots, which grew towards to sound source. We found that sound waves triggered very quickly (within  minutes) an increase in cytosolic Ca 2+ , possibly mediated by an influx through plasma membrane and a release from internal stock. Sound waves likewise elicited rapid reactive oxygen species (ROS) production and K + efflux. Taken together these results suggest that changes in ion fluxes (Ca 2+ and K + ) and an increase in superoxide production are involved in sound perception in plants, as previously established in animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    Science.gov (United States)

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  18. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.

    Science.gov (United States)

    Park, H K; Bradley, J S

    2009-09-01

    Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.

  19. All-optical phase-preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Galili, Michael; Mulvad, Hans Christian Hansen

    2013-01-01

    Phase-preserving amplitude regeneration based on optical parametric amplification has been experimentally demonstrated for a 640 Gbit/s RZ-DPSK signal. Improvement of 2.2 dB in receiver sensitivity at a BER of 10-9 together with 13.3 dB net gain have been successfully achieved.......Phase-preserving amplitude regeneration based on optical parametric amplification has been experimentally demonstrated for a 640 Gbit/s RZ-DPSK signal. Improvement of 2.2 dB in receiver sensitivity at a BER of 10-9 together with 13.3 dB net gain have been successfully achieved....

  20. Exploring science with sound: sonification and the use of sonograms as data analysis tool

    CERN Multimedia

    CERN. Geneva; Williams, Genevieve

    2017-01-01

    Resonances, periodicity, patterns and spectra are well-known notions that play crucial roles in particle physics, and that have always been at the junction between sound/music analysis and scientific exploration. Detecting the shape of a particular energy spectrum, studying the stability of a particle beam in a synchrotron, and separating signals from a noisy background are just a few examples where the connection with sound can be very strong, all sharing the same concepts of oscillations, cycles and frequency. This seminar will focus on analysing data and their relations by translating measurements into audible signals and using the natural capability of the ear to distinguish, characterise and analyse waveform shapes, amplitudes and relations. This process is called data sonification, and one of the main tools to investigate the structure of the sound is the sonogram (sometimes also called a spectrogram). A sonogram is a visual representation of how the spectrum of a certain sound signal changes with time...

  1. 33 CFR 81.20 - Lights and sound signal appliances.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights and sound signal appliances. 81.20 Section 81.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... appliances. Each vessel under the 72 COLREGS, except the vessels of the Navy, is exempt from the requirements...

  2. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  3. Suppression of Subsequent N1m Amplitude When the Masker Frequency is Different from the Signal

    Directory of Open Access Journals (Sweden)

    Yuka Uratani

    2014-01-01

    Full Text Available When two tones are presented in a short interval of time, the presentation of the preceding tone (masker suppresses the response evoked by the subsequent tone (signal. To address the processing in forward suppression, we applied 2- and 4-kHz maskers, followed by a 1-kHz signal at varying signal delays (0 to 320 ms and measured the signal-evoked N1m. A two-way analysis of variance revealed a statistically significant effect for signal delay in both masker presentation conditions. The N1m peak amplitude at the signal delay of 320 ms was significantly larger than those of 10, 20, 40, and 80 ms ( p < 0.05. No significant enhancement for the very short signal delay was observed. The results suggest that the enhancement of N1m peak amplitude for short signal delay conditions is maximized when the frequency of the masker is identical to that of the signal.

  4. Dissipation in vibrating superleak second sound transducers

    International Nuclear Information System (INIS)

    Giordano, N.

    1985-01-01

    We have performed an experimental study of the generation and detection of second sound in 4 He using vibrating superleak second sound transducers. At temperatures well below T/sub lambda/ and for low driving amplitudes, the magnitude of the generated second sound wave is proportional to the drive amplitude. However, near T/sub lambda/ and for high drive amplitudes this is no longer the case--instead, the second sound amplitude saturates. In this regime we also find that overtones of the drive frequency are generated. Our results suggest that this behavior is due to critical velocity effects in the pores of the superleak in the generator transducer. This type of measurement may prove to be a useful way in which to study critical velocity effects in confined geometries

  5. Habitat-induced degradation of sound signals: Quantifying the effects of communication sounds and bird location on blur ratio, excess attenuation, and signal-to-noise ratio in blackbird song

    DEFF Research Database (Denmark)

    Dabelsteen, T.; Larsen, O N; Pedersen, Simon Boel

    1993-01-01

    measures were calculated from changes of the amplitude functions (i.e., envelopes) of the degraded songs using a new technique which allowed a compensation for the contribution of the background noise to the amplitude values. Representative songs were broadcast in a deciduous forest without leaves......The habitat-induced degradation of the full song of the blackbird (Turdus merula) was quantified by measuring excess attenuation, reduction of the signal-to-noise ratio, and blur ratio, the latter measure representing the degree of blurring of amplitude and frequency patterns over time. All three...

  6. Stochastic Signal Processing for Sound Environment System with Decibel Evaluation and Energy Observation

    Directory of Open Access Journals (Sweden)

    Akira Ikuta

    2014-01-01

    Full Text Available In real sound environment system, a specific signal shows various types of probability distribution, and the observation data are usually contaminated by external noise (e.g., background noise of non-Gaussian distribution type. Furthermore, there potentially exist various nonlinear correlations in addition to the linear correlation between input and output time series. Consequently, often the system input and output relationship in the real phenomenon cannot be represented by a simple model using only the linear correlation and lower order statistics. In this study, complex sound environment systems difficult to analyze by using usual structural method are considered. By introducing an estimation method of the system parameters reflecting correlation information for conditional probability distribution under existence of the external noise, a prediction method of output response probability for sound environment systems is theoretically proposed in a suitable form for the additive property of energy variable and the evaluation in decibel scale. The effectiveness of the proposed stochastic signal processing method is experimentally confirmed by applying it to the observed data in sound environment systems.

  7. Orientation Estimation and Signal Reconstruction of a Directional Sound Source

    DEFF Research Database (Denmark)

    Guarato, Francesco

    , one for each call emission, were compared to those calculated through a pre-existing technique based on interpolation of sound-pressure levels at microphone locations. The application of the method to the bat calls could provide knowledge on bat behaviour that may be useful for a bat-inspired sensor......Previous works in the literature about one tone or broadband sound sources mainly deal with algorithms and methods developed in order to localize the source and, occasionally, estimate the source bearing angle (with respect to a global reference frame). The problem setting assumes, in these cases......, omnidirectional receivers collecting the acoustic signal from the source: analysis of arrival times in the recordings together with microphone positions and source directivity cues allows to get information about source position and bearing. Moreover, sound sources have been included into sensor systems together...

  8. Amplitude scintillations of ATS-6 radio signals in Lannion

    International Nuclear Information System (INIS)

    Cornec, J.P.

    1978-01-01

    The paper reports the results of a study of the scintillations observed on the amplitude of signal transmitted by the geostationary satellite ATS-6 on 40, 140, and 360 MHz, received at Lannion, France. Diffraction patterns caused bubbles of irregularities are studied and found to be mainly a summer phenomenon. It is concluded that there is a great increase in frequency occurrence and in the strength of scintillations from winter to summer, and that for the whole observation period, scintillation is mainly a nighttime pheonomenon, reaching its maximum activity at 2100-2200

  9. Evoked responses of the superior olive to amplitude-modulated signals.

    Science.gov (United States)

    Andreeva, N G; Lang, T T

    1977-01-01

    Evoked potentials of some auditory centers of Rhinolophidae bats to amplitude-modulated signals were studied. A synchronization response was found in the cochlear nuclei (with respect to the fast component of the response) and in the superior olivary complex (with respect to both fast and slow components of the response) within the range of frequency modulation from 50 to 2000 Hz. In the inferior colliculus a synchronized response was recorded at modulation frequencies below 150 Hz, but in the medial geniculate bodies no such response was found. Evoked responses of the superior olivary complex were investigated in detail. The lowest frequencies of synchronization were recorded within the carrier frequency range of 15-30 and 80-86 kHz. The amplitude of the synchronized response is a function of the frequency and coefficient of modulation and also of the angle of stimulus presentation.

  10. A new signal development process and sound system for diverting fish from water intakes

    International Nuclear Information System (INIS)

    Klinet, D.A.; Loeffelman, P.H.; van Hassel, J.H.

    1992-01-01

    This paper reports that American Electric Power Service Corporation has explored the feasibility of using a patented signal development process and underwater sound system to divert fish away from water intake areas. The effect of water intakes on fish is being closely scrutinized as hydropower projects are re-licensed. The overall goal of this four-year research project was to develop an underwater guidance system which is biologically effective, reliable and cost-effective compared to other proposed methods of diversion, such as physical screens. Because different fish species have various listening ranges, it was essential to the success of this experiment that the sound system have a great amount of flexibility. Assuming a fish's sounds are heard by the same kind of fish, it was necessary to develop a procedure and acquire instrumentation to properly analyze the sounds that the target fish species create to communicate and any artificial signals being generated for diversion

  11. Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Galili, Michael; Mulvad, Hans Christian Hansen

    2013-01-01

    We report the first experimental demonstration of parametric amplification and all-optical phase-preserving amplitude regeneration for a 640 Gbit/s return-to-zero (RZ) differential phase-shift keying (DPSK) optical time division multiplexed (OTDM) signal. In the designed gain-flattened single......-pump fiber optical parametric amplifier (FOPA), 620 fs short optical pulses are successfully amplified with 15 dB gain with error-free performance and less than 1 dB power penalty. Phase-preserving amplitude regeneration based on gain saturation in the FOPA is carried out for optical signals with degraded...... optical signal-to-noise ratio. An improvement of 2.2 dB in receiver sensitivity at a bit-error-ratio of 10−9 has been successfully achieved after regeneration, together with 13.3 dB net gain....

  12. Sound card based digital correlation detection of weak photoelectrical signals

    International Nuclear Information System (INIS)

    Tang Guanghui; Wang Jiangcheng

    2005-01-01

    A simple and low-cost digital correlation method is proposed to investigate weak photoelectrical signals, using a high-speed photodiode as detector, which is directly connected to a programmably triggered sound card analogue-to-digital converter and a personal computer. Two testing experiments, autocorrelation detection of weak flickering signals from a computer monitor under background of noisy outdoor stray light and cross-correlation measurement of the surface velocity of a motional tape, are performed, showing that the results are reliable and the method is easy to implement

  13. High frequency components of tracheal sound are emphasized during prolonged flow limitation

    International Nuclear Information System (INIS)

    Tenhunen, M; Huupponen, E; Saastamoinen, A; Kulkas, A; Himanen, S-L; Rauhala, E

    2009-01-01

    A nasal pressure transducer, which is used to study nocturnal airflow, also provides information about the inspiratory flow waveform. A round flow shape is presented during normal breathing. A flattened, non-round shape is found during hypopneas and it can also appear in prolonged episodes. The significance of this prolonged flow limitation is still not established. A tracheal sound spectrum has been analyzed further in order to achieve additional information about breathing during sleep. Increased sound frequencies over 500 Hz have been connected to obstruction of the upper airway. The aim of the present study was to examine the tracheal sound signal content of prolonged flow limitation and to find out whether prolonged flow limitation would consist of abundant high frequency activity. Sleep recordings of 36 consecutive patients were examined. The tracheal sound spectral analysis was performed on 10 min episodes of prolonged flow limitation, normal breathing and periodic apnea-hypopnea breathing. The highest total spectral amplitude, implicating loudest sounds, occurred during flow-limited breathing which also presented loudest sounds in all frequency bands above 100 Hz. In addition, the tracheal sound signal during flow-limited breathing constituted proportionally more high frequency activities compared to normal breathing and even periodic apnea-hypopnea breathing

  14. A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs

    International Nuclear Information System (INIS)

    Javed, Faizan; Venkatachalam, P A; H, Ahmad Fadzil M

    2006-01-01

    In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition and Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions

  15. A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Faizan; Venkatachalam, P A; H, Ahmad Fadzil M [Signal and Imaging Processing and Tele-Medicine Technology Research Group, Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2006-04-01

    In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition and Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions.

  16. An experimental test of noise-dependent voice amplitude regulation in Cope's grey treefrog (Hyla chrysoscelis).

    Science.gov (United States)

    Love, Elliot K; Bee, Mark A

    2010-09-01

    One strategy for coping with the constraints on acoustic signal reception posed by ambient noise is to signal louder as noise levels increase. Termed the 'Lombard effect', this reflexive behaviour is widespread among birds and mammals and occurs with a diversity of signal types, leading to the hypothesis that voice amplitude regulation represents a general vertebrate mechanism for coping with environmental noise. Support for this evolutionary hypothesis, however, remains limited due to a lack of studies in taxa other than birds and mammals. Here, we report the results of an experimental test of the hypothesis that male grey treefrogs increase the amplitude of their advertisement calls in response to increasing levels of chorus-shaped noise. We recorded spontaneously produced calls in quiet and in the presence of noise broadcast at sound pressure levels ranging between 40 dB and 70 dB. While increasing noise levels induced predictable changes in call duration and rate, males did not regulate call amplitude. These results do not support the hypothesis that voice amplitude regulation is a generic vertebrate mechanism for coping with noise. We discuss the possibility that intense sexual selection and high levels of competition for mates in choruses place some frogs under strong selection to call consistently as loudly as possible.

  17. Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals

    Directory of Open Access Journals (Sweden)

    Rong-Chao Peng

    2015-09-01

    Full Text Available Cardiovascular disease, like hypertension, is one of the top killers of human life and early detection of cardiovascular disease is of great importance. However, traditional medical devices are often bulky and expensive, and unsuitable for home healthcare. In this paper, we proposed an easy and inexpensive technique to estimate continuous blood pressure from the heart sound signals acquired by the microphone of a smartphone. A cold-pressor experiment was performed in 32 healthy subjects, with a smartphone to acquire heart sound signals and with a commercial device to measure continuous blood pressure. The Fourier spectrum of the second heart sound and the blood pressure were regressed using a support vector machine, and the accuracy of the regression was evaluated using 10-fold cross-validation. Statistical analysis showed that the mean correlation coefficients between the predicted values from the regression model and the measured values from the commercial device were 0.707, 0.712, and 0.748 for systolic, diastolic, and mean blood pressure, respectively, and that the mean errors were less than 5 mmHg, with standard deviations less than 8 mmHg. These results suggest that this technique is of potential use for cuffless and continuous blood pressure monitoring and it has promising application in home healthcare services.

  18. Flights of fear: a mechanical wing whistle sounds the alarm in a flocking bird.

    Science.gov (United States)

    Hingee, Mae; Magrath, Robert D

    2009-12-07

    Animals often form groups to increase collective vigilance and allow early detection of predators, but this benefit of sociality relies on rapid transfer of information. Among birds, alarm calls are not present in all species, while other proposed mechanisms of information transfer are inefficient. We tested whether wing sounds can encode reliable information on danger. Individuals taking off in alarm fly more quickly or ascend more steeply, so may produce different sounds in alarmed than in routine flight, which then act as reliable cues of alarm, or honest 'index' signals in which a signal's meaning is associated with its method of production. We show that crested pigeons, Ocyphaps lophotes, which have modified flight feathers, produce distinct wing 'whistles' in alarmed flight, and that individuals take off in alarm only after playback of alarmed whistles. Furthermore, amplitude-manipulated playbacks showed that response depends on whistle structure, such as tempo, not simply amplitude. We believe this is the first demonstration that flight noise can send information about alarm, and suggest that take-off noise could provide a cue of alarm in many flocking species, with feather modification evolving specifically to signal alarm in some. Similar reliable cues or index signals could occur in other animals.

  19. Cognitive Bias for Learning Speech Sounds From a Continuous Signal Space Seems Nonlinguistic

    Directory of Open Access Journals (Sweden)

    Sabine van der Ham

    2015-10-01

    Full Text Available When learning language, humans have a tendency to produce more extreme distributions of speech sounds than those observed most frequently: In rapid, casual speech, vowel sounds are centralized, yet cross-linguistically, peripheral vowels occur almost universally. We investigate whether adults’ generalization behavior reveals selective pressure for communication when they learn skewed distributions of speech-like sounds from a continuous signal space. The domain-specific hypothesis predicts that the emergence of sound categories is driven by a cognitive bias to make these categories maximally distinct, resulting in more skewed distributions in participants’ reproductions. However, our participants showed more centered distributions, which goes against this hypothesis, indicating that there are no strong innate linguistic biases that affect learning these speech-like sounds. The centralization behavior can be explained by a lack of communicative pressure to maintain categories.

  20. Task performance changes the amplitude and timing of the BOLD signal

    Directory of Open Access Journals (Sweden)

    Akhrif Atae

    2017-12-01

    Full Text Available Translational studies comparing imaging data of animals and humans have gained increasing scientific interests. With this upcoming translational approach, however, identifying harmonized statistical analysis as well as shared data acquisition protocols and/or combined statistical approaches is necessary. Following this idea, we applied Bayesian Adaptive Regression Splines (BARS, which have until now mainly been used to model neural responses of electrophysiological recordings from rodent data, on human hemodynamic responses as measured via fMRI. Forty-seven healthy subjects were investigated while performing the Attention Network Task in the MRI scanner. Fluctuations in the amplitude and timing of the BOLD response were determined and validated externally with brain activation using GLM and also ecologically with the influence of task performance (i.e. good vs. bad performers. In terms of brain activation, bad performers presented reduced activation bilaterally in the parietal lobules, right prefrontal cortex (PFC and striatum. This was accompanied by an enhanced left PFC recruitment. With regard to the amplitude of the BOLD-signal, bad performers showed enhanced values in the left PFC. In addition, in the regions of reduced activation such as the parietal and striatal regions, the temporal dynamics were higher in bad performers. Based on the relation between BOLD response and neural firing with the amplitude of the BOLD signal reflecting gamma power and timing dynamics beta power, we argue that in bad performers, an enhanced left PFC recruitment hints towards an enhanced functioning of gamma-band activity in a compensatory manner. This was accompanied by reduced parieto-striatal activity, associated with increased and potentially conflicting beta-band activity.

  1. Transformation of second sound into surface waves in superfluid helium

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.; Kolmakov, G.V.; Pokrovsky, V.L.

    1995-01-01

    The Hamiltonian theory of superfluid liquid with a free boundary is developed. Nonlinear amplitudes of parametric Cherenkov radiation of a surface wave by second sound and the inner decay of second sound waves are found. Threshold amplitudes of second sound waves for these two processes are determined. 4 refs

  2. Purinergic signaling triggers endfoot high-amplitude Ca2+ signals and causes inversion of neurovascular coupling after subarachnoid hemorrhage.

    Science.gov (United States)

    Pappas, Anthony C; Koide, Masayo; Wellman, George C

    2016-11-01

    Neurovascular coupling supports brain metabolism by matching focal increases in neuronal activity with local arteriolar dilation. Previously, we demonstrated that an emergence of spontaneous endfoot high-amplitude Ca 2+ signals (eHACSs) caused a pathologic shift in neurovascular coupling from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage model animals. Extracellular purine nucleotides (e.g., ATP) can trigger astrocyte Ca 2+ oscillations and may be elevated following subarachnoid hemorrhage. Here, the role of purinergic signaling in subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling was examined by imaging parenchymal arteriolar diameter and astrocyte Ca 2+ signals in rat brain slices using two-photon fluorescent and infrared-differential interference contrast microscopy. We report that broad-spectrum inhibition of purinergic (P2) receptors using suramin blocked eHACSs and restored vasodilatory neurovascular coupling after subarachnoid hemorrhage. Importantly, eHACSs were also abolished using a cocktail of inhibitors targeting G q -coupled P2Y receptors. Further, activation of P2Y receptors in brain slices from un-operated animals triggered high-amplitude Ca 2+ events resembling eHACSs and disrupted neurovascular coupling. Neither tetrodotoxin nor bafilomycin A1 affected eHACSs suggesting that purine nucleotides are not released by ongoing neurotransmission and/or vesicular release after subarachnoid hemorrhage. These results indicate that purinergic signaling via P2Y receptors contributes to subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling. © The Author(s) 2016.

  3. Discrimination of musical instrument sounds resynthesized with simplified spectrotemporal parameters.

    Science.gov (United States)

    McAdams, S; Beauchamp, J W; Meneguzzi, S

    1999-02-01

    The perceptual salience of several outstanding features of quasiharmonic, time-variant spectra was investigated in musical instrument sounds. Spectral analyses of sounds from seven musical instruments (clarinet, flute, oboe, trumpet, violin, harpsichord, and marimba) produced time-varying harmonic amplitude and frequency data. Six basic data simplifications and five combinations of them were applied to the reference tones: amplitude-variation smoothing, coherent variation of amplitudes over time, spectral-envelope smoothing, forced harmonic-frequency variation, frequency-variation smoothing, and harmonic-frequency flattening. Listeners were asked to discriminate sounds resynthesized with simplified data from reference sounds resynthesized with the full data. Averaged over the seven instruments, the discrimination was very good for spectral envelope smoothing and amplitude envelope coherence, but was moderate to poor in decreasing order for forced harmonic frequency variation, frequency variation smoothing, frequency flattening, and amplitude variation smoothing. Discrimination of combinations of simplifications was equivalent to that of the most potent constituent simplification. Objective measurements were made on the spectral data for harmonic amplitude, harmonic frequency, and spectral centroid changes resulting from simplifications. These measures were found to correlate well with discrimination results, indicating that listeners have access to a relatively fine-grained sensory representation of musical instrument sounds.

  4. Non-stationarity of resonance signals from magnetospheric and ionospheric plasmas

    International Nuclear Information System (INIS)

    Higel, Bernard

    1975-01-01

    Rocket observations of resonance signals from ionospheric plasma were made during EIDI relaxation sounding experiments. It appeared that their amplitude, phase, and frequency characteristics are not stationary as a function of the receipt time. The measurement of these nonstationary signals increases the interest presented by resonance phenomena in spatial plasma diagnostics, but this measurement is not easy for frequency non-stationarities. A new method, entirely numerical, is proposed for automatic recognition of these signals. It will be used for the selecting and real-time processing of signals of the same type to be observed during relaxation sounding experiments on board of the futur GEOS satellite. In this method a statistical discrimination is done on the values taken by several parameters associated with the non-stationarities of the observed resonance signals [fr

  5. Segmentation of heart sound recordings by a duration-dependent hidden Markov model

    International Nuclear Information System (INIS)

    Schmidt, S E; Graff, C; Toft, E; Struijk, J J; Holst-Hansen, C

    2010-01-01

    Digital stethoscopes offer new opportunities for computerized analysis of heart sounds. Segmentation of heart sound recordings into periods related to the first and second heart sound (S1 and S2) is fundamental in the analysis process. However, segmentation of heart sounds recorded with handheld stethoscopes in clinical environments is often complicated by background noise. A duration-dependent hidden Markov model (DHMM) is proposed for robust segmentation of heart sounds. The DHMM identifies the most likely sequence of physiological heart sounds, based on duration of the events, the amplitude of the signal envelope and a predefined model structure. The DHMM model was developed and tested with heart sounds recorded bedside with a commercially available handheld stethoscope from a population of patients referred for coronary arterioangiography. The DHMM identified 890 S1 and S2 sounds out of 901 which corresponds to 98.8% (CI: 97.8–99.3%) sensitivity in 73 test patients and 13 misplaced sounds out of 903 identified sounds which corresponds to 98.6% (CI: 97.6–99.1%) positive predictivity. These results indicate that the DHMM is an appropriate model of the heart cycle and suitable for segmentation of clinically recorded heart sounds

  6. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  7. Infra-sound cancellation and mitigation in wind turbines

    Science.gov (United States)

    Boretti, Albert; Ordys, Andrew; Al Zubaidy, Sarim

    2018-03-01

    The infra-sound spectra recorded inside homes located even several kilometres far from wind turbine installations is characterized by large pressure fluctuation in the low frequency range. There is a significant body of literature suggesting inaudible sounds at low frequency are sensed by humans and affect the wellbeing through different mechanisms. These mechanisms include amplitude modulation of heard sounds, stimulating subconscious pathways, causing endolymphatic hydrops, and possibly potentiating noise-induced hearing loss. We suggest the study of infra-sound active cancellation and mitigation to address the low frequency noise issues. Loudspeakers generate pressure wave components of same amplitude and frequency but opposite phase of the recorded infra sound. They also produce pressure wave components within the audible range reducing the perception of the infra-sound to minimize the sensing of the residual infra sound.

  8. Random Telegraph Signal Amplitudes in Sub 100 nm (Decanano) MOSFETs: A 3D 'Atomistic' Simulation Study

    Science.gov (United States)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    2000-01-01

    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observed a significant increase in the maximum RTS amplitude when discrete random dopants are employed in the simulations.

  9. An Expectation-Maximization Algorithm for Amplitude Estimation of Saturated Optical Transient Signals.

    Energy Technology Data Exchange (ETDEWEB)

    Kagie, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lanterman, Aaron D. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-12-01

    This paper addresses parameter estimation for an optical transient signal when the received data has been right-censored. We develop an expectation-maximization (EM) algorithm to estimate the amplitude of a Poisson intensity with a known shape in the presence of additive background counts, where the measurements are subject to saturation effects. We compare the results of our algorithm with those of an EM algorithm that is unaware of the censoring.

  10. Pectoral sound generation in the blue catfish Ictalurus furcatus.

    Science.gov (United States)

    Mohajer, Yasha; Ghahramani, Zachary; Fine, Michael L

    2015-03-01

    Catfishes produce pectoral stridulatory sounds by "jerk" movements that rub ridges on the dorsal process against the cleithrum. We recorded sound synchronized with high-speed video to investigate the hypothesis that blue catfish Ictalurus furcatus produce sounds by a slip-stick mechanism, previously described only in invertebrates. Blue catfish produce a variably paced series of sound pulses during abduction sweeps (pulsers) although some individuals (sliders) form longer duration sound units (slides) interspersed with pulses. Typical pulser sounds are evoked by short 1-2 ms movements with a rotation of 2°-3°. Jerks excite sounds that increase in amplitude after motion stops, suggesting constructive interference, which decays before the next jerk. Longer contact of the ridges produces a more steady-state sound in slides. Pulse pattern during stridulation is determined by pauses without movement: the spine moves during about 14 % of the abduction sweep in pulsers (~45 % in sliders) although movement appears continuous to the human eye. Spine rotation parameters do not predict pulse amplitude, but amplitude correlates with pause duration suggesting that force between the dorsal process and cleithrum increases with longer pauses. Sound production, stimulated by a series of rapid movements that set the pectoral girdle into resonance, is caused by a slip-stick mechanism.

  11. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    Science.gov (United States)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.

  12. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    Science.gov (United States)

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  13. By the sound of it. An ERP investigation of human action sound processing in 7-month-old infants

    Directory of Open Access Journals (Sweden)

    Elena Geangu

    2015-04-01

    Full Text Available Recent evidence suggests that human adults perceive human action sounds as a distinct category from human vocalizations, environmental, and mechanical sounds, activating different neural networks (Engel et al., 2009; Lewis et al., 2011. Yet, little is known about the development of such specialization. Using event-related potentials (ERP, this study investigated neural correlates of 7-month-olds’ processing of human action (HA sounds in comparison to human vocalizations (HV, environmental (ENV, and mechanical (MEC sounds. Relative to the other categories, HA sounds led to increased positive amplitudes between 470 and 570 ms post-stimulus onset at left anterior temporal locations, while HV led to increased negative amplitudes at the more posterior temporal locations in both hemispheres. Collectively, human produced sounds (HA + HV led to significantly different response profiles compared to non-living sound sources (ENV + MEC at parietal and frontal locations in both hemispheres. Overall, by 7 months of age human action sounds are being differentially processed in the brain, consistent with a dichotomy for processing living versus non-living things. This provides novel evidence regarding the typical categorical processing of socially relevant sounds.

  14. Investigation of genesis of gallop sounds in dogs by quantitative phonocardiography and digital frequency analysis.

    Science.gov (United States)

    Aubert, A E; Denys, B G; Meno, F; Reddy, P S

    1985-05-01

    Several investigators have noted external gallop sounds to be of higher amplitude than their corresponding internal sounds (S3 and S4). In this study we hoped to determine if S3 and S4 are transmitted in the same manner as S1. In 11 closed-chest dogs, external (apical) and left ventricular pressures and sounds were recorded simultaneously with transducers with identical sensitivity and frequency responses. Volume and pressure overload and positive and negative inotropic drugs were used to generate gallop sounds. Recordings were made in the control state and after the various interventions. S3 and S4 were recorded in 17 experiments each. The amplitude of the external S1 was uniformly higher than that of internal S1 and internal gallop sounds were inconspicuous. With use of Fourier transforms, the gain function was determined by comparing internal to external S1. By inverse transform, the amplitude of the internal gallop sounds was predicted from external sounds. The internal sounds of significant amplitude were predicted in many instances, but the actual recordings showed no conspicuous sounds. The absence of internal gallop sounds of expected amplitude as calculated from the external gallop sounds and the gain function derived from the comparison of internal and external S1 make it very unlikely that external gallop sounds are derived from internal sounds.

  15. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  16. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  17. Background noise exerts diverse effects on the cortical encoding of foreground sounds.

    Science.gov (United States)

    Malone, B J; Heiser, Marc A; Beitel, Ralph E; Schreiner, Christoph E

    2017-08-01

    In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals. Because acoustic noise affects the synaptic background activity of cortical networks, it may improve the cortical responses to signals. We used spike train decoding techniques to determine the functional effects of a continuous white noise background on the responses of clusters of neurons in auditory cortex to foreground signals, specifically frequency-modulated sweeps (FMs) of different velocities, directions, and amplitudes. Whereas the addition of noise progressively suppressed the FM responses of some cortical sites in the core fields with decreasing signal-to-noise ratios (SNRs), the stimulus representation remained robust or was even significantly enhanced at specific SNRs in many others. Even though the background noise level was typically not explicitly encoded in cortical responses, significant information about noise context could be decoded from cortical responses on the basis of how the neural representation of the foreground sweeps was affected. These findings demonstrate significant diversity in signal in noise processing even within the core auditory fields that could support noise-robust hearing across a wide range of listening conditions. NEW & NOTEWORTHY The ability to detect and discriminate sounds in background noise is critical for our ability to communicate. The neural basis of robust perceptual performance in noise is not well understood. We identified neuronal populations in core auditory cortex of squirrel monkeys that differ in how they process foreground signals in background noise and that may

  18. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  19. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    International Nuclear Information System (INIS)

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  20. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  1. Coherent spectral amplitude coded label detection for DQPSK payload signals in packet-switched metropolitan area networks

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Guerrero Gonzalez, Neil; Jensen, Jesper Bevensee

    2011-01-01

    We report on an experimental demonstration of a frequency swept local oscillator-based spectral amplitude coding (SAC) label detection for DQPSK signals after 40km of fiber transmission. Label detection was performed for a 10.7Gbaud DQPSK signal labeled with a SAC label composed of four......-frequency tones with 500MHz spectral separation. Successful label detection and recognition is achieved with the aid of digital signal processing that allows for substantial reduction of the complexity of the detection optical front-end....

  2. High efficiency processing for reduced amplitude zones detection in the HRECG signal

    Science.gov (United States)

    Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.

    2016-04-01

    Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.

  3. Contralateral routing of signals disrupts monaural level and spectral cues to sound localisation on the horizontal plane.

    Science.gov (United States)

    Pedley, Adam J; Kitterick, Pádraig T

    2017-09-01

    Contra-lateral routing of signals (CROS) devices re-route sound between the deaf and hearing ears of unilaterally-deaf individuals. This rerouting would be expected to disrupt access to monaural level cues that can support monaural localisation in the horizontal plane. However, such a detrimental effect has not been confirmed by clinical studies of CROS use. The present study aimed to exercise strict experimental control over the availability of monaural cues to localisation in the horizontal plane and the fitting of the CROS device to assess whether signal routing can impair the ability to locate sources of sound and, if so, whether CROS selectively disrupts monaural level or spectral cues to horizontal location, or both. Unilateral deafness and CROS device use were simulated in twelve normal hearing participants. Monaural recordings of broadband white noise presented from three spatial locations (-60°, 0°, and +60°) were made in the ear canal of a model listener using a probe microphone with and without a CROS device. The recordings were presented to participants via an insert earphone placed in their right ear. The recordings were processed to disrupt either monaural level or spectral cues to horizontal sound location by roving presentation level or the energy across adjacent frequency bands, respectively. Localisation ability was assessed using a three-alternative forced-choice spatial discrimination task. Participants localised above chance levels in all conditions. Spatial discrimination accuracy was poorer when participants only had access to monaural spectral cues compared to when monaural level cues were available. CROS use impaired localisation significantly regardless of whether level or spectral cues were available. For both cues, signal re-routing had a detrimental effect on the ability to localise sounds originating from the side of the deaf ear (-60°). CROS use also impaired the ability to use level cues to localise sounds originating from

  4. Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

    Science.gov (United States)

    Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong

    2016-08-01

    Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  5. Data-derived symbol synchronization of MASK and QASK signals. [Multilevel and Quadrature Amplitude Shift Keying

    Science.gov (United States)

    Simon, M. K.

    1975-01-01

    Much has been said in the literature regarding the problem of establishing symbol synchronization in binary baseband digital communication systems. By comparison, the literature contains little information relating to the extraction of symbol sync from multilevel baseband data. With the recent interest in multilevel amplitude-shift keying (MASK) and quadrature amplitude-shift keying (QASK) as signaling techniques for multilevel digital communications systems, the problem of providing symbol synchronization in the receivers of such systems becomes paramount. This paper presents a technique for extracting symbol sync from a MASK or QASK signal which has been transmitted over an infinite-bandwidth white Gaussian noise channel. The scheme is essentially a generalization of the data transition tracking loop (DTTL) which has heretofore been used in PSK systems. The performance of the loop is analyzed in terms of its mean-squared symbol sync jitter and its effects on the data detection process in MASK and QASK systems.

  6. Random telegraph signal amplitudes in sub 100 nm (decanano) MOSFETs: a 3D `Atomistic' simulation study

    OpenAIRE

    Asenov, A.; Balasubramaniam, R.; Brown, A.R.; Davies, J.H.; Saini, S.

    2000-01-01

    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observe...

  7. Multi-channel logical circuit module used for high-speed, low amplitude signals processing and QDC gate signals generation

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Zhu Haidong; Ma Xiaoli; Yin Weiwei; Li Zhuyu; Jin Genming; Wu Heyu

    2001-01-01

    A new kind of logical circuit will be introduced in brief. There are 16 independent channels in the module. The module receives low amplitude signals(≥40 mV), and processes them to amplify, shape, delay, sum and etc. After the processing each channel produces 2 pairs of ECL logical signal to feed the gate of QDC as the gate signal of QDC. The module consists of high-speed preamplifier unit, high-speed discriminate unit, delaying and shaping unit, summing unit and trigger display unit. The module is developed for 64 CH. 12 BIT Multi-event QDC. The impedance of QDC is 110 Ω. Each gate signal of QDC requires a pair of differential ECL level, Min. Gate width 30 ns and Max. Gate width 1 μs. It has showed that the outputs of logical circuit module satisfy the QDC requirements in experiment. The module can be used on data acquisition system to acquire thousands of data at high-speed ,high-density and multi-parameter, in heavy particle nuclear physics experiment. It also can be used to discriminate multi-coincidence events

  8. Design, development and test of the gearbox condition monitoring system using sound signal processing

    Directory of Open Access Journals (Sweden)

    M Zamani

    2016-09-01

    Full Text Available Introduction One of the ways used for minimizing the cost of maintenance and repairs of rotating industrial equipment is condition monitoring using acoustic analysis. One of the most important problems which always have been under consideration in industrial equipment application is confidence possibility. Each dynamic, electrical, hydraulic or thermal system has certain characteristics which show the normal condition of the machine during function. Any changes of the characteristics can be a signal of a problem in the machine. The aim of condition monitoring is system condition determination using measurements of the signals of characteristics and using this information for system impairment prognostication. There are a lot of ways for condition monitoring of different systems, but sound analysis is accepted and used extensively as a method for condition investigation of rotating machines. The aim of this research is the design and construction of considered gearbox and using of obtaining data in frequency and time spectrum in order to analyze the sound and diagnosis. Materials and Methods This research was conducted at the department of mechanical biosystem workshop at Aboureihan College at Tehran University in February 15th.2015. In this research, in order to investigate the trend of diagnosis and gearbox condition, a system was designed and then constructed. The sound of correct and damaged gearbox was investigated by audiometer and stored in computer for data analysis. Sound measurement was done in three pinions speed of 749, 1050 and 1496 rpm and for correct gearboxes, damage of the fracture of a tooth and a tooth wear. Gearbox design and construction: In order to conduct the research, a gearbox with simple gearwheels was designed according to current needs. Then mentioned gearbox and its accessories were modeled in CATIA V5-R20 software and then the system was constructed. Gearbox is a machine that is used for mechanical power transition

  9. Behavioral responses by Icelandic White-Beaked Dolphins (Lagenorhynchus albirostris) to playback sounds

    DEFF Research Database (Denmark)

    Rasmussen, Marianne H.; Atem, Ana; Miller, Lee A.

    2016-01-01

    AbstractThe aim of this study was to investigate how wild white-beaked dolphins (Lagenorhynchus albirostris)respond to the playback of novel, anthropogenic sounds. We used amplitude-modulated tones and synthetic pulse-bursts. (Some authors in the literature use the term “burst pulse” meaning a bu...... a response and a change in the natural behavior of a marine mammal—in this case, wild white-beaked dolphins........ The estimated received levels for tonal signals were from 110 to 160 dB and for pulse-bursts were 153 to 166 dB re 1 μPa (peak-to-peak). Playback of a file with no signal served as a no sound control in all experiments. The animals responded to all acoustic signals with nine different behavioral responses: (1......) circling the array, (2) turning around and approaching the camera, (3)underwater tail slapping, (4)emitting bubbles, (5)turning their belly towards the set-up, (6) emitting pulse-bursts towards the loudspeaker, (7) an increase in swim speed, (8) a change in swim direction, and (9) jumping. A total of 157...

  10. Automated signal quality assessment of mobile phone-recorded heart sound signals.

    Science.gov (United States)

    Springer, David B; Brennan, Thomas; Ntusi, Ntobeko; Abdelrahman, Hassan Y; Zühlke, Liesl J; Mayosi, Bongani M; Tarassenko, Lionel; Clifford, Gari D

    Mobile phones, due to their audio processing capabilities, have the potential to facilitate the diagnosis of heart disease through automated auscultation. However, such a platform is likely to be used by non-experts, and hence, it is essential that such a device is able to automatically differentiate poor quality from diagnostically useful recordings since non-experts are more likely to make poor-quality recordings. This paper investigates the automated signal quality assessment of heart sound recordings performed using both mobile phone-based and commercial medical-grade electronic stethoscopes. The recordings, each 60 s long, were taken from 151 random adult individuals with varying diagnoses referred to a cardiac clinic and were professionally annotated by five experts. A mean voting procedure was used to compute a final quality label for each recording. Nine signal quality indices were defined and calculated for each recording. A logistic regression model for classifying binary quality was then trained and tested. The inter-rater agreement level for the stethoscope and mobile phone recordings was measured using Conger's kappa for multiclass sets and found to be 0.24 and 0.54, respectively. One-third of all the mobile phone-recorded phonocardiogram (PCG) signals were found to be of sufficient quality for analysis. The classifier was able to distinguish good- and poor-quality mobile phone recordings with 82.2% accuracy, and those made with the electronic stethoscope with an accuracy of 86.5%. We conclude that our classification approach provides a mechanism for substantially improving auscultation recordings by non-experts. This work is the first systematic evaluation of a PCG signal quality classification algorithm (using a separate test dataset) and assessment of the quality of PCG recordings captured by non-experts, using both a medical-grade digital stethoscope and a mobile phone.

  11. An Analysis/Synthesis System of Audio Signal with Utilization of an SN Model

    Directory of Open Access Journals (Sweden)

    G. Rozinaj

    2004-12-01

    Full Text Available An SN (sinusoids plus noise model is a spectral model, in which theperiodic components of the sound are represented by sinusoids withtime-varying frequencies, amplitudes and phases. The remainingnon-periodic components are represented by a filtered noise. Thesinusoidal model utilizes physical properties of musical instrumentsand the noise model utilizes the human inability to perceive the exactspectral shape or the phase of stochastic signals. SN modeling can beapplied in a compression, transformation, separation of sounds, etc.The designed system is based on methods used in the SN modeling. Wehave proposed a model that achieves good results in audio perception.Although many systems do not save phases of the sinusoids, they areimportant for better modelling of transients, for the computation ofresidual and last but not least for stereo signals, too. One of thefundamental properties of the proposed system is the ability of thesignal reconstruction not only from the amplitude but from the phasepoint of view, as well.

  12. Optical spectral reshaping for directly modulated 4-pulse amplitude modulation signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Da Ros, Francesco; Cristofori, Valentina

    2017-01-01

    The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due to their......The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due...... (PAM) [3] signals. However, moving to 4-PAM,many of the impressive demonstrations reported so far rely heavily on off-line digital signal processing (DSP), which increases latency, power consumption and cost. In this talk, we report on (i) a detailed numerical analysis on the complex transfer function...... of the optical filter for optical spectral reshaping in case of pulse amplitude modulation and(ii) an experimental demonstration of real-time dispersion-uncompensated transmission of 10-GBd and 14-GBd 4-PAM signals up to 10- and 26-km SSMF. This is achieved by combining a commercial 10-Gb/s DML with optical...

  13. Research and Implementation of Heart Sound Denoising

    Science.gov (United States)

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  14. Computer soundcard as an AC signal generator and oscilloscope for the physics laboratory

    Science.gov (United States)

    Sinlapanuntakul, Jinda; Kijamnajsuk, Puchong; Jetjamnong, Chanthawut; Chotikaprakhan, Sutharat

    2018-01-01

    The purpose of this paper is to develop both an AC signal generator and a dual-channel oscilloscope based on standard personal computer equipped with sound card as parts of the laboratory of the fundamental physics and the introduction to electronics classes. The setup turns the computer into the two channel measured device which can provides sample rate, simultaneous sampling, frequency range, filters and others essential capabilities required to perform amplitude, phase and frequency measurements of AC signal. The AC signal also generate from the same computer sound card output simultaneously in any waveform such as sine, square, triangle, saw-toothed pulsed, swept sine and white noise etc. These can convert an inexpensive PC sound card into powerful device, which allows the students to measure physical phenomena with their own PCs either at home or at university attendance. A graphic user interface software was developed for control and analysis, including facilities for data recording, signal processing and real time measurement display. The result is expanded utility of self-learning for the students in the field of electronics both AC and DC circuits, including the sound and vibration experiments.

  15. Measuring the 'complexity'of sound

    Indian Academy of Sciences (India)

    Sounds in the natural environment form an important class of biologically relevant nonstationary signals. We propose a dynamic spectral measure to characterize the spectral dynamics of such non-stationary sound signals and classify them based on rate of change of spectral dynamics. We categorize sounds with slowly ...

  16. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    Science.gov (United States)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  17. Third sound in a restricted geometry

    International Nuclear Information System (INIS)

    Brouwer, P.W.; Draisma, W.A.; Pinkse, P.W.H.; Beelen, H. van; Jochemsen, R.; Frossati, G.

    1992-01-01

    Bergman's general treatment of third sound waves has been extended to a (restricted) parallel plate geometry. In a parallel plate geometry two independent third sound modes can propagate: a symmetric and an antisymmetric one. Calculations show that at temperatures below 1 K the antisymmetric mode carries the most important part of the temperature amplitude. Because of the relatively strong substrate influence the temperature amplitude of the symmetric mode is suppressed. The ΔT/Δh versus T measurements by Laheurte et al. and of the ΔT/Δh versus ω measurements by Ellis et al. are explained. 7 refs., 2 figs

  18. Acoustic Signals Processing at the Realization of Contact-Difference Method for Person Identification

    Directory of Open Access Journals (Sweden)

    A. N. Golubinskiy

    2011-09-01

    Full Text Available The questions of speech and acoustic (registered on a human body at pronouncing by him of sounds signals processing are examined. The measure of a distinguish ability for identification at parameterization of a biometric image by an amplitude-frequency response of a human body is developed.

  19. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  20. Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain.

    Science.gov (United States)

    Markushev, D D; Rabasović, M D; Todorović, D M; Galović, S; Bialkowski, S E

    2015-03-01

    Methods for photoacoustic signal measurement, rectification, and analysis for 85 μm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.

  1. Representation of complex vocalizations in the Lusitanian toadfish auditory system: evidence of fine temporal, frequency and amplitude discrimination

    Science.gov (United States)

    Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich

    2011-01-01

    Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044

  2. Nuclear sound

    International Nuclear Information System (INIS)

    Wambach, J.

    1991-01-01

    Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)

  3. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    Science.gov (United States)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  4. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  5. Waveform analysis of sound

    CERN Document Server

    Tohyama, Mikio

    2015-01-01

    What is this sound? What does that sound indicate? These are two questions frequently heard in daily conversation. Sound results from the vibrations of elastic media and in daily life provides informative signals of events happening in the surrounding environment. In interpreting auditory sensations, the human ear seems particularly good at extracting the signal signatures from sound waves. Although exploring auditory processing schemes may be beyond our capabilities, source signature analysis is a very attractive area in which signal-processing schemes can be developed using mathematical expressions. This book is inspired by such processing schemes and is oriented to signature analysis of waveforms. Most of the examples in the book are taken from data of sound and vibrations; however, the methods and theories are mostly formulated using mathematical expressions rather than by acoustical interpretation. This book might therefore be attractive and informative for scientists, engineers, researchers, and graduat...

  6. Metabolic and respiratory costs of increasing song amplitude in zebra finches.

    Directory of Open Access Journals (Sweden)

    Sue Anne Zollinger

    Full Text Available Bird song is a widely used model in the study of animal communication and sexual selection, and several song features have been shown to reflect the quality of the singer. Recent studies have demonstrated that song amplitude may be an honest signal of current condition in males and that females prefer high amplitude songs. In addition, birds raise the amplitude of their songs to communicate in noisy environments. Although it is generally assumed that louder song should be more costly to produce, there has been little empirical evidence to support this assumption. We tested the assumption by measuring oxygen consumption and respiratory patterns in adult male zebra finches (Taeniopygia guttata singing at different amplitudes in different background noise conditions. As background noise levels increased, birds significantly increased the sound pressure level of their songs. We found that louder songs required significantly greater subsyringeal air sac pressure than quieter songs. Though increased pressure is probably achieved by increasing respiratory muscle activity, these increases did not correlate with measurable increases in oxygen consumption. In addition, we found that oxygen consumption increased in higher background noise, independent of singing behaviour. This observation supports previous research in mammals showing that high levels of environmental noise can induce physiological stress responses. While our study did not find that increasing vocal amplitude increased metabolic costs, further research is needed to determine whether there are other non-metabolic costs of singing louder or costs associated with chronic noise exposure.

  7. Identification of Mobile Phone and Analysis of Original Version of Videos through a Delay Time Analysis of Sound Signals from Mobile Phone Videos.

    Science.gov (United States)

    Hwang, Min Gu; Har, Dong Hwan

    2017-11-01

    This study designs a method of identifying the camera model used to take videos that are distributed through mobile phones and determines the original version of the mobile phone video for use as legal evidence. For this analysis, an experiment was conducted to find the unique characteristics of each mobile phone. The videos recorded by mobile phones were analyzed to establish the delay time of sound signals, and the differences between the delay times of sound signals for different mobile phones were traced by classifying their characteristics. Furthermore, the sound input signals for mobile phone videos used as legal evidence were analyzed to ascertain whether they have the unique characteristics of the original version. The objective of this study was to find a method for validating the use of mobile phone videos as legal evidence using mobile phones through differences in the delay times of sound input signals. © 2017 American Academy of Forensic Sciences.

  8. Underwater Sound Propagation from Marine Pile Driving.

    Science.gov (United States)

    Reyff, James A

    2016-01-01

    Pile driving occurs in a variety of nearshore environments that typically have very shallow-water depths. The propagation of pile-driving sound in water is complex, where sound is directly radiated from the pile as well as through the ground substrate. Piles driven in the ground near water bodies can produce considerable underwater sound energy. This paper presents examples of sound propagation through shallow-water environments. Some of these examples illustrate the substantial variation in sound amplitude over time that can be critical to understand when computing an acoustic-based safety zone for aquatic species.

  9. Anomalous enhancement in daytime 40-kHz signal amplitude accompanied by geomagnetic storms, earthquakes and meteor showers

    Directory of Open Access Journals (Sweden)

    B. K. De

    Full Text Available Anomalous propagational characteristics, daytime signal levels greater than night-time, were observed. The amplitude records of a 40-kHz signal propagated over a distance of 5100 km from Sanwa, Japan to Calcutta along a low-latitude path show higher signal strength at midday compared to the midnight level on days preceded by principal geomagnetic storms, earthquakes and major meteor showers. This is explained by the increased ionization in the D-region following geophysical events. The storm after-effects only have a duration of a single day in this low-latitude path.

  10. Anomalous enhancement in daytime 40-kHz signal amplitude accompanied by geomagnetic storms, earthquakes and meteor showers

    Directory of Open Access Journals (Sweden)

    B. K. De

    1995-10-01

    Full Text Available Anomalous propagational characteristics, daytime signal levels greater than night-time, were observed. The amplitude records of a 40-kHz signal propagated over a distance of 5100 km from Sanwa, Japan to Calcutta along a low-latitude path show higher signal strength at midday compared to the midnight level on days preceded by principal geomagnetic storms, earthquakes and major meteor showers. This is explained by the increased ionization in the D-region following geophysical events. The storm after-effects only have a duration of a single day in this low-latitude path.

  11. Search for fourth sound propagation in supersolid 4He

    International Nuclear Information System (INIS)

    Aoki, Y.; Kojima, H.; Lin, X.

    2008-01-01

    A systematic study is carried out to search for fourth sound propagation solid 4 He samples below 500 mK down to 40 mK between 25 and 56 bar using the techniques of heat pulse generator and titanium superconducting transition edge bolometer. If solid 4 He is endowed with superfluidity below 200 mK, as indicated by recent torsional oscillator experiments, theories predict fourth sound propagation in such a supersolid state. If found, fourth sound would provide convincing evidence for superfluidity and a new tool for studying the new phase. The search for a fourth sound-like mode is based on the response of the bolometers to heat pulses traveling through cylindrical samples of solids grown with different crystal qualities. Bolometers with increasing sensitivity are constructed. The heater generator amplitude is reduced to the sensitivity limit to search for any critical velocity effects. The fourth sound velocity is expected to vary as ∞ √ Ρ s /ρ. Searches for a signature in the bolometer response with such a characteristic temperature dependence are made. The measured response signal has not so far revealed any signature of a new propagating mode within a temperature excursion of 5 μK from the background signal shape. Possible reasons for this negative result are discussed. Prior to the fourth sound search, the temperature dependence of heat pulse propagation was studied as it transformed from 'second sound' in the normal solid 4 He to transverse ballistic phonon propagation. Our work extends the studies of [V. Narayanamurti and R. C. Dynes, Phys. Rev. B 12, 1731 (1975)] to higher pressures and to lower temperatures. The measured transverse ballistic phonon propagation velocity is found to remain constant (within the 0.3% scatter of the data) below 100 mK at all pressures and reveals no indication of an onset of supersolidity. The overall dynamic thermal response of solid to heat input is found to depend strongly on the sample preparation procedure

  12. Generation and control of sound bullets with a nonlinear acoustic lens.

    Science.gov (United States)

    Spadoni, Alessandro; Daraio, Chiara

    2010-04-20

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment.

  13. Spectral integration in speech and non-speech sounds

    Science.gov (United States)

    Jacewicz, Ewa

    2005-04-01

    Spectral integration (or formant averaging) was proposed in vowel perception research to account for the observation that a reduction of the intensity of one of two closely spaced formants (as in /u/) produced a predictable shift in vowel quality [Delattre et al., Word 8, 195-210 (1952)]. A related observation was reported in psychoacoustics, indicating that when the components of a two-tone periodic complex differ in amplitude and frequency, its perceived pitch is shifted toward that of the more intense tone [Helmholtz, App. XIV (1875/1948)]. Subsequent research in both fields focused on the frequency interval that separates these two spectral components, in an attempt to determine the size of the bandwidth for spectral integration to occur. This talk will review the accumulated evidence for and against spectral integration within the hypothesized limit of 3.5 Bark for static and dynamic signals in speech perception and psychoacoustics. Based on similarities in the processing of speech and non-speech sounds, it is suggested that spectral integration may reflect a general property of the auditory system. A larger frequency bandwidth, possibly close to 3.5 Bark, may be utilized in integrating acoustic information, including speech, complex signals, or sound quality of a violin.

  14. Neuromimetic Sound Representation for Percept Detection and Manipulation

    Directory of Open Access Journals (Sweden)

    Chi Taishih

    2005-01-01

    Full Text Available The acoustic wave received at the ears is processed by the human auditory system to separate different sounds along the intensity, pitch, and timbre dimensions. Conventional Fourier-based signal processing, while endowed with fast algorithms, is unable to easily represent a signal along these attributes. In this paper, we discuss the creation of maximally separable sounds in auditory user interfaces and use a recently proposed cortical sound representation, which performs a biomimetic decomposition of an acoustic signal, to represent and manipulate sound for this purpose. We briefly overview algorithms for obtaining, manipulating, and inverting a cortical representation of a sound and describe algorithms for manipulating signal pitch and timbre separately. The algorithms are also used to create sound of an instrument between a "guitar" and a "trumpet." Excellent sound quality can be achieved if processing time is not a concern, and intelligible signals can be reconstructed in reasonable processing time (about ten seconds of computational time for a one-second signal sampled at . Work on bringing the algorithms into the real-time processing domain is ongoing.

  15. Sound response of superheated drop bubble detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Chen Zhe; Liu Chao; Ni Bangfa; Zhang Guiying; Zhao Changfa; Xiao Caijin; Liu Cunxiong; Nie Peng; Guan Yongjing

    2012-01-01

    The sound response of the bubble detectors to neutrons by using 252 Cf neutron source was described. Sound signals were filtered by sound card and PC. The short-time signal energy. FFT spectrum, power spectrum, and decay time constant were got to determine the authenticity of sound signal for bubbles. (authors)

  16. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 3; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center

    1996-10-01

    For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.

  17. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  18. Sound analysis of a cup drum

    International Nuclear Information System (INIS)

    Kim, Kun ho

    2012-01-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide tournament that evaluates a high-school student's ability to solve various physics conundrums that have not been fully resolved in the past. The research presented here is my solution to the cup drum problem. The physics behind a cup drum has never been explored or modelled. A cup drum is a musical instrument that can generate different frequencies and amplitudes depending on the location of a cup held upside-down over, on or under a water surface. The tapping sound of a cup drum can be divided into two components: standing waves and plate vibration. By individually researching the nature of these two sounds, I arrived at conclusions that could accurately predict the frequencies in most cases. When the drum is very close to the surface, qualitative explanations are given. In addition, I examined the trend of the tapping sound amplitude at various distances and qualitatively explained the experimental results. (paper)

  19. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    Energy Technology Data Exchange (ETDEWEB)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G., E-mail: akosovichev@solar.stanford.edu [Stanford University, HEPL, Stanford, CA 94305 (United States)

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  20. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    International Nuclear Information System (INIS)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-01-01

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  1. Analysis and Synthesis of Musical Instrument Sounds

    Science.gov (United States)

    Beauchamp, James W.

    For synthesizing a wide variety of musical sounds, it is important to understand which acoustic properties of musical instrument sounds are related to specific perceptual features. Some properties are obvious: Amplitude and fundamental frequency easily control loudness and pitch. Other perceptual features are related to sound spectra and how they vary with time. For example, tonal "brightness" is strongly connected to the centroid or tilt of a spectrum. "Attack impact" (sometimes called "bite" or "attack sharpness") is strongly connected to spectral features during the first 20-100 ms of sound, as well as the rise time of the sound. Tonal "warmth" is connected to spectral features such as "incoherence" or "inharmonicity."

  2. Sound from charged particles in liquids

    International Nuclear Information System (INIS)

    Askar'yan, G.A.

    1980-01-01

    Two directions of sound application appearing during the charged particles passing through liquid - in biology and for charged particles registration are considered. Application of this sound in radiology is determined by a contribution of its hypersound component (approximately 10 9 Hz) to radiology effect of ionizing radiation on micro-organisms and cells. Large amplitudes and pressure gradients in a hypersound wave have a pronounced destructive breaking effect on various microobjects (cells, bacteria, viruses). An essential peculiarity of these processes is the possibility of control by choosing conditions changing hypersound generation, propagation and effect. This fact may lead not only to the control by radiaiton effects but also may explain and complete the analogy of ionizing radiation and ultrasound effect on bioobjects. The second direction is acoustic registration of passing ionizing particles. It is based on the possibility of guaranteed signal reception from a shower with 10 15 -10 16 eV energy in water at distances of hundreds of meters. Usage of acoustic technique for neutrino registration in the DUMAND project permits to use a detecting volume of water with a mass of 10 9 t and higher

  3. Amplitude-to-frequency converter of radioisotope instruments

    International Nuclear Information System (INIS)

    Demchenkov, V.P.; Korobkov, I.N.

    1988-01-01

    An amplitude-to-frequency converter designed for signal processing of radioisotope relay devices is descibed. The basic elements of the converter are a scaling amplifier, an analog-to-digital converter, a code-to-frequency converter, a null-organ, a delay unit and a clock-pulse generator. The designed amplitude-to-frequency converter takes into account a prior information about the signal shape of the energy spectrum. The converter processes input pulses of 0.10 V amplitude and duration more than 2μs. The energy channel number is 64

  4. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  5. Towards Predicting Room Acoustical Effects on Sound-Field ASSR from Stimulus Modulation Power

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; Laugesen, Søren; Jeong, Cheol-Ho

    ) is considered. Instead of using insert earphones to deliver the stimuli, as is customary, the auditory signals are reproduced from a loudspeaker placed in front of the subject, so as to include the hearing aid in the transmission path. Loudspeaker presentation of the stimulus can lower its effective modulation...... properties of the measurement room has not been considered. The present work explores the relation between the stimulus modulation power and the ASSR amplitude in a simulated sound-field ASSR data set with varying reverberation time. Three rooms were simulated using the Green's function approach...

  6. The organization of words and environmental sounds in memory.

    Science.gov (United States)

    Hendrickson, Kristi; Walenski, Matthew; Friend, Margaret; Love, Tracy

    2015-03-01

    In the present study we used event-related potentials to compare the organization of linguistic and meaningful nonlinguistic sounds in memory. We examined N400 amplitudes as adults viewed pictures presented with words or environmental sounds that matched the picture (Match), that shared semantic features with the expected match (Near Violation), and that shared relatively few semantic features with the expected match (Far Violation). Words demonstrated incremental N400 amplitudes based on featural similarity from 300-700ms, such that both Near and Far Violations exhibited significant N400 effects, however Far Violations exhibited greater N400 effects than Near Violations. For environmental sounds, Far Violations but not Near Violations elicited significant N400 effects, in both early (300-400ms) and late (500-700ms) time windows, though a graded pattern similar to that of words was seen in the mid-latency time window (400-500ms). These results indicate that the organization of words and environmental sounds in memory is differentially influenced by featural similarity, with a consistently fine-grained graded structure for words but not sounds. Published by Elsevier Ltd.

  7. Determination of the influence of asymmetry of the electric field distribution in gaseous proportional counters on their signal amplitude

    International Nuclear Information System (INIS)

    Jagusztyn, W.

    1976-01-01

    A method is described of establishing the influence of the asymmetry of the electric field distribution in gaseous proportional counters on the amplitude of their voltage signal. A numerical evaluation of this effect demands performing calculations of the electric field in the vicinity of the anode. Using the described method of numerical solution of the Laplace equation in polar coordinates with logarythmically scaled radial dimension, it is possible to achieve the required accuracy. In the calculations of differences in amplitudes of voltage signals, for chosen trajektories of electrons liberated in the process of primary ionization, changes in the gaseous amplification factors and drift velocities of positive ions are taken into account. Experimental results prove the validity of presented theory. The results obtained are accurate enough to be applied to the design of proportional counters of non-cylindrical geometries. (author)

  8. Making sound vortices by metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Liping; Qiu, Chunyin, E-mail: cyqiu@whu.edu.cn; Lu, Jiuyang; Tang, Kun; Ke, Manzhu; Peng, Shasha [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Jia, Han [State Key Laboratory of Acoustics and Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Zhengyou [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute for Advanced Studies, Wuhan University, Wuhan 430072 (China)

    2016-08-15

    Based on the Huygens-Fresnel principle, a metasurface structure is designed to generate a sound vortex beam in airborne environment. The metasurface is constructed by a thin planar plate perforated with a circular array of deep subwavelength resonators with desired phase and amplitude responses. The metasurface approach in making sound vortices is validated well by full-wave simulations and experimental measurements. Potential applications of such artificial spiral beams can be anticipated, as exemplified experimentally by the torque effect exerting on an absorbing disk.

  9. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    Science.gov (United States)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  10. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  11. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  12. The Opponent Channel Population Code of Sound Location Is an Efficient Representation of Natural Binaural Sounds

    Science.gov (United States)

    Młynarski, Wiktor

    2015-01-01

    In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373

  13. Study of the vocal signal in the amplitude-time representation. Speech segmentation and recognition algorithms

    International Nuclear Information System (INIS)

    Baudry, Marc

    1978-01-01

    This dissertation exposes an acoustical and phonetical study of vocal signal. The complex pattern of the signal is segmented into simple sub-patterns and each one of these sub-patterns may be segmented again into another more simplest patterns with lower level. Application of pattern recognition techniques facilitates on one hand this segmentation and on the other hand the definition of the structural relations between the sub-patterns. Particularly, we have developed syntactic techniques in which the rewriting rules, context-sensitive, are controlled by predicates using parameters evaluated on the sub-patterns themselves. This allow to generalize a pure syntactic analysis by adding a semantic information. The system we expose, realizes pre-classification and a partial identification of the phonemes as also the accurate detection of each pitch period. The voice signal is analysed directly using the amplitude-time representation. This system has been implemented on a mini-computer and it works in the real time. (author) [fr

  14. Photoacoustic Sounds from Meteors.

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Richard E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tencer, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sweatt, William C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hogan, Roy E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spurny, Pavel [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic)

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appear to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.

  15. The organization of words and environmental sounds in memory☆

    Science.gov (United States)

    Hendrickson, Kristi; Walenski, Matthew; Friend, Margaret; Love, Tracy

    2015-01-01

    In the present study we used event-related potentials to compare the organization of linguistic and meaningful nonlinguistic sounds in memory. We examined N400 amplitudes as adults viewed pictures presented with words or environmental sounds that matched the picture (Match), that shared semantic features with the expected match (Near Violation), and that shared relatively few semantic features with the expected match (Far Violation). Words demonstrated incremental N400 amplitudes based on featural similarity from 300–700 ms, such that both Near and Far Violations exhibited significant N400 effects, however Far Violations exhibited greater N400 effects than Near Violations. For environmental sounds, Far Violations but not Near Violations elicited significant N400 effects, in both early (300–400 ms) and late (500–700 ms) time windows, though a graded pattern similar to that of words was seen in the midlatency time window (400–500 ms). These results indicate that the organization of words and environmental sounds in memory is differentially influenced by featural similarity, with a consistently fine-grained graded structure for words but not sounds. PMID:25624059

  16. Epileptic seizure detection from EEG signals with phase-amplitude cross-frequency coupling and support vector machine

    Science.gov (United States)

    Liu, Yang; Wang, Jiang; Cai, Lihui; Chen, Yingyuan; Qin, Yingmei

    2018-03-01

    As a pattern of cross-frequency coupling (CFC), phase-amplitude coupling (PAC) depicts the interaction between the phase and amplitude of distinct frequency bands from the same signal, and has been proved to be closely related to the brain’s cognitive and memory activities. This work utilized PAC and support vector machine (SVM) classifier to identify the epileptic seizures from electroencephalogram (EEG) data. The entropy-based modulation index (MI) matrixes are used to express the strength of PAC, from which we extracted features as the input for classifier. Based on the Bonn database, which contains five datasets of EEG segments obtained from healthy volunteers and epileptic subjects, a 100% classification accuracy is achieved for identifying seizure ictal from healthy data, and an accuracy of 97.67% is reached in the classification of ictal EEG signals from inter-ictal EEGs. Based on the CHB-MIT database which is a group of continuously recorded epileptic EEGs by scalp electrodes, a 97.50% classification accuracy is obtained and a raising sign of MI value is found at 6s before seizure onset. The classification performance in this work is effective, and PAC can be considered as a useful tool for detecting and predicting the epileptic seizures and providing reference for clinical diagnosis.

  17. Modelling and mitigation of wheel squeal noise amplitude

    Science.gov (United States)

    Meehan, Paul A.; Liu, Xiaogang

    2018-01-01

    The prediction of vibration amplitude and sound pressure level of wheel squeal noise is investigated using a concise mathematical model that is verified with measurements from both a rolling contact two disk test rig and a field case study. The model is used to perform an energy-based analysis to determine a closed form solution to the steady state limit cycle amplitude of creep and vibration oscillations during squealing. The analytical solution compares well with a numerical solution using an experimentally tuned creep curve with full nonlinear shape. The predicted squeal sound level trend also compares well with that recorded at various crabbing velocities (proportional to angle of attack) for the test rig at different rolling speeds. In addition, further verification is performed against many field recordings of wheel squeal on a sharp curve of 300 m. A comparison with a simplified modified result from Rudd [1] is also provided and highlights the accuracy and advantages of the present efficient model. The analytical solution provides insight into why the sound pressure level of squeal noise increases with crabbing velocity (or angle of attack) as well as how the amplitude is affected by the critical squeal parameters including a detailed investigation of modal damping. Finally, the efficient model is used to perform a parametric investigation into means of achieving a 6 dB decrease in squeal noise. The results highlight the primary importance of crabbing velocity (and angle of attack) as well as the creep curve parameters that may be controlled using third body control (ie friction modifiers). The results concur with experimental and field observations and provide important theoretical insight into the useful mechanisms of mitigating wheel squeal and quantifying their relative merits.

  18. Brain responses to sound intensity changes dissociate depressed participants and healthy controls.

    Science.gov (United States)

    Ruohonen, Elisa M; Astikainen, Piia

    2017-07-01

    Depression is associated with bias in emotional information processing, but less is known about the processing of neutral sensory stimuli. Of particular interest is processing of sound intensity which is suggested to indicate central serotonergic function. We tested weather event-related brain potentials (ERPs) to occasional changes in sound intensity can dissociate first-episode depressed, recurrent depressed and healthy control participants. The first-episode depressed showed larger N1 amplitude to deviant sounds compared to recurrent depression group and control participants. In addition, both depression groups, but not the control group, showed larger N1 amplitude to deviant than standard sounds. Whether these manifestations of sensory over-excitability in depression are directly related to the serotonergic neurotransmission requires further research. The method based on ERPs to sound intensity change is fast and low-cost way to objectively measure brain activation and holds promise as a future diagnostic tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case

    Energy Technology Data Exchange (ETDEWEB)

    Gondolo, Paolo [Department of Physics, University of Utah, 115 South 1400 East #201, Salt Lake City, Utah 84112-0830 (United States); Scopel, Stefano, E-mail: paolo.gondolo@utah.edu, E-mail: scopel@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)

    2017-09-01

    We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysis to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.

  20. Amplitude spectrum EEG signal evidence for the dissociation of motor and perceptual spatial working memory in the human brain.

    Science.gov (United States)

    Smyrnis, Nikolaos; Protopapa, Foteini; Tsoukas, Evangelos; Balogh, Allison; Siettos, Constantinos I; Evdokimidis, Ioannis

    2014-02-01

    This study investigated the question whether spatial working memory related to movement plans (motor working memory) and spatial working memory related to spatial attention and perceptual processes (perceptual spatial working memory) share the same neurophysiological substrate or there is evidence for separate motor and perceptual working memory streams of processing. Towards this aim, ten healthy human subjects performed delayed responses to visual targets presented at different spatial locations. Two tasks were attained, one in which the spatial location of the target was the goal for a pointing movement and one in which the spatial location of the target was used for a perceptual (yes or no) change detection. Each task involved two conditions: a memory condition in which the target remained visible only for the first 250 ms of the delay period and a delay condition in which the target location remained visible throughout the delay period. The amplitude spectrum analysis of the EEG revealed that the alpha (8-12 Hz) band signal was smaller, while the beta (13-30 Hz) and gamma (30-45 Hz) band signals were larger in the memory compared to the non-memory condition. The alpha band signal difference was confined to the frontal midline area; the beta band signal difference extended over the right hemisphere and midline central area, and the gamma band signal difference was confined to the right occipitoparietal area. Importantly, both in beta and gamma bands, we observed a significant increase in the movement-related compared to the perceptual-related memory-specific amplitude spectrum signal in the central midline area. This result provides clear evidence for the dissociation of motor and perceptual spatial working memory.

  1. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  2. Sound-like collective mode excitation with pion absorption in nuclear matter

    International Nuclear Information System (INIS)

    Qiu Xijiun; Shen Jianguo; Huang Lingfang

    1985-01-01

    The relativistic mean field theory consistent with bulk properties of nuclear matter is extended to study the excitations of the sound-like collective modes in nuclear matter. Corresponding relativistic mean field equations are solved numerically and self-consistently. The effective mass of nucleon, the speed of the sound and the amplitude of the sound-like solution are calculated. When the nuclear density is near or greater than the saturation density, the sound-like non-trivial solution could be found

  3. Systematic assessment of noise amplitude generated by toys intended for young children.

    Science.gov (United States)

    Mahboubi, Hossein; Oliaei, Sepehr; Badran, Karam W; Ziai, Kasra; Chang, Janice; Zardouz, Shawn; Shahriari, Shawn; Djalilian, Hamid R

    2013-06-01

    To systematically evaluate the noise generated by toys targeted for children and to compare the results over the course of 4 consecutive holiday shopping seasons. Experimental study. Academic medical center. During 2008-2011, more than 200 toys marketed for children older than 6 months were screened for loudness. The toys with sound output of more than 80 dBA at speaker level were retested in a soundproof audiometry booth. The generated sound amplitude of each toy was measured at speaker level and at 30 cm away from the speaker. Ninety different toys were analyzed. The mean (SD) noise amplitude was 100 (8) dBA (range, 80-121 dBA) at the speaker level and 80 (11) dBA (range, 60-109 dBA) at 30 cm away from the speaker. Eighty-eight (98%) had more than an 85-dBA noise amplitude at speaker level, whereas 19 (26%) had more than an 85-dBA noise amplitude at a 30-cm distance. Only the mean noise amplitude at 30 cm significantly declined during the studied period (P toys specified for different age groups. Our findings demonstrate the persistence of extremely loud toys marketed for very young children. Acoustic trauma from toys remains a potential risk factor for noise-induced hearing loss in this age group, warranting promotion of public awareness and regulatory considerations for manufacture and marketing of toys.

  4. Assessing signal-driven mechanism in neonates: brain responses to temporally and spectrally different sounds

    Directory of Open Access Journals (Sweden)

    Yasuyo eMinagawa-Kawai

    2011-06-01

    Full Text Available Past studies have found that in adults that acoustic properties of sound signals (such as fast vs. slow temporal features differentially activate the left and right hemispheres, and some have hypothesized that left-lateralization for speech processing may follow from left-lateralization to rapidly changing signals. Here, we tested whether newborns’ brains show some evidence of signal-specific lateralization responses using near-infrared spectroscopy (NIRS and auditory stimuli that elicits lateralized responses in adults, composed of segments that vary in duration and spectral diversity. We found significantly greater bilateral responses of oxygenated hemoglobin (oxy-Hb in the temporal areas for stimuli with a minimum segment duration of 21 ms, than stimuli with a minimum segment duration of 667 ms. However, we found no evidence for hemispheric asymmetries dependent on the stimulus characteristics. We hypothesize that acoustic-based functional brain asymmetries may develop throughout early infancy, and discuss their possible relationship with brain asymmetries for language.

  5. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  6. Acoustic analysis of trill sounds.

    Science.gov (United States)

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.

  7. Examining the time dependence of DAMA's modulation amplitude

    Science.gov (United States)

    Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo

    2018-03-01

    If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.

  8. Deterministic Approach to Detect Heart Sound Irregularities

    Directory of Open Access Journals (Sweden)

    Richard Mengko

    2017-07-01

    Full Text Available A new method to detect heart sound that does not require machine learning is proposed. The heart sound is a time series event which is generated by the heart mechanical system. From the analysis of heart sound S-transform and the understanding of how heart works, it can be deducted that each heart sound component has unique properties in terms of timing, frequency, and amplitude. Based on these facts, a deterministic method can be designed to identify each heart sound components. The recorded heart sound then can be printed with each component correctly labeled. This greatly help the physician to diagnose the heart problem. The result shows that most known heart sounds were successfully detected. There are some murmur cases where the detection failed. This can be improved by adding more heuristics including setting some initial parameters such as noise threshold accurately, taking into account the recording equipment and also the environmental condition. It is expected that this method can be integrated into an electronic stethoscope biomedical system.

  9. [Mechanism of the constant representation of the position of a sound signal source by the cricket cercal system neurons].

    Science.gov (United States)

    Rozhkova, G I; Polishcuk, N A

    1976-01-01

    Previously it has been shown that some abdominal giant neurones of the cricket have constant preffered directions of sound stimulation in relation not to the cerci (the organs bearing sound receptors) but to the insect body (fig. 1) [1]. Now it is found that the independence of directional sensitivity of giant neurones on the cerci position disappears after cutting all structures connecting the cerci to the body (except cercal nerves) (fig 2). Therefore the constancy of directional sensitivity of the giant nerones is provided by proprioceptive signals about cerci position.

  10. Heart Sound Localization and Reduction in Tracheal Sounds by Gabor Time-Frequency Masking

    OpenAIRE

    SAATCI, Esra; Akan, Aydın

    2018-01-01

    Background and aim: Respiratorysounds, i.e. tracheal and lung sounds, have been of great interest due to theirdiagnostic values as well as the potential of their use in the estimation ofthe respiratory dynamics (mainly airflow). Thus the aim of the study is topresent a new method to filter the heart sound interference from the trachealsounds. Materials and methods: Trachealsounds and airflow signals were collected by using an accelerometer from 10 healthysubjects. Tracheal sounds were then pr...

  11. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  12. Amplitude calibration of an acoustic backscattered signal from a bottom-moored ADCP based on long-term measurement series

    Science.gov (United States)

    Piotukh, V. B.; Zatsepin, A. G.; Kuklev, S. B.

    2017-05-01

    A possible approach to, and preliminary results of, amplitude calibration of acoustic signals backscattered from an ADCP moored at the bottom of the near-shelf zone of the Black Sea is considered. The aim of this work is to obtain vertical profiles of acoustic scattering signal levels, showing the real characteristics of the volume content of suspended sediments in sea water in units of conventional acoustic turbidity for a given signal frequency. In this case, the assumption about the intervals of maximum acoustic transparency and vertical homogeneity of the marine environment in long-term series of ADCP measurements is used. According to this hypothesis, the intervals of the least values of acoustic backscattered signals are detected, an empirical transfer function of the ADCP reception path is constructed, and it is calibrated. Normalized sets of acoustic backscattered signals relative to a signal from a level of conventionally clear water are obtained. New features in the behavior of vertical profiles of an acoustic echo-signal are revealed due to the calibration. The results of this work will be used in subsequent analysis of the vertical and time variations in suspended sediment content in the near-shelf zone of the Black Sea.

  13. [Equivalent Lever Principle of Ossicular Chain and Amplitude Reduction Effect of Internal Ear Lymph].

    Science.gov (United States)

    Zhao, Xiaoyan; Qin, Renjia

    2015-04-01

    This paper makes persuasive demonstrations on some problems about the human ear sound transmission principle in existing physiological textbooks and reference books, and puts forward the authors' view to make up for its literature. Exerting the knowledge of lever in physics and the acoustics theory, we come up with an equivalent simplified model of manubrium mallei which is to meet the requirements as the long arm of the lever. We also set up an equivalent simplified model of ossicular chain--a combination of levers of ossicular chain. We disassemble the model into two simple levers, and make full analysis and demonstration on them. Through the calculation and comparison of displacement amplitudes in both external auditory canal air and internal ear lymph, we may draw a conclusion that the key reason, which the sound displacement amplitude is to be decreased to adapt to the endurance limit of the basement membrane, is that the density and sound speed in lymph is much higher than those in the air.

  14. Effects of spectral complexity and sound duration on automatic complex-sound pitch processing in humans - a mismatch negativity study.

    Science.gov (United States)

    Tervaniemi, M; Schröger, E; Saher, M; Näätänen, R

    2000-08-18

    The pitch of a spectrally rich sound is known to be more easily perceived than that of a sinusoidal tone. The present study compared the importance of spectral complexity and sound duration in facilitated pitch discrimination. The mismatch negativity (MMN), which reflects automatic neural discrimination, was recorded to a 2. 5% pitch change in pure tones with only one sinusoidal frequency component (500 Hz) and in spectrally rich tones with three (500-1500 Hz) and five (500-2500 Hz) harmonic partials. During the recordings, subjects concentrated on watching a silent movie. In separate blocks, stimuli were of 100 and 250 ms in duration. The MMN amplitude was enhanced with both spectrally rich sounds when compared with pure tones. The prolonged sound duration did not significantly enhance the MMN. This suggests that increased spectral rather than temporal information facilitates pitch processing of spectrally rich sounds.

  15. Visualization of Broadband Sound Sources

    OpenAIRE

    Sukhanov Dmitry; Erzakova Nadezhda

    2016-01-01

    In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the...

  16. Sparse representation of Gravitational Sound

    Science.gov (United States)

    Rebollo-Neira, Laura; Plastino, A.

    2018-03-01

    Gravitational Sound clips produced by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Massachusetts Institute of Technology (MIT) are considered within the particular context of data reduction. We advance a procedure to this effect and show that these types of signals can be approximated with high quality using significantly fewer elementary components than those required within the standard orthogonal basis framework. Furthermore, a local measure sparsity is shown to render meaningful information about the variation of a signal along time, by generating a set of local sparsity values which is much smaller than the dimension of the signal. This point is further illustrated by recourse to a more complex signal, generated by Milde Science Communication to divulge Gravitational Sound in the form of a ring tone.

  17. Syntheses by rules of the speech signal in its amplitude-time representation - melody study - phonetic, translation program

    International Nuclear Information System (INIS)

    Santamarina, Carole

    1975-01-01

    The present paper deals with the real-time speech synthesis implemented on a minicomputer. A first program translates the orthographic text into a string of phonetic codes, which is then processed by the synthesis program itself. The method used, a synthesis by rules, directly computes the speech signal in its amplitude-time representation. Emphasis has been put on special cases (diphthongs, 'e muet', consonant-consonant transition) and the implementation of the rhythm and of the melody. (author) [fr

  18. The Sound Quality of Cochlear Implants: Studies With Single-sided Deaf Patients.

    Science.gov (United States)

    Dorman, Michael F; Natale, Sarah Cook; Butts, Austin M; Zeitler, Daniel M; Carlson, Matthew L

    2017-09-01

    The goal of the present study was to assess the sound quality of a cochlear implant for single-sided deaf (SSD) patients fit with a cochlear implant (CI). One of the fundamental, unanswered questions in CI research is "what does an implant sound like?" Conventional CI patients must use the memory of a clean signal, often decades old, to judge the sound quality of their CIs. In contrast, SSD-CI patients can rate the similarity of a clean signal presented to the CI ear and candidate, CI-like signals presented to the ear with normal hearing. For Experiment 1 four types of stimuli were created for presentation to the normal hearing ear: noise vocoded signals, sine vocoded signals, frequency shifted, sine vocoded signals and band-pass filtered, natural speech signals. Listeners rated the similarity of these signals to unmodified signals sent to the CI on a scale of 0 to 10 with 10 being a complete match to the CI signal. For Experiment 2 multitrack signal mixing was used to create natural speech signals that varied along multiple dimensions. In Experiment 1 for eight adult SSD-CI listeners, the best median similarity rating to the sound of the CI for noise vocoded signals was 1.9; for sine vocoded signals 2.9; for frequency upshifted signals, 1.9; and for band pass filtered signals, 5.5. In Experiment 2 for three young listeners, combinations of band pass filtering and spectral smearing lead to ratings of 10. The sound quality of noise and sine vocoders does not generally correspond to the sound quality of cochlear implants fit to SSD patients. Our preliminary conclusion is that natural speech signals that have been muffled to one degree or another by band pass filtering and/or spectral smearing provide a close, but incomplete, match to CI sound quality for some patients.

  19. Applying cybernetic technology to diagnose human pulmonary sounds.

    Science.gov (United States)

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  20. Constraints on decay of environmental sound memory in adult rats.

    Science.gov (United States)

    Sakai, Masashi

    2006-11-27

    When adult rats are pretreated with a 48-h-long 'repetitive nonreinforced sound exposure', performance in two-sound discriminative operant conditioning transiently improves. We have already proven that this 'sound exposure-enhanced discrimination' is dependent upon enhancement of the perceptual capacity of the auditory cortex. This study investigated principles governing decay of sound exposure-enhanced discrimination decay. Sound exposure-enhanced discrimination disappeared within approximately 72 h if animals were deprived of environmental sounds after sound exposure, and that shortened to less than approximately 60 h if they were exposed to environmental sounds in the animal room. Sound-deprivation itself exerted no clear effects. These findings suggest that the memory of a passively exposed behaviorally irrelevant sound signal does not merely pass along the intrinsic lifetime but also gets deteriorated by other incoming signals.

  1. Influence of different envelope maskers on signal recognition and neuronal representation in the auditory system of a grasshopper.

    Directory of Open Access Journals (Sweden)

    Daniela Neuhofer

    Full Text Available BACKGROUND: Animals that communicate by sound face the problem that the signals arriving at the receiver often are degraded and masked by noise. Frequency filters in the receiver's auditory system may improve the signal-to-noise ratio (SNR by excluding parts of the spectrum which are not occupied by the species-specific signals. This solution, however, is hardly amenable to species that produce broad band signals or have ears with broad frequency tuning. In mammals auditory filters exist that work in the temporal domain of amplitude modulations (AM. Do insects also use this type of filtering? PRINCIPAL FINDINGS: Combining behavioural and neurophysiological experiments we investigated whether AM filters may improve the recognition of masked communication signals in grasshoppers. The AM pattern of the sound, its envelope, is crucial for signal recognition in these animals. We degraded the species-specific song by adding random fluctuations to its envelope. Six noise bands were used that differed in their overlap with the spectral content of the song envelope. If AM filters contribute to reduced masking, signal recognition should depend on the degree of overlap between the song envelope spectrum and the noise spectra. Contrary to this prediction, the resistance against signal degradation was the same for five of six masker bands. Most remarkably, the band with the strongest frequency overlap to the natural song envelope (0-100 Hz impaired acceptance of degraded signals the least. To assess the noise filter capacities of single auditory neurons, the changes of spike trains as a function of the masking level were assessed. Increasing levels of signal degradation in different frequency bands led to similar changes in the spike trains in most neurones. CONCLUSIONS: There is no indication that auditory neurones of grasshoppers are specialized to improve the SNR with respect to the pattern of amplitude modulations.

  2. Time characteristics of distortion product otoacoustic emissions recovery function after moderate sound exposure

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda; Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte

    2006-01-01

    Exposure to sound of moderate level temporarily attenuates the amplitude of distortion product otoacoustic emissions (DPOAEs). These changes are similar to the changes observed in absolute hearing thresholds after similar sound exposures. To be able to assess changes over time across a broad...

  3. Interpretation of second Born amplitudes in electron capture

    International Nuclear Information System (INIS)

    McGuire, J.H.; Simony, P.R.; Weaver, O.L.; Macek, J.

    1982-01-01

    Exact sound Born amplitudes for 1s-1s electron capture are presented and interpreted in terms of contributions from intermediate states off the energy shell and on the energy shell. The classical model of Thomas corresponds to two-step scattering via one particular on-shell intermediate state. In the high-velocity limit for 1s-1s capture, this on-shell intermediate state of the Thomas model accounts for one-half of the total cross section, i.e., the second Born cross section. The other half comes from off-energy-shell intermediate states near the on-shell Thomas state. Above 5 MeV both the off-shell and on-shell amplitudes have a simple structure near the Thomas peak. Below 1 MeV, contributions from a broader range of intermediate states are evident in the amplitudes. Although the contribution from the Thomas state is not large below 1 MeV, other second Born effects are significant

  4. Some important aspects of the amplitude, charge and shape analog signals digitization in nuclear physics experiment

    International Nuclear Information System (INIS)

    Kulka, Z.

    1995-01-01

    One of the fundamental reasons of the special requirements concerning analog-to-digital converters (ADC's) used in nuclear experimental physics, especially in nuclear spectroscopy, in comparison to the conventional ADC's is a fact that they are utilized for continuous distribution measurements which are the nuclear radiation spectra. The ADC's used for distribution registration in form of amplitude or charge histogram spectra should have the differential linearity of two orders of magnitude better than that for conventional ADC's. Moreover, the problem of achievement the acceptable differential linearity (as well as stability) in nuclear spectroscopy is much more complicated because high resolution and high speed of the converters are also required. The first requirement comes out from application of semiconductor detectors, the second one comes from the statistical character of the nuclear processes, as well as, a necessity of collection of huge amount of nuclear data - often in a short time. In this report the influence of the specific needs of the nuclear experiments on the conversion methods selection and construction principles of the pulse ADC's is analyzed. Focus is taken on these ADC's which are used mainly to digital amplitude and charge detector signals measurements in nuclear spectroscopy. Based on the chosen examples of different types of ADC's it is shown how to obtain the required metrological parameters by using enlarged converter's structures and proper choice of the electronics components. In addition, a problem of the detector signals shape measurements in particle physics using the high speed flash ADC's is also discussed. (author). 196 refs, 99 figs, 7 tabs

  5. Effects of sounds of locomotion on speech perception

    Directory of Open Access Journals (Sweden)

    Matz Larsson

    2015-01-01

    Full Text Available Human locomotion typically creates noise, a possible consequence of which is the masking of sound signals originating in the surroundings. When walking side by side, people often subconsciously synchronize their steps. The neurophysiological and evolutionary background of this behavior is unclear. The present study investigated the potential of sound created by walking to mask perception of speech and compared the masking produced by walking in step with that produced by unsynchronized walking. The masking sound (footsteps on gravel and the target sound (speech were presented through the same speaker to 15 normal-hearing subjects. The original recorded walking sound was modified to mimic the sound of two individuals walking in pace or walking out of synchrony. The participants were instructed to adjust the sound level of the target sound until they could just comprehend the speech signal ("just follow conversation" or JFC level when presented simultaneously with synchronized or unsynchronized walking sound at 40 dBA, 50 dBA, 60 dBA, or 70 dBA. Synchronized walking sounds produced slightly less masking of speech than did unsynchronized sound. The median JFC threshold in the synchronized condition was 38.5 dBA, while the corresponding value for the unsynchronized condition was 41.2 dBA. Combined results at all sound pressure levels showed an improvement in the signal-to-noise ratio (SNR for synchronized footsteps; the median difference was 2.7 dB and the mean difference was 1.2 dB [P < 0.001, repeated-measures analysis of variance (RM-ANOVA]. The difference was significant for masker levels of 50 dBA and 60 dBA, but not for 40 dBA or 70 dBA. This study provides evidence that synchronized walking may reduce the masking potential of footsteps.

  6. Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter

    Science.gov (United States)

    Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.

    2017-04-01

    The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.

  7. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination.

    Science.gov (United States)

    Saarikivi, Katri; Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna

    2016-07-01

    Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. The development of special equipment amplitude detection instrument based on DSP

    International Nuclear Information System (INIS)

    Dai Sidan; Chen Ligang; Lan Peng; Wang Huiting; Zhang Liangxu; Wang Lin

    2014-01-01

    Development and industrial application of special equipment plays an important role in the development of nuclear energy process. Equipment development process need to do a lot of tests, amplitude detection is a key test,it can analysis the device's electromechanical and physical properties. In the industrial application, the amplitude detection can effectively reflect the operational status of the current equipment, the equipment can also be a certain degree of fault diagnosis, identify problems in a timely manner. The main development target in this article is amplitude detection of special equipment. This article describes the development of special equipment amplitude detection instrument. The instrument uses a digital signal processor (DSP) as the central processing unit, and uses the DSP + CPLD + high-speed AD technology to build a complete set of high-precision signal acquisition and analysis processing systems, rechargeable lithium battery as the powered device. It can do a online monitoring of special equipment amplitude, speed parameters by acquiring and analysing the tachometer signal in the special equipment, and locally display through the LCD screen. (authors)

  9. Sound Beams with Shockwave Pulses

    Science.gov (United States)

    Enflo, B. O.

    2000-11-01

    The beam equation for a sound beam in a diffusive medium, called the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’ equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the sound velocity in the fluid.

  10. Amplitude-independent flaw length determination using differential eddy current

    Science.gov (United States)

    Shell, E.

    2013-01-01

    Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.

  11. Full-Band Quasi-Harmonic Analysis and Synthesis of Musical Instrument Sounds with Adaptive Sinusoids

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano

    2016-05-01

    Full Text Available Sinusoids are widely used to represent the oscillatory modes of musical instrument sounds in both analysis and synthesis. However, musical instrument sounds feature transients and instrumental noise that are poorly modeled with quasi-stationary sinusoids, requiring spectral decomposition and further dedicated modeling. In this work, we propose a full-band representation that fits sinusoids across the entire spectrum. We use the extended adaptive Quasi-Harmonic Model (eaQHM to iteratively estimate amplitude- and frequency-modulated (AM–FM sinusoids able to capture challenging features such as sharp attacks, transients, and instrumental noise. We use the signal-to-reconstruction-error ratio (SRER as the objective measure for the analysis and synthesis of 89 musical instrument sounds from different instrumental families. We compare against quasi-stationary sinusoids and exponentially damped sinusoids. First, we show that the SRER increases with adaptation in eaQHM. Then, we show that full-band modeling with eaQHM captures partials at the higher frequency end of the spectrum that are neglected by spectral decomposition. Finally, we demonstrate that a frame size equal to three periods of the fundamental frequency results in the highest SRER with AM–FM sinusoids from eaQHM. A listening test confirmed that the musical instrument sounds resynthesized from full-band analysis with eaQHM are virtually perceptually indistinguishable from the original recordings.

  12. Sounds scary? Lack of habituation following the presentation of novel sounds.

    Directory of Open Access Journals (Sweden)

    Tine A Biedenweg

    Full Text Available BACKGROUND: Animals typically show less habituation to biologically meaningful sounds than to novel signals. We might therefore expect that acoustic deterrents should be based on natural sounds. METHODOLOGY: We investigated responses by western grey kangaroos (Macropus fulignosus towards playback of natural sounds (alarm foot stomps and Australian raven (Corvus coronoides calls and artificial sounds (faux snake hiss and bull whip crack. We then increased rate of presentation to examine whether animals would habituate. Finally, we varied frequency of playback to investigate optimal rates of delivery. PRINCIPAL FINDINGS: Nine behaviors clustered into five Principal Components. PC factors 1 and 2 (animals alert or looking, or hopping and moving out of area accounted for 36% of variance. PC factor 3 (eating cessation, taking flight, movement out of area accounted for 13% of variance. Factors 4 and 5 (relaxing, grooming and walking; 12 and 11% of variation, respectively discontinued upon playback. The whip crack was most evocative; eating was reduced from 75% of time spent prior to playback to 6% following playback (post alarm stomp: 32%, raven call: 49%, hiss: 75%. Additionally, 24% of individuals took flight and moved out of area (50 m radius in response to the whip crack (foot stomp: 0%, raven call: 8% and 4%, hiss: 6%. Increasing rate of presentation (12x/min ×2 min caused 71% of animals to move out of the area. CONCLUSIONS/SIGNIFICANCE: The bull whip crack, an artificial sound, was as effective as the alarm stomp at eliciting aversive behaviors. Kangaroos did not fully habituate despite hearing the signal up to 20x/min. Highest rates of playback did not elicit the greatest responses, suggesting that 'more is not always better'. Ultimately, by utilizing both artificial and biological sounds, predictability may be masked or offset, so that habituation is delayed and more effective deterrents may be produced.

  13. Spike-timing-based computation in sound localization.

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2010-11-01

    Full Text Available Spike timing is precise in the auditory system and it has been argued that it conveys information about auditory stimuli, in particular about the location of a sound source. However, beyond simple time differences, the way in which neurons might extract this information is unclear and the potential computational advantages are unknown. The computational difficulty of this task for an animal is to locate the source of an unexpected sound from two monaural signals that are highly dependent on the unknown source signal. In neuron models consisting of spectro-temporal filtering and spiking nonlinearity, we found that the binaural structure induced by spatialized sounds is mapped to synchrony patterns that depend on source location rather than on source signal. Location-specific synchrony patterns would then result in the activation of location-specific assemblies of postsynaptic neurons. We designed a spiking neuron model which exploited this principle to locate a variety of sound sources in a virtual acoustic environment using measured human head-related transfer functions. The model was able to accurately estimate the location of previously unknown sounds in both azimuth and elevation (including front/back discrimination in a known acoustic environment. We found that multiple representations of different acoustic environments could coexist as sets of overlapping neural assemblies which could be associated with spatial locations by Hebbian learning. The model demonstrates the computational relevance of relative spike timing to extract spatial information about sources independently of the source signal.

  14. Vibrotactile Identification of Signal-Processed Sounds from Environmental Events Presented by a Portable Vibrator: A Laboratory Study

    Directory of Open Access Journals (Sweden)

    Parivash Ranjbar

    2008-09-01

    Full Text Available Objectives: To evaluate different signal-processing algorithms for tactile identification of environmental sounds in a monitoring aid for the deafblind. Two men and three women, sensorineurally deaf or profoundly hearing impaired with experience of vibratory experiments, age 22-36 years. Methods: A closed set of 45 representative environmental sounds were processed using two transposing (TRHA, TR1/3 and three modulating algorithms (AM, AMFM, AMMC and presented as tactile stimuli using a portable vibrator in three experiments. The algorithms TRHA, TR1/3, AMFM and AMMC had two alternatives (with and without adaption to vibratory thresholds. In Exp. 1, the sounds were preprocessed and directly fed to the vibrator. In Exp. 2 and 3, the sounds were presented in an acoustic test room, without or with background noise (SNR=+5 dB, and processed in real time. Results: In Exp. 1, Algorithm AMFM and AMFM(A consistently had the lowest identification scores, and were thus excluded in Exp. 2 and 3. TRHA, AM, AMMC, and AMMC(A showed comparable identification scores (30%-42% and the addition of noise did not deteriorate the performance. Discussion: Algorithm TRHA, AM, AMMC, and AMMC(A showed good performance in all three experiments and were robust in noise they can therefore be used in further testing in real environments.

  15. Phase and amplitude perturbations on the NWC signal at Dunedin from lightning-induced electron precipitation

    International Nuclear Information System (INIS)

    Dowden, R.L.; Adams, C.D.D.

    1989-01-01

    Localized ionospheric depressions near the NWC-Dunedin great circle path diffract echoes which interfere with the direct signal at the Dunedin receiver to produce perturbations in phase and amplitude. The statistics both of these perturbations and of the echo phasors (echo magnitude and echo phase) which can be deduced from them are studied here. From these statistics it is deduced that echo paths must be frequently more than a wavelength (14 km) longer than the direct path so that many of the diffracting centers (electron precipitation beams) must be laterally displaced up to 200 km from the direct path. Since echo signals from these must be diffracted through angles of ∼10 0 , ionization enhancements produced by electron precipitation must frequently have lateral (cross-path) dimensions of less than 50 km, with some as narrow as 25 km. The largest perturbation magnitudes seem to require ionization enhancement of longitudinal (parallel to path) dimensions of ∼300 km. Electron precipitation confined to thin L-shells could produce such enhancements for the NWC-Dunedin path. copyright American Geophysical Union 1989

  16. The Sounds of the Little and Big Bangs

    Science.gov (United States)

    Shuryak, Edward

    2017-11-01

    Studies of heavy ion collisions have discovered that tiny fireballs of new phase of matter -- quark gluon plasma (QGP) -- undergoes explosion, called the Little Bang. In spite of its small size, it is not only well described by hydrodynamics, but even small perturbations on top of the explosion turned to be well described by hydrodynamical sound modes. The cosmological Big Bang also went through phase transitions, the QCD and electroweak ones, which are expected to produce sounds as well. We discuss their subsequent evolution and hypothetical inverse acoustic cascade, amplifying the amplitude. Ultimately, collision of two sound waves leads to formation of gravity waves, with the smallest wavelength. We briefly discuss how those can be detected.

  17. Amplitude-measuring devices for electric pulses in the nanosecond region; Dispositifs de mesure d'amplitude d'impulsions electriques dans le domaine de la nanoseconde; Pribory dlya izmereniya amplitudy ehlektricheskikh impul'sov v sfere nanosekundy; Dispositivos para medir la amplitud de los impulsos electricos en la region del nanosegundo

    Energy Technology Data Exchange (ETDEWEB)

    Samueli, J J; Sarazin, A [Institut d' Etudes Nucleaires d' Alger (France)

    1962-04-15

    Two electronic circuits are described which permit measurement of the maximum amplitude of fast pulses. These circuits are usually required, if possible, to give independent indication of the duration and shape of the signal being studied. The first circuit is a pulse expander, i.e. an apparatus for converting fast signals into pulses of constant width and of amplitude proportional to the amplitude sought, thus permitting the study of fast signals with a conventional amplitude selector. The circuit can accept signals of width greater than two nanoseconds and of amplitude between 1 and 15 V. It delivers two signals of constant width 100 ns and 1 {mu}s. The second circuit is a fast amplitude-discriminator with an adjustable threshold from 1 to 30 V and a reading space of approximately 18% for pulses of 100 and 2 ns. The output signal has an amplitude of 1.5 V and a standard width of 0.2 {mu}s. (author) [French] Les auteurs decrivent deux circuits electroniques permettant d'effectuer des mesures d'amplitude maximum d'impulsions rapides. On demande en general a ces circuits de donner une indication independante, si possible, de la duree et de la forme du signal etudie. Le premier circuit est un allongeur d'impulsions, c'est-a-dire un appareil qui convertit des signaux rapides en impulsions de largeur constante et d'amplitude proportionnelle a l'amplitude cherchee et qui permet donc l'etude des signaux rapides par un selecteur d'amplitude conventionnel. Le circuit accepte des signaux de largeur superieure a 2 ns et d'amplitude comprise entre 1 et 15 V. Il delivre deux signaux de largeur constante, 100 ns et 1 {mu}s. Le second circuit est un discriminateur d'amplitude rapide, de seuil ajustable de 1 a 30 V et dont l'ecart de lecture pour des impulsions de largeur de 100 et 2 ns est de l'ordre de 18%. Le signal de sortie a une amplitude de 1,5 V et une largeur standard de 0,2 {mu}s. (author) [Spanish] Los autores describen dos circuitos electronicos que permiten medir la

  18. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...... example of soundfile was obtained from using Steered Molecular Dynamics for stretching the neck region of the scallop myosin molecule (in rigor, PDB-id: 1SR6), in such a way as to cause a rotation of the myosin head. Myosin is the molecule responsible for producing the force during muscle contraction...

  19. Nonlinear effects in the damping of third-sound pulses

    International Nuclear Information System (INIS)

    Browne, D.A.

    1984-01-01

    We show that nonlinearities in the equations of motion for a third-sound pulse in a thick superfluid film lead to the production of short-wavelength solitons. The soliton damping arises from viscous stresses in the film, rather than from coupling to thermal currents in the vapor and the substrate as in the hydrodynamic regime. These solitons are more strongly damped than a long-wavelength third-sound wave and lead to a larger attenuation of the pulse. We show that this mechanism can account for the discrepancy between attenuation calculated theoretically for the long-wavelength limit and the experimentally observed attenuation of low-amplitude third-sound pulses

  20. Characteristics of phenomenon and sound in microbubble emission boiling

    International Nuclear Information System (INIS)

    Zhu Guangyu; Sun Licheng; Tang Jiguo

    2014-01-01

    Background: Nowadays, the efficient heat transfer technology is required in nuclear energy. Therefore, micro-bubble emission boiling (MEB) is getting more attentions from many researchers due to its extremely high heat-transfer dissipation capability. Purpose: An experimental setup was built up to study the correspondences between the characteristics on the amplitude spectrum of boiling sound in different boiling modes. Methods: The heat element was a copper block heated by four Si-C heaters. The upper of the copper block was a cylinder with the diameter of 10 mm and height of 10 mm. Temperature data were measured by three T-type sheathed thermocouples fitted on the upper of the copper block and recorded by NI acquisition system. The temperature of the heating surface was estimated by extrapolating the temperature distribution. Boiling sound data were acquired by hydrophone and processed by Fourier transform. Bubble behaviors were captured by high-speed video camera with light system. Results: In nucleate boiling region, the boiling was not intensive and as a result, the spectra didn't present any peak. While the MEB fully developed on the heating surface, an obvious peak came into being around the frequency of 300 Hz. This could be explained by analyzing the video data. The periodic expansion and collapse into many extremely small bubbles of the vapor film lead to MEB presenting an obvious characteristic peak in its amplitude spectrum. Conclusion: The boiling mode can be distinguished by its amplitude spectrum. When the MEB fully developed, it presented a characteristic peak in its amplitude spectrum around the frequency between 300-400 Hz. This proved that boiling sound of MEB has a close relation with the behavior of vapor film. (authors)

  1. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  2. Assessing and optimizing infra-sound networks to monitor volcanic eruptions

    International Nuclear Information System (INIS)

    Tailpied, Dorianne

    2016-01-01

    Understanding infra-sound signals is essential to monitor compliance with the Comprehensive Nuclear-Test ban Treaty, and also to demonstrate the potential of the global monitoring infra-sound network for civil and scientific applications. The main objective of this thesis is to develop a robust tool to estimate and optimize the performance of any infra-sound network to monitor explosive sources such as volcanic eruptions. Unlike previous studies, the developed method has the advantage to consider realistic atmospheric specifications along the propagation path, source frequency and noise levels at the stations. It allows to predict the attenuation and the minimum detectable source amplitude. By simulating the performances of any infra-sound networks, it is then possible to define the optimal configuration of the network to monitor a specific region, during a given period. When carefully adding a station to the existing network, performance can be improved by a factor of 2. However, it is not always possible to complete the network. A good knowledge of detection capabilities at large distances is thus essential. To provide a more realistic picture of the performance, we integrate the atmospheric longitudinal variability along the infra-sound propagation path in our simulations. This thesis also contributes in providing a confidence index taking into account the uncertainties related to propagation and atmospheric models. At high frequencies, the error can reach 40 dB. Volcanic eruptions are natural, powerful and valuable calibrating sources of infra-sound, worldwide detected. In this study, the well instrumented volcanoes Yasur, in Vanuatu, and Etna, in Italy, offer a unique opportunity to validate our attenuation model. In particular, accurate comparisons between near-field recordings and far-field detections of these volcanoes have helped to highlight the potential of our simulation tool to remotely monitor volcanoes. Such work could significantly help to prevent

  3. Evoked responses to sinusoidally modulated sound in unanaesthetized dogs

    NARCIS (Netherlands)

    Tielen, A.M.; Kamp, A.; Lopes da Silva, F.H.; Reneau, J.P.; Storm van Leeuwen, W.

    1. 1. Responses evoked by sinusoidally amplitude-modulated sound in unanaesthetized dogs have been recorded from inferior colliculus and from auditory cortex structures by means of chronically indwelling stainless steel wire electrodes. 2. 2. Harmonic analysis of the average responses demonstrated

  4. Thump, ring: the sound of a bouncing ball

    International Nuclear Information System (INIS)

    Katz, J I

    2010-01-01

    A basketball bounced on a stiff surface produces a characteristic loud thump, followed by a high-pitched ringing. Describing the ball as an inextensible but flexible membrane containing compressed air, I formulate an approximate theory of the generation of these sounds and predict their amplitudes and waveforms.

  5. Thump, ring: the sound of a bouncing ball

    Energy Technology Data Exchange (ETDEWEB)

    Katz, J I, E-mail: katz@wuphys.wustl.ed [Department of Physics and McDonnell Center for the Space Sciences, Washington University, St Louis, MO 63130 (United States)

    2010-07-15

    A basketball bounced on a stiff surface produces a characteristic loud thump, followed by a high-pitched ringing. Describing the ball as an inextensible but flexible membrane containing compressed air, I formulate an approximate theory of the generation of these sounds and predict their amplitudes and waveforms.

  6. Relationship between the Amplitude and Phase of a Signal Scattered by a Point-Like Acoustic Inhomogeneity

    Science.gov (United States)

    Burov, V. A.; Morozov, S. A.

    2001-11-01

    Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.

  7. Vocal responses of austral forest frogs to amplitude and degradation patterns of advertisement calls.

    Science.gov (United States)

    Penna, Mario; Moreno-Gómez, Felipe N; Muñoz, Matías I; Cisternas, Javiera

    2017-07-01

    Degradation phenomena affecting animal acoustic signals may provide cues to assess the distance of emitters. Recognition of degraded signals has been extensively demonstrated in birds, and recently studies have also reported detection of degraded patterns in anurans that call at or above ground level. In the current study we explore the vocal responses of the syntopic burrowing male frogs Eupsophus emiliopugini and E. calcaratus from the South American temperate forest to synthetic conspecific calls differing in amplitude and emulating degraded and non-degraded signal patterns. The results show a strong dependence of vocal responses on signal amplitude, and a general lack of differential responses to signals with different pulse amplitude modulation depths in E. emiliopugini and no effect of relative amplitude of harmonics in E. calcaratus. Such limited discrimination of signal degradation patterns from non-degraded signals is likely related to the burrowing habits of these species. Shelters amplify outgoing and incoming conspecific vocalizations, but do not counteract signal degradation to an extent comparable to calling strategies used by other frogs. The limited detection abilities and resultant response permissiveness to degraded calls in these syntopic burrowing species would be advantageous for animals communicating in circumstances in which signal alteration prevails. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Vibrotactile Detection, Identification and Directional Perception of signal-Processed Sounds from Environmental Events: A Pilot Field Evaluation in Five Cases

    Directory of Open Access Journals (Sweden)

    Parivash Ranjbar

    2008-09-01

    Full Text Available Objectives: Conducting field tests of a vibrotactile aid for deaf/deafblind persons for detection, identification and directional perception of environmental sounds. Methods: Five deaf (3F/2M, 22–36 years individuals tested the aid separately in a home environment (kitchen and in a traffic environment. Their eyes were blindfolded and they wore a headband and holding a vibrator for sound identification. In the headband, three microphones were mounted and two vibrators for signalling direction of the sound source. The sounds originated from events typical for the home environment and traffic. The subjects were inexperienced (events unknown and experienced (events known. They identified the events in a home and traffic environment, but perceived sound source direction only in traffic. Results: The detection scores were higher than 98% both in the home and in the traffic environment. In the home environment, identification scores varied between 25%-58% when the subjects were inexperienced and between 33%-83% when they were experienced. In traffic, identification scores varied between 20%-40% when the subjects were inexperienced and between 22%-56% when they were experienced. The directional perception scores varied between 30%-60% when inexperienced and between 61%-83% when experienced. Discussion: The vibratory aid consistently improved all participants’ detection, identification and directional perception ability.

  9. Locating and classification of structure-borne sound occurrence using wavelet transformation

    International Nuclear Information System (INIS)

    Winterstein, Martin; Thurnreiter, Martina

    2011-01-01

    For the surveillance of nuclear facilities with respect to detached or loose parts within the pressure boundary structure-borne sound detector systems are used. The impact of loose parts on the wall causes energy transfer to the wall that is measured a so called singular sound event. The run-time differences of sound signals allow a rough locating of the loose part. The authors performed a finite element based simulation of structure-borne sound measurements using real geometries. New knowledge on sound wave propagation, signal analysis and processing, neuronal networks or hidden Markov models were considered. Using the wavelet transformation it is possible to improve the localization of structure-borne sound events.

  10. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  11. Visualization of Broadband Sound Sources

    Directory of Open Access Journals (Sweden)

    Sukhanov Dmitry

    2016-01-01

    Full Text Available In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the waveform, but determined by the bandwidth. Developed system allows to visualize sources with a resolution of up to 10 cm.

  12. The Sounds of the Little and Big Bangs

    Directory of Open Access Journals (Sweden)

    Edward Shuryak

    2017-11-01

    Full Text Available Studies on heavy ion collisions have discovered that tiny fireballs of a new phase of matter—quark gluon plasma (QGP—undergo an explosion, called the Little Bang. In spite of its small size, not only is it well described by hydrodynamics, but even small perturbations on top of the explosion turned out to be well described by hydrodynamical sound modes. The cosmological Big Bang also went through phase transitions, related with Quantum Chromodynamics (QCD and electroweak/Higgs symmetry breaking, which are also expected to produce sounds. We discuss their subsequent evolution and hypothetical inverse acoustic cascade, amplifying the amplitude. Ultimately, the collision of two sound waves leads to the formation of one gravity waves. We briefly discuss how these gravity waves can be detected.

  13. Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat

    Directory of Open Access Journals (Sweden)

    Ahn Dong-Kuk

    2009-09-01

    Full Text Available Abstract Group I mGluRs (mGluR1 and 5 pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs in the spinal trigeminal subnucleus oralis (Vo, we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min, activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region.

  14. Silence–breathing–snore classification from snore-related sounds

    International Nuclear Information System (INIS)

    Karunajeewa, Asela S; Abeyratne, Udantha R; Hukins, Craig

    2008-01-01

    Obstructive sleep apnea (OSA) is a highly prevalent disease in which upper airways are collapsed during sleep, leading to serious consequences. Snoring is the earliest symptom of OSA, but its potential in clinical diagnosis is not fully recognized yet. The first task in the automatic analysis of snore-related sounds (SRS) is to segment the SRS data as accurately as possible into three main classes: snoring (voiced non-silence), breathing (unvoiced non-silence) and silence. SRS data are generally contaminated with background noise. In this paper, we present classification performance of a new segmentation algorithm based on pattern recognition. We considered four features derived from SRS to classify samples of SRS into three classes. The features—number of zero crossings, energy of the signal, normalized autocorrelation coefficient at 1 ms delay and the first predictor coefficient of linear predictive coding (LPC) analysis—in combination were able to achieve a classification accuracy of 90.74% in classifying a set of test data. We also investigated the performance of the algorithm when three commonly used noise reduction (NR) techniques in speech processing—amplitude spectral subtraction (ASS), power spectral subtraction (PSS) and short time spectral amplitude (STSA) estimation—are used for noise reduction. We found that noise reduction together with a proper choice of features could improve the classification accuracy to 96.78%, making the automated analysis a possibility

  15. Amplitude inversion of the 2D analytic signal of magnetic anomalies through the differential evolution algorithm

    Science.gov (United States)

    Ekinci, Yunus Levent; Özyalın, Şenol; Sındırgı, Petek; Balkaya, Çağlayan; Göktürkler, Gökhan

    2017-12-01

    In this work, analytic signal amplitude (ASA) inversion of total field magnetic anomalies has been achieved by differential evolution (DE) which is a population-based evolutionary metaheuristic algorithm. Using an elitist strategy, the applicability and effectiveness of the proposed inversion algorithm have been evaluated through the anomalies due to both hypothetical model bodies and real isolated geological structures. Some parameter tuning studies relying mainly on choosing the optimum control parameters of the algorithm have also been performed to enhance the performance of the proposed metaheuristic. Since ASAs of magnetic anomalies are independent of both ambient field direction and the direction of magnetization of the causative sources in a two-dimensional (2D) case, inversions of synthetic noise-free and noisy single model anomalies have produced satisfactory solutions showing the practical applicability of the algorithm. Moreover, hypothetical studies using multiple model bodies have clearly showed that the DE algorithm is able to cope with complicated anomalies and some interferences from neighbouring sources. The proposed algorithm has then been used to invert small- (120 m) and large-scale (40 km) magnetic profile anomalies of an iron deposit (Kesikköprü-Bala, Turkey) and a deep-seated magnetized structure (Sea of Marmara, Turkey), respectively to determine depths, geometries and exact origins of the source bodies. Inversion studies have yielded geologically reasonable solutions which are also in good accordance with the results of normalized full gradient and Euler deconvolution techniques. Thus, we propose the use of DE not only for the amplitude inversion of 2D analytical signals of magnetic profile anomalies having induced or remanent magnetization effects but also the low-dimensional data inversions in geophysics. A part of this paper was presented as an abstract at the 2nd International Conference on Civil and Environmental Engineering, 8

  16. How male sound pressure level influences phonotaxis in virgin female Jamaican field crickets (Gryllus assimilis

    Directory of Open Access Journals (Sweden)

    Karen Pacheco

    2014-06-01

    Full Text Available Understanding female mate preference is important for determining the strength and direction of sexual trait evolution. The sound pressure level (SPL acoustic signalers use is often an important predictor of mating success because higher sound pressure levels are detectable at greater distances. If females are more attracted to signals produced at higher sound pressure levels, then the potential fitness impacts of signalling at higher sound pressure levels should be elevated beyond what would be expected from detection distance alone. Here we manipulated the sound pressure level of cricket mate attraction signals to determine how female phonotaxis was influenced. We examined female phonotaxis using two common experimental methods: spherical treadmills and open arenas. Both methods showed similar results, with females exhibiting greatest phonotaxis towards loud sound pressure levels relative to the standard signal (69 vs. 60 dB SPL but showing reduced phonotaxis towards very loud sound pressure level signals relative to the standard (77 vs. 60 dB SPL. Reduced female phonotaxis towards supernormal stimuli may signify an acoustic startle response, an absence of other required sensory cues, or perceived increases in predation risk.

  17. Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain.

    Science.gov (United States)

    Bee, Mark A; Buschermöhle, Michael; Klump, Georg M

    2007-10-01

    Sounds in the real world fluctuate in amplitude. The vertebrate auditory system exploits patterns of amplitude fluctuations to improve signal detection in noise. One experimental paradigm demonstrating these general effects has been used in psychophysical studies of 'comodulation detection difference' (CDD). The CDD effect refers to the fact that thresholds for detecting a modulated, narrowband noise signal are lower when the envelopes of flanking bands of modulated noise are comodulated with each other, but fluctuate independently of the signal compared with conditions in which the envelopes of the signal and flanking bands are all comodulated. Here, we report results from a study of the neural correlates of CDD in European starlings (Sturnus vulgaris). We manipulated: (i) the envelope correlations between a narrowband noise signal and a masker comprised of six flanking bands of noise; (ii) the signal onset delay relative to masker onset; (iii) signal duration; and (iv) masker spectrum level. Masked detection thresholds were determined from neural responses using signal detection theory. Across conditions, the magnitude of neural CDD ranged between 2 and 8 dB, which is similar to that reported in a companion psychophysical study of starlings [U. Langemann & G.M. Klump (2007) Eur. J. Neurosci., 26, 1969-1978]. We found little evidence to suggest that neural CDD resulted from the across-channel processing of auditory grouping cues related to common envelope fluctuations and synchronous onsets between the signal and flanking bands. We discuss a within-channel model of peripheral processing that explains many of our results.

  18. Testing Cosmology with Cosmic Sound Waves

    CERN Document Server

    Corasaniti, Pier Stefano

    2008-01-01

    WMAP observations have accurately determined the position of the first two peaks and dips in the CMB temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However pre-recombination processes can contaminate this distance information. In order to assess the amplitude of these effects we use the WMAP data and evaluate the relative differences of the CMB peaks and dips multipoles. We find that the position of the first peak is largely displaced with the respect to the expected position of the sound horizon scale at decoupling. In contrast the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a MCMC likelihoo...

  19. Heart sounds analysis using probability assessment.

    Science.gov (United States)

    Plesinger, F; Viscor, I; Halamek, J; Jurco, J; Jurak, P

    2017-07-31

    This paper describes a method for automated discrimination of heart sounds recordings according to the Physionet Challenge 2016. The goal was to decide if the recording refers to normal or abnormal heart sounds or if it is not possible to decide (i.e. 'unsure' recordings). Heart sounds S1 and S2 are detected using amplitude envelopes in the band 15-90 Hz. The averaged shape of the S1/S2 pair is computed from amplitude envelopes in five different bands (15-90 Hz; 55-150 Hz; 100-250 Hz; 200-450 Hz; 400-800 Hz). A total of 53 features are extracted from the data. The largest group of features is extracted from the statistical properties of the averaged shapes; other features are extracted from the symmetry of averaged shapes, and the last group of features is independent of S1 and S2 detection. Generated features are processed using logical rules and probability assessment, a prototype of a new machine-learning method. The method was trained using 3155 records and tested on 1277 hidden records. It resulted in a training score of 0.903 (sensitivity 0.869, specificity 0.937) and a testing score of 0.841 (sensitivity 0.770, specificity 0.913). The revised method led to a test score of 0.853 in the follow-up phase of the challenge. The presented solution achieved 7th place out of 48 competing entries in the Physionet Challenge 2016 (official phase). In addition, the PROBAfind software for probability assessment was introduced.

  20. Exploring the perceived harshness of cello sounds by morphing and synthesis techniques.

    Science.gov (United States)

    Rozé, Jocelyn; Aramaki, Mitsuko; Kronland-Martinet, Richard; Ystad, Sølvi

    2017-03-01

    Cello bowing requires a very fine control of the musicians' gestures to ensure the quality of the perceived sound. When the interaction between the bow hair and the string is optimal, the sound is perceived as broad and round. On the other hand, when the gestural control becomes more approximate, the sound quality deteriorates and often becomes harsh, shrill, and quavering. In this study, such a timbre degradation, often described by French cellists as harshness (décharnement), is investigated from both signal and perceptual perspectives. Harsh sounds were obtained from experienced cellists subjected to a postural constraint. A signal approach based on Gabor masks enabled us to capture the main dissimilarities between round and harsh sounds. Two complementary methods perceptually validated these signal features: First, a predictive regression model of the perceived harshness was built from sound continua obtained by a morphing technique. Next, the signal structures identified by the model were validated within a perceptual timbre space, obtained by multidimensional scaling analysis on pairs of synthesized stimuli controlled in harshness. The results revealed that the perceived harshness was due to a combination between a more chaotic harmonic behavior, a formantic emergence, and a weaker attack slope.

  1. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  2. Swallowing sound detection using hidden markov modeling of recurrence plot features

    International Nuclear Information System (INIS)

    Aboofazeli, Mohammad; Moussavi, Zahra

    2009-01-01

    Automated detection of swallowing sounds in swallowing and breath sound recordings is of importance for monitoring purposes in which the recording durations are long. This paper presents a novel method for swallowing sound detection using hidden Markov modeling of recurrence plot features. Tracheal sound recordings of 15 healthy and nine dysphagic subjects were studied. The multidimensional state space trajectory of each signal was reconstructed using the Taken method of delays. The sequences of three recurrence plot features of the reconstructed trajectories (which have shown discriminating capability between swallowing and breath sounds) were modeled by three hidden Markov models. The Viterbi algorithm was used for swallowing sound detection. The results were validated manually by inspection of the simultaneously recorded airflow signal and spectrogram of the sounds, and also by auditory means. The experimental results suggested that the performance of the proposed method using hidden Markov modeling of recurrence plot features was superior to the previous swallowing sound detection methods.

  3. Swallowing sound detection using hidden markov modeling of recurrence plot features

    Energy Technology Data Exchange (ETDEWEB)

    Aboofazeli, Mohammad [Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: umaboofa@cc.umanitoba.ca; Moussavi, Zahra [Faculty of Engineering, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 (Canada)], E-mail: mousavi@ee.umanitoba.ca

    2009-01-30

    Automated detection of swallowing sounds in swallowing and breath sound recordings is of importance for monitoring purposes in which the recording durations are long. This paper presents a novel method for swallowing sound detection using hidden Markov modeling of recurrence plot features. Tracheal sound recordings of 15 healthy and nine dysphagic subjects were studied. The multidimensional state space trajectory of each signal was reconstructed using the Taken method of delays. The sequences of three recurrence plot features of the reconstructed trajectories (which have shown discriminating capability between swallowing and breath sounds) were modeled by three hidden Markov models. The Viterbi algorithm was used for swallowing sound detection. The results were validated manually by inspection of the simultaneously recorded airflow signal and spectrogram of the sounds, and also by auditory means. The experimental results suggested that the performance of the proposed method using hidden Markov modeling of recurrence plot features was superior to the previous swallowing sound detection methods.

  4. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    Science.gov (United States)

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e

  5. A virtual auditory environment for investigating the auditory signal processing of realistic sounds

    DEFF Research Database (Denmark)

    Favrot, Sylvain Emmanuel; Buchholz, Jörg

    2008-01-01

    In the present study, a novel multichannel loudspeaker-based virtual auditory environment (VAE) is introduced. The VAE aims at providing a versatile research environment for investigating the auditory signal processing in real environments, i.e., considering multiple sound sources and room...... reverberation. The environment is based on the ODEON room acoustic simulation software to render the acoustical scene. ODEON outputs are processed using a combination of different order Ambisonic techniques to calculate multichannel room impulse responses (mRIR). Auralization is then obtained by the convolution...... the VAE development, special care was taken in order to achieve a realistic auditory percept and to avoid “artifacts” such as unnatural coloration. The performance of the VAE has been evaluated and optimized on a 29 loudspeaker setup using both objective and subjective measurement techniques....

  6. Ultrasound sounding in air by fast-moving receiver

    Science.gov (United States)

    Sukhanov, D.; Erzakova, N.

    2018-05-01

    A method of ultrasound imaging in the air for a fast receiver. The case, when the speed of movement of the receiver can not be neglected with respect to the speed of sound. In this case, the Doppler effect is significant, making it difficult for matched filtering of the backscattered signal. The proposed method does not use a continuous repetitive noise-sounding signal. generalized approach applies spatial matched filtering in the time domain to recover the ultrasonic tomographic images.

  7. Rainforests as concert halls for birds: Are reverberations improving sound transmission of long song elements?

    DEFF Research Database (Denmark)

    Nemeth, Erwin; Dabelsteen, Torben; Pedersen, Simon Boel

    2006-01-01

    that longer sounds are less attenuated. The results indicate that higher sound pressure level is caused by superimposing reflections. It is suggested that this beneficial effect of reverberations explains interspecific birdsong differences in element length. Transmission paths with stronger reverberations......In forests reverberations have probably detrimental and beneficial effects on avian communication. They constrain signal discrimination by masking fast repetitive sounds and they improve signal detection by elongating sounds. This ambivalence of reflections for animal signals in forests is similar...... to the influence of reverberations on speech or music in indoor sound transmission. Since comparisons of sound fields of forests and concert halls have demonstrated that reflections can contribute in both environments a considerable part to the energy of a received sound, it is here assumed that reverberations...

  8. Amplitude Noise Suppression and Orthogonal Multiplexing Using Injection-Locked Single-Mode VCSEL

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; von Lerber, Tuomo; Lassas, Matti

    2017-01-01

    We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel.......We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel....

  9. Measurement of amplitude fluctuations in a rapid response photomultiplier; Mesure des fluctuations d'amplitude d'un photo multiplicateur a reponse rapide

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [French] Pour etudier les fluctuations d'amplitude d'un photomultiplicateur a reponse rapide, on introduit deux variables aleatoires independantes qui determinent la forme de l'impulsion anodique. L'energie de chaque impulsion, directement fonction du gain et de sa variance, est la premiere variable; les fluctuations d'amplitude, fonctions de la premiere variable, dependent egalement de la largeur de l'impulsion qui, elle, constitue la deuxieme variable. Les resultats obtenus sur les variations de l'amplitude maximale, a l'aide d'un circuit elargisseur d'impulsions a front raide, et les resultats des variations statistiques du gain sont compares pour mettre en evidence le fait que la variance relative a l'amplitude maximale du signal est plus grande que celle du gain. Dans la mesure de ces fluctuations, sont mises en evidence la contribution du coefficient d'emission secondaire de la premiere dynode et celle du coefficient d'emission secondaire moyen du multiplicateur. (auteur)

  10. Correlation-Based Amplitude Estimation of Coincident Partials in Monaural Musical Signals

    Directory of Open Access Journals (Sweden)

    Jayme Garcia Arnal Barbedo

    2010-01-01

    Full Text Available This paper presents a method for estimating the amplitude of coincident partials generated by harmonic musical sources (instruments and vocals. It was developed as an alternative to the commonly used interpolation approach, which has several limitations in terms of performance and applicability. The strategy is based on the following observations: (a the parameters of partials vary with time; (b such a variation tends to be correlated when the partials belong to the same source; (c the presence of an interfering coincident partial reduces the correlation; and (d such a reduction is proportional to the relative amplitude of the interfering partial. Besides the improved accuracy, the proposed technique has other advantages over its predecessors: it works properly even if the sources have the same fundamental frequency, it is able to estimate the first partial (fundamental, which is not possible using the conventional interpolation method, it can estimate the amplitude of a given partial even if its neighbors suffer intense interference from other sources, it works properly under noisy conditions, and it is immune to intraframe permutation errors. Experimental results show that the strategy clearly outperforms the interpolation approach.

  11. Heart sound segmentation of pediatric auscultations using wavelet analysis.

    Science.gov (United States)

    Castro, Ana; Vinhoza, Tiago T V; Mattos, Sandra S; Coimbra, Miguel T

    2013-01-01

    Auscultation is widely applied in clinical activity, nonetheless sound interpretation is dependent on clinician training and experience. Heart sound features such as spatial loudness, relative amplitude, murmurs, and localization of each component may be indicative of pathology. In this study we propose a segmentation algorithm to extract heart sound components (S1 and S2) based on it's time and frequency characteristics. This algorithm takes advantage of the knowledge of the heart cycle times (systolic and diastolic periods) and of the spectral characteristics of each component, through wavelet analysis. Data collected in a clinical environment, and annotated by a clinician was used to assess algorithm's performance. Heart sound components were correctly identified in 99.5% of the annotated events. S1 and S2 detection rates were 90.9% and 93.3% respectively. The median difference between annotated and detected events was of 33.9 ms.

  12. Decoding a combined amplitude modulated and frequency modulated signal

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a method for decoding a combined AM/FM encoded signal, comprising the steps of: combining said encoded optical signal with light from a local oscillator configured with a local oscillator frequency; converting the combined local oscillator and encoded optical...... signal into one or more electrical signals by means of at least one opto-electrical converter having a predefined frequency bandwidth, thereby providing an amplified and encoded electrical signal having one or more encoded signal current(s), where one type of states have a higher oscillation frequency...... than other type of states; rectifying the encoded signal current(s), thereby obtaining an encoded power spectrum, wherein said power spectrum has different states, such as "0"-states and "1"-states, with different power levels such that they can be discriminated, said local oscillator frequency...

  13. Toward Inverse Control of Physics-Based Sound Synthesis

    Science.gov (United States)

    Pfalz, A.; Berdahl, E.

    2017-05-01

    Long Short-Term Memory networks (LSTMs) can be trained to realize inverse control of physics-based sound synthesizers. Physics-based sound synthesizers simulate the laws of physics to produce output sound according to input gesture signals. When a user's gestures are measured in real time, she or he can use them to control physics-based sound synthesizers, thereby creating simulated virtual instruments. An intriguing question is how to program a computer to learn to play such physics-based models. This work demonstrates that LSTMs can be trained to accomplish this inverse control task with four physics-based sound synthesizers.

  14. Sound Cross-synthesis and Morphing Using Dictionary-based Methods

    DEFF Research Database (Denmark)

    Collins, Nick; Sturm, Bob L.

    2011-01-01

    Dictionary-based methods (DBMs) provide rich possibilities for new sound transformations; as the analysis dual to granular synthesis, audio signals are decomposed into `atoms', allowing interesting manipulations. We present various approaches to audio signal cross-synthesis and cross-analysis via...... atomic decomposition using scale-time-frequency dictionaries. DBMs naturally provide high-level descriptions of a signal and its content, which can allow for greater control over what is modified and how. Through these models, we can make one signal decomposition influence that of another to create cross......-synthesized sounds. We present several examples of these techniques both theoretically and practically, and present on-going and further work....

  15. Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.

  16. Optical Reading and Playing of Sound Signals from Vinyl Records

    OpenAIRE

    Hensman, Arnold; Casey, Kevin

    2007-01-01

    While advanced digital music systems such as compact disk players and MP3 have become the standard in sound reproduction technology, critics claim that conversion to digital often results in a loss of sound quality and richness. For this reason, vinyl records remain the medium of choice for many audiophiles involved in specialist areas. The waveform cut into a vinyl record is an exact replica of the analogue version from the original source. However, while some perceive this media as reproduc...

  17. Developing a reference of normal lung sounds in healthy Peruvian children.

    Science.gov (United States)

    Ellington, Laura E; Emmanouilidou, Dimitra; Elhilali, Mounya; Gilman, Robert H; Tielsch, James M; Chavez, Miguel A; Marin-Concha, Julio; Figueroa, Dante; West, James; Checkley, William

    2014-10-01

    Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds. 186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81%) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds. Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47% were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site. Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments.

  18. Sound of Paddle Wheel on Sea Bass Growth

    Directory of Open Access Journals (Sweden)

    Jafri Din

    2009-04-01

    Full Text Available The objective of this research is sound effect for brackish water for Sea bass (Cynoscion nobilis. Breeding farm 25x100m, 2m of depth, and 6 paddle wheels which generate the sound are available for research. Sound profile has been measured to investigate the amplitude at various measurement points at various depths by using Cetacean hydrophone C304. The output of hydrophone has been analyzed by using SpectraPlus software. For the second measurement, two cages which size 3x3m have been used for life fish habitat. Then, fish put in the edge cage (20, center cage (20, and out of cage (12500. Sound profile has been measured for position-based (edge/center cage, time-based (morning/noon/evening, and point-based. Time series, spectrum frequency, and phase have been analysis. Fish growth progress has been monthly measured at every cage. Fish in the cage is growth as linearly, while fish growth for out of cage is exponentially. Size and weight of fish in the both cages is less than out of cage. This research concludes that sound have no significantly effect for fish growth. Limited mobility to look for food and stress are more influences to fish growth than sound effect.

  19. Different Types of Sounds and Their Relationship With the Electrocardiographic Signals and the Cardiovascular System – Review

    Directory of Open Access Journals (Sweden)

    Ennio H. Idrobo-Ávila

    2018-05-01

    Full Text Available Background: For some time now, the effects of sound, noise, and music on the human body have been studied. However, despite research done through time, it is still not completely clear what influence, interaction, and effects sounds have on human body. That is why it is necessary to conduct new research on this topic. Thus, in this paper, a systematic review is undertaken in order to integrate research related to several types of sound, both pleasant and unpleasant, specifically noise and music. In addition, it includes as much research as possible to give stakeholders a more general vision about relevant elements regarding methodologies, study subjects, stimulus, analysis, and experimental designs in general. This study has been conducted in order to make a genuine contribution to this area and to perhaps to raise the quality of future research about sound and its effects over ECG signals.Methods: This review was carried out by independent researchers, through three search equations, in four different databases, including: engineering, medicine, and psychology. Inclusion and exclusion criteria were applied and studies published between 1999 and 2017 were considered. The selected documents were read and analyzed independently by each group of researchers and subsequently conclusions were established between all of them.Results: Despite the differences between the outcomes of selected studies, some common factors were found among them. Thus, in noise studies where both BP and HR increased or tended to increase, it was noted that HRV (HF and LF/HF changes with both sound and noise stimuli, whereas GSR changes with sound and musical stimuli. Furthermore, LF also showed changes with exposure to noise.Conclusion: In many cases, samples displayed a limitation in experimental design, and in diverse studies, there was a lack of a control group. There was a lot of variability in the presented stimuli providing a wide overview of the effects they could

  20. Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx

    DEFF Research Database (Denmark)

    Elemans, Coen; Muller, Mees; Larsen, Ole Næsbye

    2009-01-01

    membrane and generate a wide variety of ‘syllables' with simple sweeps of the control parameters. We show that the membrane exhibits high frequency, self-sustained oscillations in the audio range (>600 Hz fundamental frequency) using laser Doppler vibrometry, and systematically explore the conditions...... for sound production of the model in its control space. The fundamental frequency of the sound increases with tension in three membranes with different stiffness and mass. The lowerbound fundamental frequency increases with membrane mass. The membrane vibrations are strongly coupled to the resonance...

  1. Robust segmentation and retrieval of environmental sounds

    Science.gov (United States)

    Wichern, Gordon

    The proliferation of mobile computing has provided much of the world with the ability to record any sound of interest, or possibly every sound heard in a lifetime. The technology to continuously record the auditory world has applications in surveillance, biological monitoring of non-human animal sounds, and urban planning. Unfortunately, the ability to record anything has led to an audio data deluge, where there are more recordings than time to listen. Thus, access to these archives depends on efficient techniques for segmentation (determining where sound events begin and end), indexing (storing sufficient information with each event to distinguish it from other events), and retrieval (searching for and finding desired events). While many such techniques have been developed for speech and music sounds, the environmental and natural sounds that compose the majority of our aural world are often overlooked. The process of analyzing audio signals typically begins with the process of acoustic feature extraction where a frame of raw audio (e.g., 50 milliseconds) is converted into a feature vector summarizing the audio content. In this dissertation, a dynamic Bayesian network (DBN) is used to monitor changes in acoustic features in order to determine the segmentation of continuously recorded audio signals. Experiments demonstrate effective segmentation performance on test sets of environmental sounds recorded in both indoor and outdoor environments. Once segmented, every sound event is indexed with a probabilistic model, summarizing the evolution of acoustic features over the course of the event. Indexed sound events are then retrieved from the database using different query modalities. Two important query types are sound queries (query-by-example) and semantic queries (query-by-text). By treating each sound event and semantic concept in the database as a node in an undirected graph, a hybrid (content/semantic) network structure is developed. This hybrid network can

  2. White-crowned sparrow males show immediate flexibility in song amplitude but not in song minimum frequency in response to changes in noise levels in the field.

    Science.gov (United States)

    Derryberry, Elizabeth P; Gentry, Katherine; Derryberry, Graham E; Phillips, Jennifer N; Danner, Raymond M; Danner, Julie E; Luther, David A

    2017-07-01

    The soundscape acts as a selective agent on organisms that use acoustic signals to communicate. A number of studies document variation in structure, amplitude, or timing of signal production in correspondence with environmental noise levels thus supporting the hypothesis that organisms are changing their signaling behaviors to avoid masking. The time scale at which organisms respond is of particular interest. Signal structure may evolve across generations through processes such as cultural or genetic transmission. Individuals may also change their behavior during development (ontogenetic change) or in real time (i.e., immediate flexibility). These are not mutually exclusive mechanisms, and all must be investigated to understand how organisms respond to selection pressures from the soundscape. Previous work on white-crowned sparrows ( Zonotrichia leucophrys ) found that males holding territories in louder areas tend to sing higher frequency songs and that both noise levels and song frequency have increased over time (30 years) in urban areas. These previous findings suggest that songs are changing across generations; however, it is not known if this species also exhibits immediate flexibility. Here, we conducted an exploratory, observational study to ask whether males change the minimum frequency of their song in response to immediate changes in noise levels. We also ask whether males sing louder, as increased minimum frequency may be physiologically linked to producing sound at higher amplitudes, in response to immediate changes in environmental noise. We found that territorial males adjust song amplitude but not minimum frequency in response to changes in environmental noise levels. Our results suggest that males do not show immediate flexibility in song minimum frequency, although experimental manipulations are needed to test this hypothesis further. Our work highlights the need to investigate multiple mechanisms of adaptive response to soundscapes.

  3. Sound source measurement by using a passive sound insulation and a statistical approach

    Science.gov (United States)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  4. Free Sixteen Harmonic Fourier Series Web App with Sound

    Science.gov (United States)

    Ruiz, Michael J.

    2018-01-01

    An online HTML5 Fourier synthesizer app is provided that allows students to manipulate sixteen harmonics and construct periodic waves. Students can set the amplitudes and phases for each harmonic, seeing the resulting waveforms and hearing the sounds. Five waveform presets are included: sine, triangle, square, ramp (sawtooth), and pulse train. The…

  5. Mapping symbols to sounds: electrophysiological correlates of the impaired reading process in dyslexia

    Directory of Open Access Journals (Sweden)

    Andreas eWidmann

    2012-03-01

    Full Text Available Dyslexic and control first grade school children were compared in a Symbol-to-Sound matching test based on a nonlinguistic audiovisual training which is known to have a remediating effect on dyslexia. Visual symbol patterns had to be matched with predicted sound patterns. Sounds incongruent with the corresponding visual symbol (thus not matching the prediction elicited the N2b and P3a event-related potential (ERP components relative to congruent sounds in control children. Their ERPs resembled the ERP effects previously reported for healthy adults with this paradigm. In dyslexic children, N2b onset latency was delayed and its amplitude significantly reduced over left hemisphere whereas P3a was absent. Moreover, N2b amplitudes significantly correlated with the reading skills. ERPs to sound changes in a control condition were unaffected. In addition, correctly predicted sounds, that is, sounds that are congruent with the visual symbol, elicited an early induced auditory gamma band response (GBR reflecting synchronization of brain activity in normal-reading children as previously observed in healthy adults. However, dyslexic children showed no GBR. This indicates that visual symbolic and auditory sensory information are not integrated into a unitary audiovisual object representation in them. Finally, incongruent sounds were followed by a later desynchronization of brain activity in the gamma band in both groups. This desynchronization was significantly larger in dyslexic children. Although both groups accomplished the task successfully remarkable group differences in brain responses suggest that normal-reading children and dyslexic children recruit (partly different brain mechanisms when solving the task. We propose that abnormal ERPs and GBRs in dyslexic readers indicate a deficit resulting in a widespread impairment in processing and integrating auditory and visual information and contributing to the reading impairment in dyslexia.

  6. Dementias show differential physiological responses to salient sounds.

    Science.gov (United States)

    Fletcher, Phillip D; Nicholas, Jennifer M; Shakespeare, Timothy J; Downey, Laura E; Golden, Hannah L; Agustus, Jennifer L; Clark, Camilla N; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching ("looming") or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

  7. Effects of strength training on mechanomyographic amplitude

    International Nuclear Information System (INIS)

    DeFreitas, Jason M; Beck, Travis W; Stock, Matt S

    2012-01-01

    The aim of the present study was to determine if the patterns of mechanomyographic (MMG) amplitude across force would change with strength training. Twenty-two healthy men completed an 8-week strength training program. During three separate testing visits (pre-test, week 4, and week 8), the MMG signal was detected from the vastus lateralis as the subjects performed isometric step muscle actions of the leg extensors from 10–100% of maximal voluntary contraction (MVC). During pre-testing, the MMG amplitude increased linearly with force to 66% MVC and then plateaued. Conversely, weeks 4 and 8 demonstrated an increase in MMG amplitude up to ∼85% of the subject's original MVC before plateauing. Furthermore, seven of the ten force levels (30–60% and 80–100%) showed a significant decrease in mean MMG amplitude values after training, which consequently led to a decrease in the slope of the MMG amplitude/force relationship. The decreases in MMG amplitude at lower force levels are indicative of hypertrophy, since fewer motor units would be required to produce the same absolute force if the motor units increased in size. However, despite the clear changes in the mean values, analyses of individual subjects revealed that only 55% of the subjects demonstrated a significant decrease in the slope of the MMG amplitude/force relationship. (paper)

  8. Correlation Between Resting Testosterone/Cortisol Ratio and Sound-Induced Vasoconstriction at Fingertip in Men.

    Science.gov (United States)

    Ooishi, Yuuki

    2018-01-01

    A sound-induced sympathetic tone has been used as an index for orienting responses to auditory stimuli. The resting testosterone/cortisol ratio is a biomarker of social aggression that drives an approaching behavior in response to environmental stimuli, and a higher testosterone level and a lower cortisol level can facilitate the sympathetic response to environmental stimuli. Therefore, it is possible that the testosterone/cortisol ratio is correlated with the sound-induced sympathetic tone. The current study investigated the relationship between the resting testosterone/cortisol ratio and vasoconstriction induced by listening to sound stimuli. Twenty healthy males aged 29.0 ± 0.53 years (mean ± S.E.M) participated in the study. They came to the laboratory for 3 days and listened to one of three types of sound stimuli for 1 min on each day. Saliva samples were collected for an analysis of salivary testosterone and cortisol levels on the day of each experiment. After the collecting the saliva sample, we measured the blood volume pulse (BVP) amplitude at a fingertip. Since vasoconstriction is mediated by the activation of the sympathetic nerves, the strength of the reduction in BVP amplitude at a fingertip was called the BVP response (finger BVPR). No difference was observed between the sound-induced finger BVPR for the three types of sound stimuli ( p = 0.779). The correlation coefficient between the sound-induced finger BVPR and the salivary testosterone/cortisol ratio within participants was significantly different from no correlation ( p = 0.011) and there was a trend toward a significance in the correlation between the sound-induced finger BVPR and the salivary testosterone/cortisol ratio between participants ( r = 0.39, p = 0.088). These results suggest that the testosterone/cortisol ratio affects the difference in the sound-evoked sympathetic response.

  9. Digital servo control of random sound fields

    Science.gov (United States)

    Nakich, R. B.

    1973-01-01

    It is necessary to place number of sensors at different positions in sound field to determine actual sound intensities to which test object is subjected. It is possible to determine whether specification is being met adequately or exceeded. Since excitation is of random nature, signals are essentially coherent and it is impossible to obtain true average.

  10. A universal gyroscope driving circuit with 70dB amplitude control range

    KAUST Repository

    Abdelghany, Mohamed A.

    2010-08-01

    A CMOS variable gain driving circuit with output signal amplitude control for gyroscopes with wide range of quality factors is presented. The driving circuit can be used for gyroscopes with Q values higher than 500. The circuit uses a current-commutating switching mixer to control the gyroscope driving signal level. Conventional driving circuits use automatic gain control (AGC) which suffers from limited linear range and the need for an off-chip capacitor for the peak detector and loop filter. Two stage variable gain amplifier is used in the proposed design to ensure enough gain for oscillation for such a wide range of quality factors. Analog and digital amplitude control methods are used to cover wide range of driving signal amplitude with enough accuracy to hit the maximum driving signal level without sacrificing gyroscope linearity. Due to the high DC gain of the amplifier chain, DC offset resulting from mismatches might saturate the amplifier output. DC offset correction is employed using a secondary negative feedback loop. The proposed driving circuit is being fabricated in 0.6μm CMOS technology. © 2010 IEEE.

  11. A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS

    Science.gov (United States)

    Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto

    At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.

  12. A noise reduction technique based on nonlinear kernel function for heart sound analysis.

    Science.gov (United States)

    Mondal, Ashok; Saxena, Ishan; Tang, Hong; Banerjee, Poulami

    2017-02-13

    The main difficulty encountered in interpretation of cardiac sound is interference of noise. The contaminated noise obscures the relevant information which are useful for recognition of heart diseases. The unwanted signals are produced mainly by lungs and surrounding environment. In this paper, a novel heart sound de-noising technique has been introduced based on a combined framework of wavelet packet transform (WPT) and singular value decomposition (SVD). The most informative node of wavelet tree is selected on the criteria of mutual information measurement. Next, the coefficient corresponding to the selected node is processed by SVD technique to suppress noisy component from heart sound signal. To justify the efficacy of the proposed technique, several experiments have been conducted with heart sound dataset, including normal and pathological cases at different signal to noise ratios. The significance of the method is validated by statistical analysis of the results. The biological information preserved in de-noised heart sound (HS) signal is evaluated by k-means clustering algorithm and Fit Factor calculation. The overall results show that proposed method is superior than the baseline methods.

  13. Nonlinear second- and first-sound wave equations in 3He-4He mixtures

    International Nuclear Information System (INIS)

    Mohazzab, Masoud; Mulders, Norbert

    2000-01-01

    We derive nonlinear Burgers equations for first and second sound in mixtures of 3 He- 4 He, using a reductive perturbation method and obtain expressions for the nonlinear and dissipation coefficients. We further find a diffusion equation for a coupled temperature-concentration mode. The amplitude of first (second) sound generated from second (first) sound in mixtures is also derived. Our derivation includes the dependence of thermodynamical quantities on temperature, pressure, and 3 He concentration, and is valid up to a first order in terms of the isobaric expansion coefficient. We show that close to the λ line the nonlinearity of second sound in mixtures is enhanced as compared with pure 4 He

  14. Developing a Reference of Normal Lung Sounds in Healthy Peruvian Children

    Science.gov (United States)

    Ellington, Laura E.; Emmanouilidou, Dimitra; Elhilali, Mounya; Gilman, Robert H.; Tielsch, James M.; Chavez, Miguel A.; Marin-Concha, Julio; Figueroa, Dante; West, James

    2018-01-01

    Purpose Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds. Methods 186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81 %) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds. Results Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47 % were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site. Conclusions Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments. PMID:24943262

  15. Two models of the sound-signal frequency dependence on the animal body size as exemplified by the ground squirrels of Eurasia (mammalia, rodentia).

    Science.gov (United States)

    Nikol'skii, A A

    2017-11-01

    Dependence of the sound-signal frequency on the animal body length was studied in 14 ground squirrel species (genus Spermophilus) of Eurasia. Regression analysis of the total sample yielded a low determination coefficient (R 2 = 26%), because the total sample proved to be heterogeneous in terms of signal frequency within the dimension classes of animals. When the total sample was divided into two groups according to signal frequency, two statistically significant models (regression equations) were obtained in which signal frequency depended on the body size at high determination coefficients (R 2 = 73 and 94% versus 26% for the total sample). Thus, the problem of correlation between animal body size and the frequency of their vocal signals does not have a unique solution.

  16. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-12

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  17. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.

    Science.gov (United States)

    Becker, K W; Scheffer, C; Blanckenberg, M M; Diacon, A H

    2013-01-01

    Tuberculosis is a common and potentially deadly infectious disease, usually affecting the respiratory system and causing the sound properties of symptomatic infected lungs to differ from non-infected lungs. Auscultation is often ruled out as a reliable diagnostic technique for TB due to the random distribution of the infection and the varying severity of damage to the lungs. However, advancements in signal processing techniques for respiratory sounds can improve the potential of auscultation far beyond the capabilities of the conventional mechanical stethoscope. Though computer-based signal analysis of respiratory sounds has produced a significant body of research, there have not been any recent investigations into the computer-aided analysis of lung sounds associated with pulmonary Tuberculosis (TB), despite the severity of the disease in many countries. In this paper, respiratory sounds were recorded from 14 locations around the posterior and anterior chest walls of healthy volunteers and patients infected with pulmonary TB. The most significant signal features in both the time and frequency domains associated with the presence of TB, were identified by using the statistical overlap factor (SOF). These features were then employed to train a neural network to automatically classify the auscultation recordings into their respective healthy or TB-origin categories. The neural network yielded a diagnostic accuracy of 73%, but it is believed that automated filtering of the noise in the clinics, more training samples and perhaps other signal processing methods can improve the results of future studies. This work demonstrates the potential of computer-aided auscultation as an aid for the diagnosis and treatment of TB.

  18. Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey.

    Science.gov (United States)

    Tanji, Kazuyo; Leopold, David A; Ye, Frank Q; Zhu, Charles; Malloy, Megan; Saunders, Richard C; Mishkin, Mortimer

    2010-01-01

    The monkey's auditory cortex includes a core region on the supratemporal plane (STP) made up of the tonotopically organized areas A1, R, and RT, together with a surrounding belt and a lateral parabelt region. The functional studies that yielded the tonotopic maps and corroborated the anatomical division into core, belt, and parabelt typically used low-amplitude pure tones that were often restricted to threshold-level intensities. Here we used functional magnetic resonance imaging in awake rhesus monkeys to determine whether, and if so how, the tonotopic maps and the pattern of activation in core, belt, and parabelt are affected by systematic changes in sound intensity. Blood oxygenation level-dependent (BOLD) responses to groups of low- and high-frequency pure tones 3-4 octaves apart were measured at multiple sound intensity levels. The results revealed tonotopic maps in the auditory core that reversed at the putative areal boundaries between A1 and R and between R and RT. Although these reversals of the tonotopic representations were present at all intensity levels, the lateral spread of activation depended on sound amplitude, with increasing recruitment of the adjacent belt areas as the intensities increased. Tonotopic organization along the STP was also evident in frequency-specific deactivation (i.e. "negative BOLD"), an effect that was intensity-specific as well. Regions of positive and negative BOLD were spatially interleaved, possibly reflecting lateral inhibition of high-frequency areas during activation of adjacent low-frequency areas, and vice versa. These results, which demonstrate the strong influence of tonal amplitude on activation levels, identify sound intensity as an important adjunct parameter for mapping the functional architecture of auditory cortex.

  19. Sound Rhythms Are Encoded by Postinhibitory Rebound Spiking in the Superior Paraolivary Nucleus

    Science.gov (United States)

    Felix, Richard A.; Fridberger, Anders; Leijon, Sara; Berrebi, Albert S.; Magnusson, Anna K.

    2013-01-01

    The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The Ih current determines the timing of the rebound, whereas the T-type Ca2+ current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1–15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals. PMID:21880918

  20. The role of high-level processes for oscillatory phase entrainment to speech sound

    Directory of Open Access Journals (Sweden)

    Benedikt eZoefel

    2015-12-01

    Full Text Available Constantly bombarded with input, the brain has the need to filter out relevant information while ignoring the irrelevant rest. A powerful tool may be represented by neural oscillations which entrain their high-excitability phase to important input while their low-excitability phase attenuates irrelevant information. Indeed, the alignment between brain oscillations and speech improves intelligibility and helps dissociating speakers during a cocktail party. Although well-investigated, the contribution of low- and high-level processes to phase entrainment to speech sound has only recently begun to be understood. Here, we review those findings, and concentrate on three main results: (1 Phase entrainment to speech sound is modulated by attention or predictions, likely supported by top-down signals and indicating higher-level processes involved in the brain’s adjustment to speech. (2 As phase entrainment to speech can be observed without systematic fluctuations in sound amplitude or spectral content, it does not only reflect a passive steady-state ringing of the cochlea, but entails a higher-level process. (3 The role of intelligibility for phase entrainment is debated. Recent results suggest that intelligibility modulates the behavioral consequences of entrainment, rather than directly affecting the strength of entrainment in auditory regions. We conclude that phase entrainment to speech reflects a sophisticated mechanism: Several high-level processes interact to optimally align neural oscillations with predicted events of high relevance, even when they are hidden in a continuous stream of background noise.

  1. A microfluidic device for studying cell signaling with multiple inputs and adjustable amplitudes and frequencies

    Science.gov (United States)

    Ningsih, Zubaidah; Chon, James W. M.; Clayton, Andrew H. A.

    2013-12-01

    Cell function is largely controlled by an intricate web of macromolecular interactions called signaling networks. It is known that the type and the intensity (concentration) of stimulus affect cell behavior. However, the temporal aspect of the stimulus is not yet fully understood. Moreover, the process of distinguishing between two stimuli by a cell is still not clear. A microfluidic device enables the delivery of a precise and exact stimulus to the cell due to the laminar flow established inside its micro-channel. The slow stream delivers a constant stimulus which is adjustable according to the experiment set up. Moreover, with controllable inputs, microfluidic facilitates the stimuli delivery according to a certain pattern with adjustable amplitude, frequency and phase. Several designs of PDMS microfluidic device has been produced in this project via photolithography and soft lithography processes. To characterize the microfluidic performance, two experiments has been conducted. First, by comparing the fluorescence intensity and the lifetime of fluorescein in the present of KI, mixing extent between two inputs was observed using Frequency Lifetime Imaging Microscopy (FLIM). Furthermore, the input-output relationship of fluorescein concentration delivered was also drawn to characterize the amplitude, frequency and phase of the inputs. Second experiment involved the cell culturing inside microfluidic. Using NG108-15 cells, proliferation and differentiation were observed based on the cell number and cell physiological changes. Our results demonstrate that hurdle design gives 86% mixing of fluorescein and buffer. Relationship between inputoutput fluorescein concentrations delivered has also been demonstrated and cells were successfully cultured inside the microfluidic.

  2. Acoustic signal analysis in the creeping discharge

    International Nuclear Information System (INIS)

    Nakamiya, T; Sonoda, Y; Tsuda, R; Ebihara, K; Ikegami, T

    2008-01-01

    We have previously succeeded in measuring the acoustic signal due to the dielectric barrier discharge and discriminating the dominant frequency components of the acoustic signal. The dominant frequency components appear over 20kHz of acoustic signal by the dielectric barrier discharge. Recently surface discharge control technology has been focused from practical applications such as ozonizer, NO X reactors, light source or display. The fundamental experiments are carried to examine the creeping discharge using the acoustic signal. When the high voltage (6kV, f = 10kHz) is applied to the electrode, the discharge current flows and the acoustic sound is generated. The current, voltage waveforms of creeping discharge and the sound signal detected by the condenser microphone are stored in the digital memory scope. In this scheme, Continuous Wavelet Transform (CWT) is applied to discriminate the acoustic sound of the micro discharge and the dominant frequency components are studied. CWT results of sound signal show the frequency spectrum of wideband up to 100kHz. In addition, the energy distributions of acoustic signal are examined by CWT

  3. Vocal Noise Cancellation From Respiratory Sounds

    National Research Council Canada - National Science Library

    Moussavi, Zahra

    2001-01-01

    Although background noise cancellation for speech or electrocardiographic recording is well established, however when the background noise contains vocal noises and the main signal is a breath sound...

  4. The effect of frequency-specific sound signals on the germination of maize seeds.

    Science.gov (United States)

    Vicient, Carlos M

    2017-07-25

    The effects of sound treatments on the germination of maize seeds were determined. White noise and bass sounds (300 Hz) had a positive effect on the germination rate. Only 3 h treatment produced an increase of about 8%, and 5 h increased germination in about 10%. Fast-green staining shows that at least part of the effects of sound are due to a physical alteration in the integrity of the pericarp, increasing the porosity of the pericarp and facilitating oxygen availability and water and oxygen uptake. Accordingly, by removing the pericarp from the seeds the positive effect of the sound on the germination disappeared.

  5. Maximum likelihood approach to “informed” Sound Source Localization for Hearing Aid applications

    DEFF Research Database (Denmark)

    Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

    2015-01-01

    Most state-of-the-art Sound Source Localization (SSL) algorithms have been proposed for applications which are "uninformed'' about the target sound content; however, utilizing a wireless microphone worn by a target talker, enables recent Hearing Aid Systems (HASs) to access to an almost noise......-free sound signal of the target talker at the HAS via the wireless connection. Therefore, in this paper, we propose a maximum likelihood (ML) approach, which we call MLSSL, to estimate the Direction of Arrival (DoA) of the target signal given access to the target signal content. Compared with other "informed...

  6. Amplitude modulation reduces loudness adaptation to high-frequency tones.

    Science.gov (United States)

    Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang

    2015-07-01

    Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.

  7. Neuroanatomic organization of sound memory in humans.

    Science.gov (United States)

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  8. Binaural Processing of Multiple Sound Sources

    Science.gov (United States)

    2016-08-18

    AFRL-AFOSR-VA-TR-2016-0298 Binaural Processing of Multiple Sound Sources William Yost ARIZONA STATE UNIVERSITY 660 S MILL AVE STE 312 TEMPE, AZ 85281...18-08-2016 2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 15 Jul 2012 to 14 Jul 2016 4. TITLE AND SUBTITLE Binaural Processing of...three topics cited above are entirely within the scope of the AFOSR grant. 15. SUBJECT TERMS Binaural hearing, Sound Localization, Interaural signal

  9. Portable system for auscultation and lung sound analysis.

    Science.gov (United States)

    Nabiev, Rustam; Glazova, Anna; Olyinik, Valery; Makarenkova, Anastasiia; Makarenkov, Anatolii; Rakhimov, Abdulvosid; Felländer-Tsai, Li

    2014-01-01

    A portable system for auscultation and lung sound analysis has been developed, including the original electronic stethoscope coupled with mobile devices and special algorithms for the automated analysis of pulmonary sound signals. It's planned that the developed system will be used for monitoring of health status of patients with various pulmonary diseases.

  10. Frequency-Dependent Amplitude Panning for the Stereophonic Image Enhancement of Audio Recorded Using Two Closely Spaced Microphones

    Directory of Open Access Journals (Sweden)

    Chan Jun Chun

    2016-02-01

    Full Text Available In this paper, we propose a new frequency-dependent amplitude panning method for stereophonic image enhancement applied to a sound source recorded using two closely spaced omni-directional microphones. The ability to detect the direction of such a sound source is limited due to weak spatial information, such as the inter-channel time difference (ICTD and inter-channel level difference (ICLD. Moreover, when sound sources are recorded in a convolutive or a real room environment, the detection of sources is affected by reverberation effects. Thus, the proposed method first tries to estimate the source direction depending on the frequency using azimuth-frequency analysis. Then, a frequency-dependent amplitude panning technique is proposed to enhance the stereophonic image by modifying the stereophonic law of sines. To demonstrate the effectiveness of the proposed method, we compare its performance with that of a conventional method based on the beamforming technique in terms of directivity pattern, perceived direction, and quality degradation under three different recording conditions (anechoic, convolutive, and real reverberant. The comparison shows that the proposed method gives us better stereophonic images in a stereo loudspeaker reproduction than the conventional method without any annoying effects.

  11. Prediction of Intelligibility of Noisy and Time-Frequency Weighted Speech based on Mutual Information Between Amplitude Envelopes

    DEFF Research Database (Denmark)

    Jensen, Jesper; Taal, C.H.

    2013-01-01

    of Shannon information the critical-band amplitude envelopes of the noisy/processed signal convey about the corresponding clean signal envelopes. The resulting intelligibility predictor turns out to be a simple function of the correlation between noisy/processed and clean amplitude envelopes. The proposed...

  12. The influence of ski helmets on sound perception and sound localisation on the ski slope

    Directory of Open Access Journals (Sweden)

    Lana Ružić

    2015-04-01

    Full Text Available Objectives: The aim of the study was to investigate whether a ski helmet interferes with the sound localization and the time of sound perception in the frontal plane. Material and Methods: Twenty-three participants (age 30.7±10.2 were tested on the slope in 2 conditions, with and without wearing the ski helmet, by 6 different spatially distributed sound stimuli per each condition. Each of the subjects had to react when hearing the sound as soon as possible and to signalize the correct side of the sound arrival. Results: The results showed a significant difference in the ability to localize the specific ski sounds; 72.5±15.6% of correct answers without a helmet vs. 61.3±16.2% with a helmet (p < 0.01. However, the performance on this test did not depend on whether they were used to wearing a helmet (p = 0.89. In identifying the timing, at which the sound was firstly perceived, the results were also in favor of the subjects not wearing a helmet. The subjects reported hearing the ski sound clues at 73.4±5.56 m without a helmet vs. 60.29±6.34 m with a helmet (p < 0.001. In that case the results did depend on previously used helmets (p < 0.05, meaning that that regular usage of helmets might help to diminish the attenuation of the sound identification that occurs because of the helmets. Conclusions: Ski helmets might limit the ability of a skier to localize the direction of the sounds of danger and might interfere with the moment, in which the sound is firstly heard.

  13. Dementias show differential physiological responses to salient sounds

    Directory of Open Access Journals (Sweden)

    Phillip David Fletcher

    2015-03-01

    Full Text Available Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching (‘looming’ or less salient withdrawing sounds. Pupil dilatation responses and behavioural rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n=10; behavioural variant frontotemporal dementia, n=16, progressive non-fluent aphasia, n=12; amnestic Alzheimer’s disease, n=10 and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioural response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer’s disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases.

  14. Dementias show differential physiological responses to salient sounds

    Science.gov (United States)

    Fletcher, Phillip D.; Nicholas, Jennifer M.; Shakespeare, Timothy J.; Downey, Laura E.; Golden, Hannah L.; Agustus, Jennifer L.; Clark, Camilla N.; Mummery, Catherine J.; Schott, Jonathan M.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Abnormal responsiveness to salient sensory signals is often a prominent feature of dementia diseases, particularly the frontotemporal lobar degenerations, but has been little studied. Here we assessed processing of one important class of salient signals, looming sounds, in canonical dementia syndromes. We manipulated tones using intensity cues to create percepts of salient approaching (“looming”) or less salient withdrawing sounds. Pupil dilatation responses and behavioral rating responses to these stimuli were compared in patients fulfilling consensus criteria for dementia syndromes (semantic dementia, n = 10; behavioral variant frontotemporal dementia, n = 16, progressive nonfluent aphasia, n = 12; amnestic Alzheimer's disease, n = 10) and a cohort of 26 healthy age-matched individuals. Approaching sounds were rated as more salient than withdrawing sounds by healthy older individuals but this behavioral response to salience did not differentiate healthy individuals from patients with dementia syndromes. Pupil responses to approaching sounds were greater than responses to withdrawing sounds in healthy older individuals and in patients with semantic dementia: this differential pupil response was reduced in patients with progressive nonfluent aphasia and Alzheimer's disease relative both to the healthy control and semantic dementia groups, and did not correlate with nonverbal auditory semantic function. Autonomic responses to auditory salience are differentially affected by dementias and may constitute a novel biomarker of these diseases. PMID:25859194

  15. Sound produced by an oscillating arc in a high-pressure gas

    Science.gov (United States)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  16. External and internal limitations in amplitude-modulation processing

    DEFF Research Database (Denmark)

    Ewert, Stephan; Dau, Torsten

    2004-01-01

    Three experiments are presented to explore the relative role of "external" signal variability and "internal" resolution limitations of the auditory system in the detection and discrimination of amplitude modulations (AM). In the first experiment, AM-depth discrimination performance was determined......-filterbank models. The predictions revealed that AM-depth discrimination and AM detection are limited by a combination of the external signal variability and an internal "Weber-fraction" noise process....

  17. Active structural acoustic control for reduction of radiated sound from structure

    International Nuclear Information System (INIS)

    Hong, Jin Seok; Oh, Jae Eung

    2001-01-01

    Active control of sound radiation from a vibrating rectangular plate by a steady-state harmonic point force disturbance is experimentally studied. Structural excitation is achieved by two piezoceramic actuators mounted on the panel. Two accelerometers are implemented as error sensors. Estimated radiated sound signals using vibro-acoustic path transfer function are used as error signals. The vibro-acoustic path transfer function represents system between accelerometers and microphones. The approach is based on a multi-channel filtered-x LMS algorithm. The results shows that attenuation of sound levels of 11dB, 10dB is achieved

  18. Development of an Amplifier for Electronic Stethoscope System and Heart Sound Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. J.; Kang, D. K. [Chongju University, Chongju (Korea)

    2001-05-01

    The conventional stethoscope can not store its stethoscopic sounds. Therefore a doctor diagnoses a patient with instantaneous stethoscopic sounds at that time, and he can not remember the state of the patient's stethoscopic sounds on the next. This prevent accurate and objective diagnosis. If the electronic stethoscope, which can store the stethoscopic sound, is developed, the auscultation will be greatly improved. This study describes an amplifier for electronic stethoscope system that can extract heart sounds of fetus as well as adult and allow us hear and record the sounds. Using the developed stethoscopic amplifier, clean heart sounds of fetus and adult can be heard in noisy environment, such as a consultation room of a university hospital, a laboratory of a university. Surprisingly, the heart sound of a 22-week fetus was heard through the developed electronic stethoscope. Pitch detection experiments using the detected heart sounds showed that the signal represents distinct periodicity. It can be expected that the developed electronic stethoscope can substitute for conventional stethoscopes and if proper analysis method for the stethoscopic signal is developed, a good electronic stethoscope system can be produced. (author). 17 refs., 6 figs.

  19. δ-Generalized Labeled Multi-Bernoulli Filter Using Amplitude Information of Neighboring Cells

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2018-04-01

    Full Text Available The amplitude information (AI of echoed signals plays an important role in radar target detection and tracking. A lot of research shows that the introduction of AI enables the tracking algorithm to distinguish targets from clutter better and then improves the performance of data association. The current AI-aided tracking algorithms only consider the signal amplitude in the range-azimuth cell where measurement exists. However, since radar echoes always contain backscattered signals from multiple cells, the useful information of neighboring cells would be lost if directly applying those existing methods. In order to solve this issue, a new δ-generalized labeled multi-Bernoulli (δ-GLMB filter is proposed. It exploits the AI of radar echoes from neighboring cells to construct a united amplitude likelihood ratio, and then plugs it into the update process and the measurement-track assignment cost matrix of the δ-GLMB filter. Simulation results show that the proposed approach has better performance in target’s state and number estimation than that of the δ-GLMB only using single-cell AI in low signal-to-clutter-ratio (SCR environment.

  20. Assessment of the health effects of low-frequency sounds and infra-sounds from wind farms. ANSES Opinion. Collective expertise report

    International Nuclear Information System (INIS)

    Lepoutre, Philippe; Avan, Paul; Cheveigne, Alain de; Ecotiere, David; Evrard, Anne-Sophie; Hours, Martine; Lelong, Joel; Moati, Frederique; Michaud, David; Toppila, Esko; Beugnet, Laurent; Bounouh, Alexandre; Feltin, Nicolas; Campo, Pierre; Dore, Jean-Francois; Ducimetiere, Pierre; Douki, Thierry; Flahaut, Emmanuel; Gaffet, Eric; Lafaye, Murielle; Martinsons, Christophe; Mouneyrac, Catherine; Ndagijimana, Fabien; Soyez, Alain; Yardin, Catherine; Cadene, Anthony; Merckel, Olivier; Niaudet, Aurelie; Cadene, Anthony; Saddoki, Sophia; Debuire, Brigitte; Genet, Roger

    2017-03-01

    a health effect has not been documented. In this context, ANSES recommends: Concerning studies and research: - verifying whether or not there is a possible mechanism modulating the perception of audible sound at intensities of infra-sound similar to those measured from local residents; - studying the effects of the amplitude modulation of the acoustic signal on the noise-related disturbance felt; - studying the assumption that cochlea-vestibular effects may be responsible for pathophysiological effects; - undertaking a survey of residents living near wind farms enabling the identification of an objective signature of a physiological effect. Concerning information for local residents and the monitoring of noise levels: - enhancing information for local residents during the construction of wind farms and participation in public inquiries undertaken in rural areas; - systematically measuring the noise emissions of wind turbines before and after they are brought into service; - setting up, especially in the event of controversy, continuous noise measurement systems around wind farms (based on experience at airports, for example). Lastly, the Agency reiterates that the current regulations state that the distance between a wind turbine and the first home should be evaluated on a case-by-case basis, taking the conditions of wind farms into account. This distance, of at least 500 metres, may be increased further to the results of an impact assessment, in order to comply with the limit values for noise exposure. Current knowledge of the potential health effects of exposure to infra-sounds and low-frequency noise provides no justification for changing the current limit values or for extending the spectrum of noise currently taken into consideration

  1. A basic study on universal design of auditory signals in automobiles.

    Science.gov (United States)

    Yamauchi, Katsuya; Choi, Jong-dae; Maiguma, Ryo; Takada, Masayuki; Iwamiya, Shin-ichiro

    2004-11-01

    In this paper, the impression of various kinds of auditory signals currently used in automobiles and a comprehensive evaluation were measured by a semantic differential method. The desirable acoustic characteristic was examined for each type of auditory signal. Sharp sounds with dominant high-frequency components were not suitable for auditory signals in automobiles. This trend is expedient for the aged whose auditory sensitivity in the high frequency region is lower. When intermittent sounds were used, a longer OFF time was suitable. Generally, "dull (not sharp)" and "calm" sounds were appropriate for auditory signals. Furthermore, the comparison between the frequency spectrum of interior noise in automobiles and that of suitable sounds for various auditory signals indicates that the suitable sounds are not easily masked. The suitable auditory signals for various purposes is a good solution from the viewpoint of universal design.

  2. Noise and noise disturbances from wind power plants - Tests with interactive control of sound parameters for more comfortable and less perceptible sounds

    International Nuclear Information System (INIS)

    Persson-Waye, K.; Oehrstroem, E.; Bjoerkman, M.; Agge, A.

    2001-12-01

    In experimental pilot studies, a methodology has been worked out for interactively varying sound parameters in wind power plants. In the tests, 24 persons varied the center frequency of different band-widths, the frequency of a sinus-tone and the amplitude-modulation of a sinus-tone in order to create as comfortable a sound as possible. The variations build on the noise from the two wind turbines Bonus and Wind World. The variations were performed with a constant dba level. The results showed that the majority preferred a low-frequency tone (94 Hz and 115 Hz for Wind World and Bonus, respectively). The mean of the most comfortable amplitude-modulation varied between 18 and 22 Hz, depending on the ground frequency. The mean of the center-frequency for the different band-widths varied from 785 to 1104 Hz. In order to study the influence of the wind velocity on the acoustic character of the noise, a long-time measurement program has been performed. A remotely controlled system has been developed, where wind velocity, wind direction, temperature and humidity are registered simultaneously with the noise. Long-time registrations have been performed for four different wing turbines

  3. Understanding the amplitudes of noise correlation measurements

    Science.gov (United States)

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  4. Synthesis of vibroarthrographic signals in knee osteoarthritis diagnosis training.

    Science.gov (United States)

    Shieh, Chin-Shiuh; Tseng, Chin-Dar; Chang, Li-Yun; Lin, Wei-Chun; Wu, Li-Fu; Wang, Hung-Yu; Chao, Pei-Ju; Chiu, Chien-Liang; Lee, Tsair-Fwu

    2016-07-19

    Vibroarthrographic (VAG) signals are used as useful indicators of knee osteoarthritis (OA) status. The objective was to build a template database of knee crepitus sounds. Internships can practice in the template database to shorten the time of training for diagnosis of OA. A knee sound signal was obtained using an innovative stethoscope device with a goniometer. Each knee sound signal was recorded with a Kellgren-Lawrence (KL) grade. The sound signal was segmented according to the goniometer data. The signal was Fourier transformed on the correlated frequency segment. An inverse Fourier transform was performed to obtain the time-domain signal. Haar wavelet transform was then done. The median and mean of the wavelet coefficients were chosen to inverse transform the synthesized signal in each KL category. The quality of the synthesized signal was assessed by a clinician. The sample signals were evaluated using different algorithms (median and mean). The accuracy rate of the median coefficient algorithm (93 %) was better than the mean coefficient algorithm (88 %) for cross-validation by a clinician using synthesis of VAG. The artificial signal we synthesized has the potential to build a learning system for medical students, internships and para-medical personnel for the diagnosis of OA. Therefore, our method provides a feasible way to evaluate crepitus sounds that may assist in the diagnosis of knee OA.

  5. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  6. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.

    Science.gov (United States)

    Heeringa, A N; van Dijk, P

    2014-06-01

    Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. A system for heart sounds classification.

    Directory of Open Access Journals (Sweden)

    Grzegorz Redlarski

    Full Text Available The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases - one of the major causes of death around the globe - a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability.

  8. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  9. Moth hearing and sound communication

    DEFF Research Database (Denmark)

    Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie

    2015-01-01

    Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced by compar......Active echolocation enables bats to orient and hunt the night sky for insects. As a counter-measure against the severe predation pressure many nocturnal insects have evolved ears sensitive to ultrasonic bat calls. In moths bat-detection was the principal purpose of hearing, as evidenced...... by comparable hearing physiology with best sensitivity in the bat echolocation range, 20–60 kHz, across moths in spite of diverse ear morphology. Some eared moths subsequently developed sound-producing organs to warn/startle/jam attacking bats and/or to communicate intraspecifically with sound. Not only...... the sounds for interaction with bats, but also mating signals are within the frequency range where bats echolocate, indicating that sound communication developed after hearing by “sensory exploitation”. Recent findings on moth sound communication reveal that close-range (~ a few cm) communication with low...

  10. Modal effects on amplitude perturbations on subionospheric signals (trimpis) deduced from two-frequency measurements

    International Nuclear Information System (INIS)

    Dowden, R.L.; Adams, C.D.D.

    1989-01-01

    Interference between the first two modes of Earth-ionosphere waveguide propagation at the high end of the VLF band (> 18 kHz) increases with distance from the transmitter out to very large distances and can add amplitude perturbations to the phase perturbations (trimpis) produced by lightning-induced electron precipitation (LEP) on the great circle path. Since the two modes have slightly different phase velocities, an interference pattern or standing wave is formed which is shifted slightly along the propagation path by the LEP-induced change in differential phase velocity. The model effect at the receiver depends on the local gradient (along the great circle path) of amplitude with respect to the differential phase. Since this differential or mode beat phase varies with frequency, measurement of the resultant amplitude at two close frequencies enables an estimation of the modal effects. In this study, measurements were made at Dunedin at the two MSK frequencies, 22,250 Hz and 22,350 Hz, of the transmitter NWC, during a night of frequent one-dimensional trimpis (i.e., those produced by large-area LEP occurring close to the great circle path) and of strong and varying modal interference. Modal generation or modification of trimpi amplitude was related to the local gradient of amplitude as expected. From these results it was deduced that modal modification of echo trimpis (those produced by small area LEP occurring well off the great circle path), even under extreme conditions, is insignificant

  11. Sound generating flames of a gas turbine burner observed by laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Hubschmid, W; Inauen, A.; Bombach, R.; Kreutner, W.; Schenker, S.; Zajadatz, M. [Alstom (Switzerland); Motz, C. [Alstom (Switzerland); Haffner, K. [Alstom (Switzerland); Paschereit, C.O. [Alstom (Switzerland)

    2002-03-01

    We performed 2-D OH LIF measurements to investigate the sound emission of a gas turbine combustor. The measured LIF signal was averaged over pulses at constant phase of the dominant acoustic oscillation. A periodic variation in intensity and position of the signal is observed and it is related to the measured sound intensity. (author)

  12. RTS amplitudes in decananometer MOSFETs: 3-D simulation study

    OpenAIRE

    Asenov, A.; Balasubramaniam, R.; Brown, A.R.; Davies, J.H.

    2003-01-01

    In this paper we study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single electron in defect states at the Si/SiO/sub 2/ interface of sub-100-nm (decananometer) MOSFETs employing three-dimensional (3-D) "atomistic" simulations. Both continuous doping charge and random discrete dopants in the active region of the MOSFETs are considered in the simulations. The dependence of the RTS amplitudes on the position of the trapped charge in the channel and on devi...

  13. A framework for automatic heart sound analysis without segmentation

    Directory of Open Access Journals (Sweden)

    Tungpimolrut Kanokvate

    2011-02-01

    Full Text Available Abstract Background A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs. Method Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS. The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors. Result The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR, and 0.90 under impulse noise up to 0.3 s duration. Conclusion The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.

  14. Method for measuring violin sound radiation based on bowed glissandi and its application to sound synthesis.

    Science.gov (United States)

    Perez Carrillo, Alfonso; Bonada, Jordi; Patynen, Jukka; Valimaki, Vesa

    2011-08-01

    This work presents a method for measuring and computing violin-body directional frequency responses, which are used for violin sound synthesis. The approach is based on a frame-weighted deconvolution of excitation and response signals. The excitation, consisting of bowed glissandi, is measured with piezoelectric transducers built into the bridge. Radiation responses are recorded in an anechoic chamber with multiple microphones placed at different angles around the violin. The proposed deconvolution algorithm computes impulse responses that, when convolved with any source signal (captured with the same transducer), produce a highly realistic violin sound very similar to that of a microphone recording. The use of motion sensors allows for tracking violin movements. Combining this information with the directional responses and using a dynamic convolution algorithm, helps to improve the listening experience by incorporating the violinist motion effect in stereo.

  15. Radar transponder operation with compensation for distortion due to amplitude modulation

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  16. The role of envelope shape in the localization of multiple sound sources and echoes in the barn owl.

    Science.gov (United States)

    Baxter, Caitlin S; Nelson, Brian S; Takahashi, Terry T

    2013-02-01

    Echoes and sounds of independent origin often obscure sounds of interest, but echoes can go undetected under natural listening conditions, a perception called the precedence effect. How does the auditory system distinguish between echoes and independent sources? To investigate, we presented two broadband noises to barn owls (Tyto alba) while varying the similarity of the sounds' envelopes. The carriers of the noises were identical except for a 2- or 3-ms delay. Their onsets and offsets were also synchronized. In owls, sound localization is guided by neural activity on a topographic map of auditory space. When there are two sources concomitantly emitting sounds with overlapping amplitude spectra, space map neurons discharge when the stimulus in their receptive field is louder than the one outside it and when the averaged amplitudes of both sounds are rising. A model incorporating these features calculated the strengths of the two sources' representations on the map (B. S. Nelson and T. T. Takahashi; Neuron 67: 643-655, 2010). The target localized by the owls could be predicted from the model's output. The model also explained why the echo is not localized at short delays: when envelopes are similar, peaks in the leading sound mask corresponding peaks in the echo, weakening the echo's space map representation. When the envelopes are dissimilar, there are few or no corresponding peaks, and the owl localizes whichever source is predicted by the model to be less masked. Thus the precedence effect in the owl is a by-product of a mechanism for representing multiple sound sources on its map.

  17. Sound localization with head movement: implications for 3-d audio displays.

    Directory of Open Access Journals (Sweden)

    Ken Ian McAnally

    2014-08-01

    Full Text Available Previous studies have shown that the accuracy of sound localization is improved if listeners are allowed to move their heads during signal presentation. This study describes the function relating localization accuracy to the extent of head movement in azimuth. Sounds that are difficult to localize were presented in the free field from sources at a wide range of azimuths and elevations. Sounds remained active until the participants’ heads had rotated through windows ranging in width of 2°, 4°, 8°, 16°, 32°, or 64° of azimuth. Error in determining sound-source elevation and the rate of front/back confusion were found to decrease with increases in azimuth window width. Error in determining sound-source lateral angle was not found to vary with azimuth window width. Implications for 3-d audio displays: The utility of a 3-d audio display for imparting spatial information is likely to be improved if operators are able to move their heads during signal presentation. Head movement may compensate in part for a paucity of spectral cues to sound-source location resulting from limitations in either the audio signals presented or the directional filters (i.e., head-related transfer functions used to generate a display. However, head movements of a moderate size (i.e., through around 32° of azimuth may be required to ensure that spatial information is conveyed with high accuracy.

  18. The correlation between the first heart sound and cardiac output as measured by using digital esophageal stethoscope under anaesthesia.

    Science.gov (United States)

    Duck Shin, Young; Hoon Yim, Kyoung; Hi Park, Sang; Wook Jeon, Yong; Ho Bae, Jin; Soo Lee, Tae; Hwan Kim, Myoung; Jin Choi, Young

    2014-03-01

    The use of an esophageal stethoscope is a basic heart sounds monitoring procedure performed in patients under general anesthesia. As the size of the first heart sound can express the left ventricle function, its correlation with cardiac output should be investigated. The aim of this study was to investigate the effects of cardiac output (CO) on the first heart sound (S1) amplitude. Methods : Six male beagles were chosen. The S1 was obtained with the newly developed esophageal stethoscope system. CO was measured using NICOM, a non-invasive CO measuring device. Ephedrine and beta blockers were administered to the subjects to compare changes in figures, and the change from using an inhalation anesthetic was also compared. The S1 amplitude displayed positive correlation with the change rate of CO (r = 0.935, p < 0.001). The heart rate measured using the esophageal stethoscope and ECG showed considerably close figures through the Bland-Altman plot and showed a high positive correlation (r = 0.988, p < 0,001). In beagles, the amplitude of S1 had a significant correlation with changes in CO in a variety of situations.

  19. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    Directory of Open Access Journals (Sweden)

    Oliver Zobay

    2015-01-01

    Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.

  20. Free sixteen harmonic Fourier series web app with sound

    Science.gov (United States)

    Ruiz, Michael J.

    2018-03-01

    An online HTML5 Fourier synthesizer app is provided that allows students to manipulate sixteen harmonics and construct periodic waves. Students can set the amplitudes and phases for each harmonic, seeing the resulting waveforms and hearing the sounds. Five waveform presets are included: sine, triangle, square, ramp (sawtooth), and pulse train. The program is free for non-commercial use and can also be downloaded for running offline.

  1. A note on measurement of sound pressure with intensity probes

    DEFF Research Database (Denmark)

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  2. Subjective Evaluation of Audiovisual Signals

    Directory of Open Access Journals (Sweden)

    F. Fikejz

    2010-01-01

    Full Text Available This paper deals with subjective evaluation of audiovisual signals, with emphasis on the interaction between acoustic and visual quality. The subjective test is realized by a simple rating method. The audiovisual signal used in this test is a combination of images compressed by JPEG compression codec and sound samples compressed by MPEG-1 Layer III. Images and sounds have various contents. It simulates a real situation when the subject listens to compressed music and watches compressed pictures without the access to original, i.e. uncompressed signals.

  3. Review of sound card photogates

    International Nuclear Information System (INIS)

    Gingl, Zoltan; Mingesz, Robert; Mellar, Janos; Makra, Peter

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card - an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  4. ON MEASURING AMPLITUDES AND PERIODS OF PHYSICAL PENDULUM MICRO-SWINGS WITH ROLLING-CONTACT BEARING

    Directory of Open Access Journals (Sweden)

    N. N. Riznookaya

    2011-01-01

    Full Text Available The paper considers a method and an instrument for measuring amplitudes and  periods of physical pendulum oscillations with rolling-contact bearing in the regime of micro-swings when the oscillation amplitude is significantly less of an elastic contact angle. It has been established that the main factors limiting a measuring accuracy are noises of the measuring circuit, base vibration and analog-digital conversion. A new measuring methodology based on original algorithms of data processing and application of the well-known methods for statistic processing of a measuring signal is  proposed in the paper. The paper contains error estimations for measuring oscillation amplitudes justified by discreteness of a signal conversion in a photoelectric receptor and also by the influence of measuring circuit noise. The paper reveals that the applied methodologies make it possible to ensure measuring of amplitudes with an error of 0.2 second of arc and measuring of a period with an error of 10–4 s. The original measuring instrument including mechanical and optical devices and also an electric circuit of optical-to-electrical measuring signal conversion is described in the paper. 

  5. Physiological phenotyping of dementias using emotional sounds.

    Science.gov (United States)

    Fletcher, Phillip D; Nicholas, Jennifer M; Shakespeare, Timothy J; Downey, Laura E; Golden, Hannah L; Agustus, Jennifer L; Clark, Camilla N; Mummery, Catherine J; Schott, Jonathan M; Crutch, Sebastian J; Warren, Jason D

    2015-06-01

    Emotional behavioral disturbances are hallmarks of many dementias but their pathophysiology is poorly understood. Here we addressed this issue using the paradigm of emotionally salient sounds. Pupil responses and affective valence ratings for nonverbal sounds of varying emotional salience were assessed in patients with behavioral variant frontotemporal dementia (bvFTD) (n = 14), semantic dementia (SD) (n = 10), progressive nonfluent aphasia (PNFA) (n = 12), and AD (n = 10) versus healthy age-matched individuals (n = 26). Referenced to healthy individuals, overall autonomic reactivity to sound was normal in Alzheimer's disease (AD) but reduced in other syndromes. Patients with bvFTD, SD, and AD showed altered coupling between pupillary and affective behavioral responses to emotionally salient sounds. Emotional sounds are a useful model system for analyzing how dementias affect the processing of salient environmental signals, with implications for defining pathophysiological mechanisms and novel biomarker development.

  6. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  7. Auto-identification of engine fault acoustic signal through inverse trigonometric instantaneous frequency analysis

    Directory of Open Access Journals (Sweden)

    Dayong Ning

    2016-03-01

    Full Text Available The acoustic signals of internal combustion engines contain valuable information about the condition of engines. These signals can be used to detect incipient faults in engines. However, these signals are complex and composed of a faulty component and other noise signals of background. As such, engine conditions’ characteristics are difficult to extract through wavelet transformation and acoustic emission techniques. In this study, an instantaneous frequency analysis method was proposed. A new time–frequency model was constructed using a fixed amplitude and a variable cycle sine function to fit adjacent points gradually from a time domain signal. The instantaneous frequency corresponds to single value at any time. This study also introduced instantaneous frequency calculation on the basis of an inverse trigonometric fitting method at any time. The mean value of all local maximum values was then considered to identify the engine condition automatically. Results revealed that the mean of local maximum values under faulty conditions differs from the normal mean. An experiment case was also conducted to illustrate the availability of the proposed method. Using the proposed time–frequency model, we can identify engine condition and determine abnormal sound produced by faulty engines.

  8. Measuring the speed of sound in air using smartphone applications

    Science.gov (United States)

    Yavuz, A.

    2015-05-01

    This study presents a revised version of an old experiment available in many textbooks for measuring the speed of sound in air. A signal-generator application in a smartphone is used to produce the desired sound frequency. Nodes of sound waves in a glass pipe, of which one end is immersed in water, are more easily detected, so results can be obtained more quickly than from traditional acoustic experiments using tuning forks.

  9. Quantifying sound quality in loudspeaker reproduction

    NARCIS (Netherlands)

    Beerends, John G.; van Nieuwenhuizen, Kevin; van den Broek, E.L.

    2016-01-01

    We present PREQUEL: Perceptual Reproduction Quality Evaluation for Loudspeakers. Instead of quantifying the loudspeaker system itself, PREQUEL quantifies the overall loudspeakers' perceived sound quality by assessing their acoustic output using a set of music signals. This approach introduces a

  10. Memory-based pre-attentive auditory N1 elicited by sound movement.

    Science.gov (United States)

    Ohoyama, Keiko; Motomura, Eishi; Inui, Koji; Nishihara, Makoto; Otsuru, Naofumi; Oi, Motoyasu; Kakigi, Ryusuke; Okada, Motohiro

    2012-07-01

    Quickly detecting changes in the surrounding environment is one of the most important functions of sensory processing. Comparison of a new event with preceding sensory conditions is necessary for the change-detection process. A sudden change in a continuous sound elicits auditory evoked potentials that peak approximately 100 ms after the onset of the change (Change-N1). In the present study, we recorded Change-N1 under an oddball paradigm in 19 healthy subjects using an abruptly moving sound (SM-stimulus) as a deviant stimulus and investigated effects of the probability of the SM-stimulus to reveal whether Change-N1 is a memory-based response. We compared the amplitude and latency of Change-N1 elicited by the SM-stimulus among three probability conditions (33, 50 and 100%). As the probability of the SM-stimulus decreased, the amplitude of Change-N1 increased and its latency decreased. The present results indicate that the preceding sensory history affects Change-N1 elicited by the SM-stimulus. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Sustained selective attention to competing amplitude-modulations in human auditory cortex.

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control.

  12. Sustained Selective Attention to Competing Amplitude-Modulations in Human Auditory Cortex

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control. PMID:25259525

  13. Development of Bone-Conducted Ultrasonic Hearing Aid for the Profoundly Deaf: Assessments of the Modulation Type with Regard to Intelligibility and Sound Quality

    Science.gov (United States)

    Nakagawa, Seiji; Fujiyuki, Chika; Kagomiya, Takayuki

    2012-07-01

    Bone-conducted ultrasound (BCU) is perceived even by the profoundly sensorineural deaf. A novel hearing aid using the perception of amplitude-modulated BCU (BCU hearing aid: BCUHA) has been developed; however, further improvements are needed, especially in terms of articulation and sound quality. In this study, the intelligibility and sound quality of BCU speech with several types of amplitude modulation [double-sideband with transmitted carrier (DSB-TC), double-sideband with suppressed carrier (DSB-SC), and transposed modulation] were evaluated. The results showed that DSB-TC and transposed speech were more intelligible than DSB-SC speech, and transposed speech was closer than the other types of BCU speech to air-conducted speech in terms of sound quality. These results provide useful information for further development of the BCUHA.

  14. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  15. A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    Directory of Open Access Journals (Sweden)

    Ji-Ho Chang

    2017-03-01

    Full Text Available This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive to room reflections and the amplitude decay than the spatial error, which is likely to agree better with the human perception of source localization.

  16. Heart sounds analysis via esophageal stethoscope system in beagles.

    Science.gov (United States)

    Park, Sang Hi; Shin, Young Duck; Bae, Jin Ho; Kwon, Eun Jung; Lee, Tae-Soo; Shin, Ji-Yun; Kim, Yeong-Cheol; Min, Gyeong-Deuk; Kim, Myoung hwan

    2013-10-01

    Esophageal stethoscope is less invasive and easy to handling. And it gives a lot of information. The purpose of this study is to investigate the correlation of blood pressure and heart sound as measured by esophageal stethoscope. Four male beagles weighing 10 to 12 kg were selected as experimental subjects. After general anesthesia, the esophageal stethoscope was inserted. After connecting the microphone, the heart sounds were visualized and recorded through a self-developed equipment and program. The amplitudes of S1 and S2 were monitored real-time to examine changes as the blood pressure increased and decreased. The relationship between the ratios of S1 to S2 (S1/S2) and changes in blood pressure due to ephedrine was evaluated. The same experiment was performed with different concentration of isoflurane. From S1 and S2 in the inotropics experiment, a high correlation appeared with change in blood pressure in S1. The relationship between S1/S2 and change in blood pressure showed a positive correlation in each experimental subject. In the volatile anesthetics experiment, the heart sounds decreased as MAC increased. Heart sounds were analyzed successfully with the esophageal stethoscope through the self-developed program and equipment. A proportional change in heart sounds was confirmed when blood pressure was changed using inotropics or volatile anesthetics. The esophageal stethoscope can achieve the closest proximity to the heart to hear sounds in a non-invasive manner.

  17. Binaural loudness for artificial-head measurements in directional sound fields

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2008-01-01

    The effect of the sound incidence angle on loudness was investigated for fifteen listeners who matched the loudness of sounds coming from five different incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were presented via binaural synthesis...... by using head-related transfer functions measured for an artificial head. The results, which exhibited marked individual differences, show that loudness depends on the direction from which a sound reaches the listener. The average results suggest a relatively simple rule for combining the two signals...... at the ears of an artificial head for binaural loudness predictions....

  18. Understanding Animal Detection of Precursor Earthquake Sounds.

    Science.gov (United States)

    Garstang, Michael; Kelley, Michael C

    2017-08-31

    We use recent research to provide an explanation of how animals might detect earthquakes before they occur. While the intrinsic value of such warnings is immense, we show that the complexity of the process may result in inconsistent responses of animals to the possible precursor signal. Using the results of our research, we describe a logical but complex sequence of geophysical events triggered by precursor earthquake crustal movements that ultimately result in a sound signal detectable by animals. The sound heard by animals occurs only when metal or other surfaces (glass) respond to vibrations produced by electric currents induced by distortions of the earth's electric fields caused by the crustal movements. A combination of existing measurement systems combined with more careful monitoring of animal response could nevertheless be of value, particularly in remote locations.

  19. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  20. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    Science.gov (United States)

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  1. Masking release by combined spatial and masker-fluctuation effects in the open sound field.

    Science.gov (United States)

    Middlebrooks, John C

    2017-12-01

    In a complex auditory scene, signals of interest can be distinguished from masking sounds by differences in source location [spatial release from masking (SRM)] and by differences between masker-alone and masker-plus-signal envelopes. This study investigated interactions between those factors in release of masking of 700-Hz tones in an open sound field. Signal and masker sources were colocated in front of the listener, or the signal source was shifted 90° to the side. In Experiment 1, the masker contained a 25-Hz-wide on-signal band plus flanking bands having envelopes that were either mutually uncorrelated or were comodulated. Comodulation masking release (CMR) was largely independent of signal location at a higher masker sound level, but at a lower level CMR was reduced for the lateral signal location. In Experiment 2, a brief signal was positioned at the envelope maximum (peak) or minimum (dip) of a 50-Hz-wide on-signal masker. Masking was released in dip more than in peak conditions only for the 90° signal. Overall, open-field SRM was greater in magnitude than binaural masking release reported in comparable closed-field studies, and envelope-related release was somewhat weaker. Mutual enhancement of masking release by spatial and envelope-related effects tended to increase with increasing masker level.

  2. Noise detection during heart sound recording using periodicity signatures

    International Nuclear Information System (INIS)

    Kumar, D; Carvalho, P; Paiva, R P; Henriques, J; Antunes, M

    2011-01-01

    Heart sound is a valuable biosignal for diagnosis of a large set of cardiac diseases. Ambient and physiological noise interference is one of the most usual and highly probable incidents during heart sound acquisition. It tends to change the morphological characteristics of heart sound that may carry important information for heart disease diagnosis. In this paper, we propose a new method applicable in real time to detect ambient and internal body noises manifested in heart sound during acquisition. The algorithm is developed on the basis of the periodic nature of heart sounds and physiologically inspired criteria. A small segment of uncontaminated heart sound exhibiting periodicity in time as well as in the time-frequency domain is first detected and applied as a reference signal in discriminating noise from the sound. The proposed technique has been tested with a database of heart sounds collected from 71 subjects with several types of heart disease inducing several noises during recording. The achieved average sensitivity and specificity are 95.88% and 97.56%, respectively

  3. Zero sound and quasiwave: separation in the magnetic field

    International Nuclear Information System (INIS)

    Bezuglyj, E.V.; Bojchuk, A.V.; Burma, N.G.; Fil', V.D.

    1995-01-01

    Theoretical and experimental results on the behavior of the longitudinal and transverse electron sound in a weak magnetic field are presented. It is shown theoretically that the effects of the magnetic field on zero sound velocity and ballistic transfer are opposite in sign and have sufficiently different dependences on the sample width, excitation frequency and relaxation time. This permits us to separate experimentally the Fermi-liquid and ballistic contributions in the electron sound signals. For the first time the ballistic transfer of the acoustic excitation by the quasiwave has been observed in zero magnetic field

  4. Sustained Magnetic Responses in Temporal Cortex Reflect Instantaneous Significance of Approaching and Receding Sounds.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    Full Text Available Rising sound intensity often signals an approaching sound source and can serve as a powerful warning cue, eliciting phasic attention, perception biases and emotional responses. How the evaluation of approaching sounds unfolds over time remains elusive. Here, we capitalised on the temporal resolution of magnetoencephalograpy (MEG to investigate in humans a dynamic encoding of perceiving approaching and receding sounds. We compared magnetic responses to intensity envelopes of complex sounds to those of white noise sounds, in which intensity change is not perceived as approaching. Sustained magnetic fields over temporal sensors tracked intensity change in complex sounds in an approximately linear fashion, an effect not seen for intensity change in white noise sounds, or for overall intensity. Hence, these fields are likely to track approach/recession, but not the apparent (instantaneous distance of the sound source, or its intensity as such. As a likely source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction emerged. Our results indicate that discrete temporal cortical areas parametrically encode behavioural significance in moving sound sources where the signal unfolded in a manner reminiscent of evidence accumulation. This may help an understanding of how acoustic percepts are evaluated as behaviourally relevant, where our results highlight a crucial role of cortical areas.

  5. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  6. Self-collimated slow sound in sonic crystals

    International Nuclear Information System (INIS)

    Kaya, Olgun Adem; Cicek, Ahmet; Ulug, Bulent

    2012-01-01

    Self-collimated slow-sound propagation in a two-dimensional rectangular sonic crystal composed of elliptical scatterers in air is numerically demonstrated. The group velocity at the centre and the edges of the fourth acoustic band is reduced to 45 m s -1 and 30 m s -1 , corresponding to 1/8 and 1/12 of the speed of sound in air, respectively. Elimination of omni-directional reflections encountered in linear waveguides and the reduction of group-velocity dispersion at the mid-band frequencies lead to preservation of pulse shape and amplitude upon traversal of the sonic crystal. Wave transmission is increased from approximately -20 to -2.5 dB, with almost an order of magnitude enhancement, via injector layers optimized through a pattern search algorithm. Self-collimating performance of the system is not degraded under oblique incidence, except for pulse broadening due to increased effective source width.

  7. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  8. Surface return direction-of-arrival analysis for radar ice sounding surface clutter suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    Airborne radar ice sounding is challenged by surface clutter masking the depth signal of interest. Surface clutter may even be prohibitive for potential space-based ice sounding radars. To some extent the radar antenna suppresses the surface clutter, and a multi-phase-center antenna in combination...... with coherent signal processing techniques can improve the suppression, in particular if the direction of arrival (DOA) of the clutter signal is estimated accurately. This paper deals with data-driven DOA estimation. By using P-band data from the ice shelf in Antarctica it is demonstrated that a varying...

  9. 33 CFR 83.36 - Signals to attract attention (Rule 36).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Signals to attract attention... SECURITY INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.36 Signals to attract attention (Rule 36). If necessary to attract the attention of another vessel, any vessel may make light or sound...

  10. Time domain acoustic contrast control implementation of sound zones for low-frequency input signals

    DEFF Research Database (Denmark)

    Schellekens, Daan H. M.; Møller, Martin Bo; Olsen, Martin

    2016-01-01

    Sound zones are two or more regions within a listening space where listeners are provided with personal audio. Acoustic contrast control (ACC) is a sound zoning method that maximizes the average squared sound pressure in one zone constrained to constant pressure in other zones. State......-of-the-art time domain broadband acoustic contrast control (BACC) methods are designed for anechoic environments. These methods are not able to realize a flat frequency response in a limited frequency range within a reverberant environment. Sound field control in a limited frequency range is a requirement...... to accommodate the effective working range of the loudspeakers. In this paper, a new BACC method is proposed which results in an implementation realizing a flat frequency response in the target zone. This method is applied in a bandlimited low-frequency scenario where the loudspeaker layout surrounds two...

  11. Magnetoencephalography signals are influenced by skull defects.

    Science.gov (United States)

    Lau, S; Flemming, L; Haueisen, J

    2014-08-01

    Magnetoencephalography (MEG) signals had previously been hypothesized to have negligible sensitivity to skull defects. The objective is to experimentally investigate the influence of conducting skull defects on MEG and EEG signals. A miniaturized electric dipole was implanted in vivo into rabbit brains. Simultaneous recording using 64-channel EEG and 16-channel MEG was conducted, first above the intact skull and then above a skull defect. Skull defects were filled with agar gels, which had been formulated to have tissue-like homogeneous conductivities. The dipole was moved beneath the skull defects, and measurements were taken at regularly spaced points. The EEG signal amplitude increased 2-10 times, whereas the MEG signal amplitude reduced by as much as 20%. The EEG signal amplitude deviated more when the source was under the edge of the defect, whereas the MEG signal amplitude deviated more when the source was central under the defect. The change in MEG field-map topography (relative difference measure, RDM(∗)=0.15) was geometrically related to the skull defect edge. MEG and EEG signals can be substantially affected by skull defects. MEG source modeling requires realistic volume conductor head models that incorporate skull defects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. The Contribution of Sound Intensity in Vocal Emotion Perception: Behavioral and Electrophysiological Evidence

    Science.gov (United States)

    Chen, Xuhai; Yang, Jianfeng; Gan, Shuzhen; Yang, Yufang

    2012-01-01

    Although its role is frequently stressed in acoustic profile for vocal emotion, sound intensity is frequently regarded as a control parameter in neurocognitive studies of vocal emotion, leaving its role and neural underpinnings unclear. To investigate these issues, we asked participants to rate the angry level of neutral and angry prosodies before and after sound intensity modification in Experiment 1, and recorded electroencephalogram (EEG) for mismatching emotional prosodies with and without sound intensity modification and for matching emotional prosodies while participants performed emotional feature or sound intensity congruity judgment in Experiment 2. It was found that sound intensity modification had significant effect on the rating of angry level for angry prosodies, but not for neutral ones. Moreover, mismatching emotional prosodies, relative to matching ones, induced enhanced N2/P3 complex and theta band synchronization irrespective of sound intensity modification and task demands. However, mismatching emotional prosodies with reduced sound intensity showed prolonged peak latency and decreased amplitude in N2/P3 complex and smaller theta band synchronization. These findings suggest that though it cannot categorically affect emotionality conveyed in emotional prosodies, sound intensity contributes to emotional significance quantitatively, implying that sound intensity should not simply be taken as a control parameter and its unique role needs to be specified in vocal emotion studies. PMID:22291928

  13. The contribution of sound intensity in vocal emotion perception: behavioral and electrophysiological evidence.

    Directory of Open Access Journals (Sweden)

    Xuhai Chen

    Full Text Available Although its role is frequently stressed in acoustic profile for vocal emotion, sound intensity is frequently regarded as a control parameter in neurocognitive studies of vocal emotion, leaving its role and neural underpinnings unclear. To investigate these issues, we asked participants to rate the angry level of neutral and angry prosodies before and after sound intensity modification in Experiment 1, and recorded electroencephalogram (EEG for mismatching emotional prosodies with and without sound intensity modification and for matching emotional prosodies while participants performed emotional feature or sound intensity congruity judgment in Experiment 2. It was found that sound intensity modification had significant effect on the rating of angry level for angry prosodies, but not for neutral ones. Moreover, mismatching emotional prosodies, relative to matching ones, induced enhanced N2/P3 complex and theta band synchronization irrespective of sound intensity modification and task demands. However, mismatching emotional prosodies with reduced sound intensity showed prolonged peak latency and decreased amplitude in N2/P3 complex and smaller theta band synchronization. These findings suggest that though it cannot categorically affect emotionality conveyed in emotional prosodies, sound intensity contributes to emotional significance quantitatively, implying that sound intensity should not simply be taken as a control parameter and its unique role needs to be specified in vocal emotion studies.

  14. Adaptive RD Optimized Hybrid Sound Coding

    NARCIS (Netherlands)

    Schijndel, N.H. van; Bensa, J.; Christensen, M.G.; Colomes, C.; Edler, B.; Heusdens, R.; Jensen, J.; Jensen, S.H.; Kleijn, W.B.; Kot, V.; Kövesi, B.; Lindblom, J.; Massaloux, D.; Niamut, O.A.; Nordén, F.; Plasberg, J.H.; Vafin, R.; Virette, D.; Wübbolt, O.

    2008-01-01

    Traditionally, sound codecs have been developed with a particular application in mind, their performance being optimized for specific types of input signals, such as speech or audio (music), and application constraints, such as low bit rate, high quality, or low delay. There is, however, an

  15. A fast and reliable method for simultaneous waveform, amplitude and latency estimation of single-trial EEG/MEG data.

    Directory of Open Access Journals (Sweden)

    Wouter D Weeda

    Full Text Available The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the method describes these data accurately.

  16. Biasing vector network analyzers using variable frequency and amplitude signals

    Science.gov (United States)

    Nobles, J. E.; Zagorodnii, V.; Hutchison, A.; Celinski, Z.

    2016-08-01

    We report the development of a test setup designed to provide a variable frequency biasing signal to a vector network analyzer (VNA). The test setup is currently used for the testing of liquid crystal (LC) based devices in the microwave region. The use of an AC bias for LC based devices minimizes the negative effects associated with ionic impurities in the media encountered with DC biasing. The test setup utilizes bias tees on the VNA test station to inject the bias signal. The square wave biasing signal is variable from 0.5 to 36.0 V peak-to-peak (VPP) with a frequency range of DC to 10 kHz. The test setup protects the VNA from transient processes, voltage spikes, and high-frequency leakage. Additionally, the signals to the VNA are fused to ½ amp and clipped to a maximum of 36 VPP based on bias tee limitations. This setup allows us to measure S-parameters as a function of both the voltage and the frequency of the applied bias signal.

  17. Music and natural sounds in an auditory steady-state response based brain-computer interface to increase user acceptance.

    Science.gov (United States)

    Heo, Jeong; Baek, Hyun Jae; Hong, Seunghyeok; Chang, Min Hye; Lee, Jeong Su; Park, Kwang Suk

    2017-05-01

    Patients with total locked-in syndrome are conscious; however, they cannot express themselves because most of their voluntary muscles are paralyzed, and many of these patients have lost their eyesight. To improve the quality of life of these patients, there is an increasing need for communication-supporting technologies that leverage the remaining senses of the patient along with physiological signals. The auditory steady-state response (ASSR) is an electro-physiologic response to auditory stimulation that is amplitude-modulated by a specific frequency. By leveraging the phenomenon whereby ASSR is modulated by mind concentration, a brain-computer interface paradigm was proposed to classify the selective attention of the patient. In this paper, we propose an auditory stimulation method to minimize auditory stress by replacing the monotone carrier with familiar music and natural sounds for an ergonomic system. Piano and violin instrumentals were employed in the music sessions; the sounds of water streaming and cicadas singing were used in the natural sound sessions. Six healthy subjects participated in the experiment. Electroencephalograms were recorded using four electrodes (Cz, Oz, T7 and T8). Seven sessions were performed using different stimuli. The spectral power at 38 and 42Hz and their ratio for each electrode were extracted as features. Linear discriminant analysis was utilized to classify the selections for each subject. In offline analysis, the average classification accuracies with a modulation index of 1.0 were 89.67% and 87.67% using music and natural sounds, respectively. In online experiments, the average classification accuracies were 88.3% and 80.0% using music and natural sounds, respectively. Using the proposed method, we obtained significantly higher user-acceptance scores, while maintaining a high average classification accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Novel sound phenomena in superfluid helium in aerogel and other impure superfluids

    International Nuclear Information System (INIS)

    Brusov, Peter; Brusov, Paul; Lawes, Gavin; Lee, Chong; Matsubara, Akira; Ishikawa, Osamu; Majumdar, Pinaki

    2003-01-01

    During the last decade new techniques for producing impure superfluids with unique properties have been developed. This new class of systems includes superfluid helium confined to aerogel, HeII with different impurities (D 2 , N 2 , Ne, Kr), superfluids in Vycor glasses, and watergel. These systems exhibit very unusual properties including unexpected acoustic features. We discuss the sound properties of these systems and show that sound phenomena in impure superfluids are modified from those in pure superfluids. We calculate the coupling between temperature and pressure oscillations for impure superfluids and for superfluid He in aerogel. We show that the coupling between these two sound modes is governed either by c∂ρ/∂c or σρ a ρ s (for aerogel) rather than thermal expansion coefficient ∂ρ/∂T, which is enormously small in pure superfluids. This replacement plays a fundamental role in all sound phenomena in impure superfluids. It enhances the coupling between the two sound modes that leads to the existence of such phenomena as the slow mode and heat pulse propagation with the velocity of first sound observed in superfluids in aerogel. This means that it is possible to observe in impure superfluids such unusual sound phenomena as slow pressure (density) waves and fast temperature (entropy) waves. The enhancement of the coupling between the two sound modes decreases the threshold values for nonlinear processes as compared to pure superfluids. Sound conversion, which has been observed in pure superfluids only by shock waves should be observed at moderate sound amplitude in impure superfluids. Cerenkov emission of second sound by first sound (which never been observed in pure superfluids) could be observed in impure superfluids

  19. Blast noise classification with common sound level meter metrics.

    Science.gov (United States)

    Cvengros, Robert M; Valente, Dan; Nykaza, Edward T; Vipperman, Jeffrey S

    2012-08-01

    A common set of signal features measurable by a basic sound level meter are analyzed, and the quality of information carried in subsets of these features are examined for their ability to discriminate military blast and non-blast sounds. The analysis is based on over 120 000 human classified signals compiled from seven different datasets. The study implements linear and Gaussian radial basis function (RBF) support vector machines (SVM) to classify blast sounds. Using the orthogonal centroid dimension reduction technique, intuition is developed about the distribution of blast and non-blast feature vectors in high dimensional space. Recursive feature elimination (SVM-RFE) is then used to eliminate features containing redundant information and rank features according to their ability to separate blasts from non-blasts. Finally, the accuracy of the linear and RBF SVM classifiers is listed for each of the experiments in the dataset, and the weights are given for the linear SVM classifier.

  20. Chronological changes in the eighth cranial nerve compound action potential (CAP) in experimental endolymphatic hydrops: the effects of altering the polarity of click sounds.

    Science.gov (United States)

    Morizono, Tetsuo; Kondo, Tsuyoshi; Yamano, Takafumi; Miyagi, Morimichi; Shiraishi, Kimio

    2009-02-01

    Using a guinea pig model of experimental endolymphatic hydrops, click sounds of altered polarity showed different latencies and amplitudes in hydropic compared with normal cochleae. Latency changes appeared as early as 1 week after endolymphatic obstruction. This method can help diagnose endolymphatic hydrops. The goal of the study was to develop an objective electrophysiological diagnosis of endolymphatic hydrops. Endolymphatic hydrops were created surgically in guinea pigs. The latency and the amplitude of the eighth cranial nerve compound action potential (CAP) for click sounds of altered polarity were measured up to 8 weeks after the surgery. At early stages after surgery, the latency for condensation clicks became longer, and at later stages the latencies for both condensation and rarefaction became longer. The discrepancy in the latencies for rarefaction and condensation click sounds (rarefaction minus condensation) became larger by the first week after surgery, but no further discrepancy occurred thereafter. Compared with latency changes, amplitude changes in the CAP were rapid and progressive following surgery, suggesting ongoing damage to hair cells.

  1. Forward Behavioral Modeling of a Three-Way Amplitude Modulator-Based Transmitter Using an Augmented Memory Polynomial

    Directory of Open Access Journals (Sweden)

    Jatin Chatrath

    2018-03-01

    Full Text Available Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE for long-term evolution (LTE signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM, amplitude-to-phase (AM-PM, and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria.

  2. Exposure levels due to WLAN devices in indoor environments corrected by a time-amplitude factor of distribution of the quasi-stochastic signals

    International Nuclear Information System (INIS)

    Miclaus, Simona; Bechet, Paul; Stratakis, Dimitrios

    2014-01-01

    With the development of radiofrequency technology, radiating quasi-stochastic signals like the wireless local area networks (WLAN), a proper procedure of exposure level assessment is needed. No standardised procedure exists at the moment. While channel power measurement proved to overestimate the field strength, weighting techniques were proposed. The paper compares the exposure levels determined by three different procedures, two of them correcting the field level by weighting. Twenty-three experimental cases of WLAN traffic load are analysed in an indoor environment in controlled conditions. The results show the differences obtained when the duty cycle (DC) method is applied comparatively with the application of weighting based on an amplitude-time correction. Significant exposure level reductions of 52.6-79.2 % from the field determined by frequency domain method and of 36.5-72.8 % from the field determined by the DC weighting method were obtained by time-amplitude method. Specificities of weighting factors probability density functions were investigated and regression analysis was applied for a detailed characterisation of this procedure. (authors)

  3. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae).

    Science.gov (United States)

    Sueur, Jérôme; Mackie, David; Windmill, James F C

    2011-01-01

    To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2) SPL rms re 2.10(-5) Pa with a peak at 99.2 (85.7-104.6) SPL re 2.10(-5) Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  4. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae.

    Directory of Open Access Journals (Sweden)

    Jérôme Sueur

    Full Text Available To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2 SPL rms re 2.10(-5 Pa with a peak at 99.2 (85.7-104.6 SPL re 2.10(-5 Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  5. Second sound scattering in superfluid helium

    International Nuclear Information System (INIS)

    Rosgen, T.

    1985-01-01

    Focusing cavities are used to study the scattering of second sound in liquid helium II. The special geometries reduce wall interference effects and allow measurements in very small test volumes. In a first experiment, a double elliptical cavity is used to focus a second sound wave onto a small wire target. A thin film bolometer measures the side scattered wave component. The agreement with a theoretical estimate is reasonable, although some problems arise from the small measurement volume and associated alignment requirements. A second cavity is based on confocal parabolas, thus enabling the use of large planar sensors. A cylindrical heater produces again a focused second sound wave. Three sensors monitor the transmitted wave component as well as the side scatter in two different directions. The side looking sensors have very high sensitivities due to their large size and resistance. Specially developed cryogenic amplifers are used to match them to the signal cables. In one case, a second auxiliary heater is used to set up a strong counterflow in the focal region. The second sound wave then scatters from the induced fluid disturbances

  6. An open access database for the evaluation of heart sound algorithms.

    Science.gov (United States)

    Liu, Chengyu; Springer, David; Li, Qiao; Moody, Benjamin; Juan, Ricardo Abad; Chorro, Francisco J; Castells, Francisco; Roig, José Millet; Silva, Ikaro; Johnson, Alistair E W; Syed, Zeeshan; Schmidt, Samuel E; Papadaniil, Chrysa D; Hadjileontiadis, Leontios; Naseri, Hosein; Moukadem, Ali; Dieterlen, Alain; Brandt, Christian; Tang, Hong; Samieinasab, Maryam; Samieinasab, Mohammad Reza; Sameni, Reza; Mark, Roger G; Clifford, Gari D

    2016-12-01

    In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-quality, rigorously validated, and standardized open databases of heart sound recordings. This paper describes a public heart sound database, assembled for an international competition, the PhysioNet/Computing in Cardiology (CinC) Challenge 2016. The archive comprises nine different heart sound databases sourced from multiple research groups around the world. It includes 2435 heart sound recordings in total collected from 1297 healthy subjects and patients with a variety of conditions, including heart valve disease and coronary artery disease. The recordings were collected from a variety of clinical or nonclinical (such as in-home visits) environments and equipment. The length of recording varied from several seconds to several minutes. This article reports detailed information about the subjects/patients including demographics (number, age, gender), recordings (number, location, state and time length), associated synchronously recorded signals, sampling frequency and sensor type used. We also provide a brief summary of the commonly used heart sound segmentation and classification methods, including open source code provided concurrently for the Challenge. A description of the PhysioNet/CinC Challenge 2016, including the main aims, the training and test sets, the hand corrected annotations for different heart sound states, the scoring mechanism, and associated open source code are provided. In addition, several potential benefits from the public heart sound database are discussed.

  7. Amplitude and phase dynamics associated with acoustically paced finger tapping

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; Peper, C.E.; Beek, P.J.

    2006-01-01

    To gain insight into the brain activity associated with the performance of an acoustically paced synchronization task, we analyzed the amplitude and phase dynamics inherent in magnetoencephalographic (MEG) signals across frequency bands in order to discriminate between evoked and induced responses.

  8. Digital servo control of random sound test excitation. [in reverberant acoustic chamber

    Science.gov (United States)

    Nakich, R. B. (Inventor)

    1974-01-01

    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones.

  9. Heart Sound Biometric System Based on Marginal Spectrum Analysis

    Science.gov (United States)

    Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin

    2013-01-01

    This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515

  10. Problems in Nonlinear Acoustics: Parametric Receiving Arrays, Focused Finite Amplitude Sound, & Noncollinear Tone-Noise Interactions

    Science.gov (United States)

    1987-07-01

    fields (see also Chapter 4 of Ref. 22). Like our investigation, theirs is based on the Khokhlov-Zabolotskaya-Kuznetsov ( KZK ) equa- tion [23,24...25,26], also based on the KZK e(iualiou, is limited to weakly nonlinear systems. However, the practical case of a focused circular source with gain of...iment. The demonstrated abihty of the KZK equation to accurately model focused sound fields from reahstic sources [i.e., having abrupt edges and

  11. Surface electromyographic amplitude does not identify differences in neural drive to synergistic muscles.

    Science.gov (United States)

    Martinez-Valdes, Eduardo; Negro, Francesco; Falla, Deborah; De Nunzio, Alessandro Marco; Farina, Dario

    2018-04-01

    Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50, and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL ( P differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL ( P difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials. NEW & NOTEWORTHY Electromyographic (EMG) amplitude is widely used to compare indirectly the strength of neural drive received by synergistic muscles. However, there are no studies validating this approach with motor unit data. Here, we compared between-muscles differences in surface EMG amplitude and motor unit behavior. The results clarify the limitations of surface EMG to interpret differences in neural drive between muscles.

  12. Sound signatures and production mechanisms of three species of pipefishes (Family: Syngnathidae

    Directory of Open Access Journals (Sweden)

    Adam Chee Ooi Lim

    2015-12-01

    Full Text Available Background. Syngnathid fishes produce three kinds of sounds, named click, growl and purr. These sounds are generated by different mechanisms to give a consistent signal pattern or signature which is believed to play a role in intraspecific and interspecific communication. Commonly known sounds are produced when the fish feeds (click, purr or is under duress (growl. While there are more acoustic studies on seahorses, pipefishes have not received much attention. Here we document the differences in feeding click signals between three species of pipefishes and relate them to cranial morphology and kinesis, or the sound-producing mechanism.Methods. The feeding clicks of two species of freshwater pipefishes, Doryichthys martensii and Doryichthys deokhathoides and one species of estuarine pipefish, Syngnathoides biaculeatus, were recorded by a hydrophone in acoustic dampened tanks. The acoustic signals were analysed using time-scale distribution (or scalogram based on wavelet transform. A detailed time-varying analysis of the spectral contents of the localized acoustic signal was obtained by jointly interpreting the oscillogram, scalogram and power spectrum. The heads of both Doryichthys species were prepared for microtomographical scans which were analysed using a 3D imaging software. Additionally, the cranial bones of all three species were examined using a clearing and double-staining method for histological studies.Results. The sound characteristics of the feeding click of the pipefish is species-specific, appearing to be dependent on three bones: the supraoccipital, 1st postcranial plate and 2nd postcranial plate. The sounds are generated when the head of the Dorichthyes pipefishes flexes backward during the feeding strike, as the supraoccipital slides backwards, striking and pushing the 1st postcranial plate against (and striking the 2nd postcranial plate. In the Syngnathoides pipefish, in the absence of the 1st postcranial plate, the

  13. Hear where we are sound, ecology, and sense of place

    CERN Document Server

    Stocker, Michael

    2013-01-01

    Throughout history, hearing and sound perception have been typically framed in the context of how sound conveys information and how that information influences the listener. Hear Where We Are inverts this premise and examines how humans and other hearing animals use sound to establish acoustical relationships with their surroundings. This simple inversion reveals a panoply of possibilities by which we can re-evaluate how hearing animals use, produce, and perceive sound. Nuance in vocalizations become signals of enticement or boundary setting; silence becomes a field ripe in auditory possibilities; predator/prey relationships are infused with acoustic deception, and sounds that have been considered territorial cues become the fabric of cooperative acoustical communities. This inversion also expands the context of sound perception into a larger perspective that centers on biological adaptation within acoustic habitats. Here, the rapid synchronized flight patterns of flocking birds and the tight maneuvering of s...

  14. Facilitated auditory detection for speech sounds

    Directory of Open Access Journals (Sweden)

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  15. Usefulness of the second heart sound for predicting pulmonary hypertension in patients with interstitial lung disease

    Directory of Open Access Journals (Sweden)

    Sandra de Barros Cobra

    Full Text Available CONTEXT AND OBJECTIVE: P2 hyperphonesis is considered to be a valuable finding in semiological diagnoses of pulmonary hypertension (PH. The aim here was to evaluate the accuracy of the pulmonary component of second heart sounds for predicting PH in patients with interstitial lung disease. DESIGN AND SETTING: Cross-sectional study at the University of Brasilia and Hospital de Base do Distrito Federal. METHODS: Heart sounds were acquired using an electronic stethoscope and were analyzed using phonocardiography. Clinical signs suggestive of PH, such as second heart sound (S2 in pulmonary area louder than in aortic area; P2 > A2 in pulmonary area and P2 present in mitral area, were compared with Doppler echocardiographic parameters suggestive of PH. Sensitivity (S, specificity (Sp and positive (LR+ and negative (LR- likelihood ratios were evaluated. RESULTS: There was no significant correlation between S2 or P2 amplitude and PASP (pulmonary artery systolic pressure (P = 0.185 and 0.115; P= 0.13 and 0.34, respectively. Higher S2 in pulmonary area than in aortic area, compared with all the criteria suggestive of PH, showed S = 60%, Sp= 22%; LR+ = 0.7; LR- = 1.7; while P2> A2 showed S= 57%, Sp = 39%; LR+ = 0.9; LR- = 1.1; and P2 in mitral area showed: S= 68%, Sp = 41%; LR+ = 1.1; LR- = 0.7. All these signals together showed: S= 50%, Sp = 56%. CONCLUSIONS: The semiological signs indicative of PH presented low sensitivity and specificity levels for clinically diagnosing this comorbidity.

  16. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  17. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    Science.gov (United States)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  18. Using K-Nearest Neighbor Classification to Diagnose Abnormal Lung Sounds

    Directory of Open Access Journals (Sweden)

    Chin-Hsing Chen

    2015-06-01

    Full Text Available A reported 30% of people worldwide have abnormal lung sounds, including crackles, rhonchi, and wheezes. To date, the traditional stethoscope remains the most popular tool used by physicians to diagnose such abnormal lung sounds, however, many problems arise with the use of a stethoscope, including the effects of environmental noise, the inability to record and store lung sounds for follow-up or tracking, and the physician’s subjective diagnostic experience. This study has developed a digital stethoscope to help physicians overcome these problems when diagnosing abnormal lung sounds. In this digital system, mel-frequency cepstral coefficients (MFCCs were used to extract the features of lung sounds, and then the K-means algorithm was used for feature clustering, to reduce the amount of data for computation. Finally, the K-nearest neighbor method was used to classify the lung sounds. The proposed system can also be used for home care: if the percentage of abnormal lung sound frames is > 30% of the whole test signal, the system can automatically warn the user to visit a physician for diagnosis. We also used bend sensors together with an amplification circuit, Bluetooth, and a microcontroller to implement a respiration detector. The respiratory signal extracted by the bend sensors can be transmitted to the computer via Bluetooth to calculate the respiratory cycle, for real-time assessment. If an abnormal status is detected, the device will warn the user automatically. Experimental results indicated that the error in respiratory cycles between measured and actual values was only 6.8%, illustrating the potential of our detector for home care applications.

  19. Sound stream segregation: a neuromorphic approach to solve the "cocktail party problem" in real-time.

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M; Afshar, Saeed; Hamilton, Tara J; Tapson, Jonathan C; Shamma, Shihab A; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the "cocktail party effect." It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and

  20. Measurement of amplitude fluctuations in a rapid response photomultiplier

    International Nuclear Information System (INIS)

    Raimbault, P.

    1961-01-01

    In order to measure amplitude fluctuations in a rapid response photomultiplier, two independent random variables are introduced which determine the shape of the anode pulse. The energy of each pulse, which depends directly on the gain and the variance, is the first variable; amplitude fluctuations, functions of the first variable, depend as well on the pulse width which in turn constitutes the second variable. The results obtained on the variations of the maximum impulse, using a steep-edged pulse broadening circuit, and those obtained on the statistical variations of the gain, are compared to show that the variance relative to the maximum amplitude of the signal is greater than that of the gain. Within the limits of these fluctuations are shown the contribution of the secondary emission coefficient of the first dynode, and that of the mean secondary emission coefficient of the multiplier. (author) [fr

  1. Acoustic-Seismic Coupling of Broadband Signals - Analysis of Potential Disturbances during CTBT On-Site Inspection Measurements

    Science.gov (United States)

    Liebsch, Mattes; Altmann, Jürgen

    2015-04-01

    superposition of acoustically induced seismic waves with reflections at a layer boundary. Their frequencies of increased/decreased amplitudes depend on the angle of incidence of the acoustic signal. So these patterns can be used to estimate the path(s) of propagation of acoustically induced soil vibrations. The frequency-dependent phase offset between different sensors is used to estimate the propagation velocity of soil. The research aims to deliver a better understanding of the interaction of acoustic waves and the ground when hitting the surface, the transfer of energy from sound waves into the soil and the possible excitation of seismic surface waves. The goal is to develop recommendations for sensitive seismic measurements during CTBTO on-site inspections to reduce disturbing vibrations caused by airborne sources.

  2. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    International Nuclear Information System (INIS)

    Manela, A.

    2016-01-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  3. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    Energy Technology Data Exchange (ETDEWEB)

    Manela, A. [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2016-07-15

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  4. Beyond Panglossian Optimism: Larger N2 Amplitudes Probably Signal a Bilingual Disadvantage in Conflict Monitoring

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap

    2015-01-01

    Full Text Available In this special issue on the brain mechanisms that lead to cognitive benefits of bilingualism we discussed six reasons why it will be very difficult to discover those mechanisms. Many of these problems apply to the article by Fernandez, Acosta, Douglass, Doshi, and Tartar that also appears in the special issue. These concerns include the following: 1 an overly optimistic assessment of the replicability of bilingual advantages in behavioral studies, 2 reliance on risky small samples sizes, 3 failures to match the samples on demographic characteristics such as immigrant status, and 4 language group differences that occur in neural measures (i.e., N2 amplitude, but not in the behavioral data. Furthermore the N2 amplitude measure in general suffers from valence ambiguity: larger N2 amplitudes reported for bilinguals are more likely to reflect poorer conflict resolution rather than enhanced inhibitory control.

  5. Large amplitude dynamics of micro-/nanomechanical resonators actuated with electrostatic pulses

    International Nuclear Information System (INIS)

    Juillard, J.; Bonnoit, A.; Avignon, E.; Hentz, S.; Colinet, E.

    2010-01-01

    In the field of resonant nano-electro-mechanical system (NEMS) design, it is a common misconception that large-amplitude motion, and thus large signal-to-noise ratio, can only be achieved at the risk of oscillator instability. In the present paper, we show that very simple closed-loop control schemes can be used to achieve stable large-amplitude motion of a resonant structure even when jump resonance (caused by electrostatic softening or Duffing hardening) is present in its frequency response. We focus on the case of a resonant accelerometer sensing cell, consisting of a nonlinear clamped-clamped beam with electrostatic actuation and detection, maintained in an oscillation state with pulses of electrostatic force that are delivered whenever the detected signal (the position of the beam) crosses zero. We show that the proposed feedback scheme ensures the stability of the motion of the beam much beyond the critical Duffing amplitude and that, if the parameters of the beam are correctly chosen, one can achieve almost full-gap travel range without incurring electrostatic pull-in. These results are illustrated and validated with transient simulations of the nonlinear closed-loop system.

  6. Towards parameter-free classification of sound effects in movies

    Science.gov (United States)

    Chu, Selina; Narayanan, Shrikanth; Kuo, C.-C. J.

    2005-08-01

    The problem of identifying intense events via multimedia data mining in films is investigated in this work. Movies are mainly characterized by dialog, music, and sound effects. We begin our investigation with detecting interesting events through sound effects. Sound effects are neither speech nor music, but are closely associated with interesting events such as car chases and gun shots. In this work, we utilize low-level audio features including MFCC and energy to identify sound effects. It was shown in previous work that the Hidden Markov model (HMM) works well for speech/audio signals. However, this technique requires a careful choice in designing the model and choosing correct parameters. In this work, we introduce a framework that will avoid such necessity and works well with semi- and non-parametric learning algorithms.

  7. Aging affects hemispheric asymmetry in the neural representation of speech sounds.

    Science.gov (United States)

    Bellis, T J; Nicol, T; Kraus, N

    2000-01-15

    Hemispheric asymmetries in the processing of elemental speech sounds appear to be critical for normal speech perception. This study investigated the effects of age on hemispheric asymmetry observed in the neurophysiological responses to speech stimuli in three groups of normal hearing, right-handed subjects: children (ages, 8-11 years), young adults (ages, 20-25 years), and older adults (ages > 55 years). Peak-to-peak response amplitudes of the auditory cortical P1-N1 complex obtained over right and left temporal lobes were examined to determine the degree of left/right asymmetry in the neurophysiological responses elicited by synthetic speech syllables in each of the three subject groups. In addition, mismatch negativity (MMN) responses, which are elicited by acoustic change, were obtained. Whereas children and young adults demonstrated larger P1-N1-evoked response amplitudes over the left temporal lobe than over the right, responses from elderly subjects were symmetrical. In contrast, MMN responses, which reflect an echoic memory process, were symmetrical in all subject groups. The differences observed in the neurophysiological responses were accompanied by a finding of significantly poorer ability to discriminate speech syllables involving rapid spectrotemporal changes in the older adult group. This study demonstrates a biological, age-related change in the neural representation of basic speech sounds and suggests one possible underlying mechanism for the speech perception difficulties exhibited by aging adults. Furthermore, results of this study support previous findings suggesting a dissociation between neural mechanisms underlying those processes that reflect the basic representation of sound structure and those that represent auditory echoic memory and stimulus change.

  8. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  9. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... the physical signal parameters and the subjectively perceived sound quality. No simple objective-subjective relationship was evident from this analysis....

  10. Can joint sound assess soft and hard endpoints of the Lachman test?: A preliminary study.

    Science.gov (United States)

    Hattori, Koji; Ogawa, Munehiro; Tanaka, Kazunori; Matsuya, Ayako; Uematsu, Kota; Tanaka, Yasuhito

    2016-05-12

    The Lachman test is considered to be a reliable physical examination for anterior cruciate ligament (ACL) injury. Patients with a damaged ACL demonstrate a soft endpoint feeling. However, examiners judge the soft and hard endpoints subjectively. The purpose of our study was to confirm objective performance of the Lachman test using joint auscultation. Human and porcine knee joints were examined. Knee joint sound during the Lachman test (Lachman sound) was analyzed by fast Fourier transformation. As quantitative indices of Lachman sound, the peak sound as the maximum relative amplitude (acoustic pressure) and its frequency were used. The mean Lachman peak sound for healthy volunteer knees was 86.9 ± 12.9 Hz in frequency and -40 ± 2.5 dB in acoustic pressure. The mean Lachman peak sound for intact porcine knees was 84.1 ± 9.4 Hz and -40.5 ± 1.7 dB. Porcine knees with ACL deficiency had a soft endpoint feeling during the Lachman test. The Lachman peak sounds of porcine knees with ACL deficiency were dispersed into four distinct groups, with center frequencies of around 40, 160, 450, and 1600. The Lachman peak sound was capable of assessing soft and hard endpoints of the Lachman test objectively.

  11. Multiple target sound quality balance for hybrid electric powertrain noise

    Science.gov (United States)

    Mosquera-Sánchez, J. A.; Sarrazin, M.; Janssens, K.; de Oliveira, L. P. R.; Desmet, W.

    2018-01-01

    The integration of the electric motor to the powertrain in hybrid electric vehicles (HEVs) presents acoustic stimuli that elicit new perceptions. The large number of spectral components, as well as the wider bandwidth of this sort of noises, pose new challenges to current noise, vibration and harshness (NVH) approaches. This paper presents a framework for enhancing the sound quality (SQ) of the hybrid electric powertrain noise perceived inside the passenger compartment. Compared with current active sound quality control (ASQC) schemes, where the SQ improvement is just an effect of the control actions, the proposed technique features an optimization stage, which enables the NVH specialist to actively implement the amplitude balance of the tones that better fits into the auditory expectations. Since Loudness, Roughness, Sharpness and Tonality are the most relevant SQ metrics for interior HEV noise, they are used as performance metrics in the concurrent optimization analysis, which, eventually, drives the control design method. Thus, multichannel active sound profiling systems that feature cross-channel compensation schemes are guided by the multi-objective optimization stage, by means of optimal sets of amplitude gain factors that can be implemented at each single sensor location, while minimizing cross-channel effects that can either degrade the original SQ condition, or even hinder the implementation of independent SQ targets. The proposed framework is verified experimentally, with realistic stationary hybrid electric powertrain noise, showing SQ enhancement for multiple locations within a scaled vehicle mock-up. The results show total success rates in excess of 90%, which indicate that the proposed method is promising, not only for the improvement of the SQ of HEV noise, but also for a variety of periodic disturbances with similar features.

  12. MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images.

    Science.gov (United States)

    Huang, Ming-Xiong; Huang, Charles W; Robb, Ashley; Angeles, AnneMarie; Nichols, Sharon L; Baker, Dewleen G; Song, Tao; Harrington, Deborah L; Theilmann, Rebecca J; Srinivasan, Ramesh; Heister, David; Diwakar, Mithun; Canive, Jose M; Edgar, J Christopher; Chen, Yu-Han; Ji, Zhengwei; Shen, Max; El-Gabalawy, Fady; Levy, Michael; McLay, Robert; Webb-Murphy, Jennifer; Liu, Thomas T; Drake, Angela; Lee, Roland R

    2014-01-01

    The present study developed a fast MEG source imaging technique based on Fast Vector-based Spatio-Temporal Analysis using a L1-minimum-norm (Fast-VESTAL) and then used the method to obtain the source amplitude images of resting-state magnetoencephalography (MEG) signals for different frequency bands. The Fast-VESTAL technique consists of two steps. First, L1-minimum-norm MEG source images were obtained for the dominant spatial modes of sensor-waveform covariance matrix. Next, accurate source time-courses with millisecond temporal resolution were obtained using an inverse operator constructed from the spatial source images of Step 1. Using simulations, Fast-VESTAL's performance was assessed for its 1) ability to localize multiple correlated sources; 2) ability to faithfully recover source time-courses; 3) robustness to different SNR conditions including SNR with negative dB levels; 4) capability to handle correlated brain noise; and 5) statistical maps of MEG source images. An objective pre-whitening method was also developed and integrated with Fast-VESTAL to remove correlated brain noise. Fast-VESTAL's performance was then examined in the analysis of human median-nerve MEG responses. The results demonstrated that this method easily distinguished sources in the entire somatosensory network. Next, Fast-VESTAL was applied to obtain the first whole-head MEG source-amplitude images from resting-state signals in 41 healthy control subjects, for all standard frequency bands. Comparisons between resting-state MEG sources images and known neurophysiology were provided. Additionally, in simulations and cases with MEG human responses, the results obtained from using conventional beamformer technique were compared with those from Fast-VESTAL, which highlighted the beamformer's problems of signal leaking and distorted source time-courses. © 2013.

  13. Constraining lowermost mantle structure with PcP/P amplitude ratios from large aperture arrays

    Science.gov (United States)

    Ventosa, S.; Romanowicz, B. A.

    2015-12-01

    Observations of weak short-period teleseismic body waves help to resolve lowermost mantle structure at short wavelengths, which is essential for understanding mantle dynamics and the interactions between the mantle and core. Their limited amount and uneven distribution are however major obstacles to solve for volumetric structure of the D" region, topography of the core-mantle boundary (CMB) and D" discontinuity, and the trade-offs among them. While PcP-P differential travel times provide important information, there are trade-offs between velocity structure and core-mantle boundary topography, which PcP/P amplitude ratios can help resolve, as long as lateral variations in attenuation and biases due to focusing are small or can be corrected for. Dense broadband seismic networks help to improve signal-to-noise ratio (SNR) of the target phases and signal-to-interference ratio (SIR) of other mantle phases when the slowness difference is large enough. To improve SIR and SNR of teleseismic PcP data, we have introduced the slant-stacklet transform to define coherent-guided filters able to separate and enhance signals according to their slowness, time of arrival and frequency content. We thus obtain optimal PcP/P amplitude ratios in the least-square sense using two short sliding windows to match the P signal with a candidate PcP signal. This method allows us to dramatically increase the amount of high-quality observations of short-period PcP/P amplitude ratios by allowing for smaller events and wider epicentral distance and depth ranges.We present the results of measurement of PcP/P amplitude ratios, sampling regions around the Pacific using dense arrays in North America and Japan. We observe that short-period P waves traveling through slabs are strongly affected by focusing, in agreement with the bias we have observed and corrected for due to mantle heterogeneities on PcP-P travel time differences. In Central America, this bias is by far the stronger anomaly we observe

  14. Physically based sound synthesis and control of jumping sounds on an elastic trampoline

    DEFF Research Database (Denmark)

    Turchet, Luca; Pugliese, Roberto; Takala, Tapio

    2013-01-01

    This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine was contr......This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine...... was controlled in real-time by pro- cessing the signal captured by a contact microphone which was attached to the membrane of the trampoline in order to detect each jump. A user study was conducted to evaluate the quality of the in- teractive sonification. Results proved the success of the proposed algorithms...

  15. Frequency-independent radiation modes of interior sound radiation: Experimental study and global active control

    Science.gov (United States)

    Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.

    2017-08-01

    Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.

  16. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex

    Science.gov (United States)

    Raymond, J. L.; Lisberger, S. G.

    1996-01-01

    We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.

  17. Research proposal on : amplitude modulated reflectometry system for JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la.

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  18. Amplitude correlation analysis of W7-AS Mirnov-coil array data and other transport relevant diagnostics

    International Nuclear Information System (INIS)

    Pokol, G.; Por, G.; Zoletnik, S.; Basse, N.P.

    2005-01-01

    This work is based on the amplitude correlation analysis of the signals from a poloidal Mirnov-coil array on the Wendelstein 7 - Advanced Stellarator (W7-AS). The motivation behind this work is an earlier finding, that changes in the RMS amplitude of Mirnov-coil signals are correlated with the amplitude of small scale density turbulence measured by CO2 Laser Scattering. Based on this and other measurements, the hypothesis was set, that some of the magnetic fluctuations are caused by transient MHD modes excited by large turbulent structures. The statistical dependencies between the power modulations of different eigenmodes can provide information about the statistics of these structures. Our amplitude correlation method is based on linear continuous time-frequency representations of the signal, we use Short-Time Fourier Transformation (STFT) with Gabor-atoms to map the signal onto the time-frequency plane, as two dimensional power density distributions. From these transforms we can recover the power modulation of different frequency bands. Provided the selection of the resolution of the transforms and the limits of the frequency bands were correct, the time series calculated this way resembles the original power fluctuation of the selected eigenmode. The only distortion introduced is a convolution smoothing by the time-window used in the transformation. Detailed correlation analysis between different bandpowers of the Mirnov-coil array signals were carried out and presented in bad and good confinement states. In order to reveal the true structure and cause of magnetic fluctuations Mirnov-coil diagnostic signals were also compared with Lithium beam and CO2 Laser Scattering measurements. In our analysis we have found, that there was a strong and systematic difference in the cross-correlations of power bands between different confinement states. (author)

  19. Artificial intelligence techniques used in respiratory sound analysis--a systematic review.

    Science.gov (United States)

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2014-02-01

    Artificial intelligence (AI) has recently been established as an alternative method to many conventional methods. The implementation of AI techniques for respiratory sound analysis can assist medical professionals in the diagnosis of lung pathologies. This article highlights the importance of AI techniques in the implementation of computer-based respiratory sound analysis. Articles on computer-based respiratory sound analysis using AI techniques were identified by searches conducted on various electronic resources, such as the IEEE, Springer, Elsevier, PubMed, and ACM digital library databases. Brief descriptions of the types of respiratory sounds and their respective characteristics are provided. We then analyzed each of the previous studies to determine the specific respiratory sounds/pathology analyzed, the number of subjects, the signal processing method used, the AI techniques used, and the performance of the AI technique used in the analysis of respiratory sounds. A detailed description of each of these studies is provided. In conclusion, this article provides recommendations for further advancements in respiratory sound analysis.

  20. A description of externally recorded womb sounds in human subjects during gestation.

    Science.gov (United States)

    Parga, Joanna J; Daland, Robert; Kesavan, Kalpashri; Macey, Paul M; Zeltzer, Lonnie; Harper, Ronald M

    2018-01-01

    Reducing environmental noise benefits premature infants in neonatal intensive care units (NICU), but excessive reduction may lead to sensory deprivation, compromising development. Instead of minimal noise levels, environments that mimic intrauterine soundscapes may facilitate infant development by providing a sound environment reflecting fetal life. This soundscape may support autonomic and emotional development in preterm infants. We aimed to assess the efficacy and feasibility of external non-invasive recordings in pregnant women, endeavoring to capture intra-abdominal or womb sounds during pregnancy with electronic stethoscopes and build a womb sound library to assess sound trends with gestational development. We also compared these sounds to popular commercial womb sounds marketed to new parents. Intra-abdominal sounds from 50 mothers in their second and third trimester (13 to 40 weeks) of pregnancy were recorded for 6 minutes in a quiet clinic room with 4 electronic stethoscopes, placed in the right upper and lower quadrants, and left upper and lower quadrants of the abdomen. These recording were partitioned into 2-minute intervals in three different positions: standing, sitting and lying supine. Maternal and gestational age, Body Mass Index (BMI) and time since last meal were collected during recordings. Recordings were analyzed using long-term average spectral and waveform analysis, and compared to sounds from non-pregnant abdomens and commercially-marketed womb sounds selected for their availability, popularity, and claims they mimic the intrauterine environment. Maternal sounds shared certain common characteristics, but varied with gestational age. With fetal development, the maternal abdomen filtered high (500-5,000 Hz) and mid-frequency (100-500 Hz) energy bands, but no change appeared in contributions from low-frequency signals (10-100 Hz) with gestational age. Variation appeared between mothers, suggesting a resonant chamber role for intra

  1. Letter-sound processing deficits in children with developmental dyslexia: An ERP study.

    Science.gov (United States)

    Moll, Kristina; Hasko, Sandra; Groth, Katharina; Bartling, Jürgen; Schulte-Körne, Gerd

    2016-04-01

    The time course during letter-sound processing was investigated in children with developmental dyslexia (DD) and typically developing (TD) children using electroencephalography. Thirty-eight children with DD and 25 TD children participated in a visual-auditory oddball paradigm. Event-related potentials (ERPs) elicited by standard and deviant stimuli in an early (100-190 ms) and late (560-750 ms) time window were analysed. In the early time window, ERPs elicited by the deviant stimulus were delayed and less left lateralized over fronto-temporal electrodes for children with DD compared to TD children. In the late time window, children with DD showed higher amplitudes extending more over right frontal electrodes. Longer latencies in the early time window and stronger right hemispheric activation in the late time window were associated with slower reading and naming speed. Additionally, stronger right hemispheric activation in the late time window correlated with poorer phonological awareness skills. Deficits in early stages of letter-sound processing influence later more explicit cognitive processes during letter-sound processing. Identifying the neurophysiological correlates of letter-sound processing and their relation to reading related skills provides insight into the degree of automaticity during letter-sound processing beyond behavioural measures of letter-sound-knowledge. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Categorization of common sounds by cochlear implanted and normal hearing adults.

    Science.gov (United States)

    Collett, E; Marx, M; Gaillard, P; Roby, B; Fraysse, B; Deguine, O; Barone, P

    2016-05-01

    Auditory categorization involves grouping of acoustic events along one or more shared perceptual dimensions which can relate to both semantic and physical attributes. This process involves both high level cognitive processes (categorization) and low-level perceptual encoding of the acoustic signal, both of which are affected by the use of a cochlear implant (CI) device. The goal of this study was twofold: I) compare the categorization strategies of CI users and normal hearing listeners (NHL) II) investigate if any characteristics of the raw acoustic signal could explain the results. 16 experienced CI users and 20 NHL were tested using a Free-Sorting Task of 16 common sounds divided into 3 predefined categories of environmental, musical and vocal sounds. Multiple Correspondence Analysis (MCA) and Hierarchical Clustering based on Principal Components (HCPC) show that CI users followed a similar categorization strategy to that of NHL and were able to discriminate between the three different types of sounds. However results for CI users were more varied and showed less inter-participant agreement. Acoustic analysis also highlighted the average pitch salience and average autocorrelation peak as being important for the perception and categorization of the sounds. The results therefore show that on a broad level of categorization CI users may not have as many difficulties as previously thought in discriminating certain kinds of sound; however the perception of individual sounds remains challenging. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Sound Power Minimization of Circular Plates Through Damping Layer Placement

    Science.gov (United States)

    Wodtke, H.-W.; Lamancusa, J. S.

    1998-09-01

    Damping layers, widely used for noise and vibration control of thin-walled structures, can be designed to provide an optimal trade-off between performance and weight which is of particular importance in the automotive and aircraft industry. The goal of the presented work is the minimization of sound power radiated from plates under broadband excitation by redistribution of unconstrained damping layers. The total radiated sound power is assumed to be represented by the sound power radiated at the structural resonances. Resonance tracking is performed by means of single-degree-of-freedom (SDOF)-approximations based on near-resonance responses and their frequency derivatives. Axisymmetric vibrations of circular plates under several boundary and forcing conditions are considered. Frequency dependent Young's modulus and loss factor of the damping material are taken into account. Vibration analysis is based on the finite element method (FEM) while acoustic radiation is treated by means of Rayleigh's integral formula. It is shown that, starting from a uniform damping layer distribution, substantial reduction in radiated sound power can be achieved through redistribution of the damping layers. Depending on the given situation, these reductions are not only due to amplitude reductions but also to changes in vibration shapes and frequencies.

  4. The characteristics of acoustic emission signal under composite destruction on GFRP gas cylinder

    International Nuclear Information System (INIS)

    Jee, Hyun Sup; Lee, Jong O; Ju, No Hoe; So, Cheal Ho; Lee, Jong Kyu

    2013-01-01

    This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appeared when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

  5. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    DEFF Research Database (Denmark)

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases...

  6. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude

    Science.gov (United States)

    Zuo, Shu-Yu; Tian, Ye; Wei, Qi; Cheng, Ying; Liu, Xiao-Jun

    2018-03-01

    The use of metasurfaces has allowed the provision of a variety of functionalities by ultrathin structures, paving the way toward novel highly compact analog computing devices. Here, we conceptually realize analog computing using an acoustic reflective computational metasurface (RCM) that can independently manipulate the reflection phase and amplitude of an incident acoustic signal. This RCM is composed of coating unit cells and perforated panels, where the first can tune the transmission phase within the full range of 2π and the second can adjust the reflection amplitude in the range of 0-1. We show that this RCM can achieve arbitrary reflection phase and amplitude and can be used to realize a unique linear spatially invariant transfer function. Using the spatial Fourier transform (FT), an acoustic analog computing (AAC) system is proposed based on the RCM together with a focusing lens. Based on numerical simulations, we demonstrate that this AAC system can perform mathematical operations such as spatial differentiation, integration, and convolution on an incident acoustic signal. The proposed system has low complexity and reduced size because the RCM is able to individually adjust the reflection phase and amplitude and because only one block is involved in performing the spatial FT. Our work may offer a practical, efficient, and flexible approach to the design of compact devices for acoustic computing applications, signal processing, equation solving, and acoustic wave manipulations.

  7. Interaction of Sound with Sound by Novel Mechanisms: Ultrasonic Four-Wave Mixing Mediated by a Suspension and Ultrasonic Three-Wave Mixing at a Free Surface

    Science.gov (United States)

    Simpson, Harry Jay

    Two mechanisms of sound interacting with sound are experimentally and theoretically investigated. Ultrasonic four-wave mixing in a dilute particle suspension, analogous to optical four-wave mixing in photorefractive materials, involves the interaction of three ultrasonic wavefields that produces a fourth scattered wavefield. The experimental configuration consists of two ultrasonic (800 kHz) pump waves that are used to produce a grating in a suspension of 25 μm diameter polymer particles in salt water. The pump waves are counter-propagating, which form a standing wavefield in the suspension and the less compressible particles are attracted to the pressure nodes in response to the time averaged radiation pressure. A higher frequency (2-10 MHz) ultrasonic wavefield is used to probe the resulting grating. The ultrasonic Bragg scattering is then measured. The scattering depends strongly on the response to the pump wave and is an unusual class of acoustical nonlinearity. Investigation of very small amplitude gratings are done by studying the temporal response of the Bragg scattering to a sudden turn on of a moderate amplitude pump wavefield in a previously homogeneous particle suspension. The Bragg scattering has been verified experimentally and is modeled for early-time grating formations using a sinusoidal grating. The larger amplitude gratings are studied in equilibrium and are modeled using an Epstein layer approximation. Ultrasonic three-wave mixing at a free surface involves the interaction of a high amplitude 400 kHz plane wavefield incident at 33^circ on a water-air interface with a normally incident high frequency (4.6 MHz) focused wavefield. The 400 kHz "pump" wavefield reflects from the surface and produces an oscillating surface displacement that forms a local traveling phase grating. Simultaneously the 4.6 MHz "probe" wavefield is reflected from the free surface. The grating scatters the focused probe wavefield and produces (or contributes to) spatially

  8. Sound stream segregation: a neuromorphic approach to solve the “cocktail party problem” in real-time

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M.; Afshar, Saeed; Hamilton, Tara J.; Tapson, Jonathan C.; Shamma, Shihab A.; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the “cocktail party effect.” It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation

  9. Sound stream segregation: a neuromorphic approach to solve the ‘cocktail party problem’ in real-time

    Directory of Open Access Journals (Sweden)

    Chetan Singh Thakur

    2015-09-01

    Full Text Available The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the ‘cocktail party effect’. It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA. This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR of the segregated stream (90, 77 and 55 dB for simple tone, complex tone and speech, respectively as compared to the SNR of the mixture waveform (0 dB. This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for

  10. An experimental study on the sound and frequency of the Chinese ancient variable bell

    International Nuclear Information System (INIS)

    Chen Dongsheng; Hu Haining; Xing Lirong; Liu Yongsheng

    2009-01-01

    This paper describes an interesting sound phenomenon from a modern copy of the Chinese ancient variable bell which can emit distinctly different sounds at different temperatures. By means of audition-spectrum analyser software-and PC, the sound signals of the variable bell are collected and the fundamental spectra are shown on the PC. The configuration is simple and cheap, suitable for demonstration and laboratory exercises

  11. An experimental study on the sound and frequency of the Chinese ancient variable bell

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongsheng; Hu Haining; Xing Lirong; Liu Yongsheng [Department of Maths and Physics, Shanghai University of Electric Power, 200090 Shanghai (China)], E-mail: cds781@hotmail.com

    2009-05-15

    This paper describes an interesting sound phenomenon from a modern copy of the Chinese ancient variable bell which can emit distinctly different sounds at different temperatures. By means of audition-spectrum analyser software-and PC, the sound signals of the variable bell are collected and the fundamental spectra are shown on the PC. The configuration is simple and cheap, suitable for demonstration and laboratory exercises.

  12. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski

    2008-01-01

    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  13. Acoustic cardiac signals analysis: a Kalman filter–based approach

    Directory of Open Access Journals (Sweden)

    Salleh SH

    2012-06-01

    Full Text Available Sheik Hussain Salleh,1 Hadrina Sheik Hussain,2 Tan Tian Swee,2 Chee-Ming Ting,2 Alias Mohd Noor,2 Surasak Pipatsart,3 Jalil Ali,4 Preecha P Yupapin31Department of Biomedical Instrumentation and Signal Processing, Universiti Teknologi Malaysia, Skudai, Malaysia; 2Centre for Biomedical Engineering Transportation Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3Nanoscale Science and Engineering Research Alliance, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 4Institute of Advanced Photonics Science, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss–Markov process. These cycles are observed with additional noise

  14. Signal processing for liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Cleland, W.E.; Stern, E.G.

    1992-01-01

    We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high luminosity calorimeters operating in a high luminosity environment. The method of optimal filtering of multiply-sampled signals which may be used to improve the timing and amplitude resolution of calorimeter signals is described, and its implications for signal shaping functions are examined. The dependence of the time and amplitude resolution on the relative strength of the pileup and thermal noise, which varies with such parameters as luminosity, rapidity and calorimeter cell size, is examined

  15. Sensory illusions: Common mistakes in physics regarding sound, light and radio waves

    Science.gov (United States)

    Briles, T. M.; Tabor-Morris, A. E.

    2013-03-01

    Optical illusions are well known as effects that we see that are not representative of reality. Sensory illusions are similar but can involve other senses than sight, such as hearing or touch. One mistake commonly noted among instructors is that students often mis-identify radio signals as sound waves and not as part of the electromagnetic spectrum. A survey of physics students from multiple high schools highlights the frequency of this common misconception, as well as other nuances on this misunderstanding. Many students appear to conclude that, since they experience radio broadcasts as sound, then sound waves are the actual transmission of radio signals and not, as is actually true, a representation of those waves as produced by the translator box, the radio. Steps to help students identify and correct sensory illusion misconceptions are discussed. School of Education

  16. Touching lips and hearing fingers: effector-specific congruency between tactile and auditory stimulation modulates N1 amplitude and alpha desynchronization.

    Science.gov (United States)

    Shen, Guannan; Meltzoff, Andrew N; Marshall, Peter J

    2018-01-01

    Understanding the interactions between audition and sensorimotor processes is of theoretical importance, particularly in relation to speech processing. Although one current focus in this area is on interactions between auditory perception and the motor system, there has been less research on connections between the auditory and somatosensory modalities. The current study takes a novel approach to this omission by examining specific auditory-tactile interactions in the context of speech and non-speech sound production. Electroencephalography was used to examine brain responses when participants were presented with speech syllables (a bilabial sound /pa/ and a non-labial sound /ka/) or finger-snapping sounds that were simultaneously paired with tactile stimulation of either the lower lip or the right middle finger. Analyses focused on the sensory-evoked N1 in the event-related potential and the extent of alpha band desynchronization elicited by the stimuli. N1 amplitude over fronto-central sites was significantly enhanced when the bilabial /pa/ sound was paired with tactile lip stimulation and when the finger-snapping sound was paired with tactile stimulation of the finger. Post-stimulus alpha desynchronization at central sites was also enhanced when the /pa/ sound was accompanied by tactile stimulation of the lip. These novel findings indicate that neural aspects of somatosensory-auditory interactions are influenced by the congruency between the location of the bodily touch and the bodily origin of a perceived sound.

  17. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines.

    Science.gov (United States)

    Yi, Xiaofeng; Zhang, Jian; Fan, Tiehu; Tian, Baofeng; Jiang, Chuandong

    2018-03-13

    Magnetic resonance sounding (MRS) is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS) detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7-9 m in front of the wall for underground mining projects.

  18. Design of Meter-Scale Antenna and Signal Detection System for Underground Magnetic Resonance Sounding in Mines

    Directory of Open Access Journals (Sweden)

    Xiaofeng Yi

    2018-03-01

    Full Text Available Magnetic resonance sounding (MRS is a novel geophysical method to detect groundwater directly. By applying this method to underground projects in mines and tunnels, warning information can be provided on water bodies that are hidden in front prior to excavation and thus reduce the risk of casualties and accidents. However, unlike its application to ground surfaces, the application of MRS to underground environments is constrained by the narrow space, quite weak MRS signal, and complex electromagnetic interferences with high intensities in mines. Focusing on the special requirements of underground MRS (UMRS detection, this study proposes the use of an antenna with different turn numbers, which employs a separated transmitter and receiver. We designed a stationary coil with stable performance parameters and with a side length of 2 m, a matching circuit based on a Q-switch and a multi-stage broad/narrowband mixed filter that can cancel out most electromagnetic noise. In addition, noises in the pass-band are further eliminated by adopting statistical criteria and harmonic modeling and stacking, all of which together allow weak UMRS signals to be reliably detected. Finally, we conducted a field case study of the UMRS measurement in the Wujiagou Mine in Shanxi Province, China, with known water bodies. Our results show that the method proposed in this study can be used to obtain UMRS signals in narrow mine environments, and the inverted hydrological information generally agrees with the actual situation. Thus, we conclude that the UMRS method proposed in this study can be used for predicting hazardous water bodies at a distance of 7–9 m in front of the wall for underground mining projects.

  19. Pressure difference receiving ears

    DEFF Research Database (Denmark)

    Michelsen, Axel; Larsen, Ole Næsbye

    2007-01-01

    Directional sound receivers are useful for locating sound sources, and they can also partly compensate for the signal degradations caused by noise and reverberations. Ears may become inherently directional if sound can reach both surfaces of the eardrum. Attempts to understand the physics...... of the eardrum. The mere existence of sound transmission to the inner surface does not ensure a useful directional hearing, since a proper amplitude and phase relationship must exist between the sounds acting on the two surfaces of the eardrum. The gain of the sound pathway must match the amplitude and phase...... of the sounds at the outer surfaces of the eardrums, which are determined by diffraction and by the arrival time of the sound, that is by the size and shape of the animal and by the frequency of sound. Many users of hearing aids do not obtain a satisfactory improvement of their ability to localize sound sources...

  20. Alternative Paths to Hearing (A Conjecture. Photonic and Tactile Hearing Systems Displaying the Frequency Spectrum of Sound

    Directory of Open Access Journals (Sweden)

    E. H. Hara

    2006-01-01

    Full Text Available In this article, the hearing process is considered from a system engineering perspective. For those with total hearing loss, a cochlear implant is the only direct remedy. It first acts as a spectrum analyser and then electronically stimulates the neurons in the cochlea with a number of electrodes. Each electrode carries information on the separate frequency bands (i.e., spectrum of the original sound signal. The neurons then relay the signals in a parallel manner to the section of the brain where sound signals are processed. Photonic and tactile hearing systems displaying the spectrum of sound are proposed as alternative paths to the section of the brain that processes sound. In view of the plasticity of the brain, which can rewire itself, the following conjectures are offered. After a certain period of training, a person without the ability to hear should be able to decipher the patterns of photonic or tactile displays of the sound spectrum and learn to ‘hear’. This is very similar to the case of a blind person learning to ‘read’ by recognizing the patterns created by the series of bumps as their fingers scan the Braille writing. The conjectures are yet to be tested. Designs of photonic and tactile systems displaying the sound spectrum are outlined.

  1. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    Directory of Open Access Journals (Sweden)

    Mehrshad Salmasi

    2012-07-01

    Full Text Available Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in noise attenuation are compared. We use Elman network as a recurrent neural network. For simulations, noise signals from a SPIB database are used. In order to compare the networks appropriately, equal number of layers and neurons are considered for the networks. Moreover, training and test samples are similar. Simulation results show that feedforward and recurrent neural networks present good performance in noise cancellation. As it is seen, the ability of recurrent neural network in noise attenuation is better than feedforward network.

  2. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    Science.gov (United States)

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  3. A method for estimating the orientation of a directional sound source from source directivity and multi-microphone recordings: principles and application

    DEFF Research Database (Denmark)

    Guarato, Francesco; Jakobsen, Lasse; Vanderelst, Dieter

    2011-01-01

    Taking into account directivity of real sound sources makes it possible to try solving an interesting and biologically relevant problem: estimating the orientation in three-dimensional space of a directional sound source. The source, of known directivity, produces a broadband signal (in the ultra......Taking into account directivity of real sound sources makes it possible to try solving an interesting and biologically relevant problem: estimating the orientation in three-dimensional space of a directional sound source. The source, of known directivity, produces a broadband signal (in...

  4. Automatic Bowel Motility Evaluation Technique for Noncontact Sound Recordings

    Directory of Open Access Journals (Sweden)

    Ryunosuke Sato

    2018-06-01

    Full Text Available Information on bowel motility can be obtained via magnetic resonance imaging (MRIs and X-ray imaging. However, these approaches require expensive medical instruments and are unsuitable for frequent monitoring. Bowel sounds (BS can be conveniently obtained using electronic stethoscopes and have recently been employed for the evaluation of bowel motility. More recently, our group proposed a novel method to evaluate bowel motility on the basis of BS acquired using a noncontact microphone. However, the method required manually detecting BS in the sound recordings, and manual segmentation is inconvenient and time consuming. To address this issue, herein, we propose a new method to automatically evaluate bowel motility for noncontact sound recordings. Using simulations for the sound recordings obtained from 20 human participants, we showed that the proposed method achieves an accuracy of approximately 90% in automatic bowel sound detection when acoustic feature power-normalized cepstral coefficients are used as inputs to artificial neural networks. Furthermore, we showed that bowel motility can be evaluated based on the three acoustic features in the time domain extracted by our method: BS per minute, signal-to-noise ratio, and sound-to-sound interval. The proposed method has the potential to contribute towards the development of noncontact evaluation methods for bowel motility.

  5. Objective Scaling of Sound Quality for Normal-Hearing and Hearing-Impaired Listeners

    DEFF Research Database (Denmark)

    Nielsen, Lars Bramsløw

    ) Subjective sound quality ratings of clean and distorted speech and music signals, by normal-hearing and hearing-impaired listeners, to provide reference data, 2) An auditory model of the ear, including the effects of hearing loss, based on existing psychoacoustic knowledge, coupled to 3) An artificial neural......A new method for the objective estimation of sound quality for both normal-hearing and hearing-impaired listeners has been presented: OSSQAR (Objective Scaling of Sound Quality and Reproduction). OSSQAR is based on three main parts, which have been carried out and documented separately: 1...... network, which was trained to predict the sound quality ratings. OSSQAR predicts the perceived sound quality on two independent perceptual rating scales: Clearness and Sharpness. These two scales were shown to be the most relevant for assessment of sound quality, and they were interpreted the same way...

  6. Effects of incongruent auditory and visual room-related cues on sound externalization

    DEFF Research Database (Denmark)

    Carvajal, Juan Camilo Gil; Santurette, Sébastien; Cubick, Jens

    Sounds presented via headphones are typically perceived inside the head. However, the illusion of a sound source located out in space away from the listener’s head can be generated with binaural headphone-based auralization systems by convolving anechoic sound signals with a binaural room impulse...... response (BRIR) measured with miniature microphones placed in the listener’s ear canals. Sound externalization of such virtual sounds can be very convincing and robust but there have been reports that the illusion might break down when the listening environment differs from the room in which the BRIRs were...... recorded [1,2,3]. This may be due to incongruent auditory cues between the recording and playback room during sound reproduction [2]. Alternatively, an expectation effect caused by the visual impression of the room may affect the position of the perceived auditory image [3]. Here, we systematically...

  7. A Coincidental Sound Track for "Time Flies"

    Science.gov (United States)

    Cardany, Audrey Berger

    2014-01-01

    Sound tracks serve a valuable purpose in film and video by helping tell a story, create a mood, and signal coming events. Holst's "Mars" from "The Planets" yields a coincidental soundtrack to Eric Rohmann's Caldecott-winning book, "Time Flies." This pairing provides opportunities for upper elementary and…

  8. Observation of large-amplitude ion acoustic wave in microwave-plasma interaction experiments

    International Nuclear Information System (INIS)

    Yugami, Noboru; Nishida, Yasushi

    1997-01-01

    Large amplitude ion acoustic wave, which is not satisfied with a linear dispersion relationship of ion acoustic wave, is observed in microwave-plasma interaction experiments. This ion acoustic wave is excited around critical density layer and begins to propagate to underdense region with a phase velocity one order faster than sound velocity C s , which is predicted by the linear theory, the phase velocity and the wave length of the wave decreases as it propagates. Finally, it converges to C s and strongly dumps. Diagnostic by the Faraday cup indicates that this ion acoustic wave is accompanied with a hot ion beam. (author)

  9. Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

    International Nuclear Information System (INIS)

    Ye Peng-Cheng; Pan Guang

    2015-01-01

    Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. (paper)

  10. Signal quality measures for unsupervised blood pressure measurement

    International Nuclear Information System (INIS)

    Abdul Sukor, J; Redmond, S J; Lovell, N H; Chan, G S H

    2012-01-01

    Accurate systolic and diastolic pressure estimation, using automated blood pressure measurement, is difficult to achieve when the transduced signals are contaminated with noise or interference, such as movement artifact. This study presents an algorithm for automated signal quality assessment in blood pressure measurement by determining the feasibility of accurately detecting systolic and diastolic pressures when corrupted with various levels of movement artifact. The performance of the proposed algorithm is compared to a manually annotated reference scoring (RS). Based on visual representations and audible playback of Korotkoff sounds, the creation of the RS involved two experts identifying sections of the recorded sounds and annotating sections of noise contamination. The experts determined the systolic and diastolic pressure in 100 recorded Korotkoff sound recordings, using a simultaneous electrocardiograph as a reference signal. The recorded Korotkoff sounds were acquired from 25 healthy subjects (16 men and 9 women) with a total of four measurements per subject. Two of these measurements contained purposely induced noise artifact caused by subject movement. Morphological changes in the cuff pressure signal and the width of the Korotkoff pulse were extracted features which were believed to be correlated with the noise presence in the recorded Korotkoff sounds. Verification of reliable Korotkoff pulses was also performed using extracted features from the oscillometric waveform as recorded from the inflatable cuff. The time between an identified noise section and a verified Korotkoff pulse was the key feature used to determine the validity of possible systolic and diastolic pressures in noise contaminated Korotkoff sounds. The performance of the algorithm was assessed based on the ability to: verify if a signal was contaminated with any noise; the accuracy, sensitivity and specificity of this noise classification, and the systolic and diastolic pressure

  11. Multichannel amplitude analyser for nuclear spectrometry

    International Nuclear Information System (INIS)

    Jankovic, S.; Milovanovic, B.

    2003-01-01

    A multichannel amplitude analyser with 4096 channels was designed. It is based on a fast 12-bit analog-to-digital converter. The intended purpose of the instrument is recording nuclear spectra by means of scintillation detectors. The computer link is established through an opto-isolated serial connection cable, thus reducing instrument sensitivity to disturbances originating from digital circuitry. Refreshing of the data displayed on the screen occurs on every 2.5 seconds. The impulse peak detection is implemented through the differentiation of the amplified input signal, while the synchronization with the data coming from the converter output is established by taking advantage of the internal 'pipeline' structure of the converter itself. The mode of operation of the built-in microcontroller provides that there are no missed impulses, and the simple logic network prevents the initiation of the amplitude reading sequence for the next impulse in case it appears shortly after its precedent. The solution proposed here demonstrated a good performance at a comparatively low manufacturing cost, and is thus suitable for educational purposes (author)

  12. Comparison between users of a new methodology for heart sound auscultation.

    Science.gov (United States)

    Castro, Ana; Gomes, Pedro; Mattos, Sandra S; Coimbra, Miguel T

    2016-08-01

    Auscultation is a routine exam and the first line of screening in heart pathologies. The objective of this study was to assess if using a new data collection system, the DigiScope Collector, with a guided and automatic annotation of heart auscultation, different levels of expertise/experience users could collect similar digital auscultations. Data were collected within the Heart Caravan Initiative (Paraíba, Brasil). Patients were divided into two study groups: Group 1 evaluated by a third year medical student (User 1), and an experienced nurse (User 2); Group 2 evaluated by User 2 and an Information Technology professional (User 3). Patients were auscultated sequentially by the two users, according to the randomization. Features extracted from each data set included the length (HR) of the audio files, the number of repetitions per auscultation area, heart rate, first (S1) and second (S2) heart sound amplitudes, S2/S1, and aortic (A2) and pulmonary (P2) components of the second heart sound and relative amplitudes (P2/A2). Features extracted were compared between users using paired-sample test Wilcoxon test, and Spearman correlations (Pauscultation (User 2 consistently presented longer auscultation time). Correlation analysis showed significant correlations between extracted features from both groups: S2/S1 in Group 1, and S1, S2, A2, P2, P2/A2 amplitudes, and HR in Group 2. Using the DigiScope Collector, we were able to collect similar digital auscultations, according to the features evaluated. This may indicate that in sites with limited access to specialized clinical care, auscultation files may be acquired and used in telemedicine for an expert evaluation.

  13. Measurement of the betatron phase advance and betatron amplitude ratio at the SPP-barS collider

    International Nuclear Information System (INIS)

    Bossart, R.; Scandale, W.

    1987-01-01

    A technique for the precise measurement of lattice functions in a hadron collider has been developed. The betatron functions on either side of the two low beta insertions of the SPS collider have been determined from the measured amplitude and phase of horizontal beam oscillations with a peak amplitude of 40 μm. Four directional couplers and four synchronous receivers working at 200 MHz monitor the betatron oscillations of the beam excited by the fast deflectors of the damper. A fast Fourier transform of the signals provides the phase and amplitude ratio of the beam oscillations between any pair of monitors. The relative amplitude and phase of the beam oscillations can be measured with an accuracy of 0 in phase. For achieving such an accuracy a special calibration method has been implemented to determine the propagation times and amplification factors of the measuring equipment, using the intensity signals of the beam itself. The same equipment can be used also for measuring the beam transfer function by injecting white noise into the beam deflectors

  14. Signal modulation as a mechanism for handicap disposal

    Science.gov (United States)

    Gavassa, Sat; Silva, Ana C.; Gonzalez, Emmanuel; Stoddard, Philip K.

    2012-01-01

    Signal honesty may be compromised when heightened competition provides incentive for signal exaggeration. Some degree of honesty might be maintained by intrinsic handicap costs on signalling or through imposition of extrinsic costs, such as social punishment of low quality cheaters. Thus, theory predicts a delicate balance between signal enhancement and signal reliability that varies with degree of social competition, handicap cost, and social cost. We investigated whether male sexual signals of the electric fish Brachyhypopomus gauderio would become less reliable predictors of body length when competition provides incentives for males to boost electric signal amplitude. As expected, social competition under natural field conditions and in controlled lab experiments drove males to enhance their signals. However, signal enhancement improved the reliability of the information conveyed by the signal, as revealed in the tightening of the relationship between signal amplitude and body length. Signal augmentation in male B. gauderio was independent of body length, and thus appeared not to be curtailed through punishment of low quality (small) individuals. Rather, all individuals boosted their signals under high competition, but those whose signals were farthest from the predicted value under low competition boosted signal amplitude the most. By elimination, intrinsic handicap cost of signal production, rather than extrinsic social cost, appears to be the basis for the unexpected reinforcement of electric signal honesty under social competition. Signal modulation may provide its greatest advantage to the signaller as a mechanism for handicap disposal under low competition rather than as a mechanism for exaggeration of quality under high competition. PMID:22665940

  15. The energy transport by the propagation of sound waves in wave guides with a moving medium

    NARCIS (Netherlands)

    le Grand, P.

    1977-01-01

    The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between two parallel walls or inside a cylindrical tube is considered in [2], The most interesting thing of this problem is that waves may occur with constant amplitude coming from infinity.

  16. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  17. Method of signal analysis

    International Nuclear Information System (INIS)

    Berthomier, Charles

    1975-01-01

    A method capable of handling the amplitude and the frequency time laws of a certain kind of geophysical signals is described here. This method is based upon the analytical signal idea of Gabor and Ville, which is constructed either in the time domain by adding an imaginary part to the real signal (in-quadrature signal), or in the frequency domain by suppressing negative frequency components. The instantaneous frequency of the initial signal is then defined as the time derivative of the phase of the analytical signal, and his amplitude, or envelope, as the modulus of this complex signal. The method is applied to three types of magnetospheric signals: chorus, whistlers and pearls. The results obtained by analog and numerical calculations are compared to results obtained by classical systems using filters, i.e. based upon a different definition of the concept of frequency. The precision with which the frequency-time laws are determined leads then to the examination of the principle of the method and to a definition of instantaneous power density spectrum attached to the signal, and to the first consequences of this definition. In this way, a two-dimensional representation of the signal is introduced which is less deformed by the analysis system properties than the usual representation, and which moreover has the advantage of being obtainable practically in real time [fr

  18. Color guided amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States); Dixon, Lance J. [SLAC National Accelerator Laboratory, Stanford University, Stanford, CA (United States)

    2012-07-01

    Amplitudes in gauge thoeries obtain contributions from color and kinematics. While these two parts of the amplitude seem to exhibit different symmetry structures, it turns out that they can be reorganized in a way to behave equally, which leads to the so-called color-kinematic dual representations of amplitudes. Astonishingly, the existence of those representations allows squaring to related gravitational theories right away. Contrary to the Kawaii-Levellen-Tye relations, which have been used to relate gauge theories and gravity previously, this method is applicable not only to tree amplitudes but also at loop level. In this talk, the basic technique is introduced followed by a discussion of the existence of color-kinematic dual representations for amplitudes derived from gauge theory actions which are deformed by higher-operator insertions. In addition, it is commented on the implications for deformed gravitational theories.

  19. Deformation of a sound field caused by a manikin

    DEFF Research Database (Denmark)

    Weinrich, Søren G.

    1981-01-01

    around the head at distances of 1 cm to 2 m, measured from the tip of the nose. The signals were pure tones at 1, 2, 4, 6, 8, and 10 kHz. It was found that the presence of the manikin caused changes in the SPL of the sound field of at most ±2.5 dB at a distance of 1 m from the surface of the manikin....... Only over an interval of approximately 20 ° behind the manikin (i.e., opposite the sound source) did the manikin cause much larger changes, up to 9 dB. These changes are caused by destructive interference between sounds coming from opposite sides of the manikin. In front of the manikin, the changes...

  20. Adaptive Wavelet Threshold Denoising Method for Machinery Sound Based on Improved Fruit Fly Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2016-07-01

    Full Text Available As the sound signal of a machine contains abundant information and is easy to measure, acoustic-based monitoring or diagnosis systems exhibit obvious superiority, especially in some extreme conditions. However, the sound directly collected from industrial field is always polluted. In order to eliminate noise components from machinery sound, a wavelet threshold denoising method optimized by an improved fruit fly optimization algorithm (WTD-IFOA is proposed in this paper. The sound is firstly decomposed by wavelet transform (WT to obtain coefficients of each level. As the wavelet threshold functions proposed by Donoho were discontinuous, many modified functions with continuous first and second order derivative were presented to realize adaptively denoising. However, the function-based denoising process is time-consuming and it is difficult to find optimal thresholds. To overcome these problems, fruit fly optimization algorithm (FOA was introduced to the process. Moreover, to avoid falling into local extremes, an improved fly distance range obeying normal distribution was proposed on the basis of original FOA. Then, sound signal of a motor was recorded in a soundproof laboratory, and Gauss white noise was added into the signal. The simulation results illustrated the effectiveness and superiority of the proposed approach by a comprehensive comparison among five typical methods. Finally, an industrial application on a shearer in coal mining working face was performed to demonstrate the practical effect.

  1. A feasibility study of predictable and unpredictable surf-like sounds for tinnitus therapy using personal music players.

    Science.gov (United States)

    Durai, Mithila; Kobayashi, Kei; Searchfield, Grant D

    2018-05-28

    To evaluate the feasibility of predictable or unpredictable amplitude-modulated sounds for tinnitus therapy. The study consisted of two parts. (1) An adaptation experiment. Loudness level matches and rating scales (10-point) for loudness and distress were obtained at a silent baseline and at the end of three counterbalanced 30-min exposures (silence, predictable and unpredictable). (2) A qualitative 2-week sound therapy feasibility trial. Participants took home a personal music player (PMP). Part 1: 23 individuals with chronic tinnitus and part 2: seven individuals randomly selected from Part 1. Self-reported tinnitus loudness and annoyance were significantly lower than baseline ratings after acute unpredictable sound exposure. Tinnitus annoyance ratings were also significantly lower than the baseline but the effect was small. The feasibility trial identified that participant preferences for sounds varied. Three participants did not obtain any benefit from either sound. Three participants preferred unpredictable compared to predictable sounds. Some participants had difficulty using the PMP, the average self-report hours of use were low (less <1 h/day). Unpredictable surf-like sounds played using a PMP is a feasible tinnitus treatment. Further work is required to improve the acceptance of the sound and ease of PMP use.

  2. Sounding rockets explore the ionosphere

    International Nuclear Information System (INIS)

    Mendillo, M.

    1990-01-01

    It is suggested that small, expendable, solid-fuel rockets used to explore ionospheric plasma can offer insight into all the processes and complexities common to space plasma. NASA's sounding rocket program for ionospheric research focuses on the flight of instruments to measure parameters governing the natural state of the ionosphere. Parameters include input functions, such as photons, particles, and composition of the neutral atmosphere; resultant structures, such as electron and ion densities, temperatures and drifts; and emerging signals such as photons and electric and magnetic fields. Systematic study of the aurora is also conducted by these rockets, allowing sampling at relatively high spatial and temporal rates as well as investigation of parameters, such as energetic particle fluxes, not accessible to ground based systems. Recent active experiments in the ionosphere are discussed, and future sounding rocket missions are cited

  3. Comparison of respiratory-induced variations in photoplethysmographic signals

    International Nuclear Information System (INIS)

    Li, Jin; Jin, Jie; Chen, Xiang; Sun, Weixin; Guo, Ping

    2010-01-01

    Photoplethysmography (PPG) is an optical method for detecting blood volume changes in tissue. Respiratory-induced intensity, frequency and amplitude variations are contained in the PPG signal; thus, an understanding of the relationships between all of these variations and respiration is essential to advancing respiration monitoring based on PPG. This study investigated correlations between respiratory-induced variations extracted from PPG and simultaneous respiratory signals. PPG signals were recorded from 28 healthy subjects under eight different conditions. Six respiratory-induced variations, i.e. the period of the systole, diastole and pulse, the amplitude of the systole and diastole, and the intensity variation, were determined from the PPG signal. The results indicate that, compared with the period of the pulse, the period of the systole and diastole correlates weakly with respiration; the amplitude of the diastole has a stronger correlation with respiration than the amplitude of the systole. For men, when the respiratory rate is less than 10 breaths min −1 , the period of the pulse has the strongest correlation with respiration, whereas up to or above 15 breaths min −1 , the intensity variation becomes strongest in the sitting posture, while the amplitude of the diastole is strongest in the supine posture. For women, compared with the other variations, the period of the pulse has nearly the strongest correlation with respiration, independent of respiratory rate or posture

  4. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  5. Effect of echolocation behavior-related constant frequency-frequency modulation sound on the frequency tuning of inferior collicular neurons in Hipposideros armiger.

    Science.gov (United States)

    Tang, Jia; Fu, Zi-Ying; Wei, Chen-Xue; Chen, Qi-Cai

    2015-08-01

    In constant frequency-frequency modulation (CF-FM) bats, the CF-FM echolocation signals include both CF and FM components, yet the role of such complex acoustic signals in frequency resolution by bats remains unknown. Using CF and CF-FM echolocation signals as acoustic stimuli, the responses of inferior collicular (IC) neurons of Hipposideros armiger were obtained by extracellular recordings. We tested the effect of preceding CF or CF-FM sounds on the shape of the frequency tuning curves (FTCs) of IC neurons. Results showed that both CF-FM and CF sounds reduced the number of FTCs with tailed lower-frequency-side of IC neurons. However, more IC neurons experienced such conversion after adding CF-FM sound compared with CF sound. We also found that the Q 20 value of the FTC of IC neurons experienced the largest increase with the addition of CF-FM sound. Moreover, only CF-FM sound could cause an increase in the slope of the neurons' FTCs, and such increase occurred mainly in the lower-frequency edge. These results suggested that CF-FM sound could increase the accuracy of frequency analysis of echo and cut-off low-frequency elements from the habitat of bats more than CF sound.

  6. Injection-locked single-mode VCSEL for orthogonal multiplexing and amplitude noise suppression

    DEFF Research Database (Denmark)

    Chipouline, Arkadi; Lyubopytov, Vladimir S.; Malekizandi, Mohammadreza

    2017-01-01

    It has been shown earlier, that the injection locked semiconductor lasers enable effective amplitude noise suppression [1] and makes possible an extra level of signal multiplexing-orthogonal modulation [2], where DPSK and ASK NRZ channels propagate at the same wavelength [3]. In our work we use...... an injection-locked 1550 nm VCSEL as a slave laser providing separation of amplitude and phase modulations, carrying independent information flows. To validate the possibility of phase modulation extraction by an injection-locked VCSEL, an experimental setup shown in Fig. 1 has been built....

  7. Computationally Efficient Amplitude Modulated Sinusoidal Audio Coding using Frequency-Domain Linear Prediction

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jensen, Søren Holdt

    2006-01-01

    A method for amplitude modulated sinusoidal audio coding is presented that has low complexity and low delay. This is based on a subband processing system, where, in each subband, the signal is modeled as an amplitude modulated sum of sinusoids. The envelopes are estimated using frequency......-domain linear prediction and the prediction coefficients are quantized. As a proof of concept, we evaluate different configurations in a subjective listening test, and this shows that the proposed method offers significant improvements in sinusoidal coding. Furthermore, the properties of the frequency...

  8. Signal analysis for failure detection

    International Nuclear Information System (INIS)

    Parpaglione, M.C.; Perez, L.V.; Rubio, D.A.; Czibener, D.; D'Attellis, C.E.; Brudny, P.I.; Ruzzante, J.E.

    1994-01-01

    Several methods for analysis of acoustic emission signals are presented. They are mainly oriented to detection of changes in noisy signals and characterization of higher amplitude discrete pulses or bursts. The aim was to relate changes and events with failure, crack or wear in materials, being the final goal to obtain automatic means of detecting such changes and/or events. Performance evaluation was made using both simulated and laboratory test signals. The methods being presented are the following: 1. Application of the Hopfield Neural Network (NN) model for classifying faults in pipes and detecting wear of a bearing. 2. Application of the Kohonnen and Back Propagation Neural Network model for the same problem. 3. Application of Kalman filtering to determine time occurrence of bursts. 4. Application of a bank of Kalman filters (KF) for failure detection in pipes. 5. Study of amplitude distribution of signals for detecting changes in their shape. 6. Application of the entropy distance to measure differences between signals. (author). 10 refs, 11 figs

  9. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound.

    Science.gov (United States)

    Port, Jesse A; Wallace, James C; Griffith, William C; Faustman, Elaine M

    2012-01-01

    Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP) that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads) were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp.), γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used to guide initial

  10. Metagenomic profiling of microbial composition and antibiotic resistance determinants in Puget Sound.

    Directory of Open Access Journals (Sweden)

    Jesse A Port

    Full Text Available Human-health relevant impacts on marine ecosystems are increasing on both spatial and temporal scales. Traditional indicators for environmental health monitoring and microbial risk assessment have relied primarily on single species analyses and have provided only limited spatial and temporal information. More high-throughput, broad-scale approaches to evaluate these impacts are therefore needed to provide a platform for informing public health. This study uses shotgun metagenomics to survey the taxonomic composition and antibiotic resistance determinant content of surface water bacterial communities in the Puget Sound estuary. Metagenomic DNA was collected at six sites in Puget Sound in addition to one wastewater treatment plant (WWTP that discharges into the Sound and pyrosequenced. A total of ~550 Mbp (1.4 million reads were obtained, 22 Mbp of which could be assembled into contigs. While the taxonomic and resistance determinant profiles across the open Sound samples were similar, unique signatures were identified when comparing these profiles across the open Sound, a nearshore marina and WWTP effluent. The open Sound was dominated by α-Proteobacteria (in particular Rhodobacterales sp., γ-Proteobacteria and Bacteroidetes while the marina and effluent had increased abundances of Actinobacteria, β-Proteobacteria and Firmicutes. There was a significant increase in the antibiotic resistance gene signal from the open Sound to marina to WWTP effluent, suggestive of a potential link to human impacts. Mobile genetic elements associated with environmental and pathogenic bacteria were also differentially abundant across the samples. This study is the first comparative metagenomic survey of Puget Sound and provides baseline data for further assessments of community composition and antibiotic resistance determinants in the environment using next generation sequencing technologies. In addition, these genomic signals of potential human impact can be used

  11. SoundView: an auditory guidance system based on environment understanding for the visually impaired people.

    Science.gov (United States)

    Nie, Min; Ren, Jie; Li, Zhengjun; Niu, Jinhai; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2009-01-01

    Without visual information, the blind people live in various hardships with shopping, reading, finding objects and etc. Therefore, we developed a portable auditory guide system, called SoundView, for visually impaired people. This prototype system consists of a mini-CCD camera, a digital signal processing unit and an earphone, working with built-in customizable auditory coding algorithms. Employing environment understanding techniques, SoundView processes the images from a camera and detects objects tagged with barcodes. The recognized objects in the environment are then encoded into stereo speech signals for the blind though an earphone. The user would be able to recognize the type, motion state and location of the interested objects with the help of SoundView. Compared with other visual assistant techniques, SoundView is object-oriented and has the advantages of cheap cost, smaller size, light weight, low power consumption and easy customization.

  12. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    Science.gov (United States)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  13. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network.

    Science.gov (United States)

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  14. 46 CFR 7.20 - Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and...

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island Sound and easterly entrance to Long Island Sound, NY. 7.20 Section 7.20... Atlantic Coast § 7.20 Nantucket Sound, Vineyard Sound, Buzzards Bay, Narragansett Bay, MA, Block Island...

  15. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    International Nuclear Information System (INIS)

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-01-01

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  16. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  17. Sound and music for science explorations

    CERN Document Server

    CERN. Geneva; Vicinanza, Domenico

    2017-01-01

    Resonances, periodicity, patterns and spectra: well-known notions that play crucial roles both in science and music. This short talk will focus on analysing data and their relations by translating measurements into audible signals and using the natural capability of the ear to distinguish, characterise and analyse waveform shapes, amplitudes and relations. This process is called data sonification.

  18. Beliefs in the population about cracking sounds produced during spinal manipulation.

    Science.gov (United States)

    Demoulin, Christophe; Baeri, Damien; Toussaint, Geoffrey; Cagnie, Barbara; Beernaert, Axel; Kaux, Jean-François; Vanderthommen, Marc

    2018-03-01

    To examine beliefs about cracking sounds heard during high-velocity low-amplitude (HVLA) thrust spinal manipulation in individuals with and without personal experience of this technique. We included 100 individuals. Among them, 60 had no history of spinal manipulation, including 40 who were asymptomatic with or without a past history of spinal pain and 20 who had nonspecific spinal pain. The remaining 40 patients had a history of spinal manipulation; among them, 20 were asymptomatic and 20 had spinal pain. Participants attended a one-on-one interview during which they completed a questionnaire about their history of spinal manipulation and their beliefs regarding sounds heard during spinal manipulation. Mean age was 43.5±15.4years. The sounds were ascribed to vertebral repositioning by 49% of participants and to friction between two vertebras by 23% of participants; only 9% of participants correctly ascribed the sound to the formation of a gas bubble in the joint. The sound was mistakenly considered to indicate successful spinal manipulation by 40% of participants. No differences in beliefs were found between the groups with and without a history of spinal manipulation. Certain beliefs have documented adverse effects. This study showed a high prevalence of unfounded beliefs regarding spinal manipulation. These beliefs deserve greater attention from healthcare providers, particularly those who practice spinal manipulation. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  19. Heart sounds analysis using probability assessment

    Czech Academy of Sciences Publication Activity Database

    Plešinger, Filip; Viščor, Ivo; Halámek, Josef; Jurčo, Juraj; Jurák, Pavel

    2017-01-01

    Roč. 38, č. 8 (2017), s. 1685-1700 ISSN 0967-3334 R&D Projects: GA ČR GAP102/12/2034; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : heart sounds * FFT * machine learning * signal averaging * probability assessment Subject RIV: FS - Medical Facilities ; Equipment OBOR OECD: Medical engineering Impact factor: 2.058, year: 2016

  20. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    Science.gov (United States)

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  1. Phase retrieval via incremental truncated amplitude flow algorithm

    Science.gov (United States)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  2. The Subaru FMOS galaxy redshift survey (FastSound). V. Intrinsic alignments of emission-line galaxies at z ˜ 1.4

    Science.gov (United States)

    Tonegawa, Motonari; Okumura, Teppei; Totani, Tomonori; Dalton, Gavin; Glazebrook, Karl; Yabe, Kiyoto

    2018-04-01

    Intrinsic alignments (IA), the coherent alignment of intrinsic galaxy orientations, can be a source of a systematic error of weak lensing surveys. The redshift evolution of IA also contains information about the physics of galaxy formation and evolution. This paper presents the first measurement of IA at high redshift, z ˜ 1.4, using the spectroscopic catalog of blue star-forming galaxies of the FastSound redshift survey, with the galaxy shape information from the Canada-Hawaii-France telescope lensing survey. The IA signal is consistent with zero with power-law amplitudes fitted to the projected correlation functions for density-shape and shape-shape correlation components, Aδ+ = -0.0071 ± 0.1340 and A++ = -0.0505 ± 0.0848, respectively. These results are consistent with those obtained from blue galaxies at lower redshifts (e.g., A _{δ +}=0.0035_{-0.0389}^{+0.0387} and A_{++}=0.0045_{-0.0168}^{+0.0166} at z = 0.51 from the WiggleZ survey). The upper limit of the constrained IA amplitude corresponds to a few percent contamination to the weak-lensing shear power spectrum, resulting in systematic uncertainties on the cosmological parameter estimations by -0.052 < Δσ8 < 0.039 and -0.039 < ΔΩm < 0.030.

  3. Multisensory interaction in vibrotactile detection and discrimination of amplitude modulation

    DEFF Research Database (Denmark)

    Teodorescu, Kinneret; Bouchigny, Sylvain; Hoffmann, Pablo F.

    2011-01-01

    Perception of vibration during drilling demands integration of haptic and auditory information with force information. In this study we explored the ability to detect and discriminate changes in vibrotactile stimuli amplitude based either on purely haptic feedback or together with congruent...... skill of maxilla-facial surgery strongly relies on enhanced touch perception, as measured in reaction times and discrimination ability in bi-modal vibro-auditory conditions. These observations suggest that acquisition of mandibular surgery skill has brought to an enhanced representation of vibro......-tactile modulations in relevant stimuli ranges. Altogether, our results provide basis to assume that during acquisition of mandibular drilling skill, trainees may benefit from training of relevant basic aspects of touch perception - sensitivity to vibration and accompanying modulations of sound....

  4. Seizure detection algorithms based on EMG signals

    DEFF Research Database (Denmark)

    Conradsen, Isa

    Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective...... on the amplitude of the signal. The other algorithm was based on information of the signal in the frequency domain, and it focused on synchronisation of the electrical activity in a single muscle during the seizure. Results: The amplitude-based algorithm reliably detected seizures in 2 of the patients, while...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....

  5. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  6. Effects of musical expertise on oscillatory brain activity in response to emotional sounds.

    Science.gov (United States)

    Nolden, Sophie; Rigoulot, Simon; Jolicoeur, Pierre; Armony, Jorge L

    2017-08-01

    Emotions can be conveyed through a variety of channels in the auditory domain, be it via music, non-linguistic vocalizations, or speech prosody. Moreover, recent studies suggest that expertise in one sound category can impact the processing of emotional sounds in other sound categories as they found that musicians process more efficiently emotional musical and vocal sounds than non-musicians. However, the neural correlates of these modulations, especially their time course, are not very well understood. Consequently, we focused here on how the neural processing of emotional information varies as a function of sound category and expertise of participants. Electroencephalogram (EEG) of 20 non-musicians and 17 musicians was recorded while they listened to vocal (speech and vocalizations) and musical sounds. The amplitude of EEG-oscillatory activity in the theta, alpha, beta, and gamma band was quantified and Independent Component Analysis (ICA) was used to identify underlying components of brain activity in each band. Category differences were found in theta and alpha bands, due to larger responses to music and speech than to vocalizations, and in posterior beta, mainly due to differential processing of speech. In addition, we observed greater activation in frontal theta and alpha for musicians than for non-musicians, as well as an interaction between expertise and emotional content of sounds in frontal alpha. The results reflect musicians' expertise in recognition of emotion-conveying music, which seems to also generalize to emotional expressions conveyed by the human voice, in line with previous accounts of effects of expertise on musical and vocal sounds processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Coherent Surface Clutter Suppression Techniques with Topography Estimation for Multi-Phase-Center Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen; Kristensen, Steen Savstrup

    2012-01-01

    Radar ice sounding enables measurement of the thickness and internal structures of the large ice sheets on Earth. Surface clutter masking the signal of interest is a major obstacle in ice sounding. Algorithms for surface clutter suppression based on multi-phase-center radars are presented. These ...

  8. From acoustic descriptors to evoked quality of car door sounds.

    Science.gov (United States)

    Bezat, Marie-Céline; Kronland-Martinet, Richard; Roussarie, Vincent; Ystad, Sølvi

    2014-07-01

    This article describes the first part of a study aiming at adapting the mechanical car door construction to the drivers' expectancies in terms of perceived quality of cars deduced from car door sounds. A perceptual cartography of car door sounds is obtained from various listening tests aiming at revealing both ecological and analytical properties linked to evoked car quality. In the first test naive listeners performed absolute evaluations of five ecological properties (i.e., solidity, quality, weight, closure energy, and success of closure). Then experts in the area of automobile doors categorized the sounds according to organic constituents (lock, joints, door panel), in particular whether or not the lock mechanism could be perceived. Further, a sensory panel of naive listeners identified sensory descriptors such as classical descriptors or onomatopoeia that characterize the sounds, hereby providing an analytic description of the sounds. Finally, acoustic descriptors were calculated after decomposition of the signal into a lock and a closure component by the Empirical Mode Decomposition (EMD) method. A statistical relationship between the acoustic descriptors and the perceptual evaluations of the car door sounds could then be obtained through linear regression analysis.

  9. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.

    Science.gov (United States)

    Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon

    2017-03-01

    To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P continuity and amplitude.

  10. Defining the spectral and amplitude domain of music---a window into audio

    Science.gov (United States)

    Nam, Myoung W.

    In terms of 'visualizing music', this thesis presents the first critical measurements for the selected musical instruments (piano, violin, cello, flute, piccolo, drums, double bass, electric bass, and electric guitar) seeking to describe their place in the spectral and amplitude domain. All data presented as a part of this research were measured with Z-weighting (un-weighted) from 12.5Hz to 20kHz along the frequency axis, in 1/3 octave bands, evaluated statistically and in equivalent sound level. Measuring musical performances can be a very subjective process. Therefore, this research proceeded under some strategically chosen conditions and limitations. The measurements were made with each musician playing at several different intensities of musical performance. Chosen musical genres were classical, pop and jazz for the selected musical instruments. To obtain data representative of real world conditions, musical instrument measurements were made mostly in professional recording studios by professional players. The results seek to define the spectral and amplitude domain occupied by these instruments when playing typical works.

  11. Phonocardiography Signal Processing

    CERN Document Server

    Abbas, Abbas K

    2009-01-01

    The auscultation method is an important diagnostic indicator for hemodynamic anomalies. Heart sound classification and analysis play an important role in the auscultative diagnosis. The term phonocardiography refers to the tracing technique of heart sounds and the recording of cardiac acoustics vibration by means of a microphone-transducer. Therefore, understanding the nature and source of this signal is important to give us a tendency for developing a competent tool for further analysis and processing, in order to enhance and optimize cardiac clinical diagnostic approach. This book gives the

  12. Meaning From Environmental Sounds: Types of Signal-Referent Relations and Their Effect on Recognizing Auditory Icons

    Science.gov (United States)

    Keller, Peter; Stevens, Catherine

    2004-01-01

    This article addresses the learnability of auditory icons, that is, environmental sounds that refer either directly or indirectly to meaningful events. Direct relations use the sound made by the target event whereas indirect relations substitute a surrogate for the target. Across 3 experiments, different indirect relations (ecological, in which…

  13. The Analysis for Activations in the Brain during Hearing the Amplitude-Modulated Tone by fMRI Measurement

    Science.gov (United States)

    Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi

    In audiometry, ABR (Auditory Brainstem Response) is widely used. However, it shows low accuracy in low frequency band. Meanwhile, AMFR (Amplitude-Modulation-Following Response), the response during hearing an amplitude-modulated tone, has high frequency specificity and is brought to attention. As the first step to clinical application of AMFR, we investigated the activated areas in a brain when the subjects hear SAM tone (Sinusoidally Amplitude-Modulated tone) with both ears. We measured following two signals. One is the difference of BOLD (Blood Oxygenation Level Dependent) signal between hearing SAM tone vs. silence, the other is the difference of BOLD signal between hearing SAM tone vs. unmodulated tone. As a result, in the case of SAM vs. silence, the bilaterally auditory cortex (Broadmann Area 41, 42), the biratelally BA 10, left superior frontal gyrus and right superior temporal gyrus were activated (pvs. unmodulated tone, the bilaterally superior frontal gyrus (BA 6) and precuneus (BA 7), neighboring area including the bilaterally inferior parietal lobule (BA 40), the bilaterally medial frontal gyrus and superior frontal gyrus were activated (p<0.021, uncorrected). Activations of visual perception due to eye-opened state were detected in some parts of activations. As a result, we inferred that modulated tone was recognized in the medial frontal gyrus and inferior parietal lobule was the part related to perception of amplitude-modulation.

  14. SCOTT: A time and amplitude digitizer ASIC for PMT signal processing

    Science.gov (United States)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.; KM3NeT Consortium

    2013-10-01

    SCOTT is an ASIC designed for the readout electronics of photomultiplier tubes developed for KM3NeT, the cubic-kilometer scale neutrino telescope in Mediterranean Sea. To digitize the PMT signals, the multi-time-over-threshold technique is used with up to 16 adjustable thresholds. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory. A specific study has shown that five specifically chosen thresholds are suited to reach the required timing accuracy. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. To verify that the KM3NeT requirements are fulfilled, this method is applied on PMT signals digitized by SCOTT.

  15. Auditory Sketches: Very Sparse Representations of Sounds Are Still Recognizable.

    Directory of Open Access Journals (Sweden)

    Vincent Isnard

    Full Text Available Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs. This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.

  16. Analysis of sound data streamed over the network

    Directory of Open Access Journals (Sweden)

    Jiří Fejfar

    2013-01-01

    Full Text Available In this paper we inspect a difference between original sound recording and signal captured after streaming this original recording over a network loaded with a heavy traffic. There are several kinds of failures occurring in the captured recording caused by network congestion. We try to find a method how to evaluate correctness of streamed audio. Usually there are metrics based on a human perception of a signal such as “signal is clear, without audible failures”, “signal is having some failures but it is understandable”, or “signal is inarticulate”. These approaches need to be statistically evaluated on a broad set of respondents, which is time and resource consuming. We try to propose some metrics based on signal properties allowing us to compare the original and captured recording. We use algorithm called Dynamic Time Warping (Müller, 2007 commonly used for time series comparison in this paper. Some other time series exploration approaches can be found in (Fejfar, 2011 and (Fejfar, 2012. The data was acquired in our network laboratory simulating network traffic by downloading files, streaming audio and video simultaneously. Our former experiment inspected Quality of Service (QoS and its impact on failures of received audio data stream. This experiment is focused on the comparison of sound recordings rather than network mechanism.We focus, in this paper, on a real time audio stream such as a telephone call, where it is not possible to stream audio in advance to a “pool”. Instead it is necessary to achieve as small delay as possible (between speaker voice recording and listener voice replay. We are using RTP protocol for streaming audio.

  17. A nuclear pulse amplitude acquisition system based on 80C31 single-chip microcomputer

    International Nuclear Information System (INIS)

    Zhao Xiuliang; Qu Guopu; Guo Lanying; Zhang Songbai

    1999-01-01

    A kind of multichannel nuclear pulse amplitude signal acquisition system is described, which is composed of pulse peak detector, integrated S/H circuit, A/D converter and 80C31 single-chip microcomputer

  18. Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients

    DEFF Research Database (Denmark)

    Garza-Villarreal, Eduardo A; Jiang, Zhiguo; Vuust, Peter

    2015-01-01

    , correlated to the analgesia reports. The post-hoc seed-based functional connectivity analysis of the lAnG showed found higher connectivity after listening to music with right dorsolateral prefrontal cortex (rdlPFC), the left caudate (lCau), and decreased connectivity with right anterior cingulate cortex (r......Music reduces pain in fibromyalgia (FM), a chronic pain disease, but the functional neural correlates of music-induced analgesia (MIA) are still largely unknown. We recruited FM patients (n = 22) who listened to their preferred relaxing music and an auditory control (pink noise) for 5 min without...... external noise from fMRI image acquisition. Resting state fMRI was then acquired before and after the music and control conditions. A significant increase in the amplitude of low frequency fluctuations of the BOLD signal was evident in the left angular gyrus (lAnG) after listening to music, which in turn...

  19. Car audio using DSP for active sound control. DSP ni yoru active seigyo wo mochiita audio

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Asano, S.; Furukawa, N. (Mitsubishi Motor Corp., Tokyo (Japan))

    1993-06-01

    In the automobile cabin, there are some unique problems which spoil the quality of sound reproduction from audio equipment, such as the narrow space and/or the background noise. The audio signal processing by using DSP (digital signal processor) makes enable a solution to these problems. A car audio with a high amenity has been successfully made by the active sound control using DSP. The DSP consists of an adder, coefficient multiplier, delay unit, and connections. For the actual processing by DSP, are used functions, such as sound field correction, response and processing of noises during driving, surround reproduction, graphic equalizer processing, etc. High effectiveness of the method was confirmed through the actual driving evaluation test. The present paper describes the actual method of sound control technology using DSP. Especially, the dynamic processing of the noise during driving is discussed in detail. 1 ref., 12 figs., 1 tab.

  20. Lung and Heart Sounds Analysis: State-of-the-Art and Future Trends.

    Science.gov (United States)

    Padilla-Ortiz, Ana L; Ibarra, David

    2018-01-01

    Lung sounds, which include all sounds that are produced during the mechanism of respiration, may be classified into normal breath sounds and adventitious sounds. Normal breath sounds occur when no respiratory problems exist, whereas adventitious lung sounds (wheeze, rhonchi, crackle, etc.) are usually associated with certain pulmonary pathologies. Heart and lung sounds that are heard using a stethoscope are the result of mechanical interactions that indicate operation of cardiac and respiratory systems, respectively. In this article, we review the research conducted during the last six years on lung and heart sounds, instrumentation and data sources (sensors and databases), technological advances, and perspectives in processing and data analysis. Our review suggests that chronic obstructive pulmonary disease (COPD) and asthma are the most common respiratory diseases reported on in the literature; related diseases that are less analyzed include chronic bronchitis, idiopathic pulmonary fibrosis, congestive heart failure, and parenchymal pathology. Some new findings regarding the methodologies associated with advances in the electronic stethoscope have been presented for the auscultatory heart sound signaling process, including analysis and clarification of resulting sounds to create a diagnosis based on a quantifiable medical assessment. The availability of automatic interpretation of high precision of heart and lung sounds opens interesting possibilities for cardiovascular diagnosis as well as potential for intelligent diagnosis of heart and lung diseases.

  1. AMPLITUDE AND TIME MEASUREMENT ASIC WITH ANALOG DERANDOMIZATION

    International Nuclear Information System (INIS)

    O CONNOR, P.; DE GERONIMO, G.; KANDASAMY, A.

    2002-01-01

    We describe a new ASIC for accurate and efficient processing of high-rate pulse signals from highly segmented detectors. In contrast to conventional approaches, this circuit affords a dramatic reduction in data volume through the use of analog techniques (precision peak detectors and time-to-amplitude converters) together with fast arbitration and sequencing logic to concentrate the data before digitization. In operation the circuit functions like a data-driven analog first-in, first-out (FIFO) memory between the preamplifiers and the ADC. Peak amplitudes of pulses arriving at any one of the 32 inputs are sampled, stored, and queued for readout and digitization through a single output port. Hit timing, pulse risetime, and channel address are also available at the output. Prototype chips have been fabricated in 0.35 micron CMOS and tested. First results indicate proper functionality for pulses down to 30 ns peaking time and input rates up to 1.6 MHz/channel. Amplitude accuracy of the peak detect and hold circuit is 0.3% (absolute). TAC accuracy is within 0.3% of full scale. Power consumption is less than 2 mW/channel. Compared with conventional techniques such as track-and-hold and analog memory, this new ASIC will enable efficient pulse height measurement at 20 to 300 times higher rates

  2. Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms

    Science.gov (United States)

    Huang, Yu-Hsi; Chiang, Hsin-Yuan

    2016-06-01

    This study modeled two diaphragms comprising a pair of indium tin oxide (ITO) transparent plates sandwiching a vibrating diaphragm to create circular (30 mm radius) and annular (30 mm outer and 3 mm inner radius) push-pull electrostatic speakers. We then measured the displacement amplitudes and mode shapes produced by the devices. Vibration characteristics were used to predict sound pressure levels (SPLs) using the lumped parameter method (LPM) and distributed parameter method (DPM). The two measurement results obtained using a laser system were compared to the SPLs obtained using traditional acoustic measurement (AM) from 20 Hz to 20 kHz in order to verify our predictions. When using LPM and DPM, the SPL prediction results in the first three symmetric modes were in good agreement with the AM results. Under the assumption of linear operations, the DPM and amplitude-fluctuation electronic speckle pattern interferometry (ESPI) techniques proved effective in determining the visualization of mode shape (0,1)-(0,3). The use of ITO plates is a practical technique for the prediction of SPL, as well as measurement of mode shapes. The four evaluation methods, i.e. LPM, DPM, ESPI and AM, present a high degree of consistency with regard to vibrational mode and sound radiation characteristics.

  3. ICE on the road to auditory sensitivity reduction and sound localization in the frog.

    Science.gov (United States)

    Narins, Peter M

    2016-10-01

    Frogs and toads are capable of producing calls at potentially damaging levels that exceed 110 dB SPL at 50 cm. Most frog species have internally coupled ears (ICE) in which the tympanic membranes (TyMs) communicate directly via the large, permanently open Eustachian tubes, resulting in an inherently directional asymmetrical pressure-difference receiver. One active mechanism for auditory sensitivity reduction involves the pressure increase during vocalization that distends the TyM, reducing its low-frequency airborne sound sensitivity. Moreover, if sounds generated by the vocal folds arrive at both surfaces of the TyM with nearly equal amplitudes and phases, the net motion of the eardrum would be greatly attenuated. Both of these processes appear to reduce the motion of the frog's TyM during vocalizations. The implications of ICE in amphibians with respect to sound localizations are discussed, and the particularly interesting case of frogs that use ultrasound for communication yet exhibit exquisitely small localization jump errors is brought to light.

  4. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  5. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems.

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K

    2017-12-19

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  6. Development of Optophone with No Diaphragm and Application to Sound Measurement in Jet Flow

    Directory of Open Access Journals (Sweden)

    Yoshito Sonoda

    2012-01-01

    Full Text Available The optophone with no diaphragm, which can detect sound waves without disturbing flow of air and sound field, is presented as a novel sound measurement technique and the present status of development is reviewed in this paper. The method is principally based on the Fourier optics and the sound signal is obtained by detecting ultrasmall diffraction light generated from phase modulation by sounds. The principle and theory, which have been originally developed as a plasma diagnostic technique to measure electron density fluctuations in the nuclear fusion research, are briefly introduced. Based on the theoretical analysis, property and merits as a wave-optical sound detection are presented, and the fundamental experiments and results obtained so far are reviewed. It is shown that sounds from about 100 Hz to 100 kHz can be simultaneously detected by a visible laser beam, and the method is very useful to sound measurement in aeroacoustics. Finally, present main problems of the optophone for practical uses in sound and/or noise measurements and the image of technology expected in the future are shortly shown.

  7. Phase ramping and modulation of reflectometer signals

    International Nuclear Information System (INIS)

    Conway, G.D.; Bartlett, D.V.; Stoff, P.E.

    1999-01-01

    The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (> 1 fringe) variations with two quite different time scales (2-10 ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the are modulated synchronously with the phase fringes. The slow fringes appear to result radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2-D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (authors)

  8. Phase ramping and modulation of reflectometer signals

    International Nuclear Information System (INIS)

    Conway, G.; Bartlett, D.; Stott, P.

    1999-06-01

    The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (>1 fringe) variations with two quite different time scales (2-10ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the phase fringes. The slow fringes appear to result from radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (author)

  9. Sound Source Localization Through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    Directory of Open Access Journals (Sweden)

    Christoph Beck

    2016-10-01

    Full Text Available Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  10. Visualization of the hot chocolate sound effect by spectrograms

    Science.gov (United States)

    Trávníček, Z.; Fedorchenko, A. I.; Pavelka, M.; Hrubý, J.

    2012-12-01

    We present an experimental and a theoretical analysis of the hot chocolate effect. The sound effect is evaluated using time-frequency signal processing, resulting in a quantitative visualization by spectrograms. This method allows us to capture the whole phenomenon, namely to quantify the dynamics of the rising pitch. A general form of the time dependence volume fraction of the bubbles is proposed. We show that the effect occurs due to the nonlinear dependence of the speed of sound in the gas/liquid mixture on the volume fraction of the bubbles and the nonlinear time dependence of the volume fraction of the bubbles.

  11. Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling.

    Science.gov (United States)

    Ryu, Jung-Wan; Kim, Jong-Ho; Son, Woo-Sik; Hwang, Dong-Uk

    2017-08-01

    We study the collective behaviors in a ring of coupled nonidentical nonlinear oscillators with unidirectional coupling, of which natural frequencies are distributed in a random way. We find the amplitude death phenomena in the case of unidirectional couplings and discuss the differences between the cases of bidirectional and unidirectional couplings. There are three main differences; there exists neither partial amplitude death nor local clustering behavior but an oblique line structure which represents directional signal flow on the spatio-temporal patterns in the unidirectional coupling case. The unidirectional coupling has the advantage of easily obtaining global amplitude death in a ring of coupled oscillators with randomly distributed natural frequency. Finally, we explain the results using the eigenvalue analysis of the Jacobian matrix at the origin and also discuss the transition of dynamical behavior coming from connection structure as the coupling strength increases.

  12. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2π The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( ∼ 2π ). (Author) 2 refs

  13. Sound recovery via intensity variations of speckle pattern pixels selected with variance-based method

    Science.gov (United States)

    Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing

    2018-02-01

    In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.

  14. Sound amplification at a rectangular T-junction with merging mean flows

    Science.gov (United States)

    Du, Lin; Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2016-04-01

    This paper reports a numerical study on the aeroacoustic response of a rectangular T-junction with merging mean flows. The primary motivation of the work is to explain the high sound amplification, recently seen experimentally, when introducing a small merging bias flow. The acoustic results are found solving the compressible Linearized Navier-Stokes Equations (LNSEs) in the frequency domain, where the base flow is first obtained using RANS with a k-ε turbulence model. The model predicts the measured scattering data well, including the amplitude and Strouhal number for the peak amplification, if the effect of eddy viscosity damping is included. It is found that the base flow changes significantly with the presence of a small bias flow. Compared to pure grazing flow a strong unstable shear layer is created in the downstream main duct starting from the T-junction trailing edge. This means that the main region of vortex-sound interaction is moved away from the junction to a downstream region much larger than the junction width. To analyze the sound amplification in this region Howe's energy corollary and the growth of acoustic density are used.

  15. Emotional cues, emotional signals, and their contrasting effects on listener valence

    DEFF Research Database (Denmark)

    Christensen, Justin

    2015-01-01

    that are mimetic of emotional cues interact in less clear and less cohesive manners with their corresponding haptic signals. For my investigations, subjects listen to samples from the International Affective Digital Sounds Library[2] and selected musical works on speakers in combination with a tactile transducer...... and of benefit to both the sender and the receiver of the signal, otherwise they would cease to have the intended effect of communication. In contrast with signals, animal cues are much more commonly unimodal as they are unintentional by the sender. In my research, I investigate whether subjects exhibit...... are more emotional cues (e.g. sadness or calmness). My hypothesis is that musical and sound stimuli that are mimetic of emotional signals should combine to elicit a stronger response when presented as a multimodal stimulus as opposed to as a unimodal stimulus, whereas musical or sound stimuli...

  16. [Realization of Heart Sound Envelope Extraction Implemented on LabVIEW Based on Hilbert-Huang Transform].

    Science.gov (United States)

    Tan, Zhixiang; Zhang, Yi; Zeng, Deping; Wang, Hua

    2015-04-01

    We proposed a research of a heart sound envelope extraction system in this paper. The system was implemented on LabVIEW based on the Hilbert-Huang transform (HHT). We firstly used the sound card to collect the heart sound, and then implemented the complete system program of signal acquisition, pretreatment and envelope extraction on LabVIEW based on the theory of HHT. Finally, we used a case to prove that the system could collect heart sound, preprocess and extract the envelope easily. The system was better to retain and show the characteristics of heart sound envelope, and its program and methods were important to other researches, such as those on the vibration and voice, etc.

  17. Molecular dynamics simulation of amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Hu, Xiaoli; Martini, Ashlie; Egberts, Philip; Dong, Yalin

    2015-01-01

    Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip–substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip–sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement. (paper)

  18. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  19. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  20. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    Science.gov (United States)

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  1. Stochastic resonance in multi-stable coupled systems driven by two driving signals

    Science.gov (United States)

    Xu, Pengfei; Jin, Yanfei

    2018-02-01

    The stochastic resonance (SR) in multi-stable coupled systems subjected to Gaussian white noises and two different driving signals is investigated in this paper. Using the adiabatic approximation and the perturbation method, the coupled systems with four-well potential are transformed into the master equations and the amplitude of the response is obtained. The signal-to-noise ratio (SNR) is calculated numerically to demonstrate the occurrence of SR. For the case of two driving signals with different amplitudes, the interwell resonance between two wells S1 and S3 emerges for strong coupling. The SR can appear in the subsystem with weaker signal amplitude or even without driving signal with the help of coupling. For the case of two driving signals with different frequencies, the effects of SR in two subsystems driven by high and low frequency signals are both weakened with an increase in coupling strength. The stochastic multi-resonance phenomenon is observed in the subsystem subjected to the low frequency signal. Moreover, an effective scheme for phase suppressing SR is proposed by using a relative phase between two driving signals.

  2. Characterizing Alzheimer's disease severity via resting-awake EEG amplitude modulation analysis.

    Directory of Open Access Journals (Sweden)

    Francisco J Fraga

    Full Text Available Changes in electroencephalography (EEG amplitude modulations have recently been linked with early-stage Alzheimer's disease (AD. Existing tools available to perform such analysis (e.g., detrended fluctuation analysis, however, provide limited gains in discriminability power over traditional spectral based EEG analysis. In this paper, we explore the use of an innovative EEG amplitude modulation analysis technique based on spectro-temporal signal processing. More specifically, full-band EEG signals are first decomposed into the five well-known frequency bands and the envelopes are then extracted via a Hilbert transform. Each of the five envelopes are further decomposed into four so-called modulation bands, which were chosen to coincide with the delta, theta, alpha and beta frequency bands. Experiments on a resting-awake EEG dataset collected from 76 participants (27 healthy controls, 27 diagnosed with mild-AD, and 22 with moderate-AD showed significant differences in amplitude modulations between the three groups. Most notably, i delta modulation of the beta frequency band disappeared with an increase in disease severity (from mild to moderate AD, ii delta modulation of the theta band appeared with an increase in severity, and iii delta modulation of the beta frequency band showed to be a reliable discriminant feature between healthy controls and mild-AD patients. Taken together, it is hoped that the developed tool can be used to assist clinicians not only with early detection of Alzheimer's disease, but also to monitor its progression.

  3. Equivalent threshold sound pressure levels for acoustic test signals of short duration

    DEFF Research Database (Denmark)

    Poulsen, Torben; Daugaard, Carsten

    1998-01-01

    . The measurements were performed with two types of headphones, Telephonics TDH-39 and Sennheiser HDA-200. The sound pressure levels were measured in an IEC 318 ear simulator with Type 1 adapter (a flat plate) and a conical ring. The audiometric methods used in the experiments were the ascending method (ISO 8253...

  4. A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    DEFF Research Database (Denmark)

    Chang, Ji-ho; Jeong, Cheol-Ho

    2017-01-01

    This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two...... conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due...... to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive...

  5. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  6. Spatial avoidance to experimental increase of intermittent and continuous sound in two captive harbour porpoises.

    Science.gov (United States)

    Kok, Annebelle C M; Engelberts, J Pamela; Kastelein, Ronald A; Helder-Hoek, Lean; Van de Voorde, Shirley; Visser, Fleur; Slabbekoorn, Hans

    2018-02-01

    The continuing rise in underwater sound levels in the oceans leads to disturbance of marine life. It is thought that one of the main impacts of sound exposure is the alteration of foraging behaviour of marine species, for example by deterring animals from a prey location, or by distracting them while they are trying to catch prey. So far, only limited knowledge is available on both mechanisms in the same species. The harbour porpoise (Phocoena phocoena) is a relatively small marine mammal that could quickly suffer fitness consequences from a reduction of foraging success. To investigate effects of anthropogenic sound on their foraging efficiency, we tested whether experimentally elevated sound levels would deter two captive harbour porpoises from a noisy pool into a quiet pool (Experiment 1) and reduce their prey-search performance, measured as prey-search time in the noisy pool (Experiment 2). Furthermore, we tested the influence of the temporal structure and amplitude of the sound on the avoidance response of both animals. Both individuals avoided the pool with elevated sound levels, but they did not show a change in search time for prey when trying to find a fish hidden in one of three cages. The combination of temporal structure and SPL caused variable patterns. When the sound was intermittent, increased SPL caused increased avoidance times. When the sound was continuous, avoidance was equal for all SPLs above a threshold of 100 dB re 1 μPa. Hence, we found no evidence for an effect of sound exposure on search efficiency, but sounds of different temporal patterns did cause spatial avoidance with distinct dose-response patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of Listening to the Al-Quran on Heart Sound

    Science.gov (United States)

    Daud, N. F.; Sharif, Z.

    2018-03-01

    This paper investigates the effect on the heart sounds upon listening to the chosen verses of the Al Quran. A signal of the heart sounds is extracted using Thinklabs Phonocardiography software and then the frequency components are extracted using MATLAB 7.11.0. Frequency components during diastolic are compared for two sessions; before and during listening sessions. Diastolic is a period where the chamber of the heart is filled with the blood when the heart muscle is in a relaxed condition. From this study, it is found that the frequency of the heart sound during listening to Al-Quran is lower than the one before listening to Al-Quran. This indicates that, the state of calmness can be achieved by listening to this selected verses of the Al-Quran.

  8. Sinusoidal Representation of Acoustic Signals

    Science.gov (United States)

    Honda, Masaaki

    Sinusoidal representation of acoustic signals has been an important tool in speech and music processing like signal analysis, synthesis and time scale or pitch modifications. It can be applicable to arbitrary signals, which is an important advantage over other signal representations like physical modeling of acoustic signals. In sinusoidal representation, acoustic signals are composed as sums of sinusoid (sine wave) with different amplitudes, frequencies and phases, which is based on the timedependent short-time Fourier transform (STFT). This article describes the principles of acoustic signal analysis/synthesis based on a sinusoid representation with focus on sine waves with rapidly varying frequency.

  9. Arctic Ocean Model Intercomparison Using Sound Speed

    Science.gov (United States)

    Dukhovskoy, D. S.; Johnson, M. A.

    2002-05-01

    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  10. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    Science.gov (United States)

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.

  11. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  12. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 4; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 4

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.

  13. Device for precision measurement of speed of sound in a gas

    Science.gov (United States)

    Kelner, Eric; Minachi, Ali; Owen, Thomas E.; Burzynski, Jr., Marion; Petullo, Steven P.

    2004-11-30

    A sensor for measuring the speed of sound in a gas. The sensor has a helical coil, through which the gas flows before entering an inner chamber. Flow through the coil brings the gas into thermal equilibrium with the test chamber body. After the gas enters the chamber, a transducer produces an ultrasonic pulse, which is reflected from each of two faces of a target. The time difference between the two reflected signals is used to determine the speed of sound in the gas.

  14. Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study.

    Science.gov (United States)

    Yang, Weiping; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Ren, Yanna; Takahashi, Satoshi; Wu, Jinglong

    2015-01-01

    A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190-210 ms, for 1 kHz stimuli from 170-200 ms, for 2.5 kHz stimuli from 140-200 ms, 5 kHz stimuli from 100-200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300-340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.

  15. A Novel Robust Audio Watermarking Algorithm by Modifying the Average Amplitude in Transform Domain

    Directory of Open Access Journals (Sweden)

    Qiuling Wu

    2018-05-01

    Full Text Available In order to improve the robustness and imperceptibility in practical application, a novel audio watermarking algorithm with strong robustness is proposed by exploring the multi-resolution characteristic of discrete wavelet transform (DWT and the energy compaction capability of discrete cosine transform (DCT. The human auditory system is insensitive to the minor changes in the frequency components of the audio signal, so the watermarks can be embedded by slightly modifying the frequency components of the audio signal. The audio fragments segmented from the cover audio signal are decomposed by DWT to obtain several groups of wavelet coefficients with different frequency bands, and then the fourth level detail coefficient is selected to be divided into the former packet and the latter packet, which are executed for DCT to get two sets of transform domain coefficients (TDC respectively. Finally, the average amplitudes of the two sets of TDC are modified to embed the binary image watermark according to the special embedding rule. The watermark extraction is blind without the carrier audio signal. Experimental results confirm that the proposed algorithm has good imperceptibility, large payload capacity and strong robustness when resisting against various attacks such as MP3 compression, low-pass filtering, re-sampling, re-quantization, amplitude scaling, echo addition and noise corruption.

  16. Unsupervised Feature Learning for Heart Sounds Classification Using Autoencoder

    Science.gov (United States)

    Hu, Wei; Lv, Jiancheng; Liu, Dongbo; Chen, Yao

    2018-04-01

    Cardiovascular disease seriously threatens the health of many people. It is usually diagnosed during cardiac auscultation, which is a fast and efficient method of cardiovascular disease diagnosis. In recent years, deep learning approach using unsupervised learning has made significant breakthroughs in many fields. However, to our knowledge, deep learning has not yet been used for heart sound classification. In this paper, we first use the average Shannon energy to extract the envelope of the heart sounds, then find the highest point of S1 to extract the cardiac cycle. We convert the time-domain signals of the cardiac cycle into spectrograms and apply principal component analysis whitening to reduce the dimensionality of the spectrogram. Finally, we apply a two-layer autoencoder to extract the features of the spectrogram. The experimental results demonstrate that the features from the autoencoder are suitable for heart sound classification.

  17. Investigation on the generation characteristic of pressure pulse wave signal during the measurement-while-drilling process

    Science.gov (United States)

    Changqing, Zhao; Kai, Liu; Tong, Zhao; Takei, Masahiro; Weian, Ren

    2014-04-01

    The mud-pulse logging instrument is an advanced measurement-while-drilling (MWD) tool and widely used by the industry in the world. In order to improve the signal transmission rate, ensure the accurate transmission of information and address the issue of the weak signal on the ground of oil and gas wells, the signal generator should send out the strong mud-pulse signals with the maximum amplitude. With the rotary valve pulse generator as the study object, the three-dimensional Reynolds NS equations and standard k - ɛ turbulent model were used as a mathematical model. The speed and pressure coupling calculation was done by simple algorithms to get the amplitudes of different rates of flow and axial clearances. Tests were done to verify the characteristics of the pressure signals. The pressure signal was captured by the standpiece pressure monitoring system. The study showed that the axial clearances grew bigger as the pressure wave amplitude value decreased and caused the weakening of the pulse signal. As the rate of flow got larger, the pressure wave amplitude would increase and the signal would be enhanced.

  18. Second Sound for Heat Source Localization

    CERN Document Server

    Vennekate, Hannes; Uhrmacher, Michael; Quadt, Arnulf; Grosse-Knetter, Joern

    2011-01-01

    Defects on the surface of superconducting cavities can limit their accelerating gradient by localized heating. This results in a phase transition to the normal conduction state | a quench. A new application, involving Oscillating Superleak Transducers (OST) to locate such quench inducing heat spots on the surface of the cavities, has been developed by D. Hartill et al. at Cornell University in 2008. The OSTs enable the detection of heat transfer via second sound in super uid helium. This thesis presents new results on the analysis of their signal. Its behavior has been studied for dierent circumstances at setups at the University of Gottingen and at CERN. New approaches for an automated signal processing have been developed. Furthermore, a rst test setup for a single-cell Superconducting Proton Linac (SPL) cavity has been prepared. Recommendations of a better signal retrieving for its operation are presented.

  19. Effects of small variations of speed of sound in optoacoustic tomographic imaging

    International Nuclear Information System (INIS)

    Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel

    2014-01-01

    Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtained with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media

  20. Detection of Heart Sounds in Children with and without Pulmonary Arterial Hypertension--Daubechies Wavelets Approach.

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    Full Text Available Automatic detection of the 1st (S1 and 2nd (S2 heart sounds is difficult, and existing algorithms are imprecise. We sought to develop a wavelet-based algorithm for the detection of S1 and S2 in children with and without pulmonary arterial hypertension (PAH.Heart sounds were recorded at the second left intercostal space and the cardiac apex with a digital stethoscope simultaneously with pulmonary arterial pressure (PAP. We developed a Daubechies wavelet algorithm for the automatic detection of S1 and S2 using the wavelet coefficient 'D6' based on power spectral analysis. We compared our algorithm with four other Daubechies wavelet-based algorithms published by Liang, Kumar, Wang, and Zhong. We annotated S1 and S2 from an audiovisual examination of the phonocardiographic tracing by two trained cardiologists and the observation that in all subjects systole was shorter than diastole.We studied 22 subjects (9 males and 13 females, median age 6 years, range 0.25-19. Eleven subjects had a mean PAP < 25 mmHg. Eleven subjects had PAH with a mean PAP ≥ 25 mmHg. All subjects had a pulmonary artery wedge pressure ≤ 15 mmHg. The sensitivity (SE and positive predictivity (+P of our algorithm were 70% and 68%, respectively. In comparison, the SE and +P of Liang were 59% and 42%, Kumar 19% and 12%, Wang 50% and 45%, and Zhong 43% and 53%, respectively. Our algorithm demonstrated robustness and outperformed the other methods up to a signal-to-noise ratio (SNR of 10 dB. For all algorithms, detection errors arose from low-amplitude peaks, fast heart rates, low signal-to-noise ratio, and fixed thresholds.Our algorithm for the detection of S1 and S2 improves the performance of existing Daubechies-based algorithms and justifies the use of the wavelet coefficient 'D6' through power spectral analysis. Also, the robustness despite ambient noise may improve real world clinical performance.