WorldWideScience

Sample records for sound field vertical

  1. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    Science.gov (United States)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose

  2. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  3. Piezometric surface deduced from vertical electrical sounding data ...

    African Journals Online (AJOL)

    In hydrogeological studies the knowledge of the water table is very essential. In this work, one hundred and eight vertical electrical soundings were carried out, with the view of unravelling the hydrogeological characteristics of Kuri River Basin, Kaduna, Nigeria. The water table for eleven hand dug wells were directly ...

  4. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  5. Diffuse sound field: challenges and misconceptions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    Diffuse sound field is a popular, yet widely misused concept. Although its definition is relatively well established, acousticians use this term for different meanings. The diffuse sound field is defined by a uniform sound pressure distribution (spatial diffusion or homogeneity) and uniform...... tremendously in different chambers because the chambers are non-diffuse in variously different ways. Therefore, good objective measures that can quantify the degree of diffusion and potentially indicate how to fix such problems in reverberation chambers are needed. Acousticians often blend the concept...... of mixing and diffuse sound field. Acousticians often refer diffuse reflections from surfaces to diffuseness in rooms, and vice versa. Subjective aspects of diffuseness have not been much investigated. Finally, ways to realize a diffuse sound field in a finite space are discussed....

  6. Digital servo control of random sound fields

    Science.gov (United States)

    Nakich, R. B.

    1973-01-01

    It is necessary to place number of sensors at different positions in sound field to determine actual sound intensities to which test object is subjected. It is possible to determine whether specification is being met adequately or exceeded. Since excitation is of random nature, signals are essentially coherent and it is impossible to obtain true average.

  7. DESIGN AND ENGINEERING BACKGROUND FOR STATION NETWORKS OF VERTICAL IONOSPHERE SOUNDING

    Directory of Open Access Journals (Sweden)

    A. Y. Grishentsev

    2013-05-01

    Full Text Available The paper deals with analysis of the network stations structure for ionosphere vertical sounding. Design features and creation principle of the program complexes for automated processing, analysis and storage of ionosphere sounding are considered. Conceptual model of complex database control system is created. The results of work are used in research practice of leading national organizations to study the ionosphere. Obtained application results of suggested algorithms and programs for automated processing and analysis of ionosphere vertical sounding are shown.

  8. Vertical gradients of sunspot magnetic fields

    Science.gov (United States)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  9. Sound field separation with cross measurement surfaces.

    Directory of Open Access Journals (Sweden)

    Jin Mao

    Full Text Available With conventional near-field acoustical holography, it is impossible to identify sound pressure when the coherent sound sources are located on the same side of the array. This paper proposes a solution, using cross measurement surfaces to separate the sources based on the equivalent source method. Each equivalent source surface is built in the center of the corresponding original source with a spherical surface. According to the different transfer matrices between equivalent sources and points on holographic surfaces, the weighting of each equivalent source from coherent sources can be obtained. Numerical and experimental studies have been performed to test the method. For the sound pressure including noise after separation in the experiment, the calculation accuracy can be improved by reconstructing the pressure with Tikhonov regularization and the L-curve method. On the whole, a single source can be effectively separated from coherent sources using cross measurement.

  10. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    Science.gov (United States)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  11. Effort variation regularization in sound field reproduction

    DEFF Research Database (Denmark)

    Stefanakis, Nick; Jacobsen, Finn; Sarris, Ioannis

    2010-01-01

    In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths......), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy...

  12. A COMPUTER PROGRAM FOR INTERPRETATION OF THE DATA OF VERTICAL ELECTRICAL SOUNDING VEZ-4A

    Directory of Open Access Journals (Sweden)

    D. G. Koliushko

    2017-06-01

    Full Text Available Purpose. Creating a computer program for interpreting the results of vertical sounding the soil in the form of multilayer model most typical for Ukraine. Methodology. The algorithm of the program is constructed on determination the soil structure with the help of the method of point source current, method of analogy and method of equivalent. The option of automatic interpretation based on Hook-Jeeves method. The program is implemented in the programming language Delphi. Results. The computer program «VEZ-4A» has a possibility of the interactive and automatic interpretation sounding results in the multi-layered geoelectrical model. Originality. In first time the computer program for analyzing and interpreting results of the soil sounding by Wenner configuration was created on the base of the analytical solution for field of current point source located in four-, three- or two-layer structure. In paper the review is presented and basic functions of our program are analyzed. Practical value. The program «VEZ-4A» is created and adapted for use in the electromagnetic diagnostics of grounding of existing power plants and substations.

  13. Vertical field and equilibrium calculation in ETE

    International Nuclear Information System (INIS)

    Montes, Antonio; Shibata, Carlos Shinya.

    1996-01-01

    The free-boundary MHD equilibrium code HEQ is used to study the plasma behaviour in the tokamak ETE, with optimized compensations coils and vertical field coils. The changes on the equilibrium parameters for different plasma current values are also investigated. (author). 5 refs., 4 figs., 2 tabs

  14. Use Of Vertical Electrical Sounding Survey For Study Groundwater In NISSAH Region, SAUDI ARABIA

    Science.gov (United States)

    Alhenaki, Bander; Alsoma, Ali

    2015-04-01

    The aim of this research is to investigate groundwater depth in desert and dry environmental conditions area . The study site located in Wadi Nisah-eastern part of Najd province (east-central of Saudi Arabia), Generally, the study site is underlain by Phanerozoic sedimentary rocks of the western edge of the Arabian platform, which rests on Proterozoic basement at depths ranged between 5-8km. Another key objective of this research is to assess the water-table and identify the bearing layers structures study area by using Vertical Electrical Sounding (VES) 1D imaging technique. We have been implemented and acquired a sections of 315 meter vertical electrical soundings using Schlumberger field arrangements . These dataset were conducted along 9 profiles. The resistivity Schlumberger sounding was carried with half-spacing in the range 500 . The VES survey intend to cover several locations where existing wells information may be used for correlations. also location along the valley using the device Syscal R2 The results of this study concluded that there are at least three sedimentary layers to a depth of 130 meter. First layer, extending from the surface to a depth of about 3 meter characterized by dry sandy layer and high resistivity value. The second layer, underlain the first layer to a depth of 70 meter. This layer has less resistant compare to the first layer. Last layer, has low resistivity values of 20 ohm .m to a depth of 130 meter blow ground surface. We have observed a complex pattern of groundwater depth (ranging from 80 meter to 120 meter) which may reflect the lateral heterogeneity of study site. The outcomes of this research has been used to locate the suitable drilling locations.

  15. Equilibrium vertical field in the TBR Tokamak

    International Nuclear Information System (INIS)

    Ueta, A.Y.

    1985-01-01

    An experimental study on the influence of the vertical magnetic field of the TBR tokamak on the stability and equilibrium of plasma column, was done. Magnetic pick-up coils were built to measure plasma current and position, together with active networks, necessary fo the electronic processing of signals. Some measurements were on the space configuration of the vertical field, and on the influence due to the toroidal vessel. From the data obtained it was possible to discuss the influence of the currents induced on the vessel surface, on plasma equilibrium. Theoretical and experimental results of the vertica field, as a function of plasma current were compared, and allowed an evaluation of the plasma kinetic pressure and temperature. (Author) [pt

  16. Interaction vertices in reduced string field theories

    International Nuclear Information System (INIS)

    Embacher, F.

    1989-01-01

    In contrast to previous expectations, covariant overlap vertices are not always suitable for gauge-covariant formulations of bosonic string field theory with a reduced supplementary field content. This is demonstrated for the version of the theory suggested by Neveu, Schwarz and West. The method to construct the interaction, as formulated by Neveu and West, fails at one level higher than these authors have considered. The condition for a general vertex to describe formally a local gauge-invariant interaction is derived. The solution for the action functional and the gauge transformation law is exhibited for all fields at once, to the first order in the coupling constant. However, all these vertices seem to be unphysical. 21 refs. (Author)

  17. Estimating the diffuseness of sound fields: A wavenumber analysis method

    DEFF Research Database (Denmark)

    Nolan, Melanie; Davy, John L.; Brunskog, Jonas

    2017-01-01

    The concept of a diffuse sound field is widely used in the analysis of sound in enclosures. The diffuse sound field is generally described as composed of plane waves with random phases, which wave number vectors are uniformly distributed over all angles of incidence. In this study, an interpretat...

  18. Sounding the field: recent works in sound studies.

    Science.gov (United States)

    Boon, Tim

    2015-09-01

    For sound studies, the publication of a 593-page handbook, not to mention the establishment of at least one society - the European Sound Studies Association - might seem to signify the emergence of a new academic discipline. Certainly, the books under consideration here, alongside many others, testify to an intensification of concern with the aural dimensions of culture. Some of this work comes from HPS and STS, some from musicology and cultural studies. But all of it should concern members of our disciplines, as it represents a long-overdue foregrounding of the aural in how we think about the intersections of science, technology and culture.

  19. IRI-2012 MODEL ADAPTABILITY ESTIMATION FOR AUTOMATED PROCESSING OF VERTICAL SOUNDING IONOGRAMS

    Directory of Open Access Journals (Sweden)

    V. D. Nikolaeva

    2014-01-01

    Full Text Available The paper deals with possibility of IRI-2012 global empirical model applying to the vertical sounding of the ionosphere semiautomatic data processing. Main ionosphere characteristics from vertical sounding data at IZMIRAN Voeikovo station in February 2013 were compared with IRI-2012 model calculation results. 2688 model values and 1866 real values of f0F2, f0E, hmF2, hmE were processed. E and F2 layers critical frequency (f0E, f0F2 and the maximum altitudes (hmF2, hmE were determined from the ionograms. Vertical profiles of the electron concentration were restored with IRI-2012 model by measured frequency and height. The model calculation was also made without the inclusion of the real vertical sounding data. Monthly averages and standard deviations (σ for the parameters f0F2, f0E, hmF2, hmE for each hour of the day were calculated according to the vertical sounding and model values. Model applicability conditions for automated processing of ionograms for subauroral ionosphere were determined. Initial IRI-2012 model can be applied in the sub-auroral ionograms processing at daytime with undisturbed conditions in the absence of sporadic ionization. In this case model calculations can be adjusted by the near-time vertical sounding data. IRI-2012 model values for f0E (in daytime and hmF2 can be applied to reduce computational costs in the systems of automatic parameters search and preliminary determination of the searching area range for the main parameters. IRI-2012 model can be used for a more accurate approximation of the real data series in the absence of the real values. In view of sporadic ionization, ionosphere models of the high latitudes must be applied with corpuscular ions formation unit.

  20. The effect of vocal fold vertical stiffness gradient on sound production

    Science.gov (United States)

    Geng, Biao; Xue, Qian; Zheng, Xudong

    2015-11-01

    It is observed in some experimental studies on canine vocal folds (VFs) that the inferior aspect of the vocal fold (VF) is much stiffer than the superior aspect under relatively large strain. Such vertical difference is supposed to promote the convergent-divergent shape during VF vibration and consequently facilitate the production of sound. In this study, we investigate the effect of vertical variation of VF stiffness on sound production using a numerical model. The vertical variation of stiffness is produced by linearly increasing the Young's modulus and shear modulus from the superior to inferior aspects in the cover layer, and its effect on phonation is examined in terms of aerodynamic and acoustic quantities such as flow rate, open quotient, skewness of flow wave form, sound intensity and vocal efficiency. The flow-induced vibration of the VF is solved with a finite element solver coupled with 1D Bernoulli equation, which is further coupled with a digital waveguide model. This study is designed to find out whether it's beneficial to artificially induce the vertical stiffness gradient by certain implanting material in VF restoring surgery, and if it is beneficial, what gradient is the most favorable.

  1. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.

    2012-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed

  2. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  3. [A focused sound field measurement system by LabVIEW].

    Science.gov (United States)

    Jiang, Zhan; Bai, Jingfeng; Yu, Ying

    2014-05-01

    In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.

  4. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    Science.gov (United States)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  5. A COMPUTER PROGRAM FOR INTERPRETATION OF THE DATA OF VERTICAL ELECTRICAL SOUNDING VEZ-4A

    OpenAIRE

    D. G. Koliushko; S. S. Rudenko

    2017-01-01

    Purpose. Creating a computer program for interpreting the results of vertical sounding the soil in the form of multilayer model most typical for Ukraine. Methodology. The algorithm of the program is constructed on determination the soil structure with the help of the method of point source current, method of analogy and method of equivalent. The option of automatic interpretation based on Hook-Jeeves method. The program is implemented in the programming language Delphi. Results. The computer ...

  6. The Reduction of Vertical Interchannel Crosstalk: The Analysis of Localisation Thresholds for Natural Sound Sources

    Directory of Open Access Journals (Sweden)

    Rory Wallis

    2017-03-01

    Full Text Available In subjective listening tests, natural sound sources were presented to subjects as vertically-oriented phantom images from two layers of loudspeakers, ‘height’ and ‘main’. Subjects were required to reduce the amplitude of the height layer until the position of the resultant sound source matched that of the same source presented from the main layer only (the localisation threshold. Delays of 0, 1 and 10 ms were applied to the height layer with respect to the main, with vertical stereophonic and quadraphonic conditions being tested. The results of the study showed that the localisation thresholds obtained were not significantly affected by sound source or presentation method. Instead, the only variable whose effect was significant was interchannel time difference (ICTD. For ICTD of 0 ms, the median threshold was −9.5 dB, which was significantly lower than the −7 dB found for both 1 and 10 ms. The results of the study have implications both for the recording of sound sources for three-dimensional (3D audio reproduction formats and also for the rendering of 3D images.

  7. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  8. Zero sound and quasiwave: separation in the magnetic field

    International Nuclear Information System (INIS)

    Bezuglyj, E.V.; Bojchuk, A.V.; Burma, N.G.; Fil', V.D.

    1995-01-01

    Theoretical and experimental results on the behavior of the longitudinal and transverse electron sound in a weak magnetic field are presented. It is shown theoretically that the effects of the magnetic field on zero sound velocity and ballistic transfer are opposite in sign and have sufficiently different dependences on the sample width, excitation frequency and relaxation time. This permits us to separate experimentally the Fermi-liquid and ballistic contributions in the electron sound signals. For the first time the ballistic transfer of the acoustic excitation by the quasiwave has been observed in zero magnetic field

  9. Toroidal inhomogeneity of the vertical field in a tokamak apparatus

    International Nuclear Information System (INIS)

    Sometani, Taro; Takashima, Hidekazu

    1977-01-01

    An experiment with a model device has been made on the toroidal inhomogeneity of the vertical field in a Tokamak with an iron core. The D.C. vertical field is increased near the yokes of the iron core, while the gross plasma image field (consisting of the components due to the plasma current, the primary current, and its image) is reduced there. These two vertical fields, when superposed, exert force on the plasma as a less inhomogeneous external vertical field. The vertical field can be homogenized satisfactorily by using a compensation winding wound at a proper position on the iron core even if the shielding plates, which are mounted on some Tokamaks, are dispensed with. (auth.)

  10. Sound field control for a low-frequency test facility

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2013-01-01

    The two largest problems in controlling the reproduction of low-frequency sound for psychoacoustic experiments is the effect of the room due to standing waves and the relatively large sound pressure levels needed. Anechoic rooms are limited downward in frequency and distortion may be a problem even...... at moderate levels, while pressure-field playback can give higher sound pressures but is limited upwards in frequency. A new solution that addresses both problems has been implemented in the laboratory of Acoustics, Aalborg University. The solution uses one wall with 20 loudspeakers to generate a plane wave...... that is actively absorbed when it reaches the 20 loudspeakers on the opposing wall. This gives a homogeneous sound field in the majority of the room with a flat frequency response in the frequency range 2-300 Hz. The lowest frequencies are limited to sound pressure levels in the order of 95 dB. If larger levels...

  11. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  12. Second vertical derivative of potential fields using an adaptation of ...

    African Journals Online (AJOL)

    The second vertical derivative of magnetic fields is commonly used for resolution of anomalies in gravity and magnetic fields. It is also commonly used as an aid to geologic mapping i.e. for the delineation of geological discontinuities in the subsurface. Frequency domain methods for calculating second vertical derivatives ...

  13. Sound field reconstruction based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...... within the audible frequency range by means of simulations and experimental results. The good agreement observed between simulations and measurements is further confirmed with representations of the sound field obtained with traditional microphone array measurements....

  14. Impacts of distinct observations during the 2009 Prince William Sound field experiment: A data assimilation study

    Science.gov (United States)

    Li, Z.; Chao, Y.; Farrara, J.; McWilliams, J. C.

    2012-12-01

    A set of data assimilation experiments, known as Observing System Experiments (OSEs), are performed to assess the relative impacts of different types of observations acquired during the 2009 Prince William Sound Field Experiment. The observations assimilated consist primarily of three types: High Frequency (HF) radar surface velocities, vertical profiles of temperature/salinity (T/S) measured by ships, moorings, Autonomous Underwater Vehicles and gliders, and satellite sea surface temperatures (SSTs). The impact of all the observations, HF radar surface velocities, and T/S profiles is assessed. Without data assimilation, a frequently occurring cyclonic eddy in the central Sound is overly persistent and intense. The assimilation of the HF radar velocities effectively reduces these biases and improves the representation of the velocities as well as the T/S fields in the Sound. The assimilation of the T/S profiles improves the large scale representation of the temperature/salinity and also the velocity field in the central Sound. The combination of the HF radar surface velocities and sparse T/S profiles results in an observing system capable of representing the circulation in the Sound reliably and thus producing analyses and forecasts with useful skill. It is suggested that a potentially promising observing network could be based on satellite SSHs and SSTs along with sparse T/S profiles, and future satellite SSHs with wide swath coverage and higher resolution may offer excellent data that will be of great use for predicting the circulation in the Sound.

  15. Reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Walton, Tim

    2014-01-01

    waves traveling in any direction. In particular, rigid sphere microphone arrays are robust, and have the favorable property that the scattering introduced by the array can be compensated for - making the array virtually transparent. This study examines a recently proposed sound field reconstruction...... method based on a point source expansion, i.e. equivalent source method, using a rigid spherical array. The study examines the capability of the method to distinguish between sound waves arriving from different directions (i.e., as a sound field separation method). This is representative of the potential...

  16. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  17. Efficacy of Hummel (Modified Schlumberger Arrays of Vertical Electrical Sounding in Groundwater Exploration: Case Study of Parts of Ibadan Metropolis, Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Micheal Oladunjoye

    2015-01-01

    Full Text Available This research compared the interpretation results of the Vertical Electrical Sounding data acquired using the conventional Schlumberger and modified Schlumberger arrays with a view to assessing the effectiveness of the modified Schlumberger arrays of vertical electrical sounding as an alternative to the conventional Schlumberger array at sites with space constraint during groundwater exploration. A total of thirty-seven (37 sounding locations were occupied and one hundred (100 sounding data for both conventional Schlumberger and modified Schlumberger arrays were collected across different rock units within Ibadan metropolis, south-western Nigeria, with electrode spacing (AB/2 ranging from 1 to 75 m. The field data were interpreted qualitatively by curve matching and computer iterative methods. Also, statistical analysis of subsurface units and the coefficient of correlation “R” of the statistical plots of the field data shows the relationship between the different arrays. The raw data plot of the different arrays shows significant similarities while statistical analysis of the geo-electric parameters obtained from the different arrays across varied lithologic units show that strong relationships exist between the different field methods. The coefficient of correlation R with values ranging from 0.7 to 0.99 implies that a good similarity exists between the different field methods employed in this study. Hence, modified Schlumberger arrays can be said to be a good alternative to the conventional Schlumberger array for groundwater exploration especially in urban settings where space constraint is a major challenge.

  18. 2D interpretation of vertical electrical soundings: application to the Sarantaporon basin (Thessaly, Greece)

    International Nuclear Information System (INIS)

    Atzemoglou, A; Tsourlos, P

    2012-01-01

    A large-scale vertical electrical sounding (VES) survey was applied at the basin of Sarantaporon, Elassona in order to study the tectonic and hydrogeological setting of the area. A large number of VES was obtained on a near-regular grid and data were initially processed with 1D inversion algorithm. Since some of the dense measured soundings were collinear, it was possible to combine 1D sounding data and produce 2D data sets which were interpreted using a fully 2D inversion algorithm. 2D geoelectrical models were in very good agreement with the existing drilling information of the area. 2D interpretation results were combined to produce pseudo-3D geoelectrical images of the subsurface. Resulting geoelectrical interpretations are in very good agreement with the existing geological information and reveal a relatively detailed picture of the basin's lithology. Further, the results allowed us to obtain new, and verify existing, structural information regarding the studied area. Overall, it is concluded that 2D interpretation of 1D VES measurements can produce improved subsurface geophysical images and presents a potential useful tool for larger scale geological investigations especially in the case of reprocessing existing VES data sets

  19. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  20. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa; Lee, Seokwoo; Lee, Seung S

    2010-01-01

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  1. Ferrofluid meniscus in a horizontal or vertical magnetic field

    International Nuclear Information System (INIS)

    Rosensweig, R.E.; Elborai, S.; Lee, S.-H.; Zahn, M.

    2005-01-01

    An optical system using reflections of a narrow laser beam to measure the height and shape of a ferrofluid meniscus in response to uniform applied magnetic fields finds that meniscus height on a vertical flat wall decreases in horizontal applied field and increases in vertical applied field. An approximate energy minimization analysis predicts meniscus height in directional agreement with measurements. This study is a first step in calculating the tangential surface force acting in flows where magnetization magnitude and direction lag a changing magnetic field direction, and the meniscus shape is magnetically perturbed

  2. Sound field reproduction as an equivalent acoustical scattering problem.

    Science.gov (United States)

    Fazi, Filippo Maria; Nelson, Philip A

    2013-11-01

    Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.

  3. Vertical orbit excursion fixed field alternating gradient accelerators

    Directory of Open Access Journals (Sweden)

    Stephen Brooks

    2013-08-01

    Full Text Available Fixed field alternating gradient (FFAG accelerators with vertical orbit excursion (VFFAGs provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.

  4. Vertical distribution of the sound-scattering layer in the Amundsen Sea, Antarctica

    Science.gov (United States)

    Lee, Hyungbeen; La, Hyoung Sul; Kang, Donhyug; Lee, SangHoon

    2018-03-01

    Mid-trophic level at high-latitude coastal water in the Southern Ocean reside unique geographical condition with sea ice, coastal polynya, and ice shelf. To investigate the regional differences in their vertical distribution during summer, we examined acoustic backscatter data from scientific echo sounder, collected in the three representative regions in the Amundsen Sea: pack ice zone, coastal polynya zone, and ice shelf zone. The weighted mean depths (WMDs) representing zooplankton were calculated with the high resolution acoustic backscatter (1-m depth) to identify the vertical variability of the sound-scattering layer (SSL). WMDs were mainly distributed between 50 and 130 m exhibiting clear regional differences. The WMDs were detected in the shallow depth ranged between 48 and 84 m within the pack ice and coastal polynya, whereas they were observed at deeper depths around near ice shelf ranged between 117 and 126 m. WMDs varied with changing the stratification of water column structure representing strong linear relationship with the mixed layer depth (r = 0.69). This finding implies that understanding the essential forcing of zooplankton behavior will improve our ability to assess the coastal ecosystem in the Southern Ocean facing dramatic change.

  5. Audibility of individual reflections in a complete sound field, III

    DEFF Research Database (Denmark)

    Bech, Søren

    1996-01-01

    This paper reports on the influence of individual reflections on the auditory localization of a loudspeaker in a small room. The sound field produced by a single loudspeaker positioned in a normal listening room has been simulated using an electroacoustic setup. The setup models the direct sound......-independent absorption coefficients of the room surfaces, and (2) a loudspeaker with directivity according to a standard two-way system and absorption coefficients according to real materials. The results have shown that subjects can distinguish reliably between timbre and localization, that the spectrum level above 2 k...

  6. Evidence of Diel Vertical Migration of Mesopelagic Sound-Scattering Organisms in the Arctic

    Directory of Open Access Journals (Sweden)

    Harald Gjøsæter

    2017-10-01

    Full Text Available While sound scattering layers (SSLs have been described previously from ice-covered waters in the Arctic, the existence of a viable mesopelagic community that also includes mesopelagic fishes in the Arctic has been questioned. In addition, it has been hypothesized that vertical migration would hardly exist in these areas. We wanted to check if deep scattering layers (DSLs was found to the west and north of Svalbard (79°30′N−82°10′N during autumn 2015, and if present; whether organisms in such DSLs undertook vertical migrations. Our null hypothesis was that there would be no evidence of diel vertical migration. Multi-frequency acoustic observations by hull mounted echo sounder (18, 38, and 120 kHz revealed a DSL at depths ~210–510 m in areas with bottom depths exceeding ~600 m. Investigating eight geographical locations that differed with respect to time periods, light cycle and sea ice conditions, we show that the deeper layer of DSL displayed a clear ascending movement during night time and a descending movement during daytime. The high-light weighted mean depth (WMD (343–514 m with respect to backscattered energy was statistically deeper than the low-light WMD (179–437 m for the locations studied. This behavior of the DSL was found to be consistent both when the sun was continuously above the horizon and after it started to set on 1 September, and both in open water and sea ice covered waters. The WMD showed an increasing trend, while the nautical area backscattering strength from the DSL showed a decreasing trend from south to north among the studied locations. Hydrographic observations revealed that the diel migration was found in the lower part of the north-flowing Atlantic Water, and was disconnected from the surface water masses above the Atlantic Water during day and night. The organisms conducting vertical migrations were studied by vertical and oblique hauls with zooplankton nets and pelagic trawls. These data suggest

  7. Deformation of a sound field caused by a manikin

    DEFF Research Database (Denmark)

    Weinrich, Søren G.

    1981-01-01

    around the head at distances of 1 cm to 2 m, measured from the tip of the nose. The signals were pure tones at 1, 2, 4, 6, 8, and 10 kHz. It was found that the presence of the manikin caused changes in the SPL of the sound field of at most ±2.5 dB at a distance of 1 m from the surface of the manikin....... Only over an interval of approximately 20 ° behind the manikin (i.e., opposite the sound source) did the manikin cause much larger changes, up to 9 dB. These changes are caused by destructive interference between sounds coming from opposite sides of the manikin. In front of the manikin, the changes...

  8. Analysis of radiation fields in tomography on diffusion gaseous sound

    International Nuclear Information System (INIS)

    Bekman, I.N.

    1999-01-01

    Perspectives of application of equilibrium and stationary variants of diffusion tomography with radioactive gaseous sounds for spatial reconstruction of heterogeneous media in materials technology were considered. The basic attention were allocated to creation of simple algorithms of detection of sound accumulation on the background of monotonically varying concentration field. Algorithms of transformation of two-dimensional radiation field in three-dimensional distribution of radiation sources were suggested. The methods of analytical elongation of concentration field permitting separation of regional anomalies on the background of local ones and vice verse were discussed. It was shown that both equilibrium and stationary variants of diffusion tomography detect the heterogeneity of testing material, provide reduction of spatial distribution of elements of its structure and give an estimation of relative degree of defectiveness

  9. Correlation Factors Describing Primary and Spatial Sensations of Sound Fields

    Science.gov (United States)

    ANDO, Y.

    2002-11-01

    The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.

  10. Subjective preference evaluation of sound fields by performing singers

    Science.gov (United States)

    Noson, Dennis

    2003-08-01

    A model of the auditory process is proposed for performing singers, which incorporates the added signal from bone conduction, as well as the psychological distance for subjective preference of the performer from the acoustic sound field of the stage. The explanatory power of previous scientific studies of vocal stage acoustics has been limited by a lack of an underlying theory of performer preference. Ando's theory, using the autocorrelation function (ACF) for parametrizing temporal factors, was applied to interpretation of singer sound field preference determined by the pair comparison method. Melisma style singing (no lyrics) was shown to increase the preferred delay time of reflections from a mean of 14 ms with lyrics to 23 ms without (pThesis advisor: Yoichi Ando Copies of this thesis are available from the author by inquiry at BRC Acoustics, 1741 First Avenue South, Seattle, WA 98134 USA. E-mail address: dnoson@brcacoustics.com

  11. A Real-Time Sound Field Rendering Processor

    Directory of Open Access Journals (Sweden)

    Tan Yiyu

    2017-12-01

    Full Text Available Real-time sound field renderings are computationally intensive and memory-intensive. Traditional rendering systems based on computer simulations suffer from memory bandwidth and arithmetic units. The computation is time-consuming, and the sample rate of the output sound is low because of the long computation time at each time step. In this work, a processor with a hybrid architecture is proposed to speed up computation and improve the sample rate of the output sound, and an interface is developed for system scalability through simply cascading many chips to enlarge the simulated area. To render a three-minute Beethoven wave sound in a small shoe-box room with dimensions of 1.28 m × 1.28 m × 0.64 m, the field programming gate array (FPGA-based prototype machine with the proposed architecture carries out the sound rendering at run-time while the software simulation with the OpenMP parallelization takes about 12.70 min on a personal computer (PC with 32 GB random access memory (RAM and an Intel i7-6800K six-core processor running at 3.4 GHz. The throughput in the software simulation is about 194 M grids/s while it is 51.2 G grids/s in the prototype machine even if the clock frequency of the prototype machine is much lower than that of the PC. The rendering processor with a processing element (PE and interfaces consumes about 238,515 gates after fabricated by the 0.18 µm processing technology from the ROHM semiconductor Co., Ltd. (Kyoto Japan, and the power consumption is about 143.8 mW.

  12. Magnetic and velocity fields MHD flow of a stretched vertical ...

    African Journals Online (AJOL)

    Analytical solutions for heat and mass transfer by laminar flow of Newtonian, viscous, electrically conducting and heat generation/absorbing fluid on a continuously moving vertical permeable surface with buoyancy in the presence of a magnetic field and a first order chemical reaction are reported. The solutions for magnetic ...

  13. Acoustic radiosity for computation of sound fields in diffuse environments

    Science.gov (United States)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2002-05-01

    The use of image and ray tracing methods (and variations thereof) for the computation of sound fields in rooms is relatively well developed. In their regime of validity, both methods work well for prediction in rooms with small amounts of diffraction and mostly specular reflection at the walls. While extensions to the method to include diffuse reflections and diffraction have been made, they are limited at best. In the fields of illumination and computer graphics the ray tracing and image methods are joined by another method called luminous radiative transfer or radiosity. In radiosity, an energy balance between surfaces is computed assuming diffuse reflection at the reflective surfaces. Because the interaction between surfaces is constant, much of the computation required for sound field prediction with multiple or moving source and receiver positions can be reduced. In acoustics the radiosity method has had little attention because of the problems of diffraction and specular reflection. The utility of radiosity in acoustics and an approach to a useful development of the method for acoustics will be presented. The method looks especially useful for sound level prediction in industrial and office environments. [Work supported by NSF.

  14. Sound field simulation and acoustic animation in urban squares

    Science.gov (United States)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  15. Identification of aquifer potential in Karanganyar city by using vertical electrical sounding method

    Science.gov (United States)

    Marfuatik, L.; Koesuma, S.; Legowo, B.; Darsono

    2018-03-01

    The identification of aquifer was done by using Vertical Electrical Sounding (VES) method. This research aims to identify potential and depth of the aquifers. The locations of surveys are at ten points,namely TS1 (Alastuwo), TS2 (Wonorejo), TS3 (Kaling), TS4 (Kaling), TS5 (Buran), TS6 (Wonolopo), TS7 (Buran), TS8 (Ngijo), TS9 (Jati), and TS10 (Suruhkalang) where all located in Karanganyar regency. The survey path is about 500-600 meters length which can penetrate current to 100 – 200 meters in depth. The measurement was done by using OYO Mc OHM-EL Model 2119C. Geoelectrical data analysis was processed using Progress version 3.0 Software. The interpretation result shows that the locations of research area are included in Lawu-volcano rock formation which is breccias, lava, and tuff as the constituents. We found that unconfined aquifer in all of locations with different depth and confined aquifer just 7 locations start from 25.04 meters.

  16. Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings

    Science.gov (United States)

    Kishcha, P.; Barnaba, F.; Gobbi, G. P.; Alpert, P.; Shtivelman, A.; Krichak, S. O.; Joseph, J. H.

    2005-03-01

    Mineral dust particles loaded into the atmosphere from the Sahara desert represent one major factor affecting the Earth's radiative budget. Regular model-based forecasts of 3-D dust fields can be used in order to determine the dust radiative effect in climate models, in spite of the large gaps in observations of dust vertical profiles. In this study, dust forecasts by the Tel Aviv University (TAU) dust prediction system were compared to lidar observations to better evaluate the model's capabilities. The TAU dust model was initially developed at the University of Athens and later modified at Tel Aviv University. Dust forecasts are initialized with the aid of the Total Ozone Mapping Spectrometer aerosol index (TOMS AI) measurements. The lidar soundings employed were collected at the outskirts of Rome, Italy (41.84°N, 12.64°E) during the high-dust activity season from March to June of the years 2001, 2002, and 2003. The lidar vertical profiles collected in the presence of dust were used for obtaining statistically significant reference parameters of dust layers over Rome and for model versus lidar comparison. The Barnaba and Gobbi (2001) approach was used in the current study to derive height-resolved dust volumes from lidar measurements of backscatter. Close inspection of the juxtaposed vertical profiles, obtained from lidar and model data near Rome, indicates that the majority (67%) of the cases under investigation can be classified as good or acceptable forecasts of the dust vertical distribution. A more quantitative comparison shows that the model predictions are mainly accurate in the middle part of dust layers. This is supported by high correlation (0.85) between lidar and model data for forecast dust volumes greater than the threshold of 1 × 10-12 cm3/cm3. In general, however, the model tends to underestimate the lidar-derived dust volume profiles. The effect of clouds in the TOMS detection of AI is supposed to be the main factor responsible for this effect

  17. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  18. Sound branding – a systemisation and characterisation of the field

    Directory of Open Access Journals (Sweden)

    Anders Bonde

    2016-03-01

    Full Text Available The main purpose of this article is to demonstrate that far more extensive literature on sound branding exists than hitherto acknowledged. The topic has been approached from various angles with differing emphases, and the article provides insight into the variation and range of the literature. Specifically, the article aims to establish an academic foundation for future sound-branding studies by researchers and students alike, who will no longer need to postulate a general lack of literature and research in the field. The article is based on systematically performed literature searches and presents an inductively developed categorisation of five different types of contribution. In this light, the article highlights that although it is now possible to determine that the literature is relatively extensive, a number of knowledge lacunae still exist because a range of questions and activities are ignored or only dealt with in passing.

  19. Near-Field Sound Localization Based on the Small Profile Monaural Structure

    Directory of Open Access Journals (Sweden)

    Youngwoong Kim

    2015-11-01

    Full Text Available The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body.

  20. Field emission from vertically aligned few-layer graphene

    International Nuclear Information System (INIS)

    Malesevic, Alexander; Kemps, Raymond; Vanhulsel, Annick; Chowdhury, Manish Pal; Volodin, Alexander; Van Haesendonck, Chris

    2008-01-01

    The electric field emission behavior of vertically aligned few-layer graphene was studied in a parallel plate-type setup. Few-layer graphene was synthesized in the absence of any metallic catalyst by microwave plasma enhanced chemical vapor deposition with gas mixtures of methane and hydrogen. The deposit consists of nanostructures that are several micrometers wide, highly crystalline stacks of four to six atomic layers of graphene, aligned vertically to the substrate surface in a high density network. The few-layer graphene is found to be a good field emitter, characterized by turn-on fields as low as 1 V/μm and field amplification factors up to several thousands. We observe a clear dependence of the few-layer graphene field emission behavior on the synthesis parameters: Hydrogen is identified as an efficient etchant to improve field emission, and samples grown on titanium show lower turn-on field values and higher amplification factors when compared to samples grown on silicon

  1. Anomalous changes of vertical geomagnetic field in Kamchatka

    Directory of Open Access Journals (Sweden)

    Moroz Yuriy

    2016-01-01

    Full Text Available Secular variations of the vertical geomagnetic field at Paratunka (Kamchatka, Kakioka (Honshu, Mamambetsu (Hokkaido and Patrony (Irkutsk are considered from 1968 to 2014. Comparative analysis of secular variations showed that from 1968 to 2001, similar variations with the intensity of first hundreds on nT are obvious at four observatories. For the following period from 2001 to 2014, the secular variation at Paratunka observatory differs from other observatories. This disagreement of the secular geomagnetic variation at Paratunka observatory is timed to the increase of seismicity at the depth of 400-700 km in South Kamchatka region. It is suggested that in the result of increase of the seismicity in the region of transition from the upper to lower mantle, physical and chemical processes became more active. That caused formation of a large geo-electrical inhomogeneity which affected the behavior of the vertical component of geomagnetic field.

  2. Vertically coupled double quantum rings at zero magnetic field

    OpenAIRE

    Malet, Francesc; Barranco, Manuel; Lipparini, Enrico; Pi, Ricardo Mayol Martí; Climente, Juan Ignacio; Planelles, Josep

    2006-01-01

    Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble thos...

  3. Sound field reconstruction using acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2012-01-01

    When sound propagates through a medium, it results in pressure fluctuations that change the instantaneous density of the medium. Under such circumstances, the refractive index that characterizes the propagation of light is not constant, but influenced by the acoustic field. This kind of interaction...... the acousto-optic effect in air, and demonstrates that it can be measured with a laser Doppler vibrometer in the audible frequency range. The tomographic reconstruction is tested by means of computer simulations and measurements. The main features observed in the simulations are also recognized...

  4. Sound

    CERN Document Server

    Robertson, William C

    2003-01-01

    Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...

  5. Plaatsafhankelijkheid van timbre bij nagalm (Place dependence of timbre in reverberant sound fields)

    NARCIS (Netherlands)

    Plomp, R.; Steeneken, H.J.M.

    1973-01-01

    The sound-pressure level of a simple tone in a diffuse sound field varies from point to point with a theoretical standard deviation of 5.57 dB. This variability affects the timbre of complex tones in reverberant sound fields, Experiments have shown that the timbre dissimilarity at any two positions

  6. Virtual Reality System with Integrated Sound Field Simulation and Reproduction

    Directory of Open Access Journals (Sweden)

    Ingo Assenmacher

    2007-01-01

    Full Text Available A real-time audio rendering system is introduced which combines a full room-specific simulation, dynamic crosstalk cancellation, and multitrack binaural synthesis for virtual acoustical imaging. The system is applicable for any room shape (normal, long, flat, coupled, independent of the a priori assumption of a diffuse sound field. This provides the possibility of simulating indoor or outdoor spatially distributed, freely movable sources and a moving listener in virtual environments. In addition to that, near-to-head sources can be simulated by using measured near-field HRTFs. The reproduction component consists of a headphone-free reproduction by dynamic crosstalk cancellation. The focus of the project is mainly on the integration and interaction of all involved subsystems. It is demonstrated that the system is capable of real-time room simulation and reproduction and, thus, can be used as a reliable platform for further research on VR applications.

  7. Vertically aligned zinc selenide nanoribbon arrays: microstructure and field emission

    International Nuclear Information System (INIS)

    Zhao Lijuan; Pang Qi; Cai Yuan; Wang Ning; Ge Weikun; Wang Jiannong; Yang Shihe

    2007-01-01

    Uniform ZnSe precursor (ZnSe : 0.38en, en = ethylenediamine) nanoribbon arrays are grown vertically on Zn foils in ethylenediamine (en) using a solvothermal method. After the annealing treatment in N 2 , the ZnSe nanoribbon arrays can be obtained without an obvious morphology change and the crystallinity of ribbons is greatly improved. The microstructures of both individual ZnSe precursor and ZnSe nanoribbons are investigated. Field emission characteristics show that the onset field required drawing a current density of ∼0.1 μ A cm -2 from the ZnSe nanoribbons is 5.0 V μm -1 and the field enhancement factors are determined to be ∼1382

  8. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  9. Field study of sound exposure by personal stereo

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    A number of large scale studies suggest that the exposure level used with personal stereo systems should raise concern. High levels can be produced by most commercially available mp3 players, and they are generally used in high background noise levels (i.e., while in a bus or rain). A field study...... on young people's habitual sound exposure to personal stereos has been carried out using a measurement method according to principles of ISO 11904-2:2004. Additionally the state of their hearing has also been assessed. This presentation deals with the methodological aspects relating to the quantification...... of habitual use, estimation of listening levels and exposure levels, and assessment of their state of hearing, by either threshold determination or OAE measurement, with a special view to the general validity of the results (uncertainty factors and their magnitude)....

  10. An adaptive, data driven sound field control strategy for outdoor concerts

    DEFF Research Database (Denmark)

    Heuchel, Franz Maria; Caviedes Nozal, Diego; Brunskog, Jonas

    2017-01-01

    One challenge of outdoor concerts is to ensure adequate levels for the audience while avoiding disturbance of the surroundings. We outline the initial concept of a sound field control (SFC) system for tackling this issue using sound-zoning. The system uses Bayesian inference to update a sound...

  11. Improvement of Low-Frequency Sound Field Obtained by an Optimized Boundary

    Institute of Scientific and Technical Information of China (English)

    JING Lu; ZHU Xiao-tian

    2006-01-01

    An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The frequency response, eigenfrequency, spatial distribution and transient response were calculated. Experimental data were obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.

  12. Low frequency sound field control for loudspeakers in rectangular rooms using CABS (Controlled Acoustical Bass System)

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2010-01-01

    Rectangular rooms are the most common shape for sound reproduction, but at low frequencies the reflections from the boundaries of the room cause large spatial variations in the sound pressure level.  Variations up to 30 dB are normal, not only at the room modes, but basically at all frequencies....... As sound propagates in time, it seems natural that the problems can best be analyzed and solved in the time domain. A time based room correction system named CABS (Controlled Acoustical Bass System) has been developed for sound reproduction in rectangular listening rooms. It can control the sound...... sound field in the whole room, and short impulse response.  In a standard listening room (180 m3) only 4 loudspeakers are needed, 2 more than a traditional stereo setup. CABS is controlled by a developed DSP system. The time based approached might help with the understanding of sound field control...

  13. Vertical and oblique HF sounding with a network of synchronised ionosondes

    Czech Academy of Sciences Publication Activity Database

    Verhulst, T.; Altadill, D.; Mielich, J.; Reinisch, B.; Galkin, I.; Mouzakis, A.; Belehaki, A.; Burešová, Dalia; Stankov, S.; Blanch, E.; Kouba, Daniel

    2017-01-01

    Roč. 60, č. 8 (2017), s. 1644-1656 ISSN 0273-1177 R&D Project s: GA ČR(CZ) GC15-07281J Institutional support: RVO:68378289 Keywords : travelling ionospheric disturbances * digisonde * oblique sounding * ionospheric electromagnetic wave propagation * ionospheric measurement Subject RIV: DG - Athmosphere Science s, Meteorology OBOR OECD: Meteorology and atmospheric science s Impact factor: 1.401, year: 2016 http://www. science direct.com/ science /article/pii/S0273117717304593

  14. Accurate three dimensional characterization of ultrasonic sound fields (by computer controlled rotational scanning)

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, T.

    1981-07-01

    A rotational scanning system has recently been developed at Risoe National Laboratory. It allows sound fields from ultrasonic transducers to be examined in 3 dimensions. Using different calculation and plotting programs, any section in the sound field can be plotted. Results from examination of transducers for automatic inspection are presented. (author)

  15. On the sound field requirements in the hearing protector standard ISO 4869-1

    DEFF Research Database (Denmark)

    Jensen, N. S.; Poulsen, Torben

    1999-01-01

    The sound field requirements in the ISO 4869 1 standard for hearing protector attenuation measurements comprise two parts: 1) a sound level difference requirement for positions around the head of the listener (ie at positions 15 cm from a reference point; up-down, front-back and left-right) and 2......) a directivity requirement for the sound incidence at the reference point, measured with a directional microphone, to ensure an approximate diffuse sound field. The level difference requirement (1) is not difficult to fulfil but the directivity requirement (2) may lead to contradicting results if the measurement...

  16. Enhanced Soundings for Local Coupling Studies Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Craig R [University at Albany, State University of New York; Santanello, Joseph A [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Gentine, Pierre [Columbia Univ., New York, NY (United States)

    2016-04-01

    This document presents initial analyses of the enhanced radiosonde observations obtained during the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Enhanced Soundings for Local Coupling Studies Field Campaign (ESLCS), which took place at the ARM Southern Great Plains (SGP) Central Facility (CF) from June 15 to August 31, 2015. During ESLCS, routine 4-times-daily radiosonde measurements at the ARM-SGP CF were augmented on 12 days (June 18 and 29; July 11, 14, 19, and 26; August 15, 16, 21, 25, 26, and 27) with daytime 1-hourly radiosondes and 10-minute ‘trailer’ radiosondes every 3 hours. These 12 intensive operational period (IOP) days were selected on the basis of prior-day qualitative forecasts of potential land-atmosphere coupling strength. The campaign captured 2 dry soil convection advantage days (June 29 and July 14) and 10 atmospherically controlled days. Other noteworthy IOP events include: 2 soil dry-down sequences (July 11-14-19 and August 21-25-26), a 2-day clear-sky case (August 15-16), and the passing of Tropical Storm Bill (June 18). To date, the ESLCS data set constitutes the highest-temporal-resolution sampling of the evolution of the daytime planetary boundary layer (PBL) using radiosondes at the ARM-SGP. The data set is expected to contribute to: 1) improved understanding and modeling of the diurnal evolution of the PBL, particularly with regard to the role of local soil wetness, and (2) new insights into the appropriateness of current ARM-SGP CF thermodynamic sampling strategies.

  17. Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements

    International Nuclear Information System (INIS)

    Yu Guang-Zheng; Xie Bo-Sun; Rao Dan

    2010-01-01

    The omnidirectional character is one of important requirements for the sound source used in near-field head-related transfer function (HRTF) measurements. Based on the analysis on the radiation sound pressure and directivity character of various spherical polyhedron sound sources, a spherical dodecahedral sound source with radius of 0.035m is proposed and manufactured. Theoretical and measured results indicate that the sound source is approximately omnidirectional below the frequency of 8 kHz. In addition, the sound source has reasonable magnitude response from 350Hz to 20kHz and linear phase characteristics. Therefore, it is suitable for the near-field HRTF measurements. (fundamental areas of phenomenology(including applications))

  18. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    Science.gov (United States)

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  19. Sound and sound sources

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Wahlberg, Magnus

    2017-01-01

    There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...

  20. Holographic reconstruction of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Torras Rosell, Antoni; Jacobsen, Finn

    2013-01-01

    Recent studies have shown that it is possible to measure a sound field using acousto-optic tomography. Theacousto-optic effect, i.e., the interaction between sound and light, can be used to measure an arbitrary soundfield by scanning it with a laser Doppler vibrometer (LDV) over an aperture; This...

  1. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    CERN Document Server

    Kirichenko, O V; Galbova, O; Ivanovski, G; Krstovska, D

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers.

  2. On propagation of sound waves in Q2D conductors in a quantizing magnetic field

    International Nuclear Information System (INIS)

    Kirichenko, O.V.; Peschansky, V.G.; Galbova, O.; Ivanovski, G.; Krstovska, D.

    2003-01-01

    The attenuation of sound waves propagating normally to the layers of a Q2D conductor is analysed at low enough temperatures when quantization of the energy of conduction electrons results in an oscillatory dependence of the sound attenuation rate on the inverse magnetic field. The sound wave decrement is found for different orientations of the magnetic field with respect to the layers. A layered conductor is shown to be most transparent in the case when the magnetic field is orthogonal to the layers

  3. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  4. Vertical field systems in TPE-1RM15 reversed dield pinch experiment

    International Nuclear Information System (INIS)

    Shimada, T.; Hirano, Y.; Yagi, Y.; Ogawa, K.; Yamane, M.; Yamaguchi, S.; Oyabu, I.; Murakami, S.

    1989-01-01

    Design of equilibrium control system in TPE-1RM15 is described in detail, where equilibrium is maintained bij the combinatuion of the error field at shell cuts by the external vertical field with pre-programmed wave form is essential to set up and maintain RPF discharge. Control of the equilibrium position in the vacuum vessel by using DC vertical field inside the shell at the plasma break down phase, which makes it possible to operate DC vertical field in a wide range. Tooidal asymmetry of the feeders of the pulsed vertical field coil located there. This asymmetry is compensated bij the local vertical field of saddle coil wound around the shell cuts. (author). 2 refs.;4 figs

  5. Reproduction of nearby sources by imposing true interaural differences on a sound field control approach

    DEFF Research Database (Denmark)

    Badajoz, Javier; Chang, Ji-ho; Agerkvist, Finn T.

    2015-01-01

    In anechoic conditions, the Interaural Level Difference (ILD) is the most significant auditory cue to judge the distance to a sound source located within 1 m of the listener's head. This is due to the unique characteristics of a point source in its near field, which result in exceptionally high...... as Pressure Matching (PM), and a binaural control technique. While PM aims at reproducing the incident sound field, the objective of the binaural control technique is to ensure a correct reproduction of interaural differences. The combination of these two approaches gives rise to the following features: (i......, distance dependent ILDs. When reproducing the sound field of sources located near the head with line or circular arrays of loudspeakers, the reproduced ILDs are generally lower than expected, due to physical limitations. This study presents an approach that combines a sound field reproduction method, known...

  6. Field Grow-out of Juvenile American Lobsters in Long Island Sound

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Early benthic stage American lobsters, Homarus americanus, were held in a pilot nursery system in Long Island Sound (LIS) to test field grow-out, as a step toward...

  7. SOUND FIELD SHIELDING BY FLAT ELASTIC LAYER AND THIN UNCLOSED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2014-01-01

    Full Text Available An analytical solution of a boundary problem describing the process of penetration of a sound field of a spherical radiator located inside a thin unclosed spherical shell through a flat elastic layer is constructed. An influence of some parameters of the problem on the value of the attenuation coeffi-cient (screening of the sound field was studied by using a numerical simulation.

  8. High frequency source localization in a shallow ocean sound channel using frequency difference matched field processing.

    Science.gov (United States)

    Worthmann, Brian M; Song, H C; Dowling, David R

    2015-12-01

    Matched field processing (MFP) is an established technique for source localization in known multipath acoustic environments. Unfortunately, in many situations, particularly those involving high frequency signals, imperfect knowledge of the actual propagation environment prevents accurate propagation modeling and source localization via MFP fails. For beamforming applications, this actual-to-model mismatch problem was mitigated through a frequency downshift, made possible by a nonlinear array-signal-processing technique called frequency difference beamforming [Abadi, Song, and Dowling (2012). J. Acoust. Soc. Am. 132, 3018-3029]. Here, this technique is extended to conventional (Bartlett) MFP using simulations and measurements from the 2011 Kauai Acoustic Communications MURI experiment (KAM11) to produce ambiguity surfaces at frequencies well below the signal bandwidth where the detrimental effects of mismatch are reduced. Both the simulation and experimental results suggest that frequency difference MFP can be more robust against environmental mismatch than conventional MFP. In particular, signals of frequency 11.2 kHz-32.8 kHz were broadcast 3 km through a 106-m-deep shallow ocean sound channel to a sparse 16-element vertical receiving array. Frequency difference MFP unambiguously localized the source in several experimental data sets with average peak-to-side-lobe ratio of 0.9 dB, average absolute-value range error of 170 m, and average absolute-value depth error of 10 m.

  9. A probability index for surface zonda wind occurrence at Mendoza city through vertical sounding principal components analysis

    Science.gov (United States)

    Otero, Federico; Norte, Federico; Araneo, Diego

    2018-01-01

    The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.

  10. Second harmonic sound field after insertion of a biological tissue sample

    Science.gov (United States)

    Zhang, Dong; Gong, Xiu-Fen; Zhang, Bo

    2002-01-01

    Second harmonic sound field after inserting a biological tissue sample is investigated by theory and experiment. The sample is inserted perpendicular to the sound axis, whose acoustical properties are different from those of surrounding medium (distilled water). By using the superposition of Gaussian beams and the KZK equation in quasilinear and parabolic approximations, the second harmonic field after insertion of the sample can be derived analytically and expressed as a linear combination of self- and cross-interaction of the Gaussian beams. Egg white, egg yolk, porcine liver, and porcine fat are used as the samples and inserted in the sound field radiated from a 2 MHz uniformly excited focusing source. Axial normalized sound pressure curves of the second harmonic wave before and after inserting the sample are measured and compared with the theoretical results calculated with 10 items of Gaussian beam functions.

  11. Hydraulic transmissivity determination for the groundwater exploration using vertical electric sounding method in comparison to the traditional methods

    International Nuclear Information System (INIS)

    Arshad, M.; Shakoor, A.; Ahmad, M.

    2013-01-01

    An important aquifer characteristic, transmissivity significantly contributes to the development of local and regional groundwater resources and solute transport management. Estimation of this property allows quantitative prediction of the hydraulic response and solute transport of the aquifer to recharge and pumping. This study presents the three techniques, used to compare transmissivity determination by Vertical Electric Sounding (VES) over the traditional techniques. The validation of VES was compared with the old widely used methods such as grain size distribution and pumping test techniques. Grain size distribution analysis was carried out to determine transmissivity. Pumping test was performed to determine transmissivity using the type curves solution for unconfined aquifer and taking into account the delayed yield. In resistivity imaging survey, the soil layers were detected through interpretation of resistivity data. Formation factor for each layer was determined with the relation of aquifer soil resistivity and ground water resistivity. The estimated transmissivities though grain size distribution, pumping test and resistivity survey were 0.588, 0.578 and 0.756m/sup 2//min, respectively. The results emphasized the potential of the resistivity survey for aquifer transmissivity determination. (author)

  12. Using Vertical Electrical Soundings for Characterizing Hydrogeological and Tectonic Settings in Deir El-Adas Area, Yarmouk Basin, Syria

    Science.gov (United States)

    Al-Fares, Walid

    2016-06-01

    The present study is aimed at characterizing the subsurface geological and tectonic structure in Deir El-Adas area, by using Vertical Electrical Sounding survey (VES) and hydrogeological investigations, in order to determine the causes of the failure for the majority of the wells drilled in the area. The survey data was treated in three different approaches including direct VES inversion, pseudo-2D method and horizontal profiling, in order to maximize the reliability of the data interpretation. The results revealed the presence of a local faulted anticline structure at the top of the Paleogene formation, underneath the basaltic outcrops where Deir El-Adas village is situated. The appearance of this subsurface anticline structure has complicated the local hydro-geological situation, and most likely led to limitation of the groundwater recharge in the area. Moreover, the performed piezometric and discharge maps indicated the presence of a notable groundwater watershed, in addition to feeble water productivity of the wells drilled adjacent to Deir El-Adas, mostly related to the subsurface geological and tectonic settings in the area.

  13. Magnetic Field Fluctuations Due to Diel Vertical Migrations of Zooplankton

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2016-12-01

    Dean et al. (2016) have indicated that at high zooplankton concentrations, diel vertical migrations (DVM) cause velocity fluctuations and a respective increase of the dissipation rate of turbulent kinetic energy (TKE). In this work, we used a 3D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating organisms) via a discrete phase model to simulate the effect of turbulence generation by DVM. We tested a range of organism concentrations from 1000 to 10,000 organisms/m3. The simulation at an extreme concentration of zooplankton showed an increase in dissipation rate of TKE by two to three orders of magnitude during DVM over background turbulence, 10-8 W kg-1. At lower concentrations (Frank, J. Wood, 2016: Biomixing due to diel vertical migrations of zooplankton. Ocean Modelling 98, 51-64.

  14. Effect of a magnetic field on fourth sound in 3He

    International Nuclear Information System (INIS)

    Daly, K.

    1988-01-01

    The influence of a magnetic field on the propagation of fourth sound in superfluid 3 He is studied. The field and temperature dependences of the average superfluid density /anti rho//sub s///rho/ and fourth sound Q are measured. The field dependence of /anti rho//sub s///rho/ is very different in a porous medium than predicted by Ginzburg-Landau theory applied to bulk liquid. In particular, a magnetic suppression of /anti rho//sub s///rho/ is observed in the temperature and pressure ranges corresponding to the A phase in bulk liquid. There is strong evidence of a magnetic suppression of T/sub c/ itself. The measured /anti rho//sub s///rho/ has a slight history dependence in a magnetic field, but none in zero field. The fourth-sound Q values are compared to the theoretical work of Smith, Jensen, and Wolfle. Quantitative confirmation of their work is problematic

  15. ULF fluctuations of the geomagnetic field and ionospheric sounding measurements at low latitudes during the first CAWSES campaign

    Directory of Open Access Journals (Sweden)

    U. Villante

    2006-07-01

    Full Text Available We present an analysis of ULF geomagnetic field fluctuations at low latitudes during the first CAWSES campaign (29 March-3 April 2004. During the whole campaign, mainly in the prenoon sector, a moderate Pc3-4 pulsation activity is observed, clearly related to interplanetary upstream waves. On 3 April, in correspondence to the Earth's arrival of a coronal mass ejection, two SIs are observed whose waveforms are indicative of a contribution of the high-latitude ionospheric currents to the low-latitude ground field. During the following geomagnetic storm, low frequency (Pc5 waves are observed at discrete frequencies. Their correspondence with the same frequencies detected in the radial components of the interplanetary magnetic field and solar wind speed suggests that Alfvénic solar wind fluctuations may act as direct drivers of magnetospheric fluctuations. A cross-phase analysis, using different pairs of stations, is also presented for identifying field line resonant frequencies and monitoring changes in plasmaspheric mass density. Lastly, an analysis of ionospheric vertical soundings, measured at the Rome ionosonde station (41.8° N, 12.5° E, and vertical TEC measurements deduced from GPS signals within an European network shows the relation between the ULF resonances in the inner magnetosphere and thermal plasma density variations during geomagnetically quiet conditions, in contrast to various storm phases at the end of the CAWSES campaign.

  16. An Exploratory Analysis of Sound Field Characteristics using the Impulse Response in a Car Cabin

    Directory of Open Access Journals (Sweden)

    Yoshiharu Soeta

    2018-03-01

    Full Text Available Sound environments in cars are becoming quieter and receiving attention because of the prevalence of low-noise engines such as hybrid and electric engines and the manifestation of automated driving. Although the car cabin has potential as a listening space, its acoustic quality has not been examined in detail. The present study investigated sound field characteristics in the car cabin using acoustic parameters obtained by impulse response analysis. In particular, effects of the passenger position, open windows and the use of an air conditioner on acoustic parameters were investigated. The passenger position affected the sound strength at low frequencies. Rear seats, except for the rear central seat, had lower interaural correlation than the front seats, suggesting that rear seats have more diffused sound fields. The opening of windows and use of air conditioners attenuated the ratio of early- and late-arriving energy at high frequencies, suggesting a loss of clarity for music.

  17. Effects of a vertical magnetic field on particle confinement in a magnetized plasma torus.

    Science.gov (United States)

    Müller, S H; Fasoli, A; Labit, B; McGrath, M; Podestà, M; Poli, F M

    2004-10-15

    The particle confinement in a magnetized plasma torus with superimposed vertical magnetic field is modeled and measured experimentally. The formation of an equilibrium characterized by a parallel plasma current canceling out the grad B and curvature drifts is described using a two-fluid model. Characteristic response frequencies and relaxation rates are calculated. The predictions for the particle confinement time as a function of the vertical magnetic field are verified in a systematic experimental study on the TORPEX device, including the existence of an optimal vertical field and the anticorrelation between confinement time and density.

  18. Three-dimensional reconstruction of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Torras Rosell, Antoni

    2013-01-01

    -optic tomography via scanning the field with a laser Doppler vibrometer. Consequently, the spatial characteristics of the sound field are captured in the measurement, implicitly bearing the potential for a full holographic reconstruction in a three-dimensional space. Recent studies have examined the reconstruction......, and compares the results to the ones obtained from conventional microphone array measurements....

  19. Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes

    Science.gov (United States)

    Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.

    2013-12-01

    The recent megathrust earthquakes (Sumatra, Chili and Japan) have induced far-field postseismic subsidence with velocities from a few mm/yr to more than 1cm/yr at distances from 500 to 1500km from the earthquake epicentre, for several years following the earthquake. This subsidence is observed in Argentina, China, Korea, far-East Russia and in Malaysia and Thailand as reported by Satirapod et al. ( ASR, 2013). In the middle-field a very pronounced uplift is localized on the flank of the volcanic arc facing the trench. This is observed both over Honshu, in Chile and on the South-West coast of Sumatra. In Japan, the deformations prior to Tohoku earthquake are well measured by the GSI GPS network: While the East coast was slightly subsiding, the West coast was raising. A 3D finite element code (Zebulon-Zset) is used to understand the deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes. The meshes designed for each region feature a broad spherical shell portion with a viscoelastic asthenosphere. They are refined close to the subduction zones. Using these finite element models, we find that the pattern of the predicted far-field vertical postseismic displacements depends upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. A low viscosity asthenosphere at shallow depth, just below the lithosphere is required to explain the subsidence at distances from 500 to 1500km. A thick (for example 600km) asthenosphere with a uniform viscosity predicts subsidence too far away from the trench. Slip on the subduction interface is unable tot induce the observed far-field subsidence. However, a combination of relaxation in a low viscosity wedge and slip or relaxation on the bottom part of the subduction interface is necessary to explain the observed postseismic uplift in the middle-field (volcanic arc area). The creep laws of the various zones used to explain the postseismic data can be injected in

  20. The effect of hexapole and vertical fields on α-particle confinement in heliotron configurations

    International Nuclear Information System (INIS)

    Isaev, M.Yu.; Watanabe, K.Y.; Yokoyama, M.; Yamazaki, K.

    2003-03-01

    Collisionless mono-energetic α-particle confinement in three-dimensional magnetic fields obtained from the magnetic coils of the Large Helical Device (LHD) is calculated. It is found that the inward shift of magnetic axis due to the vertical field improves the α-particle confinement. In contrast to the vertical field, both large positive and negative hexapole fields do not improve the confinement. The study of the β effect and Mercier criterion calculations for different hexapole fields are also presented. (author)

  1. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    Science.gov (United States)

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  2. Regularised reconstruction of sound fields with a spherical microphone array

    DEFF Research Database (Denmark)

    Granados Corsellas, Alba; Jacobsen, Finn; Fernandez Grande, Efren

    2013-01-01

    implementation might lead to disastrous reconstructions. A large number of regularisation tools based on singular value decomposition are available, and it has been found that the acoustic holography problem for certain geometries can be formulated in such a way that similarities to singular value decomposition...... become apparent. Hence, a number of regularisation methods, including truncated singular value decomposition, standard Tikhonov, constrained Tikhonov, iterative Tikhonov, Landweber and Rutishauser, have been adapted for spherical near field acoustic holography. The accuracy of the methods is examined...

  3. Soliton emission stimulated by sound wave or external field

    International Nuclear Information System (INIS)

    Malomed, B.A.

    1987-01-01

    Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated

  4. Sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    , and their performance is examined using computer simulations. Two performance indices are used in this work, (a) the level difference between the average sound energy density in the listening zone and that in the quiet zone (sometimes called “the acoustic contrast”), and (b) a normalized measure of the deviations...... between the desired and the generated sound field in the listening zone. It is concluded that the best compromise is obtained with a method that combines pure contrast maximization with a pressure matching technique.......This paper describes a method of generating a controlled sound field for listeners inside a circular array of loudspeakers without disturbing people outside the array appreciably. To achieve this objective, a double-layer array of loudspeakers is used. Several solution methods are suggested...

  5. Application of Vertical Electrical Sounding (VES) for the assessment of Ground Water Potential at Madi Phant, Palpa District, Western Nepal

    Science.gov (United States)

    Khatiwada, B.; Ghimire, H.; Bhusal, U. C.; Shrestha, S. R.; Upadhyay, K.; Khanal, A.; Pandey, D.

    2017-12-01

    Ground Water Resources Development Board (GWRDB), Government of Nepal, is the sole authority for systematize investigation, and management of ground water in the country. This study was conducted by GWRDB to create a data base of the groundwater potential in the hilly area. The main purpose of the study was to assess the groundwater potential at the Madi Phant Valley, Lesser Himalaya Region, Plapa District, Nepal. Data were acquired from WDJD-4 and analyzed using computer aided software called IPI2win, which yield an automatic interpretation of the apparent resistivity and data were correlated with lithologs of the vertical section. The simulated results of the ten VES points conducted using Schlumberger Configuration with AB/2 varying from 2 to 400 m and MN/2 varying from 0.5 to 50m reveal the presence of 4 to 8 geo-electric layers. Results obtained from software were rechecked by plotting the apparent resistivity value on Log-Log transparent graph sheet and manually interpreted using master curves and auxiliary curves. The resistivity values of the different layers' ranges from 3 Ωm to 3700 Ωm and were statistically analyzed from Golden Software Grapher. Representative resistivity sounding curves with modeled layer obtained after inversion was used to delineate the aquifer and 1D geoelectric sections. The geoelectrical sections for the study area consists of: the topsoil, sandy silt, sand and gravel, fractured rock and the fresh basement rock. The groundwater bearing layer of fractured rock varies between depth of 8-65 meters across foothill site (Eastern Corner) of the study area and groundwater bearing layer of sand and gravel/fractured rock varies between depth of 20-100 m in the central part of the Madi Phant valley. Contour map and 3D map of bedrock and water bearing layers for the conceptual model were prepared with the help of surfer shows that the gradient of the contour is high in the surrounding parts and flat in the center of Valley.

  6. A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Brunskog, Jonas

    2018-01-01

    This study proposes an experimental method for evaluating isotropy in enclosures, based on an analysis of the wavenumber spectrum in the spherical harmonics domain. The wavenumber spectrum, which results from expanding an arbitrary sound field into a plane-wave basis, is used to characterize the ...

  7. Experimental validation of sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2013-01-01

    This paper is concerned with experimental validation of a recently proposed method of controlling sound fields with a circular double-layer array of loudspeakers [Chang and Jacobsen, J. Acoust. Soc. Am. 131(6), 4518-4525 (2012)]. The double-layer of loudspeakers is realized with 20 pairs of closed...

  8. Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors.

    Science.gov (United States)

    Nazir, Ghazanfar; Khan, Muhammad Farooq; Aftab, Sikandar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Rehman, Malik Abdul; Seo, Yongho; Eom, Jonghwa

    2017-12-28

    Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS₂ can be modified by back-gate voltage and the current bias. Vertical resistance (R vert ) of a Gr/MoS₂/(Cr/Au) transistor is compared with planar resistance (R planar ) of a conventional lateral MoS₂ field-effect transistor. We have also studied electrical properties for various thicknesses of MoS₂ channels in both vertical and lateral transistors. As the thickness of MoS₂ increases, R vert increases, but R planar decreases. The increase of R vert in the thicker MoS₂ film is attributed to the interlayer resistance in the vertical direction. However, R planar shows a lower value for a thicker MoS₂ film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  9. The internal wave field in Sau reservoir : Observation and modeling of a third vertical mode

    OpenAIRE

    Vidal Hurtado, Javier; Casamitjana, Xavier; Colomer, Jordi; Serra Putellas, Teresa

    2005-01-01

    Water withdrawal from Mediterranean reservoirs in summer is usually very high. Because of this, stratification is often continuous and far from the typical two-layered structure, favoring the excitation of higher vertical modes. The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the third vertical mode of the internal seiche (baroclinic mode) dominated the internal wave field at the beginning of September 2003. We used a continuous stratification two-dim...

  10. Stabilization of the Vertical Mode in Tokamaks by Localized Nonaxisymmetric Fields

    International Nuclear Information System (INIS)

    Reiman, A.

    2007-01-01

    Vertical instability of a tokamak plasma can be controlled by nonaxisymmetric magnetic fields localized near the plasma edge at the bottom and top of the torus. The required magnetic fields can be produced by a relatively simple set of parallelogram-shaped coils.

  11. Sensitivity of the near-surface vertical electric field land Controlled-Source Electromagnetic monitoring

    NARCIS (Netherlands)

    Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.

    2014-01-01

    We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil

  12. ANOMALOUS CHANGES OF THE GEOMAGNETIC FIELD VERTICAL COMPONENT IN KAMCHATKA

    Directory of Open Access Journals (Sweden)

    Y. F. Moroz

    2016-11-01

    Full Text Available Secular changes of the lithospheric electric conductivity were analyzed based on the monitoring data of the Earth’s electric field over the period from 2001 to 2014. Those measures were carried out in Verchniya Paratunka, Tundroviy, and Shipunskiy that are located alongside the coastline of the Avacha Bay of Kamchatka and where the catastrophic earthquake is to be expected according the long-term forecast. It is noticed that the changes in behavior of the secular movements of the lithospheric electric conductivity sannual average values represented with changes at along and transverse directions of the seismic focal zone extension. A great many of such changes were detected on the Shipunskiy peninsula.

  13. Low frequency sound field enhancement system for rectangular rooms using multiple low frequency loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2006-01-01

    an enhancement system with extra loudspeakers the sound pressure level distribution along the listening area presents a significant improvement in the subwoofer frequency range. The system is simulated and implemented on the three different rooms and finally verified by measurements on the real rooms.......Rectangular rooms have strong influence on the low frequency performance of loudspeakers. Simulations of three different room sizes have been carried out using finite-difference time-domain method (FDTD) in order to predict the behaviour of the sound field at low frequencies. By using...

  14. Detection and description of surface breaking cracks by means of optical sound field visualization

    International Nuclear Information System (INIS)

    Crostack, H.A.; Krueger, A.

    1986-01-01

    The authors present an ultrasound testing method for surface-breaking cracks in components. The method is based on large-area imaging of ultrasound by means of an optical receiver system. The receiver system is based on the principle of holographic interferometry. Application of double exposure technique using a double pulse laser and of sensitivity boosting measures allowed to construct a holographic sound field camera (sensitivity threshold: 0.2 nm) which allows large-area sound detection (in the square meter range) without requiring the usual methods for vibrational insulation in contrast to all the other optical interferometric and holographic techniques. (orig./DG) [de

  15. An investigation of sound fields based on the acousto-optic effect

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn

    2011-01-01

    Various types of transducers are nowadays capable of translating different properties of sound waves into mechanical/electrical quantities, which can afterwards be reinterpreted into acoustical ones. However, in certain applications, for example when using microphone arrays, the presence of bulk...... range, and in two different measurement scenarios where the sound field is well-known: in a rectangular duct and in an anechoic room. Models for predicting the acousto-optic effect in such scenarios are derived and measurements are carried out with a laser Doppler vibrometer. The results show a fairly...

  16. Arrangements of a pair of loudspeakers for sound field control with double-layer arrays

    DEFF Research Database (Denmark)

    Chang, Jiho; Agerkvist, Finn T.; Olsen, Martin

    2013-01-01

    Recent studies have attempted to control sound fields, and also to reduce room reflections with a circular or spherical array of loudspeakers. One of the attempts was to suppress sound waves propagating to the walls outside the array with a circular double-layer array of loudspeakers. The double-layer...... array represents a set of a monopole and a dipole in the Kirchhoff-Helmholtz integral equation, and thus the distance between these layers should be short compared with the wavelength. In practice, however, this condition is occasionally hard to satisfy because of the sizes of loudspeaker cabinets...

  17. Laser vibrometry measurements of vibration and sound fields of a bowed violin

    Science.gov (United States)

    Gren, Per; Tatar, Kourosh; Granström, Jan; Molin, N.-E.; Jansson, Erik V.

    2006-04-01

    Laser vibrometry measurements on a bowed violin are performed. A rotating disc apparatus, acting as a violin bow, is developed. It produces a continuous, long, repeatable, multi-frequency sound from the instrument that imitates the real bow-string interaction for a 'very long bow'. What mainly differs is that the back and forward motion of the real bow is replaced by the rotating motion with constant velocity of the disc and constant bowing force (bowing pressure). This procedure is repeatable. It is long lasting and allows laser vibrometry techniques to be used, which measure forced vibrations by bowing at all excited frequencies simultaneously. A chain of interacting parts of the played violin is studied: the string, the bridge and the plates as well as the emitted sound field. A description of the mechanics and the sound production of the bowed violin is given, i.e. the production chain from the bowed string to the produced tone.

  18. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  19. A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    Directory of Open Access Journals (Sweden)

    Ji-Ho Chang

    2017-03-01

    Full Text Available This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive to room reflections and the amplitude decay than the spatial error, which is likely to agree better with the human perception of source localization.

  20. A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    DEFF Research Database (Denmark)

    Chang, Ji-ho; Jeong, Cheol-Ho

    2017-01-01

    This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two...... conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due...... to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive...

  1. Elevator convection modes in vertical ducts with strong transverse magnetic fields

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2014-11-01

    Instability modes in the form of axially uniform vertical jets, also called ``elevator modes,'' are known to be solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to an actual flow state is limited, since they quickly break down to secondary instabilities. We consider a downward flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are likely to be not just relevant, but a dominant feature of the flow. Recent experiments indicate that counterparts of such modes may develop in vertically finite ducts leading to high-amplitude fluctuations of temperature. Potential implications for designs of liquid metal blankets for fusion reactors with poloidal ducts are discussed. Financial support was provided by the US NSF (Grant CBET 1232851).

  2. Dark-field scanning confocal microscope for vertical particle tracks in nuclear emulsion

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, S.V.; Tereshchenko, V.V.

    1999-01-01

    The principle of the DArk-FIeld Scanning CONfocal (DAFISCON) microscope for selective observation of the vertical particle tracks in nuclear emulsion is described. The construction of the DAFISCON microscope, built on the basis of the 2D measurement microscope, is described. The results of the experimental testing of the DAFISCON microscope, accomplished at high density of the vertical particle tracks, are presented. The 2D plot and the 1D plot of the CCD dark-field image are given. The spatial resolution of our microscope can be increased by using the objective with higher aperture

  3. An analytical model for the vertical electric field distribution and optimization of high voltage REBULF LDMOS

    International Nuclear Information System (INIS)

    Hu Xia-Rong; Lü Rui

    2014-01-01

    In this paper, an analytical model for the vertical electric field distribution and optimization of a high voltage-reduced bulk field (REBULF) lateral double-diffused metal—oxide-semiconductor (LDMOS) transistor is presented. The dependences of the breakdown voltage on the buried n-layer depth, thickness, and doping concentration are discussed in detail. The REBULF criterion and the optimal vertical electric field distribution condition are derived on the basis of the optimization of the electric field distribution. The breakdown voltage of the REBULF LDMOS transistor is always higher than that of a single reduced surface field (RESURF) LDMOS transistor, and both analytical and numerical results show that it is better to make a thick n-layer buried deep into the p-substrate. (interdisciplinary physics and related areas of science and technology)

  4. Using a Sound Field to Reduce the Risks of Bird-Strike: An Experimental Approach.

    Science.gov (United States)

    Swaddle, John P; Ingrassia, Nicole M

    2017-07-01

    Each year, billions of birds collide with large human-made structures, such as building, towers, and turbines, causing substantial mortality. Such bird-strike, which is projected to increase, poses risks to populations of birds and causes significant economic costs to many industries. Mitigation technologies have been deployed in an attempt to reduce bird-strike, but have been met with limited success. One reason for bird-strike may be that birds fail to pay adequate attention to the space directly in front of them when in level, cruising flight. A warning signal projected in front of a potential strike surface might attract visual attention and reduce the risks of collision. We tested this idea in captive zebra finches (Taeniopygia guttata) that were trained to fly down a long corridor and through an open wooden frame. Once birds were trained, they each experienced three treatments at unpredictable times and in a randomized order: a loud sound field projected immediately in front of the open wooden frame; a mist net (i.e., a benign strike surface) placed inside the wooden frame; and both the loud sound and the mist net. We found that birds slowed their flight approximately 20% more when the sound field was projected in front of the mist net compared with when the mist net was presented alone. This reduction in velocity would equate to a substantial reduction in the force of any collision. In addition to slowing down, birds increased the angle of attack of their body and tail, potentially allowing for more maneuverable flight. Concomitantly, the only cases where birds avoided the mist net occurred in the sound-augmented treatment. Interestingly, the sound field by itself did not demonstrably alter flight. Although our study was conducted in a limited setting, the alterations of flight associated with our sound field has implications for reducing bird-strike in nature and we encourage researchers to test our ideas in field trials. © The Author 2017. Published by

  5. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    Science.gov (United States)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2004-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  6. Echolocating bats emit a highly directional sonar sound beam in the field

    DEFF Research Database (Denmark)

    Surlykke, Annemarie; Boel Pedersen, Simon; Jakobsen, Lasse

    2009-01-01

    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild....... We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased...... and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder...

  7. Fabrication of a vertical channel field effect transistor and a study of its electrical performances

    International Nuclear Information System (INIS)

    Bhuiyan, A.S.

    1983-01-01

    A vertical channel field effect transistor on silicon was fabricated by diffusion technique and its electrical characteristics were studied as a function of voltage and temperature. It was found that this transistor has relatively high breakdown voltage of 65 volts for drain source and of 7.5 volts for gate source terminals. (author)

  8. Parallel electric fields detected via conjugate electron echoes during the Echo 7 sounding rocket flight

    Science.gov (United States)

    Nemzek, R. J.; Winckler, J. R.

    1991-01-01

    Electron detectors on the Echo 7 active sounding rocket experiment measured 'conjugate echoes' resulting from artificial electron beam injections. Analysis of the drift motion of the electrons after a complete bounce leads to measurements of the magnetospheric convection electric field mapped to ionospheric altitudes. The magnetospheric field was highly variable, changing by tens of mV/m on time scales of as little as hundreds of millisec. While the smallest-scale magnetospheric field irregularities were mapped out by ionospheric conductivity, larger-scale features were enhanced by up to 50 mV/m in the ionosphere. The mismatch between magnetospheric and ionspheric convection fields indicates a violation of the equipotential field line condition. The parallel fields occurred in regions roughly 10 km across and probably supported a total potential drop of 10-100 V.

  9. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  10. Experimental investigation of a blunt trailing edge flow field with application to sound generation

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Daniel W. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, B026 Hessert Laboratory, Notre Dame, IN (United States); Morris, Scott C. [University of Notre Dame, Department of Aerospace and Mechanical Engineering, 109 Hessert Laboratory, Notre Dame, IN (United States)

    2006-11-15

    The unsteady lift generated by turbulence at the trailing edge of an airfoil is a source of radiated sound. The objective of the present research was to measure the velocity field in the near wake region of an asymmetric beveled trailing edge in order to determine the flow mechanisms responsible for the generation of trailing edge noise. Two component velocity measurements were acquired using particle image velocimetry. The chord Reynolds number was 1.9 x 10{sup 6}. The data show velocity field realizations that were typical of a wake flow containing an asymmetric periodic vortex shedding. A phase average decomposition of the velocity field with respect to this shedding process was utilized to separate the large scale turbulent motions that occurred at the vortex shedding frequency (i.e., those responsible for the production of tonal noise) from the smaller scale turbulent motions, which were interpreted to be responsible for the production of broadband sound. The small scale turbulence was found to be dependent on the phase of the vortex shedding process implying a dependence of the broadband sound generated by the trailing edge on the phase of the vortex shedding process. (orig.)

  11. Masking release by combined spatial and masker-fluctuation effects in the open sound field.

    Science.gov (United States)

    Middlebrooks, John C

    2017-12-01

    In a complex auditory scene, signals of interest can be distinguished from masking sounds by differences in source location [spatial release from masking (SRM)] and by differences between masker-alone and masker-plus-signal envelopes. This study investigated interactions between those factors in release of masking of 700-Hz tones in an open sound field. Signal and masker sources were colocated in front of the listener, or the signal source was shifted 90° to the side. In Experiment 1, the masker contained a 25-Hz-wide on-signal band plus flanking bands having envelopes that were either mutually uncorrelated or were comodulated. Comodulation masking release (CMR) was largely independent of signal location at a higher masker sound level, but at a lower level CMR was reduced for the lateral signal location. In Experiment 2, a brief signal was positioned at the envelope maximum (peak) or minimum (dip) of a 50-Hz-wide on-signal masker. Masking was released in dip more than in peak conditions only for the 90° signal. Overall, open-field SRM was greater in magnitude than binaural masking release reported in comparable closed-field studies, and envelope-related release was somewhat weaker. Mutual enhancement of masking release by spatial and envelope-related effects tended to increase with increasing masker level.

  12. Unsteady free convection MHD flow between two heated vertical parallel plates in induced magnetic field

    International Nuclear Information System (INIS)

    Chakraborty, S.; Borkakati, A.K.

    1999-01-01

    An unsteady viscous incompressible free convection flow of an electrically conducting fluid between two heated vertical parallel plates is considered in presence of a uniform magnetic field applied transversely to the flow. The approximate analytical solutions for velocity, induced field and temperature distributions are obtained for small and large magnetic Reynolds number. The skin-friction on the two plates are obtained and plotted graphically. The problem is extended for thermometric case. (author)

  13. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure

    Science.gov (United States)

    Yan, Xiaodong; Esqueda, Ivan S.; Ma, Jiahui; Tice, Jesse; Wang, Han

    2018-01-01

    In this work, we study the high critical breakdown field in β-Ga2O3 perpendicular to its (100) crystal plane using a β-Ga2O3/graphene vertical heterostructure. Measurements indicate a record breakdown field of 5.2 MV/cm perpendicular to the (100) plane that is significantly larger than the previously reported values on lateral β-Ga2O3 field-effect-transistors (FETs). This result is compared with the critical field typically measured within the (100) crystal plane, and the observed anisotropy is explained through a combined theoretical and experimental analysis.

  14. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography...

  15. The effect of scattering on sound field control with a circular double-layer array of loudspeakers

    DEFF Research Database (Denmark)

    Chang, Jiho; Jacobsen, Finn

    2012-01-01

    A recent study has shown that a circular double-layer array of loudspeakers makes it possible to achieve a sound field control that can generate a controlled field inside the array and reduce sound waves propagating outside the array. This is useful if it is desirable not to disturb people outside...... the array or to prevent the effect of reflections from the room. The study assumed free field condition, however in practice a listener will be located inside the array. The listener scatters sound waves, which propagate outward. Consequently, the scattering effect can be expected to degrade the performance...

  16. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  17. Implementation of vertically asymmetric toroidal-field ripple for beam heating of tokamak reactor plasmas

    International Nuclear Information System (INIS)

    Jassby, D.L.; Sheffield, G.V.; Towner, H.H.; Weissenburger, D.W.

    1976-10-01

    The neutral-beam energy required for adequate penetration of tokamak plasmas of high opacity can be reduced by a large factor if the beam is injected vertically into a region of large TF (toroidal-field) ripple. Energetic ions are trapped in local magnetic wells and drift vertically toward the midplane (z = 0). If the ripple is made very small on the opposite side of the midplane, drifting ions are detrapped and thermalized in the central plasma region. This paper discusses design considerations for establishing the required vertically asymmetric ripple. Examples are given of special TF-coil configurations, and of the use of auxiliary coil windings to create the prescribed ripple profiles

  18. NIS method for uncertainty estimation of airborne sound insulation measurement in field

    Directory of Open Access Journals (Sweden)

    El-Basheer Tarek M.

    2017-01-01

    Full Text Available In structures, airborne sound insulation is utilized to characterize the acoustic nature of barriers between rooms. However, the assessment of sound insulation index is once in a while troublesome or indeed, even questionable, both in field and laboratory measurements, notwithstanding the way that there are some unified measurement methodology indicated in the ISO 140 series standards. There are issues with the reproducibility and repeatability of the measurement results. A few troubles might be brought on by non-diffuse acoustic fields, non-uniform reverberation time, or blunders of the reverberation time measurements. Some minor issues are additionally postured by flanking transmission. In this paper, investigation of the uncertainties of the above specified measurement parts and their impact on the consolidated uncertainty in 1/3-octave frequency band. The total measurement uncertainty model contributes several different partial uncertainties, which are evaluated by the method of type A or type B. Also, the determination of the sound reduction index decided by ISO 140-4 has been performed.

  19. Preferred sound levels of portable music players and listening habits among adults: a field study.

    Science.gov (United States)

    Kähäri, Kim R; Aslund, T; Olsson, J

    2011-01-01

    The main purpose of this descriptive field study was to explore music listening habits and preferred listening levels with portable music players (PMPs). We were also interested in seeing whether any exposure differences could be observed between the sexes. Data were collected during 12 hours at Stockholm Central Station, where people passing by were invited to measure their preferred PMP listening level by using a KEMAR manikin. People were also asked to answer a questionnaire about their listening habits. In all, 60 persons (41 men and 19 women) took part in the questionnaire study and 61 preferred PMP levels to be measured. Forty-one of these sound level measurements were valid to be reported after consideration was taken to acceptable measuring conditions. The women (31 years) and the men (33 years) started to use PMPs on a regular basis in their early 20s. Ear canal headphones/ear buds were the preferred headphone types. Fifty-seven percent of the whole study population used their PMP on a daily basis. The measured LAeq60 sec levels corrected for free field ranged between 73 and 102 dB, with a mean value of 83 dB. Sound levels for different types of headphones are also presented. The results of this study indicate that there are two groups of listeners: people who listen less frequently and at lower, safer sound levels, and people with excessive listening habits that may indeed damage their hearing sensory organ in time.

  20. Preferred sound levels of portable music players and listening habits among adults: A field study

    Directory of Open Access Journals (Sweden)

    Kim R Kahari

    2011-01-01

    Full Text Available The main purpose of this descriptive field study was to explore music listening habits and preferred listening levels with portable music players (PMPs. We were also interested in seeing whether any exposure differences could be observed between the sexes. Data were collected during 12 hours at Stockholm Central Station, where people passing by were invited to measure their preferred PMP listening level by using a KEMAR manikin. People were also asked to answer a questionnaire about their listening habits. In all, 60 persons (41 men and 19 women took part in the questionnaire study and 61 preferred PMP levels to be measured. Forty-one of these sound level measurements were valid to be reported after consideration was taken to acceptable measuring conditions. The women (31 years and the men (33 years started to use PMPs on a regular basis in their early 20s. Ear canal headphones/ear buds were the preferred headphone types. Fifty-seven percent of the whole study population used their PMP on a daily basis. The measured LAeq60 sec levels corrected for free field ranged between 73 and 102 dB, with a mean value of 83 dB. Sound levels for different types of headphones are also presented. The results of this study indicate that there are two groups of listeners: people who listen less frequently and at lower, safer sound levels, and people with excessive listening habits that may indeed damage their hearing sensory organ in time.

  1. The sound field of a rotating dipole in a plug flow.

    Science.gov (United States)

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  2. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Science.gov (United States)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  3. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Directory of Open Access Journals (Sweden)

    Bipin Kumar Gupta

    2018-01-01

    Full Text Available The vertical aligned carbon nanotubes (CNTs-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness as a barrier layer and iron (Fe, 1.5 nm thickness as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2–30 walls with an inner diameter of 3–8 nm. Raman spectrum analysis shows G-band at 1580 cm−1 and D-band at 1340 cm−1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm, low turn-on field (0.6 V/μm and field enhancement factor (6917 with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  4. Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures.

    Science.gov (United States)

    Shin, Yong Seon; Lee, Kiyoung; Kim, Young Rae; Lee, Hyangsook; Lee, I Min; Kang, Won Tae; Lee, Boo Heung; Kim, Kunnyun; Heo, Jinseong; Park, Seongjun; Lee, Young Hee; Yu, Woo Jong

    2018-03-01

    Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field-effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe 2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap-limited transport, and space-charge-limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe 2 . This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe 2 and metal/WSe 2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  6. A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0

    Science.gov (United States)

    Schmalzle, G.; Wdowinski, S.

    2014-12-01

    Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields

  7. Sounds Exaggerate Visual Shape

    Science.gov (United States)

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  8. Design study of the vertical field power supply for JT-60

    International Nuclear Information System (INIS)

    Yabuno, Kohei; Tani, Keiji; Shimada, Ryuichi; Kishimoto, Hiroshi; Yoshida, Hidetoshi

    1977-09-01

    The results of a basic design study of the vertical field power supply for JT-60 (JAERI large tokamak) are described. The objective of the study is to evaluate several types of power supply circuits for fast excitation and control of the vertical field. A design requirement is to produce a rapidly increasing vertical field within accuracy of +-5% around the proper field strength required to center the plasma in the vacuum vessel. The plasma current is assumed to increase at the rate of about 100 MA/sec. To meet the requirement, a maximum voltage of 15 kV is necessary in the current build-up time, while generally relatively low voltage is necessary after the current flattop is reached. A hybrid power supply which consists of a dc power source (a thyristor converter) and an inductive energy storage system is proposed. The maximum voltage of the dc power source is determined as 4 kV from the voltage required in the current flattop time. This is sufficient also in the current build-up time if the dc power source is used together with the inductive energy storage system. (auth.)

  9. Radiated sound and turbulent motions in a blunt trailing edge flow field

    International Nuclear Information System (INIS)

    Shannon, Daniel W.; Morris, Scott C.; Mueller, Thomas J.

    2006-01-01

    The dipole sound produced by edge scattering of pressure fluctuations at a trailing edge is most often an undesirable effect in turbomachinery and control surface flows. The ability to model the flow mechanisms associated with the production of trailing edge acoustics is important for the quiet design of such devices. The objective of the present research was to experimentally measure flow field and acoustic variables in order to develop an understanding of the mechanisms that generate trailing edge noise. The results of these experiments have provided insight into the causal relationships between the turbulent flow field, unsteady surface pressure, and radiated far field acoustics. Experimental methods used in this paper include particle image velocimetry (PIV), unsteady surface pressures, and far field acoustic pressures. The model investigated had an asymmetric 45 o beveled trailing edge. Reynolds numbers based on chord ranged from 1.2 x 10 6 to 1.9 x 10 6 . It was found that the small-scale turbulent motions in the vicinity of the trailing edge were modulated by a large scale von Karman wake instability. The broadband sound produced by these motions was also found to be dependant on the 'phase' of the wake instability

  10. The effects of a sound-field amplification system on managerial time in middle school physical education settings.

    Science.gov (United States)

    Ryan, Stu

    2009-04-01

    The focus of this research effort was to examine the effect of a sound-field amplification system on managerial time in the beginning of class in a physical education setting. A multiple baseline design across participants was used to measure change in the managerial time of 2 middle school female physical education teachers using a portable sound-field amplification system. Managerial time is defined as the cumulative amount of time that students spend on organizational, transitional, and nonsubject matter tasks in a lesson. The findings showed that the amount of managerial time at the beginning of class clearly decreased when the teacher used sound-field amplification feedback to physical education students. Findings indicate an immediate need for administrators to determine the most appropriate, cost-effective procedure to support sound-field amplification systems in existing physical education settings.

  11. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    Science.gov (United States)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  12. Evaluation of a Loudspeaker-Based Virtual Acoustic Environment for Investigating sound-field auditory steady-state responses

    DEFF Research Database (Denmark)

    Zapata-Rodriguez, Valentina; Marbjerg, Gerd Høy; Brunskog, Jonas

    2017-01-01

    Measuring sound-field auditory steady-state responses (ASSR) is a promising new objective clinical procedure for hearing aid fitting validation, particularly for infants who cannot respond to behavioral tests. In practice, room acoustics of non-anechoic test rooms can heavily influence the audito...... tool PARISM (Phased Acoustical Radiosity and Image Source Method) and validated through measurements. This study discusses the limitations of the system and the potential improvements needed for a more realistic sound-field ASSR simulation....

  13. Conceptional design of the vertical field control system in JIPP T-II

    International Nuclear Information System (INIS)

    Fujiwara, Masami; Itoh, Satoshi; Matsuoka, Keisuke; Matsuura, Kiyokata; Miyamoto, Kenro.

    1974-11-01

    Conceptional design of a system for feedback control of the plasma position in a toroidal discharge is described. It is expected that a resistive shell and an external vertical field controlled by a system consisting of a digital computer and phase-controlled thyristors can suppress the plasma displacement down to 10% of that in the case where the external control system is not operated. (auth.)

  14. Vertical sampling flights in support of the 1981 ASCOT cooling tower experiments: field effort and data

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G.T.

    1982-03-01

    During the month of August 1981, three nights of experimental sampling of tracers released into the cooling tower plume of a geothermal power plant were conducted. In these experiments a tethered balloon was used to lift a payload so as to obtain vertical profiles of the cooling tower plume and the entrained tracers. A description of the equipment used, the field effort and the data acquired are presented here.

  15. Field evaluation of a direct push deployed sensor probe for vertical soil water content profiling

    Science.gov (United States)

    Vienken, Thomas; Reboulet, Ed; Leven, Carsten; Kreck, Manuel; Zschornack, Ludwig; Dietrich, Peter

    2015-04-01

    Reliable high-resolution information about vertical variations in soil water content, i.e. total porosity in the saturated zone, is essential for flow and transport predictions within the subsurface. However, porosity measurements are often associated with high efforts and high uncertainties, e.g. caused by soil disturbance during sampling or sensor installation procedures. In hydrogeological practice, commonly applied tools for the investigation of vertical soil water content distribution include gravimetric laboratory analyses of soil samples and neutron probe measurements. A yet less well established technique is the use of direct push-deployed sensor probes. Each of these methods is associated with inherent advantages and limitations due to their underlying measurement principles and operation modes. The presented study describes results of a joint field evaluation of the individual methods under different depositional and hydrogeological conditions with special focus on the performance on the direct push-deployed water content profiler. Therefore, direct push-profiling results from three different test sites are compared with results obtained from gravimetric analysis of soil cores and neutron probe measurements. In direct comparison, the applied direct push-based sensor probe proved to be a suitable alternative for vertical soil water content profiling to neutron probe technology, and, in addition, proved to be advantageous over gravimetric analysis in terms vertical resolution and time efficiency. Results of this study identify application-specific limitations of the methods and thereby highlight the need for careful data evaluation, even though neutron probe measurements and gravimetric analyses of soil samples are well established techniques (see Vienken et al. 2013). Reference: Vienken, T., Reboulet, E., Leven, C., Kreck, M., Zschornack, L., Dietrich, P., 2013. Field comparison of selected methods for vertical soil water content profiling. Journal of

  16. Towards Predicting Room Acoustical Effects on Sound-Field ASSR from Stimulus Modulation Power

    DEFF Research Database (Denmark)

    Zapata Rodriguez, Valentina; Laugesen, Søren; Jeong, Cheol-Ho

    ) is considered. Instead of using insert earphones to deliver the stimuli, as is customary, the auditory signals are reproduced from a loudspeaker placed in front of the subject, so as to include the hearing aid in the transmission path. Loudspeaker presentation of the stimulus can lower its effective modulation...... properties of the measurement room has not been considered. The present work explores the relation between the stimulus modulation power and the ASSR amplitude in a simulated sound-field ASSR data set with varying reverberation time. Three rooms were simulated using the Green's function approach...

  17. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    Kang, Kuk Jeong; Ko, Sung Ho; Lee, Dong Soo

    2008-01-01

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  18. A study on impulsive sound attenuation for a high-pressure blast flow field

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kuk Jeong [Agency for Defence Development, Daejeon (Korea, Republic of); Ko, Sung Ho; Lee, Dong Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2008-01-15

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  19. Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions

    Science.gov (United States)

    Vemareddy, P.

    2017-12-01

    We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.

  20. Sporadic E S Layers at High Latitudes During a Magnetic Storm of March 17, 2015 According to the Vertical and Oblique Ionospheric Sounding Data

    Science.gov (United States)

    Blagoveshchensky, D. V.; Maltseva, O. A.; Anishin, M. M.; Rogov, D. D.

    2017-11-01

    We consider the behavior of the parameters of the ionospheric E s layers according to the vertical sounding at the Sodankylä observatory and oblique sounding at the Lovozero (Murmansk region)—Gor'kovskaya station (Leningrad region) path during a superstorm of March 17, 2015. Temporal and spatial behavior of these parameters is compared. It was found that the storm significantly distorted the normal course of variations of the sporadic E s layer characteristics. Specific behavior of the layers during a storm at points separated by about 300 km was detected. With the help of ray tracing calculations using the IRI model, oblique sounding ionograms were constructed for the radio path analyzed. Primary attention is given to the maximum usable frequency of the F 2 layer—MUF- F 2. Additionally, for the disturbed conditions where there is only a high-power E s layer on the experimental ionograms, the values of MUF- E s and the ratio K =MUF- E s/ f o E s for various cutoff frequencies f o E s of the E s layer and its altitudes {h}_{E_s} are calculated within the framework of the well-known approximations. Calculations for the case of weak disturbance and semitransparent E s layers are carried out with the IRI model adapted to the current diagnostics parameters. It was found that the calculated and experimental values of MUF- F 2 are close to each other or coincide, while this cannot be said about MUF- E s. The calculated and experimental values of MUF- E s can be matched in the model of mirror reflection from a flat layer for intense layers and the model of the E layer for thick E s layers of low intensity.

  1. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Chen, Guohai; Shin, Dong Hoon; Lee, Cheol Jin; Iwasaki, Takayuki; Kawarada, Hiroshi

    2008-01-01

    Vertically aligned double-walled carbon nanotube (VA-DWCNT) arrays were synthesized by point-arc microwave plasma chemical vapor deposition on Cr/n-Si and SiO 2 /n-Si substrates. The outer tube diameters of VA-DWCNTs are in the range of 2.5-3.8 nm, and the average interlayer spacing is approximately 0.42 nm. The field emission properties of these VA-DWCNTs were studied. It was found that a VA-DWCNT array grown on a Cr/n-Si substrate had better field emission properties as compared with a VA-DWCNT array grown on a SiO 2 /n-Si substrate and randomly oriented DWCNTs, showing a turn-on field of about 0.85 V μm -1 at the emission current density of 0.1 μA cm -2 and a threshold field of 1.67 V μm -1 at the emission current density of 1.0 mA cm -2 . The better field emission performance of the VA-DWCNT array was mainly attributed to the vertical alignment of DWCNTs on the Cr/n-Si substrate and the low contact resistance between CNTs and the Cr/n-Si substrate

  2. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q.J. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Chen, X. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Ostrikov, K., E-mail: kostya.ostrikov@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-22

    Highlights: > A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. > The carbon nanotubes are later treated with nitrogen plasmas. > The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. > A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 {mu}A/cm{sup 2}) achieved at a low applied field (3.50 V/{mu}m) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  3. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Wang, B.B.; Cheng, Q.J.; Chen, X.; Ostrikov, K.

    2011-01-01

    Highlights: → A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. → The carbon nanotubes are later treated with nitrogen plasmas. → The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. → A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm 2 ) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  4. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    Science.gov (United States)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  5. Geoelectric sounding for the determination of groundwater ...

    African Journals Online (AJOL)

    High apparent resistivity contrasts between the saturated freshwater zones and apparent low resistivity of the saturated seawater intrusion were measured on eleven vertical electrical soundings field curves using the Schlumberger electrode array in Iwaya area of Lagos. The field measurements were inverted to subsurface ...

  6. Knowledge about Sounds – Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields and Layers in House Mice

    Directory of Open Access Journals (Sweden)

    Diana B. Geissler

    2016-03-01

    Full Text Available Activation of the auditory cortex (AC by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF, the ultrasonic field (UF, the secondary field (AII, and the dorsoposterior field (DP suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers and brains which acquired knowledge via implicit learning (naïve females. In this way, auditory cortical activation discriminates between instinctive (mothers and learned (naïve females cognition.

  7. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  8. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  9. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Kansal, Anuj Kumar; Joshi, Jyeshtharaj B.; Maheshwari, Naresh Kumar; Vijayan, Pallippattu Krishnan

    2015-01-01

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  10. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  11. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Mathur, A.; Roy, S.S.; Hazra, K.S.; Wadhwa, S.; Ray, S.C.; Mitra, S.K.; Misra, D.S.; McLaughlin, J.A.

    2012-01-01

    Highlights: ► We showed Ar/O 2 plasma can be effective for the end opening of aligned CNTs. ► The field emission property was dramatically enhanced after plasma modification. ► Microstructures were clearly understood by Raman and SEM analysis. ► Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15–20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110° to 40°. It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from ∼0.80 V μm −1 (untreated) to ∼0.60 V μm −1 (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  12. Diffusion of the vertical field into the tape-wound magnet

    International Nuclear Information System (INIS)

    Gottardi, N.; Mast, F.; Preis, H.; Suess, R.

    1981-07-01

    A computer program was developed to calculate eddy currents in electrically conducting structures of general geometry in order to determine their magnetic fields. The program is based on the finite element network method (FEN), in which the structure considered is divided into directed, finite elements. Each element is then treated as a branch of a three-dimensional RL network. After R and L in all of the network branches have been calculated, the network differential equations represented in matrix form is solved. The time behaviour and distribution of the eddy currents then follow directly from the solution vector of the transient branch currents. The FEN is tested in the case of vertical field diffusion through the toroidal field coils of ZEPHYR. For this purpose an electrical model of the coil configurations was constructed on a scale of 1:5. The scaling laws applied are described. A detailed description of the measuring method used is given. The results of the calculations and measurements are compared for various frequencies of the vertical field. (orig./HT)

  13. Low frequency sound field control in rectangular listening rooms using CABS (Controlled Acoustic Bass System) will also reduce sound transmission to neighbor rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2011-01-01

    Sound reproduction is often taking place in small and medium sized rectangular rooms. As rectangular rooms have 3 pairs of parallel walls the reflections at especially low frequencies will cause up to 30 dB spatial variations of the sound pressure level in the room. This will take place not only...... at resonance frequencies, but more or less at all frequencies. A time based room correction system named CABS (Controlled Acoustic Bass System) has been developed and is able to create a homogeneous sound field in the whole room at low frequencies by proper placement of multiple loudspeakers. A normal setup...... from the rear wall, and thereby leaving only the plane wave in the room. With a room size of (7.8 x 4.1 x 2.8) m. it is possible to prevent modal frequencies up to 100 Hz. An investigation has shown that the sound transmitted to a neighbour room also will be reduced if CABS is used. The principle...

  14. Interface for Barge-in Free Spoken Dialogue System Based on Sound Field Reproduction and Microphone Array

    Directory of Open Access Journals (Sweden)

    Hinamoto Yoichi

    2007-01-01

    Full Text Available A barge-in free spoken dialogue interface using sound field control and microphone array is proposed. In the conventional spoken dialogue system using an acoustic echo canceller, it is indispensable to estimate a room transfer function, especially when the transfer function is changed by various interferences. However, the estimation is difficult when the user and the system speak simultaneously. To resolve the problem, we propose a sound field control technique to prevent the response sound from being observed. Combined with a microphone array, the proposed method can achieve high elimination performance with no adaptive process. The efficacy of the proposed interface is ascertained in the experiments on the basis of sound elimination and speech recognition.

  15. Controlled Acoustic Bass System (CABS) A Method to Achieve Uniform Sound Field Distribution at Low Frequencies in Rectangular Rooms

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2008-01-01

    The sound field produced by loudspeakers at low frequencies in small- and medium-size rectangular listening rooms is highly nonuniform due to the multiple reflections and diffractions of sound on the walls and different objects in the room. A new method, called controlled acoustic bass system (CA......-frequency range. CABS has been simulated and measured in two different standard listening rooms with satisfactory results....

  16. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    Science.gov (United States)

    Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg

    2016-11-01

    The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.

  17. Modulation of the electronic property of phosphorene by wrinkle and vertical electric field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Wei, Zhongming, E-mail: zmwei@semi.ac.cn; Li, Jingbo, E-mail: jbli@semi.ac.cn [State Key Laboratory of Superlattice and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2015-09-14

    The electronic properties of wrinkled phosphorene and its response to charge injection and external vertical electric field have been studied using first-principles calculations. It is found that small-size wrinkle systems have lower energy than wrinkle-free monolayer, suggesting that free-standing phosphorene spontaneously forms small protrusion on its nanosheet. The ratio of wrinkle height to curvature radius increases with enlarging height, indicating a promotion of field enhancement factor. Furthermore, the injected charges mostly distribute at peak and valley. Direct-to-indirect band-gap transition has been found for zigzag wrinkle with height of 14.81 Å. The band gaps of wrinkled nanosheets decrease almost linearly with increasing field, which is caused by charge separation of valence band maximum and conduction band minimum.

  18. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2013-07-01

    Full Text Available Soil penetration resistance (PR is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV, skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  19. Multifractal analysis of vertical profiles of soil penetration resistance at the field scale

    Science.gov (United States)

    Siqueira, G. M.; Silva, E. F. F.; Montenegro, A. A. A.; Vidal Vázquez, E.; Paz-Ferreiro, J.

    2013-07-01

    Soil penetration resistance (PR) is widely used as an indirect indicator of soil strength. Soil PR is linked to basic soil properties and correlated to root growth and plant production, and as such it is extensively used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent soil PR profiles and how this information can be used at the field scale. We analysed multifractality of 50 PR vertical profiles, measured from 0 to 60 cm depth and randomly located on a 6.5 ha sugar cane field in northeastern Brazil. The scaling property of each profile was typified by singularity, and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. The singularity and Rènyi spectra showed that the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to 1, ranging from 0.944 to 0.988, indicating strong persistence in PR variation with soil depth. Also, the Hurst exponent was negatively and significantly correlated to coefficient of variation (CV), skewness and maximum values of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean and maximum values of PR. Combination of spatial variability survey and multifractal analysis appear to be useful to manage soil compaction.

  20. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    Science.gov (United States)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  1. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  2. Conceptual design of plasma position control of SST-1 tokamak using vertical field coil

    International Nuclear Information System (INIS)

    Gulati, Hitesh Kumar; Patel, Kiritkumar B.; Dhongde, Jasraj

    2015-01-01

    SST-1 (Steady State Superconducting Tokamak) is a plasma confinement device in Institute for Plasma Research (IPR) India. SST-1 has been commissioned successfully and has been carrying out plasma experiments since the beginning of 2014 achieved a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼ 500 ms. SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1s. Based on the solution of Grad-Shafranov equation the shift of plasma column center from geometrical centre of vacuum chamber is measured using various magnetic probes and flux loops installed in the machine. The closed feedback loop uses plasma current (Ip), Delta R as feedback signal and manipulate the vertical field current (Ivf). The discharge starts with feed forward loop using initially provided reference then the active feedback starts after discharge by few msec once plasma column is completely formed. The feedback loop time is of the order of 10 msec. The primary objective is to acquire plasma position control related signals, compute plasma position and generate position correction signal for VF coil power supply, communicate correction to VF coil power supply and modify VF power supply output in a deterministic time span. In this we present the methodology used for plasma horizontal displacement control using vertical field and discuss the preliminary results. (author)

  3. The application of standard definitions of sound to the fields of underwater acoustics and acoustical oceanography

    Science.gov (United States)

    Carey, William M.

    2004-05-01

    Recent societal concerns have focused attention on the use of sound as a probe to investigate the oceans and its use in naval sonar applications. The concern is the impact the use of sound may have on marine mammals and fishes. The focus has changed the fields of acoustical oceanography (AO) and underwater acoustics (UW) because of the requirement to communicate between disciplines. Multiple National Research Council publications, Dept. of Navy reports, and several monographs have been written on this subject, and each reveals the importance as well as the misapplication of ASA standards. The ANSI-ASA standards are comprehensive, however not widely applied. The clear definition of standards and recommendations of their use is needed for both scientists and government agencies. Traditionally the U.S. Navy has been responsible for UW standards and calibration; the ANSI-ASA standards have been essential. However, recent changes in the Navy and its laboratory structure may necessitate a more formal recognition of ANSI-ASA standards and perhaps incorporation of UW-AO in the Bureau of Standards. A separate standard for acoustical terminology, reference levels, and notation used in the UW-AO is required. Since the problem is global, a standard should be compatible and cross referenced with the International Standard (CEI/IEC 27-3).

  4. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.

    Science.gov (United States)

    Degerman, Alexander; Rinne, Teemu; Särkkä, Anna-Kaisa; Salmi, Juha; Alho, Kimmo

    2008-06-01

    Event-related brain potentials (ERPs) and magnetic fields (ERFs) were used to compare brain activity associated with selective attention to sound location or pitch in humans. Sixteen healthy adults participated in the ERP experiment, and 11 adults in the ERF experiment. In different conditions, the participants focused their attention on a designated sound location or pitch, or pictures presented on a screen, in order to detect target sounds or pictures among the attended stimuli. In the Attend Location condition, the location of sounds varied randomly (left or right), while their pitch (high or low) was kept constant. In the Attend Pitch condition, sounds of varying pitch (high or low) were presented at a constant location (left or right). Consistent with previous ERP results, selective attention to either sound feature produced a negative difference (Nd) between ERPs to attended and unattended sounds. In addition, ERPs showed a more posterior scalp distribution for the location-related Nd than for the pitch-related Nd, suggesting partially different generators for these Nds. The ERF source analyses found no source distribution differences between the pitch-related Ndm (the magnetic counterpart of the Nd) and location-related Ndm in the superior temporal cortex (STC), where the main sources of the Ndm effects are thought to be located. Thus, the ERP scalp distribution differences between the location-related and pitch-related Nd effects may have been caused by activity of areas outside the STC, perhaps in the inferior parietal regions.

  5. The Use of an Open Field Model to Assess Sound-Induced Fear and Anxiety Associated Behaviors in Labrador Retrievers.

    Science.gov (United States)

    Gruen, Margaret E; Case, Beth C; Foster, Melanie L; Lazarowski, Lucia; Fish, Richard E; Landsberg, Gary; DePuy, Venita; Dorman, David C; Sherman, Barbara L

    2015-01-01

    Previous studies have shown that the playing of thunderstorm recordings during an open-field task elicits fearful or anxious responses in adult beagles. The goal of our study was to apply this open field test to assess sound-induced behaviors in Labrador retrievers drawn from a pool of candidate improvised explosive devices (IED)-detection dogs. Being robust to fear-inducing sounds and recovering quickly is a critical requirement of these military working dogs. This study presented male and female dogs, with 3 minutes of either ambient noise (Days 1, 3 and 5), recorded thunderstorm (Day 2), or gunfire (Day 4) sounds in an open field arena. Behavioral and physiological responses were assessed and compared to control (ambient noise) periods. An observer blinded to sound treatment analyzed video records of the 9-minute daily test sessions. Additional assessments included measurement of distance traveled (activity), heart rate, body temperature, and salivary cortisol concentrations. Overall, there was a decline in distance traveled and heart rate within each day and over the five-day test period, suggesting that dogs habituated to the open field arena. Behavioral postures and expressions were assessed using a standardized rubric to score behaviors linked to canine fear and anxiety. These fear/anxiety scores were used to evaluate changes in behaviors following exposure to a sound stressor. Compared to control periods, there was an overall increase in fear/anxiety scores during thunderstorm and gunfire sound stimuli treatment periods. Fear/anxiety scores were correlated with distance traveled, and heart rate. Fear/anxiety scores in response to thunderstorm and gunfire were correlated. Dogs showed higher fear/anxiety scores during periods after the sound stimuli compared to control periods. In general, candidate IED-detection Labrador retrievers responded to sound stimuli and recovered quickly, although dogs stratified in their response to sound stimuli. Some dogs were

  6. Acoustic transfer function of cavity and its application to rapid evaluation of sound field at low frequency band

    Institute of Scientific and Technical Information of China (English)

    YIN Gang; CHEN Hualing; HU Xuanli; HUANG Xieqing

    2001-01-01

    A new method to obtain numerical solution of Acoustic Transfer Function (ATF) by BEM is presented. For a simply supported panel backed by a rectangular cavity at low frequency band (0-200 Hz), the frequency property of ATF is analyzed. The relation between the accuracy of the rapid evaluation of sound field and the discretization schemes of the vibrational panel is discussed. The result shows that the method to obtain ATF and the rapid evaluation of sound field using the ATF is suitable to low frequency band. If an appropriate discretization scheme is choosed based on the frequency involved and the effort to obtain ATF, the accuracy of the rapid evaluation of sound field is acceptable.

  7. Fourier and Wavelet Based Characterisation of the Ionospheric Response to the Solar Eclipse of August, the 11th, 1999, Measured Through 1-minute Vertical Ionospheric Sounding

    Science.gov (United States)

    Sauli, P.; Abry, P.; Boska, J.

    2004-05-01

    The aim of the present work is to study the ionospheric response induced by the solar eclipse of August, the 11th, 1999. We provide Fourier and wavelet based characterisations of the propagation of the acoustic-gravity waves induced by the solar eclipse. The analysed data consist of profiles of electron concentration. They are derived from 1-minute vertical incidence ionospheric sounding measurements, performed at the Pruhonice observatory (Czech republic, 49.9N, 14.5E). The chosen 1-minute high sampling rate aims at enabling us to specifically see modes below acoustic cut-off period. The August period was characterized by Solar Flux F10.7 = 128, steady solar wind, quiet magnetospheric conditions, a low geomagnetic activity (Dst index varies from -10 nT to -20 nT, Σ Kp index reached value of 12+). The eclipse was notably exceptional in uniform solar disk. These conditions and fact that the culmination of the solar eclipse over central Europe occurred at local noon are such that the observed ionospheric response is mainly that of the solar eclipse. We provide a full characterization of the propagation of the waves in terms of times of occurrence, group and phase velocities, propagation direction, characteristic period and lifetime of the particular wave structure. However, ionospheric vertical sounding technique enables us to deal with vertical components of each characteristic. Parameters are estimated combining Fourier and wavelet analysis. Our conclusions confirm earlier theoretical and experimental findings, reported in [Altadill et al., 2001; Farges et al., 2001; Muller-Wodarg et al.,1998] regarding the generation and propagation of gravity waves and provide complementary characterisation using wavelet approaches. We also report a new evidence for the generation and propagation of acoustic waves induced by the solar eclipse through the ionospheric F region. Up to our knowledge, this is the first time that acoustic waves can be demonstrated based on ionospheric

  8. Fabrication, electrical characterization and device simulation of vertical P3HT field-effect transistors

    Directory of Open Access Journals (Sweden)

    Bojian Xu

    2017-12-01

    Full Text Available Vertical organic field-effect transistors (VOFETs provide an advantage over lateral ones with respect to the possibility to conveniently reduce the channel length. This is beneficial for increasing both the cut-off frequency and current density in organic field-effect transistor devices. We prepared P3HT (poly[3-hexylthiophene-2,5-diyl] VOFETs with a surrounding gate electrode and gate dielectric around the vertical P3HT pillar junction. Measured output and transfer characteristics do not show a distinct gate effect, in contrast to device simulations. By introducing in the simulations an edge layer with a strongly reduced charge mobility, the gate effect is significantly reduced. We therefore propose that a damaged layer at the P3HT/dielectric interface could be the reason for the strong suppression of the gate effect. We also simulated how the gate effect depends on the device parameters. A smaller pillar diameter and a larger gate electrode-dielectric overlap both lead to better gate control. Our findings thus provide important design parameters for future VOFETs.

  9. M.V.A. amplifier for plasma position control by vertical magnetic field

    International Nuclear Information System (INIS)

    Schenk, G.

    1978-01-01

    The radial plasma position in the WEGA torus is controlled by a power amplifier, acting on the vertical magnetic field. Up to now the feedback loop contains, as amplifying elements, two 90 kW DC-transistor amplifiers, acting in push-pull operation. As increased plasma stability and lifetime is desirable, we have to increase the power amplifier to about 1 Megawatt. Industry offered a thyristor rectifier, operating at 50 or 300 Hz, and alternatively a thyristor chopper amplifier at a few kHz frequency response. Theses offers did not correspond to our demand, as far as response time, price and primary power requirements are concerned. We have implemented a bipolar switching-type amplifier (also called H-bridge converter) with the characteristics: time response < 0,05 ms., pulsed power = 1 MW (400 V, 2500 A), primary power = 2,5 kW. As power switch, a network of parallel high voltage transistors, driven by three transistor stages, has been chosen, to control a vertical magnetic field or +/- 180 G, with a precision of about one per cent. Precautions for transistor switches concerning mainly critical voltage, current, instantaneous power and selfoscillating behaviour have been taken. This systems corresponds to our demands

  10. Vertical organic field effect phototransistor with two dissimilar source and drain contacts

    International Nuclear Information System (INIS)

    Woon, K.L.; Yeo, G.N.

    2014-01-01

    A solution processable vertical organic field effect phototransistor was fabricated using poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 as the photo-active materials while poly(methyl methacrylate) is used as a dielectric layer. Interdigitated conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) is used as a source and lithium flouride/aluminum as a drain. The device exhibits current modulation when the gate is positively biased. A significant photoeffect is observed in the reverse bias mode. Unlike conventional organic phototransistors, this device can operate at a zero source–drain bias with a photosensitivity and responsivity proportional to the gate voltage. A photosensitivity of up to 10 5 and a responsivity of up to 2 AW −1 are achieved in this mode. This effect is due to the presence of the weak photovoltaic behavior of this device. - Highlights: • A solution processable vertical field effect phototransistor is demonstrated. • Photosensitivity as high as ∼ 10 5 with responsivity of 2 AW −1 is achieved. • The gate can be used to modulate photocurrent with low leakage current. • The device shows weak photovoltaic behavior

  11. Stable Computation of the Vertical Gradient of Potential Field Data Based on Incorporating the Smoothing Filters

    Science.gov (United States)

    Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed

    2018-04-01

    The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic

  12. On the interaction between the external magnetic field and nanofluid inside a vertical square duct

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-10-01

    Full Text Available In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms of both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.

  13. Vertical field MR imaging of upper thorax and spine in small children

    International Nuclear Information System (INIS)

    Brockstedt, S.; Malmgren, N.; Malmgren, L.; Ivarsson, M.L.; Larsson, E.M.; Holtaas, S.; Staahlberg, F.

    1993-01-01

    To improve image quality in a vertical field MR imaging unit, operating at low field strength (0.3 T), we have designed a half-elliptical coil for use in the upper thoracic region of small children. Our intention was also to shorten the examination time, which until now has been long, because several scans with different coils have been necessary to cover the thoracic region. The experimental coil is designed so that a child's shoulders fit into the central region. The coil consists of 2 serially connected cable-loops, mounted on a foam rubber vest. The coil performance was tested in a phantom and improvements relative to standard coils were demonstrated in in vivo studies. The results indicate that by using the half-elliptical coil, the signal-to-noise (S/N) ratio can be improved by a factor of 2 to 3 in the thoracic region of a child. (orig.)

  14. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes.

    Science.gov (United States)

    Jain, Shilpee; Sharma, Ashutosh; Basu, Bikramjit

    2013-12-01

    We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 kΩ at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (≤ 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A multipole-expanded effective field theory for vortex ring-sound interactions

    Science.gov (United States)

    Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto

    2018-02-01

    The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.

  16. Controllable Micro-Particle Rotation and Transportation Using Sound Field Synthesis Technique

    Directory of Open Access Journals (Sweden)

    Shuang Deng

    2018-01-01

    Full Text Available Rotation and transportation of micro-particles using ultrasonically-driven devices shows promising applications in the fields of biological engineering, composite material manufacture, and micro-assembly. Current interest in mechanical effects of ultrasonic waves has been stimulated by the achievements in manipulations with phased array. Here, we propose a field synthesizing method using the fewest transducers to control the orientation of a single non-spherical micro-particle as well as its spatial location. A localized acoustic force potential well is established and rotated by using sound field synthesis technique. The resultant acoustic radiation torque on the trapped target determines its equilibrium angular position. A prototype device consisting of nine transducers with 2 MHz center frequency is designed and fabricated. Controllable rotation of a silica rod with 90 μm length and 15 μm diameter is then successfully achieved. There is a good agreement between the measured particle orientation and the theoretical prediction. Within the same device, spatial translation of the silica rod can also be realized conveniently. When compared with the existing acoustic rotation methods, the employed transducers of our method are strongly decreased, meanwhile, device functionality is improved.

  17. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Roy, S.S., E-mail: sinharoy@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Hazra, K.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); Wadhwa, S. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Ray, S.C. [School of Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); Mitra, S.K. [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Misra, D.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); McLaughlin, J.A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We showed Ar/O{sub 2} plasma can be effective for the end opening of aligned CNTs. Black-Right-Pointing-Pointer The field emission property was dramatically enhanced after plasma modification. Black-Right-Pointing-Pointer Microstructures were clearly understood by Raman and SEM analysis. Black-Right-Pointing-Pointer Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15-20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110 Degree-Sign to 40 Degree-Sign . It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from {approx}0.80 V {mu}m{sup -1} (untreated) to {approx}0.60 V {mu}m{sup -1} (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  18. Variations of the critical foE-frequency of the ionosphere connected with earthquakes. Evaluation of observations of the vertical sounding station "Tokyo"

    Science.gov (United States)

    Liperovskaya, Elena V.; Meister, Claudia-Veronika; Hoffmann, Dieter H. H.; Silina, Alexandra S.

    2016-04-01

    In the present work the critical frequencies foE and foF2 of the ionosphere are considered as possible earthquake precursors. The statistical analysis of the critical frequencies is carried out based on the data of the vertical sounding station (VSS) "Kokubunji" ("Tokyo") (ϕ = 35.7o N, λ = 139.5o E, 1957-1988) obtained every hour. Disturbances are considered on the background of seasonal, geomagnetic as well as 11-years and 27-days Solar variations. Special normalized parameters E and F are introduced, which represent the almost seasonal-independent parts of foE and foF2. Days with high Solar (Wolf number > 100) and geomagnetic (ΣKp > 25) activities are excluded from the analysis. For all data (observed every hour) analysed, no correlations of the normalized parameters E and F are found. One day before the seismic shock, a positive correlation is observed. The superimposed epochs method is used to determine the temporal behaviour of E and F. It is found that E and F decrease one day before the earthquakes provided that the seismic shocks occur at distances 600 5.5 is situated at depths smaller than 60 km. The reliability of the effect is larger than 98 %. Possible physical mechanisms of the phenomenon are discussed.

  19. A generalized linear model for estimating spectrotemporal receptive fields from responses to natural sounds.

    Directory of Open Access Journals (Sweden)

    Ana Calabrese

    2011-01-01

    Full Text Available In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF, a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM. In this model, each cell's input is described by: 1 a stimulus filter (STRF; and 2 a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs and modulation limited (ml noise. We compare this model to normalized reverse correlation (NRC, the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.

  20. Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations

    Science.gov (United States)

    Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S.

    2018-06-01

    The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only up to one to two times the nuclear saturation density, using accurate many-body methods that employ nuclear interactions from chiral effective field theory constrained by scattering data. In this work, we use physically motivated ansatzes for the speed of sound c S at high density to extend microscopic calculations of neutron-rich matter to the highest densities encountered in stable NS cores. We show how existing and expected astrophysical constraints on NS masses and radii from X-ray observations can constrain the speed of sound in the NS core. We confirm earlier expectations that c S is likely to violate the conformal limit of {c}S2≤slant {c}2/3, possibly reaching values closer to the speed of light c at a few times the nuclear saturation density, independent of the nuclear Hamiltonian. If QCD obeys the conformal limit, we conclude that the rapid increase of c S required to accommodate a 2 M ⊙ NS suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even between one and two times the nuclear saturation density. For typical NSs with masses in the range of 1.2–1.4 M ⊙, we find radii between 10 and 14 km, and the smallest possible radius of a 1.4 M ⊙ NS consistent with constraints from nuclear physics and observations is 8.4 km. We also discuss how future observations could constrain the EOS and guide theoretical developments in nuclear physics.

  1. Development and characterization of vertical double-gate MOS field-effect transistors

    International Nuclear Information System (INIS)

    Trellenkamp, S.

    2004-07-01

    Planar MOS-field-effect transistors are common devices today used by the computer industry. When their miniaturization reaches its limit, alternate transistor concepts become necessary. In this thesis the development of vertical Double-Gate-MOS-field-effect transistors is presented. These types of transistors have a vertically aligned p-n-p junction (or n-p-n junction, respectively). Consequently, the source-drain current flows perpendicular with respect to the surface of the wafer. A Double-Gate-field-effect transistor is characterized by a very thin channel region framed by two parallel gates. Due to the symmetry of the structure and less bulk volume better gate control and hence better short channel behavior is expected, as well as an improved scaling potential. Nanostructuring of the transistor's active region is very challenging. Approximately 300 nm high and down to 30 nm wide silicon ridges are requisite. They can be realized using hydrogen silsesquioxane (HSQ) as inorganic high resolution resist for electron beam lithography. Structures defined in HSQ are then transferred with high anisotropy and selectivity into silicon using ICP-RIE (reactive ion etching with inductive coupled plasma). 25 nm wide and 330 nm high silicon ridges are achieved. Different transistor layouts are realized. The channel length is defined by epitaxial growth of doped silicon layers before or by ion implantation after nanostructuring, respectively. The transistors show source-drain currents up to 380 μA/μm and transconductances up to 480 μS/μm. Improved short channel behavior for decreasing width of the silicon ridges is demonstrated. (orig.)

  2. Characterization of a vertically movable gate field effect transistor using a silicon-on-insulator wafer

    Science.gov (United States)

    Song, In-Hyouk; Forfang, William B. D.; Cole, Bryan; You, Byoung Hee

    2014-10-01

    The vertically movable gate field effect transistor (VMGFET) is a FET-based sensing element, whose gate moves in a vertical direction over the channel. A VMGFET gate covers the region between source and drain. A 1 μm thick air layer separates the gate and the substrate of the VMGFET. A novel fabrication process to form a VMGFET using a silicon-on-insulator (SOI) wafer provides minimal internal stress of the gate structure. The enhancement-type n-channel VMGFET is fabricated with the threshold voltage of 2.32 V in steady state. A non-inverting amplifier is designed and integrated on a printable circuit board (PCB) to characterize device sensitivity and mechanical properties. The VMGFET is mechanically coupled to a speaker membrane to apply mechanical vibration. The oscillated drain current of FET are monitored and sampled with NI LabVIEW. The frequency of the output signal correlates with that of the input stimulus. The resonance frequency of the fabricated VMGFET is measured to be 1.11 kHz. The device sensitivity linearly increases by 0.106 mV/g Hz in the range of 150 Hz and 1 kHz.

  3. Characterization of a vertically movable gate field effect transistor using a silicon-on-insulator wafer

    International Nuclear Information System (INIS)

    Song, In-Hyouk; Forfang, William B D; Cole, Bryan; Hee You, Byoung

    2014-01-01

    The vertically movable gate field effect transistor (VMGFET) is a FET-based sensing element, whose gate moves in a vertical direction over the channel. A VMGFET gate covers the region between source and drain. A 1 μm thick air layer separates the gate and the substrate of the VMGFET. A novel fabrication process to form a VMGFET using a silicon-on-insulator (SOI) wafer provides minimal internal stress of the gate structure. The enhancement-type n-channel VMGFET is fabricated with the threshold voltage of 2.32 V in steady state. A non-inverting amplifier is designed and integrated on a printable circuit board (PCB) to characterize device sensitivity and mechanical properties. The VMGFET is mechanically coupled to a speaker membrane to apply mechanical vibration. The oscillated drain current of FET are monitored and sampled with NI LabVIEW. The frequency of the output signal correlates with that of the input stimulus. The resonance frequency of the fabricated VMGFET is measured to be 1.11 kHz. The device sensitivity linearly increases by 0.106 mV/g Hz in the range of 150 Hz and 1 kHz. (paper)

  4. Influence of contact height on the performance of vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Cheng, Yingchun; Guo, Zaibing; Wang, Zhihong; Zhu, Zhiyong; Zhang, Qing; Chan-Park, Chanpark; Schwingenschlö gl, Udo; Zhang, Xixiang

    2013-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been experimentally demonstrated (J. Li et al., Carbon, 2012, 50, 4628-4632). The source and drain contact heights in vertical CNTFETs could be much higher than in flat CNTFETs if the fabrication process is not optimized. To understand the impact of contact height on transistor performance, we use a semi-classical method to calculate the characteristics of CNTFETs with different contact heights. The results show that the drain current decreases with increasing contact height and saturates at a value governed by the thickness of the oxide. The current reduction caused by the increased contact height becomes more significant when the gate oxide is thicker. The higher the drain voltage, the larger the current reduction. It becomes even worse when the band gap of the carbon nanotube is larger. The current can differ by a factor of more than five between the CNTEFTs with low and high contact heights when the oxide thickness is 50 nm. In addition, the influence of the contact height is limited by the channel length. The contact height plays a minor role when the channel length is less than 100 nm. © 2013 The Royal Society of Chemistry.

  5. Binaural loudness for artificial-head measurements in directional sound fields

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2008-01-01

    The effect of the sound incidence angle on loudness was investigated for fifteen listeners who matched the loudness of sounds coming from five different incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were presented via binaural synthesis...... by using head-related transfer functions measured for an artificial head. The results, which exhibited marked individual differences, show that loudness depends on the direction from which a sound reaches the listener. The average results suggest a relatively simple rule for combining the two signals...... at the ears of an artificial head for binaural loudness predictions....

  6. Hearing Threshold and Equal Loudness Level Contours of 1/3-octave Noise Bands in a Diffuse Sound Field

    DEFF Research Database (Denmark)

    Nielsen, Maja Kirstine E.; Poulsen, Torben

    1994-01-01

    Hearing threshold levels and equal loudness level contours of 1/3-octave noise bands at 40 phons and 60 phon were measured for 27 normal hearing listeners in an approximately diffuse sound field. The threshold data in the frequency range 125 Hz to 1 kHz were 3-6 dB higher than the values given...

  7. On-axis and far-field sound radiation from resilient flat and dome-shaped radiators

    NARCIS (Netherlands)

    Aarts, R.M.; Janssen, A.J.E.M.

    2009-01-01

    On-axis and far-field series expansions are developed for the sound pressure due to an arbitrary, circular symmetric velocity distribution on a flat radiator in an infinite baffle. These expansions are obtained by expanding the velocity distributions in terms of orthogonal polynomials

  8. Numerical investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zikanov, Oleg [University of Michigan - Dearborn, MI 48128-1491 (United States); Listratov, Yaroslav [Moscow Power Engineering Institute, 14 Karsnokazarmennaya St., Moscow 111250 (Russian Federation)

    2016-12-15

    Numerical simulations of the flow of a liquid metal in a vertical pipe are performed. The configuration reproduces the test section of the recent experiment . The mean flow is directed downward, a half of the pipe's wall is heated, and a strong horizontal magnetic field perpendicular to the temperature gradient is imposed. The simulations produce results in good agreement with the experiment and lead us to an explanation of the observed phenomenon of anomalous high-amplitude temperature fluctuations. The fluctuations are caused by growth and quasi-periodic breakdown of the pairs of ascending and descending jets related to the elevator-mode thermal convection. Implications for operation of liquid metal blankets with poloidal ducts are discussed.

  9. Exciton in vertically coupled type II quantum dots in threading magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza-Cantillo, J., E-mail: jhofry@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Universidad de la Guajira, Riohacha (Colombia); Escorcia-Salas, G. Elizabeth, E-mail: elizabethescorcia@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia); Mikhailov, I.D., E-mail: mikhail2811@gmail.com [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia); Sierra-Ortega, J., E-mail: jsierraortega@gmail.com [Group of Investigation in Condensed Matter Theory, Universidad del Magdalena, Carrera 32 No 22-08, Santa Marta (Colombia)

    2014-11-15

    We analyze the energy spectrum of a neutral exciton confined in a semiconductor heterostructure formed by two vertically coupled axially symmetrical type II quantum dots located close to each other. The electron in the structure is mainly located inside dots tunneling between them while the hole generally is placed in the exterior region close to the symmetry axis. Solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are presented for the energies of bonding and anti-bonding lowest-lying of the exciton states and for the density of states for different InP/GaInP quantum dots' morphologies and the magnetic field strength values.

  10. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.

    Science.gov (United States)

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Removing the current-limit of vertical organic field effect transistors

    Science.gov (United States)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  12. Design of double gate vertical tunnel field effect transistor using HDB and its performance estimation

    Science.gov (United States)

    Seema; Chauhan, Sudakar Singh

    2018-05-01

    In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.

  13. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  14. Low frequency sound field enhancement system for rectangular rooms, using multiple loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian

    2007-01-01

    The scope of this PhD dissertation is within the performance of loudspeakers in rooms at low frequencies. The research concentrates on the improvement of the sound level distribution in rooms produced by loudspeakers at low frequencies. The work focuses on seeing the problem acoustically...... and solving it in the time domain. Loudspeakers are the last link in the sound reproduction chain, and they are typically placed in small or medium size rooms. When low frequency sound is radiated by a loudspeaker the sound level distribution along the room presents large deviations. This is due...... to the multiple reflection of sound at the rigid walls of the room. This may cause level differences of up to 20 dB in the room. Some of these deviations are associated with the standing waves, resonances or anti resonances of the room. The understanding of the problem is accomplished by analyzing the behavior...

  15. Investigation of the validity of radiosity for sound-field prediction in cubic rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-12-01

    This paper explores acoustical (or time-dependent) radiosity using predictions made in four cubic enclosures. The methods and algorithms used are those presented in a previous paper by the same authors [Nosal, Hodgson, and Ashdown, J. Acoust. Soc. Am. 116(2), 970-980 (2004)]. First, the algorithm, methods, and conditions for convergence are investigated by comparison of numerous predictions for the four cubic enclosures. Here, variables and parameters used in the predictions are varied to explore the effect of absorption distribution, the necessary conditions for convergence of the numerical solution to the analytical solution, form-factor prediction methods, and the computational requirements. The predictions are also used to investigate the effect of absorption distribution on sound fields in cubic enclosures with diffusely reflecting boundaries. Acoustical radiosity is then compared to predictions made in the four enclosures by a ray-tracing model that can account for diffuse reflection. Comparisons are made of echograms, room-acoustical parameters, and discretized echograms. .

  16. Investigations on stone fragmentation in different extracorporeal shock wave lithotripsy sound fields in vitro

    Science.gov (United States)

    Dreyer, Thomas; Liebler, Marko; Riedlinger, Rainer

    2005-04-01

    The mechanism of stone fragmentation in ESWL applications is still under investigation. Devices showing a wide focal area and comparably low focal pressure amplitudes have been reported to disintegrate stones more efficiently as current clinical devices with high amplitudes and small focal areas. From this the question is raised whether the underlying different physical mechanisms or treatment issues, like stone localization and movement, are responsible for these results. In this paper fragmentation experiments in vitro with different stone types (e.g., HMT and BegoStone, 15 mm diam.) under different sound fields are presented. A self focusing piezoelectric transducer with a small focal area and peak pressure amplitudes of up to 125 MPa is used. The number of pulses was counted until a complete fragmentation through a 2 mm wire mesh is reached. In order to simulate wide-focus low-pressure conditions, the stones were placed in the prefocal region. Fragmentation results are compared to the case of focal placement. Initial breakage occurs earlier in the prefocal region for the HMT stones, whereas complete fragmentation is reached significantly earlier in the focus for all stone types.

  17. Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures.

    Science.gov (United States)

    Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-28

    Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2.

  18. Stability of horizontal viscous fluid layers in a vertical arbitrary time periodic electric field

    Science.gov (United States)

    Bandopadhyay, Aditya; Hardt, Steffen

    2017-12-01

    The stability of a horizontal interface between two viscous fluids, one of which is conducting and the other is dielectric, acted upon by a vertical time-periodic electric field is considered theoretically. The two fluids are bounded by electrodes separated by a finite distance. For an applied ac electric field, the unstable interface deforms in a time periodic manner, owing to the time dependent Maxwell stress, and is characterized by the oscillation frequency which may or may not be the same as the frequency of the ac electric field. The stability curve, which relates the critical voltage, manifested through the Mason number—the ratio of normal electric stress and viscous stress, and the instability wavenumber at the onset of the instability, is obtained by means of the Floquet theory for a general arbitrary time periodic electric field. The limit of vanishing viscosities is shown to be in excellent agreement with the marginal stability curves predicted by means of a Mathieu equation. The influence of finite viscosity and electrode separation is discussed in relation to the ideal case of inviscid fluids. The methodology to obtain the marginal stability curves developed here is applicable to any arbitrary but time periodic signal, as demonstrated for the case of a signal with two different frequencies, and four different frequencies with a dc offset. The mode coupling in the interfacial normal stress leads to appearance of harmonic and subharmonic modes, characterized by the frequency of the oscillating interface at an integral or half-integral multiple of the applied frequency, respectively. This is in contrast to the application of a voltage with a single frequency which always leads to a harmonic mode oscillation of the interface. Whether a harmonic or subharmonic mode is the most unstable one depends on details of the excitation signal.

  19. How male sound pressure level influences phonotaxis in virgin female Jamaican field crickets (Gryllus assimilis

    Directory of Open Access Journals (Sweden)

    Karen Pacheco

    2014-06-01

    Full Text Available Understanding female mate preference is important for determining the strength and direction of sexual trait evolution. The sound pressure level (SPL acoustic signalers use is often an important predictor of mating success because higher sound pressure levels are detectable at greater distances. If females are more attracted to signals produced at higher sound pressure levels, then the potential fitness impacts of signalling at higher sound pressure levels should be elevated beyond what would be expected from detection distance alone. Here we manipulated the sound pressure level of cricket mate attraction signals to determine how female phonotaxis was influenced. We examined female phonotaxis using two common experimental methods: spherical treadmills and open arenas. Both methods showed similar results, with females exhibiting greatest phonotaxis towards loud sound pressure levels relative to the standard signal (69 vs. 60 dB SPL but showing reduced phonotaxis towards very loud sound pressure level signals relative to the standard (77 vs. 60 dB SPL. Reduced female phonotaxis towards supernormal stimuli may signify an acoustic startle response, an absence of other required sensory cues, or perceived increases in predation risk.

  20. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors.

    Science.gov (United States)

    Lemaitre, Maxime G; Donoghue, Evan P; McCarthy, Mitchell A; Liu, Bo; Tongay, Sefaattin; Gila, Brent; Kumar, Purushottam; Singh, Rajiv K; Appleton, Bill R; Rinzler, Andrew G

    2012-10-23

    An improved process for graphene transfer was used to demonstrate high performance graphene enabled vertical organic field effect transistors (G-VFETs). The process reduces disorder and eliminates the polymeric residue that typically plagues transferred films. The method also allows for purposely creating pores in the graphene of a controlled areal density. Transconductance observed in G-VFETs fabricated with a continuous (pore-free) graphene source electrode is attributed to modulation of the contact barrier height between the graphene and organic semiconductor due to a gate field induced Fermi level shift in the low density of electronic-states graphene electrode. Pores introduced in the graphene source electrode are shown to boost the G-VFET performance, which scales with the areal pore density taking advantage of both barrier height lowering and tunnel barrier thinning. Devices with areal pore densities of 20% exhibit on/off ratios and output current densities exceeding 10(6) and 200 mA/cm(2), respectively, at drain voltages below 5 V.

  1. Growth of vertically aligned arrays of carbon nanotubes for high field emission

    International Nuclear Information System (INIS)

    Kim, D.; Lim, S.H.; Guilley, A.J.; Cojocaru, C.S.; Bouree, J.E.; Vila, L.; Ryu, J.H.; Park, K.C.; Jang, J.

    2008-01-01

    Vertically aligned multi-walled carbon nanotubes have been grown on Ni-coated silicon substrates, by using either direct current diode or triode plasma-enhanced chemical vapor deposition at low temperature (around 620 deg. C). Acetylene gas has been used as the carbon source while ammonia and hydrogen have been used for etching. However densely packed (∼ 10 9 cm -2 ) CNTs were obtained when the pressure was ∼ 100 Pa. The alignment of nanotubes is a necessary, but not a sufficient condition in order to get an efficient electron emission: the growth of nanotubes should be controlled along regular arrays, in order to minimize the electrostatic interactions between them. So a three dimensional numerical simulation has been developed to calculate the local electric field in the vicinity of the tips for a finite square array of nanotubes and thus to calculate the maximum of the electron emission current density as a function of the spacing between nanotubes. Finally the triode plasma-enhanced process combined with pre-patterned catalyst films (using different lithography techniques) has been chosen in order to grow regular arrays of aligned CNTs with different pitches in the micrometer range. The comparison between the experimental and the simulation data permits to define the most efficient CNT-based electron field emitters

  2. The annihilation of vertical-Bloch lines in the walls of hard domains to which bias fields and in-plane fields are alternately applied

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Nie, X.F.

    2001-01-01

    The annihilation of vertical-Bloch lines in magnetic domain walls of the ordinary hard bubbles, to which both bias fields and in-plane fields are alternately applied, is investigated experimentally. The influence of an in-plane magnetic field on ordinary hard bubbles (OHB), dumbbell domains of the first kind (ID), and dumbbell domains of the second kind (IID) was analyzed, and a critical in-plane field range [H ip 0 ,H ip 2 ] for vertical Bloch line (VBL) annihilation was found. For the three types of hard domains (H ip 0 is the minimum critical in-plane field of VBLs which begin to be unstable, H ip 2 is the minimum critical in-plane field which only needs to be applied one time for collapse of all OHBs), the critical field range is the same with H ip 0 ≅8πM s . We hypothesize that there exists a direction along which the vertical-Bloch lines in the domain walls are annihilated most easily. It is also observed that the stability of vertical-Bloch lines in the domain walls does not depend on the initial state. This provides a more detailed description of the minimum critical in-plane field than previously known

  3. The Sound Field around a Tuning Fork and the Role of a Resonance Box

    Science.gov (United States)

    Bogacz, Bogdan F.; Pedziwiatr, Antoni T.

    2015-01-01

    Atypical two-tine tuning fork is barely audible when held vibrating at an arm's length. It is enough, however, to touch its base to a table or, better, to a resonance box and the emitted sound becomes much louder. An inquiring student may pose questions: (1) Why is a bare tuning fork such a weak emitter of sound? (2) What is the role of the…

  4. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    Science.gov (United States)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  5. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  6. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    Science.gov (United States)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  7. Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

    KAUST Repository

    Li, Jingqi; Yue, Weisheng; Guo, Zaibing; Yang, Yang; Wang, Xianbin; Syed, Ahad A.; Zhang, Yafei

    2014-01-01

    A vertical carbon nanotube field-effect transistor (CNTFET) based on silicon (Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube (SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage (Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.

  8. Unique Characteristics of Vertical Carbon Nanotube Field-effect Transistors on Silicon

    KAUST Repository

    Li, Jingqi

    2014-07-01

    A vertical carbon nanotube field-effect transistor (CNTFET) based on silicon (Si) substrate has been proposed and simulated using a semi-classical theory. A single-walled carbon nanotube (SWNT) and an n-type Si nanowire in series construct the channel of the transistor. The CNTFET presents ambipolar characteristics at positive drain voltage (Vd) and n-type characteristics at negative Vd. The current is significantly influenced by the doping level of n-Si and the SWNT band gap. The n-branch current of the ambipolar characteristics increases with increasing doping level of the n-Si while the p-branch current decreases. The SWNT band gap has the same influence on the p-branch current at a positive Vd and n-type characteristics at negative Vd. The lower the SWNT band gap, the higher the current. However, it has no impact on the n-branch current in the ambipolar characteristics. Thick oxide is found to significantly degrade the current and the subthreshold slope of the CNTFETs.

  9. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    limiters, MEMS, NEMS, field emission, cold cathodes (Some figures may appear in colour only in the online journal) 1. Introduction Dense arrays of silicon... attention has been given to densely packed, highly ordered, top-down fabricated, single crystal vertical silicon nanowire devices that are embedded

  10. Gate Tunable Transport in Graphene/MoS2/(Cr/Au Vertical Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ghazanfar Nazir

    2017-12-01

    Full Text Available Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS2/(Cr/Au vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr, the electrical transport in our Gr/MoS2/(Cr/Au vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS2 can be modified by back-gate voltage and the current bias. Vertical resistance (Rvert of a Gr/MoS2/(Cr/Au transistor is compared with planar resistance (Rplanar of a conventional lateral MoS2 field-effect transistor. We have also studied electrical properties for various thicknesses of MoS2 channels in both vertical and lateral transistors. As the thickness of MoS2 increases, Rvert increases, but Rplanar decreases. The increase of Rvert in the thicker MoS2 film is attributed to the interlayer resistance in the vertical direction. However, Rplanar shows a lower value for a thicker MoS2 film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  11. Reflector construction by sound path curves - A method of manual reflector evaluation in the field

    International Nuclear Information System (INIS)

    Siciliano, F.; Heumuller, R.

    1985-01-01

    In order to describe the time-of-flight behavior of various reflectors we have set up models and derived from them analytical and graphic approaches to reflector reconstruction. In the course of this work, maximum achievable accuracy and possible simplifications were investigated. The aim of the time-of-flight reconstruction method is to determine the points of a reflector on the basis of a sound path function (sound path as the function of the probe index position). This method can only be used on materials which are isotropic in terms of sound velocity since the method relies on time of flight being converted into sound path. This paper deals only with two-dimensional reconstruction, in other words all statements relate to the plane of incidence. The method is based on the fact that the geometrical location of the points equidistant from a certain probe index position is a circle. If circles with radiuses equal to the associated sound path are drawn for various search unit positions the points of intersection of the circles are the desired reflector points

  12. Energy-based method for near-real time modeling of sound field in complex urban environments.

    Science.gov (United States)

    Pasareanu, Stephanie M; Remillieux, Marcel C; Burdisso, Ricardo A

    2012-12-01

    Prediction of the sound field in large urban environments has been limited thus far by the heavy computational requirements of conventional numerical methods such as boundary element (BE) or finite-difference time-domain (FDTD) methods. Recently, a considerable amount of work has been devoted to developing energy-based methods for this application, and results have shown the potential to compete with conventional methods. However, these developments have been limited to two-dimensional (2-D) studies (along street axes), and no real description of the phenomena at issue has been exposed. Here the mathematical theory of diffusion is used to predict the sound field in 3-D complex urban environments. A 3-D diffusion equation is implemented by means of a simple finite-difference scheme and applied to two different types of urban configurations. This modeling approach is validated against FDTD and geometrical acoustic (GA) solutions, showing a good overall agreement. The role played by diffraction near buildings edges close to the source is discussed, and suggestions are made on the possibility to predict accurately the sound field in complex urban environments, in near real time simulations.

  13. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    Science.gov (United States)

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  14. Directional loudness in an anechoic sound field, head-related transfer functions, and binaural summation

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    planes. Matches were obtained via a two-interval, adaptive forced-choice (2AFC) procedure for three center frequencies (0.4, 1 and 5 kHz) and two overall levels (45 and 65 dB SPL). The results showed that loudness is not constant over sound incidence angles, with directional sensitivity varying over......The effect of sound incidence angle on loudness was investigated using real sound sources positioned in an anechoic chamber. Eight normal-hearing listeners produced loudness matches between a frontal reference location and seven sources placed at other directions, both in the horizontal and median...... a range of up to 10 dB, exhibiting considerable frequency dependence, but only minor effects of overall level. The pattern of results varied substantially between subjects, but was largely accounted for by variations in individual head-related transfer functions. Modeling of binaural loudness based...

  15. Active equalisation of the sound field in an extended region of a room

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo

    1997-01-01

    studied by means of an idealised frequency domain model. The analysis is based on the calculation of the complex source strengths that minimise the difference between the actual sound pressure and the desired sound pressure in the listening area. Results in relation to the position of the sources......, the frequency range, and the size and location of the listening area are presented. However, the frequency-domain approach results in non-causal impulse responses that can be realised only at the expense of a delay. Therefore, this analysis is supplemented with a study of the equalisation carried out...

  16. Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains

    International Nuclear Information System (INIS)

    Sun, H.Y.; Hu, H.N.; Sun, Y.P.; Nie, X.F.

    2004-01-01

    Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H ip 1 ,H ip 2 ] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H ip 1 is the maximal critical in-plane-field of which hard domains remain stable, H ip 2 is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H ip 1 , H ip 2 ] changes with the change of the rotating angle Δφ H ip 1 maintains stable, while H ip 2 decreases with the decreasing of rotating angle Δφ. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field

  17. DC Electric Field measurement in the Mid-latitude Ionosphere during MSTID by S-520-27 Sounding Rocket Experiments

    Science.gov (United States)

    Ishisaka, K.; Yamamoto, M.; Yokoyama, T.; Tanaka, M.; Abe, T.; Kumamoto, A.

    2015-12-01

    In the middle latitude ionospheric F region, mainly in summer, wave structures of electron density that have wave length of 100-200 km and period of one hour are observed. This phenomena is called Medium Scale Traveling Ionosphiric Disturbance; MSTID. MSTID has been observed by GPS receiving network, and its characteristic were studied. In the past, MSTID was thought to be generated by the Perkins instability, but its growth ratio was too small to be effective so far smaller than the real. Recently coupling process between ionospheric E and F regions are studied by using two radars and by computer simulations. Through these studies, we now have hypothesis that MSTID is generated by the combination of E-F region coupling and Perkins instability. The S-520-27 sounding rocket experiment on E-layer and F-layer was planned in order to verify this hypothesis. S-520-27 sounding rocket was launched at 23:57 JST on 20th July, 2013 from JAXA Uchinoura Space Center. S-520-27 sounding rocket reached 316km height. The S-520-27 payload was equipped with Electric Field Detector (EFD) with a two set of orthogonal double probes to measure DC electric field in the spin plane of the payload. The electrodes of two double probe antennas were used to gather the potentials which were detected with high impedance pre-amplifier using the floating (unbiased) double probe technique. As a results of measurements of DC electric fields by the EFD, the natural electric field was about +/-5mV/m, and varied the direction from southeast to east. Then the electric field was mapped to the horizontal plane at 280km height along the geomagnetic field line. In this presentation, we show the detail result of DC electric field measurement by S-520-27 sounding rocket and then we discuss about the correlation between the natural electric field and TEC variation by using the GPS-TEC.

  18. Numerical simulation of the sound reflection effects of noise barriers in near and far field

    NARCIS (Netherlands)

    Lutgendorf, D.; Roo, F. de; Eerden, F.J.M. van der; Jean, P.; Ecotière, D.; Dutilleux, G.

    2011-01-01

    This paper deals with the first stages of the development of a new test method for evaluating the reflectivity performance of noise barriers. The reflectivity performance describes the increase in sound level at a receiver due to the presence of the noise barrier. First the current test method for

  19. Sound field separation with a double layer velocity transducer array (L)

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    of the array. The technique has been examined and compared with direct velocity based reconstruction, as well as with a technique based on the measurement of the sound pressure and particle velocity. The double layer velocity method circumvents some of the drawbacks of the pressure-velocity based...

  20. Experimental implementation of a low-frequency global sound equalization method based on free field propagation

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Pedersen, Christian Sejer; Lydolf, Morten

    2007-01-01

    An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone......, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m x 2.74 m x 2.40 m. With this method,the sound was reproduced by a matrix of 4 x 5 loudspeakers...... in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one...

  1. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field

    Science.gov (United States)

    Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong

    2018-04-01

    Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.

  2. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    Science.gov (United States)

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses.

  3. Comparison of Light Interception and Field Photosynthesis between Vertically and Horizontally Trained Watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] Plants

    International Nuclear Information System (INIS)

    Watanabe, S.; Nakano, Y.; Okano, K.

    2001-01-01

    The light-interception characteristics and field photosynthetic rates of individual leaves were compared between vertically and horizontally trained watermelon plants to determine why the former produced smaller fruit than the latter. The planting density of the vertically trained plants was 3 times greater than that of the horizontally trained plants, because in the former the shoots were trained upward, whereas the latter were spread on the ground. Although the amount of solar radiation received by the upper leaves was similar in both plots, significantly less light was received by the middle and lower leaves of the vertically trained plants than by those of the horizontally trained ones. In the vertically trained plants, the photosynthetic rate was high at the upper leaves and decreased gradually with lower leaf positions. The photosynthetic rate in the horizontally trained plants was generally high, but the difference in the rate among leaves in different positions varied. We conclude that the main reason for the lighter fruits on the vertically trained watermelon plants is that the middle and lower leaves received less light because of shading compared with horizontally grown vines

  4. Fluid Sounds

    DEFF Research Database (Denmark)

    Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch......Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects...... and in architectural design. Aesthetics, psychoacoustics, perception, and cognition are all present in this expanding field embracing such categories as soundscape composition, sound art, sonic art, sound design, sound studies and auditory culture. Of greatest significance to the overall field is the investigation...

  5. Active low frequency sound field control in a listening room using CABS (Controlled Acoustic Bass System) will also reduce the sound transmitted to neighbour rooms

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal; Celestinos, Adrian

    2012-01-01

    Sound in rooms and transmission of sound between rooms gives the biggest problems at low frequencies. Rooms with rectangular boundaries have strong resonance frequencies and will give big spatial variations in sound pressure level (SPL) in the source room, and an increase in SPL of 20 dB at a wall...... Bass System) is a time based room correction system for reproduced sound using loudspeakers. The system can remove room modes at low frequencies, by active cancelling the reflection from at the rear wall to a normal stereo setup. Measurements in a source room using CABS and in two neighbour rooms have...... shown a reduction in sound transmission of up to 10 dB at resonance frequencies and a reduction at broadband noise of 3 – 5 dB at frequencies up to 100 Hz. The ideas and understanding of the CABS system will also be given....

  6. Reduction of interior sound fields in flexible cylinders by active vibration control

    Science.gov (United States)

    Jones, J. D.; Fuller, C. R.

    1988-01-01

    The mechanisms of interior sound reduction through active control of a thin flexible shell's vibrational response are presently evaluated in view of an analytical model. The noise source is a single exterior acoustic monopole. The active control model is evaluated for harmonic excitation; the results obtained indicate spatially-averaged noise reductions in excess of 20 dB over the source plane, for acoustic resonant conditions inside the cavity.

  7. Effectiveness of commercial microbial products in enhancing oil degradation in Prince William Sound field plots

    International Nuclear Information System (INIS)

    Venosa, A.D.; Haines, J.R.; Allen, D.M.

    1991-01-01

    In the spring of 1990, previously reported laboratory experiments were conducted on 10 commercial microbial products to test for enhanced biodegradation of weathered crude oil from the Exxon Valdez oil spill. The laboratory tests measured the rate and extent of oil degradation in closed flasks. Weathered oil from the beaches in Alaska and seawater from Prince William Sound were used in the tests. Two of the 10 products were found to provide significantly greater alkane degradation than flasks supplemented with mineral nutrients alone. These two products were selected for further testing on a beach in Prince William Sound. A randomized complete block experiment was designed to compare the effectiveness of these two products in enhancing oil degradation compared to simple fertilizer alone. Four small plots consisting of a no nutrient control, a mineral nutrient plot, and two plots receiving mineral nutrients plus the two products, were laid out on a contaminated beach. These four plots comprised a 'block' of treatments, and this block was replicated four times on the same beach. Triplicate samples of beach sediment were collected at four equally spaced time intervals and analyzed for oil residue weight and alkane hydrocarbon profile changes with time. The objective was to determine if either of the two commercial microbiological products was able to enhance bioremediation of an oil-contaminated beach in Prince William Sound to an extent greater than that achievable by simple fertilizer application. Results indicated no significant differences among the four treatments in the 27-day period of the experiment

  8. Growth and field emission properties of one-dimensional carbon composite structure consisting of vertically aligned carbon nanotubes and nanocones

    International Nuclear Information System (INIS)

    Zhang Hongxin; Feng, Peter X; Fonseca, Luis; Morell, Gerardo; Makarov, Vladimir I; Weiner, Brad R

    2009-01-01

    A simple approach is demonstrated for quickly growing a large-area aligned carbon composite nanostructure consisting of vertically aligned nanotubes and nanocones by the catalyst-assisted pulsed laser deposition techniques. The pyrolytic graphite was used as carbon source. The carbon nanocones were first grown on the molybdenum substrate with Ni catalysts. The carbon nanotubes have a uniform shape and length, aligned vertically on carbon nanocones, and the average diameter is about 7 nm. The special carbon composite arrays exhibit excellent field emission behaviours. The long-term field emission current stability of the one-dimensioned carbon nanostructure has also been investigated. No obvious current density decay was observed after a 10-day continuous experiment, indicating the super stability of the sample as cathode material.

  9. Solve: a non linear least-squares code and its application to the optimal placement of torsatron vertical field coils

    International Nuclear Information System (INIS)

    Aspinall, J.

    1982-01-01

    A computational method was developed which alleviates the need for lengthy parametric scans as part of a design process. The method makes use of a least squares algorithm to find the optimal value of a parameter vector. Optimal is defined in terms of a utility function prescribed by the user. The placement of the vertical field coils of a torsatron is such a non linear problem

  10. Low mass planets in protoplanetary disks with net vertical magnetic fields: the Planetary Wake and Gap Opening

    OpenAIRE

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2013-01-01

    We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional simulations in the unstratified local shearing box approximation. The wakes, which are excited by the planets, are damped by shocks similar to the wake damping in inviscid hydrodynamic (HD) disks. Angular momentum deposition by shock damping opens ga...

  11. Determination of Vertical Velocity Field of Southernmost Longitudinal Valley in Eastern Taiwan: A Joint Analysis of Leveling and GPS Measurements

    Directory of Open Access Journals (Sweden)

    Horng-Yue Chen

    2012-01-01

    Full Text Available In order to provide a detailed vertical velocity field in southernmost Longitudinal Valley where shows a complex three-fault system at the plate suture between Philippine Sea plate and Eurasia, we conducted leveling and GPS measurements, compiled data from previous surveys and combined them into a single data set. We compiled precise leveling results from 1984 to 2009, include 5 E-W trending and one N-S trending routes. We calculated the GPS vertical component from 10 continuous stations and from 89 campaign-mode stations from 1995 to 2010. The interseismic vertical rates are estimated by removing the co- and post-seismic effects of major large regional and nearby earthquakes. A stable continuous station S104 in the study area was adopted as the common reference station. We finally establish a map of the interseismic vertical velocity field. The interseismic vertical deformation was mainly accommodated by creeping/thrusting along two east-dipping strands of the three-fault system: the Luyeh and Lichi faults. The most dominant uplift of 30 mm yr-1 occurs at the hanging wall of the Lichi fault on the western Coastal Range. However the rate diminishes away from the fault in the hanging wall. The Quaternary tablelands inside of the Longitudinal Valley reveals uplift with a rate of 5 - 10 mm yr-1. Outside of the tablelands, the rest of the Longitudinal Valley flat area indicates substantial subsidence of -10 to -20 mm yr-1. Finally, it appears that the west-dipping blind fault under the eastern side of the Central Range does not play a significant role on interseismic deformation with subsidence rate of -5 to -10 mm yr-1.

  12. Heat transfer effects on a viscous dissipative fluid flow past a vertical plate in the presence of induced magnetic field

    Directory of Open Access Journals (Sweden)

    M.C. Raju

    2015-03-01

    Full Text Available A theoretical analysis is performed to study induced magnetic field effects on free convection flow past a vertical plate. The x¯-axis is taken vertically upwards along the plate, y¯-axis normal to the plate into the fluid region. It is assumed that the plate is electrically non-conducting and the applied magnetic field is of uniform strength (H0 and perpendicular to the plate. The magnetic Reynolds number of the flow is not taken to be small enough so that the induced magnetic field is taken into account. The coupled nonlinear partial differential equations are solved by Perturbation technique and the effects of various physical parameters on velocity, temperature, and induced magnetic fields are studied through graphs and tables. Variations in Skin friction and rate of heat transfer are also studied. It is observed that an increase in magnetic parameter decreases the velocity for both water and air. It is also seen that there is a fall in induced magnetic field as magnetic Prandtl number, and magnetic field parameter increase.

  13. Requirements for Vertically Installed Runoff Control Boards for the “Paddy Field Dam” and Appropriate Orifice Shapes

    Science.gov (United States)

    Natsuki, Yoshikawa; Hideyuki, Koide; Shin-Ichi, Misawa

    While the “Paddy Field Dam” project has been recognized as an effective flood control measure, there are some cases in which the runoff control boards are vertically installed on the opening of the drainage boxes without careful consideration of the orifice shape and size. The important criteria for the runoff control boards to be satisfied are: 1. to maintain a sufficient peak runoff control function, 2. to avoid excessive ponding causing overflow, 3. to minimize the influence to the ordinary water management, and 4. to reserve sufficient orifice area to avoid blockage of the orifice with floating litters. The purpose of this study is to examine proper shapes and sizes of the orifice to satisfy the criteria for the vertically installed runoff control boards through experiments and simulations. Given the condition that the orifice has sufficient area to avoid overflow with 10 and 20 year return period rainfall event (criteria 2), the simulation results show that the orifice with horizontally wider shapes has advantages over the square or circular shapes in terms of the criteria 1 and 3. The disadvantage of the horizontally wider shapes is the blockage of the orifice with floating litters (criteria 4). In conclusion, we proposed to secure sufficient vertical distance to avoid this problem by setting a lower limit on the vertical distance and then determine the widest horizontal distance to optimize all the criteria. In addition, we have constructed the “Orifice Design Assist Tool” on the basis of the examinations in this study.

  14. Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-03-15

    Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.

  15. Controlling the diameters and field emission properties of vertically aligned carbon nanotubes synthesized by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sung Yool; Kang, Young Il; Cho, Kyoung Ik; Choi, Kyu Seok; Kim, Do Jin

    2001-01-01

    We report here the synthesis of vertically well-aligned carbon nanotubes and the effect of catalytic metal layer on the diameter of grown carbon nanotubes and the field emission characteristics of them, The carbon nanotubes were grown by thermal chemical vapor deposition at temperatures below 900 .deg. C on Fe metal catalytic layer, deposited by sputtering process on a Si substrate and pretreated by heat and NH 3 gas. We found that the thickness of metal layers could be an important parameter in controlling the diameters of carbon nanotubes. With varying the thickness of the metal layers the grain sizes of them also vary so that the diameters of the nanotubes could be controlled. Field emission measurement has been made on the carbon nanotube field emitters at room temperature in a vacuum chamber below 10 -6 Torr. Our vertically aligned carbon nanotube field emitter of the smallest diameter emits a current density about 10 mA/cm 2 at 7.2 V/μm. The field emission property of the carbon nanotubes shows strong dependence on the nanotube diameters as expected

  16. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-07

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  17. Correction of the closed orbit and vertical dispersion and the tuning and field correction system in ISABELLE

    International Nuclear Information System (INIS)

    Parzen, G.

    1979-01-01

    Each ring in ISABELLE will have 10 separately powered systematic field correction coils to make required corrections which are the same in corresponding magnets around the ring. These corrections include changing the ν-value, shaping the working line in ν-space, correction of field errors due to iron saturation effects, the conductor arrangements, the construction of the coil ends, diamagnetic effects in the superconductor and to rate-dependent induced currents. The twelve insertion quadrupoles in the insertion surrounding each crossing point will each have a quadrupole trim coil. The closed orbit will be controlled by a system of 84 horizontal dipole coils and 90 vertical dipole coils in each ring, each coil being separately powered. This system of dipole coils will also be used to correct the vertical dispersion at the crossing points. Two families of skew quadrupoles per ring will be provided for correction of the coupling between the horizontal and vertical motions. Although there will be 258 separately powered correction coils in each ring

  18. Vertically integrated logic circuits constructed using ZnO-nanowire-based field-effect transistors on plastic substrates.

    Science.gov (United States)

    Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig

    2013-05-01

    ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.

  19. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    Energy Technology Data Exchange (ETDEWEB)

    Koukoulas, Triantafillos, E-mail: triantafillos.koukoulas@npl.co.uk; Piper, Ben [Acoustics Group, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  20. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems (ERASMUS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finnamore, W [Univ. of Colorado, Boulder, CO (United States); D' Amore, P [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Al [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Chuck [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Telg, Hagen [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Gao, Rushan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Hock, T [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [National Aeronautics and Space Administration (NASA), Washington, DC (United States)

    2017-03-01

    The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) campaign was proposed with two central goals; to obtain scientifically relevant measurements of quantities related to clouds, aerosols, and radiation, including profiles of temperature, humidity, and aerosol particles, the structure of the arctic atmosphere during transitions between clear and cloudy states, measurements that would allow us to evaluate the performance of retrievals from U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility remote sensors in the Arctic atmosphere, and information on the spatial variability of heat and moisture fluxes from the arctic surface; and to demonstrate unmanned aerial system (UAS) capabilities in obtaining measurements relevant to the ARM and ASR programs, particularly for improving our understanding of Arctic clouds and aerosols.

  1. A sound pressure field during the quenching of a steel specimen in different water solutions

    Directory of Open Access Journals (Sweden)

    J. Prezelj

    2011-01-01

    Full Text Available The purpose of controlling the quenching process of an orange-hot steel workpiece is to ensure its required surface hardness. A sound in a cooling liquid generated by the quenching process was experimentally analyzed. It contains sufficient information about the ongoing process for its quantification, and it can be used in real time. Traditionally, the quenching and the resultant hardening can be controlled by selecting different process parameters, like, for example the characteristics of the cooling liquid, the velocity of the cooling liquid flow, its temperature, the temperature of the work-piece, and many others. The possibility of controlling the quenching process by using acoustic cavitation is considered in this article.

  2. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  3. A Analysis of the Low Frequency Sound Field in Non-Rectangular Enclosures Using the Finite Element Method.

    Science.gov (United States)

    Geddes, Earl Russell

    The details of the low frequency sound field for a rectangular room can be studied by the use of an established analytic technique--separation of variables. The solution is straightforward and the results are well-known. A non -rectangular room has boundary conditions which are not separable and therefore other solution techniques must be used. This study shows that the finite element method can be adapted for use in the study of sound fields in arbitrary shaped enclosures. The finite element acoustics problem is formulated and the modification of a standard program, which is necessary for solving acoustic field problems, is examined. The solution of the semi-non-rectangular room problem (one where the floor and ceiling remain parallel) is carried out by a combined finite element/separation of variables approach. The solution results are used to construct the Green's function for the low frequency sound field in five rooms (or data cases): (1) a rectangular (Louden) room; (2) The smallest wall of the Louden room canted 20 degrees from normal; (3) The largest wall of the Louden room canted 20 degrees from normal; (4) both the largest and the smallest walls are canted 20 degrees; and (5) a five-sided room variation of Case 4. Case 1, the rectangular room was calculated using both the finite element method and the separation of variables technique. The results for the two methods are compared in order to access the accuracy of the finite element method models. The modal damping coefficient are calculated and the results examined. The statistics of the source and receiver average normalized RMS P('2) responses in the 80 Hz, 100 Hz, and 125 Hz one-third octave bands are developed. The receiver averaged pressure response is developed to determine the effect of the source locations on the response. Twelve source locations are examined and the results tabulated for comparison. The effect of a finite sized source is looked at briefly. Finally, the standard deviation of the

  4. Baroclinic Instability in the Solar Tachocline for Continuous Vertical Profiles of Rotation, Effective Gravity, and Toroidal Field

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Peter A., E-mail: gilman@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, 3080 Center Green, Boulder, CO 80307-3000 (United States)

    2017-06-20

    We present results from an MHD model for baroclinic instability in the solar tachocline that includes rotation, effective gravity, and toroidal field that vary continuously with height. We solve the perturbation equations using a shooting method. Without toroidal fields but with an effective gravity declining linearly from a maximum at the bottom to much smaller values at the top, we find instability at all latitudes except at the poles, at the equator, and where the vertical rotation gradient vanishes (32.°3) for longitude wavenumbers m from 1 to >10. High latitudes are much more unstable than low latitudes, but both have e -folding times that are much shorter than a sunspot cycle. The higher the m and the steeper the decline in effective gravity, the closer the unstable mode peak to the top boundary, where the energy available to drive instability is greatest. The effect of the toroidal field is always stabilizing, shrinking the latitude ranges of instability as the toroidal field is increased. The larger the toroidal field, the smaller the longitudinal wavenumber of the most unstable disturbance. All latitudes become stable for a toroidal field exceeding about 4 kG. The results imply that baroclinic instability should occur in the tachocline at latitudes where the toroidal field is weak or is changing sign, but not where the field is strong.

  5. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.

    1992-01-01

    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  6. Experimental investigation of MHD heat transfer in a vertical round tube affected by transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, I.A., E-mail: corpuskula@gmail.com; Sviridov, E.V.; Sviridov, V.G.; Razuvanov, N.G.

    2016-11-15

    Highlights: • Local and averaged heat transfer coefficient are measured. • Free convection influence on MHD-flow is investigated. • The region with the free convection effect of MHD-heat transfer is found. • Temperature low-frequency fluctuations of abnormally high amplitude are detected. • Analysis of the MHD-heat transfer experimental data is performed. - Abstract: The article is devoted to the results of experimental investigation of heat transfer for a downward mercury flow in a vertical round tube in the presence of a transverse magnetic with non-uniform heat flux along the tube circumference.

  7. The DC field components of horizontal and vertical electric dipole sources immersed in three-layered stratified media

    Directory of Open Access Journals (Sweden)

    D. Llanwyn Jones

    Full Text Available Formulas for computing the Cartesian components of the static (DC fields of horizontal electric dipoles ( HEDs and vertical electric dipoles ( VEDs located in the central zone of a three-layer horizontally stratified medium are derived and presented in a summary form suitable for immediate computation. Formulas are given for the electric and magnetic field components in the upper and central regions. In the general case the computation involves the summation of a convergent infinite series. For the particular case of an infinitely thick central region (corresponding to the two-layer problem, the analysis produces relatively simple closed-form equations for the field components which are suitable for a 'hand calculation'. Specimen calculations for dipoles in seawaters are included and the derived results are compared with computations made using an ac model.

  8. The DC field components of horizontal and vertical electric dipole sources immersed in three-layered stratified media

    Directory of Open Access Journals (Sweden)

    D. Llanwyn Jones

    1997-04-01

    Full Text Available Formulas for computing the Cartesian components of the static (DC fields of horizontal electric dipoles ( HEDs and vertical electric dipoles ( VEDs located in the central zone of a three-layer horizontally stratified medium are derived and presented in a summary form suitable for immediate computation. Formulas are given for the electric and magnetic field components in the upper and central regions. In the general case the computation involves the summation of a convergent infinite series. For the particular case of an infinitely thick central region (corresponding to the two-layer problem, the analysis produces relatively simple closed-form equations for the field components which are suitable for a 'hand calculation'. Specimen calculations for dipoles in seawaters are included and the derived results are compared with computations made using an ac model.

  9. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    Science.gov (United States)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-12-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.

  10. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    International Nuclear Information System (INIS)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Dae Kim, Seong; Ahn, Jong-Hyun

    2015-01-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (I on /I off ) of up to ∼10 3 , with a current density of 10 2 A cm −2 . We also observed significant dependence of Schottky barrier height Δφ b on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier. (paper)

  11. Application of the nuclear field theory to monopole interactions which include all the vertices of a general force

    International Nuclear Information System (INIS)

    Bes, D.R.; Dussel, G.G.; Liotta, R.J.; Sofia, H.M.; Broglia, R.A.

    1976-01-01

    The field treatment is applied to the monopole pairing and monopole particle-hole interactions in a two-level model. All the vertices of realistic interactions appear, and the problems treated here have most of the complexities of real nuclei. Yet, the model remains sufficiently simple, so that a close comparison with the results of a (conventional) treatment in which only the fermion degrees of freedom are considered is possible. The applicability to actual physical situations appears to be feasible, both for schematic or realistic forces. The advantage of including the exchange components of the interaction in the construction of the phonon is discussed. (Auth.)

  12. The photospheric vector magnetic field of a sunspot and its vertical gradient

    Science.gov (United States)

    Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.

    1981-01-01

    The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.

  13. Extremely Low Frequency (ELF) Vertical Electric Field Exposure of Rats: Irradiation Facility

    Science.gov (United States)

    1977-05-01

    altered inside an animal cage even with wet or dry litter and full food and water containers. Rats weighing approximately 300 g in adjacent cages caused...with guard circuit Field inside empty cage Field inside complete cage ( litter (wet or dry) + food + water) Field variations caused by 300 g rat...blanket 250 Iron 60 Broiler 130 Hair dryer 40 Vaporizer 40 Refrigerator 60 Color TV 30 Stereo 90 Coffee pot 30 Vacuum cleaner 16 Clock radio

  14. Full wave field recording of the vertical strain at SAFOD from local, regional and teleseismic earthquakes

    Science.gov (United States)

    Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.

    2017-12-01

    The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.

  15. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu; Patole, Shashikant P.; Patil, Sumati; Yoo, J.B.; Dharmadhikari, C.V.

    2017-01-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1

  16. Field test report of the Department of Energy's 100-kW vertical axis wind turbine

    Science.gov (United States)

    Nellums, R. O.

    1985-02-01

    Three second generation Darrieus type vertical axis wind turbines of approximately 120 kW capacity per unit were installed in 1980-1981. Through March 1984, over 9000 hours of operation had been accumulated, including 6600 hours of operation on the unit installed in Bushland, Texas. The turbines were heavily instrumented and have yielded a large amount of test data. Test results of this program, including aerodynamic, structural, drive train, and economic data are presented. Among the most favorable results were an aerodynamic peak performance coefficient of 0.41; fundamental structural integrity requiring few repairs and no major component replacements as of March 1984; and an average prototype fabrication cost of approximately $970 per peak kilowatt of output. A review of potential design improvements is presented.

  17. An objective measure for the sensitivity of room impulse response and its link to a diffuse sound field

    DEFF Research Database (Denmark)

    Prislan, Rok; Brunskog, Jonas; Jacobsen, Finn

    2014-01-01

    This study is relevant to acoustic measurements in reverberation rooms such as measurements of sound transmission, sound absorption, and sound power levels of noise sources. The study presents a quantitative measure for the diffuseness in a room, which is first introduced theoretically and sub...

  18. A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions

    Science.gov (United States)

    Joos, F.; Baltensperger, U.

    An extensive fog study was carried out in the central plateu of Switzerland. Ninety-seven fog samples were collected along with aerosol filter and cascade impactor samples, and measurements of O 3, SO 2, NO, NO x, PAN, temperature, and wind speed and direction. Maximum levels in fogwater were 4.3, 4.4., 0.033, 1.7, 0.5, 0.024 and 9.2 mmol ℓ -1 for Cl -, NO 3-, NO 2-, SO 42-, S(IV), oxalate and NH 4+, respectively. pH varied between 2.9 and 7.1. Sixteen additional elements were determined in the fog samples by ICP. The sum of the concentrations of SO 42- and S(IV) agreed very with the total sulfur concentration as determined by ICP. A substantial excess of S(IV) (up to 0.2 mmol ℓ -1) compared to Henry and acid-base equilibrium calculations was found, which can probably be attributed to complex formations with aldehydes. S(IV) oxidation rates of up to 650 nmol ℓ -1 s -1 with ozone and of up to 100 nmol ℓ -1 s -1 with NO 2 were calculated. S(IV) oxidation due to PAN, NO 2- and Fe(III) was of minor importance. A substantial fraction of the major ions was present in the intersitial aerosol (aerosol particles < 4 μm) even during fog conditions. High correlations were found for NH 4+, NO 32-. From their ratios in the fog water and the aerosol (< 4 μm) it could be concluded that at least 40% of NO 3- and 20% of NH 4+ in fog water was due to gas phase scavenging. Increasing concentrations in fog water were found during fog dissipation. Concentrations decreased with increasing height. A vertical transport model including turbulent diffusion and droplet sedimentation is introduced, which matches the experimental data of this vertical profile.

  19. SOUND TRANSMISSION LOSS OF A DOUBLE-LEAF PARTITION WITH MICRO-PERFORATED PLATE INSERTION UNDER DIFFUSE FIELD INCIDENCE

    Directory of Open Access Journals (Sweden)

    A. Putra

    2013-06-01

    Full Text Available In noise control applications, a double-leaf partition has been applied widely as a lightweight structure for noise insulation, such as in car doors, train bodies, and aircraft fuselages. Unfortunately, the insulation performance deteriorates significantly at mass-air-mass resonance due to coupling between the panels and the air in the gap. This paper investigates the effect of a micro-perforated panel (MPP, inserted in the conventional double-panel partition, on sound transmission loss at troublesome resonant frequencies. It is found that the transmission loss improves at this resonance if the MPP is located at a distance of less than half that of the air gap. A mathematical model is derived for the diffuse field incidence of acoustic loading.

  20. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms

    Science.gov (United States)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity-a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  1. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    Science.gov (United States)

    Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu

    2017-07-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  2. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    International Nuclear Information System (INIS)

    Ideguchi, Shinsuke; Ryu, Dongsu; Tashiro, Yuichi; Takahashi, Keitaro; Akahori, Takuya

    2017-01-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length) 2 , the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  3. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-chao; Zhan, Jie-min; Wu, Neng-you; Luo, Ying-ying; Cai, Wen-hao

    2016-01-01

    Yangbajing geothermal field is the first high-temperature hydrothermal convective geothermal system in China. Research and development of the deep fractured granite reservoir is of great importance for capacity expanding and sustaining of the ground power plant. The geological exploration found that there is a fractured granite heat reservoir at depth of 950–1350 m in well ZK4001 in the north of the geothermal field, with an average temperature of 248 °C and a pressure of 8.01–11.57 MPa. In this work, electricity generation potential and its dependent factors from this fractured granite reservoir by water circulating through vertical wells are numerically investigated. The results indicate that the vertical well system attains an electric power of 16.8–14.7 MW, a reservoir impedance of 0.29–0.46 MPa/(kg/s) and an energy efficiency of about 29.6–12.8 during an exploiting period of 50 years under reference conditions, showing good heat production performance. The main parameters affecting the electric power are water production rate and injection temperature. The main parameters affecting reservoir impedance are reservoir permeability, injection temperature and water production rate. The main parameters affecting the energy efficiency are reservoir permeability, injection temperature and water production rate. Higher reservoir permeability or more reasonable injection temperature or water production rate within certain ranges will be favorable for improving the electricity generation performance. - Highlights: • We established a numerical model of vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 16.8–14.7 MW with an efficiency of about 29.6–12.8. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation.

  4. Excellent field emission properties of vertically oriented CuO nanowire films

    Directory of Open Access Journals (Sweden)

    Long Feng

    2018-04-01

    Full Text Available Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge, indicating that the samples are promising candidates for field emission applications.

  5. Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-01-01

    thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from......We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore......, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration...

  6. Mass Transfer Process by Magneto-convection at a Solid-liquid Interface in a Heterogeneous Vertical Magnetic Field

    Science.gov (United States)

    Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi

    2003-08-01

    When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.

  7. Numerical analysis of thermal process in the near field around vertical disposal of high-level radioactive waste

    Directory of Open Access Journals (Sweden)

    H.G. Zhao

    2014-02-01

    Full Text Available For deep geological disposal of high-level radioactive waste (HLW in granite, the temperature on the HLW canisters is commonly designed to be lower than 100 °C. This criterion dictates the dimension of the repository. Based on the concept of HLW disposal in vertical boreholes, thermal process in the near field (host rock and buffer surrounding HLW canisters has been simulated by using different methods. The results are drawn as follows: (a the initial heat power of HLW canisters is the most important and sensitive parameter for evolution of temperature field; (b the thermal properties and variations of the host rock, the engineered buffer, and possible gaps between canister and buffer and host rock are the additional key factors governing the heat transformation; (c the gaps width and the filling by water or air determine the temperature offsets between them.

  8. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  9. Vertical Gradient Freezing Using Submerged Heater Growth With Rotation and With Weak Magnetic and Electric Fields

    National Research Council Canada - National Science Library

    Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W

    2005-01-01

    ...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...

  10. A comparison of ionizing radiation and high field stress effects in n-channel power vertical double-diffused metal-oxide-semiconductor field-effect transistors

    International Nuclear Information System (INIS)

    Park, Mun-Soo; Na, Inmook; Wie, Chu R.

    2005-01-01

    n-channel power vertical double-diffused metal-oxide-semiconductor field-effect-transistor (VDMOSFET) devices were subjected to a high electric field stress or to a x-ray radiation. The current-voltage and capacitance-voltage measurements show that the channel-side interface and the drain-side interface are affected differently in the case of high electric field stress, whereas the interfaces are nearly uniformly affected in the case of x-ray radiation. This paper also shows that for the gated diode structure of VDMOSFET, the direct-current current-voltage technique measures only the drain-side interface; the subthreshold current-voltage technique measures only the channel-side interface; and the capacitance-voltage technique measures both interfaces simultaneously and clearly distinguishes the two interfaces. The capacitance-voltage technique is suggested to be a good quantitative method to examine both interface regions by a single measurement

  11. Sound Design in Virtual Reality Concert Experiences using a Wave Field Synthesis Approach

    DEFF Research Database (Denmark)

    Lind, Rasmus Bloustrød; Milesen, Victor; Smed, Dina Madsen

    2017-01-01

    In this paper we propose an experiment that evaluates the influence of audience noise on the feeling of presence and the perceived quality in a virtual reality concert experience delivered using Wave Field Synthesis. A 360 degree video of a live rock concert from a local band was recorded. Single...

  12. Modeling and measuring sound propagation of hooded crow calls in open field habitats

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Larsen, Ole Næsbye; Attenborough, Keith

    representative of crow territorial communication and taking into account ground effect and air turbulence, we predict an optimal transmission frequency range between 0,5-1.6 kHz. In a natural open field crow habitat we measure, with sender and receiver heights of 2.8 m and transmission distances up to 320 m...

  13. Zero Sound in Neutron Stars with Dense Quark Matter under Strong Magnetic Fields

    DEFF Research Database (Denmark)

    Kouvaris, Christoforos

    2009-01-01

    We study a neutron star with a quark matter core under extremely strong magnetic fields. We investigate the possibility of an Urca process as a mechanism for the cooling of such a star. We found that apart from very particular cases, the Urca process cannot occur. We also study the stability...

  14. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important

  15. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important.

  16. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  17. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    Science.gov (United States)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  18. Influence of in-plane field on the stability of vertical Bloch lines in the walls of OHB at various bias fields

    International Nuclear Information System (INIS)

    Guo, G.X.; Wang, L.N.; Zhen, C.M.; Nie, X.F.

    2006-01-01

    The stability of vertical Bloch line (VBL) chains subjected to in-plane field (H ip ) was statistically studied for the ordinary hard bubbles (OHB) in garnet bubble films at various bias fields (H b ). The dumbbell domains were also investigated. We found that (H ip (1) ) IID ip (1) ) ID ip (1) ) OHB and (H ip (2) ) IID =(H ip (2) ) ID =(H ip (2) ) OHB when keeping H b unchanged. With the increasing of H b , the in-plane field H ip (1) , H ip * and H ip (2) all decrease, while the in-plane field range [H ip (1) , H ip * ] and [H ip (1) , H ip (2) ] become narrower. Here, H ip (1) is the initial critical in-plane field where VBLs in the walls of three types of hard domains are annihilated, H ip * stands for the in-plane field where the retention rate of three types of hard domains R reduces to zero, and H ip (2) is the lowest in-plane field where VBLs in their corresponding hard domains are annihilated completely

  19. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  20. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  1. A Novel Algorithm for the Sound Field of Elliptically Shaped Transducers

    Science.gov (United States)

    Ding, De-Sheng; Lü, Hua; Shen, Chang-Sheng

    2014-06-01

    An alternative extension to the Gaussian-beam expansion technique is presented for efficient computation of the Fresnel field integral for elliptically symmetric sources. With a known result that the circ function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel—Fourier transform. Two expansions are together inserted into this integral, it is then expressible in terms of the simple algebraic functions. The numerical examples for the elliptical and uniform piston transducers are presented, in good agreement with the results given by other methods. The approach is applicable to treat the field radiation problem for a large and important group of piston sources in acoustics.

  2. Application of vertical electrical sounding combined with induced polarization method in ground water exploration; IP koka wo koryoshita hiteikoho suichoku tansa no chikasui chosa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, M; Sakurada, H [Sumiko Consultants Co. Ltd., Tokyo (Japan); Suzuki, T [Hokkaido Development Bureau, Hokkaido Development Agency, Sapporo (Japan)

    1996-10-01

    For ground water exploration using vertical Schlumberger exploration method, measurement and analysis combined with induced polarization (IP) effect were conducted as trial. For the Schlumberger method, potential is measured at the center between potential electrodes during flow of dc current between current electrodes. In the case of vertical exploration, measurements are repeated with fixed potential electrodes by extending the distance between current electrodes. Ground water exploration was conducted using this method at Otaki village, Hokkaido. Geology of surveyed plateau consists of a basement of Pliocene tuffs and Quaternary Pleistocene sediments covering on the surface. For the results of analysis, four to seven beds were detected from the resistivity. The depth up to the lowest bed was between 25 and 85 m, the resistivity of each bed was between 9 and 8,000 ohm{times}m, and the polarizability was between 1 and 15 mV/V. Among these resistivity zones, it was judged that zones satisfying following three conditions correspond to coarse grain sediments saturated with ground water, and can be expected as aquifers; having resistivity ranging between 100 and 1,000 ohm{times}m, polarizability higher than 10 mV/V, and relatively large thickness. 11 refs., 6 figs.

  3. Restricting the vertical and horizontal extent of the Field-of-View: Effects on manoeuvring performance

    NARCIS (Netherlands)

    Jansen, S.E.M.; Toet, A.; Delleman, N.J.

    2010-01-01

    It is known that Field-of-view restrictions affect distance estimation, postural equilibrium, and the ability to control heading. These are all important factors when manoeuvring on foot through complex structured environments. Although considerable research has been devoted to the horizontal

  4. LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544 (United States)

    2013-05-10

    Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous {alpha} prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective {alpha} within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant {alpha}-viscosity to model gaps in protoplanetary disks.

  5. LOW-MASS PLANETS IN PROTOPLANETARY DISKS WITH NET VERTICAL MAGNETIC FIELDS: THE PLANETARY WAKE AND GAP OPENING

    International Nuclear Information System (INIS)

    Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2013-01-01

    Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous α prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective α within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant α-viscosity to model gaps in protoplanetary disks.

  6. Development of instrumentation with application to sounding rocket electric and magnetic field measurements above thunderstorms

    Science.gov (United States)

    Baker, Steven D.

    1999-06-01

    The thunderstorm campaigns led by Cornell University in 1981 and 1988 both measured large-amplitude (10 to 40 mV/m), long duration (1 ms) electric-field pulses parallel to the earth's magnetic field. To investigate the mechanism responsible for these pulses, the instrumentation bandwidth was increased from the VLF range to MF frequencies. The design for a Helmholtz coil developed to calibrate magnetometers from DC to 10 MHz is given in Chapter 3. This coil generates a spatially uniform field with for frequencies up to at least 10 MHz with amplitudes of up to 1.1 mA/m. Coincident with the need for higher bandwidth sensors, a burst-memory data acquisition system was developed to intelligently select the 1.25% of the available data to send to the telemetry encoder. This system uses the optical flash of the lightning as a trigger and has a back-up mode to ensure data is transmitted in the event no triggers occur. The higher-frequency instruments allowed the first rocket-borne measurement of nose- whistlers caused by the plasma frequency resonance (as opposed to the more common electron cyclotron frequency resonance), and what may have been the first observation of a TIPP at MF frequencies. Triggered emission from the second campaign, Thunderstorm-II, are identified as lower hybrid emissions. These emissions enhanced the whistler by several decibels in the lower hybrid frequency band and in bands above the emission. No emissions seen above the lower hybrid frequency. The Thunderstorm-III payloads also measured triggered emissions and long-duration pulses. The former were found in several altitude-independent frequency bands for which the source could not be identified. The long duration pulses, while of interest, have not been studied in sufficient depth for inclusion in this work.

  7. Absolute and convective instabilities of a film flow down a vertical fiber subjected to a radial electric field

    Science.gov (United States)

    Liu, Rong; Chen, Xue; Ding, Zijing

    2018-01-01

    We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.

  8. Vestibulo-Ocular Responses to Vertical Translation using a Hand-Operated Chair as a Field Measure of Otolith Function

    Science.gov (United States)

    Wood, S. J.; Campbell, D. J.; Reschke, M. F.; Prather, L.; Clement, G.

    2016-01-01

    The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.

  9. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    Science.gov (United States)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  10. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    Science.gov (United States)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  11. Distinguishing Alfven waves from quasi-static field structures associated with the discrete aurora: Sounding rocket and HILAT satellite measurements

    International Nuclear Information System (INIS)

    Knudsen, D.J.; Kelley, M.C.; Earle, G.D.; Vickrey, J.F.; Boehm, M.

    1990-01-01

    The authors present and analyze sounding rocket and HILAT satellite measurements of the low frequency ( 0 in the auroral oval. By examining the time-domain field data it is often difficult to distinguish temporal fluctuations from static structures which are Doppler shifted to a non-zero frequency in the spacecraft frame. However, they show that such a distinction can be made by constructing the impedance function Z(f). Using Z(f) they find agreement with the static field interpretation below about 0.1 Hz in the spacecraft frame, i.e. Z(f) = Σ p -1 where Σ p is the height-integrated Pedersen conductivity of the ionosphere. About 0.1 Hz the authors find Z(f) > Σ p -1 , which they argue to be due to the presence of Alfven waves incident from the magnetosphere and reflecting from the lower ionosphere, forming a standing wave pattern. These waves may represent an electromagnetic coupling mechanism between the auroral acceleration region and the ionosphere

  12. Radiated flow of chemically reacting nanoliquid with an induced magnetic field across a permeable vertical plate

    Directory of Open Access Journals (Sweden)

    B. Mahanthesh

    Full Text Available Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell–Garnetts (MG and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism. Keywords: Induced magnetic field, Nanoliquids, Heat source/sink, Series expansion method, Chemical reaction, Thermal radiation

  13. SOUND FIELD DIFFUSIVITY AT THE TOP SURFACE OF SCHROEDER DIFFUSER BARRIERS

    Directory of Open Access Journals (Sweden)

    M. R. Monazzam

    2006-10-01

    Full Text Available Reactive barriers are one of the most promising and novel environmental noise barriers. In this case using Schroeder diffusers (e.g. quadratic residue diffusers on the top surface of the T-shape barrier was shown to significantly improve the performance of absorbent T-shape barriers. The reasons behind the high performance of diffuser barriers are considered in this investigation. A question about the diffusivity behavior of Schroeder diffusers when they are utilized on the top of barrier was raised. Diffusion coefficients of a diffuser in different conditions at some receiver locations were predicted by using a 2D boundary element method. It was found that the diffusion coefficient of diffuser at the top of barrier is so small that the diffusivity of the structure is almost the same as rigid T-shape barrier. To find the barrier’s cap behavior, the total field above the top surface of profile barriers was also predicted. It was found that the lowest total energy is at the receiver side of the cap very close to the top surface,which could demonstrate the effect of top surface on absorbing the energy as wave transfers from source edge toward the receiver side of the cap. In this case the amount of minimum total energy depends on the frequency and the configuration of the top surface. A comparison between the reductions of total field at the source side of the cap with the improvements of barrier’s performance was also done. It was shown that the amount of decrease in total field compared to that of an absorbent barrier “Ref” is directly associated to the amount of improvement in the insertion loss made by the diffuser barrier compared to the “Ref” barrier in the wide area on the ground at the shadow zone. Finally it was concluded that the diffuser on the top of barrier does not act as a diffuser and a kind of similarity between the contribution of diffuser and absorbent material on the top of T-profile barrier is seen.

  14. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    International Nuclear Information System (INIS)

    Zhang Lue; Wang Xiang-Da; Liu Xiao-Zhou; Gong Xiu-Fen

    2015-01-01

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. (paper)

  15. Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Muta, Tsubasa; Kobayashi, Mikinori; Saito, Toshiki; Shibata, Masanobu; Matsumura, Daisuke; Kudo, Takuya; Hiraiwa, Atsushi [Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kawarada, Hiroshi [Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2016-07-18

    The hydrogen-terminated diamond surface (C-H diamond) has a two-dimensional hole gas (2DHG) layer independent of the crystal orientation. A 2DHG layer is ubiquitously formed on the C-H diamond surface covered by atomic-layer-deposited-Al{sub 2}O{sub 3}. Using Al{sub 2}O{sub 3} as a gate oxide, C-H diamond metal oxide semiconductor field-effect transistors (MOSFETs) operate in a trench gate structure where the diamond side-wall acts as a channel. MOSFETs with a side-wall channel exhibit equivalent performance to the lateral C-H diamond MOSFET without a side-wall channel. Here, a vertical-type MOSFET with a drain on the bottom is demonstrated in diamond with channel current modulation by the gate and pinch off.

  16. A critical examination of some of the field indicators that have been proposed in connection with sound power determination using the intensity method

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    1996-01-01

    A considerable number of 'field indicators' or 'quality indicators' have been proposed in connection with sound power determination based on measurement of intensity. For example, the ISO 9614-1 standard prescribes the use four indicators, and in the North American ANSI S12.12 standard no less th...

  17. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    Science.gov (United States)

    Zhang, Lue; Wang, Xiang-Da; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2015-01-01

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), and the China Postdoctoral Science Foundation (Grant No. 2013M531313).

  18. Image-guided spinal injection procedures in open high-field MRI with vertical field orientation: feasibility and technical features

    Energy Technology Data Exchange (ETDEWEB)

    Streitparth, F.; Walter, T.; Wonneberger, U.; Wagner, M.; Hermann, K.G.; Hamm, B.; Teichgraeber, U. [Charite, Humboldt-Universitaet zu Berlin, Department of Radiology, Berlin (Germany); Chopra, S. [Charite-Universitaetsmedizin Berlin, Campus Virchow Klinikum, Department of General, Visceral, and Transplantation Surgery, Berlin (Germany); Wichlas, F. [Charite-Universitaetsmedizin Berlin, Campus Virchow Klinikum, Center for Musculoskeletal Surgery, Berlin (Germany)

    2010-02-15

    We prospectively evaluated the feasibility and technical features of MR-guided lumbosacral injection procedures in open high-field MRI at 1.0 T. In a CuSO{sub 4}.5H{sub 2}O phantom and five human cadaveric spines, fluoroscopy sequences (proton-density-weighted turbo spin-echo (PDw TSE), T1w TSE, T2w TSE; balanced steady-state free precession (bSSFP), T1w gradient echo (GE), T2w GE) were evaluated using two MRI-compatible 20-G Chiba-type needles. Artefacts were analysed by varying needle orientation to B{sub 0}, frequency-encoding direction and slice orientation. Image quality was described using the contrast-to-noise ratio (CNR). Subsequently, a total of 183 MR-guided nerve root (107), facet (53) and sacroiliac joint (23) injections were performed in 53 patients. In vitro, PDw TSE sequence yielded the best needle-tissue contrasts (CNR = 45, 18, 15, 9, and 8 for needle vs. fat, muscle, root, bone and sclerosis, respectively) and optimal artefact sizes (width and tip shift less than 5 mm). In vivo, PDw TSE sequence was sufficient in all cases. The acquisition time of 2 s facilitated near-real-time MRI guidance. Drug delivery was technically successful in 100% (107/107), 87% (46/53) and 87% (20/23) of nerve root, facet and sacroiliac joint injections, respectively. No major complications occurred. The mean procedure time was 29 min (range 19-67 min). MR-guided spinal injections in open high-field MRI are feasible and accurate using fast TSE sequence designs. (orig.)

  19. Field emission from a composite structure consisting of vertically aligned single-walled carbon nanotubes and carbon nanocones

    International Nuclear Information System (INIS)

    Yeh, C M; Chen, M Y; Hwang, J; Gan, J-Y; Kou, C S

    2006-01-01

    Vertically aligned single-walled carbon nanotubes (VA-SWCNTs) have been fabricated on carbon nanocones (CNCs) in a gravity-assisted chemical vapour deposition (CVD) process. The CNCs with nanoscale Co particles at the top were first grown on the Co/Si(100) substrate biased at 350 V in a plasma enhanced chemical vapour deposition process. The CNCs typically are ∼200 nm in height, and their diameters are ∼100 nm near the bottom and ∼10 nm at the top. The nanoscale Co particles ∼10 nm in diameter act as catalysts which favour the growth of VA-SWCNTs out of CNCs at 850 0 C in the gravity-assisted CVD process. The average length and the growth time of VA-SWCNTs are ∼150 nm and 1.5 min, equivalent to a growth rate of ∼6 μm h -1 . The diameters of VA-SWCNTs are estimated to be 1.2-2.1 nm. When VA-SWCNTs are fabricated on CNCs, the turn-on voltage is reduced from 3.9 to 0.7 V μm -1 and the emission current density at the electric field of 5 V μm -1 is enhanced by a factor of more than 200. The composite VA-SWCNT/CNC structure is potentially an excellent field emitter. The emission stability of the VA-SWCNT/CNC field emitter is discussed

  20. Sound knowledge

    DEFF Research Database (Denmark)

    Kauffmann, Lene Teglhus

    as knowledge based on reflexive practices. I chose ‘health promotion’ as the field for my research as it utilises knowledge produced in several research disciplines, among these both quantitative and qualitative. I mapped out the institutions, actors, events, and documents that constituted the field of health...... of the research is to investigate what is considered to ‘work as evidence’ in health promotion and how the ‘evidence discourse’ influences social practices in policymaking and in research. From investigating knowledge practices in the field of health promotion, I develop the concept of sound knowledge...... result of a rigorous and standardized research method. However, this anthropological analysis shows that evidence and evidence-based is a hegemonic ‘way of knowing’ that sometimes transposes everyday reasoning into an epistemological form. However, the empirical material shows a variety of understandings...

  1. Reduction of ambipolar characteristics of vertical channel tunneling field-effect transistor by using dielectric sidewall

    International Nuclear Information System (INIS)

    Park, Chun Woong; Cho, Il Hwan; Choi, Woo Young; Lee, Jong-Ho

    2013-01-01

    Ambipolar characteristics of tunneling FETs have been improved by introducing a novel structure which contains dielectric sidewall in the gate region. In the ambipolar operation mode, gate field effect on intrinsic-drain junction region can be reduced with dielectric sidewall. As a result, ambipolar state tunneling probability is decreased at the intrinsic-drain junction. Since the sidewall region is located near the drain region, tunneling probability of source-intrinsic region is not affected by dielectric sidewall. This asymmetric characteristics means only ambipolar current of tunneling FETs can be prohibited by dielectric sidewall. Reduction of ambipolar characteristic of proposed structure has been evaluated with dimension and location of dielectric sidewall. Quantitative analysis of ambipolar characteristics is also investigated with tunneling. (paper)

  2. Modeling segregated in- situ combustion processes through a vertical displacement model applied to a Colombian field

    International Nuclear Information System (INIS)

    Guerra Aristizabal, Jose Julian; Grosso Vargas, Jorge Luis

    2005-01-01

    Recently it has been proposed the incorporation of horizontal well technologies in thermal EOR processes like the in situ combustion process (ISC). This has taken to the conception of new recovery mechanisms named here as segregated in-situ combustion processes, which are conventional in-situ combustion process with a segregated flow component. Top/Down combustion, Combustion Override Split-production Horizontal-well and Toe-to-Heel Air Injection are three of these processes, which incorporate horizontal producers and gravity drainage phenomena. When applied to thick reservoirs a process of this nature could be reasonably modeled under concepts of conventional in-situ combustion and Crestal Gas injection, especially for heavy oils mobile at reservoir conditions. A process of this nature has been studied through an analytic model conceived for the particular conditions of the Castilla field, a homogeneous thick anticline structure containing high mobility heavy oil, which seems to be an excellent candidate for the application of these technologies

  3. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, S G [Physics Department, University of Auckland (New Zealand); Huenerbein, S v; Waddington, D [Research Institute for the Built and Human Environment, University of Salford (United Kingdom)], E-mail: s.vonhunerbein@salford.ac.uk

    2008-05-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group.

  4. RASS sound speed profile (SSP) measurements for use in outdoor sound propagation models

    International Nuclear Information System (INIS)

    Bradley, S G; Huenerbein, S v; Waddington, D

    2008-01-01

    The performance of outdoor sound propagation models depends to a great extent on meteorological input parameters. In an effort to improve speed and accuracy, model output synthetic sound speed profiles (SSP) are commonly used depending on meteorological classification schemes. In order to use SSP measured by RASS in outdoor sound propagation models, the complex profiles need to be simplified. In this paper we extend an investigation on the spatial and temporal characteristics of the meteorological data set required to yield adequate comparisons between models and field measurements, so that the models can be fairly judged. Vertical SSP from RASS, SODAR wind profiles as well as mast wind and temperature data from a flat terrain site and measured over a period of several months are used to evaluate applicability of the logarithmic approximation for a stability classification scheme proposed by the HARMONOISE working group

  5. Vibrotactile Detection, Identification and Directional Perception of signal-Processed Sounds from Environmental Events: A Pilot Field Evaluation in Five Cases

    Directory of Open Access Journals (Sweden)

    Parivash Ranjbar

    2008-09-01

    Full Text Available Objectives: Conducting field tests of a vibrotactile aid for deaf/deafblind persons for detection, identification and directional perception of environmental sounds. Methods: Five deaf (3F/2M, 22–36 years individuals tested the aid separately in a home environment (kitchen and in a traffic environment. Their eyes were blindfolded and they wore a headband and holding a vibrator for sound identification. In the headband, three microphones were mounted and two vibrators for signalling direction of the sound source. The sounds originated from events typical for the home environment and traffic. The subjects were inexperienced (events unknown and experienced (events known. They identified the events in a home and traffic environment, but perceived sound source direction only in traffic. Results: The detection scores were higher than 98% both in the home and in the traffic environment. In the home environment, identification scores varied between 25%-58% when the subjects were inexperienced and between 33%-83% when they were experienced. In traffic, identification scores varied between 20%-40% when the subjects were inexperienced and between 22%-56% when they were experienced. The directional perception scores varied between 30%-60% when inexperienced and between 61%-83% when experienced. Discussion: The vibratory aid consistently improved all participants’ detection, identification and directional perception ability.

  6. Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-Chao; Zhan, Jie-Min; Wu, Neng-You; Luo, Ying-Ying; Cai, Wen-Hao

    2016-01-01

    Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950 ~ 1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01 ~ 11.57 MPa; in this well there mainly produces liquid and steam two-phase flow. In this work we numerically investigated the electricity generation potential from the fractured granite reservoir through a single vertical well, analyzed the process and mechanism of the two-phase flow, and evaluated main factors affecting the heat production and electricity generation. The results show that under the reference conditions the system attains a pump power of 0.02 ~ 0.16 MW, an electrical power of 2.71 ~ 2.69 MW, and an energy efficiency of 68.06 ~ 16.34, showing favorable electricity generation performance. During the production period, the bottomhole production pressure gradually decreases, and this makes the pump power increasing and the energy efficiency decreasing. When the bottomhole pressure is lower than the saturated vapor pressure, the liquid water begins to evaporate and the bottomhole wellbore begins to produce the mixture of liquid and steam. Main factors affecting the performance are reservoir porosity, permeability and fluid production rate. Higher reservoir porosity or higher permeability or lower fluid production rate will increase the bottomehole pressure, decrease the pump power and improve the energy efficiency. - Highlights: • We established a numerical model of a single vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 2.71 ~ 2.69 MW with an efficiency of about 68.06 ~ 16.34. • Electric power mainly depends on the reservoir porosity and water production rate. • Higher permeability within a certain range is favorable for electricity generation.

  7. Ground-based measurements of the vertical E-field in mountainous regions and the "Austausch" effect

    Science.gov (United States)

    Yaniv, Roy; Yair, Yoav; Price, Colin; Mkrtchyan, Hripsime; Lynn, Barry; Reymers, Artur

    2017-06-01

    Past measurements of the atmospheric vertical electric field (Ez or potential gradient) at numerous land stations showed a strong response of the daily electric field to a morning local effect known as ;Austausch; - the transport of electrical charges due to increased turbulence. In mountainous regions, nocturnal charge accumulation, followed by an attachment process to aerosols near the surface in valleys, known as the electrode effect, is lifted as a charged aerosol layer by anabatic (upslope) winds during the morning hours due to solar heating. Ground-based measurements during fair weather days were conducted at three mountain stations in Israel and Armenia. We present results of the mean diurnal variation of Ez and make comparisons with the well-known Carnegie curve and with past measurements of Ez on mountains. We report a good agreement between the mean diurnal curves of Ez at various mountain stations and the time of local sunrise when the Ez is found to increase. We attribute this morning maximum to the Austausch (or exchange) layer effect. We support our findings with conduction and turbulent current measurements showing high values of ions and charged aerosols being transported by winds from morning to noon local time, and by model simulations showing the convergence of winds in the early morning hours toward the mountain peak.

  8. Foley Sounds vs Real Sounds

    DEFF Research Database (Denmark)

    Trento, Stefano; Götzen, Amalia De

    2011-01-01

    This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...

  9. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    Science.gov (United States)

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  10. The influence of air-filled structures on wave propagation and beam formation of a pygmy sperm whale (Kogia breviceps) in horizontal and vertical planes.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen

    2017-10-01

    The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.

  11. Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography

    Science.gov (United States)

    Grozdanov, Sašo; Poovuttikul, Napat

    2018-05-01

    In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.

  12. Effects of polarization field on vertical transport in GaN/AlGaN resonant tunneling diodes

    International Nuclear Information System (INIS)

    Park, Seoung-Hwan; Shim, Jong-In

    2012-01-01

    Polarization-field effects on the vertical transport in GaN/AlGaN resonant tunneling diodes (RTDs) were theoretically investigated by using the transfer matrix formalism. The self-consistent model shows that the resonant peaks are shifted toward higher energies with increasing Al composition in the AlGaN barrier, and the transmission probability values are shown to decrease rapidly. In the case of the flat-band model, on the other hand, the shift of the resonant peaks is smaller than it is for the self-consistent model and the variation of transmission probability values with increasing Al composition is relatively smaller than that of the self-consistent model. The current voltage characteristics of the self-consistent model are asymmetric while those of the flat-band model are symmetric for positive and negative current directions. The peak-to-valley ratio (PVR) of the self-consistent model is shown to be slightly smaller than that of the flat-band model for Al = 0.3.

  13. A novel planar vertical double-diffused metal-oxide-semiconductor field-effect transistor with inhomogeneous floating islands

    Institute of Scientific and Technical Information of China (English)

    Ren Min; Li Ze-Hong; Liu Xiao-Long; Xie Jia-Xiong; Deng Guang-Min; Zhang Bo

    2011-01-01

    A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (Ron,sp),whose distinctive feature is the use of inhomogeneous floating p-islands in the n-drift region,is proposed.The theoretical limit of its Ron,sp is deduced,the influence of structure parameters on the breakdown voltage (BV) and Ron,sp are investigated,and the optimized results with BV of 83 V and Ron,sp of 54 mΩ.mm2 are obtained.Simulations show that the inhomogencous-floating-islands metal-oxide-semiconductor field-effect transistor (MOSFET)has a superior “Ron,sp/BV” trade-off to the conventional VDMOS (a 38% reduction of Ron,sp with the same BV) and the homogeneous-floating-islands MOSFET (a 10% reduction of Ron,sp with the same BV).The inhomogeneous-floatingislands MOSFET also has a much better body-diode characteristic than the superjunction MOSFET.Its reverse recovery peak current,reverse recovery time and reverse recovery charge are about 50,80 and 40% of those of the superjunction MOSFET,respectively.

  14. A novel planar vertical double-diffused metal-oxide-semiconductor field-effect transistor with inhomogeneous floating islands

    International Nuclear Information System (INIS)

    Ren Min; Li Ze-Hong; Liu Xiao-Long; Xie Jia-Xiong; Deng Guang-Min; Zhang Bo

    2011-01-01

    A novel planar vertical double-diffused metal-oxide-semiconductor (VDMOS) structure with an ultra-low specific on-resistance (R on,sp ), whose distinctive feature is the use of inhomogeneous floating p-islands in the n-drift region, is proposed. The theoretical limit of its R on,sp is deduced, the influence of structure parameters on the breakdown voltage (BV) and R on,sp are investigated, and the optimized results with BV of 83 V and R on,sp of 54 mΩ·mm 2 are obtained. Simulations show that the inhomogeneous-floating-islands metal-oxide-semiconductor field-effect transistor (MOSFET) has a superior 'R on,sp /BV' trade-off to the conventional VDMOS (a 38% reduction of R on,sp with the same BV) and the homogeneous-floating-islands MOSFET (a 10% reduction of R on,sp with the same BV). The inhomogeneous-floating-islands MOSFET also has a much better body-diode characteristic than the superjunction MOSFET. Its reverse recovery peak current, reverse recovery time and reverse recovery charge are about 50, 80 and 40% of those of the superjunction MOSFET, respectively. (interdisciplinary physics and related areas of science and technology)

  15. Field tests with vertical perforated drain pipes used for beach protection at Southern Holmsland Barrier on the Danish North Sea Coast

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Fredsøe, Jørgen

    In accordance with the agreement of 18 August 2004 between Skagen Innovation Center (SIC) and the Danish Governmental Coastal Authority (KDI) a field test with the purpose of demonstrating the efficiency of the SIC vertical drain method as a mean for coastal protecting was initiated in a meeting 24...

  16. Field tests with vertical perforated drain pipes used for beach protection at Southern Holmsland Barrier on the Danish North Sea Coast (half year report)

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Fredsøe, Jørgen

    In accordance with the agreement of 18 August 2004 between Skagen Innovation Center (SIC) and the Danish Governmental Coastal Authority (KDI) a field test with the purpose of demonstrating the efficiency of the SIC vertical drain method as a mean for coastal protecting was initiated in a meeting 24...

  17. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    Czech Academy of Sciences Publication Activity Database

    Král, Robert; Nitsch, Karel

    2015-01-01

    Roč. 427, Oct (2015), 7-15 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : single crystal growth * temperature field measurements * crystal/melt interface * lead chloride * vertical Bridgman method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.462, year: 2015

  18. Imagining Sound

    DEFF Research Database (Denmark)

    Grimshaw, Mark; Garner, Tom Alexander

    2014-01-01

    We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....

  19. Exploring the relationship between nature sounds, connectedness to nature, mood and willingness to buy sustainable food: A retail field experiment.

    Science.gov (United States)

    Spendrup, Sara; Hunter, Erik; Isgren, Ellinor

    2016-05-01

    Nature sounds are increasingly used by some food retailers to enhance in-store ambiance and potentially even influence sustainable food choices. An in-store, 2 × 3 between-subject full factorial experiment conducted on 627 customers over 12 days tested whether nature sound directly and indirectly influenced willingness to buy (WTB) sustainable foods. The results show that nature sounds positively and directly influence WTB organic foods in groups of customers (men) that have relatively low initial intentions to buy. Indirectly, we did not find support for the effect of nature sound on influencing mood or connectedness to nature (CtN). However, we show that information on the product's sustainability characteristics moderates the relationship between CtN and WTB in certain groups. Namely, when CtN is high, sustainability information positively moderated WTB both organic and climate friendly foods in men. Conversely, when CtN was low, men expressed lower WTB organic and climate friendly foods than identical, albeit conventionally labelled products. Consequently, our study concludes that nature sounds might be an effective, yet subtle in-store tool to use on groups of consumers who might otherwise respond negatively to more overt forms of sustainable food information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  1. Microsoft C#.NET program and electromagnetic depth sounding for large loop source

    Science.gov (United States)

    Prabhakar Rao, K.; Ashok Babu, G.

    2009-07-01

    A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.

  2. Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model

    Directory of Open Access Journals (Sweden)

    C. L. Heald

    2011-12-01

    Full Text Available The global organic aerosol (OA budget is highly uncertain and past studies suggest that models substantially underestimate observed concentrations. Few of these studies have examined the vertical distribution of OA. Furthermore, many model-measurement comparisons have been performed with different models for single field campaigns. We synthesize organic aerosol measurements from 17 aircraft campaigns from 2001–2009 and use these observations to consistently evaluate a GEOS-Chem model simulation. Remote, polluted and fire-influenced conditions are all represented in this extensive dataset. Mean observed OA concentrations range from 0.2–8.2 μg sm−3 and make up 15 to 70% of non-refractory aerosol. The standard GEOS-Chem simulation reproduces the observed vertical profile, although observations are underestimated in 13 of the 17 field campaigns (the median observed to simulated ratio ranges from 0.4 to 4.2, with the largest model bias in anthropogenic regions. However, the model is best able to capture the observed variability in these anthropogenically-influenced regions (R2=0.18−0.57, but has little skill in remote or fire-influenced regions. The model bias increases as a function of relative humidity for 11 of the campaigns, possibly indicative of missing aqueous phase SOA production. However, model simulations of aqueous phase SOA suggest a pronounced signature in the mid-troposphere (2–6 km which is not supported in the observations examined here. Spracklen et al. (2011 suggest adding ~100 Tg yr−1 source of anthropogenically-controlled SOA to close the measurement-model gap, which we add as anthropogenic SOA. This eliminates the model underestimate near source, but leads to overestimates aloft in a few regions and in remote regions, suggesting either additional sinks of OA or higher volatility aerosol at colder temperatures. Sensitivity simulations indicate that fragmentation of organics upon

  3. A Wide-Range Tunable Level-Keeper Using Vertical Metal-Oxide-Semiconductor Field-Effect Transistors for Current-Reuse Systems

    Science.gov (United States)

    Tanoi, Satoru; Endoh, Tetsuo

    2012-04-01

    A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.

  4. Influence of non-ideal diffuse sound field excitations on the control performance of active panel structures

    OpenAIRE

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-01-01

    The sound transmission loss of lightweight structures can be increased by the application of facing formworks. In the aircraft industry this task is accomplished by means of sidewall panels (linings) mounted on the primary fuselage structure of an aircraft. At low frequencies (

  5. Unsound Sound

    DEFF Research Database (Denmark)

    Knakkergaard, Martin

    2016-01-01

    This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....

  6. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  7. An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets

    OpenAIRE

    Bogey , Christophe; Bailly , Christophe

    2007-01-01

    International audience; Noise generation is investigated in subsonic isothermal round jets at Mach numbers M =0.6 and M =0.9, with Reynolds numbers ReD =1700 and ReD 105, using causality methods on data provided by large-eddy simulations. The correlations between broadband sound pressure signals and broadband turbulence signals along the jet axis and the shear layer are calculated. The normalized correlations are found to be significant between the pressure emitted in the downstream direction...

  8. A Study of the Effect of the Fringe Fields on the Electrostatic Force in Vertical Comb Drives

    Directory of Open Access Journals (Sweden)

    Else Gallagher

    2014-10-01

    Full Text Available The equation that describes the relationship between the applied voltage and the resulting electrostatic force within comb drives is often used to assist in choosing the dimensions for their design. This paper re-examines how some of these dimensions—particularly the cross-sectional dimensions of the comb teeth—affect this relationship in vertical comb drives. The electrostatic forces in several vertical comb drives fabricated for this study were measured and compared to predictions made with four different mathematical models in order to explore the amount of complexity required within a model to accurately predict the electrostatic forces in the comb drives.

  9. Analysis Of Convective Plane Stagnation Point Chemically Reactive Mhd Flow Past A Vertical Porous Plate With A Convective Boundary Condition In The Presence Of A Uniform Magnetic Field.

    OpenAIRE

    Adeniyan, A.,

    2013-01-01

    The numerical investigation of a stagnation point boundary layer flow , mass and heat transfer of a steady two dimensional , incompressible , viscous electrically conducting, chemically reacting laminar fluid over a vertical convectively heated , electrically neutral flat plate exposed to a transverse uniform magnetic field has been carried out to examine the influence of the simultaneous presence of the effects of a convective boundary condition, chemical reaction, heat transfer and suctio...

  10. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Large current modulation and tunneling magnetoresistance change by a side-gate electric field in a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor.

    Science.gov (United States)

    Kanaki, Toshiki; Yamasaki, Hiroki; Koyama, Tomohiro; Chiba, Daichi; Ohya, Shinobu; Tanaka, Masaaki

    2018-05-08

    A vertical spin metal-oxide-semiconductor field-effect transistor (spin MOSFET) is a promising low-power device for the post scaling era. Here, using a ferromagnetic-semiconductor GaMnAs-based vertical spin MOSFET with a GaAs channel layer, we demonstrate a large drain-source current I DS modulation by a gate-source voltage V GS with a modulation ratio up to 130%, which is the largest value that has ever been reported for vertical spin field-effect transistors thus far. We find that the electric field effect on indirect tunneling via defect states in the GaAs channel layer is responsible for the large I DS modulation. This device shows a tunneling magnetoresistance (TMR) ratio up to ~7%, which is larger than that of the planar-type spin MOSFETs, indicating that I DS can be controlled by the magnetization configuration. Furthermore, we find that the TMR ratio can be modulated by V GS . This result mainly originates from the electric field modulation of the magnetic anisotropy of the GaMnAs ferromagnetic electrodes as well as the potential modulation of the nonmagnetic semiconductor GaAs channel layer. Our findings provide important progress towards high-performance vertical spin MOSFETs.

  12. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2008-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  13. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2010-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  14. Sound generator

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    2007-01-01

    A sound generator, particularly a loudspeaker, configured to emit sound, comprising a rigid element (2) enclosing a plurality of air compartments (3), wherein the rigid element (2) has a back side (B) comprising apertures (4), and a front side (F) that is closed, wherein the generator is provided

  15. Co-integration of nano-scale vertical- and horizontal-channel metal-oxide-semiconductor field-effect transistors for low power CMOS technology.

    Science.gov (United States)

    Sun, Min-Chul; Kim, Garam; Kim, Sang Wan; Kim, Hyun Woo; Kim, Hyungjin; Lee, Jong-Ho; Shin, Hyungcheol; Park, Byung-Gook

    2012-07-01

    In order to extend the conventional low power Si CMOS technology beyond the 20-nm node without SOI substrates, we propose a novel co-integration scheme to build horizontal- and vertical-channel MOSFETs together and verify the idea using TCAD simulations. From the fabrication viewpoint, it is highlighted that this scheme provides additional vertical devices with good scalability by adding a few steps to the conventional CMOS process flow for fin formation. In addition, the benefits of the co-integrated vertical devices are investigated using a TCAD device simulation. From this study, it is confirmed that the vertical device shows improved off-current control and a larger drive current when the body dimension is less than 20 nm, due to the electric field coupling effect at the double-gated channel. Finally, the benefits from the circuit design viewpoint, such as the larger midpoint gain and beta and lower power consumption, are confirmed by the mixed-mode circuit simulation study.

  16. Ionospheric Oblique Incidence Soundings by Satellites

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The oblique incidence sweep-frequency ionospheric sounding technique uses the same principle of operation as the vertical incidence sounder. The primary difference...

  17. Influence of in-plane field on vertical Bloch line in the walls of the second kind of dumbbell domains at various temperatures

    International Nuclear Information System (INIS)

    Xu, J.P.; Liu, S.P.; Guo, G.X.; Zhen, C.M.; Tang, G.D.; Sun, H.Y.; Nie, X.F.

    2004-01-01

    The stability of vertical Bloch lines (VBLs) in the second kind of dumbbell domain (IIDs) walls in liquid phase epitaxy garnet bubble films subjected to an in-plane field at various temperatures is studied experimentally. It is found that there exists a critical in-plane field range depending on temperature, in which vertical Bloch lines (VBLs) in the second kind of IIDs walls are unstable, i.e., [Hip(1)(T),Hip(2)(T)]. Here, Hip(1)(T) is the initial critical in-plane field at which VBLs in the walls of IIDs annihilate; while Hip(2)(T) is the lowest in-plane field at which all VBLs in the walls of IIDs have annihilated completely. Also, the critical in-plane field range [Hip(1)(T),Hip(2)(T)],Hip(1)(T) and Hip(2)(T) all decrease with the temperature increasing. Hip(1)(T) and Hip(2)(T) reach zero at T0' and T0, respectively

  18. Evolution of Field-Aligned Electron and Ion Densities From Whistler Mode Radio Soundings During Quiet to Moderately Active Period and Comparisons With SAMI2 Simulations

    Science.gov (United States)

    Reddy, A.; Sonwalkar, V. S.; Huba, J. D.

    2018-02-01

    Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.

  19. Sound Art Situations

    DEFF Research Database (Denmark)

    Krogh Groth, Sanne; Samson, Kristine

    2017-01-01

    and combine theories from several fields. Aspects of sound art studies, performance studies and contemporary art studies are presented in order to theoretically explore the very diverse dimensions of the two sound art pieces: Visual, auditory, performative, social, spatial and durational dimensions become......This article is an analysis of two sound art performances that took place June 2015 in outdoor public spaces in the social housing area Urbanplanen in Copenhagen, Denmark. The two performances were On the production of a poor acoustics by Brandon LaBelle and Green Interactive Biofeedback...... Environments (GIBE) by Jeremy Woodruff. In order to investigate the complex situation that arises when sound art is staged in such contexts, the authors of this article suggest exploring the events through approaching them as ‘situations’ (Doherty 2009). With this approach it becomes possible to engage...

  20. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  1. Inverse problem of radiofrequency sounding of ionosphere

    Science.gov (United States)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  2. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  3. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  4. Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field

    International Nuclear Information System (INIS)

    Li Fengchen; Serizawa, Akimi

    2004-01-01

    Experimental study was carried out on the characteristics of a vertically falling film flow of liquid metal sodium-potassium alloy (NaK-78) in a vertical square duct in the presence of a transverse magnetic field. The magnitude of the applied magnetic field was up to 0.7 T. The Reynolds number, defined by the hydraulic diameter based on the wetted perimeter length and the liquid average velocity, ranged from 8.0x10 3 to 3.0x10 4 . The free surfaces of the falling film flows in both a stainless steel and an acrylic resin channels were visualized. The instantaneous film thickness of the falling film flow in the acrylic resin channel was then measured by means of the ultrasonic transmission technique. Magnetohydrodynamic (MHD) effects on the characteristics of the falling film flow were investigated by the visualization and the statistical analysis of the measured film thickness. It was found that the falling liquid NaK film was thickened and the flow was stabilized remarkably by a strong transverse magnetic field. A bifurcation of the film was recovered by the applied magnetic field. The turbulence of the flow was substantially suppressed

  5. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  6. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  7. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  8. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    KAUST Repository

    Kolekar, Sadhu

    2018-02-26

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current–Voltage (I–V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of ~10 kΩ. It was found that I–V curves for field emission mode in PFEM geometry vary initially with number of I–V cycles until reproducible I–V curves are obtained. Even for reasonably stable I–V behavior the number of spots was found to increase with the voltage leading to a modified Fowler–Nordheim (F–N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F–N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.Graphical Abstract

  9. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    Science.gov (United States)

    Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.

    2018-03-01

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current-Voltage (I-V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of 10 kΩ. It was found that I-V curves for field emission mode in PFEM geometry vary initially with number of I-V cycles until reproducible I-V curves are obtained. Even for reasonably stable I-V behavior the number of spots was found to increase with the voltage leading to a modified Fowler-Nordheim (F-N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F-N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.

  10. An Analysis of Ionospheric Thermal Ions Using a SIMION-based Forward Instrument Model: In Situ Observations of Vertical Thermal Ion Flows as Measured by the MICA Sounding Rocket

    Science.gov (United States)

    Fernandes, P. A.; Lynch, K. A.; Zettergren, M. D.; Hampton, D. L.; Fisher, L. E.; Powell, S. P.

    2013-12-01

    The MICA sounding rocket launched on 19 Feb. 2012 into several discrete, localized arcs in the wake of a westward traveling surge. In situ and ground-based observations provide a measured response of the ionosphere to preflight and localized auroral drivers. In this presentation we focus on in situ measurements of the thermal ion distribution. We observe thermal ions flowing both up and down the auroral field line, with upflows concentrated in Alfvénic and downward current regions. The in situ data are compared with recent ionospheric modeling efforts (Zettergren et al., this session) which show structured patterns of ion upflow and downflow consistent with these observations. In the low-energy thermal plasma regime, instrument response to the measured thermal ion population is very sensitive to the presence of the instrument. The plasma is shifted and accelerated in the frame of the instrument due to flows, ram, and acceleration through the payload sheath. The energies associated with these processes are large compared to the thermal energy. Rigorous quantitative analysis of the instrument response is necessary to extract the plasma properties which describe the full 3D distribution function at the instrument aperture. We introduce an instrument model, developed in the commercial software package SIMION, to characterize instrument response at low energies. The instrument model provides important insight into how we would modify our instrument for future missions, including fine-tuning parameters such as the analyzer sweep curve, the geometry factor, and the aperture size. We use the results from the instrument model to develop a forward model, from which we can extract anisotropic ion temperatures, flows, and density of the thermal plasma at the aperture. Because this plasma has transited a sheath to reach the aperture, we must account for the acceleration due to the sheath. Modeling of this complex sheath is being conducted by co-author Fisher, using a PIC code

  11. Aligned Magnetic Field, Radiation, and Rotation Effects on Unsteady Hydromagnetic Free Convection Flow Past an Impulsively Moving Vertical Plate in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Sandeep Naramgari

    2014-01-01

    Full Text Available We analyse the effects of aligned magnetic field, radiation, and rotation on unsteady hydromagnetic free convection flow of a viscous incompressible electrically conducting fluid past an impulsively moving vertical plate in a porous medium in presence of heat source. An exact solution of the governing equations in dimensionless form is obtained by Laplace transform technique in ramped temperature case. To compare the results obtained in this case with that of isothermal plate, the exact solution of the governing equations is also obtained for isothermal plate and results are discussed graphically in both ramped temperature and isothermal cases.

  12. Sounding the Alarm: An Introduction to Ecological Sound Art

    Directory of Open Access Journals (Sweden)

    Jonathan Gilmurray

    2016-12-01

    Full Text Available In recent years, a number of sound artists have begun engaging with ecological issues through their work, forming a growing movement of ˝ecological sound art˝. This paper traces its development, examines its influences, and provides examples of the artists whose work is currently defining this important and timely new field.

  13. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    Science.gov (United States)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and

  14. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    Science.gov (United States)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  15. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kirichok, A. V., E-mail: sandyrcs@gmail.com; Kuklin, V. M.; Pryimak, A. V. [Institute for High Technologies, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022 (Ukraine); Zagorodny, A. G. [Bogolyubov Institute for Theoretical Physics, 14-b, Metrolohichna str., Kiev 03680 (Ukraine)

    2015-09-15

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  16. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altay Mountains: Implications for far-field transpressional mountain building

    Science.gov (United States)

    Gregory, Laura C.; Mac Niocaill, Conall; Walker, Richard T.; Bayasgalan, Gantulga; Craig, Tim J.

    2018-06-01

    The Altay Mountains of Western Mongolia accommodate 10-20% of the current shortening of the India-Asia collision in a transpressive regime. Kinematic models of the Altay require faults to rotate anticlockwise about a vertical axis in order to accommodate compressional deformation on the major strike slip faults that cross the region. Such rotations should be detectable by palaeomagnetic data. Previous estimates from the one existing palaeomagnetic study from the Altay, on Oligocene and younger sediments from the Chuya Basin in the Siberian Altay, indicate that at least some parts of the Altay have experienced up to 39 ± 8° of anticlockwise rotation. Here, we present new palaeomagnetic results from samples collected in Cretaceous and younger sediments in the Zereg Basin along the Har-Us-Nuur fault in the eastern Altay Mountains, Mongolia. Our new palaeomagnetic results from the Zereg Basin provide reliable declinations, with palaeomagnetic directions from 10 sites that pass a fold test and include magnetic reversals. The declinations are not significantly rotated with respect to the directions expected from Cretaceous and younger virtual geomagnetic poles, suggesting that faults in the eastern Altay have not experienced a large degree of vertical axis rotation and cannot have rotated >7° in the past 5 m.y. The lack of rotation along the Har-Us-Nuur fault combined with a large amount of rotation in the northern Altay fits with a kinematic model for transpressional deformation in which faults in the Altay have rotated to an orientation that favours the development of flower structures and building of mountainous topography, while at the same time the range widens at the edges as strain is transferred to better oriented structures. Thus the Har-Us-Nuur fault is a relatively young fault in the Altay, and has not yet accommodated significant rotation.

  17. The Textile Form of Sound

    DEFF Research Database (Denmark)

    Bendixen, Cecilie

    2010-01-01

    The aim of this article is to shed light on a small part of the research taking place in the textile field. The article describes an ongoing PhD research project on textiles and sound and outlines the project's two main questions: how sound can be shaped by textiles and conversely how textiles can...

  18. Sound [signal] noise

    DEFF Research Database (Denmark)

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  19. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  20. Nuclear sound

    International Nuclear Information System (INIS)

    Wambach, J.

    1991-01-01

    Nuclei, like more familiar mechanical systems, undergo simple vibrational motion. Among these vibrations, sound modes are of particular interest since they reveal important information on the effective interactions among the constituents and, through extrapolation, on the bulk behaviour of nuclear and neutron matter. Sound wave propagation in nuclei shows strong quantum effects familiar from other quantum systems. Microscopic theory suggests that the restoring forces are caused by the complex structure of the many-Fermion wavefunction and, in some cases, have no classical analogue. The damping of the vibrational amplitude is strongly influenced by phase coherence among the particles participating in the motion. (author)

  1. Original monitoring of desert dust in African air masses transported over the Mediterranean Sea by quasi-Lagrangian drifting balloons and sounding balloons during the summer 2013 ChArMEx field campaign

    Science.gov (United States)

    Dulac, F.; Renard, J. B.; Durand, P.; Denjean, C.; Bourgeois, Q.; Vignelles, D.; Jeannot, M.; Mallet, M.; Verdier, N.

    2017-12-01

    This study focuses on in situ balloon-borne measurements of mineral dust from summer regional field campaigns in the western Mediterranean basin performed in the framework of ChArMEx (the Chemistry and Aerosol Mediterranean Experiment; see special issue https://www.atmos-chem-phys.net/special_issue334.html). Due to long-range transport from Africa, the lower troposphere over this regional sea is subject to high levels of desert dust with a maximum during the long dry and sunny Mediterranean summer season. Based on developments of boundary-layer pressurized balloons (BLPBs) and of a dedicated optical particle counter named LOAC (Light Optical Aerosol Counter/sizer), we were able to perform original quasi-Lagrangian monitoring of desert dust aerosols over the sea. The strategy combined classical sounding balloons and drifting BLPBs to document both the vertical distribution and long-range transport. A total of 27 LOAC flights were successfully conducted from Minorca Isl. (Spain) or Levant Isl. (France), during 4 Saharan dust transport events, including 10 flights with BLPBs at drifting altitudes between 2.0 and 3.3 km above sea level. The longest flight exceeded 700 km and lasted more than 25 h. Numerous tests and validations of LOAC measurements were performed to qualify the instrument, including comparisons with concurrent airborne measurements, sounding balloons, and remote sensing measurements with an AERONET sun-photometer, and a ground-based and the CALIOP lidar systems. Aerosol optical depths in the balloon vicinity did not exceed about 0.4 but the presence of turbid dust layers was confirmed thanks to dual scattering angle measurements by LOAC allowing the identification of dust particles. LOAC data could generally be fitted by a 3-mode lognormal distribution at roughly 0.2, 4 and 30 µm in modal diameter. Up to about 10-4 dust particles larger than 40 µm per cm3 are reported and no significant evolution of the size distribution was observed during the

  2. Performance test of a vertically-directed electric-field cavity resonator made for the rapid gelation apparatus with microwave heating

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Ogawa, Toru; Hasegawa, Atsushi.

    1996-06-01

    A cavity resonator with vertically-directed electric field was produced and attached to 'the rapid gelation apparatus with microwave heating' previously reported. Using the rapid gelation apparatus, drops of a simulated solution and of U-containing solutions for internal gelation were heated. The results indicated that the heating required for gelation of the U-containing solutions was possible. However, the electric field strength in the cavity resonator at that time was comparable to that causing the discharge due to the gaseous ammonia released from the heated drops. As a result, gel microspheres were not obtained in a stable state. The discussion suggests that the stable gelation would be realized by improving the cavity resonator shape and/or by modifying the power supply accompanied with using a power stabilizer. (author)

  3. Sound localization and occupational noise

    Directory of Open Access Journals (Sweden)

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  4. Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters

    International Nuclear Information System (INIS)

    Safdar, Muhammad; Zhan Xueying; Mirza, Misbah; Wang Zhenxing; Sun Lianfeng; He Jun; Niu Mutong; Zhang Jinping; Zhao Qing

    2013-01-01

    We report the controlled growth of highly ordered and well aligned one-dimensional tellurium nanostructure arrays via a one-step catalyst-free physical vapor deposition method. The density, size and fine structures of tellurium nanowires are systematically studied and optimized. Field emission measurement was performed to display notable dependence on nanostructure morphologies. The ordered nanowire array based field emitter has a turn-on field as low as 3.27 V μm −1 and a higher field enhancement factor of 3270. Our finding offers the possibility of controlling the growth of tellurium nanowire arrays and opens up new means for their potential applications in electronic devices and displays. (paper)

  5. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    Science.gov (United States)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction

  6. Characterization of vertical GaN p–n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    International Nuclear Information System (INIS)

    Kizilyalli, I C; Aktas, O

    2015-01-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p–n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (10 4 to 10 6 cm −2 ) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 10 15 cm −3 . This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A  ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p–n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p–n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p–n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p–n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T −3/2 , consistent with a phonon scattering model. Also

  7. Sound Settlements

    DEFF Research Database (Denmark)

    Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig

    2013-01-01

    Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...

  8. Second Sound

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Second Sound - The Role of Elastic Waves. R Srinivasan. General Article Volume 4 Issue 6 June 1999 pp 15-19. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/06/0015-0019 ...

  9. Geoelectrical structure by electrical logs and Schlumberger sounding at the Akinomiya geothermal field, Akita Prefecture; Denki kenso oyobi Schlumberger ho ni yoru Akinomiya chinetsu chiiki no hiteiko kozo

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, T; Takemoto, S

    1997-05-27

    Based on the electrical logging data of the existed well and Schlumberger sounding data obtained in 1974, a two-dimensional inversion analysis of the specific resistance profile was conducted at the Akinomiya geothermal field, Akita Prefecture. From the electrical logging data, relationships between the geology and the specific resistance were illustrated. The specific resistance values of basement rocks showed more than 100 ohm-m, which were higher than those of the other seams. Intrusive rocks and tuffs in the basement rocks showed locally low values less than 100 ohm-m. Younger volcanic rocks showed low values around 10 ohm-m. As a result of the two-dimensional inversion analysis, the basement rocks could be detected as high specific resistance layers. Accordingly, it was considered that the basement rocks in this field can be detected as high specific resistance layers by analyzing the results of field survey sufficiently. Low specific resistance zones were observed in the shallow depth, which corresponded to the fumarolic gases. There were some layers with remarkably varied specific resistance values, which were considered to be related with alteration. 6 refs., 3 figs.

  10. The relationship between running speed and measures of vertical jump in professional basketball players: a field-test approach.

    Science.gov (United States)

    Shalfawi, Shaher A I; Sabbah, Ammar; Kailani, Ghazi; Tønnessen, Espen; Enoksen, Eystein

    2011-11-01

    The purpose of this study was to examine the relationship between vertical jump measures and sprint speed over 10, 20, and 40 m in professional basketball players. Thirty-three professional basketball players aged (±SD) (27.4 ± 3.3 years), body mass (89.8 ± 11.1 kg), and stature (192 ± 8.2 cm) volunteered to participate in this study. All participants were tested on squat jump, countermovement jump, and 40-m running speed. The results show that all jump measures in absolute terms were correlated significantly to running performance over 10-, 20-, and 40-m sprint times. None of the jumping performance peak powers and reactive strength were found to have a correlation to running speed times in absolute term. Furthermore, all jump height measures relative to body mass except reactive strength had a marked and significant relationship with all sprint performance times. The results of this study indicate that while there is a strong and marked relationship between 10-, 20-, and 40-m sprint, there is also a considerable variation within the factors that contribute to performance over these distances. This may indicate that, separate training strategies could be implemented to improve running speed over these distances.

  11. Intense laser effects on donor impurity in a cylindrical single and vertically coupled quantum dots under combined effects of hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.

    2010-01-01

    Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga 1-x Al x As QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.

  12. Role of work function in field emission enhancement of Au island decorated vertically aligned ZnO nanotapers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Avanendra [School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha (India); Senapati, Kartik, E-mail: kartik@niser.ac.in [School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha (India); Kumar, Mohit; Som, Tapobrata [SUNAG Laboratory, Institute of Physics, Bhubaneswar 751005, Odisha (India); Sinha, Anil K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India); Sahoo, Pratap K., E-mail: pratap.sahoo@niser.ac.in [School of Physical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha (India)

    2017-07-31

    Highlights: • Hydrothermally synthesized nanotapers were decorated by gold corrugation using simple evaporation techniques for large area applications. • A significantly enhanced field emission properties of nanotapers were achieved. • The metal induced midgap states formed at the ZnO-Au interface and the reduced effective work function are responsible for low turn-on field. • TUNA measurements revealed a very uniform spatial emission profile in the Au decorated nanotapers. - Abstract: In this report, we demonstrate significantly enhanced field emission properties of ZnO nanotapers achieved via a corrugated decoration of Au. Field emission experiments on these Au-decorated ZnO nanotapers showed emission current densities comparable to the best results in the literature. Au decoration of 5 nm also reduced the effective turn-on field to ∼0.54 V/μm, compared to the as grown ZnO nanotapers, which showed a turn-on field of ∼1.1 V/μm. Tunneling atomic force microscopy measurements revealed a very uniform spatial emission profile in the 5 nm Au decorated nanotapers, which is a basic requirement for any large scale application. We believe that metal induced mid-gap states formed at the ZnO–Au interface are responsible for the observed low turn-on field because such interface states are known to reduce the effective work function. A direct measurement of effective work function using Kelvin probe force microscopy indeed showed more than 1.1 eV drop in the case of 5 nm Au decorated ZnO nanotapers compared to the pristine nanotapers, supporting the above argument.

  13. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  14. Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound

    Science.gov (United States)

    Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo

    2017-03-01

    We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.

  15. Evaluating the far-field sound of a turbulent jet with one-way Navier-Stokes equations

    Science.gov (United States)

    Pickering, Ethan; Rigas, Georgios; Towne, Aaron; Colonius, Tim

    2017-11-01

    The one-way Navier-Stokes (OWNS) method has shown promising ability to predict both near field coherent structures (i.e. wave packets) and far field acoustics of turbulent jets while remaining computationally efficient through implementation of a spatial marching scheme. Considering the speed and relative accuracy of OWNS, a predictive model for various jet configurations may be conceived and applied for noise control. However, there still remain discrepancies between OWNS and large eddy simulation (LES) databases which may be linked to the previous neglect of nonlinear forcing. Therefore, to better predict wave packets and far field acoustics, this study investigates the effect of nonlinear forcing terms derived from high-fidelity LES databases. The results of the nonlinear forcings are evaluated for several azimuthal modes and frequencies, as well as compared to LES derived acoustics using spectral proper orthogonal decomposition (SPOD). This research was supported by the Department of Defense (DoD) through the Office of Naval Research (Grant No. N00014-16-1-2445) and the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  16. Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography

    Science.gov (United States)

    Phillips, Jeffrey

    2014-01-01

    A physical property inversion approach based on the use of 3D (or 2D) Fourier transforms to calculate the potential-field within a 3D (or 2D) volume from a known physical property distribution within the volume is described. Topographic surfaces and observations at arbitrary locations are easily accommodated. The limitations of the approach and applications to real data are considered.

  17. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  18. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  19. Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K.J.; Hoang, D.Q.; Drijkoningen, S.; Pobedinskas, P.; Haenen, K. [Institute for Materials Research (IMO), Hasselt University, Diepenbeek (Belgium); IMOMEC, IMEC vzw, Diepenbeek (Belgium); Srinivasu, K.; Leou, K.C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China); Korneychuk, S.; Turner, S.; Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp (Belgium); Lin, I.N. [Department of Physics, Tamkang University, Tamsui (China)

    2016-10-15

    Utilization of Au and nanocrystalline diamond (NCD) as interlayers noticeably modifies the microstructure and field electron emission (FEE) properties of hexagonal boron nitride nanowalls (hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3 V μm{sup -1}, attaining FEE current density of 2.58 mA cm{sup -2} and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride (aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Sound Visualisation

    OpenAIRE

    Dolenc, Peter

    2013-01-01

    This thesis contains a description of a construction of subwoofer case that has an extra functionality of being able to produce special visual effects and display visualizations that match the currently playing sound. For this reason, multiple lighting elements made out of LED (Light Emitting Diode) diodes were installed onto the subwoofer case. The lighting elements are controlled by dedicated software that was also developed. The software runs on STM32F4-Discovery evaluation board inside a ...

  1. Little Sounds

    Directory of Open Access Journals (Sweden)

    Baker M. Bani-Khair

    2017-10-01

    Full Text Available The Spider and the Fly   You little spider, To death you aspire... Or seeking a web wider, To death all walking, No escape you all fighters… Weak and fragile in shape and might, Whatever you see in the horizon, That is destiny whatever sight. And tomorrow the spring comes, And the flowers bloom, And the grasshopper leaps high, And the frogs happily cry, And the flies smile nearby, To that end, The spider has a plot, To catch the flies by his net, A mosquito has fallen down in his net, Begging him to set her free, Out of that prison, To her freedom she aspires, Begging...Imploring...crying,  That is all what she requires, But the spider vows never let her free, His power he admires, Turning blind to light, And with his teeth he shall bite, Leaving her in desperate might, Unable to move from site to site, Tied up with strings in white, Wrapped up like a dead man, Waiting for his grave at night,   The mosquito says, Oh little spider, A stronger you are than me in power, But listen to my words before death hour, Today is mine and tomorrow is yours, No escape from death... Whatever the color of your flower…     Little sounds The Ant The ant is a little creature with a ferocious soul, Looking and looking for more and more, You can simply crush it like dead mold, Or you can simply leave it alone, I wonder how strong and strong they are! Working day and night in a small hole, Their motto is work or whatever you call… A big boon they have and joy in fall, Because they found what they store, A lesson to learn and memorize all in all, Work is something that you should not ignore!   The butterfly: I’m the butterfly Beautiful like a blue clear sky, Or sometimes look like snow, Different in colors, shapes and might, But something to know that we always die, So fragile, weak and thin, Lighter than a glimpse and delicate as light, Something to know for sure… Whatever you have in life and all these fields, You are not happier than a butterfly

  2. Chemically reacting fluid flow induced by an exponentially accelerated infinite vertical plate in a magnetic field and variable temperature via LTT and FEM

    Directory of Open Access Journals (Sweden)

    Srinivasa Raju R.

    2016-01-01

    Full Text Available In this research paper, we found both numerical and analytical solutions for the effect of chemical reaction on unsteady, incompressible, viscous fluid flow past an exponentially accelerated vertical plate with heat absorption and variable temperature in a magnetic field. The flow problem is governed by a system of coupled non-linear partial differential equations with suitable boundary conditions. We have solved the governing equations by an efficient, accurate, powerful finite element method (FEM as well as Laplace transform technique (LTT. The evaluation of the numerical results are performed and graphical results for the velocity, temperature and concentration profiles within the boundary layer are discussed. Also, the expressions for the skin-friction, Nusselt number and the Sherwood number coefficients have been derived and discussed through graphs and tabular forms for different values of the governing parameters.

  3. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste.

    Science.gov (United States)

    Mikkonen, Anu; Hakala, Kati P; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-03-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC-FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A particle velocity based method for separating all multi incoherent sound sources

    NARCIS (Netherlands)

    Winkel, J.C.; Yntema, Doekle Reinder; Druyvesteyn, W.F.; de Bree, H.E.

    2006-01-01

    In this paper we present a method to separate the contributions of different uncorrelated sound sources to the total sound field. When the contribution of each sound source to the total sound field is known, techniques with array-applications like direct sound field measurements or inverse acoustics

  5. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  6. Analysis of P- and S-wave VSP (vertical seismic profile) data from the Salton Sea Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.M.

    1987-09-01

    To understand any geophysical data, geologic information is necessary. This thesis will begin with a summary of the geology of the Salton Trough region and the Salton Sea Geothermal Field (SSGF). The information available from the SSSDP will also be summarized. After the geologic summary, the design of the VSP will be discussed, including acquisition equipment and procedures. The data processing procedures and software used will be discussed as a separate section. Processing procedures will also be described at various times in the thesis where more specialized procedures are used. Data analysis makes up the bulk of the thesis and it is divided into a number of sections detailing the basic VSP interpretation, the anisotropy analysis and the fracture detection and orientation analysis. A combined interpretation of the results, with probable geologic causes for observed events, is presented as a separate section from the data analysis. Finally, a summary of results for each of the goals stated above will be given. The reader should note that a large volume of data were collected and various display methods were used (from the standard wiggle-trace to three-component hodographs). Much of these data are left in the appendices with important or representative figures given in the body of the thesis. Also given in the appendices are listings of FORTRAN programs developed in conjunction with the thesis work. 46 refs., 63 figs., 12 tabs.

  7. Effects of the Distance from a Diffusive Surface on the Objective and Perceptual Evaluation of the Sound Field in a Small Simulated Variable-Acoustics Hall

    Directory of Open Access Journals (Sweden)

    Louena Shtrepi

    2017-02-01

    Full Text Available Simulations of the acoustic effects that diffusive surfaces have on the objective acoustic parameters and on sound perception have not yet been fully understood. To this end, acoustic simulations have been performed in Odeon in the model of a variable-acoustic concert hall. This paper is presented as a follow-up study to a previous paper that dealt with in-field measurements only. As in measurements, a diffusive and a reflective condition of one of the lateral walls have been considered in the room models. Two modeling alternatives of the diffusive condition, that is, (a a flat surface with high scattering coefficient applied; and (b a triangular relief modeled including edge diffraction, have been investigated. Objective acoustic parameters, such as early decay time (EDT, reverberation time (T30, clarity (C80, definition (D50, and interaural cross correlation (IACC, have been compared between the two conditions. Moreover, an auditory experiment has been performed to determine the maximum distance from a diffusive surface at which the simulated acoustic scattering effects are still audible. Although the simulated objective results showed a good match with measured values, the subjective results showed that the differences between the diffuse and reflective conditions become significant when model (b is used.

  8. Sonotropic effects of commercial air transport sound on birds.

    Science.gov (United States)

    1962-03-01

    The Electra sound spectrum contains an audible chirp which appears identical in frequency and wave form to the chirp of field crickets. Field observations strongly indicate the sound of the taxiing Electra exerts an attraction for starlings, and poss...

  9. Sound intensity as a function of sound insulation partition

    OpenAIRE

    Cvetkovic , S.; Prascevic , R.

    1994-01-01

    In the modern engineering practice, the sound insulation of the partitions is the synthesis of the theory and of the experience acquired in the procedure of the field and of the laboratory measurement. The science and research public treat the sound insulation in the context of the emission and propagation of the acoustic energy in the media with the different acoustics impedance. In this paper, starting from the essence of physical concept of the intensity as the energy vector, the authors g...

  10. Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric

    Science.gov (United States)

    Xu, Meili; Xiang, Lanyi; Xu, Ting; Wang, Wei; Xie, Wenfa; Zhou, Dayu

    2017-10-01

    Future flexible electronic systems require memory devices combining low-power operation and mechanical bendability. However, high programming/erasing voltages, which are universally needed to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a route to achieve a low-voltage operating flexible Fe-OFET NVM. Utilizing vertical phase separation, an ultrathin self-organized poly(styrene) (PS) buffering layer covers the surface of the ferroelectric polymer layer by one-step spin-coating from their blending solution. The ferroelectric polymer with a low coercive field contributes to low-voltage operation in the Fe-OFET NVM. The polymer PS contributes to the improvement of mobility, attributing to screening the charge scattering and decreasing the surface roughness. As a result, a high performance flexible Fe-OFET NVM is achieved at the low P/E voltages of ±10 V, with a mobility larger than 0.2 cm2 V-1 s-1, a reliable P/E endurance over 150 cycles, stable data storage retention capability over 104 s, and excellent mechanical bending durability with a slight performance degradation after 1000 repetitive tensile bending cycles at a curvature radius of 5.5 mm.

  11. Hydrogenic impurity binding energy in vertically coupled Ga1-xAlxAs quantum-dots under hydrostatic pressure and applied electric field

    International Nuclear Information System (INIS)

    Duque, C.M.; Barseghyan, M.G.; Duque, C.A.

    2009-01-01

    This work deals with a theoretical study, using a variational method and the effective mass approximation, of the ground state binding energy of a hydrogenic donor impurity in a vertically coupled multiple quantum dot structure under the effects of hydrostatic pressure and in-growth direction applied electric field. The low dimensional structure consists of three cylindrical shaped GaAs quantum dots coupled by Ga 1-x Al x As barriers. For the hydrostatic pressure has been considered the Γ-X crossover in the Ga 1-x Al x As material. As a general, the results show that: (1) the binding energy as a function of the impurity position has a similar shape to that shown by the electron wave function without the Coulomb interaction, (2) the presence of the electric field changes dramatically the binding energy profile destroying (favoring) the symmetry in the structures, and (3) depending on the impurity position the binding energy can increase or decrease with the hydrostatic pressure mainly due to increases or decreases of the carrier-wave function symmetry by changing the height of the potential barrier.

  12. Fourth sound of holographic superfluids

    International Nuclear Information System (INIS)

    Yarom, Amos

    2009-01-01

    We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS 4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.

  13. Sound pressure level tools design used in occupational health by means of Labview software

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2015-01-01

    Conclusion: LabVIEW programming capabilities in the field of sound can be referred to the measurement of sound, frequency analysis, and sound control that actually the software acts like a sound level meter and sound analyzer. According to the mentioned features, we can use this software to analyze and process sound and vibration as a monitoring system.

  14. Visualization of Broadband Sound Sources

    OpenAIRE

    Sukhanov Dmitry; Erzakova Nadezhda

    2016-01-01

    In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the...

  15. Acoustic Tweezing and Patterning of Concentration Fields in Microfluidics

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2017-01-01

    that weakly perturb the fluid density and speed of sound is presented and applied to study manipulation of concentration fields in rectangular-channel acoustic eigenmodes and in Bessel-function acoustic vortices. In the first example, methods to obtain horizontal and vertical multilayer stratification...

  16. Oil pollution and the significant biological resources of Puget Sound : final report field survey from 16 July 1974 to 01 September 1976 (NODC Accession 7601556)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Biological and chemical data were collected using sediment sampler and other instruments in the PUGET Sound, which is in the Northwest coastal waters of Washington....

  17. Sound Search Engine Concept

    DEFF Research Database (Denmark)

    2006-01-01

    Sound search is provided by the major search engines, however, indexing is text based, not sound based. We will establish a dedicated sound search services with based on sound feature indexing. The current demo shows the concept of the sound search engine. The first engine will be realased June...

  18. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    Science.gov (United States)

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  19. Simulation-Based Optimization of a Vector Showerhead System for the Control of Flow Field Profile in a Vertical Reactor Chamber

    Directory of Open Access Journals (Sweden)

    Huanxiong Xia

    2014-03-01

    Full Text Available Optimization of a vector showerhead in a vertical reactor involves thousands of holes on the showerhead face plate and the spatial distribution of physical fields, so parameterizing the geometry configuration of the holes in high resolution is very difficult, which makes the conventional optimization methods hard to deal with. To solve this problem, a profile error feedback (PEF optimization solution was proposed to optimize a vector showerhead gas delivery system for the control of mass transport. The gas velocity profile in the reactor and the continuous-feature impedance distribution profile on the showerhead face plate are defined as design objective and variables, respectively. A cyclic iterative approximation idea was implemented in this solution. The algorithm was started from a guessed initial design model and then cyclically adjusted the design variables by the constructed PEF iterative formula to generate a better model and to make the gas velocity profile in the critical domain of the new model continually approximate to the expected profile, until it could be accepted. Finally, the optimized impedance profile was mapped to the holes geometry configuration through the established equivalent impedance model for the showerhead face plate.

  20. Buoyancy Effect of Ionic Vacancy on the Change of the Partial Molar Volume in Ferricyanide-Ferrocyanide Redox Reaction under a Vertical Gravity Field

    Directory of Open Access Journals (Sweden)

    Yoshinobu Oshikiri

    2013-01-01

    Full Text Available With a gravity electrode (GE in a vertical gravity field, the buoyancy effect of ionic vacancy on the change of the partial molar volume in the redox reaction between ferricyanide (FERRI and ferrocyanide (FERRO ions was examined. The buoyancy force of ionic vacancy takes a positive or negative value, depending on whether the rate-determining step is the production or extinction of the vacancy. Though the upward convection over an upward electrode in the FERRO ion oxidation suggests the contribution of the positive buoyancy force arising from the vacancy production, the partial molar volume of the vacancy was not measured. On the other hand, for the downward convection under a downward electrode in the FERRI ion reduction, it was not completely but partly measured by the contribution of the negative buoyancy force from the vacancy extinction. Since the lifetime of the vacancy is decreased by the collision between ionic vacancies during the convection, the former result was ascribed to the shortened lifetime due to the increasing collision efficiency in the enhanced upward convection over an upward electrode, whereas the latter was thought to arise from the elongated lifetime due to the decreasing collision efficiency by the stagnation under the downward electrode.

  1. Ultra-low specific on-resistance high-voltage vertical double diffusion metal–oxide–semiconductor field-effect transistor with continuous electron accumulation layer

    International Nuclear Information System (INIS)

    Ma Da; Luo Xiao-Rong; Wei Jie; Tan Qiao; Zhou Kun; Wu Jun-Feng

    2016-01-01

    A new ultra-low specific on-resistance (R on,sp ) vertical double diffusion metal–oxide–semiconductor field-effect transistor (VDMOS) with continuous electron accumulation (CEA) layer, denoted as CEA-VDMOS, is proposed and its new current transport mechanism is investigated. It features a trench gate directly extended to the drain, which includes two PN junctions. In on-state, the electron accumulation layers are formed along the sides of the extended gate and introduce two continuous low-resistance current paths from the source to the drain in a cell pitch. This mechanism not only dramatically reduces the R on,sp but also makes the R on,sp almost independent of the n-pillar doping concentration (N n ). In off-state, the depletion between the n-pillar and p-pillar within the extended trench gate increases the N n , and further reduces the R on,sp . Especially, the two PN junctions within the trench gate support a high gate–drain voltage in the off-state and on-state, respectively. However, the extended gate increases the gate capacitance and thus weakens the dynamic performance to some extent. Therefore, the CEA-VDMOS is more suitable for low and medium frequencies application. Simulation indicates that the CEA-VDMOS reduces the R on,sp by 80% compared with the conventional super-junction VDMOS (CSJ-VDMOS) at the same high breakdown voltage (BV). (paper)

  2. Changes in hydrocarbon groups, soil ecotoxicity and microbiology along horizontal and vertical contamination gradients in an old landfarming field for oil refinery waste

    International Nuclear Information System (INIS)

    Mikkonen, Anu; Hakala, Kati P.; Lappi, Kaisa; Kondo, Elina; Vaalama, Anu; Suominen, Leena

    2012-01-01

    Horizontal and vertical contaminant gradients in an old landfarming field for oil refinery waste were characterised with the aim to assess parallel changes in hydrocarbon groups and general, microbiological and ecotoxicological soil characteristics. In the surface soil polar compounds were the most prevalent fraction of heptane-extractable hydrocarbons, superseding GC–FID-resolvable and high-molar-mass aliphatics and aromatics, but there was no indication of their relatively higher mobility or toxicity. The size of the polar fraction correlated poorly with soil physical, chemical and microbiological properties, which were better explained by the total heptane-extractable and total petroleum hydrocarbons (TPH). Deleterious effects on soil microbiology in situ were observed at surprisingly low TPH concentrations (0.3%). Due to the accumulation of polar and complexed degradation products, TPH seems an insufficient measure to assess the quality and monitor the remediation of soil with weathered hydrocarbon contamination. - Highlights: ► Weathered hydrocarbon contamination and soil quality on landfarm site were studied. ► Silica fractionation of hydrocarbons separated aliphatics, aromatics and polars. ► Polar hydrocarbon metabolites had accumulated in the surface soil. ► Total hydrocarbons and TPH correlated with soil quality changes better than polars. ► Toxic response of soil microbial biomass and activity were seen at low TPH (<0.5%). - Polar metabolites constitute the largest fraction of crude oil-derived contaminants in a landfarming site, but TPH better explains soil microbial and ecotoxicological responses.

  3. Reconstruction of sound speed profile through natural generalized inverse technique

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Somayajulu, Y.K.; Murty, C.S.

    An acoustic model has been developed for reconstruction of vertical sound speed in a near stable or stratified ocean. Generalized inverse method is utilised in the model development. Numerical experiments have been carried out to account...

  4. NASA Space Sounds API

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has released a series of space sounds via sound cloud. We have abstracted away some of the hassle in accessing these sounds, so that developers can play with...

  5. Effects of application methods of metam sodium and plastic covers on horizontal and vertical distributions of methyl isothiocyanate in bedded field plots.

    Science.gov (United States)

    Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W

    2006-08-01

    This study was conducted to examine the effects of three application methods of metam sodium (broadcast, single irrigation drip tape delivery, and double irrigation drip tape delivery) and two plastic covers (polyethylene film and virtually impermeable film) on volatilization and on horizontal and vertical distributions of the biologically active product of metam sodium, methyl isothiocyanate (MITC), in field plots in a Florida sandy soil. Volatilization of MITC from field beds lasted for about 20 hours after completion of metam sodium application regardless of application methods. Virtually impermeable film (VIF) was a better barrier to reduce volatilization loss than polyethylene film (PE). Since water was not applied during broadcast application, MITC was mainly retained in the shallow soil layer (0- to 20-cm depth) and downward movement of MITC was limited to about 30 cm. Large values of standard deviation indicated that initial spatial distribution of MITC in the root zone (10- and 20-cm depths) of the two broadcast applied beds covered with PE or VIF was variable. Twice more water was delivered through the single drip tape than through individual tapes of double drip tape treatments during drip application of metam sodium. More water from the single drip tape likely facilitated downward movement of MITC to at least 60-cm depth, but MITC did not penetrate to this depth in the double drip tape beds. On the other hand, horizontal distribution of MITC in the root zone (10- and 20-cm depths) in the double drip tape beds was more uniform than in the single drip tape beds. More MITC was retained in the subsurface of the VIF-covered beds regardless of application methods than in the PE-covered beds.

  6. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model

    Energy Technology Data Exchange (ETDEWEB)

    Aminfar, Habib, E-mail: hh_aminfar@tabrizu.ac.i [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammadpourfard, Mousa, E-mail: Mohammadpour@azaruniv.ed [Department of Mechanical Engineering, Azarbaijan University of Tarbiat Moallem, Tabriz, P.O. Box 53751-71379 (Iran, Islamic Republic of); Narmani Kahnamouei, Yousef, E-mail: Narmani87@ms.tabrizu.ac.i [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-08-15

    In this paper, results of applying a non-uniform magnetic field on a ferrofluid (kerosene and 4 vol% Fe{sub 3}O{sub 4}) flow in a vertical tube have been reported. The hydrodynamics and thermal behavior of the flow are investigated numerically using the two phase mixture model and the control volume technique. Two positive and negative magnetic field gradients have been examined. Based on the obtained results the Nusselt number can be controlled externally using the magnetic field with different intensity and gradients. It is concluded that the magnetic field with negative gradient acts similar to Buoyancy force and augments the Nusselt number, while the magnetic field with positive gradient decreases it. Also with the negative gradient of the magnetic field, pumping power increases and vice versa for the positive gradient case. - Highlights: We model hydrothermal behavior of a ferrofluid flow using two phase mixture model. Various external non-uniform magnetic fields were implemented in a vertical tube. Nusselt number can be controlled using the magnetic field with different gradients. The magnetic field is more effective in low Reynolds numbers. Heat transfer enhancement using the magnetic field needs high pumping power.

  7. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    Science.gov (United States)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from p

  8. Sound localization under perturbed binaural hearing.

    NARCIS (Netherlands)

    Wanrooij, M.M. van; Opstal, A.J. van

    2007-01-01

    This paper reports on the acute effects of a monaural plug on directional hearing in the horizontal (azimuth) and vertical (elevation) planes of human listeners. Sound localization behavior was tested with rapid head-orienting responses toward brief high-pass filtered (>3 kHz; HP) and broadband

  9. Handbook for sound engineers

    CERN Document Server

    Ballou, Glen

    2015-01-01

    Handbook for Sound Engineers is the most comprehensive reference available for audio engineers, and is a must read for all who work in audio.With contributions from many of the top professionals in the field, including Glen Ballou on interpretation systems, intercoms, assistive listening, and fundamentals and units of measurement, David Miles Huber on MIDI, Bill Whitlock on audio transformers and preamplifiers, Steve Dove on consoles, DAWs, and computers, Pat Brown on fundamentals, gain structures, and test and measurement, Ray Rayburn on virtual systems, digital interfacing, and preamplifiers

  10. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    Science.gov (United States)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  11. Depth-dependent Vertical-to-Horizontal (V/H) Ratios of Free-Field Ground Motion Response Spectra for Deeply Embedded Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Wei, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Braverman, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Miranda, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rosario, M. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Costantino, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-01

    This report documents the results of a study to determine the depth-dependent V/H ratios of ground motion response spectra in the free field. The V/H ratios reported herein were developed from a worldwide database of surface and downhole acceleration recordings obtained from 45 vertical array stations. This database was specifically compiled for this project, and includes information from a diversity of active tectonic regions (California, Alaska, Taiwan, Japan), site conditions (rock to soft soil), ground motion intensity levels (PGAs between 0.01 g and 0.50 g), magnitudes (between ML 2.78 and JMA 8.1), epicentral distances (between 3.2 km and 812 km), and source depths (between 1.2 km and 112 km), as well as sensors at surface and at a wide range of depths relevant to the project. To study the significance of the depth effect, V/H ratios from all the records were sorted into a number of depth bins relevant to the project, and statistics (average, standard deviation, coefficient of variation, 16th, 50th, and 84th percentiles) of the V/H ratios within each bin were computed. Similar analyses were repeated, controlling for different site conditions, ground motion intensity levels, array locations, and source depths, to study their relative effect on the V/H ratios. Our findings confirm the importance of the depth effect on the V/H ratios. The research findings in this report can be used to provide guidance on the significance of the depth effect, and the extent to which this effect should be considered in the seismic design of deeply embedded SMR structures and NPP structures in general.

  12. The effect of the vertical part of the path on the real time Feynman rules in finite temperature field theory 2-point functions and vacuum diagrams

    International Nuclear Information System (INIS)

    Gelis, F.

    1996-01-01

    The effect of the contribution of the vertical part of the real time path is studied completely in the case of two points functions and vacuum diagrams. Indeed, this vertical part generally contributes in the calculation of a given graph. Moreover, this contribution is essential in order to have a consistent equilibrium theory: thanks to this contribution, the Green functions are effectively invariant by time translation, as they should be. As a by product, it is shown that the perturbative calculations give a result which does not depend on the initial time t I and final time t F of the path. The property of independence with respect to t I is closely related to the KMS conditions, i.e. to the fact the system is in thermal equilibrium. In the case of two point functions and vacuum diagrams, the contribution of the vertical part can be taken into account by the n(vertical stroke k 0 vertical stroke) prescription in the usual RTF Feynman rules. The extra Feynman rule needed for vacuum diagrams is shown not to be related directly to the contribution of the vertical part of the path. (orig.). With 4 figs

  13. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  14. Making Sound Connections

    Science.gov (United States)

    Deal, Walter F., III

    2007-01-01

    Sound provides and offers amazing insights into the world. Sound waves may be defined as mechanical energy that moves through air or other medium as a longitudinal wave and consists of pressure fluctuations. Humans and animals alike use sound as a means of communication and a tool for survival. Mammals, such as bats, use ultrasonic sound waves to…

  15. Non-invasive investigation of the saturated/unsaturated zone with magnetic resonance sounding - a field example at the testsite Fuhrberger Feld near Hannover, Germany

    Science.gov (United States)

    Costabel, S.; Noell, U.; Ganz, C.

    2012-04-01

    Magnetic resonance sounding (MRS) is a non-invasive geophysical method for groundwater prospection that uses the principle of nuclear magnetic resonance (NMR) in the Earth's magnetic field. Its unique property distinct from other hydrogeophysical methods is the direct sensitivity to the amount of water, i.e. to the amount of 1H nuclei in the subsurface. Because MRS is normally used to investigate the water content of the saturated zone and to characterize aquifer structures, the standard application is optimized for 1D-measurements in depths from several to several tens of meters. However, our investigations show that MRS has also the potential to contribute substantially to the study of groundwater recharge if the sensitivity of the method for the unsaturated zone and for the transition to the saturated zone is increased by using a modified measurement setup and adjusted interpretation schemes. We conducted MRS test measurements with the focus on the very shallow subsurface in the range of some few decimeters down to the groundwater table in a depth of 3 m. The test site is located in the area Fuhrberger Feld about 30 km north-east of Hannover, Germany, which comprises an unconfined sandy aquifer of 20 to 30-m thickness. Previous studies have discovered the soil physical characteristics of the site with tension infiltrometer measurements and tracer irrigation experiments in the field, as well as with water retention measurements in the laboratory. In addition, several infiltration experiments with dye tracer were conducted and monitored with electrical resistivity tomography (ERT), tensiometers and TDR devices. For the MRS measurements at the testsite, a serious challenge was the intense electromagnetic noise consisting of large spiky radio signals and harmonic components, respectively. A special combination of new processing techniques was developed to isolate and interpret the NMR signals with amplitudes of approximately 5 to 14 nV. The standard inversion of the

  16. Inversion for Sound Speed Profile by Using a Bottom Mounted Horizontal Line Array in Shallow Water

    International Nuclear Information System (INIS)

    Feng-Hua, Li; Ren-He, Zhang

    2010-01-01

    Ocean acoustic tomography is an appealing technique for remote monitoring of the ocean environment. In shallow water, matched field processing (MFP) with a vertical line array is one of the widely used methods for inverting the sound speed profile (SSP) of water column. The approach adopted is to invert the SSP with a bottom mounted horizontal line array (HLA) based on MFP. Empirical orthonormal functions are used to express the SSP, and perturbation theory is used in the forward sound field calculation. This inversion method is applied to the data measured in a shallow water acoustic experiment performed in 2003. Successful results show that the bottom mounted HLA is able to estimate the SSP. One of the most important advantages of the inversion method with bottom mounted HLA is that the bottom mounted HLA can keep a stable array shape and is safe in a relatively long period. (fundamental areas of phenomenology (including applications))

  17. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  18. Sound intensity and its measurement

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    1997-01-01

    The paper summarises the basic theory of sound intensity and its measurement and gives an overview of the state of the art with particular emphasis on recent developments in the field. Eighty references are given, most of which to literature published in the past two years. The paper describes...

  19. Wide-Screen Cinema and Stereophonic Sound.

    Science.gov (United States)

    Wysotsky, Michael Z.

    Developments in the techniques of wide screen cinema and stereophonic sound throughout the world are detailed in this book. Particular attention is paid to progress in the Soviet Union in these fields. Special emphasis is placed on the Soviet view of stereophonic sound as a vital adjunct in the search for enchanced realism as opposed to the…

  20. On measurement of acoustic pulse arrival angles using a vertical array

    Science.gov (United States)

    Makarov, D. V.

    2017-11-01

    We consider a recently developed method to analyze the angular structure of pulsed acoustic fields in an underwater sound channel. The method is based on the Husimi transform that allows us to approximately link a wave field with the corresponding ray arrivals. The advantage of the method lies in the possibility of its practical realization by a vertical hydrophone array crossing only a small part of the oceanic depth. The main aim of the present work is to find the optimal parameter values of the array that ensure good angular accuracy and sufficient reliability of the algorithm to calculate the arrival angles. Broadband pulses with central frequencies of 80 and 240 Hz are considered. It is shown that an array with a length of several hundred meters allows measuring the angular spectrum with an accuracy of up to 1 degree. The angular resolution is lowered with an increase of the sound wavelength due to the fundamental limitations imposed by the uncertainty relation.

  1. Development of a Student-Centered Instrument to Assess Middle School Students' Conceptual Understanding of Sound

    Science.gov (United States)

    Eshach, Haim

    2014-01-01

    This article describes the development and field test of the Sound Concept Inventory Instrument (SCII), designed to measure middle school students' concepts of sound. The instrument was designed based on known students' difficulties in understanding sound and the history of science related to sound and focuses on two main aspects of sound: sound…

  2. The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Wen; Yang, Zhaoqing; Copping, Andrea E.; Jung, Ki Won; Deng, Zhiqun

    2015-10-28

    : As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3D sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.

  3. A stethoscope with wavelet separation of cardiac and respiratory sounds for real time telemedicine implemented on field-programmable gate array

    Science.gov (United States)

    Castro, Víctor M.; Muñoz, Nestor A.; Salazar, Antonio J.

    2015-01-01

    Auscultation is one of the most utilized physical examination procedures for listening to lung, heart and intestinal sounds during routine consults and emergencies. Heart and lung sounds overlap in the thorax. An algorithm was used to separate them based on the discrete wavelet transform with multi-resolution analysis, which decomposes the signal into approximations and details. The algorithm was implemented in software and in hardware to achieve real-time signal separation. The heart signal was found in detail eight and the lung signal in approximation six. The hardware was used to separate the signals with a delay of 256 ms. Sending wavelet decomposition data - instead of the separated full signa - allows telemedicine applications to function in real time over low-bandwidth communication channels.

  4. A model for calculating specular and diffuse reflections in outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.

    2006-01-01

    In many practical outdoor situations, the direct sound path between a noise source and a receiver is screened by an obstacle. In these situations indirect sound paths become important, in particular reflections of sound waves. Reflections may occur at objects such as a vertical wall, but also at the

  5. Using personal response systems to assess speech perception within the classroom: an approach to determine the efficacy of sound field amplification in primary school classrooms.

    Science.gov (United States)

    Vickers, Deborah A; Backus, Bradford C; Macdonald, Nora K; Rostamzadeh, Niloofar K; Mason, Nisha K; Pandya, Roshni; Marriage, Josephine E; Mahon, Merle H

    2013-01-01

    The assessment of the combined effect of classroom acoustics and sound field amplification (SFA) on children's speech perception within the "live" classroom poses a challenge to researchers. The goals of this study were to determine: (1) Whether personal response system (PRS) hand-held voting cards, together with a closed-set speech perception test (Chear Auditory Perception Test [CAPT]), provide an appropriate method for evaluating speech perception in the classroom; (2) Whether SFA provides better access to the teacher's speech than without SFA for children, taking into account vocabulary age, middle ear dysfunction or ear-canal wax, and home language. Forty-four children from two school-year groups, year 2 (aged 6 years 11 months to 7 years 10 months) and year 3 (aged 7 years 11 months to 8 years 10 months) were tested in two classrooms, using a shortened version of the four-alternative consonant discrimination section of the CAPT. All children used a PRS to register their chosen response, which they selected from four options displayed on the interactive whiteboard. The classrooms were located in a 19th-century school in central London, United Kingdom. Each child sat at their usual position in the room while target speech stimuli were presented either in quiet or in noise. The target speech was presented from the front of the classroom at 65 dBA (calibrated at 1 m) and the presented noise level was 46 dBA measured at the center of the classroom. The older children had an additional noise condition with a noise level of 52 dBA. All conditions were presented twice, once with SFA and once without SFA and the order of testing was randomized. White noise from the teacher's right-hand side of the classroom and International Speech Test Signal from the teacher's left-hand side were used, and the noises were matched at the center point of the classroom (10sec averaging [A-weighted]). Each child's expressive vocabulary age and middle ear status were measured

  6. Visualization of Broadband Sound Sources

    Directory of Open Access Journals (Sweden)

    Sukhanov Dmitry

    2016-01-01

    Full Text Available In this paper the method of imaging of wideband audio sources based on the 2D microphone array measurements of the sound field at the same time in all the microphones is proposed. Designed microphone array consists of 160 microphones allowing to digitize signals with a frequency of 7200 Hz. Measured signals are processed using the special algorithm that makes it possible to obtain a flat image of wideband sound sources. It is shown experimentally that the visualization is not dependent on the waveform, but determined by the bandwidth. Developed system allows to visualize sources with a resolution of up to 10 cm.

  7. Interpretation of time-domain electromagnetic soundings in the Calico Hills area, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Kauahikaua, J.

    1981-01-01

    A controlled source, time-domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The goal of this survey was the determination of the geoelectric structure as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high-level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves can be qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered-earth Marquardt inversion computer program (Kauahikaua, 1980). The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm-meters

  8. Interpretation of time-domain electromagnetic soundings in the Calico Hills area, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Kauahikaua, J.

    A controlled source, time domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The geoelectric structure was determined as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves are qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered earth Marquardt inversion computer program. The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm meters.

  9. Directional sound radiation from substation transformers

    International Nuclear Information System (INIS)

    Maybee, N.

    2009-01-01

    This paper presented the results of a study in which acoustical measurements at two substations were analyzed to investigate the directional behaviour of typical arrays having 2 or 3 transformers. Substation transformers produce a characteristic humming sound that is caused primarily by vibration of the core at twice the frequency of the power supply. The humming noise radiates predominantly from the tank enclosing the core. The main components of the sound are harmonics of 120 Hz. Sound pressure level data were obtained for various directions and distances from the arrays, ranging from 0.5 m to over 100 m. The measured sound pressure levels of the transformer tones displayed substantial positive and negative excursions from the calculated average values for many distances and directions. The results support the concept that the directional effects are associated with constructive and destructive interference of tonal sound waves emanating from different parts of the array. Significant variations in the directional sound pattern can occur in the near field of a single transformer or an array, and the extent of the near field is significantly larger than the scale of the array. Based on typical dimensions for substation sites, the distance to the far field may be much beyond the substation boundary and beyond typical setbacks to the closest dwellings. As such, the directional sound radiation produced by transformer arrays introduces additional uncertainty in the prediction of substation sound levels at dwellings within a few hundred meters of a substation site. 4 refs., 4 figs.

  10. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012 of field campaigns

    Directory of Open Access Journals (Sweden)

    L. Ferrero

    2016-10-01

    Full Text Available We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard. The campaign lasted 2 years (2011–2012 and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l. during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  11. Review of sound card photogates

    International Nuclear Information System (INIS)

    Gingl, Zoltan; Mingesz, Robert; Mellar, Janos; Makra, Peter

    2011-01-01

    Photogates are probably the most commonly used electronic instruments to aid experiments in the field of mechanics. Although they are offered by many manufacturers, they can be too expensive to be widely used in all classrooms, in multiple experiments or even at home experimentation. Today all computers have a sound card - an interface for analogue signals. It is possible to make very simple yet highly accurate photogates for cents, while much more sophisticated solutions are also available at a still very low cost. In our paper we show several experimentally tested ways of implementing sound card photogates in detail, and we also provide full-featured, free, open-source photogate software as a much more efficient experimentation tool than the usually used sound recording programs. Further information is provided on a dedicated web page, www.noise.physx.u-szeged.hu/edudev.

  12. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  13. Making fictions sound real

    DEFF Research Database (Denmark)

    Langkjær, Birger

    2010-01-01

    This article examines the role that sound plays in making fictions perceptually real to film audiences, whether these fictions are realist or non-realist in content and narrative form. I will argue that some aspects of film sound practices and the kind of experiences they trigger are related...... to basic rules of human perception, whereas others are more properly explained in relation to how aesthetic devices, including sound, are used to characterise the fiction and thereby make it perceptually real to its audience. Finally, I will argue that not all genres can be defined by a simple taxonomy...... of sounds. Apart from an account of the kinds of sounds that typically appear in a specific genre, a genre analysis of sound may also benefit from a functionalist approach that focuses on how sounds can make both realist and non-realist aspects of genres sound real to audiences....

  14. Principles of underwater sound

    National Research Council Canada - National Science Library

    Urick, Robert J

    1983-01-01

    ... the immediately useful help they need for sonar problem solving. Its coverage is broad-ranging from the basic concepts of sound in the sea to making performance predictions in such applications as depth sounding, fish finding, and submarine detection...

  15. Monitoring hydraulic stimulation using telluric sounding

    Science.gov (United States)

    Rees, Nigel; Heinson, Graham; Conway, Dennis

    2018-01-01

    The telluric sounding (TS) method is introduced as a potential tool for monitoring hydraulic fracturing at depth. The advantage of this technique is that it requires only the measurement of electric fields, which are cheap and easy when compared with magnetotelluric measurements. Additionally, the transfer function between electric fields from two locations is essentially the identity matrix for a 1D Earth no matter what the vertical structure. Therefore, changes in the earth resulting from the introduction of conductive bodies underneath one of these sites can be associated with deviations away from the identity matrix, with static shift appearing as a galvanic multiplier at all periods. Singular value decomposition and eigenvalue analysis can reduce the complexity of the resulting telluric distortion matrix to simpler parameters that can be visualised in the form of Mohr circles. This technique would be useful in constraining the lateral extent of resistivity changes. We test the viability of utilising the TS method for monitoring on both a synthetic dataset and for a hydraulic stimulation of an enhanced geothermal system case study conducted in Paralana, South Australia. The synthetic data example shows small but consistent changes in the transfer functions associated with hydraulic stimulation, with grids of Mohr circles introduced as a useful diagnostic tool for visualising the extent of fluid movement. The Paralana electric field data were relatively noisy and affected by the dead band making the analysis of transfer functions difficult. However, changes in the order of 5% were observed from 5 s to longer periods. We conclude that deep monitoring using the TS method is marginal at depths in the order of 4 km and that in order to have meaningful interpretations, electric field data need to be of a high quality with low levels of site noise.[Figure not available: see fulltext.

  16. An Antropologist of Sound

    DEFF Research Database (Denmark)

    Groth, Sanne Krogh

    2015-01-01

    PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology.......PROFESSOR PORTRAIT: Sanne Krogh Groth met Holger Schulze, newly appointed professor in Musicology at the Department for Arts and Cultural Studies, University of Copenhagen, to a talk about anthropology of sound, sound studies, musical canons and ideology....

  17. Broadcast sound technology

    CERN Document Server

    Talbot-Smith, Michael

    1990-01-01

    Broadcast Sound Technology provides an explanation of the underlying principles of modern audio technology. Organized into 21 chapters, the book first describes the basic sound; behavior of sound waves; aspects of hearing, harming, and charming the ear; room acoustics; reverberation; microphones; phantom power; loudspeakers; basic stereo; and monitoring of audio signal. Subsequent chapters explore the processing of audio signal, sockets, sound desks, and digital audio. Analogue and digital tape recording and reproduction, as well as noise reduction, are also explained.

  18. Propagation of sound

    DEFF Research Database (Denmark)

    Wahlberg, Magnus; Larsen, Ole Næsbye

    2017-01-01

    properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....

  19. Visualizing Sound Directivity via Smartphone Sensors

    Science.gov (United States)

    Hawley, Scott H.; McClain, Robert E.

    2018-02-01

    When Yang-Hann Kim received the Rossing Prize in Acoustics Education at the 2015 meeting of the Acoustical Society of America, he stressed the importance of offering visual depictions of sound fields when teaching acoustics. Often visualization methods require specialized equipment such as microphone arrays or scanning apparatus. We present a simple method for visualizing angular dependence in sound fields, made possible via the confluence of sensors available via a new smartphone app that the authors have developed.

  20. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  1. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...... both physical and digital models at three distinct scales. The results suggest hyperboloid geometry, while difficult to fabricate, facilitates sound scattering....

  2. A note on measurement of sound pressure with intensity probes

    DEFF Research Database (Denmark)

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  3. Sounding rocket experiments during the IMS period at Syowa Station, Antarctica

    International Nuclear Information System (INIS)

    Hirasawa, T.; Nagata, T.

    1979-01-01

    During IMS Period, 19 sounding rockets were launched into auroras at various stages of polar substorms from Syowa Station (Geomag. lat. = -69.6 0 , Geomag. log. = 77.1 0 ), Antarctica. Through the successful rocket flights, the significant physical quantities in auroras were obtained: 19 profiles of electron density and temperature, 11 energy spectra of precipitating electrons, 15 frequency spectra of VLF and HF plasma waves and 4 vertical profiles of electric and magnetic fields. These rocket data have been analyzed and compared with the coordinated ground-based observation data for studies of polar substorms. (author)

  4. Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula, Italy): insights from integrating field survey and digital outcrop model

    Science.gov (United States)

    Corradetti, A.; Tavani, S.; Parente, M.; Iannace, A.; Vinci, F.; Pirmez, C.; Torrieri, S.; Giorgioni, M.; Pignalosa, A.; Mazzoli, S.

    2018-03-01

    Through-going joints cutting across beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. However, despite the importance of these structures for fluid flow, only few field studies focused on the understanding and estimation of through-going joint dimensional parameters, including spacing and vertical extent in relation to stratigraphy. Recent improvements in the construction of digital models of outcrops can greatly help to overcome many logistic issues, favouring the evaluation of relationships between jointing and stratigraphy at the reservoir scale. In this study, we present the results obtained from integrating field measurements with a digital outcrop model of a carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing a monocline of alternating gently-dipping shallow-water limestones and dolostones, crossed by several vertical joints of different size. This study allowed us to define how major through-going joints pass across thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers. In essence, through-going joints arrest on "weak" levels, consisting of thinly bedded layers interposed between packages made of thick beds, in the same manner as bed-confined joints arrest on less competent interlayers.

  5. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1

    Science.gov (United States)

    Paegle, J.; Kalnay, E.; Baker, W. E.

    1981-01-01

    The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.

  6. Sounds like Team Spirit

    Science.gov (United States)

    Hoffman, Edward

    2002-01-01

    trying to improve on what they've done before. Second, success in any endeavor stems from people who know how to interpret a composition to sound beautiful when played in a different style. For Knowledge Sharing to work, it must be adapted, reinterpreted, shaped and played with at the centers. In this regard, we've been blessed with another crazy, passionate, inspired artist named Claire Smith. Claire has turned Ames Research Center in California into APPL-west. She is so good and committed to what she does that I just refer people to her whenever they have questions about implementing project management development at the field level. Finally, any great effort requires talented people working behind the scenes, the people who formulate a business approach and know how to manage the money so that the music gets heard. I have known many brilliant and creative people with a ton of ideas that never take off due to an inability to work the business. Again, the Knowledge Sharing team has been fortunate to have competent and passionate people, specifically Tony Maturo and his procurement team at Goddard Space Flight Center, to make sure the process is in place to support the effort. This kind of support is every bit as crucial as the activity itself, and the efforts and creativity that go into successful procurement and contracting is a vital ingredient of this successful team.

  7. 78 FR 13869 - Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy...

    Science.gov (United States)

    2013-03-01

    ...-123-LNG; 12-128-NG; 12-148-NG; 12- 158-NG] Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; Puget Sound Energy, Inc.; CE FLNG, LLC; Consolidated...-NG Puget Sound Energy, Inc Order granting long- term authority to import/export natural gas from/to...

  8. Evaluation of Vertical Electrical Sounding Method for Groundwater ...

    African Journals Online (AJOL)

    Akorede

    Groundwater development in Nigeria is restricted by the fact that more than .... the joint and fracture systems in the un-weathered rocks ( Ako and Olorunfemi ... RESISTTM software and the known geology of the study area. The interpretation of ...

  9. Vertical Electrical Sounding as a Viable Tool for Investigating ...

    African Journals Online (AJOL)

    ... in the range 0.50m- 180.0m and thicknesses in the range 0.50m-75.0m. Area of probable subsurface lithological formations and their thicknesses have been identified for economical purposes, environmental purposes, engineering purposes, especially for future, mining of industries foundation operations and drilling.

  10. Piezometric surface deduced from vertical electrical sounding data ...

    African Journals Online (AJOL)

    Science World Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 11, No 4 (2016) >. Log in or Register to get access to full text downloads.

  11. Vertical Electrical Sounding to delineate the potential Aquifer zones ...

    Indian Academy of Sciences (India)

    48

    CSIR-National Geophysical Research Institute, Groundwater Building, Uppal Road, ... techniques for groundwater prospecting was used in the Capital City, Niamey of Niger. ... Analysis of the result showed a good correlation between the ..... Fitterman D V, Meekes J A C, and Ritsema I L, 1988, Equivalence behavior of three ...

  12. piezometric surface deduced from vertical electrical sounding data

    African Journals Online (AJOL)

    Dogara M. D.

    The data obtained was processed ... social, economic and political problems, as part of this scientific methods are ... data collection in this work was carried out before the beginning of ... Where ρ = earth resistivity, I = Current, 2π = Constant, r =.

  13. Application of Schlumberger array of vertical electric sounding to ...

    African Journals Online (AJOL)

    The water bearing formations are probably sands, sandstones, gravels and or sands with clay intercalation. The resistivity values for the water bearing layers detected vary from 100 ohm-m to 20,000 ohm-m. Depths to probable water tables vary from 20m to 217m while the thicknesses of water bearing formations vary from ...

  14. Vertical electrical sounding to delineate the potential aquifer zones ...

    Indian Academy of Sciences (India)

    Joy Choudhury

    2017-09-06

    fed irrigation, etc. The ... position is important for optimum groundwater ... regional scale to estimate natural groundwater ... lithology with depth by means of measured resis- .... stratification for all the VES survey carried out in.

  15. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    KAUST Repository

    Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.

    2018-01-01

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable

  16. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  17. Sound a very short introduction

    CERN Document Server

    Goldsmith, Mike

    2015-01-01

    Sound is integral to how we experience the world, in the form of noise as well as music. But what is sound? What is the physical basis of pitch and harmony? And how are sound waves exploited in musical instruments? Sound: A Very Short Introduction looks at the science of sound and the behaviour of sound waves with their different frequencies. It also explores sound in different contexts, covering the audible and inaudible, sound underground and underwater, acoustic and electronic sound, and hearing in humans and animals. It concludes with the problem of sound out of place—noise and its reduction.

  18. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  19. Dynamic PIV measurement of the effect of sound waves in the upper plenum of the boiling water reactor

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    In recent years, power uprating of boiling power reactors has been conducted at several existing power plants in order to improve plant economy. In one power uprated plant (117.8% uprate) in the United States, steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound waves into the steam-dome. The resonance among the structure, the flow, and the pressure fluctuation resulted in the breakages. In order to clarify the basic mechanism of the resonance, previous studies were performed by conducting a point measurement of the pressure and a phase averaged measurement of the flow, although detecting the interaction among the structure, the flow, and the pressure fluctuation by the conventional method was difficult. In a preliminary study, a dynamic Particle Image Velocimetry (PIV) system was used to investigate the effect of sound on the flow. A dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over a plane extended across the entire velocity field. Using the dynamic PIV system, the influence of sound waves on the flow field was measured. As a result, when two speakers were placed diagonally and sound waves were presented in the same phase, vertical motion was strongly observed compared to horizontal motion. (author)

  20. Vertical organic transistors

    International Nuclear Information System (INIS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-01-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. (topical review)

  1. The velocity of sound

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews the work carried out on the velocity of sound in liquid alkali metals. The experimental methods to determine the velocity measurements are described. Tables are presented of reported data on the velocity of sound in lithium, sodium, potassium, rubidium and caesium. A formula is given for alkali metals, in which the sound velocity is a function of shear viscosity, atomic mass and atomic volume. (U.K.)

  2. A Model to Determine the Level of Serum Aldosterone in the Workers Attributed to the Combined Effects of Sound Pressure Level, Exposure Time and Serum Potassium Level: A Field-Based Study

    Directory of Open Access Journals (Sweden)

    Parvin Nassiri

    2016-09-01

    Full Text Available Background Occupational exposure to excessive noise is one of the biggest work-related challenges in the world. This phenomenon causes the release of stress-related hormones, which in turn, negatively affects cardiovascular risk factors. Objectives The current study study aimed to determine the level of workers’ serum aldosterone in light of the combined effect of sound pressure level, exposure time and serum potassium level. Methods This cross-sectional, descriptive, analytical study was conducted on 45 workers of Gol-Gohar Mining and Industrial Company in the fall of 2014. The subjects were divided into three groups (one control and two case groups, each including 15 workers. Participants in the control group were selected from workers with administrative jobs (exposure to the background noise. On the other hand, participants in the case groups were selected from the concentrator and pelletizing factories exposed to excessive noise. Serum aldosterone and potassium levels of participants were assessed at three different time intervals: at the beginning of the shift and before exposure to noise (7:30 - 8:00 AM, during exposure to noise (10:00 - 10:30 AM, and during continuous exposure (1:30 - 2:00 PM. The obtained data were transferred into SPSS ver. 18. Repeated measures analysis of variance (ANOVA was used to develop the statistical model of workers’ aldosterone level in light of the combined effect of sound pressure level, exposure time, and serum potassium level. Results The results of the final statistical model to determine the level of serum aldosterone based on the combined effect of sound pressure level, exposure time and serum potassium level indicated that the sound pressure level had a significant influence on the human’s serum aldosterone level (P = 0.04. In addition, the effects of exposure time and serum potassium on aldosterone level were statistically significant with P-values of 0.008 and 0.001, respectively. Conclusions

  3. Michael Jackson's Sound Stages

    OpenAIRE

    Morten Michelsen

    2012-01-01

    In order to discuss analytically spatial aspects of recorded sound William Moylan’s concept of ‘sound stage’ is developed within a musicological framework as part of a sound paradigm which includes timbre, texture and sound stage. Two Michael Jackson songs (‘The Lady in My Life’ from 1982 and ‘Scream’ from 1995) are used to: a) demonstrate the value of such a conceptualisation, and b) demonstrate that the model has its limits, as record producers in the 1990s began ignoring the conventions of...

  4. What is Sound?

    OpenAIRE

    Nelson, Peter

    2014-01-01

    What is sound? This question is posed in contradiction to the every-day understanding that sound is a phenomenon apart from us, to be heard, made, shaped and organised. Thinking through the history of computer music, and considering the current configuration of digital communi-cations, sound is reconfigured as a type of network. This network is envisaged as non-hierarchical, in keeping with currents of thought that refuse to prioritise the human in the world. The relationship of sound to musi...

  5. Light and Sound

    CERN Document Server

    Karam, P Andrew

    2010-01-01

    Our world is largely defined by what we see and hear-but our uses for light and sound go far beyond simply seeing a photo or hearing a song. A concentrated beam of light, lasers are powerful tools used in industry, research, and medicine, as well as in everyday electronics like DVD and CD players. Ultrasound, sound emitted at a high frequency, helps create images of a developing baby, cleans teeth, and much more. Light and Sound teaches how light and sound work, how they are used in our day-to-day lives, and how they can be used to learn about the universe at large.

  6. Early Sound Symbolism for Vowel Sounds

    Directory of Open Access Journals (Sweden)

    Ferrinne Spector

    2013-06-01

    Full Text Available Children and adults consistently match some words (e.g., kiki to jagged shapes and other words (e.g., bouba to rounded shapes, providing evidence for non-arbitrary sound–shape mapping. In this study, we investigated the influence of vowels on sound–shape matching in toddlers, using four contrasting pairs of nonsense words differing in vowel sound (/i/ as in feet vs. /o/ as in boat and four rounded–jagged shape pairs. Crucially, we used reduplicated syllables (e.g., kiki vs. koko rather than confounding vowel sound with consonant context and syllable variability (e.g., kiki vs. bouba. Toddlers consistently matched words with /o/ to rounded shapes and words with /i/ to jagged shapes (p < 0.01. The results suggest that there may be naturally biased correspondences between vowel sound and shape.

  7. Spherical loudspeaker array for local active control of sound.

    Science.gov (United States)

    Rafaely, Boaz

    2009-05-01

    Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.

  8. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  9. Comparison of RASS temperature profiles with other tropospheric soundings

    International Nuclear Information System (INIS)

    Bonino, G.; Lombardini, P.P.; Trivero, P.

    1980-01-01

    The vertical temperature profile of the lower troposphere can be measured with a radio-acoustic sounding system (RASS). A comparison of the thermal profiles measured with the RASS and with traditional methods shows a) RASS ability to produce vertical thermal profiles at an altitude range of 170 to 1000 m with temperature accuracy and height discrimination comparable with conventional soundings, b) advantages of remote sensing as offered by new sounder, c) applicability of RASS both in assessing evolution of thermodynamic conditions in PBL and in sensing conditions conducive to high concentrations of air pollutants at the ground level. (author)

  10. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  11. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  12. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  13. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1. [First Global Atmospheric Research Program Global Experiment (FGGE); Special Observing Period (SOP)

    Science.gov (United States)

    Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.

    1981-01-01

    By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.

  14. InfoSound

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.; Gopinath, B.; Haberman, Gary O.

    1990-01-01

    The authors explore ways to enhance users' comprehension of complex applications using music and sound effects to present application-program events that are difficult to detect visually. A prototype system, Infosound, allows developers to create and store musical sequences and sound effects with...

  15. Breaking the Sound Barrier

    Science.gov (United States)

    Brown, Tom; Boehringer, Kim

    2007-01-01

    Students in a fourth-grade class participated in a series of dynamic sound learning centers followed by a dramatic capstone event--an exploration of the amazing Trashcan Whoosh Waves. It's a notoriously difficult subject to teach, but this hands-on, exploratory approach ignited student interest in sound, promoted language acquisition, and built…

  16. Sound propagation in cities

    NARCIS (Netherlands)

    Salomons, E.; Polinder, H.; Lohman, W.; Zhou, H.; Borst, H.

    2009-01-01

    A new engineering model for sound propagation in cities is presented. The model is based on numerical and experimental studies of sound propagation between street canyons. Multiple reflections in the source canyon and the receiver canyon are taken into account in an efficient way, while weak

  17. OMNIDIRECTIONAL SOUND SOURCE

    DEFF Research Database (Denmark)

    1996-01-01

    A sound source comprising a loudspeaker (6) and a hollow coupler (4) with an open inlet which communicates with and is closed by the loudspeaker (6) and an open outlet, said coupler (4) comprising rigid walls which cannot respond to the sound pressures produced by the loudspeaker (6). According...

  18. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  19. Poetry Pages. Sound Effects.

    Science.gov (United States)

    Fina, Allan de

    1992-01-01

    Explains how elementary teachers can help students understand onomatopoeia, suggesting that they define onomatopoeia, share examples of it, read poems and have students discuss onomatopoeic words, act out common household sounds, write about sound effects, and create choral readings of onomatopoeic poems. Two appropriate poems are included. (SM)

  20. Exploring Noise: Sound Pollution.

    Science.gov (United States)

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)