WorldWideScience

Sample records for sos-dependent spontaneous mutagenesis

  1. Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in Caulobacter crescentus.

    Science.gov (United States)

    Alves, Ingrid R; Lima-Noronha, Marco A; Silva, Larissa G; Fernández-Silva, Frank S; Freitas, Aline Luiza D; Marques, Marilis V; Galhardo, Rodrigo S

    2017-11-01

    imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Novel Escherichia coli umuD′ Mutants: Structure-Function Insights into SOS Mutagenesis

    Science.gov (United States)

    McLenigan, Mary; Peat, Thomas S.; Frank, Ekaterina G.; McDonald, John P.; Gonzalez, Martín; Levine, Arthur S.; Hendrickson, Wayne A.; Woodgate, Roger

    1998-01-01

    Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′. PMID:9721309

  3. Mutational specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1986-01-01

    In an approach to the isolation of mutants of E. coli unable to produce mutations by ultraviolet light, the author has found new umuC-mutants. Their properties could be explained by ''SOS hypothesis of Radman and Witkin'', which has now been justified by many investigators. Analysis of the umuC region of E. coli chromosome cloned in pSK 100 has led to the conclusion that two genes, umuD and umuC, having the capacity of mutation induction express in the same mechanism as that of SOS genes, which is known to be inhibited by LexA protein bonding to ''SOS box'' found at promotor region. Suppressor analysis for mutational specificity has revealed: (i) umuDC-independent mutagens, such as EMS and (oh) 4 Cy, induce selected base substitution alone; and (ii) umuDC-dependent mutagens, such as X-rays and gamma-rays, induce various types of base substitution simultaneously, although they have mutational specificity. In the umuDC-dependent processes of basechange mutagenesis, the spectra of base substitution were a mixture of base substitution reflecting the specific base damages induced by individual mutagens and nonspecific base substitution. In conclusion, base substitution plays the most important role in umuDC-dependent mutagenesis, although mutagenesis of umuDC proteins remains uncertain. (Namekawa, K.)

  4. DinB Upregulation Is the Sole Role of the SOS Response in Stress-Induced Mutagenesis in Escherichia coli

    Science.gov (United States)

    Galhardo, Rodrigo S.; Do, Robert; Yamada, Masami; Friedberg, Errol C.; Hastings, P. J.; Nohmi, Takehiko; Rosenberg, Susan M.

    2009-01-01

    Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(oc) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(oc) alleles fully suppress the phenotype of constitutively SOS-“off” lexA(Ind−) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(oc) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition. PMID:19270270

  5. Mechanism of SOS-induced targeted and untargeted mutagenesis in E. coli

    International Nuclear Information System (INIS)

    Maenhaut-Michel, G.

    1985-01-01

    This paper retraces the evolution of hypotheses concerning mechanisms of SOS induced mutagenesis. Moreover, it reports some recent data which support a new model for the mechanism of targeted and untargeted mutagenesis in E. coli. In summary, the SOS mutator effect, which is responsible for untargeted mutagenesis and perhaps for the misincorporation step in targeted mutagenesis, is believed to involve a fidelity function associated with DNA polymerase III and does not require the umuC gene product. umuC and umuD gene products are probably required specifically for elongation of DNA synthesis past blocking lesions, i.e. to allow mutagenic replication of damaged DNA

  6. Mechanisms of umuC-dependent mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeji; Kitagawa, Yoshinori

    1985-01-01

    Present status of studies on umcDC genes-induced mutagenesis is introduced. Specificity of umuCD-dependent and -independent base substitution and frameshift mutagenesis is presented. Biochemical examinations of U.V.-induced umuCD gene function are described. Previous studies suggest that umuCD genes are induced by SOS inhibitory systems, that gene products are directly responsible for mutagenesis, that base substitution is largely involved in inducible mutagenesis, and that many of frameshifts are induced irrespective of gene function. (Namekawa, K.)

  7. Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis

    NARCIS (Netherlands)

    Varhimo, Emilia; Savijoki, Kirsi; Jalava, Jari; Kuipers, Oscar P.; Varmanen, Pekka

    Streptococci have been considered to lack the classical SOS response, defined by increased mutation after UV exposure and regulation by LexA. Here we report the identification of a potential self-regulated SOS mutagenesis gene cassette in the Streptococcaceae family. Exposure to UV light was found

  8. Defect of Fe-S cluster binding by DNA polymerase δ in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase ζ - dependent spontaneous mutagenesis.

    Science.gov (United States)

    Stepchenkova, E I; Tarakhovskaya, E R; Siebler, H M; Pavlov, Y I

    2017-01-01

    Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance mechanism dependent on pol ζ prevents DNA/genome instability and cell death at the expense of increased mutation rates. The pol switches occurring during this specialized replication are not fully understood. The loss of pol ζ results in the absence of induced mutagenesis and suppression of spontaneous mutagenesis. Disruption of the Fe-S cluster motif that abolish the interaction of the C-terminal domain (CTD) of the catalytic subunit of pol ζ with its accessory subunits, which are shared with pol δ, leads to a similar defect in induced mutagenesis. Intriguingly, the pol3-13 mutation that affects the Fe-S cluster in the CTD of the catalytic subunit of pol δ also leads to defective induced mutagenesis, suggesting the possibility that Fe-S clusters are essential for the pol switches during replication of damaged DNA. We confirmed that yeast strains with the pol3-13 mutation are UV-sensitive and defective in UV-induced mutagenesis. However, they have increased spontaneous mutation rates. We found that this increase is dependent on functional pol ζ. In the pol3-13 mutant strain with defective pol δ, there is a sharp increase in transversions and complex mutations, which require functional pol ζ, and an increase in the occurrence of large deletions, whose size is controlled by pol ζ. Therefore, the pol3-13 mutation abrogates pol ζ-dependent induced mutagenesis, but allows for pol ζ recruitment for the generation of spontaneous mutations and prevention of larger deletions. These results reveal differential control of the two major types of pol ζ-dependent mutagenesis by the Fe-S cluster present in replicative pol δ. Copyright © 2016

  9. [SOS-repair--60 years].

    Science.gov (United States)

    Zavil'gel'skiĭ, G B

    2013-01-01

    This review integrates 60 years of research on SOS-repair and SOS-mutagenesis in procaryotes and eucaryotes, from Jean Weigle experiment in 1953 year (mutagenesis of lambda bacteriophage in UV-irradiated bacteria) to the latest achievements in studying SOS-mutagenesis on all living organisms--Eukarya, Archaea and Bacteria. A key role in establishing of a biochemical basis for SOS-mutagenesis belonges to the finding in 1998-1999 years that specific error-prone DNA polymerases (PolV and others) catalysed translesion synthesis on damaged DNA. This review focuses on recent studies addressing the new models for SOS-induced mutagenesis in Escherichia coli and Home sapiens cells.

  10. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: An overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA

    Science.gov (United States)

    Kim, Su-Ryang; Maenhaut-Michel, Geneviéve; Yamada, Masami; Yamamoto, Yoshihiro; Matsui, Keiko; Sofuni, Toshio; Nohmi, Takehiko; Ohmori, Haruo

    1997-01-01

    dinP is an Escherichia coli gene recently identified at 5.5 min of the genetic map, whose product shows a similarity in amino acid sequence to the E. coli UmuC protein involved in DNA damage-induced mutagenesis. In this paper we show that the gene is identical to dinB, an SOS gene previously localized near the lac locus at 8 min, the function of which was shown to be required for mutagenesis of nonirradiated λ phage infecting UV-preirradiated bacterial cells (termed λUTM for λ untargeted mutagenesis). A newly constructed dinP null mutant exhibited the same defect for λUTM as observed previously with a dinB::Mu mutant, and the defect was complemented by plasmids carrying dinP as the only intact bacterial gene. Furthermore, merely increasing the dinP gene expression, without UV irradiation or any other DNA-damaging treatment, resulted in a strong enhancement of mutagenesis in F′lac plasmids; at most, 800-fold increase in the G6-to-G5 change. The enhanced mutagenesis did not depend on recA, uvrA, or umuDC. Thus, our results establish that E. coli has at least two distinct pathways for SOS-induced mutagenesis: one dependent on umuDC and the other on dinB/P. PMID:9391106

  11. Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis

    International Nuclear Information System (INIS)

    Battista, J.R.; Ohta, Toshihiro; Nohmi, Takehiko; Sun, W.; Walker, G.C.

    1990-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. The UmuD protein shares homology with a family of proteins that includes LexA and several bacteriophage repressors. UmuD is posttranslationally activated for its role n mutagenesis by a RecA-mediated proteolytic cleavage that yields UmuD'. A set of missense mutants of umuD was isolated and shown to encode mutant UmuD proteins that are deficient in RecA-mediated cleavage in vivo. Most of these mutations are dominant to umuD + with respect to UV mutagenesis yet do not interfere with SOS induction. Although both UmuD and UmuD' form homodimers, the authors provide evidence that they preferentially form heterodimers. The relationship of UmuD to LexA, λ repressor, and other members of the family of proteins is discussed and possible roles intact UmuD in modulating SOS mutagenesis are discussed

  12. Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis.

    Science.gov (United States)

    Mo, Charlie Y; Birdwell, L Dillon; Kohli, Rahul M

    2014-05-20

    Bacteria utilize the tightly regulated stress response (SOS) pathway to respond to a variety of genotoxic agents, including antimicrobials. Activation of the SOS response is regulated by a key repressor-protease, LexA, which undergoes autoproteolysis in the setting of stress, resulting in derepression of SOS genes. Remarkably, genetic inactivation of LexA's self-cleavage activity significantly decreases acquired antibiotic resistance in infection models and renders bacteria hypersensitive to traditional antibiotics, suggesting that a mechanistic study of LexA could help inform its viability as a novel target for combating acquired drug resistance. Despite structural insights into LexA, a detailed knowledge of the enzyme's protease specificity is lacking. Here, we employ saturation and positional scanning mutagenesis on LexA's internal cleavage region to analyze >140 mutants and generate a comprehensive specificity profile of LexA from the human pathogen Pseudomonas aeruginosa (LexAPa). We find that the LexAPa active site possesses a unique mode of substrate recognition. Positions P1-P3 prefer small hydrophobic residues that suggest specific contacts with the active site, while positions P5 and P1' show a preference for flexible glycine residues that may facilitate the conformational change that permits autoproteolysis. We further show that stabilizing the β-turn within the cleavage region enhances LexA autoproteolytic activity. Finally, we identify permissive positions flanking the scissile bond (P4 and P2') that are tolerant to extensive mutagenesis. Our studies shed light on the active site architecture of the LexA autoprotease and provide insights that may inform the design of probes of the SOS pathway.

  13. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    Belov, O.V.; Kapralov, M.I.; Chuluunbaatar, O.; Sweilam, N.H.

    2012-01-01

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD' 2 C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  14. umuC-mediated misrepair mutagenesis in Escherichia coli: Extent and specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Shinoura, Y.; Ise, T.; Kato, T.; Glickman, B.W.

    1983-01-01

    The role of the error-prone misrepair pathway in mutagenesis was examined for a series of mutagens in umuC + and umuC36 strains of Escherichia coli. Mutagenesis by ENU, MNU, MNNG and EMS was independent of the umuC + gene function, while mutagenesis by MMS, 4NQO, γ-rays and UV was largely umuC + -dependent. Residual mutagenesis following UV-treatment of a umuC - strain showed the same mutational specificity seen in the umuC + strain. In contrast, the umuC mutation altered specificity substantially in an excision-repair-defective strain that showed a UV-spectrum strikingly different from that seen in an excision-repair-proficient strain. Only one of nine trpE frameshift mutations examined was reverted by UV-light and its reversion was umuC-dependent. In comparison, the dependence of frameshift mutagenesis following ICR191 treatment was site-specific, suggesting at least two mechanisms of frameshift mutagenesis, one dependent upon misrepair, the other not. (orig./AJ)

  15. Differential expression of SOS genes in an E. coli mutant producing unstable lexA protein enhances excision repair but inhibits mutagenesis

    International Nuclear Information System (INIS)

    Peterson, K.R.; Ganesan, A.K.; Mount, D.W.; Stanford Univ., CA)

    1986-01-01

    The SOS response is displayed following treatments which damage DNA or inhibit DNA replication. Two associated activities include enhanced capacity for DNA repair resulting from derepression of the recA, uvrA, uvrB and uvrD genes and increased mutagenesis due to derepression of recA, umuC and umuD. These changes are the consequence of the derepression of at least seventeen unlinked operons negatively regulated by LexA repressor. Following treatments that induce the SOS response, a signal molecule interacts with RecA protein, converting it to an activated form. Activated RecA protein facilitates the proteolytic cleavage of LexA repressor, which results in derepression of the regulon. The cell then enters a new physiological state during which time DNA repair processes are augmented. The lexA41 mutant of E. coli is a uv-resistant derivative of another mutant, lexA3, which produces a repressor that is not cleaved following inducing treatments. The resultant protein is unstable. Lac operon fusions to most of the genes in the SOS regulon were used to show that the various damage-inducible genes were derepressed to different extents. uvrA, B, and D were almost fully derepressed. Consistent with this finding, the rate of removal of T4 endonuclease V-sensitive sites was more rapid in the uv-irradiated lexA41 mutant than in normal cells, suggesting a more active excision repair system. We propose that the instability of the LexA41 protein reduces the intracellular concentration of repressor to a level that allows a high level of excision repair. The additional observation that SOS mutagenesis was only weakly induced in a lexA41 uvrA - mutant implies that the mutant protein partially represses one or more genes whose products promote SOS mutagenesis. 17 refs., 4 figs., 1 tab

  16. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

    Science.gov (United States)

    Nanda, Arun M.; Heyer, Antonia; Krämer, Christina; Grünberger, Alexander; Kohlheyer, Dietrich

    2014-01-01

    The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages. PMID:24163339

  17. Induced repair and mutagenesis in animal cells

    International Nuclear Information System (INIS)

    Takimoto, Koichi

    1981-01-01

    Induced repair and mutagenesis of animal cells against UV were studied in contrast with SOS repair of E. coli primarily by the use of viruses. Since UV-enhanced reactivation is a phenomenon similar to UV-reactivation (mutagenesis) and the presence of lesion bypass synthsis has been suggested, UV-enhanced reactivation has several common aspects with SOS reactivation of E. coli. However, correlation is not necessarily noted between increase in the viral survival rate and mutagenesis, nor do protease blockers exert any effect. Therefore, SOS repair of E. coli may have different mechansms from induced repair and mutagenesis in animal cells. (Ueda, J.)

  18. Bacterial SOS response: a food safety perspective

    NARCIS (Netherlands)

    Veen, van der S.; Abee, T.

    2011-01-01

    The SOS response is a conserved inducible pathway in bacteria that is involved in DNA repair and restart of stalled replication forks. Activation of the SOS response can result in stress resistance and mutagenesis. In food processing facilities and during food preservation, bacteria are exposed to

  19. Misrepair of overlapping daughter strand gaps as a possible mechanism for UV induced mutagenesis in uvr strains of Escherichia coli: a general model for induced mutagenesis by misrepair (SOS repair) of closely spaced DNA lesions

    International Nuclear Information System (INIS)

    Sedgwick, S.G.

    1976-01-01

    It has been previously reported that an inducible form of post-replication repair appeared to be required for UV induced mutagenesis in an uvrA strain of Escherichia coli. It is shown here that the numbers of daughter strand gaps requiring inducible repair were similar to the numbers calculated to be overlapping one another in opposite daughter chromosomes. An estimation of survival with no repair of these gaps resembled the survival predicted with mutagenesis. It is thus proposed that inducible post-replication repair causes mutagenesis by the repair of overlapping daughter strand gaps. A general model for induced mutagenesis is presented. It is proposed that (a) some DNA lesions introduced by any DNA damaging agent may be close enough to interfere with constitutive repair replication of each other, (b) these lesions induce a repair system (SOS repair) which involves the recA + . lexA + and polC + genes (c) repair, and noncomitant mutagenesis occurs during repair replication by the insertion of mismatched bases oppposite the noncoding DNA lesions

  20. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.

    Science.gov (United States)

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig

    2015-10-07

    Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.

  1. Molecular mechanisms of induced-mutations

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1985-01-01

    The outcome of recent studies on mechanisms of induced-mutations is outlined with particular emphasis on the dependence of recA gene function in Escherichia coli. Genes involved in spontaneous mutation and x-ray- and chemical-induced mutation and genes involved in adaptive response are presented. As for SOS mutagenesis, SOS-induced regulation mechanisms and mutagenic routes are described. Furthermore, specificity of mutagens themselves are discussed in relation to mechanisms of base substitution, frameshift, and deletion mutagenesis. (Namekawa, K.)

  2. Genetic separation of Escherichia coli recA functions for SOS mutagenesis and repressor cleavage

    International Nuclear Information System (INIS)

    Ennis, D.G.; Ossanna, N.; Mount, D.W.

    1989-01-01

    Evidence is presented that recA functions which promote the SOS functions of mutagenesis, LexA protein proteolysis, and lambda cI repressor proteolysis are each genetically separable from the others. This separation was observed in recombination-proficient recA mutants and rec+ (F' recA56) heterodiploids. recA430, recA433, and recA435 mutants and recA+ (F' recA56) heterodiploids were inducible for only one or two of the three functions and defective for mutagenesis. recA80 and recA432 mutants were constitutively activated for two of the three functions in that these mutants did not have to be induced to express the functions. We propose that binding of RecA protein to damaged DNA and subsequent interaction with small inducer molecules gives rise to conformational changes in RecA protein. These changes promote surface-surface interactions with other target proteins, such as cI and LexA proteins. By this model, the recA mutants are likely to have incorrect amino acids substituted as sites in the RecA protein structure which affect surface regions required for protein-protein interactions. The constitutively activated mutants could likewise insert altered amino acids at sites in RecA which are involved in the activation of RecA protein by binding small molecules or polynucleotides which metabolically regulate RecA protein

  3. DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: Effects of mutations and treatments that alter levels of exonuclease V or RecA protein

    International Nuclear Information System (INIS)

    Lieberman, H.B.; Witkin, E.M.

    1983-01-01

    Certain strains suppress the temperature-sensitivity caused by ssb-1, which encodes a mutant ssDNA binding protein (SSB). At 42 0 C, such strains are extremely UV-sensitive, degrade their DNA extensively after UV irradiation, and are defficient in UV mutability and UV induction of recA protein synthesis. We transduced recC22, which eliminates Exonuclease V activity, and recAo281, which causes operator-constitutive synthesis of recA protein, into such an ssb-1 strain. Both double mutants degraded their DNA extensively at 42 0 C after UV irradiation, and both were even more UV-sensitive than the ssb-1 single mutant. We conclude that one or more nucleases other than Exonuclease V degrades DNA in the ssb recC strain, and that recA protein, even if synthesized copiously, can function efficiently in recombinational DNA repair and in control of post-UV DNA degradation only if normal SSB is also present. Pretreatment with nalidixic acid at 30 0 C restored normal UV mutability at 42 0 C, but did not increase UV resistance, in an ssb-1 strain. Another ssb allele, ssb-113, which blocks SOS induction at 30 0 C, increases spontaneous mutability more than tenfold. The ssb-113 allele was transduced into the SOS-constitutive recA730 strain SC30. This double mutant expressed the same elevated spontaneous and UV-induced mutability at 30 0 C as the ssb + recA730 strain, and was three times more UV-resistant than its ssb-113 recA + parent. We conclude that ssb-1 at 42 0 C and ssb-113 at 30 0 C block UV-induced activation of recA protease, but that neither allele interferes with subsequent steps in SOS-mediated mutagenesis. (orig.)

  4. Complexity of the ultraviolet mutation frequency response curve in Escherichia coli B/r: SOS induction, one-lesion and two-lesion mutagenesis

    International Nuclear Information System (INIS)

    Doudney, C.O.

    1976-01-01

    Three distinct sections of the ultraviolet mutation frequency response (MFR) curve toward tryptophan prototrophy have been demonstrated in Escherichia coli B/r WP2 trp thy and its uvrA derivative in log-phase growth in minimal medium. The initial section, which appears fluence-squared, may reflect the necessity, if mutation is to result, for induction of two lesions, one located within the potentially mutated genetic locus and the other damaging deoxyribonucleic acid replication and resulting in induction of the error-prone SOS repair function. A second linear section is ascribed to the continued induction, after exposure above that sufficient for complete SOS expression, of isolated lesions which lead to mutation in potentially mutated loci. The third section demonstrates an increased rate of mutagenesis and suggests the induction of two lesions in proximity which result in additional mutations. Split-exposure studies support the inducible nature of the SOS function and suggest that mutation frequency decline (MFD) is due to excision resulting from or related to the prevention of SOS induction by inhibition of protein synthesis. Preirradiation tryptophan starvation of the uvr + strain for 30 min decreases MFR in the first and second sections of the curve. Reduction of MFR in the third section requires more prestarvation time and is blocked by nalidixic acid. The decreased MFR of the first and second sections is ascribed to promotion of postirradiation MFD based on excision and that of the third section to completion of the chromosome during the prestarvation period

  5. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis

    International Nuclear Information System (INIS)

    Radman, M.

    1974-01-01

    A hypothesis is proposed according to which E. coli possesses an inducible DNA repair system. This hypothetical repair, which we call SOS repair, is manifested only following damage to DNA, and requires de novo protein synthesis. SOS repair in E. coli requires some known genetic elements: recA + , lex + and probably zab + . Mutagenesis by ultraviolet light is observed only under conditions of functional SOS repair: we therefore suspect that this is a mutation-prone repair. A number of phenomena and experiments is reviewed which at this point can best be interpreted in terms of an inducible mutagenic DNA repair system. Two recently discovered phenomena support the proposed hypothesis: existence of a mutant (tif) which, after a shift to elevated temperature, mimicks the effect of uv irradiation in regard to repair of phage lambda and uv mutagenesis, apparent activation of SOS repair by introduction into the recipient cell of damaged plasmid or Hfr DNA. Several specific predictions based on SOS repair hypothesis are presented in order to stimulate further experimental tests. (U.S.)

  6. The investigation of SOS-response of Escherichia coli after γ-irradiation by means of SOS-chromotest

    International Nuclear Information System (INIS)

    Kozubek, S.; Ogievetskaya, M.M.; Krasavin, E.A.; Drasil, V.; Soska, J.

    1988-01-01

    The kinetics of the E.coli PQ37 SOS-system induction by γ-radiation has been studied by the SOS-chromotest technique. The experimental data are consistent with the following hypotheses. The production of DNA damages inducing the SOS-system is 0,021 Gy -1 per genome. The SOS-system is switched off approximately 200 min after γ-irradiation. The spontaneous triggering of the SOS-system is induced in the exponentially growing cells. The probability of its induction is independent of time up to 180 min of incubation. The synthesis of constitutive alkaline phosphatase proceeds for some time in the cells that suffered lethal damages from γ-irradiation. A correction has been proposed for the calculation of the induction factor. 5 refs.; 11 figs

  7. Role of the RecF gene product in UV mutagenesis of lambda phage

    International Nuclear Information System (INIS)

    Wood, R.D.; Stein, J.

    1986-01-01

    E. coli recF mutants have a greatly reduced capacity for Weigle mutagenesis of ultraviolet light-irradiated lambda phage. A recF 332::Tn3 mutation was introduced into an E. coli recA441 lex A51 strain which constitutively expresses SOS functions. Weigle mutagenesis of phage lambda could occur in the resulting strain in the absence of host cell irradiation, and was increased when the recA441 (tif) allele was activated of recF strains to support Weigle mutagenesis can therefore be ascribed to a defect in expression of SOS functions after irradiation. (orig.)

  8. Effect of hsm mutations enhancing spontaneous mutability on induced mutagenesis and mitotic recombination in Saccharomyces cerevisiae yeast

    International Nuclear Information System (INIS)

    Fedorova, I.V.; Koval'tsova, S.V.; Ivanov, E.L.

    1993-01-01

    The authors have studied the effect of five nonallelic hms1-hms5 mutations on the incidence of direct mutations in loci ADE1 and ADE2, induced by UV-radiation, 6-hydroxyl-aminopurine, and nitrosomethylurea. All hms mutants were found to be insensitive to the lethal action of these mutagens. The frequency of UV-induced mutations to adenine dependence was increased in mutants hsm2-1, hsm3-1, hsm5-1, and particularly in hsm1-1, but remained unchanged in hsm4-1 compared to HSM. Mutagenesis induced by 6-hydroxylaminopurine was increased in all mutants studied, particularly in mutant hsm3-1. The authors did not detect any appreciable effect of hsm mutations on mutagenesis induced by nitrosomethylurea. The frequency of spontaneous mitotic conversion to prototrophy was studied in diploids heteroallelic to gene ADE2 and homo- and heterozygous for hsm mutations. Mutation hsm5-1 considerably increased the frequency of conversion for all heteroalleles studied, mutations hsm1-1 and hsm3-1 also considerably increased the conversion frequency, while mutations hsm1-1 and hsm4-1 had little effect on this process. The study of the properties of hsm mutations revealed joint genetic control of spontaneous and induced mutagenesis and recombination in yeast. The possibility that hsm mutations belong to the class of mutations impairing correction of unpaired DNA bases is discussed. 25 refs., 3 figs., 3 tabs

  9. Mechanisms of mutagenesis of E. coli by ultraviolet light

    International Nuclear Information System (INIS)

    Hutchinson, F.; Wood, R.D.

    1986-01-01

    This summary shows that uv mutagenesis involves several processes and several types of mutations. It is important to know, if some step or event affects, say, uv-induced reversion of a his mutant, what kinds of mutation cause the reversion. More, if reversion of the mutant is not affected, it is essential to know what kinds of mutation are involved, because statements can only be made about these mutations, and not about uv mutagenesis in general. It is also clear that the spectrum of mutations will depend on dose. Thus, extrapolation from experimental data at high dose to low dose situations involve considerations both of numbers and of kinds of mutations. Extrapolation of these results to other organisms may be particularly difficult because the SOS functions play such a large role in uv mutagenesis of E. coli. 34 refs., 1 tab

  10. groE mutants of Escherichia coli are defective in umuDC-dependent UV mutagenesis

    International Nuclear Information System (INIS)

    Donnelly, C.E.; Walker, G.C.

    1989-01-01

    Overexpression of the SOS-inducible umuDC operon of Escherichia coli results in the inability of these cells to grow at 30 degrees C. Mutations in several heat shock genes suppress this cold sensitivity. Suppression of umuD+C+-dependent cold sensitivity appears to occur by two different mechanisms. We show that mutations in lon and dnaK heat shock genes suppress cold sensitivity in a lexA-dependent manner. In contrast, mutations in groES, groEL, and rpoH heat shock genes suppress cold sensitivity regardless of the transcriptional regulation of the umuDC genes. We have also found that mutations in groES and groEL genes are defective in umuDC-dependent UV mutagenesis. This defect can be suppressed by increased expression of the umuDC operon. The mechanism by which groE mutations affect umuDC gene product function may be related to the stability of the UmuC protein, since the half-life of this protein is shortened because of mutations at the groE locus

  11. Survival and mutagenesis in UV-irradiated phage: Multi-hit kinetics of mutation induction and lack of indirect induction by infection with UV-irradiated phage of error-prone repair

    International Nuclear Information System (INIS)

    Krauss, G.; Mennigmann, H.D.; Kaplan, R.W.

    1980-01-01

    The paper is concerned with the question of whether Weigle-reactivation (WR) and Weigle-mutagenesis (WM) can be indirectly induced by infection with UV-irradiated phage. Experiments neither with phage lambda of Escherichia coli nor with phage kappa of Serratia marcescens show such induction. In this respect phage DNA differs from F'-DNA or Hfr-DNA; possible explanations are discussed. In both systems clear plaque mutations can also be induced by UV without irradiation of the host cells; they appear, in unirradiated and irradiated host cells, with an increase in frequency which is greater than proportional to the UV dose. It is concluded that mutation induction of phage in the unirradiated host cells is due to a low level constitutive mutagenic repair; this could either be due to 'spontaneous' induction of the mutagenic SOS function or it could be a mechanism different from this one. Host irradiation would give rise to additional activity by the induced SOS function leading to WR and WM. It is further concluded that deviation of the induction kinetics from a linear dose-dependence is not due to the necessary induction of SOS functions. (author)

  12. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    Science.gov (United States)

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  13. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    Science.gov (United States)

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  14. Activated RecA protein may induce expression of a gene that is not controlled by the LexA repressor and whose function is required for mutagenesis and repair of UV-irradiated bacteriophage lambda

    International Nuclear Information System (INIS)

    Calsou, P.; Villaverde, A.; Defais, M.

    1987-01-01

    The activated form of the RecA protein (RecA) is known to be involved in the reactivation and mutagenesis of UV-irradiated bacteriophage lambda and in the expression of the SOS response in Escherichia coli K-12. The expression of the SOS response requires cleavage of the LexA repressor by RecA and the subsequent expression of LexA-controlled genes. The evidence presented here suggests that RecA induces the expression of a gene(s) that is not under LexA control and that is also necessary for maximal repair and mutagenesis of damaged phage. This conclusion is based on the chloramphenicol sensitivity of RecA -dependent repair and mutagenesis of damaged bacteriophage lambda in lexA(Def) hosts

  15. Suppression of the E. coli SOS response by dNTP pool changes.

    Science.gov (United States)

    Maslowska, Katarzyna H; Makiela-Dzbenska, Karolina; Fijalkowska, Iwona J; Schaaper, Roel M

    2015-04-30

    The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30(+)-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. [Stress-induced cellular adaptive mutagenesis].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  17. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway.

    Science.gov (United States)

    Theodore, Alyssa; Lewis, Kim; Vulic, Marin

    2013-12-01

    Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called "persisters," depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis of the respective mutants indicates that, in addition to repair of double-strand breaks, tolerance depends on the repair of collapsed replication forks and stalled transcription complexes. Mutation in recF results in increased survival, which identifies RecAF recombination as a poisoning mechanism not previously linked to FQ lethality. DinG acts upstream of SOS promoting its induction, whereas RuvAB participates in repair only. UvrD directly promotes all repair processes initiated by FQ-induced damage and prevents RecAF-dependent misrepair, making it one of the crucial SOS functions required for tolerance.

  18. The Roles of UmuD in Regulating Mutagenesis

    Directory of Open Access Journals (Sweden)

    Jaylene N. Ollivierre

    2010-01-01

    Full Text Available All organisms are subject to DNA damage from both endogenous and environmental sources. DNA damage that is not fully repaired can lead to mutations. Mutagenesis is now understood to be an active process, in part facilitated by lower-fidelity DNA polymerases that replicate DNA in an error-prone manner. Y-family DNA polymerases, found throughout all domains of life, are characterized by their lower fidelity on undamaged DNA and their specialized ability to copy damaged DNA. Two E. coli Y-family DNA polymerases are responsible for copying damaged DNA as well as for mutagenesis. These DNA polymerases interact with different forms of UmuD, a dynamic protein that regulates mutagenesis. The UmuD gene products, regulated by the SOS response, exist in two principal forms: UmuD2, which prevents mutagenesis, and UmuD2′, which facilitates UV-induced mutagenesis. This paper focuses on the multiple conformations of the UmuD gene products and how their protein interactions regulate mutagenesis.

  19. Persistence and decay of thermoinducible error-prone repair activity in nonfilamentous derivatives of tif-1 Escherichia coli B/r

    International Nuclear Information System (INIS)

    Witkin, E.M.

    1975-01-01

    Ultraviolet mutagenesis in E. coli is associated with a UV-inducible type of error-prone postreplication repair ('SOS' repair) which, in tif-1 strains, is thermoinducible in coordination with other recA + lexA + -dependent inducible functions, including filamentous growth. Mutants of E. coli B/r tif-1 strains have been isolated which retain thermoinducibility of SOS repair activity, but lack the thermosensitivity caused by filamentous growth at 42 0 C. These strains have been used to determine the kinetics of decay at 30 0 C of thermally induced ability to enhance UV mutagenesis, the kinetics of thermal enhancement of spontaneous and UV-induced mutability at 42 0 C, and the kinetics of decay at 30 0 C of susceptibility to thermal enhancement of spontaneous and UV-induced mutability. Mutations from tryptophane requirement to prototrophy (Trp - to Trp + ) were scored. UV doses were 0.2 J/m 2 for excision repair-deficient (Uvr - ) and 2 J/m 2 for Uvr + strains. The results support the following conclusions. Thermally induced SOS repair activity decays at 30 0 C to about 25% of its maximum level in 45 min, and is no longer detectable after 90 min. Thermal enhancement of UV mutability occurs at sites produced primarily (perhaps exclusively) before completion of the first post-irradiation cell division. UV-induced sites susceptible to thermally induced SOS repair are stable at 30 0 C in cells not containing the error-prone repair system, and are refractory to constitutive error-free repair for at least 2 - 3 hours. UV produces a potentially mutagenic type of photoproduct in DNA which can, without interacting with another UV lesion, provide a site susceptible to SOS repair, but which is not a sufficient signal for SOS induction. 50 - 70% of the SOS-mutable SOS-noninducing UV photoproducts are photoreversible pyrimidine dimers. The results are discussed in relation to current models of UV mutagenesis and induction of UV-inducible functions. (orig.) [de

  20. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Battista, J.R.; Dodson, L.A.; Walker, G.C.

    1988-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. It has been shown that the UmuD protein shares homology with LexA, the repressor of the SOS genes. In this paper the authors describe a series of genetic experiments that indicate that the purpose of RecA-mediated cleavage of UmuD at its bond between Cys-24 and Gly-25 is to activate UmuD for its role in mutagenesis and that the COOH-terminal fragment of UmuD is necessary and sufficient for the role of UmuD in UV mutagenesis. Other genetic experiments are presented that (i) support the hypothesis that the primary role of Ser-60 in UmuD function is to act as a nucleophile in the RecA-mediated cleavage reaction and (ii) raise the possibility that RecA has a third role in UV mutagenesis besides mediating the cleavage of LexA and UmuD

  1. Mutagenesis in mammalian cells can be modulated by radiation-induced voltage-dependent potassium channels

    International Nuclear Information System (INIS)

    Saad, A.H.; Zhou, L.Y.; Lambe, E.K.; Hahn, G.M.

    1994-01-01

    In mammalian cells, little is known about the initial events whose ultimate consequence is mutagenesis or DNA repair. The role the plasma membrane may play as an initiator of such a pathway is not understood. We show, for the first time, that membrane voltage-dependent potassium (K + ) currents, activated by ionizing radiation play a significant role in radiation mutagenesis. Specifically, we show that the frequency of mutation at the HGPRT locus is increased as expected to 37.6±4.0 mutations per 100,000 survivors by 800 cGy of ionizing radiation from a spontaneous frequency of 1.5±1.5. This increase, however, is abolished if either K + channel blocker, CsCl or BaCl 2 , is present for 2h following irradiation of the cells. RbCl, chemically similar to CsCl but known not to block K + channels, is ineffective in reducing the mutation frequency. Treatment of cells with CsCl or BaCl 2 had no effect on radiation-induced cell killing

  2. Single d(ApG)/cis-diamminedichloroplatinum(II) adduct-induced mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Burnouf, D.; Fuchs, R.P.P.; Gauthier, C.; Chottard, J.C.

    1990-01-01

    The mutation spectrum induced by the widely used antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) showed that cisDDP[d(ApG)] adducts, although they account for only 25% of the lesions formed are ∼5 times more mutagenic than the major GG adduct. The authors report the construction of vectors bearing a single cisDDP[d(ApG)] lesion and their use in mutagenesis experiments in Escherichia coli. The mutagenic processing of the lesion is found to depend strictly on induction of the SOS system of the bacterial host cells. In SOS-induced cells, mutation frequencies of 1-2% were detected. All these mutations are targeted to the 5' base of the adduct. Single A → T transversions are mainly observed (80%), whereas A → G transitions account for 10% of the total mutations. Tandem base-pair substitutions involving the adenine residue and the thymine residue immediately 5' to the adduct occur at a comparable frequency (10%). No selective loss of the strand bearing the platinum adduct was seen, suggesting that, in vivo, cisDDP[d(ApG)] adducts are not blocking lesions. The high mutation specificity of cisDDP-[d(ApG)]-induced mutagenesis is discussed in relation to structural data

  3. Characterization of the Burkholderia thailandensis SOS response by using whole-transcriptome shotgun sequencing.

    Science.gov (United States)

    Ulrich, Ricky L; Deshazer, David; Kenny, Tara A; Ulrich, Melanie P; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L; Moir, Donald T; Panchal, Rekha G

    2013-10-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated E264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage.

  4. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    International Nuclear Information System (INIS)

    Wood, R.D.; Hutchinson, F.

    1984-01-01

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr + host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage. (author)

  6. DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hagensee, M.E.; Timme, T.L.; Bryan, S.K.; Moses, R.E.

    1987-06-01

    Strains of Escherichia coli possessing the pcbA1 mutation, a functional DNA polymerase I, and a temperature-sensitive mutation in DNA polymerase III can survive at the restrictive temperature (43 degrees C) for DNA polymerase III. The mutation rate of the bacterial genome of such strains after exposure to either UV light or ethyl methanesulfonate was measured by its rifampicin resistance or amino acid requirements. In addition, Weigle mutagenesis of preirradiated lambda phage was also measured. In all cases, no increase in mutagenesis was noted at the restrictive temperature for DNA polymerase III. Introduction of a cloned DNA polymerase III gene returned the mutation rate of the bacterial genome as well as the Weigle mutagenesis to normal at 43 degrees C. Using a recA-lacZ fusion, the SOS response after UV irradiation was measured and found to be normal at the restrictive and permissive temperature for DNA polymerase III, as was induction of lambda prophage. Recombination was also normal at either temperature. Our studies demonstrate that a functional DNA polymerase III is strictly required for mutagenesis at a step other than SOS induction.

  7. The relationship between survival and mutagenesis in Escherichia coli after fractionated ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dzidic, S.; Salaj-Smic, E.; Trgovcevic, Z.

    1986-01-01

    The relationship between survival and mutagenesis in Escherichia coli after fractionated ultraviolet (UV) irradiation was studied. The cells were incubated either in buffer or nutrient media. Regardless of incubation conditions, greater survival is observed after fractionated irradiation than after acute irradiation. When the cells are incubated in buffer, UV mutagenesis decreases with an increase in the number of dose fractions. However, when the cells are cultivated in nutrient media, the increased survival is coupled with the enhanced capacity for UV mutagenesis. The authors, therefore, assume that during incubation in nutrient media, fractionated irradiation leads to full and prolonged expression of all UV inducible (SOS) genes, including those required for mutagenesis. (Auth.)

  8. Genetic analysis of the SOS response of Escherichia coli

    International Nuclear Information System (INIS)

    Mount, D.W.; Wertman, K.F.; Ennis, D.G.; Peterson, K.R.; Fisher, B.L.; Lyons, G.

    1983-01-01

    In the SOS response, a large number of E. coli genes having different functions are derepressed when the cellular DNA is damaged. This derepression occurs through inactivation of a repressor, the product of the lexA gene, by a protease activity of the recA gene product. The protease is thought to be activated in response to changes in DNA metabolism which follow the damage. After the SOS functions have acted, the protease activity declines and repression is again established. Because the DNA sequence of both lexA and recA have been determined, it is possible to induce many mutations in their regulatory and structural regions in order to analyze further the control of the SOS response. We are studying the effects of mutations in both the lexA and recA regulatory regions, and mutations which affect the protease activity or the sensitivity of repressor to the protease. Finally, we are using genetic methods to analyze a newly identified requirement for recA protein, induced mutagenesis in cells lacking repressor. 16 references, 3 figures

  9. Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13

    International Nuclear Information System (INIS)

    Brandenburger, A.; Godson, G.N.; Glickman, B.W.; Sluis, C.A. van

    1981-01-01

    To elucidate the relative contributions of targeted and untargeted mutations to γ and UV radiation mutagenesis, the DNA sequences of 174 M13 revertant phages isolated from stocks of irradiated or unirradiated amber mutants grown in irradiated (SOS-induced) or unirradiated (non-induced) host bacteria, have been determined. Differences in the spectra of base change mutations induced in the various conditions were apparent, but no obvious specificity of mutagenesis was detected. In particular, under the present conditions, pyrimidine dimers did not seem to be the principal sites of UV-induced base substitution mutagenesis, suggesting that such mutagenesis occurs at the sites of lesions other than pyrimidine dimers, or is untargeted. (U.K.)

  10. Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: dependence on chromosomal genes in 'Escherichia coli' K-12

    International Nuclear Information System (INIS)

    Walker, G.C.

    1977-01-01

    The drug resistance plasmid pKM101 plays a major role in the Ames Salmonella/microsome carcinogen detecting system by enhancing chemical mutagenesis. It is shown that in Escherichia coli K-12 the plasmid pKM101 enhances both spontaneous and methyl methanesulfonate-caused reversion of an ochre mutation, bacterial survival after ultaviolet irradiation, and reactivation of ultraviolet-irradiated lambda in unirradiated cells. All these effects are shown to be dependent on the recA + lexA + genotype but not on the recB + recC + or recF + genotypes. The recA lexA-dependence of the plasmid-mediated repair and mutagenesis suggests an interaction with the cell's inducible error-prone repair system. The presence of pKM101 is shown to cause an additional increase in methyl methanesulfonate mutagenesis in a tif mutant beyond that caused by growth at 42 0 . The presence of the plasmid raises the level of the Weigle-reactivation curve for the reactivation of ultraviolet-irradiated lambda in E. coli and causes a shift of the maximum to a higher UV fluence. These observations suggest that pKM101 does not exert its effects by altering the regulation of the cell's error-prone repair system but rather by supplying a mechanistic component or components. (orig.) [de

  11. Kinetic and dose dependencies of the SOS-induction in E.coli K-12 (uvrA) cells exposed to different UV doses

    International Nuclear Information System (INIS)

    Komova, O.V.; Kandiano, E.S.; Malavina, G.; )

    2000-01-01

    Kinetic and dose dependencies of the SOS-induction in E. coli (uvrA) cells exposed to UV light were investigated. below 2 J/m 2 the rate of the SOS-induction increased with dose. Maximal level of the SOS-response was proportional to the UV dose. Pyrimidine dimers were necessary for the induction. In the dose range 2-10 J/m 2 the rate of SOS-induction decreased with dose. Dose-maximum response curve was non-linear. Pyrimidine dimers were not required for the induction. nature of the molecular events leading to the SOS-induction at low and high doses was discussed [ru

  12. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.D.; Hutchinson, F. (Yale Univ., New Haven, CT (USA). Dept. of Molecular Biophysics and Biochemistry)

    1984-03-05

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr/sup +/ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.

  13. DNA compaction in the early part of the SOS response is dependent on RecN and RecA.

    Science.gov (United States)

    Odsbu, Ingvild; Skarstad, Kirsten

    2014-05-01

    The nucleoids of undamaged Escherichia coli cells have a characteristic shape and number, which is dependent on the growth medium. Upon induction of the SOS response by a low dose of UV irradiation an extensive reorganization of the nucleoids occurred. Two distinct phases were observed by fluorescence microscopy. First, the nucleoids were found to change shape and fuse into compact structures at midcell. The compaction of the nucleoids lasted for 10-20 min and was followed by a phase where the DNA was dispersed throughout the cells. This second phase lasted for ~1 h. The compaction was found to be dependent on the recombination proteins RecA, RecO and RecR as well as the SOS-inducible, SMC (structural maintenance of chromosomes)-like protein RecN. RecN protein is produced in high amounts during the first part of the SOS response. It is possible that the RecN-mediated 'compact DNA' stage at the beginning of the SOS response serves to stabilize damaged DNA prior to recombination and repair.

  14. Factors limiting SOS expression in log-phase cells of Escherichia coli.

    Science.gov (United States)

    Massoni, Shawn C; Leeson, Michael C; Long, Jarukit Edward; Gemme, Kristin; Mui, Alice; Sandler, Steven J

    2012-10-01

    In Escherichia coli, RecA-single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2- to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell.

  15. Spontaneous mutability and light-induced mutagenesis in Salmonella typhimurium: effects of an R-plasmid

    International Nuclear Information System (INIS)

    Valdivia, L.

    1979-01-01

    The UV-protecting plasmid R46 was transferred by conjugation to a genetically marked mouse-virulent Salmonella typhimurium strain, not derived from LT2; in this host the plasmid conferred UV protection and enhanced UV mutagenesis just as it does in LT2 lines. Tra - derivatives of R46 encountered during transduction retained UV-protecting and mutagenesis-enhancing ability. Stored strains carrying the R46-derived plasmids with strong mutator effect but not UV-protecting had lost most of their original streptomycin resistance but were slightly resistant to spectinomycin; attempts to transfer such plasmids failed. R46 enhanced the weak mutagenic effect of visible light on several his and trp mutants of strain LT2, including some whose frequency of spontaneous reversion was not increased by the plasmid. A mutagenic effect was produced by visible-light irradiation of hisG46(R46), either growing cells or nonmultiplying (histidine-deprived cells at 10 0 C). Presence of catalase or cyanide during irradiation did not prevent mutagenesis, which excludes some hypothetical mechanisms. Visible-light irradiation of hisG46 or hisG46(R46) under strict anaerobiosis had little or no mutagenic effect (controls showed that revertants if produced would have been detected). This is as expected if visible-light irradiation in air causes photodynamic damage to DNA and mutations are produced during error-prone, plasmid-enhanced repair

  16. Kinetic and dose dependences of the SOS-induction in E.coli K-12 (uvrA) cells exposed to the different UV doses

    International Nuclear Information System (INIS)

    Komova, O.V.; Kandiano, E.S.; Malavya, G.

    1999-01-01

    The kinetic and dose dependences of the SOS-induction in E.coli (uvrA) cells exposed to UV light were investigated. Below 2 J/m 2 the rate of the SOS-induction increased with dose. The maximal level of the SOS-response was proportional to the UV dose. Pyrimidine dimers were necessary for the induction. In the dose range 2-10 J/m 2 the rate of the SOS-induction decreased with dose. The dose-response curve was non-linear. Pyrimidine dimers were not required for the induction. The nature of the molecular events leading to the SOS-induction at low and high UV doses was discussed. (author)

  17. Ultraviolet mutagenesis and the SOS response in Escherichia coli: A personal perspective

    International Nuclear Information System (INIS)

    Witkin, E.M.

    1989-01-01

    The study of ultraviolet (UV) mutagenesis in Escherichia coli began with the assumption that genes were likely to be changed at the instant of photon absorption. Over many decades, it became clear that postirradiation cellular activities, including enzymatic DNA repair of UV photo products and error-prone modes of tolerating unrepaired DNA lesions can exert profound influences on the mutagenic outcome of irradiation. Current study focusses on the molecular details of radiation-induced translesion DNA replication as the final event in UV mutagenesis

  18. Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed

  19. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Directory of Open Access Journals (Sweden)

    Sanchez-Alberola Neus

    2012-02-01

    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  20. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes.

    Science.gov (United States)

    Sanchez-Alberola, Neus; Campoy, Susana; Barbé, Jordi; Erill, Ivan

    2012-02-03

    The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the

  1. Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership.

    Science.gov (United States)

    Mo, Charlie Y; Culyba, Matthew J; Selwood, Trevor; Kubiak, Jeffrey M; Hostetler, Zachary M; Jurewicz, Anthony J; Keller, Paul M; Pope, Andrew J; Quinn, Amy; Schneck, Jessica; Widdowson, Katherine L; Kohli, Rahul M

    2018-03-09

    The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.

  2. Photodynamic action of methylene blue: mutagenesis and synergism

    International Nuclear Information System (INIS)

    Capella, M.A.M.

    1988-01-01

    The associated mutagenesis and the interactions with physical agents in order to potencialize its biological effects are studied. The induction of mutation in bacterias due to photodynamic action of methylene blue is presented as well as the induction of single breaks in bacterial DNA and the relationship between the repair systems, especially the SOS one. The interaction of the photodynamic therapy with low intensity electric current is discussed. (M.A.C.) [pt

  3. Effects of harman and norharman on spontaneous and ultraviolet light-induced mutagenesis in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Chang, C.C.; Castellazzi, M.; Glover, T.W.; Trosko, J.E.

    1978-01-01

    Nontoxic concentrations of harman and norharman were tested in cultured Chinese hamster cells for their effects on DNA repair and mutagenesis. The following effects of harman were observed: (a) the survival of ultraviolet light- or x-ray-damaged cells was reduced; (b) the ultraviolet light-induced unscheduled DNA synthesis was slightly inhibited; and (c) the frequency of spontaneous or ultraviolet light-induced ouabain-resistant (ouar) or 6-thioguanine-resistant (6-TGr) mutations was reduced. Furthermore, the effect of harman on survival and mutagenesis was greater than that of norharman and was detected primarily in treatments in which cells were exposed to harman immediately following ultraviolet light irradiation. Our data clearly indicate that harman decreases the capacity to repair DNA damage and fix mutations in Chinese hamster cells, possibly because of the intercalation properties of this compound

  4. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  5. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  6. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    Science.gov (United States)

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.

  7. Absence of both Sos-1 and Sos-2 in peripheral CD4+ T cells leads to PI3K pathway activation and defects in migration

    Science.gov (United States)

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-01-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-Guanine Exchange Factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4+ T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4+ T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4+ T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. PMID:25973715

  8. Genetic characterization of the inducible SOS-like system of Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Love, P.E.; Yasbin, R.E.

    1984-12-01

    The SOS-like system of Bacillus subtilis consists of several coordinately induced phenomena which are expressed after cellular insult such as DNA damage of inhibition of DNA replication. Mutagenesis of the bacterial chromosomes and the development of maintenance of competence also appear to be involved in the SOS-like response in this bacterium. The genetic characterization of the SOS-like system has involved an analysis of (i) the effects of various DNA repair mutations on the expression of inducible phenomena and (ii) the tsi-23 mutation, which renders host strains thermally inducible for each of the SOS-like functions. Bacterial filamentation was unaffected by any of the DNA repair mutations studied. In contrast, the induction of prophage after thermal or UV pretreatment was abolished in strains carrying the recE4, recA1, recB2, or recG13 mutation. The Weigle reactivation of UV-damaged bacteriophage was also inhibited by the recE4, recA1, recB2, or recG13 mutation, whereas levels of Weigle reactivation were lower in strains which carried the uvrA42, polA5, or rec-961 mutation than in the DNA repair-proficient strain. Strains which carried the recE4 mutation were incapable of chromosomal DNA-mediated transformation, and the frequency of this event was decreased in strains carrying recA1, recB2, or tsi-23 mutation. Plasmid DNA transformation efficiency was decreased only in strains carrying the tsi-23 mutation in addition to the recE4, recA1, or recB2 mutation. The results indicate that the SOS-like system of B. subtilis is regulated at different levels by two or more gene products. In this report, the current data regarding the genetic regulation of inducible phenomena are summarized, and a model is proposed to explain the mechanism of SOS-like induction in B. subtillis. 50 references, 3 figures, 6 tables.

  9. Ribonuclease E modulation of the bacterial SOS response.

    Directory of Open Access Journals (Sweden)

    Robert Manasherob

    Full Text Available Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes-leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed.

  10. Ribonuclease E modulation of the bacterial SOS response.

    Science.gov (United States)

    Manasherob, Robert; Miller, Christine; Kim, Kwang-sun; Cohen, Stanley N

    2012-01-01

    Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes-leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed.

  11. Mutational spectrum analysis of umuC-independent and umuC-dependent γ-radiation mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Sargentini, N.J.; Smith, K.C.

    1989-01-01

    γ-radiation mutagenesis Escherichia coli K-12. Mutagenesis (argE3(OC) A rg + ) was blocked in a δ(recA-srlR)306 strain at the same doses that induced mutations in umuC122::Tn5 and wild-type strains, indicating that both umuC-independent and umuC-dependent mechanisms function within recA-dependent misrepair. Analyses of various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777 reversion were performed on umuC and wild-type cells irradiated in the presence and absence of oxygen. While the umuC strain showed the γ-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but non all oxygen-dependent frameshift mutagenesis. For anoxically irradiated cells, the yields of GC T and AT GC transitions were essentially umuC independent, while the yields of (AT or GC) TA transversions were heavily umuC dependent. These data suggest new concepts about the nature of the DNA lesions and the mutagenic mechanisms that lead to γ-radiation mutagenesis. (author). 48 refs.; 1 tab.; 6 refs

  12. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus.

    Science.gov (United States)

    Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S

    2015-09-01

    The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Recovery during radiation and chemical mutagenesis

    International Nuclear Information System (INIS)

    Deen, D.F.

    1975-01-01

    These investigations were directed toward the study of recovery in radiation and chemical mutagenesis in cultured mammalian cells. A mutagenesis system was established in which mutation of V79-17lb Chinese hamster cells to 8-azaguanine resistance was tested. The effects of split dose and postirradiation treatments upon both x-ray and EMS induced mutagenesis were determined. Increasing the cell inoculum by a factor of 5 (from 10 5 to 5 x 10 5 ) decreased both the spontaneous and x-ray induced mutation frequencies by two orders of magnitude. The x-ray induced mutation frequency was found to be higher for those cells allowed to attach for 5 hours before irradiation, in comparison to those allowed to attach for 2 hours. The uv spectrum of 8-azaguanine changes as a function of storage time at low temperature, but not when diluted to either 10 μg/ml or 30 μg/ml and maintained at 37 0 C. The optimal expression time required after irradiation is dose dependent and can be determined from the relationship: E.T. = 1.93(10 -2 )D + 15.5. (E.T. = hours; D = rads). The duration of the optimal expression time can be estimated by summing the cell cycle time and the radiation induced lag time

  14. Absence of both Sos-1 and Sos-2 in peripheral CD4(+) T cells leads to PI3K pathway activation and defects in migration.

    Science.gov (United States)

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-08-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-guanine exchange factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4(+) T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4(+) T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4(+) T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  15. INHIBITION OF SPONTANEOUS MUTAGENESIS BY VANILLIN AND CINNAMALDEHYDE IN ESCHERICHIA COLI: DEPENDENCE ON RECOMBINATIONAL REPAIR

    Science.gov (United States)

    Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, ¿uvrB, pKM101) by approximately...

  16. Laboratory of Mutagenesis and DNA Repair

    International Nuclear Information System (INIS)

    2000-01-01

    Full text: Two main lines of research were continued: the first one concerned the mechanisms controlling the fidelity of DNA replication in Escherichia coli; the second concerned cellular responses of Saccharomyces cerevisiae to DNA damaging agents. We have been investigating the question whether during chromosomal DNA replication in Escherichia coli the two DNA strands may be replicated with differential accuracy. To address this question we set up a new system that allows the examination of mutagenesis either of the leading strand or the lagging strand. Our results suggest that the lagging strand replication of the E. coli chromosome may be more accurate than leading strand replication. More recently, we studied mutagenesis of the two strands in recA730 strains which exhibit constitutive expression of the SOS system. Our results clearly indicate that in recA730 strains there is a significant difference in the fidelity of replication between the two replicating strands. Based on our data we propose a model describing a possible mechanism of SOS mutagenesis. To get more insight into cellular responses to DNA damage we have isolated several novel genes of S. cerevisiae, the transcription of which is induced by DNA lesions. Main effort was concentrated on the characterization of the DIN7 gene. We found that Din7p specifically affects the metabolism of mitochondrial DNA (mtDNA). The elevated level of Din7p results in an increased frequency of mitochondrial petite mutants, as well as in a higher frequency of mitochondrial point mutations. Din7p affects also the stability of microsatellite sequences present in the mitochondrial genome. As expected, Din7p was found to be located in mitochondria. In another project, we found that the DIN8 gene isolated in our laboratory is identical with the UMP1 gene encoding a chaperone-like protein involved in 20S proteasome maturation. Interestingly, induction of UMP1 expression in response to DNA damage is subject to regulation

  17. Antimicrobials, stress and mutagenesis.

    Directory of Open Access Journals (Sweden)

    Alexandro Rodríguez-Rojas

    2014-10-01

    Full Text Available Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs mostly target the cell wall, a microbial 'Achilles heel', it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient 'weapons' of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the 'Achilles heel' has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.

  18. NOAA NDBC SOS - waves

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...

  19. Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response.

    Science.gov (United States)

    Hamilton, Holly M; Wilson, Ray; Blythe, Martin; Nehring, Ralf B; Fonville, Natalie C; Louis, Edward J; Rosenberg, Susan M

    2013-11-01

    Thymineless death (TLD) is the rapid loss of colony-forming ability in bacterial, yeast and human cells starved for thymine, and is the mechanism of action of common chemotherapeutic drugs. In Escherichia coli, significant loss of viability during TLD requires the SOS replication-stress/DNA-damage response, specifically its role in inducing the inhibitor of cell division, SulA. An independent RecQ- and RecJ-dependent TLD pathway accounts for a similarly large additional component of TLD, and a third SOS- and RecQ/J-independent TLD pathway has also been observed. Although two groups have implicated the SOS-response in TLD, an SOS-deficient mutant strain from an earlier study was found to be sensitive to thymine deprivation. We performed whole-genome resequencing on that SOS-deficient strain and find that, compared with the SOS-proficient control strain, it contains five mutations in addition to the SOS-blocking lexA(Ind(-)) mutation. One of the additional mutations, csrA, confers TLD sensitivity specifically in SOS-defective strains. We find that CsrA, a carbon storage regulator, reduces TLD in SOS- or SulA-defective cells, and that the increased TLD that occurs in csrA(-) SOS-defective cells is dependent on RecQ. We consider a hypothesis in which the modulation of nucleotide pools by CsrA might inhibit TLD specifically in SOS-deficient (SulA-deficient) cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  1. Enhanced mutagenesis of UV-irradiated simian virus 40 occurs in mitomycin C-treated host cells only at a low multiplicity of infection

    International Nuclear Information System (INIS)

    Sarasin, A.; Benoit, A.

    1986-01-01

    Treatment of monkey kidney cells with mitomycin C (MMC) 24 h prior to infection with UV-irradiated simian virus 40 (SV40) enhanced both virus survival and virus mutagenesis. The use of SV40 as a biological probe has been taken as an easy method to analyse SOS response of mammalian cells to the stress caused by DNA damage or inhibition of DNA replication. The mutation assay we used was based on the reversion from a temperature-sensitive phenotype (tsA58 mutant) to a wild-type phenotype. The optimal conditions for producing enhanced survival and mutagenesis in the virus progeny were determined with regard to the multiplicity of infection (MOI). Results showed that the level of enhanced mutagenesis observed for UV-irradiated virus grown in MMC-treated cells was an inverse function of the MOI, while enhanced survival was observed at nearly the same level regardless of the MOI. For the unirradiated virus, almost no increase in the mutation of virus progeny issued from MMC-treated cells was observed, while a small amount of enhanced virus survival was obtained. These results show that enhanced virus mutagenesis and enhanced virus survival can be dissociated under some experimental conditions. Enhanced virus mutagenesis, analogous to the error-prone replication of phages in SOS-induced bacteria, was observed, at least for SV40, only when DNA of both virus and host cells was damaged and when infection occurred with a small number of viral particles. We therefore hypothesize that an error-prone replication mode of UV-damaged templates is observed in induced monkey kidney cells

  2. Mathematical model of the SOS response regulation in wild-type Escherichia coli

    International Nuclear Information System (INIS)

    Aksenov, S.V.

    1997-01-01

    Regulation of the SOS response in Escherichia coli, which is a set of inducible cellular reactions introduced after DNA damage, is due to specific interaction of LexA and RecA proteins. LexA protein is a common repressor of the genes of the SOS system, and RecA protein, once transiently activated by the so-called SOS-inducing signal, promotes LexA protein destruction. We have described the SOS regulation by means of differential equations with regard to LexA and RecA concentrations elsewhere. The 'input' function for model equations is the level of the SOS-inducing signal against time. Here we present a means for calculating the concentration of single-stranded DNA (SOS-inducing signal) as a function of time in wild-type cells after ultraviolet irradiation. With model equations one can simulate kinetic curves of SOS regulatory proteins after DNA damage to survey the SOS response kinetics. Simulation of LexA protein kinetics agrees with experimental data. We compare simulated LexA kinetic curves in wild-type and uνr - mutant bacteria, which is useful in investigating the way uνrABC-dependent excision repair modulates the SOS response kinetics. Possible applications of the model to investigating various aspects of the SOS induction are discussed

  3. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    Science.gov (United States)

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.

  4. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3

    OpenAIRE

    Halfter, Ursula; Ishitani, Manabu; Zhu, Jian-Kang

    2000-01-01

    The Arabidopsis thaliana SOS2 and SOS3 genes are required for intracellular Na+ and K+ homeostasis and plant tolerance to high Na+ and low K+ environments. SOS3 is an EF hand type calcium-binding protein having sequence similarities with animal neuronal calcium sensors and the yeast calcineurin B. SOS2 is a serine/threonine protein kinase in the SNF1/AMPK family. We report here that SOS3 physically interacts with and activates SOS2 protein kinase. Genetically, sos2sos3 double mutant analysis ...

  5. R-prime site-directed transposon Tn7 mutagenesis of the photosynthetic apparatus in Rhodopseudomonas capsulata

    Energy Technology Data Exchange (ETDEWEB)

    Youvan, D C [Univ. of California, Berkeley; Elder, J T; Sandlin, D E; Zsebo, K; Alder, D P; Panopoulos, N J; Marrs, B L; Hearst, J E

    1982-01-01

    Site-directed mutagenesis of the photosynthetic apparatus (PSA) genes in Rhodopseudomonas capsulata is presented utilizing a transposon Tn7 mutagenized R-prime. The R-prime, pRPS404, bears most of the genes necessary for the differentiation of the photosynthetic apparatus. Mutagenesis of the R-prime with Tn7 in Escherichia coli, conjugation into R. capsulata, and homologous recombination with the wild-type alleles efficiently generates photosynthetic apparatus lesions. Wild-type alleles are lost spontaneously and the Tn7-induced lesions are revealed by subsequent intramolecular recombination between IS21 insertion elements that bracket the prime sequences in direct repeat. The molecular nature of the intermediates involved in the transposition, recombination and deletion have been investigated by Southern hybridization analysis. The spontaneous loss of wild-type alleles after homologous recombination with the chromosome may be of general use to other prokaryotic site-directed transposon mutagenesis schemes. The IS21-mediated deletion of the prime DNA is dependent on the RecA protein in E. coli, generating the parental R-factor bearing one IS21 element. A genetic-physical map exists for a portion of the prime photosynthetic apparatus DNA. When Tn7 is inserted into a bacteriochlorophyll gene in the R-prime and then crossed into R. capsulata, mutants are produced that accumulate a bacteriochlorophyll precursor, which is in excellent agreement with the existing genetic-physical map. This corroborates the mutagenesis scheme.

  6. Apoptosis-like death, an extreme SOS response in Escherichia coli.

    Science.gov (United States)

    Erental, Ariel; Kalderon, Ziva; Saada, Ann; Smith, Yoav; Engelberg-Kulka, Hanna

    2014-07-15

    In bacteria, SOS is a global response to DNA damage, mediated by the recA-lexA genes, resulting in cell cycle arrest, DNA repair, and mutagenesis. Previously, we reported that Escherichia coli responds to DNA damage via another recA-lexA-mediated pathway resulting in programmed cell death (PCD). We called it apoptosis-like death (ALD) because it is characterized by membrane depolarization and DNA fragmentation, which are hallmarks of eukaryotic mitochondrial apoptosis. Here, we show that ALD is an extreme SOS response that occurs only under conditions of severe DNA damage. Furthermore, we found that ALD is characterized by additional hallmarks of eukaryotic mitochondrial apoptosis, including (i) rRNA degradation by the endoribonuclease YbeY, (ii) upregulation of a unique set of genes that we called extensive-damage-induced (Edin) genes, (iii) a decrease in the activities of complexes I and II of the electron transport chain, and (iv) the formation of high levels of OH˙ through the Fenton reaction, eventually resulting in cell death. Our genetic and molecular studies on ALD provide additional insight for the evolution of mitochondria and the apoptotic pathway in eukaryotes. Importance: The SOS response is the first described and the most studied bacterial response to DNA damage. It is mediated by a set of two genes, recA-lexA, and it results in DNA repair and thereby in the survival of the bacterial culture. We have shown that Escherichia coli responds to DNA damage by an additional recA-lexA-mediated pathway resulting in an apoptosis-like death (ALD). Apoptosis is a mode of cell death that has previously been reported only in eukaryotes. We found that E. coli ALD is characterized by several hallmarks of eukaryotic mitochondrial apoptosis. Altogether, our results revealed that recA-lexA is a DNA damage response coordinator that permits two opposite responses: life, mediated by the SOS, and death, mediated by the ALD. The choice seems to be a function of the degree

  7. Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli.

    Science.gov (United States)

    Smirnova, Galina V; Tyulenev, Aleksey V; Muzyka, Nadezda G; Peters, Mikhail A; Oktyabrsky, Oleg N

    2017-01-01

    An in-depth understanding of the physiological response of bacteria to antibiotic-induced stress is needed for development of new approaches to combatting microbial infections. Fluoroquinolone ciprofloxacin causes phase alterations in Escherichia coli respiration and membrane potential that strongly depend on its concentration. Concentrations lower than the optimal bactericidal concentration (OBC) do not inhibit respiration during the first phase. A dose higher than the OBC provokes immediate SOS-independent inhibition of respiration and growth that can contribute to a decreased SOS response and lowered susceptibility to high concentrations of ciprofloxacin. Cells retain their metabolic activity, membrane potential and accelerated K + uptake and produce low levels of superoxide and H 2 O 2 during the first phase. The time before initiation of the second phase is inversely correlated with the ciprofloxacin concentration. The second phase is SOS-dependent and characterized by respiratory inhibition, membrane depolarization, K + and glutathione leakage and cessation of glucose consumption and may be considered as cell death. atpA, gshA and kefBkefC knockouts, which perturb fluxes of protons and K + , can modify the degree and duration of respiratory inhibition and potassium retention. Loss of K + efflux channels KefB and KefC enhances the susceptibility of E. coli to ciprofloxacin. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Vesiculation from Pseudomonas aeruginosa under SOS.

    Science.gov (United States)

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F; Yu, Jiehjuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity.

  9. DNA damage and mutagenesis of lambda phage induced by gamma-rays

    International Nuclear Information System (INIS)

    Bertram, Heidi

    1988-01-01

    Lambda phage DNA was gamma irradiated in aqueous solution and strand breakage determined. Twice as much minor structural damage per lethal hit was found in this DNA compared with DNA from irradiated phage suspensions. The in vitro irradiated DNA was repackaged into infectious particles. Induction of mutations in the cI or cII cistron was scored using SOS-induced host cells. In vitro prepared particles were found to have second-order kinetics for mutagenesis induced by gamma rays indicating two pre-mutational events were necessary to produce a mutation, but bacteria-free phage suspensions ('lys-phage') showed single hit kinetics for mutagenesis after irradiation. Increase in the mutation rate in the phage particles was mainly due to minor lesions, i.e. ssb, als and unidentified base damage. In lys-phage, mutagenesis might be enhanced by clustered DNA damage - configuration not existing in pack-phage. Loss of infectivity was analysed in comparison with structural damage. All lesions contributed to biological inactivation. Minor lesions were tolerated by lambda phage to a limited extent. Major lesions (e.g. dsb) contributed most to infectivity loss and were considered lethal events. (U.K.)

  10. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    Science.gov (United States)

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  11. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming.

    Science.gov (United States)

    Irazoki, Oihane; Aranda, Jesús; Zimmermann, Timo; Campoy, Susana; Barbé, Jordi

    2016-01-01

    In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  12. Molecular interaction and cellular location of RecA and CheW proteins in Salmonella enterica during SOS response and their implication in swarming

    Directory of Open Access Journals (Sweden)

    Oihane Irazoki

    2016-10-01

    Full Text Available In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  13. Specificity in suppression of SOS expression by recA4162 and uvrD303.

    Science.gov (United States)

    Massoni, Shawn C; Sandler, Steven J

    2013-12-01

    Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap). Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Contribution of transcription-coupled DNA repair to MMS-induced mutagenesis in E. coli strains deficient in functional AlkB protein.

    Science.gov (United States)

    Wrzesiński, Michał; Nieminuszczy, Jadwiga; Sikora, Anna; Mielecki, Damian; Chojnacka, Aleksandra; Kozłowski, Marek; Krwawicz, Joanna; Grzesiuk, Elzbieta

    2010-06-01

    In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), alpha-ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA repair (TCR) on MMS-induced mutagenesis in E. coli strain deficient in functional AlkB protein. Measuring the decline in the frequency of MMS-induced argE3-->Arg(+) revertants under transient amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the BS87 (alkB(-)) strain in comparison with the AB1157 (alkB(+)) counterpart. Mutation in the mfd gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd(+), and no repair in BS87 mfd(-) cells. Determination of specificity of Arg(+) revertants allowed to conclude that MMS-induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of mutations. These include AT-->TA transversions by supL suppressor formation (1meA) and GC-->AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in the alkB(-)mfd(-) bacteria but not in the alkB(+)mfd(-) counterpart. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Mutagenesis of lambda phage by tif-expression or host-irradiation functions is largely independent of damage in the phage DNA

    International Nuclear Information System (INIS)

    Von Wright, A.; Bridges, B.A.

    1980-01-01

    The survival and mutagenesis of UV-irradiated phage lambda, as well as bacterial mutagenesis, are enhanced in tif mutants of Escherichia coli when these strains are grown at 43 0 C (Castellazzi et al., 1972). This was interpreted on the basis of a hypothesis (the SOS hypothesis) according to which the UV-inducible phenomena connected with reactivation and mutagenesis of UV-irradiated bacteriophages (Weigle, 1953; Radman, 1975) are constitutively expressed in tif-bacteria at high temperature (Witkin, 1974). In unpublished experiments with phage T3 we found that the survival of UV-irradiated phage is also better at 43 0 C than at 32 0 C in tif + cells and this made us reexamine the significance and nature of tif expression and examine its effects on both unirradiated and UV-irradiated phage lambda. Our results indicate that tif-induced mutagenesis and possibly reactivation of UV-irradiated phage lambda should be reinterpreted. (orig./AJ)

  16. NOAA NDBC SOS, 2007-present, currents

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have currents data. Because of the nature of SOS requests, requests for...

  17. Comparative Analysis of Context-Dependent Mutagenesis Using Human and Mouse Models

    Directory of Open Access Journals (Sweden)

    Sofya A. Medvedeva

    2013-01-01

    Full Text Available Substitution rates strongly depend on their nucleotide context. One of the most studied examples is the excess of C > T mutations in the CG context in various groups of organisms, including vertebrates. Studies on the molecular mechanisms underlying this mutation regularity have provided insights into evolution, mutagenesis, and cancer development. Recently several other hypermutable motifs were identified in the human genome. There is an increased frequency of T > C mutations in the second position of the words ATTG and ATAG and an increased frequency of A > C mutations in the first position of the word ACAA. For a better understanding of evolution, it is of interest whether these mutation regularities are human specific or present in other vertebrates, as their presence might affect the validity of currently used substitution models and molecular clocks. A comprehensive analysis of mutagenesis in 4 bp mutation contexts requires a vast amount of mutation data. Such data may be derived from the comparisons of individual genomes or from single nucleotide polymorphism (SNP databases. Using this approach, we performed a systematical comparison of mutation regularities within 2–4 bp contexts in Mus musculus and Homo sapiens and uncovered that even closely related organisms may have notable differences in context-dependent mutation regularities.

  18. NOAA NDBC SOS, 2006-present, winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have winds data. Because of the nature of SOS requests, requests for data...

  19. Ras activation by SOS

    DEFF Research Database (Denmark)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual ...

  20. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    Science.gov (United States)

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  1. A Modular SOS for Action Notation - Revisited

    DEFF Research Database (Denmark)

    Mosses, Peter David

    A draft modular SOS for the new version of AN, referred to as AN-2, has been available since 2000. It is written in CASL and has been checked for well-formedness using CATS (CASL Tool Set). It appears to be significantly more accessible than the original SOS of AN-1. However, it now appears......-notation for the modular SOS rules. After discussing the issues, we look at some illustrative examples taken from an improved modular SOS of AN-2 (in preparation). We also look at the possibility of empirical testing of the modular SOS by a straightforward translation to Prolog....

  2. SoS contract verification using statistical model checking

    Directory of Open Access Journals (Sweden)

    Alessandro Mignogna

    2013-11-01

    Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.

  3. Sinusoidal obstruction syndrome (SOS) related to chemotherapy for colorectal liver metastases: factors predictive of severe SOS lesions and protective effect of bevacizumab.

    Science.gov (United States)

    Hubert, Catherine; Sempoux, Christine; Humblet, Yves; van den Eynde, Marc; Zech, Francis; Leclercq, Isabelle; Gigot, Jean-François

    2013-11-01

    The most frequent presentation of chemotherapy-related toxicity in colorectal liver metastases (CRLM) is sinusoidal obstruction syndrome (SOS). The purpose of the present study was to identify preoperative factors predictive of SOS and to establish associations between type of chemotherapy and severity of SOS. A retrospective study was carried out in a tertiary academic referral hospital. Patients suffering from CRLM who had undergone resection of at least one liver segment were included. Grading of SOS on the non-tumoral liver parenchyma was accomplished according to the Rubbia-Brandt criteria. A total of 151 patients were enrolled and divided into four groups according to the severity of SOS (grades 0-3). Multivariate analysis identified oxaliplatin and 5-fluorouracil as chemotherapeutic agents responsible for severe SOS lesions (P SOS lesions (P = 0.005). Univariate analysis identified the score on the aspartate aminotransferase : platelets ratio index (APRI) as the most significant biological factor predictive of severe SOS lesions. Splenomegaly is also significantly associated with the occurrence of severe SOS lesions. The APRI score and splenomegaly are effective as factors predictive of SOS. Bevacizumab has a protective effect against SOS. © 2013 International Hepato-Pancreato-Biliary Association.

  4. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    Science.gov (United States)

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  5. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G. (Universite Libre de Bruxelles (Belgium) Rijksuniversiteit Leiden (Netherlands)); Abrahams, P.J. (Rijksuniversiteit Leiden (Netherlands)); Chen, Y.Q. (Universite Libre de Bruxelles (Belgium)); Schouten, R. (Rijksuniversiteit Leiden (Netherlands)); Cornelis, J.J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France)); Lowe, J.E. (Sussex Univ., Brighton (UK)); Eb, A.J. van der (Rijksuniversiteit Leiden (Netherlands)); Rommelaere, J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France))

    1989-01-01

    Radiosensitive fibroblasts from patients with ataxia telangiectasia (AT) were studied for their proficiency in two putative eukaryotic SOS-like responses, namely the enhanced reactivation (ER) and enhanced mutagenesis of damaged viruses infecting pre-irradiated versus mock-treated cells. A previous report indicated that, unlike normal human cells, a line of AT fibroblasts (AT5BIVA) could not be induced to express ER of damaged parvovirus H-1, a single-stranded DNA virus, by UV- or X-irradiation. In the present study, AT5BIVA fibroblasts were also distinguished from normal cells by the inability of the former to achieve enhanced mutagenesis of damaged H-1 virus upon cell UV-irradiation. In contrast, dose-response and time-course experiments revealed normal levels of ER of Herpes simplex virus 1, a double-stranded DNA virus, in X- or UV-irradiated AT5BIVA cells. Taken together, these data point to a possible deficiency of AT cells in a conditioned mutagenic process that contributes to a greater extent to the recovery of damaged single-stranded than double-stranded DNA. Such a defect may concern the replication of damaged DNA or the generation of signals promoting the latter process and may be related to the lack of radiation-induced delay that is typical of AT cell DNA synthesis. (author).

  6. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells

    International Nuclear Information System (INIS)

    Hilgers, G.; Abrahams, P.J.; Chen, Y.Q.; Schouten, R.; Cornelis, J.J.; Lowe, J.E.; Eb, A.J. van der; Rommelaere, J.

    1989-01-01

    Radiosensitive fibroblasts from patients with ataxia telangiectasia (AT) were studied for their proficiency in two putative eukaryotic SOS-like responses, namely the enhanced reactivation (ER) and enhanced mutagenesis of damaged viruses infecting pre-irradiated versus mock-treated cells. A previous report indicated that, unlike normal human cells, a line of AT fibroblasts (AT5BIVA) could not be induced to express ER of damaged parvovirus H-1, a single-stranded DNA virus, by UV- or X-irradiation. In the present study, AT5BIVA fibroblasts were also distinguished from normal cells by the inability of the former to achieve enhanced mutagenesis of damaged H-1 virus upon cell UV-irradiation. In contrast, dose-response and time-course experiments revealed normal levels of ER of Herpes simplex virus 1, a double-stranded DNA virus, in X- or UV-irradiated AT5BIVA cells. Taken together, these data point to a possible deficiency of AT cells in a conditioned mutagenic process that contributes to a greater extent to the recovery of damaged single-stranded than double-stranded DNA. Such a defect may concern the replication of damaged DNA or the generation of signals promoting the latter process and may be related to the lack of radiation-induced delay that is typical of AT cell DNA synthesis. (author)

  7. Regulation of mutagenesis by exogenous biological factors in the eukaryotic cell systems

    Directory of Open Access Journals (Sweden)

    Lukash L. L.

    2013-07-01

    Full Text Available The representations of the mutations and the nature of spontaneous mutation process and mutagenesis induced by exogenous oncoviruses, DNAs and proteins-mitogens are analysed. Exogenous biological factors induce DNA damages in regulatory-informational way, acting on the cellular systems for maintenance of genetical stability. Molecular mechanisms are the same as at spontaneous mutagenesis but they are realized with the participation of alien genetical material. Among biological mutagens, the oncoviruses and mobile genetic elements (MGEs are distinguished as the strongest destabilizing factors which direct tumor transformation of somatic mammalian cells. Genetical reprogramming or changing the programs of gene expression at the differentiation of stem and progenitor cells under growth factors and citokines is probably followed by mutations and recombinations as well.

  8. NOAA NOS SOS, EXPERIMENTAL - Currents

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have currents data. *These services are for testing and evaluation use...

  9. NOAA NOS SOS, EXPERIMENTAL - Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have wind data. *These services are for testing and evaluation use only*...

  10. Comparative study of SOS response induced by hydrogen peroxide in the absence or presence of iron ions, in Escherichia coli; Estudo comparativo da resposta SOS induzida pelo peroxido de hidrogenio em presenca e ausencia de ions ferro, em Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Carlos Eduardo Bonacossa de

    1994-07-01

    The H{sub 2}O{sub 2} is an reactive oxygen specie that arises from cell respiration process. It may cause deleterious effects on cell, by reacting with transition metals like iron. In this way it yields free radicals that are able to damage organic molecules, mainly DNA. Recent works have suggested that in the absence of Fe ions H{sub 2}O{sub 2} still damages Escherichia coli DNA. This work presents a comparative analysis of cell SOS responses to DNA damage in Escherichia coli and Salmonella typhimurium mutants pretreated or not with a Fe{sup 2+} ion chelator (dipyridyl) and then treated with H{sub 2}O{sub 2}. The systems analysed were the lysogenic induction, Weigle reactivation, mutagenesis and cell inactivation curves. The cell inactivation curves were themselves distinct, in relation to both treatments. The increased sensitivity found in the lexA1 and recA13 mutants, when treated with dipyridyl and H{sub 2}O{sub 2}, suggests an important role of SOS response in repairing the lesions caused by this treatment. The profiles of the lysogenic induction and mutagenesis curves were also distinct in both treatments. The results of Weigle reactivation suggest that the products of uvrA and lexA genes have an important role in UV-damaged bacteriophage DNA repair, when dipyridyl-pretreated cells are treated with H{sub 2}O{sub 2}. All the results suggest that Fe-independent lesions produced by H{sub 2}O{sub 2} are different from the ones produced in the presence of this ion. (author)

  11. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain

    KAUST Repository

    Quintero, Francisco J.; Martí nez-Atienza, Juliana; Villalta, Irene; Jiang, Xingyu; Kim, Woeyeon; Ali, Zhair; Fujii, Hiroaki; Mendoza, Imelda; Yun, Daejin; Zhu, Jian-Kang; Pardo, José Manuel

    2011-01-01

    The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex upregulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.

  12. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain

    KAUST Repository

    Quintero, Francisco J.

    2011-01-24

    The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex upregulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.

  13. Comparative study of SOS response induced by hydrogen peroxide in the absence or presence of iron ions, in Escherichia coli

    International Nuclear Information System (INIS)

    Almeida, Carlos Eduardo Bonacossa de

    1994-01-01

    The H 2 O 2 is an reactive oxygen specie that arises from cell respiration process. It may cause deleterious effects on cell, by reacting with transition metals like iron. In this way it yields free radicals that are able to damage organic molecules, mainly DNA. Recent works have suggested that in the absence of Fe ions H 2 O 2 still damages Escherichia coli DNA. This work presents a comparative analysis of cell SOS responses to DNA damage in Escherichia coli and Salmonella typhimurium mutants pretreated or not with a Fe 2+ ion chelator (dipyridyl) and then treated with H 2 O 2 . The systems analysed were the lysogenic induction, Weigle reactivation, mutagenesis and cell inactivation curves. The cell inactivation curves were themselves distinct, in relation to both treatments. The increased sensitivity found in the lexA1 and recA13 mutants, when treated with dipyridyl and H 2 O 2 , suggests an important role of SOS response in repairing the lesions caused by this treatment. The profiles of the lysogenic induction and mutagenesis curves were also distinct in both treatments. The results of Weigle reactivation suggest that the products of uvrA and lexA genes have an important role in UV-damaged bacteriophage DNA repair, when dipyridyl-pretreated cells are treated with H 2 O 2 . All the results suggest that Fe-independent lesions produced by H 2 O 2 are different from the ones produced in the presence of this ion. (author)

  14. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    Science.gov (United States)

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  15. The meaning of ordered SOS

    NARCIS (Netherlands)

    Mousavi, M.R.; Phillips, I.C.C.; Reniers, M.A.; Ulidowski, I.; Arun-Kumar, S.; Garg, N.

    2006-01-01

    Structured Operational Semantics (SOS) is a popular method for defining semantics by means of deduction rules. An important feature of deduction rules, or simply SOS rules, are negative premises, which are crucial in the definitions of such phenomena as priority mechanisms and time-outs. Orderings

  16. Recovery during radiation mutagenesis

    International Nuclear Information System (INIS)

    Deen, D.F.; Shaw, E.I.

    1976-01-01

    Many variables (e.g. cell inoculum size, mutagen dose, expression time, and concentration of the selective agent) are known to affect the induced mutation frequency obtained in cultured mammalian cells. The authors have studied the effects of several parameters on the frequency of radiation-induced resistance to 8-azaguanine in asynchronous V79-171B hamster cells. Inoculation with 10 5 cells was followed by graded doses of radiation, expression times were optimized to maximize mutation frequency, and then the treated cells were challenged with 8-azaguanine for ten days. The optimal expression times which maximized mutation frequency were dose dependent and are in the range of 14-24, 24, and 24-36 hours respectively for doses of 250, 40 and 800 rads. A time interval of 24 hours between two 250-rad fractions resulted in a mutation frequency smaller than that obtained from administration of a single 500-rad dose. With 36 hours between halves of the dose, the induced mutation frequency was an order of magnitude lower than that produced by a single dose and actually below the unirradiated (spontaneous) frequency. Maintenance of cells after irradation first at 18 0 C for 24 hours, and then allowance of expression at 37 0 C for 24 hours, increased both the spontaneous and induced mutation frequency. A one-hour postirradiation balanced salt-solution treatment did not affect the number of spontaneous mutants that arose, but reduced the number of induced mutants. Thus, the balanced salt treatment lowers the induced mutation frequency about a factor of two. The possible significance of these results are discussed with respect to the role of radiation repair mechanisms during mutagenesis, and to recovery at low dose rates. A working hypothesis is advanced to explain the possible mechanism which causes expression time to vary as a function of the dose of mutagen. (author)

  17. Protracted radiation mutagenesis

    International Nuclear Information System (INIS)

    Dubinina, L.G.; Shanazarova, A.S.; Chernikova, O.P.

    1976-01-01

    The aim of the work is investigation of the dynamics of structural mutations of Cr.capillaris chromosomes induced by irradiation of seeds at different stages of the cell cycle with subsequent storage. The results obtained show that irradiation is followed by mutagenesis wave kinetics under such conditions. The level and the character of this phenomenon depends on the functional state of the nucleus or on the relationship between this state and the amount of water in the seeds. Studies of this phenomenon will bring better understanding to the mechanism of radiation mutagenesis [ru

  18. Mutagenesis

    International Nuclear Information System (INIS)

    Dubinin, N.P.

    1986-01-01

    Problems on radiation mutagenesis, in particular, data on general factors of genetic radiation effects, dependences of mutation frequencies on radiation dose and threshold in genetic radiation effects, problems of low doses, modification of genetic radiation effects, repauir of injuries of genetic material, photoreactivation, causing structure chromosomal mutations under radiation action, on relative genetic efficiency of different types of radiation are considered besides others

  19. NOAA NDBC SOS, 2006-present, sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  20. SNAP Operating System (SOS) user's guide

    International Nuclear Information System (INIS)

    Sabuda, J.D.; Polito, J.; Walker, J.L.; Grant, F.H. III.

    1982-03-01

    The SNAP Operating System (SOS) is a FORTRAN 77 program which provides assistance to the safeguards analyst who uses the Safeguards Automated Facility Evaluation (SAFE) and the Safeguards Network Analysis Procedure (SNAP) techniques. Features offered by SOS are a data base system for storing a library of SNAP applications, computer graphics representation of SNAP models, a computer graphics editor to develop and modify SNAP models, a SAFE-to-SNAP interface, automatic generation of SNAP input data, and a computer graphics postprocessor for SNAP. The SOS User's Guide is designed to provide the user with the information necessary to use SOS effectively. Examples are used throughout to illustrate the concepts. The format of the user's guide follows the same sequence as would be used in executing an actual application

  1. Differential requirements of two recA mutants for constitutive SOS expression in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Jarukit Edward Long

    Full Text Available Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recA(C in the absence of external DNA damage in log phase cells.Genetic analysis of two recA(C mutants was used to determine the mechanism of constitutive SOS (SOS(C expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp. SOS(C expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOS(C expression in recA730 mutants was affected by none of the mutations or conditions tested above.It is concluded that not all recA(C alleles cause SOS(C expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOS(C expression by binding to ssDNA in a mechanism yet to be determined.

  2. Spontaneous inflammatory pain model from a mouse line with N-ethyl-N-nitrosourea mutagenesis

    Directory of Open Access Journals (Sweden)

    Chen Tsung-Chieh

    2012-05-01

    Full Text Available Abstract Background N-ethyl-N-nitrosourea mutagenesis was used to induce a point mutation in C57BL/6 J mice. Pain-related phenotype screening was performed in 915 G3 mice. We report the detection of a heritable recessive mutant in meiotic recombinant N1F1 mice that caused an abnormal pain sensitivity phenotype with spontaneous skin inflammation in the paws and ears. Methods We investigated abnormal sensory processing, neuronal peptides, and behavioral responses after the induction of autoinflammatory disease. Single-nucleotide polymorphism (SNP markers and polymerase chain reaction product sequencing were used to identify the mutation site. Results All affected mice developed paw inflammation at 4–8 weeks. Histological examinations revealed hyperplasia of the epidermis in the inflamed paws and increased macrophage expression in the spleen and paw tissues. Mechanical and thermal nociceptive response thresholds were reduced in the affected mice. Locomotor activity was decreased in affected mice with inflamed hindpaws, and this reduction was attributable to the avoidance of contact of the affected paw with the floor. Motor strength and daily activity in the home cage in the affected mice did not show any significant changes. Although Fos immunoreactivity was normal in the dorsal horn of affected mice, calcitonin gene-related peptide immunoreactivity significantly increased in the deep layer of the dorsal horn. The number of microglia increased in the spinal cord, hippocampus, and cerebral cortex in affected mice, and the proliferation of microglia was maintained for a couple of months. Two hundred eighty-five SNP markers were used to reveal the affected gene locus, which was found on the distal part of chromosome 18. A point mutation was detected at A to G in exon 8 of the pstpip2 gene, resulting in a conserved tyrosine residue at amino acid 180 replaced by cysteine (Y180 C. Conclusions The data provide definitive evidence that a mutation

  3. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    Science.gov (United States)

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  4. Transgenic Chinese hamster V79 cell lines which exhibit variable levels of gpt mutagenesis

    International Nuclear Information System (INIS)

    Klein, C.B.; Rossman, T.G.

    1990-01-01

    The Escherichia coli gpt gene coding for xanthine-guanine phosphoribosyl transferase has been stably transfected into HPRT - Chinese hamster V79 cells. Several gpt - cell lines have been established, which retain the sequence(s) even after long-term culture without selection for gpt. While spontaneous mutagenesis to gpt - occurs rather frequently for most cell lines, it cannot be correlated with either the number of plasmid integration sites or deletion of the plasmid sequence(s). One transgenic cell line (g12), which continuously maintains a low spontaneous mutation frequency was used in comparative mutagenesis studies with wild-type V79 cells (gpt vs. hprt). Alkylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and β-propiolactone (BPL) are shown to be equally toxic and mutagenic in both g12 and V79 cells. UV and X-rays are also equally toxic to both cell lines. The data presented here suggests that g12 cells may be useful to study mammalian mutagenesis by agents which yield limited response at the hprt locus

  5. System-dependent regulations of colour-pattern development: a mutagenesis study of the pale grass blue butterfly

    Science.gov (United States)

    Iwata, Masaki; Hiyama, Atsuki; Otaki, Joji M.

    2013-01-01

    Developmental studies on wing colour patterns have been performed in nymphalid butterflies, but efficient genetic manipulations, including mutagenesis, have not been well established. Here, we have performed mutagenesis experiments in a lycaenid butterfly, the pale grass blue Zizeeria maha, to produce colour-pattern mutants. We fed the P-generation larvae an artificial diet containing the mutagen ethyl methane sulfonate (EMS), and the F1- and F2-generation adults showed various aberrant colour patterns: dorsoventral transformation, anterioposterior background colouration gap, weak contrast, disarrangement of spots, reduction of the size of spots, loss of spots, fusion of spots, and ectopic spots. Among them, the disarrangement, reduction, and loss of spots were likely produced by the coordinated changes of many spots of a single wing around the discal spot in a system-dependent manner, demonstrating the existence of the central symmetry system. The present study revealed multiple genetic regulations for system-dependent and wing-wide colour-pattern determination in lycaenid butterflies. PMID:23917124

  6. SOS response activation and competence development are antagonistic mechanisms in Streptococcus thermophilus.

    Science.gov (United States)

    Boutry, Céline; Delplace, Brigitte; Clippe, André; Fontaine, Laetitia; Hols, Pascal

    2013-02-01

    Streptococcus includes species that either contain or lack the LexA-like repressor (HdiR) of the classical SOS response. In Streptococcus pneumoniae, a species which belongs to the latter group, SOS response inducers (e.g., mitomycin C [Mc] and fluoroquinolones) were shown to induce natural transformation, leading to the hypothesis that DNA damage-induced competence could contribute to genomic plasticity and stress resistance. Using reporter strains and microarray experiments, we investigated the impact of the SOS response inducers mitomycin C and norfloxacin and the role of HdiR on competence development in Streptococcus thermophilus. We show that both the addition of SOS response inducers and HdiR inactivation have a dual effect, i.e., induction of the expression of SOS genes and reduction of transformability. Reduction of transformability results from two different mechanisms, since HdiR inactivation has no major effect on the expression of competence (com) genes, while mitomycin C downregulates the expression of early and late com genes in a dose-dependent manner. The downregulation of com genes by mitomycin C was shown to take place at the level of the activation of the ComRS signaling system by an unknown mechanism. Conversely, we show that a ComX-deficient strain is more resistant to mitomycin C and norfloxacin in a viability plate assay, which indicates that competence development negatively affects the resistance of S. thermophilus to DNA-damaging agents. Altogether, our results strongly suggest that SOS response activation and competence development are antagonistic processes in S. thermophilus.

  7. An orthosteric inhibitor of the RAS-SOS interaction.

    Science.gov (United States)

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling. © 2013 Elsevier Inc. All rights reserved.

  8. Prototyping SOS meta-theory in Maude

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Mosses, P.D.; Ulidowski, I.

    2006-01-01

    We present a prototype implementation of SOS meta-theory in the Maude term rewriting language. The prototype defines the basic concepts of SOS meta-theory (e.g., transition formulae, deduction rules and transition system specifications) in Maude. Besides the basic definitions, we implement methods

  9. Semantics and expressiveness of ordered SOS

    NARCIS (Netherlands)

    Mousavi, M.R.; Phillips, I.C.C.; Reniers, M.A.; Ulidowski, I.

    2009-01-01

    Structured Operational Semantics (SOS) is a popular method for defining semantics by means of transition rules. An important feature of SOS rules is negative premises, which are crucial in the definitions of such phenomena as priority mechanisms and time-outs. However, the inclusion of negative

  10. ORF Alignment: NC_005085 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_005085 gi|34497787 >1f39A 3 98 107 198 1e-23 ... gb|AAQ60004.1| SOS mutagenesis [C...hromobacterium violaceum ATCC 12472] ... ref|NP_902002.1| SOS mutagenesis [Chromobacterium ...

  11. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  12. The Salt Overly Sensitive (SOS) pathway: established and emerging roles.

    Science.gov (United States)

    Ji, Hongtao; Pardo, José M; Batelli, Giorgia; Van Oosten, Michael J; Bressan, Ray A; Li, Xia

    2013-03-01

    Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.

  13. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response.

    Science.gov (United States)

    Mori, Tetsuya; Nakamura, Tatsuro; Okazaki, Naoto; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi

    2012-01-01

    The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.

  14. Nominal SOS

    NARCIS (Netherlands)

    Cimini, M.; Mousavi, M.R.; Reniers, M.A.; Gabbay, M.J.

    2012-01-01

    Plotkin's style of Structural Operational Semantics (SOS) has become a de facto standard in giving operational semantics to formalisms and process calculi. In many such formalisms and calculi, the concepts of names, variables and binders are essential ingredients. In this paper, we propose a formal

  15. Inhibitors of Ras-SOS Interactions.

    Science.gov (United States)

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis

    OpenAIRE

    Quintero, Francisco J.; Ohta, Masaru; Shi, Huazhong; Zhu, Jian-Kang; Pardo, José M.

    2002-01-01

    The Arabidopsis thaliana SOS1 protein is a putative Na H antiporter that functions in Na extrusion and is essential for the NaCl tolerance of plants. sos1 mutant plants share phenotypic similarities with mutants lacking the protein kinase SOS2 and the Ca2 sensor SOS3. To investigate whether the three SOS proteins function in the same response pathway, we have reconstituted the SOS system in yeast cells. Expression of SOS1 improved the Na tolerance of yeast mutants la...

  17. Evelin Ilves avas SOS Lasteküla

    Index Scriptorium Estoniae

    2010-01-01

    SOS Lasteküla patroon proua Evelin Ilves avas 1. juunil 2010 Põltsamaal Eesti teise SOS Lasteküla. Presidendi abikaasa tõi kingiks õunapuuistikuid ja lasteraamatuid. Ilmunud ka: Eesti Päevaleht 2. juuni 2010, lk. 4

  18. ORF Alignment: NC_005861 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_005861 gi|46446610 >1f39A 5 95 55 141 1e-16 ... ref|YP_007975.1| probable SOS mutagenesis... and repair protein UmuD [Parachlamydia sp. ... UWE25] emb|CAF23700.1| probable SOS mutagenesis

  19. ORF Alignment: NC_005070 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_005070 gi|33865578 >1f39A 4 97 54 143 4e-22 ... ref|NP_897137.1| putative SOS mutagenesis... protein UmuD [Synechococcus sp. WH 8102] ... emb|CAE07559.1| putative SOS mutagenesis protein

  20. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Orrego, C.; Eisenstadt, E.

    1987-01-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA + gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability

  1. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have salinity data. *These services are for testing and evaluation use...

  2. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Conductivity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have conductivity data. *These services are for testing and evaluation use...

  3. Induction of the SOS system in Escherichia coli after UVA (320 - 400 nm) irradiation

    International Nuclear Information System (INIS)

    Batbyamba, G.; Drasil, V.

    1988-01-01

    Induction of the SOS repair system in E. coli caused by broad-band (320 - 400 nm) UVA radiation and an oxygen effect in this induction were studied using the sfiA::lacZ operon fusion. Moreover, an oxygen effect on the broad-band UVA radiation-induced cell killing was studied. The experiments indicate that: (1) Broad-band UVA light can produce lethal damage to cells as well as DNA damage able to generate an SOS-inducing signal. This damage is O 2 -dependent to a significant extent: SOSIP (O 2 )/ SOSIP (Ar) = 1.61 and OER = 1.96; (2) After UVA irradiation the SOS induction factor increases monotonously in the time interval longer than 4 h indicating that the SOS-inducing DNA damage caused by UVA irradiation has a 'long-lived' character; (3) Oxic and hypoxic incubation following UVA irradiation carried out under aerobic and anaerobic conditions resulted in a strong oxygen effect: SOSIP(O 2 )/SOSIP(Ar) ∼ 5. On the basis of these results and literary data it was concluded that one of the main toxic photoproducts formed as a result of UVA irradiation of the cells in a culture medium might be hydrogen peroxide (H 2 O 2 ). H 2 O 2 decays gradually during post-irradiation incubation and yields reactive radical species, mainly OH radical, that result in a formation of SOS-inducing DNA damages and contribute to cell lethality, and prolonged SOS induction. (author)

  4. Sos - response induction by gamma radiation in Escherichia coli strains with different repair capacities

    International Nuclear Information System (INIS)

    Serment Guerrero, J.H.

    1992-01-01

    The Sos - response in Escherichia coli is formed by several genes involved in mechanisms of tolerance and/or repair, and only activates when a DNA - damage appears. It is controlled by recA and lexA genes. In normal circumstances, LexA protein is linked in every Sos operators, blocking the transcription. When a DNA damage occurs, a Sos signal is generated, Rec A protein changes its normal functions, starts acting as a protease and cleaves Lex A, allowing the transcription of all Sos genes. This response can be quantified by means of Sos Chromo test, performed by Quillardet and Ofnung (1985). In using the Chromo test, it has been observed that the DNA damage made by gamma radiation in Escherichia coli depends on both the doses and the doses rate. It has been shown that the exposure of Escherichia coli PQ37 strain (uvrA) to low doses at low dose rate appears to retard the response, suggesting the action of a repair mechanism. (Brena 1990). In this work, we compare the response in Escherichia coli strains deficient in different mechanisms of repair and/or tolerance. It is observed the importance of rec N gene in the repair of DNA damage produced by gamma radiation. (Author)

  5. Role of damage-specific DNA polymerases in M13 phage mutagenesis induced by a major lipid peroxidation product trans-4-hydroxy-2-nonenal

    Energy Technology Data Exchange (ETDEWEB)

    Janowska, Beata [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Kurpios-Piec, Dagmara [Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw (Poland); Prorok, Paulina [Institute of Genetics and Biotechnology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw (Poland); Szparecki, Grzegorz [Medical University of Warsaw, Zwirki i Wigury 61, 02-097 Warsaw (Poland); Komisarski, Marek [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Kowalczyk, Pawel [Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Pawinskiego 5a, 02-106 Warsaw (Poland); Janion, Celina [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Tudek, Barbara, E-mail: tudek@ibb.waw.pl [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw (Poland); Institute of Genetics and Biotechnology, Warsaw University, Pawinskiego 5a, 02-106 Warsaw (Poland)

    2012-01-03

    One of the major lipid peroxidation products trans-4-hydroxy-2-nonenal (HNE), forms cyclic propano- or ethenoadducts bearing six- or seven-carbon atom side chains to G > C Much-Greater-Than A > T. To specify the role of SOS DNA polymerases in HNE-induced mutations, we tested survival and mutation spectra in the lacZ{alpha} gene of M13mp18 phage, whose DNA was treated in vitro with HNE, and which was grown in uvrA{sup -}Escherichia coli strains, carrying one, two or all three SOS DNA polymerases. When Pol IV was the only DNA SOS polymerase in the bacterial host, survival of HNE-treated M13 DNA was similar to, but mutation frequency was lower than in the strain containing all SOS DNA polymerases. When only Pol II or Pol V were present in host bacteria, phage survival decreased dramatically. Simultaneously, mutation frequency was substantially increased, but exclusively in the strain carrying only Pol V, suggesting that induction of mutations by HNE is mainly dependent on Pol V. To determine the role of Pol II and Pol IV in HNE induced mutagenesis, Pol II or Pol IV were expressed together with Pol V. This resulted in decrease of mutation frequency, suggesting that both enzymes can compete with Pol V, and bypass HNE-DNA adducts in an error-free manner. However, HNE-DNA adducts were easily bypassed by Pol IV and only infrequently by Pol II. Mutation spectrum established for strains expressing only Pol V, showed that in uvrA{sup -} bacteria the frequency of base substitutions and recombination increased in relation to NER proficient strains, particularly mutations at adenine sites. Among base substitutions A:T {yields} C:G, A:T {yields} G:C, G:C {yields} A:T and G:C {yields} T:A prevailed. The results suggest that Pol V can infrequently bypass HNE-DNA adducts inducing mutations at G, C and A sites, while bypass by Pol IV and Pol II is error-free, but for Pol II infrequent.

  6. Effect of an umuC-mutation on the SOS-response in E.coli cells exposed to UV-light and γ-radiation

    International Nuclear Information System (INIS)

    Komova, O.V.; Candiano, E.S.; Krasavin, E.A.

    1999-01-01

    Kinetics dependences of the SOS-induction in E.coli cells of wild type and deficient in umuC gene exposed to UV and γ-rays were analyzed. In the presence of UmuC protein SOS-induction was 3 -- 5.5 times lower and delayed for about 30 minutes after both UV and γ-rays. It was shown that the decrease of the SOS-induction in wild type cells irradiated by UV was due to more effective elimination of the photolesions from DNA by excision repair system. UmuCD-dependent inhibition of DNA replication was discussed as a possible mechanism allowing additional time for error-free repair. (author)

  7. SOS-projektet

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2007-01-01

    Artiklen beretter om og analyserer det såkaldte SOS-projekt, hvor matematiklærere fra grundskolen, gymnasiet og læreruddannelsen har samarbejdet med matematikdidaktiske forskere om at undersøge og afhjælpe nogle af de udfordringer som danske elever møder i matematik ved overgangen fra grundskole...

  8. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  9. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. CMOS/SOS processing

    Science.gov (United States)

    Ramondetta, P.

    1980-01-01

    Report describes processes used in making complementary - metal - oxide - semiconductor/silicon-on-sapphire (CMOS/SOS) integrated circuits. Report lists processing steps ranging from initial preparation of sapphire wafers to final mapping of "good" and "bad" circuits on a wafer.

  11. Roles for the yeast RAD18 and RAD52 DNA repair genes in UV mutagenesis.

    Science.gov (United States)

    Armstrong, J D; Chadee, D N; Kunz, B A

    1994-11-01

    Experimental evidence indicates that although the Saccharomyces cerevisiae RAD18 and RAD52 genes are not required for nucleotide excision repair, they function in the processing of UV-induced DNA damage in yeast. Conflicting statements regarding the UV mutability of strains deleted for RAD18 prompted us to re-examine the influence of RAD18, and RAD52, on UV mutagenesis. To do so, we characterized mutations induced by UV in SUP4-o, a yeast suppressor tRNA gene. SUP4-o was maintained on a plasmid in isogenic strains that either carried one of two different rad18 deletions (rad18 delta) or had RAD52 disrupted. Both rad18 deletions decreased the frequency of UV-induced SUP4-o mutations to levels close to those for spontaneous mutagenesis in the rad18 delta backgrounds, and prevented a net increase in mutant yield. A detailed analysis of mutations isolated after UV irradiation of one of the rad18 delta strains uncovered little evidence of the specificity features typical for UV mutagenesis in the isogenic repair-proficient (RAD) parent (e.g., predominance of G.C-->A.T transitions). Evidently, UV induction of SUP4-o mutations is highly dependent on the RAD18 gene. Compared to the RAD strain, disruption of RAD52 reduced the frequency and yield of UV mutagenesis by about two-thirds. Closer inspection revealed that 80% of this reduction was due to a decrease in the frequency of G.C-->A.T transitions. In addition, there were differences in the distributions and site specificities of single base-pair substitutions. Thus, RAD52 also participates in UV mutagenesis of a plasmid-borne gene in yeast, but to a lesser extent than RAD18.

  12. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Barometric Pressure

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have barometric pressure data. *These services are for testing and...

  13. Quinolone Resistance Reversion by Targeting the SOS Response.

    Science.gov (United States)

    Recacha, E; Machuca, J; Díaz de Alba, P; Ramos-Güelfo, M; Docobo-Pérez, F; Rodriguez-Beltrán, J; Blázquez, J; Pascual, A; Rodríguez-Martínez, J M

    2017-10-10

    Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog 10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog 10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. IMPORTANCE The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this

  14. SOS, the formidable strategy of bacteria against aggressions.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-11-01

    The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  16. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have air temperature data. *These services are for testing and evaluation...

  17. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and evaluation...

  18. Theoretical model of the SOS effect

    Energy Technology Data Exchange (ETDEWEB)

    Darznek, S A; Mesyats, G A; Rukin, S N; Tsiranov, S N [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics

    1997-12-31

    Physical principles underlying the operation of semiconductor opening switches (SOS) are highlighted. The SOS effect occurs at a current density of up to 60 kA/cm{sup 2} in silicon p{sup +}-p-n-n{sup +} structures filled with residual electron-hole plasma. Using a theoretical model developed for plasma dynamic calculations, the mechanism by which current passes through the structure at the stage of high conduction and the processes that take place at the stage of current interruption were analyzed. The dynamics of the processes taking place in the structure was calculated with allowance for both diffusive and drift mechanisms of carrier transport. In addition, two recombination types, viz. recombination via impurities and impact Auger recombination, were included in the model. The effect of the structure on the pumping-circuit current and voltage was also taken into account. The real distribution of the doped impurity in the structure and the avalanche mechanism of carrier multiplication were considered. The results of calculations of a typical SOS are presented. The dynamics of the electron-hole plasma is analyzed. It is shown that the SOS effect represents a qualitatively new mechanism of current interruption in semiconductor structures. (author). 4 figs., 7 refs.

  19. The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Barrena, María José; Moreno-Pérez, Sandra; Angulo, Iván; Martínez-Ripoll, Martín; Albert, Armando, E-mail: xalbert@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas, Serrano 119, E-28006 Madrid (Spain)

    2007-07-01

    Recombinant SOS3 and SOS2 regulatory domain from A. thaliana have been coexpressed in E. coli, purified and crystallized by the hanging-drop vapour-diffusion method. An X-ray data set has been collected at 2.0 Å resolution. The salt-tolerance genes SOS3 (salt overly sensitive 3) and SOS2 (salt overly sensitive 2) regulatory domain of Arabidopsis thaliana were cloned into a polycistronic plasmid and the protein complex was expressed in Escherichia coli, allowing purification to homogeneity in three chromatographic steps. Crystals were grown using vapour-diffusion techniques. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 44.14, b = 57.39, c = 141.90 Å.

  20. Modification of γ-induced mutagenesis in Ames test-strains

    International Nuclear Information System (INIS)

    Basha, S.G.; Krasavin, E.A.; Kozubek, S.; Amirtaev, K.G.

    1990-01-01

    Glycerine and cysteamine protective effect on mutagenesis was studied in 3 strains of Salmonella typhimurium under γ-radiation. Glycerine modifying effect was shown to be not similar for various test-strains and depended on DNA injury nature. DNA complex injuries were shown to play significant role in mutagenesis of TA100 and TA102 strains. Absence of cysteamine modifying effect on γ-induced mutagenesis testified to cysteamine effect on enzyme balance. 20 refs.; 2 figs.; 1 tab

  1. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Water Level

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water surface height above a reference datum. *These services are for...

  2. SNAP/SOS: a package for simulating and analyzing safeguards systems

    International Nuclear Information System (INIS)

    Grant, F.H. III; Polito, J.; Sabuda, J.

    1983-01-01

    The effective analysis of safeguards systems at nuclear facilities requires significant effort. The Safeguards Network Analysis Procedure (SNAP) and the SNAP Operating System (SOS) reduce that effort to a manageable level. SNAP provides a detailed analysis of site safeguards for tactical evaluation. SOS helps the analyst organize and manage the SNAP effort effectively. SOS provides a database for model storage, automatic model generation, and computer graphics. The SOS/SNAP combination is a working example of a simulation system including executive-level control, database system, and facilities for model creation, editing, and output analysis

  3. The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis.

    Science.gov (United States)

    Moolla, Nabiela; Goosens, Vivianne J; Kana, Bavesh D; Gordhan, Bhavna G

    2014-01-01

    The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. NOAA NDBC SOS, 2008-present, sea_floor_depth_below_sea_surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_floor_depth_below_sea_surface data. Because of the nature of SOS...

  5. Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Levy, Asaf; Amitai, Gil; Sorek, Rotem; Munitz, Ariel; Qimron, Udi

    2016-04-18

    The emergence of mutations following growth-limiting conditions underlies bacterial drug resistance, viral escape from the immune system and fundamental evolution-driven events. Intriguingly, whether mutations are induced by growth limitation conditions or are randomly generated during growth and then selected by growth limitation conditions remains an open question(1). Here, we show that bacteriophage T7 undergoes apparent stress-induced mutagenesis when selected for improved recognition of its host's receptor. In our unique experimental set-up, the growth limitation condition is physically and temporally separated from mutagenesis: growth limitation occurs while phage DNA is outside the host, and spontaneous mutations occur during phage DNA replication inside the host. We show that the selected beneficial mutations are not pre-existing and that the initial slow phage growth is enabled by the phage particle's low-efficiency DNA injection into the host. Thus, the phage particle allows phage populations to initially extend their host range without mutagenesis by virtue of residual recognition of the host receptor. Mutations appear during non-selective intracellular replication, and the frequency of mutant phages increases by natural selection acting on free phages, which are not capable of mutagenesis.

  6. A Review on Microbial Mutagenesis through Gamma Irradiation for Agricultural Applications

    International Nuclear Information System (INIS)

    Hoe, P.C.K.; Khairuddin Abdul Rahim

    2016-01-01

    Gamma irradiation is widely used in sterilization and mutagenesis, especially for plant breeding and crop protection. Microbial mutagenesis through gamma irradiation is mainly applied in fermentation industry. In agriculture, gamma irradiation is mostly applied in crop improvement. Microbial mutagenesis is mainly applied against fungus and spore-forming bacteria, which are resistant to gamma irradiation. Response of microbes to gamma irradiation varies and depends on various factors. Review of previous works on gamma irradiation for microbial mutagenesis in agriculture may provide some information for the use of this method. The general view on gamma irradiation, its application, and mutagenesis are discussed in this paper. Further investigation on microbial mutagenesis should consider molecular changes, information on which is lacking in previous works. Moreover, studies on microbial mutagenesis are still lacking in Malaysia despite having several gamma irradiation facilities. Therefore, further studies on microbial mutagenesis should be conducted. (author)

  7. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  8. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  9. Chromosomal damages and mutagenesis in mammalian and human cells induced by ionizing radiations with different LET

    International Nuclear Information System (INIS)

    Govorun, R.D.

    1997-01-01

    On the basis of literature and proper data the inference was made about essential role of structural chromosomal (and gene) damages in spontaneous and radiation-induced mutagenesis of mammalian and human cells on HPRT-loci. The evidences of increasing role of these damages in the mutagenesis after the influence of ionizing radiations with high LET are adduced. The consequences of HPRT-gene damages have been examined hypothetically. The geterogeneity of mutant subclones on their cytogenetical properties were revealed experimentally. The data reflect a phenomenon of the reproductive chromosomal instability in many generations of mutant cell. The mutagenesis of mammalian cells is also accompanied by the impairment of chromosome integrity with high probability as a stage of appropriate genome reorganization because of changed vital conditions

  10. Quantification, modelling and design for signal history dependent effects in mixed-signal SOI/SOS circuits

    International Nuclear Information System (INIS)

    Edwards, C.F.; Redman-White, W.; Bracey, M.; Tenbroek, B.M.; Lee, M.S.; Uren, M.J.; Brunson, K.M.

    1999-01-01

    This paper deals with how the radiation hardness of mixed signal SOI/SOS CMOS circuits is taken into account at both architectural terms as well as the the transistor level cell designs. The primary issue is to deal with divergent transistor threshold shifts, and to understand the effects of large amplitude non stationary signals on analogue cell behaviour. (authors)

  11. Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions

    DEFF Research Database (Denmark)

    Zamborszky, J.; Szikriszt, B.; Gervai, J. Z.

    2017-01-01

    -genome sequencing of multiple isogenic chicken DT40 cell clones to precisely determine the consequences of BRCA1/2 loss on all types of genomic mutagenesis. Spontaneous base substitution mutation rates increased sevenfold upon the disruption of either BRCA1 or BRCA2, and the arising mutation spectra showed strong...... of stalled replication forks as the cause of increased mutagenesis. The high rate of base substitution mutagenesis demonstrated by our experiments is likely to significantly contribute to the oncogenic effect of the inactivation of BRCA1 or BRCA2....

  12. SOS response and its regulation on the fluoroquinolone resistance.

    Science.gov (United States)

    Qin, Ting-Ting; Kang, Hai-Quan; Ma, Ping; Li, Peng-Peng; Huang, Lin-Yan; Gu, Bing

    2015-12-01

    Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.

  13. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Erik Hermann; Meseguer, José

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  14. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José

    2003-01-01

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  15. Quinolone Resistance Reversion by Targeting the SOS Response

    Directory of Open Access Journals (Sweden)

    E. Recacha

    2017-10-01

    Full Text Available Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs and dynamic (killing curves or flow cytometry methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs. Killing curve assays showed a clear disadvantage for survival (Δlog10 CFU per milliliter [CFU/ml] of 8 log units after 24 h, and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog10 CFU/g of 1.76 log units in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy.

  16. Mechanisms of uv mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.; Schwartz, A.

    1982-01-01

    The uv mutagenesis in yeast depends on the function of the RAD6 locus, a gene that is also responsible for a substantial fraction of wild-type resistance, suggesting that this eukaryote may possess a misrepair mechanism analogous to that proposed for Escherichia coli. The molecular mechanism responsible for RAD6 repair or recovery is not yet known, but it is different from either excision or recombination-dependent repair, processes carried out by the other two main repair pathways in yeast. RAD6-dependent mutagenesis has been found to have the following characteristics. It is associated at best with only a small fraction of RAD6-dependent repair, the majority of the sensitivity of rad6 mutants being due to their lack of nonmutagenic repair. SRS2 metabolic suppressors restore a substantial fraction of uv resistance to rad6 mutants but do not restore their uv mutability. Strains containing mutations at loci (rev, umr) that are probably more directly involved in mutagenesis are only mildly sensitive, and there is a poor correlation between their sensitivity and mutational deficiency. The uv mutagenesis appears to require a large number of gene functions, perhaps ten or more. Where examined in detail, these genes have been found to be concerned in the production of only a specific range of mutational events, not all of them. Mating experiments have shown that a substantial fraction, probably 40% or more, of uv-induced mutations are untargeted, that is, occur in lesion-free regions of DNA. The uv irradiation, therefore, produces a general reduction in the normally high fidelity with which DNA is replicated on undamaged templates. It does not appear to be necessary for the causal lesion to be present in the same chromosome as the mutation it induces. The reduction in fidelity may be the consequence of the production of a diffusible factor in uv-irradiated cells, but definite evidence supporting this proposal has not yet been obtained

  17. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Janet L Gibson

    Full Text Available Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR. We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.

  18. Repair promoted by plasmid pKM101 is different from SOS repair

    International Nuclear Information System (INIS)

    Goze, A.; Devoret, R.

    1979-01-01

    In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid PKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although Wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions. (Auth.)

  19. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    Science.gov (United States)

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  20. SOS - Der kaldes på Smartere Offentlig Styring

    DEFF Research Database (Denmark)

    Hjortdal, Henrik

    2017-01-01

    Smartere Offentlig Styring eller SOS. Det var temaet da over hundrede kommunale direktører drøftede offentlig ledelse med en lang række toneangivende danske forskere.......Smartere Offentlig Styring eller SOS. Det var temaet da over hundrede kommunale direktører drøftede offentlig ledelse med en lang række toneangivende danske forskere....

  1. Advances/applications of MAGIC and SOS

    Science.gov (United States)

    Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce

    1993-12-01

    MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.

  2. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. © 2016. Published by The Company of Biologists Ltd.

  3. BAX and tumor suppressor TRP53 are important in regulating mutagenesis in spermatogenic cells in mice.

    Science.gov (United States)

    Xu, Guogang; Vogel, Kristine S; McMahan, C Alex; Herbert, Damon C; Walter, Christi A

    2010-12-01

    During the first wave of spermatogenesis, and in response to ionizing radiation, elevated mutant frequencies are reduced to a low level by unidentified mechanisms. Apoptosis is occurring in the same time frame that the mutant frequency declines. We examined the role of apoptosis in regulating mutant frequency during spermatogenesis. Apoptosis and mutant frequencies were determined in spermatogenic cells obtained from Bax-null or Trp53-null mice. The results showed that spermatogenic lineage apoptosis was markedly decreased in Bax-null mice and was accompanied by a significantly increased spontaneous mutant frequency in seminiferous tubule cells compared to that of wild-type mice. Apoptosis profiles in the seminiferous tubules for Trp53-null were similar to control mice. Spontaneous mutant frequencies in pachytene spermatocytes and in round spermatids from Trp53-null mice were not significantly different from those of wild-type mice. However, epididymal spermatozoa from Trp53-null mice displayed a greater spontaneous mutant frequency compared to that from wild-type mice. A greater proportion of spontaneous transversions and a greater proportion of insertions/deletions 15 days after ionizing radiation were observed in Trp53-null mice compared to wild-type mice. Base excision repair activity in mixed germ cell nuclear extracts prepared from Trp53-null mice was significantly lower than that for wild-type controls. These data indicate that BAX-mediated apoptosis plays a significant role in regulating spontaneous mutagenesis in seminiferous tubule cells obtained from neonatal mice, whereas tumor suppressor TRP53 plays a significant role in regulating spontaneous mutagenesis between postmeiotic round spermatid and epididymal spermatozoon stages of spermiogenesis.

  4. Lastekaitsepäeval avati Põltsamaal SOS-peremajad / Raivo Feldmann

    Index Scriptorium Estoniae

    Feldmann, Raivo

    2010-01-01

    Eesti teise SOS Lasteküla ametlikul avamisel Põltsamaal 1. juunil 2010. a. osalesid ka Norra suursaadik Eestis Stein Vegard Hagen ja SOS Lasteküla patroon proua Evelin Ilves. Presidendi abikaasa kinkis igale perele pereõunapuu ja koos kirjastusega Varrak igale peremajale väikese koduraamatukogu

  5. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS).

    Science.gov (United States)

    Rabbow, E; Rettberg, P; Baumstark-Khan, C; Horneck, G

    2003-01-01

    In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system

  6. Mutagenesis-mediated virus extinction: virus-dependent effect of viral load on sensitivity to lethal defection.

    Directory of Open Access Journals (Sweden)

    Héctor Moreno

    Full Text Available BACKGROUND: Lethal mutagenesis is a transition towards virus extinction mediated by enhanced mutation rates during viral genome replication, and it is currently under investigation as a potential new antiviral strategy. Viral load and virus fitness are known to influence virus extinction. Here we examine the effect or the multiplicity of infection (MOI on progeny production of several RNA viruses under enhanced mutagenesis. RESULTS: The effect of the mutagenic base analogue 5-fluorouracil (FU on the replication of the arenavirus lymphocytic choriomeningitis virus (LCMV can result either in inhibition of progeny production and virus extinction in infections carried out at low multiplicity of infection (MOI, or in a moderate titer decrease without extinction at high MOI. The effect of the MOI is similar for LCMV and vesicular stomatitis virus (VSV, but minimal or absent for the picornaviruses foot-and-mouth disease virus (FMDV and encephalomyocarditis virus (EMCV. The increase in mutation frequency and Shannon entropy (mutant spectrum complexity as a result of virus passage in the presence of FU was more accentuated at low MOI for LCMV and VSV, and at high MOI for FMDV and EMCV. We present an extension of the lethal defection model that agrees with the experimental results. CONCLUSIONS: (i Low infecting load favoured the extinction of negative strand viruses, LCMV or VSV, with an increase of mutant spectrum complexity. (ii This behaviour is not observed in RNA positive strand viruses, FMDV or EMCV. (iii The accumulation of defector genomes may underlie the MOI-dependent behaviour. (iv LCMV coinfections are allowed but superinfection is strongly restricted in BHK-21 cells. (v The dissimilar effects of the MOI on the efficiency of mutagenic-based extinction of different RNA viruses can have implications for the design of antiviral protocols based on lethal mutagenesis, presently under development.

  7. The effect of essential oil of basil (Ocimum basilicum L.) on UV-induced mutagenesis in Escherichia coli and Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Stanojević, Jasna; Berić, Tanja; Opačić, Biljana; Vuković-Gačić, Branka; Simić, Draga; Knežević-Vukčević, Jelena [Institute of Botany, Faculty of Biology, University of Belgrade, 11000 Belgrade (Serbia)

    2008-07-01

    The antimutagenic potential of essential oil (EO) of basil (Ocimum basilicum L.) and its major constituent linalool were studied with the E. coli K12 and S. cerevisiae D7 assays. In the E. coli assay, EO and linalool inhibited UV-induced mutagenesis in a repair-proficient strain, but had no effect on spontaneous mutagenesis in repair-proficient, nucleotide excision repair-deficient, and mismatch-deficient strains. By testing participation of different mechanisms involved in antimutagenesis, it was concluded that the antimutagenic effect against UV-induced mutagenesis involved decrease of protein synthesis and cell proliferation which led to increased efficiency of nucleotide excision repair. An antimutagenic effect of basil derivatives in S. cerevisiae was not detected. (author)

  8. The effect of essential oil of basil (Ocimum basilicum L.) on UV-induced mutagenesis in Escherichia coli and Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stanojević, Jasna; Berić, Tanja; Opačić, Biljana; Vuković-Gačić, Branka; Simić, Draga; Knežević-Vukčević, Jelena

    2008-01-01

    The antimutagenic potential of essential oil (EO) of basil (Ocimum basilicum L.) and its major constituent linalool were studied with the E. coli K12 and S. cerevisiae D7 assays. In the E. coli assay, EO and linalool inhibited UV-induced mutagenesis in a repair-proficient strain, but had no effect on spontaneous mutagenesis in repair-proficient, nucleotide excision repair-deficient, and mismatch-deficient strains. By testing participation of different mechanisms involved in antimutagenesis, it was concluded that the antimutagenic effect against UV-induced mutagenesis involved decrease of protein synthesis and cell proliferation which led to increased efficiency of nucleotide excision repair. An antimutagenic effect of basil derivatives in S. cerevisiae was not detected. (author)

  9. Cancerous hyper-mutagenesis in p53 genes is possibly associated with transcriptional bypass of DNA lesions

    International Nuclear Information System (INIS)

    Rodin, S.N.; Rodin, A.S.; Juhasz, A.; Holmquist, G.P.

    2002-01-01

    The database of tumor-associated p53 base substitutions includes about 5% of tumors with two or more base substitutions. These multiplet base substitutions in one tumor are evidence for hyper-mutagenesis. Our retrospective analysis of this database indicates that most multiplets arise from a single transient hyper-mutagenic event in one cell that subsequently proliferated into a clonal tumor. The hyper-mutagenesis, 1.8x10 -4 substitutions per base pair, is detected as multiple mutations in p53 genes of tumors. It requires one strongly tumorigenic p53 substitution, usually missense, called the driver mutation. The occurrence frequencies of ancillary base substitutions, those that hitch-hike along with the driver mutation, are independent of their amino acid coding properties. In this respect, they act like neutral mutations. In support of this neutrality, we find that the frequency distribution of hitch-hiking CpG transitions along the p53 exons, their mutational spectrum, approximates the spontaneous pre-selection mutational spectrum of most human tissues and is correlated with the mutational spectrum of p53 pseudogenes in mammalian germ cells. The driver substitutions of multiplets predominantly originate along the transcribed strand while the ancillary substitutions tend to originate along the non-transcribed strand. This data is consistent with a model of time-dependent mutagenesis in non-dividing stem cells for generating multiple strand-asymmetric p53 mutations in tumors. By transcriptional bypass of DNA lesions with concomitant misincorporation, transcriptional mutagenesis generates a transient mutant p53 mRNA. The associated mutant p53 protein could allow the host cell a growth advantage, release from G 1 -arrest. Then, during subsequent DNA replication and misreading of the same lesion, the damaged base along the transcribed DNA strand would serve as the origin of the p53 base substitution that drives the hyper-mutagenic event leading to tumors with

  10. Construct Validity of the Societal Outreach Scale (SOS).

    Science.gov (United States)

    Fike, David S; Denton, Jason; Walk, Matt; Kish, Jennifer; Gorman, Ira

    2018-04-01

    The American Physical Therapy Association (APTA) has been working toward a vision of increasing professional focus on societal-level health. However, performance of social responsibility and related behaviors by physical therapists remain relatively poorly integrated into practice. Promoting a focus on societal outreach is necessary for all health care professionals to impact the health of their communities. The objective was to document the validity of the 14-item Societal Outreach Scale (SOS) for use with practicing physical therapists. This study used a cross-sectional survey. The SOS was transmitted via email to all therapists who were licensed and practicing in 10 states in the United States that were purposefully selected to assure a broad representation. A sample of 2612 usable responses was received. Factor analysis was applied to assess construct validity of the instrument. Of alternate models, a 3-factor model best demonstrated goodness of fit with the sample data according to conventional indices (standardized root mean squared residual = .03, comparative fit index .96, root mean square error of approximation = .06). The 3 factors measured by the SOS were labeled Societal-Level Health Advocacy, Community Engagement/Social Integration, and Political Engagement. Internal consistency reliability was 0.7 for all factors. The 3-factor SOS demonstrated acceptable validity and reliability. Though the sample included a broad representation of physical therapists, this was a single cross-sectional study. Additional confirmatory factor analysis, reliability testing, and word refinement of the tool are warranted. Given the construct validity and reliability of the 3-factor SOS, it is recommended for use as a validated instrument to measure physical therapists' performance of social responsibility and related behaviors.

  11. Bevacizumab exacerbates sinusoidal obstruction syndrome (SOS) in the animal model and increases MMP 9 production.

    Science.gov (United States)

    Jafari, Azin; Matthaei, Hanno; Wehner, Sven; Tonguc, Tolga; Kalff, Jörg C; Manekeller, Steffen

    2018-04-24

    Thanks to modern multimodal treatment the ouctome of patients with colorectal cancer has experienced significant improvements. As a downside, agent specific side effects have been observed such as sinusoidal obstruction syndrome (SOS) after oxaliplatin chemotherapy (OX). Bevazicumab targeting VEGF is nowadays comprehensively used in combination protocols with OX but its impact on hepatotoxicity is thus far elusive and focus of the present study. After MCT administration 67% of animals developed SOS. GOT serum concentration significantly increased in animals developing SOS ( p SOS. In contrast, animals receiving VEGF developed SOS merely in 40% while increasing the VEGF dose led to a further decrease in SOS development to 25%. MMP 9 concentration in animals developing SOS was significantly higher compared to controls ( p SOS paralleled by MMP 9 production. Therefore, OX-Bevacizumab combination therapies should be administered with caution, especially if liver parenchyma damage is apparent. Male Sprague-Dawley rats were gavaged Monocrotaline (MCT) to induce SOS. Recombinant VEGF or an Anti-VEGF antibody was administered to MCT-treated rats and the hepatotoxic effect monitored in defined time intervals. MMP 9 expression in the liver was measured by ELISA.

  12. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2006-01-01

    /mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS...

  13. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-04

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.

  14. Blocking by the carcinogen, L-ethionine, of SOS functions in a tif-1 mutant of Escherichia coli B/r

    International Nuclear Information System (INIS)

    Wiesner, R.; Troll, W.

    1981-01-01

    In Escherichia coli, DNA damage by carcinogenic agents results in the coordinate expression of a diversity of functions (SOS functions), many of which are thermally inducible without any damage to DNA in a tif-1 mutant. These include prophage induction, filamentous growth, and an error-prone DNA repair activity, which is responsible for ultraviolet-induced mutagenesis. Ethionine causes hepatic carcinoma in rats after prolonged feeding but is not a mutagen in the Ames test. The present study shows that 10 mM ethionine prevents the thermal induction of lambda-prophage in a tif-1 derivative of E. coli. The enhancement of mutation, which normally occurs at high temperature after a low dose of ultraviolet light, is also blocked by ethionine. Ethionine does not block, to any appreciable extent, the incorporation of radioactive precursors into RNA, DNA, or protein

  15. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    Science.gov (United States)

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  16. Comments on mutagenesis risk estimation

    International Nuclear Information System (INIS)

    Russell, W.L.

    1976-01-01

    Several hypotheses and concepts have tended to oversimplify the problem of mutagenesis and can be misleading when used for genetic risk estimation. These include: the hypothesis that radiation-induced mutation frequency depends primarily on the DNA content per haploid genome, the extension of this concept to chemical mutagenesis, the view that, since DNA is DNA, mutational effects can be expected to be qualitatively similar in all organisms, the REC unit, and the view that mutation rates from chronic irradiation can be theoretically and accurately predicted from acute irradiation data. Therefore, direct determination of frequencies of transmitted mutations in mammals continues to be important for risk estimation, and the specific-locus method in mice is shown to be not as expensive as is commonly supposed for many of the chemical testing requirements

  17. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Science.gov (United States)

    Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K

    2017-01-01

    Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  18. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Bryan E Bunnell

    Full Text Available Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  19. Congruence for SOS with data

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Groote, J.F.

    2004-01-01

    Abstract While studying the specification of the operational semantics of different programming languages and formalisms, one can observe the following three facts. Firstly, Plotkin¿s style of Structured Operational Semantics (SOS) has become a standard in defining operational semantics. Secondly,

  20. New mutations affecting induced mutagenesis in yeast.

    Science.gov (United States)

    Lawrence, C W; Krauss, B R; Christensen, R B

    1985-01-01

    Previously isolated mutations in baker's yeast, Saccharomyces cerevisiae, that impair induced mutagenesis were all identified with the aid of tests that either exclusively or predominantly detect base-pair substitutions. To avoid this bias, we have screened 11 366 potentially mutant clones for UV-induced reversion of the frameshift allele, his4-38, and have identified 10 mutants that give much reduced yields of revertants. Complementation and recombination tests show that 6 of these carry mutations at the previously known REV1, REV1 and REV3 loci, while the remaining 4 define 3 new genes, REV4 (2 mutations), REV5 and REV6. The rev4 mutations are readily suppressed in many genetic backgrounds and, like the rev5 mutation, impart only a limited deficiency for induced mutagenesis: it is likely, therefore that the REV4+ and REV5+ gene functions are only remotely concerned with this process. The rev6 mutants have a more general deficiency, however, as well as marked sensitivity to UV and an increased spontaneous mutation rate, properties that suggest the REV6 gene is directly involved in mutation induction. The REV5 gene is located about 1 cM proximal to CYC1 on chromosome X.

  1. Consequences of SOS1 deficiency: Intracellular physiology and transcription

    KAUST Repository

    Ha, OhDong

    2010-06-01

    As much as there is known about the function of the sodium/proton antiporter SOS1 in plants, recent studies point towards a more general role for this protein. The crucial involvement in salt stress protection is clearly one of its functions –confined to the N-terminus, but the modular structure of the protein includes a segment with several domains that are functionally not studied but comprise more than half of the protein’s length. Additional functions of the protein appear to be an influence on vesicle trafficking, vacuolar pH and general ion homeostasis during salt stress. Eliminating SOS1 leads to the expression of genes that are not strictly salinity stress related. Functions that are regulated in sos1 mutants included pathogen responses, and effects on circadian rhythm.

  2. Collection for SOS animaux

    CERN Multimedia

    2005-01-01

    The Pays de Gex animal shelter is collecting funds. There will be things to buy. You will be able to make a donation and/or become a member of the association or simply get information. SOS Animaux stall (Hall, Build. 60, next to restaurant 1) On Wednesday 23 November 2005 (from 9h - 17h non-stop)

  3. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  4. Pecularities of mutagenesis of T4Br bacteriophage under the direct and indirect radiation effects

    International Nuclear Information System (INIS)

    Yurov, S.S.

    1975-01-01

    Different lethal and mutagenic effects were shown when bacteriophage T4Br + (470 r/min) was irradiated in broth (direct effect) and a buffer solution (direct and indirect action). The survival rate of the bacteriophage in the buffer solution was 0.1 percent for a dose rate of 60 kr; in the broth it was 10 percent. The frequency of mutation of the bacteriophage also showed the greater effect of the irradiation in the buffer solution than in the broth (25 and 5 r-mutants respectively at a dose rate of 10 kr). An analysis of the ratio of the r-groups when the bacteriophage was treated in various ways revealed differences between mutagenesis produced in the broth and the buffer, and spontaneous mutagenesis. (V.A.P.)

  5. The SOS Suicide Prevention Program: Further Evidence of Efficacy and Effectiveness.

    Science.gov (United States)

    Schilling, Elizabeth A; Aseltine, Robert H; James, Amy

    2016-02-01

    This study replicated and extended previous evaluations of the Signs of Suicide (SOS) prevention program in a high school population using a more rigorous pre-test post-test randomized control design than used in previous SOS evaluations in high schools (Aseltine and DeMartino 2004; Aseltine et al. 2007). SOS was presented to an ethnically diverse group of ninth grade students in technical high schools in Connecticut. After controlling for the pre-test reports of suicide behaviors, exposure to the SOS program was associated with significantly fewer self-reported suicide attempts in the 3 months following the program. Ninth grade students in the intervention group were approximately 64% less likely to report a suicide attempt in the past 3 months compared with students in the control group. Similarly, exposure to the SOS program resulted in greater knowledge of depression and suicide and more favorable attitudes toward (1) intervening with friends who may be exhibiting signs of suicidal intent and (2) getting help for themselves if they were depressed or suicidal. In addition, high-risk SOS participants, defined as those with a lifetime history of suicide attempt, were significantly less likely to report planning a suicide in the 3 months following the program compared to lower-risk participants. Differential attrition is the most serious limitation of the study; participants in the intervention group who reported a suicide attempt in the previous 3 months at baseline were more likely to be missing at post-test than their counterparts in the control group.

  6. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering.

    Science.gov (United States)

    Belsare, Ketaki D; Andorfer, Mary C; Cardenas, Frida S; Chael, Julia R; Park, Hyun June; Lewis, Jared C

    2017-03-17

    Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450 BM3 , pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.

  7. The comparative investigation of gene mutation induction in Bacillus subtilis and Escherichia coli cells after irradiation by different LET radiation

    International Nuclear Information System (INIS)

    Borejko, A.V.; Bulah, A.P.

    2005-01-01

    The data of mutagenetic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in Bacillus subtilis and E. coli are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/μm. The crucial role in inducible mutagenesis in E. coli and Bacillus subtilis cells is played by the error-prone SOS-repair

  8. The Comparative Investigation of Gene Mutation Induction in {\\it Bacillus subtilis} and {\\it Escherichia coli} Cells after Irradiation by Different LET Radiation

    CERN Document Server

    Boreyko, A V

    2005-01-01

    The data of mutagenic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in {\\it Bacillus subtilis} and {\\it E.coli} are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/$\\mu $m. The crucial role in inducible mutagenesis in {\\it E.coli} and {\\it Bacillus subtilis} cells is played by the error-prone $SOS$-repair.

  9. Genetic modifications of established varieties of potato through mutagenesis

    International Nuclear Information System (INIS)

    Brown, C.R.

    1984-01-01

    Owing to the high intercrossability of improved clones with primitive cultivars and many wild species there is little justification for use of induced mutations in potato to increase variability per se. Modification of certain traits while leaving the genotype basically intact is a promising use of mutagenesis in potato. The successful curing of defects in clones will depend on the establishment a priori of three principles. First, the clones undergoing mutagenesis should be well established varieties tolerant or resistant to the major biotic and abiotic stresses in the area of cultivation. The yield and culinary quality should also be considered high. Second, there should exist some indication that the variation desired is induceable, either through reports of natural intra-clone variation or previous mutagenesis studies. Third, initial screening should be done in virus-free materials

  10. Characterization of the SOS meta-regulon in the human gut microbiome.

    Science.gov (United States)

    Cornish, Joseph P; Sanchez-Alberola, Neus; O'Neill, Patrick K; O'Keefe, Ronald; Gheba, Jameel; Erill, Ivan

    2014-05-01

    Data from metagenomics projects remain largely untapped for the analysis of transcriptional regulatory networks. Here, we provide proof-of-concept that metagenomic data can be effectively leveraged to analyze regulatory networks by characterizing the SOS meta-regulon in the human gut microbiome. We combine well-established in silico and in vitro techniques to mine the human gut microbiome data and determine the relative composition of the SOS network in a natural setting. Our analysis highlights the importance of translesion synthesis as a primary function of the SOS response. We predict the association of this network with three novel protein clusters involved in cell wall biogenesis, chromosome partitioning and restriction modification, and we confirm binding of the SOS response transcriptional repressor to sites in the promoter of a cell wall biogenesis enzyme, a phage integrase and a death-on-curing protein. We discuss the implications of these findings and the potential for this approach for metagenome analysis.

  11. Identification of a rat model for usher syndrome type 1B by N-ethyl-N-nitrosourea mutagenesis-driven forward genetics

    NARCIS (Netherlands)

    Smits, B.M.; Peters, T.A.; Mul, J.D.; Croes, H.J.; Fransen, J.A.; Beynon, A.J.; Guryev, V.; Plasterk, R.; Cuppen, E.

    2005-01-01

    The rat is the most extensively studied model organism and is broadly used in biomedical research. Current rat disease models are selected from existing strains and their number is thereby limited by the degree of naturally occurring variation or spontaneous mutations. We have used ENU mutagenesis

  12. CMOS/SOS 4k Rams hardened to 100 Krads (s:)

    International Nuclear Information System (INIS)

    Napoli, L.S.; Heagerty, W.F.; Smeltzer, R.K.; Yeh, J.L.

    1982-01-01

    Two CMOS/SOS 4K memories were fabricated with a recently developed, hardened SOS process. Memory functionality after radiation doses well in excess of 100 Krads(Si) was demonstrated. The critical device processing steps were identified. The radiationinduced failure mode of the memories is understood in terms of the circuit organization and the radiation behavior of the individual transistors in the memories

  13. Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis.

    Science.gov (United States)

    Pham, Phuong; Seitz, Erica M; Saveliev, Sergei; Shen, Xuan; Woodgate, Roger; Cox, Michael M; Goodman, Myron F

    2002-08-20

    SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis. The RecA1730 mutant protein, which was identified on the basis of its inability to promote pol V (UmuD'(2)C)-dependent UV-mutagenesis, appears proficient for the first mode of RecA action but is deficient in the second mode. Data are presented suggesting that the two RecA modes are "nonfilamentous". That is, contrary to current models for SOS mutagenesis, formation of a RecA nucleoprotein filament may not be required for copying damaged DNA templates. Instead, SOS mutagenesis occurs when pol V interacts with two RecA molecules, first at a 3' primer end, upstream of a template lesion, where RecA mode 1 stimulates pol V activity, and subsequently at a site immediately downstream of the lesion, where RecA mode 2 cocatalyzes lesion bypass. We posit that in vivo assembly of a RecA nucleoprotein filament may be required principally to target pol V to a site of DNA damage and to stabilize the pol V-RecA interaction at the lesion. However, it is only a RecA molecule located at the 3' filament tip, proximal to a damaged template base, that is directly responsible for translesion synthesis.

  14. Sinusoidal obstruction syndrome (SOS): A light and electron microscopy study in human liver.

    Science.gov (United States)

    Vreuls, C P H; Driessen, A; Olde Damink, S W M; Koek, G H; Duimel, H; van den Broek, M A J; Dejong, C H C; Braet, F; Wisse, E

    2016-05-01

    Oxaliplatin is an important chemotherapeutic agent, used in the treatment of hepatic colorectal metastases, and known to induce the sinusoidal obstruction syndrome (SOS). Pathophysiological knowledge concerning SOS is based on a rat model. Therefore, the aim was to perform a comprehensive study of the features of human SOS, using both light microscopy (LM) and electron microscopy (EM). Included were all patients of whom wedge liver biopsies were collected during a partial hepatectomy for colorectal liver metastases, in a 4-year period. The wedge biopsy were perfusion fixated and processed for LM and EM. The SOS lesions were selected by LM and details were studied using EM. Material was available of 30 patients, of whom 28 patients received neo-adjuvant oxaliplatin. Eighteen (64%) of the 28 patients showed SOS lesions, based on microscopy. The lesions consisted of sinusoidal endothelial cell detachment from the space of Disse on EM. In the enlarged space of Disse a variable amount of erythrocytes were located. Sinusoidal endothelial cell detachment was present in human SOS, accompanied by enlargement of the space of Disse and erythrocytes in this area. These findings, originally described in a rat model, were now for the first time confirmed in human livers under clinically relevant settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Suppression of radiation mutagenesis by dactinomycin in Chinese hamster cells

    International Nuclear Information System (INIS)

    Tokita, N.; Capenter, S.G.; Chen, D.J.; MacInnes, M.A.; Raju, M.R.

    1985-01-01

    Dactinomycin (AMD) suppression of radiation mutagenesis was investigated using an in vitro mutation assay (6-thioguanine resistance) in Chinese hamster ovary cells. Cells were exposed to acute single doses of x rays followed by 1 hr-treatment with 0.1 or 1 μg/ml AMD. The cell survival curves plotted as a function of x-ray doses were similar for radiation alone and radiation plus AMD. The results suggest that AMD treatment was only slightly mutagenic, however, when given immediately after irradiation, it suppressed radiatiion mutagenesis at higher x-ray dose regions (below 10% survival levels). Higher AMD concentrations appeared more suppressive than lower concentrations. Dose-response data analyzed based on Poisson distribution models suggest the stochastic dependence of x-ray mutagenesis and AMD cytotoxity

  16. Influence of the gene xthA in the activation of SOS response of Escherichia coli; Influencia del gen xthA en la activacion de la respuesta SOS de Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez M, V.

    2013-07-01

    The SOS response is one of the strategies that has Escherichia coli to counteract the lesions in the genetic material. The response is integrated for approximately 60 genes that when are activated they provide to the cell a bigger opportunity to survive. For the activation of this system is necessary that DNA regions of simple chain are generated, in such a way that most of the lesions should be processed, to be able to induce this answer. Some genes that intervene in this procedure, as recO, recB and recJ are recognized since when being exposed to the radiation, their activity SOS is smaller than in a wild strain. In previous works has been studied that to inactivate the genes that are involves in the lesions processing to generate DNA of simple chain, the SOS induction level diminishes with regard to a wild strain, but that when eliminating the genes that are involves directly in the repair, the SOS response increases. In this work a strain with defects in the gene xthA was built, which encodes for an endonuclease AP that participates in the repair mechanism by base excision and was evaluated their sensibility as the activity of the SOS response when exposing it to UV light and gamma radiation. The results showed that the lethality of the strain with the defect is very similar to the wild strain; while the activation level of the SOS response is bigger in comparison with the wild strain when being exposed to UV light; suggesting the existence of an enzyme that recognizes the lesions that produces this radiation, however, is not this the main repair channel, since the survival is similar to that of the wild strain. On the contrary, the results obtained with gamma radiation showed that the lethality diminishes in comparison to that of the wild strain, like the SOS activity; due surely to that the gene product intervenes in the repair for base excision, participating in the formation of the previous substrate to the activation of the SOS response. (Author)

  17. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains.

    Science.gov (United States)

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.

  18. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.).

    Science.gov (United States)

    Maughan, P J; Turner, T B; Coleman, C E; Elzinga, D B; Jellen, E N; Morales, J A; Udall, J A; Fairbanks, D J; Bonifacio, A

    2009-07-01

    Salt tolerance is an agronomically important trait that affects plant species around the globe. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in germination and growth of plants in saline environments. Quinoa (Chenopodium quinoa Willd.) is a halophytic, allotetraploid grain crop of the family Amaranthaceae with impressive nutritional content and an increasing worldwide market. Many quinoa varieties have considerable salt tolerance, and research suggests quinoa may utilize novel mechanisms to confer salt tolerance. Here we report the cloning and characterization of two homoeologous SOS1 loci (cqSOS1A and cqSOS1B) from C. quinoa, including full-length cDNA sequences, genomic sequences, relative expression levels, fluorescent in situ hybridization (FISH) analysis, and a phylogenetic analysis of SOS1 genes from 13 plant taxa. The cqSOS1A and cqSOS1B genes each span 23 exons spread over 3477 bp and 3486 bp of coding sequence, respectively. These sequences share a high level of similarity with SOS1 homologs of other species and contain two conserved domains, a Nhap cation-antiporter domain and a cyclic-nucleotide binding domain. Genomic sequence analysis of two BAC clones (98 357 bp and 132 770 bp) containing the homoeologous SOS1 genes suggests possible conservation of synteny across the C. quinoa sub-genomes. This report represents the first molecular characterization of salt-tolerance genes in a halophytic species in the Amaranthaceae as well as the first comparative analysis of coding and non-coding DNA sequences of the two homoeologous genomes of C. quinoa.

  19. SoS Notebook: An Interactive Multi-Language Data Analysis Environment.

    Science.gov (United States)

    Peng, Bo; Wang, Gao; Ma, Jun; Leong, Man Chong; Wakefield, Chris; Melott, James; Chiu, Yulun; Du, Di; Weinstein, John N

    2018-05-22

    Complex bioinformatic data analysis workflows involving multiple scripts in different languages can be difficult to consolidate, share, and reproduce. An environment that streamlines the entire processes of data collection, analysis, visualization and reporting of such multi-language analyses is currently lacking. We developed Script of Scripts (SoS) Notebook, a web-based notebook environment that allows the use of multiple scripting language in a single notebook, with data flowing freely within and across languages. SoS Notebook enables researchers to perform sophisticated bioinformatic analysis using the most suitable tools for different parts of the workflow, without the limitations of a particular language or complications of cross-language communications. SoS Notebook is hosted at http://vatlab.github.io/SoS/ and is distributed under a BSD license. bpeng@mdanderson.org.

  20. [Comparative mutagenesis of human cells in vivo and in vitro]. Progress report, January 1-December 30, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    Annual progress report is made on project focusing on the comparative mutagenesis of human cells in vivo and in vitro. The study employs the HGPRT gene to explore the changes in nucleotide sequence which has occurred in spontaneous mutations or mutations induced by MNNG or ICR191. Reports on the individual projects have been abstracted and indexed for the Energy Data Base. (DT)

  1. Effect of radiation doses rate on SOS response induction in irradiated Escherichia coli Cells

    International Nuclear Information System (INIS)

    Cuetara Lugo, Elizabeth B.; Fuentes Lorenzo, Jorge L.; Almeida Varela, Eliseo; Prieto Miranda, Enrique F.; Sanchez Lamar, Angel; Llagostera Casal, Montserrat

    2005-01-01

    The present work is aimed to study the effect of radiation dose rate on the induction of SOS response in Escherichia coli cells. We measured the induction of sul A reporter gene in PQ-37 (SOS Chromotest) cells. Lead devises were built with different diameter and these were used for diminishing the dose rate of PX- -30M irradiator. Our results show that radiation doses rate significantly modifies the induction of SOS response. Induction factor increases proportionally to doses rate in Escherichia coli cells defective to nucleotide excision repair (uvrA), but not in wild type cells. We conclude that the dose rate affects the level of induction of SOS response

  2. A syntactic commutativity format for SOS

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Groote, J.F.

    2005-01-01

    Considering operators defined using Structural Operational Semantics (SOS), commutativity axioms are intuitive properties that hold for many of them. Proving this intuition is usually a laborious task, requiring several pages of boring and standard proof. To save this effort, we propose a syntactic

  3. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  4. Chemical and UV Mutagenesis.

    Science.gov (United States)

    Bose, Jeffrey L

    2016-01-01

    The ability to create mutations is an important step towards understanding bacterial physiology and virulence. While targeted approaches are invaluable, the ability to produce genome-wide random mutations can lead to crucial discoveries. Transposon mutagenesis is a useful approach, but many interesting mutations can be missed by these insertions that interrupt coding and noncoding sequences due to the integration of an entire transposon. Chemical mutagenesis and UV-based random mutagenesis are alternate approaches to isolate mutations of interest with the potential of only single nucleotide changes. Once a standard method, difficulty in identifying mutation sites had decreased the popularity of this technique. However, thanks to the recent emergence of economical whole-genome sequencing, this approach to making mutations can once again become a viable option. Therefore, this chapter provides an overview protocol for random mutagenesis using UV light or DNA-damaging chemicals.

  5. SOS hotline for women victims of discrimination at the workplace

    OpenAIRE

    Dobrosavljević-Grujić Ljiljana S.

    2004-01-01

    SOS hotline for women victims of discrimination at the workplace offers free legal assistance to women, whenever their labor rights are endangered. If the dispute cannot be resolved peacefully by mediation between employer and employees, female lawyer skilled for the labor law starts up judicial proceedings. Some characteristic cases of discrimination of women from the practice of SOS telephone, such as dismissal from the work, physical violence and sexual blackmail, are presented in the paper.

  6. Pyrimidine dimers are not the principal pre-mutagenic lesions induced in lambda phage DNA by ultraviolet light

    International Nuclear Information System (INIS)

    Wood, R.D.

    1985-01-01

    Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr - host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants, derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. Thus the lesion inducing transitions is not the cyclobutyl pyrimidine dimer. Photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in targeted u.v. mutagenesis. (author)

  7. Design rules for RCA self-aligned silicon-gate CMOS/SOS process

    Science.gov (United States)

    1977-01-01

    The CMOS/SOS design rules prepared by the RCA Solid State Technology Center (SSTC) are described. These rules specify the spacing and width requirements for each of the six design levels, the seventh level being used to define openings in the passivation level. An associated report, entitled Silicon-Gate CMOS/SOS Processing, provides further insight into the usage of these rules.

  8. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome.

    Science.gov (United States)

    Yamamoto, Guilherme Lopes; Aguena, Meire; Gos, Monika; Hung, Christina; Pilch, Jacek; Fahiminiya, Somayyeh; Abramowicz, Anna; Cristian, Ingrid; Buscarilli, Michelle; Naslavsky, Michel Satya; Malaquias, Alexsandra C; Zatz, Mayana; Bodamer, Olaf; Majewski, Jacek; Jorge, Alexander A L; Pereira, Alexandre C; Kim, Chong Ae; Passos-Bueno, Maria Rita; Bertola, Débora Romeo

    2015-06-01

    Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. SOS reaction kinetics of bacterial cells induced by ultraviolet radiation and α particles

    International Nuclear Information System (INIS)

    Bonev, M.; Kolev, S.

    2000-01-01

    It is the purpose of the work to apply the SOS lux test for detecting α particles, as well as to study the SOS system kinetics. Two strains with plasmid pPLS-1 are used: wild type C600 lux and its isogen lysogen with α prophage one. Irradiation is done on dacron nuclear filters. The source of α particles is Am 241 with power 5 Gy/min, and the ultraviolet source - a lamp emitting rays with wave length 254 nm. The light yield is measured by installations made up of scintilometer VA-S-968, High-voltage electric power, and one channel analyzer Strahlugsmessgerat 20046. The SOS lux text is based on the recombinant plasmid pPLS-1 which is a derivative of pBR322 where the lux gene is set under the control of an SOS promoter. E coly recA + strains containing the construction produce considerable amount of photons in the visible zone following treatment with agents damaging the DNA of cells. The kinetic curves of SOS response are obtained after irradiation with α particles and UV rays. DNA damaging agents cause an increase in the initial SOS response rate in the range od smaller doses, and a decrease reaching to block of the one in the high doses range. The light yield of lysogenic cells is lower. As compared to nonelysogene ones. DNA damage caused by α particles are more difficult to repair as compared to pyrimidine dimers. (author)

  10. A hierarchy of SOS rule formats

    NARCIS (Netherlands)

    Groote, J.F.; Mousavi, M.R.; Reniers, M.A.; Mosses, P.D.; Ulidowski, I.

    2006-01-01

    In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way to define operational semantics of programming languages by a set of rules of a certain shape [G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department,

  11. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    Science.gov (United States)

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  12. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  13. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity

    Science.gov (United States)

    Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodríguez-Rojas, A.; Blázquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I.

    2013-01-01

    Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitory concentrations of β-lactam antibiotics induce the RpoS regulon. RpoS-regulon induction is required for PolIV-dependent mutagenesis because it diminishes the control of DNA-replication fidelity by depleting MutS in E. coli, Vibrio cholerae and Pseudomonas aeruginosa. We also show that in E. coli, the reduction in mismatch-repair activity is mediated by SdsR, the RpoS-controlled small RNA. In summary, we show that mutagenesis induced by subinhibitory concentrations of antibiotics is a genetically controlled process. Because this mutagenesis can generate mutations conferring antibiotic resistance, it should be taken into consideration for the development of more efficient antimicrobial therapeutic strategies. PMID:23511474

  14. Quantification, modelling and design for signal history dependent effects in mixed-signal SOI/SOS circuits; Quantification, modelisation et conception prenant en compte les etats anterieurs des signaux dans les circuits mixtes SOI/SOS

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.F.; Redman-White, W.; Bracey, M.; Tenbroek, B.M.; Lee, M.S. [Southampton Univ., Dept. of Electronics and Computer Sciences (United Kingdom); Uren, M.J.; Brunson, K.M. [DERA Farnborough, GU, Hants (United Kingdom)

    1999-07-01

    This paper deals with how the radiation hardness of mixed signal SOI/SOS CMOS circuits is taken into account at both architectural terms as well as the the transistor level cell designs. The primary issue is to deal with divergent transistor threshold shifts, and to understand the effects of large amplitude non stationary signals on analogue cell behaviour. (authors)

  15. SOS hotline for women victims of discrimination at the workplace

    Directory of Open Access Journals (Sweden)

    Dobrosavljević-Grujić Ljiljana S.

    2004-01-01

    Full Text Available SOS hotline for women victims of discrimination at the workplace offers free legal assistance to women, whenever their labor rights are endangered. If the dispute cannot be resolved peacefully by mediation between employer and employees, female lawyer skilled for the labor law starts up judicial proceedings. Some characteristic cases of discrimination of women from the practice of SOS telephone, such as dismissal from the work, physical violence and sexual blackmail, are presented in the paper.

  16. Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation.

    Science.gov (United States)

    Krin, Evelyne; Pierlé, Sebastian Aguilar; Sismeiro, Odile; Jagla, Bernd; Dillies, Marie-Agnès; Varet, Hugo; Irazoki, Oihane; Campoy, Susana; Rouy, Zoé; Cruveiller, Stéphane; Médigue, Claudine; Coppée, Jean-Yves; Mazel, Didier

    2018-05-21

    The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is

  17. Stent-over-sponge (SOS): a novel technique complementing endosponge therapy for foregut leaks and perforations.

    Science.gov (United States)

    Valli, Piero V; Mertens, Joachim C; Kröger, Arne; Gubler, Christoph; Gutschow, Christian; Schneider, Paul M; Bauerfeind, Peter

    2018-02-01

     Endoluminal vacuum therapy (EVT) has evolved as a promising option for endoscopic treatment of foregut wall injuries in addition to the classic closure techniques using clips or stents. To improve vacuum force and maintain esophageal passage, we combined endosponge treatment with a partially covered self-expandable metal stent (stent-over-sponge; SOS).  Twelve patients with infected upper gastrointestinal wall defects were treated with the SOS technique.  Indications for SOS were anastomotic leakage after surgery (n = 11) and chronic foregut fistula (n = 1). SOS treatment was used as a first-line treatment in seven patients with a success rate of 71.4 % (5/7) and as a second-line treatment after failed previous EVT treatment in five patients (success rate 80 %; 4/5). Overall, SOS treatment was successful in 75 % of patients (9/12). No severe adverse events occurred. CONCLUSION : SOS is an effective method to treat severely infected foregut wall defects in patients where EVT has failed, and also as a first-line treatment. Comparative prospective studies are needed to confirm our preliminary results. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis.

    Science.gov (United States)

    Lee, Raymond Teck Ho; Ng, Ashley Shu Mei; Ingham, Philip W

    2016-01-01

    CRISPR/Cas9 is now regularly used for targeted mutagenesis in a wide variety of systems. Here we report the use of ribozymes for the generation of gRNAs both in vitro and in zebrafish embryos. We show that incorporation of ribozymes increases the types of promoters and number of target sites available for mutagenesis without compromising mutagenesis efficiency. We have tested this by comparing the efficiency of mutagenesis of gRNA constructs with and without ribozymes and also generated a transgenic zebrafish expressing gRNA using a heat shock promoter (RNA polymerase II-dependent promoter) that was able to induce mutagenesis of its target. Our method provides a streamlined approach to test gRNA efficiency as well as increasing the versatility of conditional gene knock out in zebrafish.

  19. [Expressions of Ras and Sos1 in epithelial ovarian cancer tissues and their clinical significance].

    Science.gov (United States)

    Xiao, Zheng-Hua; Linghu, Hua; Liu, Qian-Fen

    2016-11-20

    To detect the expressions of Ras and Sos1 proteins in human epithelial ovarian cancer (EOC) tissues and explore their correlation with the clinicopathological features of the patients. The expressions of Ras and Sos1 proteins were detected immunohistochemically in 62 EOC tissues, 5 borderline ovarian cancer tissues, 15 benign epithelial ovarian neoplasm tissues, and 18 normal ovarian tissues. The EOC tissues showed significantly higher expression levels of both Ras and Sos1 than the other tissues tested (Ptissues, Ras and Sos1 proteins were expressed mostly on the cell membrane and in the cytoplasm. The expression level of Ras was correlated with pathological types of the tumor (Ptissue-specific variation of Ras expression can lend support to a specific diagnosis of ovarian serous adenocarcinoma. The association of Ras and Sos1 protein expression with the tumor-free survival time of the patients awaits further investigation with a larger sample size.

  20. Novel Random Mutagenesis Method for Directed Evolution.

    Science.gov (United States)

    Feng, Hong; Wang, Hai-Yan; Zhao, Hong-Yan

    2017-01-01

    Directed evolution is a powerful strategy for gene mutagenesis, and has been used for protein engineering both in scientific research and in the biotechnology industry. The routine method for directed evolution was developed by Stemmer in 1994 (Stemmer, Proc Natl Acad Sci USA 91, 10747-10751, 1994; Stemmer, Nature 370, 389-391, 1994). Since then, various methods have been introduced, each of which has advantages and limitations depending upon the targeted genes and procedure. In this chapter, a novel alternative directed evolution method which combines mutagenesis PCR with dITP and fragmentation by endonuclease V is described. The kanamycin resistance gene is used as a reporter gene to verify the novel method for directed evolution. This method for directed evolution has been demonstrated to be efficient, reproducible, and easy to manipulate in practice.

  1. Paraísos fiscales en la globalización financiera

    Directory of Open Access Journals (Sweden)

    Alberto Garzón Espinosa

    2011-10-01

    Full Text Available Los paraísos fiscales son espacios financieros caracterizados ante todo por su baja o nula tributación. En este artículo examinaremos con detalle el uso de los mismos por parte de los agentes económicos, centrándonos especialmente en los bancos y los fondos de inversión colectiva. No obstante, como elementos clave de un nuevo contexto financiero los paraísos fiscales han tenido un papel fundamental en la gestación y expansión de todas las crisis financieras recientes, razón por la cual también estudiaremos las consecuencias que la existencia misma de los paraísos fiscales tiene sobre la economía y el sistema financiero.Palabras clave: Paraísos fiscales, globalización financiera, neoliberalismo_______________Abstract:The tax haven are financial spaces which it characterize for its shorts taxations. In this article we will analyze the use of that by the economic agent, specially the banks and the funds of collective investment. However, like key elements of the new financial context, the tax haven was been a leading role in gestation and expansion of all financial crisis of our days. For that, we will study the consequences of this fact in the economy and financial system.Keywords: tax haven, financial globalization, neoliberalism.

  2. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae

    International Nuclear Information System (INIS)

    Galvao, C.W.; Pedrosa, F.O.; Souza, E.M.; Yates, M.G.; Chubatsu, L.S.; Steffens, M.B.R.

    2003-01-01

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable σ 70 -dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response. (author)

  3. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, C.W.; Pedrosa, F.O.; Souza, E.M.; Yates, M.G.; Chubatsu, L.S.; Steffens, M.B.R. [Univ. Federal do Parana, Dept. of Biochemistry and Molecular Biology, Curitiba (Brazil)]. E-mail: steffens@bioufpr.br

    2003-02-15

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable {sigma}{sup 70}-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response. (author)

  4. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae.

    Science.gov (United States)

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2003-02-01

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable sigma70-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response.

  5. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    Science.gov (United States)

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-04

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  6. Validation of the Chinese Version of the Sense of Self (SOS) Scale

    Science.gov (United States)

    King, Ronnel B.; Ganotice, Fraide A., Jr.; Watkins, David A.

    2012-01-01

    This study explored the cross-cultural applicability of the Sense of Self (SOS) Scale in the Hong Kong Chinese cultural context. The SOS Scale is a 26-item questionnaire designed to measure students' sense of purpose, self-reliance, and self-concept in school. Six hundred ninety-seven Hong Kong Chinese high school students participated in the…

  7. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system.

    Science.gov (United States)

    Guthrie, O'neil W

    2017-10-01

    In response to DNA damage from ultraviolet (UV) radiation, bacteria deploy the SOS response in order to limit cell death. This bacterial SOS response is characterized by an increase in the recA gene that transactivates expression of multiple DNA repair genes. The current series of experiments demonstrate that a mammalian organ system (the cochlea) that is not evolutionarily conditioned to UV radiation can elicit SOS responses that are reminiscent of that of bacteria. This mammalian SOS response is characterized by an increase in the p53 gene with activation of multiple DNA repair genes that harbor p53 response elements in their promoters. Furthermore, the experimental results provide support for the notion of a convergent trigger paradox, where independent SOS triggers facilitate disparate physiologic sequelae (loss vs. recovery of function). Therefore, it is proposed that the mammalian SOS response is multifunctional and manipulation of this endogenous response could be exploited in future biomedical interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Managing the SOS Response for Enhanced CRISPR-Cas-Based Recombineering in E. coli through Transient Inhibition of Host RecA Activity.

    Science.gov (United States)

    Moreb, Eirik Adim; Hoover, Benjamin; Yaseen, Adam; Valyasevi, Nisakorn; Roecker, Zoe; Menacho-Melgar, Romel; Lynch, Michael D

    2017-12-15

    Phage-derived "recombineering" methods are utilized for bacterial genome editing. Recombineering results in a heterogeneous population of modified and unmodified chromosomes, and therefore selection methods, such as CRISPR-Cas9, are required to select for edited clones. Cells can evade CRISPR-Cas-induced cell death through recA-mediated induction of the SOS response. The SOS response increases RecA dependent repair as well as mutation rates through induction of the umuDC error prone polymerase. As a result, CRISPR-Cas selection is more efficient in recA mutants. We report an approach to inhibiting the SOS response and RecA activity through the expression of a mutant dominant negative form of RecA, which incorporates into wild type RecA filaments and inhibits activity. Using a plasmid-based system in which Cas9 and recA mutants are coexpressed, we can achieve increased efficiency and consistency of CRISPR-Cas9-mediated selection and recombineering in E. coli, while reducing the induction of the SOS response. To date, this approach has been shown to be independent of recA genotype and host strain lineage. Using this system, we demonstrate increased CRISPR-Cas selection efficacy with over 10 000 guides covering the E. coli chromosome. The use of dominant negative RecA or homologues may be of broad use in bacterial CRISPR-Cas-based genome editing where the SOS pathways are present.

  9. SOS score: an optimized score to screen acute stroke patients for obstructive sleep apnea.

    Science.gov (United States)

    Camilo, Millene R; Sander, Heidi H; Eckeli, Alan L; Fernandes, Regina M F; Dos Santos-Pontelli, Taiza E G; Leite, Joao P; Pontes-Neto, Octavio M

    2014-09-01

    Obstructive sleep apnea (OSA) is frequent in acute stroke patients, and has been associated with higher mortality and worse prognosis. Polysomnography (PSG) is the gold standard diagnostic method for OSA, but it is impracticable as a routine for all acute stroke patients. We evaluated the accuracy of two OSA screening tools, the Berlin Questionnaire (BQ), and the Epworth Sleepiness Scale (ESS) when administered to relatives of acute stroke patients; we also compared these tools against a combined screening score (SOS score). Ischemic stroke patients were submitted to a full PSG at the first night after onset of symptoms. OSA severity was measured by apnea-hypopnea index (AHI). BQ and ESS were administered to relatives of stroke patients before the PSG and compared to SOS score for accuracy and C-statistics. We prospectively studied 39 patients. OSA (AHI ≥10/h) was present in 76.9%. The SOS score [area under the curve (AUC): 0.812; P = 0.005] and ESS (AUC: 0.789; P = 0.009) had good predictive value for OSA. The SOS score was the only tool with significant predictive value (AUC: 0.686; P = 0.048) for severe OSA (AHI ≥30/h), when compared to ESS (P = 0.119) and BQ (P = 0.191). The threshold of SOS ≤10 showed high sensitivity (90%) and negative predictive value (96.2%) for OSA; SOS ≥20 showed high specificity (100%) and positive predictive value (92.5%) for severe OSA. The SOS score administered to relatives of stroke patients is a useful tool to screen for OSA and may decrease the need for PSG in acute stroke setting. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. SOS Children's Friendly Community Historical Overview

    Science.gov (United States)

    Lukaš, Mirko; Lenard, Ivan

    2014-01-01

    SOS Children's Village Croatia is categorized as a children's home whose primary goal is taking care of children without an adequate parental care or parents themselves. Moreover, it aims at providing children, regardless of their racial, national or religious affiliation, with affection and love in a safe family environment. In addition, SOS…

  11. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    International Nuclear Information System (INIS)

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il

    2012-01-01

    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  12. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    International Nuclear Information System (INIS)

    Conotte, R.; Colet, J.-M.

    2014-01-01

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. 1 H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea

  13. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2017-01-01

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N2.5) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  14. Onderzoek naar de toepasbaarheid van SOS-chromotest

    NARCIS (Netherlands)

    Voogd CE; van der Stel JJ; Verharen HW; van Bruchem MC

    1988-01-01

    Met 35 stoffen werd de mutagene activiteit onderzocht met een SOS-chromotest kit, de Ames-test en de fluctuatietest met Klebsiella pneumoniae. Voorzover het alkylerende stoffen betreft die basenpaar substituties veroorzaken, blijkt er een goede overeenstemming te bestaan met de resultaten van

  15. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    Science.gov (United States)

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  16. Influence of the gene xthA in the activation of SOS response of Escherichia coli

    International Nuclear Information System (INIS)

    Dominguez M, V.

    2013-01-01

    The SOS response is one of the strategies that has Escherichia coli to counteract the lesions in the genetic material. The response is integrated for approximately 60 genes that when are activated they provide to the cell a bigger opportunity to survive. For the activation of this system is necessary that DNA regions of simple chain are generated, in such a way that most of the lesions should be processed, to be able to induce this answer. Some genes that intervene in this procedure, as recO, recB and recJ are recognized since when being exposed to the radiation, their activity SOS is smaller than in a wild strain. In previous works has been studied that to inactivate the genes that are involves in the lesions processing to generate DNA of simple chain, the SOS induction level diminishes with regard to a wild strain, but that when eliminating the genes that are involves directly in the repair, the SOS response increases. In this work a strain with defects in the gene xthA was built, which encodes for an endonuclease AP that participates in the repair mechanism by base excision and was evaluated their sensibility as the activity of the SOS response when exposing it to UV light and gamma radiation. The results showed that the lethality of the strain with the defect is very similar to the wild strain; while the activation level of the SOS response is bigger in comparison with the wild strain when being exposed to UV light; suggesting the existence of an enzyme that recognizes the lesions that produces this radiation, however, is not this the main repair channel, since the survival is similar to that of the wild strain. On the contrary, the results obtained with gamma radiation showed that the lethality diminishes in comparison to that of the wild strain, like the SOS activity; due surely to that the gene product intervenes in the repair for base excision, participating in the formation of the previous substrate to the activation of the SOS response. (Author)

  17. Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate.

    Science.gov (United States)

    Lee, Young Kwang; Low-Nam, Shalini T; Chung, Jean K; Hansen, Scott D; Lam, Hiu Yue Monatrice; Alvarez, Steven; Groves, Jay T

    2017-04-28

    The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification.

  18. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  19. Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.

    Science.gov (United States)

    Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes

    2015-03-01

    Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.

  20. SOS System Induction Inhibits the Assembly of Chemoreceptor Signaling Clusters in Salmonella enterica.

    Science.gov (United States)

    Irazoki, Oihane; Mayola, Albert; Campoy, Susana; Barbé, Jordi

    2016-01-01

    Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds.

  1. Endovascular stentectomy using the snare over stent-retriever (SOS technique: An experimental feasibility study.

    Directory of Open Access Journals (Sweden)

    Tareq Meyer

    Full Text Available Feasibility of endovascular stentectomy using a snare over stent-retriever (SOS technique was evaluated in a silicon flow model and an in vivo swine model. In vitro, stentectomy of different intracranial stents using the SOS technique was feasible in 22 out of 24 (92% retrieval maneuvers. In vivo, stentectomy was successful in 10 out of 10 procedures (100%. In one case self-limiting vasospasm was observed angiographically as a technique related complication in the animal model. Endovascular stentectomy using the SOS technique is feasible in an experimental setting and may be transferred to a clinical scenario.

  2. Forward and reverse mutagenesis in C. elegans

    Science.gov (United States)

    Kutscher, Lena M.; Shaham, Shai

    2014-01-01

    Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal. PMID:24449699

  3. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  4. Spontaneous harm reduction: a barrier for substance-dependent individuals seeking treatment?

    Directory of Open Access Journals (Sweden)

    Fontanella Bruno José Barcellos

    2005-01-01

    Full Text Available OBJETIVE: Greater information regarding motivations and treatment barriers faced by substance-dependent individuals has clinical and public health implications. This study aimed to formulate hypotheses regarding psychological, social and family variables that can be constructed as motivations or subjective barriers for the early seeking of formal treatment. METHODS: A qualitative study was conducted in an intentional sample (selected through saturation and variety of types of 13 substance-dependent individuals who sought treatment. In-depth, semi-structured interviews were conducted using open questions, and the transcribed data were subjected to qualitative analysis. RESULTS: Four types of spontaneous harm reduction measures were identified, according to the subjective logic of each participant: having some periods at rest (not using and recovering from adverse effects; caretaking by close acquaintances (relatives, partners, drug dealers and alcoholic beverage sellers; selectivity regarding substance source, type and means of administration; establishing "healthy" limits of ingestion. CONCLUSIONS: The measures identified might represent barriers to the early seeking of treatment but might also represent spontaneous learning of abilities beneficial to future treatment. Health care professionals should take into consideration their existence and should address them in clinical settings. Issues representative of the formulated categories should be presented in structured questionnaires used in future quantitative studies of barriers to treatment in this population.

  5. Spontaneous harm reduction: a barrier for substance-dependent individuals seeking treatment?

    Directory of Open Access Journals (Sweden)

    Bruno José Barcellos Fontanella

    2005-12-01

    Full Text Available OBJETIVE: Greater information regarding motivations and treatment barriers faced by substance-dependent individuals has clinical and public health implications. This study aimed to formulate hypotheses regarding psychological, social and family variables that can be constructed as motivations or subjective barriers for the early seeking of formal treatment. METHODS: A qualitative study was conducted in an intentional sample (selected through saturation and variety of types of 13 substance-dependent individuals who sought treatment. In-depth, semi-structured interviews were conducted using open questions, and the transcribed data were subjected to qualitative analysis. RESULTS: Four types of spontaneous harm reduction measures were identified, according to the subjective logic of each participant: having some periods at rest (not using and recovering from adverse effects; caretaking by close acquaintances (relatives, partners, drug dealers and alcoholic beverage sellers; selectivity regarding substance source, type and means of administration; establishing "healthy" limits of ingestion. CONCLUSIONS: The measures identified might represent barriers to the early seeking of treatment but might also represent spontaneous learning of abilities beneficial to future treatment. Health care professionals should take into consideration their existence and should address them in clinical settings. Issues representative of the formulated categories should be presented in structured questionnaires used in future quantitative studies of barriers to treatment in this population.

  6. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    Science.gov (United States)

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. 77 FR 65896 - Award of a Single-Source Replacement Grant to SOS Children's Villages Illinois in Chicago, IL

    Science.gov (United States)

    2012-10-31

    ....623] Award of a Single-Source Replacement Grant to SOS Children's Villages Illinois in Chicago, IL... (FYSB) announces the award of a single-source replacement grant to SOS Children's Villages Illinois in... grant. ACYF/FYSB has designated SOS Children's Villages Illinois, a 501(c)(3) non-profit organization...

  8. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Science.gov (United States)

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  9. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    Energy Technology Data Exchange (ETDEWEB)

    Conotte, R.; Colet, J.-M., E-mail: jean-marie.colet@umons.ac.be

    2014-04-15

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. {sup 1}H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea.

  10. Ethyl methanesulfonate mutagenesis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells.......Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells....

  11. Effect of the SOS response on the mean fitness of unicellular populations: a quasispecies approach.

    Science.gov (United States)

    Kama, Amit; Tannenbaum, Emmanuel

    2010-11-30

    The goal of this paper is to develop a mathematical model that analyzes the selective advantage of the SOS response in unicellular organisms. To this end, this paper develops a quasispecies model that incorporates the SOS response. We consider a unicellular, asexually replicating population of organisms, whose genomes consist of a single, double-stranded DNA molecule, i.e. one chromosome. We assume that repair of post-replication mismatched base-pairs occurs with probability , and that the SOS response is triggered when the total number of mismatched base-pairs is at least . We further assume that the per-mismatch SOS elimination rate is characterized by a first-order rate constant . For a single fitness peak landscape where the master genome can sustain up to mismatches and remain viable, this model is analytically solvable in the limit of infinite sequence length. The results, which are confirmed by stochastic simulations, indicate that the SOS response does indeed confer a fitness advantage to a population, provided that it is only activated when DNA damage is so extensive that a cell will die if it does not attempt to repair its DNA.

  12. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution.

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Embrey, Kevin J; Golovanov, Alexander P

    2016-07-14

    The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (Sos(Cat)) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of Sos(Cat), while Sos(Cat) also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos.

  13. Genetic analysis of γ-ray mutagenesis in yeast. Vol. 3

    International Nuclear Information System (INIS)

    McKee, R.H.; Lawrence, C.W.

    1980-01-01

    Comparisons between the 60 Co γ-ray survival curves of diploid strains of the yeast Saccharomyces cerevisiae that are homozygous for two non-allelic radiation-sensitive mutations and the corresponding single-mutant diploids suggest that there are two main types of repair of ionizing radiation damage in this organism. The first, which is defined by the rad52 epistasis group, depends on the activities of the RAD50 through RAD57 genes and is responsible for repairing the larger amount of lethal damage. Previous work [22] shows that this type of repair is essentially error-free. The second, defined by the rad6 epistasis group, depends on the activities of the RAD6, RAD9, RAD18, REV1 and REV3 genes and repairs a smaller, though still substantial, amount of lethal damage. It is also responsible for induced mutagenesis [22,23]. Data for survival and mutation induction after irradiation in air and partial anoxia show that oxygen-dependent damage can be repaired by either of these two pathways. They also show similar oxygen-enhancement ratios for survival and mutagenesis. (orig.)

  14. Genetic analysis of gamma-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains

    International Nuclear Information System (INIS)

    McKee, R.H.; Lawrence, C.W.

    1979-01-01

    The frequency of revertants induced by 60 Co γ rays of the ochre allele, cyc1-9, has been measured in radiation-sensitive strains carrying one of 19 nonallelic mutations and in wild-type strains. The results indicate that ionizing radiation mutagenesis depends on the activity of the RAD6 group of genes and that the gene functions employed are very similar, but probably not identical, to those that mediate uv mutagenesis. Repair activities dependent on the functions of the RAD50 through RAD57 loci, the major pathway for the repair of damage caused by ionizing radiation, do not appear to play any part in mutagenesis. A comparison between the γ-ray data and those obtained previously with uv and chemical mutagens suggests that the RAD6 mutagenic pathway is in fact composed of a set of processes, some of which are concerned with error-prone, and some with error-free, recovery activities

  15. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Spontaneous and persistent currents in superconductive and mesoscopic structures (Review)

    Science.gov (United States)

    Kulik, I. O.

    2004-07-01

    We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent and the "spontaneous" currents in Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In the case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at a certain number of electrons. Under such a condition, the persistent current has a nonzero value even at an (almost) zero applied Aharonov-Bohm flux and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may present an opportunity for (and, more generally, macromolecular cyclic structures may suggest the possibility of) engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.

  17. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  18. Optogenetic mutagenesis in Caenorhabditis elegans.

    Science.gov (United States)

    Noma, Kentaro; Jin, Yishi

    2015-12-03

    Reactive oxygen species (ROS) can modify and damage DNA. Here we report an optogenetic mutagenesis approach that is free of toxic chemicals and easy to perform by taking advantage of a genetically encoded ROS generator. This method relies on the potency of ROS generation by His-mSOG, the mini singlet oxygen generator, miniSOG, fused to a histone. Caenorhabditis elegans expressing His-mSOG in the germline behave and reproduce normally, without photoinduction. Following exposure to blue light, the His-mSOG animals produce progeny with a wide range of heritable phenotypes. We show that optogenetic mutagenesis by His-mSOG induces a broad spectrum of mutations including single-nucleotide variants (SNVs), chromosomal deletions, as well as integration of extrachromosomal transgenes, which complements those derived from traditional chemical or radiation mutagenesis. The optogenetic mutagenesis expands the toolbox for forward genetic screening and also provides direct evidence that nuclear ROS can induce heritable and specific genetic mutations.

  19. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  20. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    Science.gov (United States)

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  1. Mutagenesis: Interactions with a parallel universe.

    Science.gov (United States)

    Miller, Jeffrey H

    Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Receptor mutagenesis strategies for examination of structure-function relationships

    NARCIS (Netherlands)

    Blomenröhr, Marion; Vischer, Henry F; Bogerd, Jan

    2004-01-01

    This chapter describes three different strategies of receptor mutagenesis with their advantages, disadvantages, and limitations. Oligonucleotide-directed mutagenesis using either the Altered Sites II in vitro mutagenesis system or the GeneTailor site-directed mutagenesis system can generate base

  3. Molecular techniques as complementary tools in orchid mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Nazir Basiran; Sakinah Ariffin [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia)

    2002-02-01

    Orchid breeders have always been dependent on hybridization technology to produce new orchid hybrids and varieties. The technology has proven very reliable and easy to use and has produced wide range of successful cultivars with attractive combinations of spray length, bud number, flower colour and form, vase life, fragrance, seasonality, and compactness. By introducing mutagenesis however, wide variations of flower colours, form and size can still be obtained in addition to overcoming the problem of sexual incompatibility and sterility. In addition, complementary use of molecular techniques will allow breeders to target more specific characteristic changes and cut short breeding time. PCR-based techniques used to analyse the DNA of mutagenic clones found polymorphic fragments that can be developed as molecular markers. This paper describes how mutagenesis and molecular techniques can be used to enhance orchid breeding efforts. (author)

  4. System of systems dependability – Theoretical models and applications examples

    International Nuclear Information System (INIS)

    Bukowski, L.

    2016-01-01

    The aim of this article is to generalise the concept of 'dependability' in a way, that could be applied to all types of systems, especially the system of systems (SoS), operating under both normal and abnormal work conditions. In order to quantitatively assess the dependability we applied service continuity oriented approach. This approach is based on the methodology of service engineering and is closely related to the idea of resilient enterprise as well as to the concept of disruption-tolerant operation. On this basis a framework for evaluation of SoS dependability has been developed in a static as well as dynamic approach. The static model is created as a fuzzy logic-oriented advisory expert system and can be particularly useful at the design stage of SoS. The dynamic model is based on the risk oriented approach, and can be useful both at the design stage and for management of SoS. The integrated model of dependability can also form the basis for a new definition of the dependability engineering, namely as a superior discipline to reliability engineering, safety engineering, security engineering, resilience engineering and risk engineering. - Highlights: • A framework for evaluation of system of systems dependability is presented. • The model is based on the service continuity concept and consists of two parts. • The static part can be created as a fuzzy logic-oriented advisory expert system. • The dynamic, risk oriented part, is related to the concept of throughput chain. • A new definition of dependability engineering is proposed.

  5. Sensor Data from the NERACOOS SOS Server, 2000-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) Sensor Observation Service (SOS) The OCEANS IE -- formally approved as an OGC...

  6. Evolving artificial metalloenzymes via random mutagenesis

    Science.gov (United States)

    Yang, Hao; Swartz, Alan M.; Park, Hyun June; Srivastava, Poonam; Ellis-Guardiola, Ken; Upp, David M.; Lee, Gihoon; Belsare, Ketaki; Gu, Yifan; Zhang, Chen; Moellering, Raymond E.; Lewis, Jared C.

    2018-03-01

    Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.

  7. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    Science.gov (United States)

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  8. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    Science.gov (United States)

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Physical modeling of SOS P channel MOSFET and comparison with bulk devices

    International Nuclear Information System (INIS)

    Merckel, G.; Gris, Y.

    1976-01-01

    The main technological steps applied to P channel MOSFET's on SOS are recalled. A large-signal model derived from a physical analysis is presented. Gate-source and gate-drain capacitors have been linearized versus drain voltage. Due to low injection, the only diffusion capacitance of the source-substrate forward biased diode, and the depletion capacitance of the drain-substrate reverse biased diode were taken into account. Some typical parameters measured on SOS and bulk devices are given [fr

  10. First evidence on the validity and reliability of the Safety Organizing Scale-Nursing Home version (SOS-NH).

    Science.gov (United States)

    Ausserhofer, Dietmar; Anderson, Ruth A; Colón-Emeric, Cathleen; Schwendimann, René

    2013-08-01

    The Safety Organizing Scale is a valid and reliable measure on safety behaviors and practices in hospitals. This study aimed to explore the psychometric properties of the Safety Organizing Scale-Nursing Home version (SOS-NH). In a cross-sectional analysis of staff survey data, we examined validity and reliability of the 9-item Safety SOS-NH using American Educational Research Association guidelines. This substudy of a larger trial used baseline survey data collected from staff members (n = 627) in a variety of work roles in 13 nursing homes (NHs) in North Carolina and Virginia. Psychometric evaluation of the SOS-NH revealed good response patterns with low average of missing values across all items (3.05%). Analyses of the SOS-NH's internal structure (eg, comparative fit indices = 0.929, standardized root mean square error of approximation = 0.045) and consistency (composite reliability = 0.94) suggested its 1-dimensionality. Significant between-facility variability, intraclass correlations, within-group agreement, and design effect confirmed appropriateness of the SOS-NH for measurement at the NH level, justifying data aggregation. The SOS-NH showed discriminate validity from one related concept: communication openness. Initial evidence regarding validity and reliability of the SOS-NH supports its utility in measuring safety behaviors and practices among a wide range of NH staff members, including those with low literacy. Further psychometric evaluation should focus on testing concurrent and criterion validity, using resident outcome measures (eg, patient fall rates). Copyright © 2013 American Medical Directors Association, Inc. All rights reserved.

  11. Chemical trapping and characterization of small oxoacids of sulfur (SOS) generated in aqueous oxidations of H2S.

    Science.gov (United States)

    Kumar, Murugaeson R; Farmer, Patrick J

    2018-04-01

    Small oxoacids of sulfur (SOS) are elusive molecules like sulfenic acid, HSOH, and sulfinic acid, HS(O)OH, generated during the oxidation of hydrogen sulfide, H 2 S, in aqueous solution. Unlike their alkyl homologs, there is a little data on their generation and speciation during H 2 S oxidation. These SOS may exhibit both nucleophilic and electrophilic reactivity, which we attribute to interconversion between S(II) and S(IV) tautomers. We find that SOS may be trapped in situ by derivatization with nucleophilic and electrophilic trapping agents and then characterized by high resolution LC MS. In this report, we compare SOS formation from H 2 S oxidation by a variety of biologically relevant oxidants. These SOS appear relatively long lived in aqueous solution, and thus may be involved in the observed physiological effects of H 2 S. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Evaluation of effects of busulfan and DMA on SOS in pediatric stem cell recipients.

    Science.gov (United States)

    Kerl, Kornelius; Diestelhorst, Christian; Bartelink, Imke; Boelens, Jaap; Trame, Mirjam N; Boos, Joachim; Hempel, Georg

    2014-02-01

    Busulfan (Bu) is a DNA-alkylating agent used for myeloablative conditioning in stem cell transplantation in children and adults. While the use of intravenous rather than oral administration of Bu has reduced inter-individual variability in plasma levels, toxicity still occurs frequently after hematopoietic stem cell transplantation (HSCT). Toxicity (especially hepatotoxic effects) of intravenous (IV) Bu may be related to both Bu and/or N,N-dimethylacetamide (DMA), the solvent of Bu. In this study, we assessed the relation between the exposure of Bu and DMA with regards to the clinical outcome in children from two cohorts. In a two-centre study Bu and DMA AUC (area under the curve) were correlated in pediatric stem cell recipients to the risk of developing SOS and to the clinical outcome. In patients receiving Bu four times per day Bu levels >1,500 µmol/L minute correlate to an increased risk of developing a SOS. In the collective cohort, summarizing data of all 53 patients of this study, neither high area under the curve (AUC) of Bu nor high AUC of DMA appears to be an independent risk factor for the development of SOS in children. In this study neither Bu nor DMA was observed as an independent risk factor for the development of SOS. To identify subgroups (e.g., infants), in which Bu or DMA might be risk factors for the induction of SOS, larger cohorts have to be evaluated. © 2013 Wiley Periodicals, Inc.

  13. Spontaneous and persistent currents in superconductive and mesoscopic structures (Review Article)

    International Nuclear Information System (INIS)

    Kulik, I.O.

    2004-01-01

    We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent as well as 'spontaneous' currents in the Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron- lattice Hamiltonian. In case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at certain number of electrons. At such a condition, the persistent current has a nonzero value even at the (almost) zero applied Aharonov-Bohm flux, and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may open an opportunity (and, more generally, macromolecular cyclic structures may suggest the possibility) of engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates

  14. SOS formats and meta-theory : 20 years after

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Groote, J.F.

    2007-01-01

    In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way to define operational semantics of programming languages by a set of rules of a certain shape [G.D. Plotkin, A structural approach to operational semantics, Technical Report DAIMI FN-19, Computer Science Department,

  15. Integral formula for elliptic SOS models with domain walls and a reflecting end

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Jules, E-mail: j.lamers@uu.nl

    2015-12-15

    In this paper we extend previous work of Galleas and the author to elliptic SOS models. We demonstrate that the dynamical reflection algebra can be exploited to obtain a functional equation characterizing the partition function of an elliptic SOS model with domain-wall boundaries and one reflecting end. Special attention is paid to the structure of the functional equation. Through this approach we find a novel multiple-integral formula for that partition function.

  16. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chenchen; Martínez, Todd J. [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-07

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N{sup 2.6} for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  17. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity.

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J

    2016-05-07

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N(2.6) for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  18. istSOS, a new sensor observation management system: software architecture and a real-case application for flood protection

    Directory of Open Access Journals (Sweden)

    M. Cannata

    2015-11-01

    Full Text Available istSOS (Istituto scienze della Terra Sensor Observation Service is an implementation of the Sensor Observation Service (SOS standard from the Open Geospatial Consortium. The development of istSOS started in 2009 in order to provide a simple implementation of the SOS for the management, provision and integration of hydro-meteorological data collected in Canton Ticino (Southern Switzerland. istSOS is an Open Source, entirely written in Python and based on reliable software like PostgreSQL/PostGIS and Apache/mod_wsgi. This paper illustrates the latest software enhancements, including a RESTful Web service and a Web-based graphical user interface, which enable a better and simplified interaction with measurements and SOS service settings. The robustness of the implemented solution has been validated in a real-case application: the Verbano Lake Early Warning System. In this application, near real-time data have to be exchanged by inter-regional partners and used in a hydrological model for lake level forecasting and flooding hazard assessment. This system is linked with a dedicated geoportal used by the civil protection for the management, alert and protection of the population and the assets of the Locarno area. Practical considerations, technical issues and foreseen improvements are presented and discussed.

  19. Mutation-Specific Mechanisms of Hyperactivation of Noonan Syndrome SOS Molecules Detected with Single-molecule Imaging in Living Cells.

    Science.gov (United States)

    Nakamura, Yuki; Umeki, Nobuhisa; Abe, Mitsuhiro; Sako, Yasushi

    2017-10-26

    Noonan syndrome (NS) is a congenital hereditary disorder associated with developmental and cardiac defects. Some patients with NS carry mutations in SOS, a guanine nucleotide exchange factor (GEF) for the small GTPase RAS. NS mutations have been identified not only in the GEF domain, but also in various domains of SOS, suggesting that multiple mechanisms disrupt SOS function. In this study, we examined three NS mutations in different domains of SOS to clarify the abnormality in its translocation to the plasma membrane, where SOS activates RAS. The association and dissociation kinetics between SOS tagged with a fluorescent protein and the living cell surface were observed in single molecules. All three mutants showed increased affinity for the plasma membrane, inducing excessive RAS signalling. However, the mechanisms by which their affinity was increased were specific to each mutant. Conformational disorder in the resting state, increased probability of a conformational change on the plasma membrane, and an increased association rate constant with the membrane receptor are the suggested mechanisms. These different properties cause the specific phenotypes of the mutants, which should be rescuable with different therapeutic strategies. Therefore, single-molecule kinetic analyses of living cells are useful for the pathological analysis of genetic diseases.

  20. Motion-insensitive carotid intraplaque hemorrhage imaging using 3D inversion recovery preparation stack of stars (IR-prep SOS) technique.

    Science.gov (United States)

    Kim, Seong-Eun; Roberts, John A; Eisenmenger, Laura B; Aldred, Booth W; Jamil, Osama; Bolster, Bradley D; Bi, Xiaoming; Parker, Dennis L; Treiman, Gerald S; McNally, J Scott

    2017-02-01

    Carotid artery imaging is important in the clinical management of patients at risk for stroke. Carotid intraplaque hemorrhage (IPH) presents an important diagnostic challenge. 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) has been shown to accurately image carotid IPH; however, this sequence can be limited due to motion- and flow-related artifact. The purpose of this work was to develop and evaluate an improved 3D carotid MPRAGE sequence for IPH detection. We hypothesized that a radial-based k-space trajectory sequence such as "Stack of Stars" (SOS) incorporated with inversion recovery preparation would offer reduced motion sensitivity and more robust flow suppression by oversampling of central k-space. A total of 31 patients with carotid disease (62 carotid arteries) were imaged at 3T magnetic resonance imaging (MRI) with 3D IR-prep Cartesian and SOS sequences. Image quality was determined between SOS and Cartesian MPRAGE in 62 carotid arteries using t-tests and multivariable linear regression. Kappa analysis was used to determine interrater reliability. In all, 25 among 62 carotid plaques had carotid IPH by consensus from the reviewers on SOS compared to 24 on Cartesian sequence. Image quality was significantly higher with SOS compared to Cartesian (mean 3.74 vs. 3.11, P SOS acquisition yielded sharper image features with less motion (19.4% vs. 45.2%, P SOS (kappa = 0.89), higher than that of Cartesian (kappa = 0.84). By minimizing flow and motion artifacts and retaining high interrater reliability, the SOS MPRAGE has important advantages over Cartesian MPRAGE in carotid IPH detection. 1 J. Magn. Reson. Imaging 2017;45:410-417. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.

    Science.gov (United States)

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-08-01

    The CRISPR/Cas9 system is an efficient tool used for genome editing in a variety of organisms. Despite several recent reports of successful targeted mutagenesis using the CRISPR/Cas9 system in plants, in each case the target gene of interest, the Cas9 expression system and guide-RNA (gRNA) used, and the tissues used for transformation and subsequent mutagenesis differed, hence the reported frequencies of targeted mutagenesis cannot be compared directly. Here, we evaluated mutation frequency in rice using different Cas9 and/or gRNA expression cassettes under standardized experimental conditions. We introduced Cas9 and gRNA expression cassettes separately or sequentially into rice calli, and assessed the frequency of mutagenesis at the same endogenous targeted sequences. Mutation frequencies differed significantly depending on the Cas9 expression cassette used. In addition, a gRNA driven by the OsU6 promoter was superior to one driven by the OsU3 promoter. Using an all-in-one expression vector harboring the best combined Cas9/gRNA expression cassette resulted in a much improved frequency of targeted mutagenesis in rice calli, and bi-allelic mutant plants were produced in the T0 generation. The approach presented here could be adapted to optimize the construction of Cas9/gRNA cassettes for genome editing in a variety of plants.

  2. 2004 Mutagenesis Gordon Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  3. Highly Efficient ENU Mutagenesis in Zebrafish.

    NARCIS (Netherlands)

    de Bruijn, E.; Cuppen, E.; Feitsma, H.

    2009-01-01

    ENU (N-ethyl-N-nitrosourea) mutagenesis is a widely accepted and proven method to introduce random point mutations in the genome. Because there are no targeted knockout strategies available for zebrafish so far, random mutagenesis is currently the preferred method in both forward and reverse genetic

  4. Induction of the SOS response in ultraviolet-irradiated Escherichia coli analyzed by dynamics of LexA, RecA and SulA proteins

    International Nuclear Information System (INIS)

    Aksenov, S.V.

    1999-01-01

    The SOS response in Escherichia coli is induced after DNA-damaging treatments including ultraviolet light. Regulation of the SOS response is accomplished through specific interaction of the two SOS regulator proteins, LexA and RecA. In ultraviolet light treated cells nucleotide excision repair is the major system that removes the induced lesions from the DNA. Here, induction of the SOS response in Escherichia coli with normal and impaired excision repair function is studied by simulation of intracellular levels of regulatory LexA and RecA proteins, and SulA protein. SulA protein is responsible for SOS-inducible cell division inhibition. Results of the simulations show that nucleotide excision repair influences time-courses of LexA , RecA and SulA induction by modulating the dynamics of RecA protein distribution between its normal and SOS-activated forms

  5. The influence of glycerol on γ-induced mutagenesis in Salmonella typhimurium cells

    International Nuclear Information System (INIS)

    Basha, S.G.; Krasavin, E.A.; Kozubek, S.; Amirtaev, K.G.

    1990-01-01

    A study was made of the modifying effect of glycerol on the survival rate and γ-radiation-induced mutagenesis of Salmonella typhimurium cells TA98, TA100 and TA102. The DMF value, with respect to the survival rate, was 2.05-0.20. The dependence of the yield of γ-radiation-induced mutants on radiation dose was described by the curve with a maximum; the mutation frequency M(D) was well described by a gradual function M(D)=kD x . DMF values of the induced mutagenesis amounted to 2 for strains TA100 and TA102, and 1.5 for strain TA98

  6. Ascorbate enhances u.v.-mutagenesis in E. coli but inhibits it in Chinese hamster cells

    International Nuclear Information System (INIS)

    Rossman, T.G.; Klein, C.B.; Naslund, M.

    1986-01-01

    Ascorbic acid (vitamin C) causes an increase in the mutation frequency of u.v.-irradiated Escherichia coli WP2. The enhancement occurs at all u.v. fluences, and is dependent upon the ascorbate concentration in the medium. A maximum effect (approx. 8- to 13-fold) is seen at 100-150 μg/ml, although some enhancement can be seen even at 10 μg/ml. The comutagenic effect of ascorbate with u.v. in E. coli is dependent upon peptone, a constituent of nutrient broth. The enhancement of u.v.-mutagenesis by ascorbate is absent in strains WP2sub(s) (uvrA) amd WP6 (polA), suggesting that ascorbate affects the repair of pyrimidine dimers. The opposite results are observed for u.v.-mutagenesis in Chinese hamster V79 cells. The presence of ascorbate (50 μg/ml) during u.v. irradiation does not enhance the u.v. effect, but rather decreases it approx. 30%. These results are discussed with regard to differences in the mechanism of u.v.-mutagenesis and DNA repair in bacterial and mammalian cells. (author)

  7. The SOS Chromotest applied for screening plant antigenotoxic agents against ultraviolet radiation.

    Science.gov (United States)

    Fuentes, J L; García Forero, A; Quintero Ruiz, N; Prada Medina, C A; Rey Castellanos, N; Franco Niño, D A; Contreras García, D A; Córdoba Campo, Y; Stashenko, E E

    2017-09-13

    In this work, we investigated the usefulness of the SOS Chromotest for screening plant antigenotoxic agents against ultraviolet radiation (UV). Fifty Colombian plant extracts obtained by supercritical fluid (CO 2 ) extraction, twelve plant extract constituents (apigenin, carvacrol, β-caryophyllene, 1,8-cineole, citral, p-cymene, geraniol, naringenin, pinocembrin, quercetin, squalene, and thymol) and five standard antioxidant and/or photoprotective agents (curcumin, epigallocatechin gallate, resveratrol, α-tocopherol, and Trolox®) were evaluated for their genotoxicity and antigenotoxicity against UV using the SOS Chromotest. None of the plant extracts, constituents or agents were genotoxic in the SOS Chromotest at tested concentrations. Based on the minimal extract concentration that significantly inhibited UV-genotoxicity (CIG), five plant extracts were antigenotoxic against UV as follows: Baccharis nítida (16 μg mL -1 ) = Solanum crotonifolium (16 μg mL -1 ) > Hyptis suaveolens (31 μg mL -1 ) = Persea caerulea (31 μg mL -1 ) > Lippia origanoides (62 μg mL -1 ). Based on CIG values, the flavonoid compounds showed the highest antigenotoxic potential as follows: apigenin (7 μM) > pinocembrin (15 μM) > quercetin (26 μM) > naringenin (38 μM) > epigallocatechin gallate (108 μM) > resveratrol (642 μM). UV-genotoxicity inhibition with epigallocatechin gallate, naringenin and resveratrol was related to its capability for inhibiting protein synthesis. A correlation analysis between compound antigenotoxicity estimates and antioxidant activity evaluated by the oxygen radical absorbance capacity (ORAC) assay showed that these activities were not related. The usefulness of the SOS Chromotest for bioprospecting of plant antigenotoxic agents against UV was discussed.

  8. Geographical Simulation and Optimization System (GeoSOS and Its Application in the Analysis of Geographic National Conditions

    Directory of Open Access Journals (Sweden)

    LI Xia

    2017-10-01

    Full Text Available Since the Chinese first survey on geographic national conditions has completed, an urgent need is to analyze these geographical data, such as mining of spatial distribution patterns, land use transition rules, development trends. The analysis is crucial for extracting the knowledge from these big data about geographic national conditions. The remote sensing interpretation data and land use/cover data generated by these geographic national conditions monitoring projects are the basic data sources for a variety of research and applications in terms of land use change detection, urban dynamic analysis, and urban/land use planning. The information can be used for assisting in the coordination of land resource use and decision making for urban and rural development, ecological environment protection and other issues that depends on spatial intelligent decisions. We proposed the theoretical framework of geographical simulation and optimization system (GeoSOS, which coupled geographic process simulation/prediction and spatial optimization, provides powerful theoretical support and practical tools for above researches. This paper develops the extension of GeoSOS software-GeoSOS for ArcGIS, which is an ArcGIS Add-In runs on ArcGIS platform for facilitating the above analyses. We take the urban expansion and ecological protection research in rapid urbanization area as an example, use the software to tackle a series of urbanization issues in the study area. The simulation results show that the predicted land development intensity of Guangdong Province will exceed the constraint index in 2020 according to the national development plan. However, the urbanization expansion based on the constraints of land development intensity and ecological protection can satisfy these constraints, and obtain a more compact landscape pattern. The analysis has shown that GeoSOS can be a useful tool for assisting in the analysis of geographic national conditions information

  9. Is the S.O.S. diagnostic algorithm applicable to creating highly safe protective systems?

    International Nuclear Information System (INIS)

    Drab, F.

    1994-01-01

    The S.O.S. diagnostic system is analyzed and compared with KOMPARACE and MIN-MAX type diagnostic systems. Designed for the identification of failed sensors, the S.O.S. dynamic algorithm is based on a digital monitoring of output signals from a pair of sensors measuring the same technological parameter. The last 3 output signal data from the two sensors are stored in the algorithm memory. The analysis indicates that S.O.S. is no major achievement in the field of diagnosis because its properties are nearly identical with those of the conventional MIN-MAX system. Some degradation failures of the sensor are incorrectly interpreted by the new algorithm, some failures are not detected at all. From this point of view the new algorithm is inferior to the KOMPARACE type algorithm. (J.B.). 2 figs., 5 refs

  10. Identification of genes involved in low aminoglycoside-induced SOS response in Vibrio cholerae: a role for transcription stalling and Mfd helicase.

    Science.gov (United States)

    Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier

    2014-02-01

    Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated.

  11. The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II.

    Science.gov (United States)

    Dapa, Tanja; Fleurier, Sébastien; Bredeche, Marie-Florence; Matic, Ivan

    2017-07-01

    Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability. Copyright © 2017 by the Genetics Society of America.

  12. Refined functional relations for the elliptic SOS model

    Energy Technology Data Exchange (ETDEWEB)

    Galleas, W., E-mail: w.galleas@uu.nl [ARC Centre of Excellence for the Mathematics and Statistics of Complex Systems, University of Melbourne, VIC 3010 (Australia)

    2013-02-21

    In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang-Baxter relation and its solution is given in terms of multiple contour integrals.

  13. Refined functional relations for the elliptic SOS model

    International Nuclear Information System (INIS)

    Galleas, W.

    2013-01-01

    In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang–Baxter relation and its solution is given in terms of multiple contour integrals.

  14. The SOS response is permitted in Escherichia coli strains deficient in the expression of the mazEF pathway.

    Science.gov (United States)

    Kalderon, Ziva; Kumar, Sathish; Engelberg-Kulka, Hanna

    2014-01-01

    The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin mazEF pathway. Since the mazEF module is present on the chromosomes of most E. coli strains, here we asked: Why is the SOS response found in so many E. coli strains? Is the mazEF module present but inactive in those strains? We examined three E. coli strains used for studies of the SOS response, strains AB1932, BW25113, and MG1655. We found that each of these strains is either missing or inhibiting one of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only takes place in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF or its downstream pathway is not functioning.

  15. Electrical and crystallographic evaluation of SOS implanted with silicon and/or oxygen

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Kobayashi, H.; Takahashi, T.; Inada, T.

    1985-01-01

    RBS and Hall measurements have revealed that the formation of an amorphous laer in SOS near in the Si/sapphire interface by oxygen implantation at 130 K followed by regrowth by thermal annealing above 800 0 C for 20 min in N 2 is effective in improving crystalline quality and Hall mobility as well as in increasing activation of implanted P. The temperature dependence of the mobility was measured. The mobility increased by 80% and 40% at 77 K and RT, respectively, after improvement in crystalline quality. The costly low temperature implantation of O can be replaced with dual implantation of Si and O; formation of an amorphous layer by Si implantation and Al gettering by oxygen implantation. (orig.)

  16. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells

    Science.gov (United States)

    Kozmin, Stanislav G.; Jinks-Robertson, Sue

    2013-01-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894

  17. Mutagenesis and carcinogenesis resulting from environment pollution

    International Nuclear Information System (INIS)

    Dimitrov, B.

    2001-01-01

    The paper reviews different ways of environmental contamination with natural and artificial harmful substances (chemical and radioactive) and their role in the processes of mutagenesis and carcinogenesis. The recent studies of the mechanism of mutagenesis and carcinogenesis due to environmental pollution are discussed

  18. Direct random insertion mutagenesis of Helicobacter pylori

    NARCIS (Netherlands)

    de Jonge, Ramon; Bakker, Dennis; van Vliet, Arnoud H. M.; Kuipers, Ernst J.; Vandenbroucke-Grauls, Christina M. J. E.; Kusters, Johannes G.

    2003-01-01

    Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or

  19. Direct random insertion mutagenesis of Helicobacter pylori.

    NARCIS (Netherlands)

    Jonge, de R.; Bakker, D.; Vliet, van AH; Kuipers, E.J.; Vandenbroucke-Grauls, C.M.J.E.; Kusters, J.G.

    2003-01-01

    Random insertion mutagenesis is a widely used technique for the identification of bacterial virulence genes. Most strategies for random mutagenesis involve cloning in Escherichia coli for passage of plasmids or for phenotypic selection. This can result in biased selection due to restriction or

  20. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    Science.gov (United States)

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  1. ADA1 and NET1 Genes of Yeast Mediate Both Chromosome Maintenance and Mitochondrial $\\rho^{-}$ Mutagenesis

    CERN Document Server

    Koltovaya, N A; Tchekhouta, I A; Devin, A B

    2002-01-01

    An increase in the mitochondrial (mt) rho^- mutagenesis is a well-known respose of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho^- mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho^- mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well as on ce...

  2. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Glutathione S-transferase M1-null genotype as risk factor for SOS in oxaliplatin-treated patients with metastatic colorectal cancer.

    Science.gov (United States)

    Vreuls, C P H; Olde Damink, S W M; Koek, G H; Winstanley, A; Wisse, E; Cloots, R H E; van den Broek, M A J; Dejong, C H C; Bosman, F T; Driessen, A

    2013-02-19

    Oxaliplatin is used as a neo-adjuvant therapy in hepatic colorectal carcinoma metastasis. This treatment has significant side effects, as oxaliplatin is toxic to the sinusoidal endothelial cells and can induce sinusoidal obstruction syndrome (SOS), which is related to decreased overall survival. Glutathione has an important role in the defence system, catalysed by glutathione S-transferase (GST), including two non-enzyme producing polymorphisms (GSTM1-null and GSTT1-null). We hypothesise that patients with a non-enzyme producing polymorphism have a higher risk of developing toxic injury owing to oxaliplatin. In the nontumour-bearing liver, the presence of SOS was studied histopathologically. The genotype was determined by a semi-nested PCR. Thirty-two of the 55 (58%) patients showed SOS lesions, consisting of 27% mild, 22% moderate and 9% severe lesions. The GSTM1-null genotype was present in 25 of the 55 (46%). Multivariate analysis showed that the GSTM1-null genotype significantly correlated with the presence of (moderate-severe) SOS (P=0.026). The GSTM1-null genotype is an independent risk factor for SOS. This finding allows us, in association with other risk factors, to conceive a potential risk profile predicting whether the patient is at risk of developing SOS, before starting oxaliplatin, and subsequently might result in adjustment of treatment.

  4. Architecture and performance of radiation-hardened 64-bit SOS/MNOS memory

    International Nuclear Information System (INIS)

    Kliment, D.C.; Ronen, R.S.; Nielsen, R.L.; Seymour, R.N.; Splinter, M.R.

    1976-01-01

    This paper discusses the circuit architecture and performance of a nonvolatile 64-bit MNOS memory fabricated on silicon on sapphire (SOS). The circuit is a test vehicle designed to demonstrate the feasibility of a high-performance, high-density, radiation-hardened MNOS/SOS memory. The array is organized as 16 words by 4 bits and is fully decoded. It utilizes a two-(MNOS) transistor-per-bit cell and differential sensing scheme and is realized in PMOS static resistor load logic. The circuit was fabricated and tested as both a fast write random access memory (RAM) and an electrically alterable read only memory (EAROM) to demonstrate design and process flexibility. Discrete device parameters such as retention, circuit electrical characteristics, and tolerance to total dose and transient radiation are presented

  5. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    Science.gov (United States)

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  6. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José

    2003-01-01

    and verification of MSOS specifications, we have defined a mapping, named , from MSOS to rewriting logic (RWL), a logic which has been proposed as a logical and semantic framework. We have proven the correctness of and implemented it as a prototype, the MSOS-SL Interpreter, in the Maude system, a high......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  7. SOS: Observation, Intervention, and Scaffolding towards Successful Online Students

    Science.gov (United States)

    Ainsa, Trisha

    2017-01-01

    Research, reflection, and evaluation of online classes indicated a need for graduated scaffolding for first time students experiencing distance learning. In order to promote student engagement in the online learning process, I designed SOS for beginning online students. Sixty-three online students were offered an opportunity to participate in a…

  8. Ultraviolet light protection, enhancement of ultraviolet light mutagenesis, and mutator effect of plasmid R46 in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Mortelmans, K.E.; Stocker, B.A.D.

    1976-01-01

    Plasmid R46 partially protected Salmonella typhimurium, wild type or uvrB or polA, against the lethal effect of ultraviolet (uv) irradiation, but did not protect recA mutants. The plasmid also increased frequency of uv-induced reversion to His + in all tested his point mutants (wild type for uv sensitivity), including amber, ochre, UGA, missense, and frame-shift mutants. Plasmid R46 also increased uv-induced reversion to His + in uvrB and polA strains, but no uv mutagenic effect was detected in R - or R46-carrying recA derivatives of a his(amber) mutant. The spontaneous reversion frequency of his nonsense mutants of all classes, and of some his missense mutants, was increased about 10-fold when the strains carried R46, but the plasmid had no effect on the spontaneous reversion frequency of some other his missense mutations or of reversion rate of his frame-shift mutants (except for two uvrB derivatives of one single-base insertion mutant). The plasmid increased the ability of wild type, polA, and uvrB hosts to support plaque production by uv-irradiated phage, and made strain LT2 his G46 less sensitive to methyl methane sulfonate and to x rays and more responsive to the mutagenic effect of visible-light irradiation. R46 increased spontaneous reversion frequency of a his(amber) rec + strain, but had no such effect in its recA sublines. Since the plasmid in the absence of host recA function fails to produce its mutator effect, or to confer uv protection or to enhance uv mutagenesis, these three effects may be produced via some mechanism involved in recA-dependent deoxyribonucleic acid repair, perhaps by an increase in activity of the ''error-prone'' component of the inducible repair pathway

  9. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  10. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon.

    Science.gov (United States)

    Kelley, William L

    2006-12-01

    The SOS response that responds to DNA damage induces many genes that are under LexA repression. A detailed examination of LexA regulons using genome-wide techniques has recently been undertaken in both Escherichia coli and Bacillus subtilis. These extensive and elegant studies have now charted the extent of the LexA regulons, uncovered many new genes, and exposed a limited overlap in the LexA regulon between the two bacteria. As more bacterial genomes are analysed, more curiosities in LexA regulons arise. Several notable examples include the discovery of a LexA-like protein, HdiR, in Lactococcus lactis, organisms with two lexA genes, and small DNA damage-inducible cassettes under LexA control. In the cyanobacterium Synechocystis, genetic and microarray studies demonstrated that a LexA paralogue exerts control over an entirely different set of carbon-controlled genes and is crucial to cells facing carbon starvation. An examination of SOS induction evoked by common therapeutic drugs has shed new light on unsuspected consequences of drug exposure. Certain antibiotics, most notably fluoroquinolones such as ciprofloxacin, can induce an SOS response and can modulate the spread of virulence factors and drug resistance. SOS induction by beta-lactams in E. coli triggers a novel form of antibiotic defence that involves cell wall stress and signal transduction by the DpiAB two-component system. In this review, we provide an overview of these new directions in SOS and LexA research with emphasis on a few themes: identification of genes under LexA control, the identification of new endogenous triggers, and antibiotic-induced SOS response and its consequences.

  11. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun

    2011-04-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  12. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun; Baek, Dongwon; Oh, Dongha; Park, Jiyoung; Hong, Hyewon; Kim, Woeyeon; Bohnert, Hans Jü rgen; Bressan, Ray Anthony; Park, Hyeongcheol; Yun, Daejin

    2011-01-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  13. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    Science.gov (United States)

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  14. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  15. Regulation of the E. coli SOS response by the lexA gene product

    International Nuclear Information System (INIS)

    Brent, R.

    1983-01-01

    In an Escherichia coli that is growing normally, transcription of many genes is repressed by the product of the lexA gene. If cellular DNA is damaged, proteolytically competent recA protein (recA protease) inactivates lexA protein and these genes are induced. Many of the cellular phenomena observed during the cellular response to DNA damage (the SOS response) are the consequence of the expression of these lexA-prepressed genes. Since the SOS response of E. coli has recently been the subject of a comprehensive review, in this paper I would like to concentrate on some modifications to the picture based on new data. 12 references, 2 figures

  16. The two umuDC-like operons, samAB and umuDCST, in Salmonella typhimurium: The umuDCST operon may reduce UV-mutagenesis-promoting ability of the samAB operon

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Hakura, Atsushi; Watanabe, Masahiko; Yamada, Masami; Sofuni, Toshio; Nakai, Yasuharu; Murayama, Somay Y.

    1993-01-01

    Salmonella typhimurium, especially its derivatives containing pKM101 plasmid, has been widely used in the Ames test for the detection of environmental mutagens and carcinogens. It is known, however, that if the pKM101 plasmid is eliminated, S. typhimurium itself shows a much weaker mutagenic response to UV and some chemical mutagens than does Escherichia coli. In fact, certain potent base-change type mutagens, such as furylfuramide and aflatoxin B 1 , are nonmutagenic to S. typhimurium in the absence of pKM101, whereas they are strongly mutagenic to S. typhimurium in the presence of pKM101 plasmid as well as to E. coli. The low mutability can be restored to levels comparable to E. coli by introducing the plasmid carrying the E. coli umuDC operon or the pKM101 plasmid carrying mucAB operon. Salmonella typhimurium has an SOS regulatory system which resembles that of E. coli. Thus, it was suggested that S. typhimurium is deficient in the function of umuDC operon, which plays an essential role in UV and most chemical mutagenesis in E. coli. In order to clarify the implications of umuDC genes in mutagenesis and antimutagenesis in typhimurium, we have independently screened the umuDC-like genes of S. typhimurium TA1538. Consequently, we have cloned another umuDC-like operon which is 40% diverged from the aforementioned umuDC operon of S. typhimurium LT2 at the nucleotide level (16). We have termed the cloned DNA the samAB (Salmonella; mutagenesis) operon, and tentatively referred to the umuDC operon cloned from S. typhimurium LT2 (27,31) as the umuDC ST operon. Based on the results of the Southern hybridization experiment, we concluded that the two sets of umuDC-like operons reside in the same cells of S. typhimurium LT2 and TA1538. Our results also suggested that the umuDC ST operon reduces the UV-mutagenesis promoting ability of the samAB operon when the two operons are present on the same multi-copy number plasmid

  17. Environmental stress induces trinucleotide repeat mutagenesis in human cells.

    Science.gov (United States)

    Chatterjee, Nimrat; Lin, Yunfu; Santillan, Beatriz A; Yotnda, Patricia; Wilson, John H

    2015-03-24

    The dynamic mutability of microsatellite repeats is implicated in the modification of gene function and disease phenotype. Studies of the enhanced instability of long trinucleotide repeats (TNRs)-the cause of multiple human diseases-have revealed a remarkable complexity of mutagenic mechanisms. Here, we show that cold, heat, hypoxic, and oxidative stresses induce mutagenesis of a long CAG repeat tract in human cells. We show that stress-response factors mediate the stress-induced mutagenesis (SIM) of CAG repeats. We show further that SIM of CAG repeats does not involve mismatch repair, nucleotide excision repair, or transcription, processes that are known to promote TNR mutagenesis in other pathways of instability. Instead, we find that these stresses stimulate DNA rereplication, increasing the proportion of cells with >4 C-value (C) DNA content. Knockdown of the replication origin-licensing factor CDT1 eliminates both stress-induced rereplication and CAG repeat mutagenesis. In addition, direct induction of rereplication in the absence of stress also increases the proportion of cells with >4C DNA content and promotes repeat mutagenesis. Thus, environmental stress triggers a unique pathway for TNR mutagenesis that likely is mediated by DNA rereplication. This pathway may impact normal cells as they encounter stresses in their environment or during development or abnormal cells as they evolve metastatic potential.

  18. Modification of Antibody Function by Mutagenesis.

    Science.gov (United States)

    Dasch, James R; Dasch, Amy L

    2017-09-01

    The ability to "fine-tune" recombinant antibodies by mutagenesis separates recombinant antibodies from hybridoma-derived antibodies because the latter are locked with respect to their properties. Recombinant antibodies can be modified to suit the application: Changes in isotype, format (e.g., scFv, Fab, bispecific antibodies), and specificity can be made once the heavy- and light-chain sequences are available. After immunoglobulin heavy and light chains for a particular antibody have been cloned, the binding site-namely, the complementarity determining regions (CDR)-can be manipulated by mutagenesis to obtain antibody variants with improved properties. The method described here is relatively simple, uses commercially available reagents, and is effective. Using the pComb3H vector, a commercial mutagenesis kit, PfuTurbo polymerase (Agilent), and two mutagenic primers, a library of phage with mutagenized heavy and light CDR3 can be obtained. © 2017 Cold Spring Harbor Laboratory Press.

  19. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    Science.gov (United States)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  20. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  1. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  2. Mutagenesis and Teratogenesis Section

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on research with mice in the areas of radioinduced and chemical mutagenesis, cytologic studies, radiation effects on DNA synthesis, radiation effects on germ cells, mutagenicity of coal-conversion products, and others. Research on Drosophila was concerned with mutagenesis and genetics of nucleases. Studies were conducted on hamster cells with regard to cytotoxicity and mutagenicity of alkylating agents, modification of the microtubule system, protein kinase activity, and others. Research on bacteria was concerned with effects of x radiation on bacteriophage of Haemophilus influenzae, x-ray induced DNA polymerase I-directed repair synthesis in Escherichia coli, transformation by DNA polymerase II in Bacillus subtilis, and others. Research on xenopus laevis was conducted in the areas of calcium-induced cleavage of oocytes, yolk degradation in explants, and others

  3. Proceedings of the NKS/SOS-2 seminar on risk informed principles

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Simola, K.

    1999-09-01

    The aim of this NKS/SOS-2 seminar was to present the status and plans of applications of Risk Informed Principles both by nuclear authorities and industry in Finland and Sweden. Furthermore, views from the off-shore industry were presented. (EHS)

  4. Fluorescence-Based Reporters for Detection of Mutagenesis in E. coli.

    Science.gov (United States)

    Standley, Melissa; Allen, Jennifer; Cervantes, Layla; Lilly, Joshua; Camps, Manel

    2017-01-01

    Mutagenesis in model organisms following exposure to chemicals is used as an indicator of genotoxicity. Mutagenesis assays are also used to study mechanisms of DNA homeostasis. This chapter focuses on detection of mutagenesis in prokaryotes, which boils down to two approaches: reporter inactivation (forward mutation assay) and reversion of an inactivating mutation (reversion mutation assay). Both methods are labor intensive, involving visual screening, quantification of colonies on solid media, or determining a Poisson distribution in liquid culture. Here, we present two reversion reporters for in vivo mutagenesis that produce a quantitative output, and thus have the potential to greatly reduce the amount of test chemical and labor involved in these assays. This output is obtained by coupling a TEM β lactamase-based reversion assay with GFP fluorescence, either by placing the two genes on the same plasmid or by fusing them translationally and interrupting the N-terminus of the chimeric ORF with a stop codon. We also describe a reporter aimed at facilitating the monitoring of continuous mutagenesis in mutator strains. This reporter couples two reversion markers, allowing the temporal separation of mutation events in time, thus providing information about the dynamics of mutagenesis in mutator strains. Here, we describe these reporter systems, provide protocols for use, and demonstrate their key functional features using error-prone Pol I mutagenesis as a source of mutations. © 2017 Elsevier Inc. All rights reserved.

  5. ADA1 and NET1 genes of yeast mediate both chromosome maintenance and mitochondrial rho- mutagenesis

    International Nuclear Information System (INIS)

    Koltovaya, N.A.; Gerasimova, A.S.; Chekhuta, I.A.; Devin, A.B.

    2002-01-01

    An increase in the mitochondrial (mt) rho - mutagenesis is a well-known response of yeast cells to mutations in the numerous nuclear genes as well as to various kinds of stress. Notwithstanding the extensive studies during several decades the biological significance of this response is not yet fully understood. The genetic approach to solution of this subject includes the study of genes that are required for the high incidence of spontaneous rho - mutants. Previously we found that mutations in certain nuclear genes including CDC28, the central cell-cycle regulation gene, may decrease the spontaneous rho - mutability and simultaneously affect maintenance of the yeast chromosomes and plasmids. The present work provides data on identification of two more genes, resembling CDC28 in this respect. These genes NET1 and ADA1 mediate important regulatory protein-protein interactions in the yeast cell. The effects of net1 and ada1 mutations on the maintenance of yeast mt genome, chromosomes and plasmids as well on cell sensitivity to ionizing radiation are also described. (author)

  6. Untargeted viral mutagenesis is not found in X-irradiated monkey cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.; Lee, W.; Bushar, H.F.

    1988-01-01

    The existence of untargeted viral mutagenesis in X-irradiated cells was investigated in a mammalian virus/cell system, where a low level of such viral mutagenesis can be demonstrated in UV-irradiated cells. In the positive control experiment UV-elicited mutagenesis was shown with cell exposures of 5, 10 and 15 J/m 2 and a delay of 24 h between cell irradiation and infection with unirradiated herpes simplex virus. Although X-ray doses of 1, 3 and 10 Gy elicit enhanced reactivation of UV-irradiated virus, no untargeted mutagenesis for any X-ray dose at post-irradiation infection times of 0, 24 or 72 h was observed in this study. Thus untargeted mutagenesis of herpes simplex virus was not demonstrated in X-irradiated monkey cells, under conditions where X-ray-enhanced reactivation occurs and where untargeted mutagenesis in UV-irradiated cells occurs. (author)

  7. Physics Teacher SOS: Supporting New Teachers without Pushing an Agenda

    Science.gov (United States)

    Baird, Dean

    2013-01-01

    Few workshops for teachers focus primarily on instruction methods for basic high school physics. In Northern California, Physics Teacher SOS (PTSOS) has gained popularity doing just that. PTSOS workshops are directed toward early-career science teachers, though veterans are welcome too. The program is not influenced by scientific supply companies,…

  8. Mutagenic effect of radiations of various LET on Salmonella cells

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.; Amirtaev, K.G.; Tokarova, B.; Basha, S.G.

    1989-01-01

    Regularities of mutagenic effect of heavy charged particles of helium, deuterium ions and protons on various strains of Salmonella typhimurium were studied. Linear dose dependences of mutation frequency in the range of low doses were revealed. A conclusion was made that mutation process at low dose irradiation is determined in various teststrains of Salmonella typhimurium by certain premutation injuries. Quite a different picture is observed in mutation process in case of high dose irradiation where effect of inducible SOS-repair is distinctly manifested. Not only spectra of primary DNA injuries but probability of their fixation into mutation can change with the increase of LET. If fixation probability doesn't change with LET increase for replicative mutagenesis which make basis contribution to linear component of dose dependence of mutation frequency the probability of fixation is increased for reparative mutagenesis. It accounts for increase of values of relative genetic efficiency with LET increase. 7 refs.; 6 figs.; 1 tab

  9. Study of UV-mutagenesis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Lotareva, O.V.; Filippov, V.D.

    1974-01-01

    The sensitivity of Bac. subtilis to the inactivating and mutagenic effects of UV-mutants has been determined: uvr, which does not extract pyrimidine dimers from damaged DNA; recsub(x), which exhibits a reduced activity of ATP-dependent DNAase; poll, which is devoid of DNA polymerase, and wild strains (DT). The sensitivity of these strains to the inactivating effects of UV rays increases in the order: DT<= recsub(x) << uvr < poll, and UV mutability in the order: DT = rec(sub(x) < poll<< uvr. A comparison of UV mutagenesis in Bac. subtilis and E. coli suggests the hypothesis that the mechanisms of UV mutation formation are similar in these two organisms. (author)

  10. C → T mutagenesis and γ-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases

    Science.gov (United States)

    An, Qian; Robins, Peter; Lindahl, Tomas; Barnes, Deborah E

    2005-01-01

    The most common genetic change in aerobic organisms is a C:G to T:A mutation. C → T transitions can arise through spontaneous hydrolytic deamination of cytosine to give a miscoding uracil residue. This is also a frequent DNA lesion induced by oxidative damage, through exposure to agents such as ionizing radiation, or from endogenous sources that are implicated in the aetiology of degenerative diseases, ageing and cancer. The Ung and Smug1 enzymes excise uracil from DNA to effect repair in mammalian cells, and gene-targeted Ung−/− mice exhibit a moderate increase in genome-wide spontaneous mutagenesis. Here, we report that stable siRNA-mediated silencing of Smug1 in mouse embryo fibroblasts also generates a mutator phenotype. However, an additive 10-fold increase in spontaneous C:G to T:A transitions in cells deficient in both Smug1 and Ung demonstrates that these enzymes have distinct and nonredundant roles in suppressing C → T mutability at non-CpG sites. Such cells are also hypersensitive to ionizing radiation, and reveal a role of Smug1 in the repair of lesions generated by oxidation of cytosine. PMID:15902269

  11. Radiation-hardened CMOS/SOS LSI circuits

    International Nuclear Information System (INIS)

    Aubuchon, K.G.; Peterson, H.T.; Shumake, D.P.

    1976-01-01

    The recently developed technology for building radiation-hardened CMOS/SOS devices has now been applied to the fabrication of LSI circuits. This paper describes and presents results on three different circuits: an 8-bit adder/subtractor (Al gate), a 256-bit shift register (Si gate), and a polycode generator (Al gate). The 256-bit shift register shows very little degradation after 1 x 10 6 rads (Si), with an increase from 1.9V to 2.9V in minimum operating voltage, a decrease of about 20% in maximum frequency, and little or no change in quiescent current. The p-channel thresholds increase from -0.9V to -1.3V, while the n-channel thresholds decrease from 1.05 to 0.23V, and the n-channel leakage remains below 1nA/mil. Excellent hardening results were also obtained on the polycode generator circuit. Ten circuits were irradiated to 1 x 10 6 rads (Si), and all continued to function well, with an increase in minimum power supply voltage from 2.85V to 5.85V and an increase in quiescent current by a factor of about 2. Similar hardening results were obtained on the 8-bit adder, with the minimum power supply voltage increasing from 2.2V to 4.6V and the add time increasing from 270 to 350 nsec after 1 x 10 6 rads (Si). These results show that large CMOS/SOS circuits can be hardened to above 1 x 10 6 rads (Si) with either the Si gate or Al gate technology. The paper also discusses the relative advantages of the Si gate versus the Al gate technology

  12. Beyond the Natural Proteome: Nondegenerate Saturation Mutagenesis-Methodologies and Advantages.

    Science.gov (United States)

    Ferreira Amaral, M M; Frigotto, L; Hine, A V

    2017-01-01

    Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to "tweak" the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers, and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity. © 2017 Elsevier Inc. All rights reserved.

  13. Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis

    NARCIS (Netherlands)

    Haijema, BJ; vanSinderen, D; Winterling, K; Kooistra, J; Venema, G; Hamoen, LW

    1996-01-01

    It has been hypothesized that the dinR gene product of Bacillus subtilis acts as a repressor of the SOS regulon by binding to DNA sequences located upstream of SOS genes, including dinR and recA. Following activation as a result of DNA damage, RecA is believed to catalyse DinR-autocleavage, thus

  14. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation

    Science.gov (United States)

    Chen, Peng-Chieh; Wakimoto, Hiroko; Conner, David; Araki, Toshiyuki; Yuan, Tao; Roberts, Amy; Seidman, Christine E.; Bronson, Roderick; Neel, Benjamin G.; Seidman, Jonathan G.; Kucherlapati, Raju

    2010-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%–15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated phenotypes, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS. PMID:21041952

  15. Lack of mutational hot spots during decitabine-mediated HIV-1 mutagenesis.

    Science.gov (United States)

    Rawson, Jonathan M O; Landman, Sean R; Reilly, Cavan S; Bonnac, Laurent; Patterson, Steven E; Mansky, Louis M

    2015-11-01

    Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.

    Science.gov (United States)

    Shim, J H; Wall, M; Benkovic, S J; Díaz, N; Suárez, D; Merz, K M

    2001-05-23

    The catalytic mechanism of 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase) is evaluated with pH dependent kinetics, site-directed mutagenesis, and quantum chemical calculations. The chemistry step, represented by the burst rates, was not pH-dependent, which is consistent with our proposed mechanism that the 4-carboxamide of AICAR assists proton shuttling. Quantum chemical calculations on a model system of 5-amino-4-carboxamide imidazole (AICA) and formamide using the B3LYP/6-31G level of theory confirmed that the 4-carboxamide participated in the proton-shuttling mechanism. The result also indicated that the amide-assisted mechanism is concerted such that the proton transfers from the 5-amino group to the formamide are simultaneous with nucleophilic attack by the 5-amino group. Because the process does not lead to a kinetically stable intermediate, the intramolecular proton transfer from the 5-amino group through the 4-carboxamide to the formamide proceeds in the same transition state. Interestingly, the calculations predicted that protonation of the N3 of the imidazole of AICA would reduce the energy barrier significantly. However, the pK(a) of the imidazole of AICAR was determined to be 3.23 +/- 0.01 by NMR titration, and AICAR is likely to bind to the enzyme with its imidazole in the free base form. An alternative pathway was suggested by modeling Lys266 to have a hydrogen-bonding interaction with the N3 of the imidazole of AICAR. Lys266 has been implicated in catalysis based on mutagenesis studies and the recent X-ray structure of AICAR Tfase. The quantum chemical calculations on a model system that contains AICA complexed with CH3NH3+ as a mimic of the Lys residue confirmed that such an interaction lowered the activation energy of the reaction and likewise implicated the 4-carboxamide. To experimentally verify this hypothesis, we prepared the K266R mutant and found that its kcat is reduced by 150-fold from that of the wild type

  17. Description and use of the SOS Plabord code

    International Nuclear Information System (INIS)

    Morera, J.P.; Samain, A.; Capes, H.; Ghendrih, P.

    1990-09-01

    The SOS Plabord code calculates the local steady states at the plasma edge. Plasma impurities and neutral particles freed from the wall are included in the calculations. The coordinates of the two axes that limit the plasma edge layer are defined in the program. Three sorts of ions and electrons are considered. The physical parameters, the equations and the boundary conditions are given. The method chosen for solving the nonlinear differential equations and the computer program are presented [fr

  18. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+-dependence of a transient K+ current.

    Directory of Open Access Journals (Sweden)

    Snezana Levic

    Full Text Available Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+ current that regulates patterning of action potentials is I(A. This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A are not normally classified as Ca(2+-dependent, we demonstrate that throughout the development of chicken hair cells, I(A is greatly reduced by acute alterations of intracellular Ca(2+. As determinants of spike timing and firing frequency, intracellular Ca(2+ buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A are tightly regulated by intracellular Ca(2+. Such feedback mechanism between the functional expression of I(A and intracellular Ca(2+ may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea.

  19. Photodynamic action of the methylene blue: mutagenesis and sinergism

    International Nuclear Information System (INIS)

    Capella, M.A.M.

    1988-01-01

    Two aspects of photodynamic therapy were studied: the associated mutagenesis and the interactions with physical agents, in order to increase its biological effects. The photodynamic action with methylene blue in the mutagenesis and sinergism is studied. (L.M.J.)

  20. Computer Simulation of Mutagenesis.

    Science.gov (United States)

    North, J. C.; Dent, M. T.

    1978-01-01

    A FORTRAN program is described which simulates point-substitution mutations in the DNA strands of typical organisms. Its objective is to help students to understand the significance and structure of the genetic code, and the mechanisms and effect of mutagenesis. (Author/BB)

  1. CMOS/SOS RAM transient radiation upset and ''inversion'' effect investigation

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Poljakov, I.V.

    1996-01-01

    The Complementary Metal-Oxide-Semiconductor/Silicon-on-Sapphire Random Access Memory (CMOS/SOS RAM) transient upset and inversion effect were investigated with pulsed laser, pulsed voltage generator and low-intensity light simulators. It was found that the inversion of information occurs due to memory cell photocurrents simultaneously with the power supply voltage drop transfer to memory cells outputs

  2. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    Science.gov (United States)

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  3. Empirical complexities in the genetic foundations of lethal mutagenesis.

    Science.gov (United States)

    Bull, James J; Joyce, Paul; Gladstone, Eric; Molineux, Ian J

    2013-10-01

    From population genetics theory, elevating the mutation rate of a large population should progressively reduce average fitness. If the fitness decline is large enough, the population will go extinct in a process known as lethal mutagenesis. Lethal mutagenesis has been endorsed in the virology literature as a promising approach to viral treatment, and several in vitro studies have forced viral extinction with high doses of mutagenic drugs. Yet only one empirical study has tested the genetic models underlying lethal mutagenesis, and the theory failed on even a qualitative level. Here we provide a new level of analysis of lethal mutagenesis by developing and evaluating models specifically tailored to empirical systems that may be used to test the theory. We first quantify a bias in the estimation of a critical parameter and consider whether that bias underlies the previously observed lack of concordance between theory and experiment. We then consider a seemingly ideal protocol that avoids this bias-mutagenesis of virions-but find that it is hampered by other problems. Finally, results that reveal difficulties in the mere interpretation of mutations assayed from double-strand genomes are derived. Our analyses expose unanticipated complexities in testing the theory. Nevertheless, the previous failure of the theory to predict experimental outcomes appears to reside in evolutionary mechanisms neglected by the theory (e.g., beneficial mutations) rather than from a mismatch between the empirical setup and model assumptions. This interpretation raises the specter that naive attempts at lethal mutagenesis may augment adaptation rather than retard it.

  4. Molecular processes as basis for plasmid-mediated bacterial UV-light resistance and mutagenesis

    International Nuclear Information System (INIS)

    Aleshkin, G.I.; Brukhanskij, G.V.; Skavronskaya, A.G.

    1985-01-01

    The increase of UV-resistance and UV-induced mutagenesis by lambda 1 pint intmid as well as molecular-genetic mechanisms of plasmid participation in reparation and DNA replication and its degradation after UV-irradiation in plasmid cells on pKM101 plasmid model have been investigated. Data testifying to the necessity of intmid integration in chromosome as obligatory stage of intmid participation in increasing UV-resistance of bacterial cells are obtained. It has been found that intmid raises UV-resistance of cells and increases respectively the UV-induced reverants efficiency. On the basis of the experiment data the conclusion is drawn that the intmid capacity to raise UV-resistance and, possibly, mutagenesis is bound not only with its integration into chromosome but also with pol A + chromosome replication by dependendent imtmid replication complex. It is shown that pKM101 plasmid ensures functioning in E coli cells of inducible, chloroamphenicol-resistant DNA replication, highly resistant to UV-light harmful effect and that the volume of excision reparation in E. coli cells carrying pKM101 plasmid is increased as compared with the volume of reparation in plasmid legs cells. The combination of the data obtained gives grounds to the authors to assume that inducible replication, inducible reparation of DNA and inducible decrease of DNA degradation determined by pKM101 plasmid may serve as recA + lexA + basis dependent increase of UV-resistance and mutagenesis and that these processes provide the possibility of functioning of integrative replication mechanism of plasmid participation in ensuring UV-resistance and mutagenesis of plants

  5. Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations

    Directory of Open Access Journals (Sweden)

    Leary Jeffry J

    2002-05-01

    Full Text Available Abstract Background The thymidine kinase (tk mutagenesis assay is often utilized to determine the frequency of herpes simplex virus (HSV replication-mediated mutations. Using this assay, clinical and laboratory HSV-2 isolates were shown to have a 10- to 80-fold higher frequency of spontaneous mutations compared to HSV-1. Methods A panel of HSV-1 and HSV-2, along with polymerase-recombinant viruses expressing type 2 polymerase (Pol within a type 1 genome, were evaluated using the tk and non-HSV DNA mutagenesis assays to measure HSV replication-dependent errors and determine whether the higher mutation frequency of HSV-2 is a distinct property of type 2 polymerases. Results Although HSV-2 have mutation frequencies higher than HSV-1 in the tk assay, these errors are assay-specific. In fact, wild type HSV-1 and the antimutator HSV-1 PAAr5 exhibited a 2–4 fold higher frequency than HSV-2 in the non-HSV DNA mutatagenesis assay. Furthermore, regardless of assay, HSV-1 recombinants expressing HSV-2 Pol had error rates similar to HSV-1, whereas the high mutator virus, HSV-2 6757, consistently showed signficant errors. Additionally, plasmid DNA containing the HSV-2 tk gene, but not type 1 tk or LacZ DNA, was shown to form an anisomorphic DNA stucture. Conclusions This study suggests that the Pol is not solely responsible for the virus-type specific differences in mutation frequency. Accordingly, it is possible that (a mutations may be modulated by other viral polypeptides cooperating with Pol, and (b the localized secondary structure of the viral genome may partially account for the apparently enhanced error frequency of HSV-2.

  6. Evaluating the management strategies of a forestland estate--the S-O-S approach.

    Science.gov (United States)

    Kangas, Jyrki; Kurttila, Mikko; Kajanus, Miika; Kangas, Annika

    2003-12-01

    Connecting Multiple Criteria Decision Support (MCDS) methods with SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis yields analytical priorities for the factors included in SWOT analysis and makes them commensurable. In addition, decision alternatives can be evaluated with respect to each SWOT factor. In this way, SWOT analysis provides the basic frame within which to perform analyses of decision situations. MCDS methods, in turn, assist in carrying out SWOT more analytically and in elaborating the results of the analyses so that alternative strategic decisions can be prioritized also with respect to the entire SWOT. The A'WOT analysis is an example of such hybrid methods. It makes combined use of the Analytic Hierarchy Process (AHP) and SWOT. In this study, a hybrid method of the Stochastic Multicriteria Acceptability Analysis with Ordinal criteria (SMAA-O) and SWOT is developed as an elaboration of the basic ideas of A'WOT. The method is called S-O-S (SMAA-O in SWOT). SMAA-O enables the handling of ordinal preference information as well as mixed data consisting of both ordinal and cardinal information. Using SMAA-O is enough to just rank decision elements instead of giving them cardinal preference or priority ratios as required by the most commonly used MCDS methods. Using SMAA-O, in addition to analyzing what the recommended action is under certain priorities of the criteria, enables one to analyze what kind of preferences would support each action. The S-O-S approach is illustrated by a case study, where the shareholders of a forest holding owned by a private partnership prepared the SWOT analysis. Six alternative strategies for the management of their forest holding and of old cottage located on the holding were formed. After S-O-S analyses were carried out, one alternative was found to be the most recommendable. However, different importance orders of the SWOT groups would lead to different recommendations, since three of the six alternatives

  7. Favipiravir elicits antiviral mutagenesis during virus replication in vivo.

    Science.gov (United States)

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-10-21

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.

  8. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  9. Structural inhibition and reactivation of Escherichia coli septation by elements of the SOS and TER pathways

    International Nuclear Information System (INIS)

    Dopazo, A.; Tormo, A.; Aldea, M.; Vicente, M.

    1987-01-01

    The inhibition of cell division caused by induction of the SOS pathway in Escherichia coli structurally blocks septation, as deduced from two sets of results. Potential septation sites active at the time of SOS induction became inactivated, while those initiated during the following doubling time were active. Penicillin resistance increased in wild-type UV light-irradiated cells, a behavior similar to that observed in mutants in which structural blocks were introduced by inactivation of FtsA. Potential septation sites that have been structurally blocked by either the SOS division inhibitor, furazlocillin inhibition of PBP3, or inactivation of a TER pathway component, FtsA3, could be reactivated one doubling time after removal of the inhibitory agent in the presence of an active lon gene product. Reactivation of potential septation sites blocked by the presence of an inactivated FtsA3 was significantly lower when the lon protease was not active, suggesting that Lon plays a role in the removal of inactivated TER pathway products from the blocked potential septation sites

  10. Random mutagenesis by error-prone pol plasmid replication in Escherichia coli.

    Science.gov (United States)

    Alexander, David L; Lilly, Joshua; Hernandez, Jaime; Romsdahl, Jillian; Troll, Christopher J; Camps, Manel

    2014-01-01

    Directed evolution is an approach that mimics natural evolution in the laboratory with the goal of modifying existing enzymatic activities or of generating new ones. The identification of mutants with desired properties involves the generation of genetic diversity coupled with a functional selection or screen. Genetic diversity can be generated using PCR or using in vivo methods such as chemical mutagenesis or error-prone replication of the desired sequence in a mutator strain. In vivo mutagenesis methods facilitate iterative selection because they do not require cloning, but generally produce a low mutation density with mutations not restricted to specific genes or areas within a gene. For this reason, this approach is typically used to generate new biochemical properties when large numbers of mutants can be screened or selected. Here we describe protocols for an advanced in vivo mutagenesis method that is based on error-prone replication of a ColE1 plasmid bearing the gene of interest. Compared to other in vivo mutagenesis methods, this plasmid-targeted approach allows increased mutation loads and facilitates iterative selection approaches. We also describe the mutation spectrum for this mutagenesis methodology in detail, and, using cycle 3 GFP as a target for mutagenesis, we illustrate the phenotypic diversity that can be generated using our method. In sum, error-prone Pol I replication is a mutagenesis method that is ideally suited for the evolution of new biochemical activities when a functional selection is available.

  11. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.

    Science.gov (United States)

    Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D

    1993-05-06

    Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

  12. Coronary artery ectasia in Noonan syndrome: Report of an individual with SOS1 mutation and literature review.

    Science.gov (United States)

    Calcagni, Giulio; Baban, Anwar; De Luca, Enrica; Leonardi, Benedetta; Pongiglione, Giacomo; Digilio, Maria Cristina

    2016-03-01

    Noonan syndrome (NS) is the second most frequent hereditary syndrome with cardiac involvement. Pulmonary valve stenosis and hypertrophic cardiomyopathy are the most prevalent cardiovascular abnormalities. We report on a 14-year-old girl with NS due to SOS1 mutation with pulmonary stenosis and idiopathic coronary ectasia. To the best of our knowledge, this is the first report describing coronary ectasia in a patient with NS secondary to a SOS1 mutation. We include a literature review of this rare association. © 2015 Wiley Periodicals, Inc.

  13. Evelin Ilves ja kirjastus "Varrak" kinkisid SOS Lastekülale jõuludeks raamatuid

    Index Scriptorium Estoniae

    2009-01-01

    Proua Evelin Ilves ja kirjastus "Varrak" viisid 21. detsembril 2009 Keila SOS Lastekülale jõulukingiks raamatuid. Kingitud raamatud valiti välja laste soovide põhjal, nende hulgas on nii lastekirjandust kui ka teatmeteoseid

  14. Stellar parameters and H α line profile variability of Be stars in the BeSOS survey

    Science.gov (United States)

    Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.

    2018-03-01

    The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.

  15. Molecular fundamentals of chromosomal mutagenesis

    International Nuclear Information System (INIS)

    Ganassi, E.Eh.; Zaichkina, S.I.; Malakhova, L.V.

    1987-01-01

    Precise quantitative correlation between the yield of chromosome structure damages and the yield of DNA damages is shown when comparing data on molecular and cytogenetic investigations carried out in cultural Mammalia cells. As the chromosome structure damage is to be connected with the damage of its carcass structure, then it is natural that DNA damage in loop regions is not to affect considerably the structure, while DNA damage lying on the loop base and connected with the chromosome carcass is to play a determining role in chromosomal mutagenesis. This DNA constitutes 1-2% from the total quantity of nuclear DNA. If one accepts that damages of these regions of DNA are ''hot'' points of chromosomal mutagenesis, then it becomes clear why 1-2% of preparation damages in a cell are realized in chromosome structural damages

  16. Phenotypic heterogeneity in a bacteriophage population only appears as stress-induced mutagenesis.

    Science.gov (United States)

    Yosef, Ido; Edgar, Rotem; Qimron, Udi

    2016-11-01

    Stress-induced mutagenesis has been studied in cancer cells, yeast, bacteria, and archaea, but not in viruses. In a recent publication, we present a bacteriophage model showing an apparent stress-induced mutagenesis. We show that the stress does not drive the mutagenesis, but only selects the fittest mutants. The mechanism underlying the observed phenomenon is a phenotypic heterogeneity that resembles persistence of the viral population. The new findings, the background for the ongoing debate on stress-induced mutagenesis, and the phenotypic heterogeneity underlying a novel phage infection strategy are discussed in this short manuscript.

  17. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    Science.gov (United States)

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Optogenetic Random Mutagenesis Using Histone-miniSOG in C. elegans.

    Science.gov (United States)

    Noma, Kentaro; Jin, Yishi

    2016-11-14

    Forward genetic screening in model organisms is the workhorse to discover functionally important genes and pathways in many biological processes. In most mutagenesis-based screens, researchers have relied on the use of toxic chemicals, carcinogens, or irradiation, which requires designated equipment, safety setup, and/or disposal of hazardous materials. We have developed a simple approach to induce heritable mutations in C. elegans using germline-expressed histone-miniSOG, a light-inducible potent generator of reactive oxygen species. This mutagenesis method is free of toxic chemicals and requires minimal laboratory safety and waste management. The induced DNA modifications include single-nucleotide changes and small deletions, and complement those caused by classical chemical mutagenesis. This methodology can also be used to induce integration of extrachromosomal transgenes. Here, we provide the details of the LED setup and protocols for standard mutagenesis and transgene integration.

  19. Different efficiency of UmuDC and MucAB proteins in UV light induced mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Blanco, M.; Herrera, G.; Aleixandre, V.

    1986-01-01

    Two multicopy plasmids carrying either the umuDC or the mucAB operon were used to compare the efficiency of UmuDC and MucAB proteins in UV mutagenesis of Escherichia coli K12. It was found that in recA + uvr + bacteria, plasmid pIC80, mucAB + mediated UV mutagenesis more efficiently than did plasmid pSE 117, umuDC + . A similar result was obtained in lex A51(Def) cells, excluding the possibility that this was due to a differential regulation by LexA of the umuDC and mucAB operons. We conclude that some structural characteristic of the UmuDC and MucAB proteins determines their different efficiency in UV mutagenesis. This characteristic could be also responsible for the observation that in the recA430 mutant, pIC80 but no pSE117 can mediate UV mutagenesis. In the recAS142 mutant pIC80 also promoted UV mutagenesis more efficiently than pSE117. In this mutant, the recombination proficiency, the protease activity toward LexA and the mutation frequency were increased by the presence of adenine in the medium. In recA + uvrB5 bacteria, plasmid pSE117, umuDC caused both an increase in UV sensitivity as well as a reduction in the mutation frequency. These negative effects resulting from the overproduction of UmuDC proteins were higher in recA142 uvrB5 than in recA + uvrB5 cells. In contrast, overproduction of MucAB proteins in excision-deficient bacteria containing pIC80 led to a large increase in the mutation frequency. We suggest that the functional differences between UmuDC and MucAB proteins might be due to their different dependence on the direct role of RecA protease in UV mutagenesis. (orig.)

  20. Development of potent in vivo mutagenesis plasmids with broad mutational spectra.

    Science.gov (United States)

    Badran, Ahmed H; Liu, David R

    2015-10-07

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms.

  1. Heat shock and herpes virus: enhanced reactivation without untargeted mutagenesis

    International Nuclear Information System (INIS)

    Lytle, C.D.; Carney, P.G.

    1988-01-01

    Enhanced reactivation of Ultraviolet-irradiated virus has been reported to occur in heat-shocked host cells. Since enhanced virus reactivation is often accompanied by untargeted mutagenesis, we investigated whether such mutagenesis would occur for herpes simplex virus (HSV) in CV-1 monkey kidney cells subjected to heat shock. In addition to expressing enhanced reactivation, the treated cells were transiently more susceptible to infection by unirradiated HSV. No mutagenesis of unirradiated HSV was found whether infection occurred at the time of increased susceptibility to infection or during expression of enhanced viral reactivation

  2. Interaction of caffeine with the SOS response pathway in Escherichia coli.

    Science.gov (United States)

    Whitney, Alyssa K; Weir, Tiffany L

    2015-01-01

    Previous studies have highlighted the antimicrobial activity of caffeine, both individually and in combination with other compounds. A proposed mechanism for caffeine's antimicrobial effects is inhibition of bacterial DNA repair pathways. The current study examines the influence of sub-lethal caffeine levels on the growth and morphology of SOS response pathway mutants of Escherichia coli. Growth inhibition after treatment with caffeine and methyl methane sulfonate (MMS), a mutagenic agent, was determined for E. coli mutants lacking key genes in the SOS response pathway. The persistence of caffeine's effects was explored by examining growth and morphology of caffeine and MMS-treated bacterial isolates in the absence of selective pressure. Caffeine significantly reduced growth of E. coli recA- and uvrA-mutants treated with MMS. However, there was no significant difference in growth between umuC-isolates treated with MMS alone and MMS in combination with caffeine after 48 h of incubation. When recA-isolates from each treatment group were grown in untreated medium, bacterial isolates that had been exposed to MMS or MMS with caffeine showed increased growth relative to controls and caffeine-treated isolates. Morphologically, recA-isolates that had been treated with caffeine and both caffeine and MMS together had begun to display filamentous growth. Caffeine treatment further reduced growth of recA- and uvrA-mutants treated with MMS, despite a non-functional SOS response pathway. However, addition of caffeine had very little effect on MMS inhibition of umuC-mutants. Thus, growth inhibition of E. coli with caffeine treatment may be driven by caffeine interaction with UmuC, but also appears to induce damage by additional mechanisms as evidenced by the additive effects of caffeine in recA- and uvrA-mutants.

  3. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    Science.gov (United States)

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  4. Detection of early psychotic symptoms: Validation of the Spanish version of the "Symptom Onset in Schizophrenia (SOS) inventory".

    Science.gov (United States)

    Mezquida, Gisela; Cabrera, Bibiana; Martínez-Arán, Anabel; Vieta, Eduard; Bernardo, Miguel

    2018-03-01

    The period of subclinical signs that precedes the onset of psychosis is referred to as the prodrome or high-risk mental state. The "Symptom Onset in Schizophrenia (SOS) inventory" is an instrument to characterize and date the initial symptoms of a psychotic illness. The present study aims to provide reliability and validity data for clinical and research use of the Spanish version of the SOS. Thirty-six participants with a first-episode of psychosis meeting DSM-IV criteria for schizophrenia/schizoaffective/schizophreniform disorder were administered the translated SOS and other clinical assessments. The internal validity, intrarater and interrater reliability were studied. We found strong interrater reliability. To detect the presence/absence of prodromal symptoms, Kappa coefficients ranged between 0.8 and 0.7. Similarly, the raters obtained an excellent level of agreement regarding the onset of each symptom and the duration of symptoms until first treatment (intraclass correlation coefficients between 0.9 and 1.0). Cronbach's alpha was 0.9-1.0 for all the items. The interrater reliability and concurrent validity were also excellent in both cases. This study provides robust psychometric properties of the Spanish version of the SOS. The translated version is adequate in terms of good internal validity, intrarater and interrater reliability, and is as time-efficient as the original version. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  6. Evaluation of spontaneous and radiation-induced micronucleus frequency in cultured human peripheral blood lymphocytes depending on age and sex

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. J.; Kang, C. M.; Chung, H. C. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2002-12-15

    The goal of this study was to provide data on the dose-dependent production of MicroNucleus (MN) in human lymphocytes irradiated with {sup 60}Co {gamma}-rays and 50MeV neutron, and to evaluate predictive markers of intrinsic radiosensitivity in individuals for monitoring occupational or environmental radiation exposure. For the dose-response study, heparinized whole blood of 10 healthy volunteers was irradiated with {sup 60}Co {gamma}-rays employing of 0.25-8Gy. The MNs were observed all doses, and the numerical changes according to doses. In dose-response curves fit linear-quadratic form (alpha =0.31{+-}0.049, beta =0.0022{+-}0.0022) for {gamma}-rays, but (alpha=0.99{+-}0.528, beta =0.0093{+-}0.0047) for neutron. Neutrons were than {gamma}-rays effective in producing MN with dose-dependent manner. The frequency of MN varies with dose. The RBE (Relative Biological Effectiveness) for micronuclei was 2.370.17. Further studies were carried out to provide evidence for the existence of individual variations in age-dependent responses to radiation. Spontaneous and radiation-induced MN varies greatly among individuals, and little is known about the molecular mechanisms of this variability. It was shown that the increased level of spontaneous cell with MN was observed with increasing age. The relationship between radiosensitivity and the increased spontaneous level of MN may be in inverse proportion. These studies indicated that the MN assay have a high potential as a rapid, sensitive and accurate method which can be used to monitor a large population exposed to radiation for rapid triage in the case of a large-scale accident.

  7. Evaluation of spontaneous and radiation-induced micronucleus frequency in cultrued human peripheral blood lymphocytes depending on age and sex

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. J.; Kang, C. M.; Chung, H. C. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)] [and others

    2002-07-01

    The goal of this study was to provide data on the dose-dependent production of micronucleus (MN) in human lymphocytes irradiated with {sub 60} Co {gamma} -rays and 50MeV neutron, and to evaluate predictive markers of intrinsic radiosensitivity in individuals for monitoring occupational or environmental radiation exposure. For the dose-response study, heparinized whole blood of 10 healthy volunteers was irradiated with {sub 60} Co {gamma} -rays employing of 0.25-8Gy. The MNs were observed all doses, and the numerical changes according to doses. In dose-response curves fit linear- quadratic form (alpha =0.31{+-}0.049, beta =0.0022{+-}0.0022) for {gamma} -rays, but (alpha =0.99{+-}0.528, beta =0.0093{+-}0.0047) for neutron. Neutrons were than {gamma} -rays effective in producing MN with dose-dependent manner. The frequency of MN varies with dose. The RBE for micronuclei was 2.37{+-}0.17. Further studied are carried out to provide evidence for the existence of individual variations in age-dependent responses to radiation. Spontaneous and radiation-induced MN varies greatly between individuals, and little is known about the molecular mechanisms of this variability. It was shown that the increased level of spontaneous cell with MN was observed with increasing age. The relationship between radiosensitivity and the increased spontaneous level of MN may be in inverse proportion. These studies indicates that the MN assay have a high potential as a rapid, sensitive and accurate method which can be used to monitor a large population exposed to radiation for rapid triage in the case of a large-scale accident.

  8. Repair and mutagenesis on microorganisms due to irradiation cellular responses

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1985-01-01

    The molecular bases of ascorbic acid effects in SOS functions of E.Coli are studied. The effect of triplet acetone on lambda bacteriophage is evaluated. The oncogenic potential of some pharmaceuticals is investigated. (M.A.C.) [pt

  9. Revised Mechanism and Improved Efficiency of the QuikChange Site-Directed Mutagenesis Method.

    Science.gov (United States)

    Xia, Yongzhen; Xun, Luying

    2017-01-01

    Site-directed mutagenesis has been widely used for the substitution, addition or deletion of nucleotide residues in a defined DNA sequence. QuikChange™ site-directed mutagenesis and its related protocols have been widely used for this purpose because of convenience and efficiency. We have recently demonstrated that the mechanism of the QuikChange™ site-directed mutagenesis process is different from that being proposed. The new mechanism promotes the use of partially overlapping primers and commercial PCR enzymes for efficient PCR and mutagenesis.

  10. Theory of misrepair mutagenesis

    International Nuclear Information System (INIS)

    Bresler, S.E.

    1975-01-01

    On the basis of experimental data, a model of induced mutagenesis is proposed that takes into account the repair of DNA damage by the Rec system. The peculiar feature of the Rec system is the cleavage and resynthesis of long sequences near the recognized DNA damage. Up to 1000-2000 nucleotides are replaced in one act. Therefore a definite probability exists of finding a damaged point on the second strand serving as template. It is believed that at this point no requirements of complementarity exist and that a random substitution can take place. This is the origin of a point mutation (transversion or frameshift). From this model, a general formula for the dose-response curve of mutagenesis is deduced which also takes into account the possibility of simultaneously initiated repair on both complementary strands of DNA. The latter leads to a lethal event when the points are situated proximally. This formula fits the observations in different cases studied. Some fundamental observations such as the absence of mutants from predominant single-strand breaks of DNA chains are readily explained

  11. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA

    International Nuclear Information System (INIS)

    Pascucci, B.; Dogliotti, E.; Versteegh, A.; Hoffen, A. van; Zeeland, A.A. van; Mullenders, L.H.F.

    1997-01-01

    The induction and repair of DNA photolesions and mutations in the mitochondrial (mt) DNA of human cells in culture were analysed after cell exposure to UV-C light. The level of induction of cyclobutane pyrimidine dimers (CPD) in mitochondrial and nuclear DNA was comparable, while a higher frequency of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) was detected in mitochondrial than in nuclear DNA. Besides the known defect in CPD removal, mitochondria were shown to be deficient also in the excision of 6-4 PP. The effects of repair-defective conditions for the two major UV photolesions on mutagensis was assessed by analysing the frequency and spectrum of spontaneous and UV-induced mutations by restriction site mutation (RSM) method in a restriction endonuclease site, NciI (5'CCCGG3') located within the coding sequence of the mitochondrial gene for tRNA Leu . The spontaneous mutation frequency and spectrum at the NciI site of mitochondrial DNA was very similar to the RSM background mutation frequency (approximately 10 -5 ) and type (predominantly GC > AT transitions at GL 1 ) of the NciI site). Conversely, an approximately tenfold increase over background mutation frequency was recorded after cell exposure to 20 J/m 2 . In this case, the majority of mutations were C > T transitions preferentially located on the non-transcribed DNA strand at C 1 and C 2 of the NciI site. This mutation spectrum is expected by UV mutagenesis. This is the first evidence of induction of mutations in mitochondrial DNA by treatment of human cells with a carcinogen. (author)

  12. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    Science.gov (United States)

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  13. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs.

    Science.gov (United States)

    Yin, Linlin; Maddison, Lisette A; Li, Mingyu; Kara, Nergis; LaFave, Matthew C; Varshney, Gaurav K; Burgess, Shawn M; Patton, James G; Chen, Wenbiao

    2015-06-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. Copyright © 2015 by the Genetics Society of America.

  14. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, H; Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Sachan, R; Strader, J; Kalyanaraman, R [Department of Material Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Khenner, M, E-mail: ramki@utk.edu [Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO{sub 2} under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm {<=} h {<=} 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm {<=} h {<=} 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO{sub 2}. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  15. SOS1 gene polymorphisms are associated with gestational diabetes mellitus in a Chinese population: Results from a nested case-control study in Taiyuan, China.

    Science.gov (United States)

    Chen, Qiong; Yang, Hailan; Feng, Yongliang; Zhang, Ping; Wu, Weiwei; Li, Shuzhen; Thompson, Brian; Wang, Xin; Peng, Tingting; Wang, Fang; Xie, Bingjie; Guo, Pengge; Li, Mei; Wang, Ying; Zhao, Nan; Wang, Suping; Zhang, Yawei

    2018-03-01

    Gestational diabetes mellitus is a growing public health concern due to its large disease burden; however, the underlying pathophysiology remains unclear. Therefore, we examined the relationship between 107 single-nucleotide polymorphisms in insulin signalling pathway genes and gestational diabetes mellitus risk using a nested case-control study. The SOS1 rs7598922 GA and AA genotype were statistically significantly associated with reduced gestational diabetes mellitus risk ( p trend  = 0.0006) compared with GG genotype. At the gene level, SOS1 was statistically significantly associated with gestational diabetes mellitus risk after adjusting for multiple comparisons. Moreover, AGGA and GGGG haplotypes in SOS1 gene were associated with reduced risk of gestational diabetes mellitus. Our study provides evidence for an association between the SOS1 gene and risk of gestational diabetes mellitus; however, its role in the pathogenesis of gestational diabetes mellitus will need to be verified by further studies.

  16. Induction of sos response in Escherichia Coli cells by gamma rays

    International Nuclear Information System (INIS)

    Fuentes Lorenzo, J.L.; Padron Soler, E.; Martin Hernandez, G.; Perez Tamayo, N.; del Sol Abascal, E.R.; Almeida Varela, E.

    1996-01-01

    The kinetics of sos response induction in Escherichia Coli cells was studied by means of the gene fusion SfiA:LacZ. In these cells, the specific beta galactosidase activity and the cellular growth rate showed an exponential behaviour. The sensitivity of the GC 2181 starin to gamma irradiation is equal to Do -1= 0.00088/Gy. The beta galactosidase activity

  17. Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157:H7 Shiga toxin release and role of the SOS response.

    Science.gov (United States)

    Nassar, Farah J; Rahal, Elias A; Sabra, Ahmad; Matar, Ghassan M

    2013-09-01

    Treatment of Escherichia coli O157:H7 by certain antimicrobial agents often exacerbates the patient's condition by increasing either the release of preformed Shiga toxins (Stx) upon cell lysis or their production through the SOS response-triggered induction of Stx-producing prophages. Recommended subinhibitory concentrations (sub-MICs) of azithromycin (AZI), gentamicin (GEN), imipenem (IMI), and rifampicin (RIF) were evaluated in comparison to norfloxacin (NOR), an SOS-inducer, to assess the role of the SOS response in Stx release. Relative expression of recA (SOS-inducer), Q (late antitermination gene of Stx-producing prophage), stx1, and stx2 genes was assessed at two sub-MICs of the antimicrobials for two different strains of E. coli O157:H7 using reverse transcription-real-time polymerase chain reaction. Both strains at the two sub-MICs were also subjected to Western blotting for LexA protein expression and to reverse passive latex agglutination for Stx detection. For both strains at both sub-MICs, NOR and AZI caused SOS-induced Stx production (high recA, Q, and stx2 gene expression and high Stx2 production), so they should be avoided in E. coli O157:H7 treatment; however, sub-MICs of RIF and IMI induced Stx2 production in an SOS-independent manner except for one strain at the first twofold dilution below MIC of RIF where Stx2 production decreased. Moreover, GEN caused somewhat increased Stx2 production due to its mode of action rather than any effect on gene expression. The choice of antimicrobial therapy should rely on the antimicrobial mode of action, its concentration, and on the nature of the strain.

  18. ENU mutagenesis to generate genetically modified rat models.

    Science.gov (United States)

    van Boxtel, Ruben; Gould, Michael N; Cuppen, Edwin; Smits, Bart M G

    2010-01-01

    The rat is one of the most preferred model organisms in biomedical research and has been extremely useful for linking physiology and pathology to the genome. However, approaches to genetically modify specific genes in the rat germ line remain relatively scarce. To date, the most efficient approach for generating genetically modified rats has been the target-selected N-ethyl-N-nitrosourea (ENU) mutagenesis-based technology. Here, we describe the detailed protocols for ENU mutagenesis and mutant retrieval in the rat model organism.

  19. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode

    NARCIS (Netherlands)

    Driessen, A.B.J.M.; Heesch, van E.J.M.; Huiskamp, T.; Beckers, F.J.C.M.; Pemen, A.J.M.

    2014-01-01

    In this paper, a compact circuit topology is presented for pulsed power generation with a semiconductor opening switch (SOS). Such circuits require the generation of a fast forward current through the diode, followed by a reverse current that activates the recovery process. In general, magnetic

  20. Modeling of kinetics of the inducible protein complexes of the SOS system in bacteria E. coli which realize TLS process

    International Nuclear Information System (INIS)

    Belov, O.V.

    2008-01-01

    The mathematical model describing kinetics of the inducible genes of the protein complexes, formed during SOS response in bacteria Escherichia coli is developed. Within the bounds of developed approaches the auxiliary mathematical model describing changes in concentrations of the dimers, which are the components of final protein complexes, is developed. The solutions of both models are based on the experimental data concerning expression of the basic genes of the SOS system in bacteria Escherichia coli

  1. Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL.

    Science.gov (United States)

    Mrázková, Jana; Malinovská, Lenka; Wimmerová, Michaela

    2017-01-01

    Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.

  2. Direct Mutagenesis of Thousands of Genomic Targets using Microarray-derived Oligonucleotides

    DEFF Research Database (Denmark)

    Bonde, Mads; Kosuri, Sriram; Genee, Hans Jasper

    2015-01-01

    Multiplex Automated Genome Engineering (MAGE) allows simultaneous mutagenesis of multiple target sites in bacterial genomes using short oligonucleotides. However, large-scale mutagenesis requires hundreds to thousands of unique oligos, which are costly to synthesize and impossible to scale-up by ...

  3. Theories of Lethal Mutagenesis: From Error Catastrophe to Lethal Defection.

    Science.gov (United States)

    Tejero, Héctor; Montero, Francisco; Nuño, Juan Carlos

    2016-01-01

    RNA viruses get extinct in a process called lethal mutagenesis when subjected to an increase in their mutation rate, for instance, by the action of mutagenic drugs. Several approaches have been proposed to understand this phenomenon. The extinction of RNA viruses by increased mutational pressure was inspired by the concept of the error threshold. The now classic quasispecies model predicts the existence of a limit to the mutation rate beyond which the genetic information of the wild type could not be efficiently transmitted to the next generation. This limit was called the error threshold, and for mutation rates larger than this threshold, the quasispecies was said to enter into error catastrophe. This transition has been assumed to foster the extinction of the whole population. Alternative explanations of lethal mutagenesis have been proposed recently. In the first place, a distinction is made between the error threshold and the extinction threshold, the mutation rate beyond which a population gets extinct. Extinction is explained from the effect the mutation rate has, throughout the mutational load, on the reproductive ability of the whole population. Secondly, lethal defection takes also into account the effect of interactions within mutant spectra, which have been shown to be determinant for the understanding the extinction of RNA virus due to an augmented mutational pressure. Nonetheless, some relevant issues concerning lethal mutagenesis are not completely understood yet, as so survival of the flattest, i.e. the development of resistance to lethal mutagenesis by evolving towards mutationally more robust regions of sequence space, or sublethal mutagenesis, i.e., the increase of the mutation rate below the extinction threshold which may boost the adaptability of RNA virus, increasing their ability to develop resistance to drugs (including mutagens). A better design of antiviral therapies will still require an improvement of our knowledge about lethal

  4. Active hippocampal networks undergo spontaneous synaptic modification.

    Directory of Open Access Journals (Sweden)

    Masako Tsukamoto-Yasui

    Full Text Available The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone.

  5. SOS gene induction and possible mutagenic effects of freeze-drying in Escherichia coli and Salmonella typhimurium.

    Science.gov (United States)

    Rosen, Rachel; Buchinger, Sebastian; Pfänder, Ramona; Pedhazur, Rami; Reifferscheid, Georg; Belkin, Shimshon

    2016-11-01

    We report the results of a study of the potential negative effects of the freeze-drying process, normally considered a benign means for long-term conservation of living cells and the golden standard in bacterial preservation. By monitoring gene induction using a whole-cell Escherichia coli bioreporter panel, in which diverse stress-responsive gene promoters are fused to luminescent or fluorescent reporting systems, we have demonstrated that DNA repair genes belonging to the SOS operon (recA, sulA, uvrA, umuD, and lexA) were induced upon resuscitation from the freeze-dried state, whereas other stress-responsive promoters such as grpE, katG, phoA, soxS, and sodA were not affected. This observation was confirmed by the UMU-chromotest (activation of the umuD gene promoter) in Salmonella typhimurium, as well as by real-time PCR analyses of selected E. coli SOS genes. We further show that a functional SOS operon is important in viability maintenance following resuscitation, but that at the same time, this repair system may introduce significantly higher mutation rates, comparable to those induced by high concentrations of a known mutagen. Our results also indicate that the entire freeze-drying process, rather than either freezing or drying separately, is instrumental in the induction of DNA damage.

  6. SOS! Ayuda para Padres: Una Guia Practica para Manejar Problemas de Conducta Comunes y Corrientes. (SOS! Help for Parents: A Practical Guide for Handling Common Everyday Behavior Problems.) Leader's Guide.

    Science.gov (United States)

    Clark, Lynn

    This Spanish-language version of "SOS" provides parents with guidance for handling a variety of common behavior problems based on the behavior approach to child rearing and discipline. This approach suggests that good and bad behavior are both learned and can be changed, and proposes specific methods, skills, procedures, and strategies…

  7. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.

    Science.gov (United States)

    Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun

    2014-09-05

    Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.

  8. 2012 Gordon Research Conference on Mutagenesis - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Demple, Bruce [Stony Brook Univ., NY (United States). School of Medicine

    2012-08-24

    The delicate balance among cellular pathways that control mutagenic changes in DNA will be the focus of the 2012 Mutagenesis Gordon Research Conference. Mutagenesis is essential for evolution, while genetic stability maintains cellular functions in all organisms from microbes to metazoans. Different systems handle DNA lesions at various times of the cell cycle and in different places within the nucleus, and inappropriate actions can lead to mutations. While mutation in humans is closely linked to disease, notably cancers, mutational systems can also be beneficial. The conference will highlight topics of beneficial mutagenesis, including full establishment of the immune system, cell survival mechanisms, and evolution and adaptation in microbial systems. Equal prominence will be given to detrimental mutation processes, especially those involved in driving cancer, neurological diseases, premature aging, and other threats to human health. Provisional session titles include Branching Pathways in Mutagenesis; Oxidative Stress and Endogenous DNA Damage; DNA Maintenance Pathways; Recombination, Good and Bad; Problematic DNA Structures; Localized Mutagenesis; Hypermutation in the Microbial World; and Mutation and Disease.

  9. Effective lethal mutagenesis of influenza virus by three nucleoside analogs.

    Science.gov (United States)

    Pauly, Matthew D; Lauring, Adam S

    2015-04-01

    Lethal mutagenesis is a broad-spectrum antiviral strategy that exploits the high mutation rate and low mutational tolerance of many RNA viruses. This approach uses mutagenic drugs to increase viral mutation rates and burden viral populations with mutations that reduce the number of infectious progeny. We investigated the effectiveness of lethal mutagenesis as a strategy against influenza virus using three nucleoside analogs, ribavirin, 5-azacytidine, and 5-fluorouracil. All three drugs were active against a panel of seasonal H3N2 and laboratory-adapted H1N1 strains. We found that each drug increased the frequency of mutations in influenza virus populations and decreased the virus' specific infectivity, indicating a mutagenic mode of action. We were able to drive viral populations to extinction by passaging influenza virus in the presence of each drug, indicating that complete lethal mutagenesis of influenza virus populations can be achieved when a sufficient mutational burden is applied. Population-wide resistance to these mutagenic agents did not arise after serial passage of influenza virus populations in sublethal concentrations of drug. Sequencing of these drug-passaged viral populations revealed genome-wide accumulation of mutations at low frequency. The replicative capacity of drug-passaged populations was reduced at higher multiplicities of infection, suggesting the presence of defective interfering particles and a possible barrier to the evolution of resistance. Together, our data suggest that lethal mutagenesis may be a particularly effective therapeutic approach with a high genetic barrier to resistance for influenza virus. Influenza virus is an RNA virus that causes significant morbidity and mortality during annual epidemics. Novel therapies for RNA viruses are needed due to the ease with which these viruses evolve resistance to existing therapeutics. Lethal mutagenesis is a broad-spectrum strategy that exploits the high mutation rate and the low

  10. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    Science.gov (United States)

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  11. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  12. Recovery from ultraviolet light-induced inhibition of DNA synthesis requires umuDC gene products in recA718 mutant strains but not in recA+ strains of Escherichia coli

    International Nuclear Information System (INIS)

    Witkin, E.M.; Roegner-Maniscalco, V.; Sweasy, J.B.; McCall, J.O.

    1987-01-01

    Ultraviolet light (UV) inhibits DNA replication in Eschericia coli and induces the SOS response, a set of survival-enhancing phenotypes due to derepression of DNA damage-inducible genes, including recA and umuDC. Recovery of DNA synthesis after UV irradiation (induced replisome reactivation, or IRR) is an SOS function requiring RecA protein and postirradiation synthesis of additional protein(s), but this recovery does not require UmuDC protein. IRR occurs in strains carrying either recA718 (which does not reduce recombination, SOS inducibility, or UV mutagenesis) or umuC36 (which eliminates UV mutability), but not in recA718 umuC36 double mutants. In recA430 mutant strains, IRR does not occur whether or not functional UmuDC protein is present. IRR occurs in lexA-(Ind-) (SOS noninducible) strains if they carry an operator-constitutive recA allele and are allowed to synthesize proteins after irradiation. We conclude the following: (i) that UmuDC protein corrects or complements a defect in the ability of RecA718 protein (but not of RecA430 protein) to promote IRR and (ii) that in lexA(Ind-) mutant strains, IRR requires amplification of RecA+ protein (but not of any other LexA-repressed protein) plus post-UV synthesis of at least one other protein not controlled by LexA protein. We discuss the results in relation to the essential, but unidentified, roles of RecA and UmuDC proteins in UV mutagenesis

  13. Mutations at the cysteine codons of the recA gene of Escherichia coli

    International Nuclear Information System (INIS)

    Weisemann, J.M.; Weinstock, G.M.

    1988-01-01

    Each of the three cysteine residues in the Escherichia coli RecA protein was replaced with a number of other amino acids. To do this, each cysteine codon was first converted to a chain-terminating amber codon by oligonucleotide-directed mutagenesis. These amber mutants were then either assayed for function in different suppressor strains or reverted by a second round of mutagenesis with oligonucleotides that had random sequences at the amber codon. Thirty-three different amino acid substitutions were obtained. Mutants were tested for three functions of RecA: survival following UV irradiation, homologous recombination, and induction of the SOS response. It was found that although none of the cysteines is essential for activity, mutations at each of these positions can affect one or more of the activities of RecA, depending on the particular amino acid substitution. In addition, the cysteine at position 116 appears to be involved in the RecA-promoted cleavage of the LexA protein

  14. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.

    Science.gov (United States)

    Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A; Pedraza-Reyes, Mario

    2017-02-15

    The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H 2 O 2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions. Copyright © 2017 American Society for Microbiology.

  15. Site-specific genomic (SSG and random domain-localized (RDL mutagenesis in yeast

    Directory of Open Access Journals (Sweden)

    Honigberg Saul M

    2004-04-01

    Full Text Available Abstract Background A valuable weapon in the arsenal available to yeast geneticists is the ability to introduce specific mutations into yeast genome. In particular, methods have been developed to introduce deletions into the yeast genome using PCR fragments. These methods are highly efficient because they do not require cloning in plasmids. Results We have modified the existing method for introducing deletions in the yeast (S. cerevisiae genome using PCR fragments in order to target point mutations to this genome. We describe two PCR-based methods for directing point mutations into the yeast genome such that the final product contains no other disruptions. In the first method, site-specific genomic (SSG mutagenesis, a specific point mutation is targeted into the genome. In the second method, random domain-localized (RDL mutagenesis, a mutation is introduced at random within a specific domain of a gene. Both methods require two sequential transformations, the first transformation integrates the URA3 marker into the targeted locus, and the second transformation replaces URA3 with a PCR fragment containing one or a few mutations. This PCR fragment is synthesized using a primer containing a mutation (SSG mutagenesis or is synthesized by error-prone PCR (RDL mutagenesis. In SSG mutagenesis, mutations that are proximal to the URA3 site are incorporated at higher frequencies than distal mutations, however mutations can be introduced efficiently at distances of at least 500 bp from the URA3 insertion. In RDL mutagenesis, to ensure that incorporation of mutations occurs at approximately equal frequencies throughout the targeted region, this region is deleted at the same time URA3 is integrated. Conclusion SSG and RDL mutagenesis allow point mutations to be easily and efficiently incorporated into the yeast genome without disrupting the native locus.

  16. Radiation mutagenesis in development of genetic fundamentals of cotton selection

    International Nuclear Information System (INIS)

    Musaev, D.A.; Almatov, A.S.

    1987-01-01

    Some results of investigations on preparation and genetic analysis of mutants in inbreeding lines of genetic collections of cotton plants, as well as problems on mutant application in practical selection are covered. The results show that the scientific authenticity and efficiency of fundamental and applied investigations in the field of experimental mutagenesis of cotton plants,being a facultative self-polinator, depend on keeping necessary methodical requirements. Application of inbreeding lines of genetic collection with marker features as the initial material, isolation of plants usinng self-polination of flowers on all stages of investigation are related to these requirements. Several methodical recommendations on genetic-selective investigations are developed

  17. The domain packing and temperature dependence of the spontaneous shear angle in ferroelastic compound KD3(SeO3)2

    International Nuclear Information System (INIS)

    Balagurov, A.M.; Beskrovnyj, A.I.; Savenko, B.N.; Shuvalov, L.A.

    1984-01-01

    The domain structure in ferroelastic phase of KD 3 (SeO 3 ) 2 (DKTS) conpound was investigated by neutron time-of-flight diffractometry. The temperature dependence of spontaneous shear angle was determined from diffraction intensity measurements for a lot of spots in reciprocal lattice. The domain structure was found similar with that of KH 2 PO 4

  18. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response.

    Directory of Open Access Journals (Sweden)

    Luciane S Fonseca

    Full Text Available Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2 one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.

  19. Back to the future: revisiting HIV-1 lethal mutagenesis

    Science.gov (United States)

    Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2012-01-01

    The concept of eliminating HIV-1 infectivity by elevating the viral mutation rate was first proposed over a decade ago, even though the general concept had been conceived earlier for RNA viruses. Lethal mutagenesis was originally viewed as a novel chemotherapeutic approach for treating HIV-1 infection in which use of a viral mutagen would over multiple rounds of replication lead to the lethal accumulation of mutations, rendering the virus population non infectious – known as the slow mutation accumulation model. There have been limitations in obtaining good efficacy data with drug leads, leaving some doubt into clinical translation. More recent studies of the APOBEC3 proteins as well as new progress in the use of nucleoside analogs for inducing lethal mutagenesis have helped to refocus attention on rapid induction of HIV-1 lethal mutagenesis in a single or limited number of replication cycles leading to a rapid mutation accumulation model. PMID:23195922

  20. The role of complementary and alternative medicine (CAM) routines and rituals in men with cancer and their significant others (SOs): a qualitative investigation.

    Science.gov (United States)

    Klafke, Nadja; Eliott, Jaklin A; Olver, Ian N; Wittert, Gary A

    2014-05-01

    Complementary and alternative medicine (CAM) is frequently used in cancer patients, often with contribution of the significant others (SOs), but without consultation of healthcare professionals. This research explored how cancer patients integrate and maintain CAM use in their everyday life, and how SOs are involved in it. In this qualitative study, male participants were selected from a preceding Australian survey on CAM use in men with cancer (94 % response rate and 86 % consent rate for follow-up interview). Semistructured interviews were conducted with 26 men and 24 SOs until data saturation was reached. Interview transcripts were coded and analyzed thematically, thereby paying close attention to participants' language in use. A major theme associated with high CAM use was "CAM routines and rituals," as it was identified that men with cancer practiced CAM as (1) functional routines, (2) meaningful rituals, and (3) mental/spiritual routines or/and rituals. Regular CAM use was associated with intrapersonal and interpersonal benefits: CAM routines provided men with certainty and control, and CAM rituals functioned for cancer patients and their SOs as a means to create meaning, thereby working to counter fear and uncertainty consequent upon a diagnosis of cancer. SOs contributed most to men's uptake and maintenance of dietary-based CAM in ritualistic form resulting in interpersonal bonding and enhanced closeness. CAM routines and rituals constitute key elements in cancer patients' regular and satisfied CAM use, and they promote familial strengthening. Clinicians and physicians can convey these benefits to patient consultations, further promoting the safe and effective use of CAM.

  1. Investigation of potential genotoxic activity using the SOS Chromotest for real paracetamol wastewater and the wastewater treated by the Fenton process.

    Science.gov (United States)

    Kocak, Emel

    2015-01-01

    The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.

  2. Complex epidemiological approach to human mutagenesis

    International Nuclear Information System (INIS)

    Czeizel, A.

    1980-01-01

    The main characteristics of the epidemiological approach are summarised and the criteria discussed for the adoption of this approach for the detection of human mutagenesis. Mutation monitoring systems are described and results of epidemiological studies of higher risk populations are presented. (C.F.)

  3. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor.

    Science.gov (United States)

    McDonald, Caleb B; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Genetic improvement of soybean through induced mutagenesis

    International Nuclear Information System (INIS)

    Manjaya, J.G.; Nandanwar, R.S.; Thengane, R.J.; Muthiah, A.R.

    2009-01-01

    Soybean (Glycine max (L.) Merril) is one of the important oilseed crops of India. The country produces more than 9.00 million tonnes of soybean per annum and has acquired first place amongst oilseed crops grown in India. Narrow genetic base of cultivated varieties in soybean is of global concern. Efficient mutant production systems, through physical or chemical mutagenesis, have been well established in soybean. A vast amount of genetic variability, of both quantitative and qualitative traits, has been generated through experimental mutagenesis. Two soybean varieties TAMS-38 and TAMS 98-21 have been developed and released for commercial cultivation by Bhabha Atomic Research Centre (BARC). In this paper the role of mutation breeding in soybean improvement has been discussed. (author)

  5. Commentary on "tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl) nitrosamine as the basis for urothelial cell carcinogenesis." He Z, Kosinska W, Zhao ZL, Wu XR, Guttenplan JB, Department of Basic Science, New York University Dental College, NY, USA.: Mutat Res 2012;742(1-2):92-5 [Epub 2011 Dec 4].

    Science.gov (United States)

    Scherr, Douglas S

    2014-02-01

    Bladder cancer is one of the few cancers that have been linked to carcinogens in the environment and tobacco smoke. Of the carcinogens tested in mouse chemical carcinogenesis models, N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) is one that reproducibly causes high-grade, invasive cancers in the urinary bladder, but not in any other tissues. However, the basis for such a high-level tissue-specificity has not been explored. Using mutagenesis in lacI (Big Blue™) mice, we show here that BBN is a potent mutagen and it causes high-level of mutagenesis specifically in the epithelial cells (urothelial) of the urinary bladder. After a 2-6-week treatment of 0.05% BBN in the drinking water, mutagenesis in urothelial cells of male and female mice was about two orders of magnitude greater than the spontaneous mutation background. In contrast, mutagenesis in smooth muscle cells of the urinary bladder was about five times lower than in urothelial tissue. No appreciable increase in mutagenesis was observed in kidney, ureter, liver or forestomach. In lacI (Big Blue™) rats, BBN mutagenesis was also elevated in urothelial cells, albeit not nearly as profoundly as in mice. This provides a potential explanation as to why rats are less prone than mice to the formation of aggressive form of bladder cancer induced by BBN. Our results suggest that the propensity to BBN-triggered mutagenesis of urothelial cells underlies its heightened susceptibility to this carcinogen and that mutagenesis induced by BBN represents a novel model for initiation of bladder carcinogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2017-10-01

    Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. The resulting energy conservation in micro-canonical AIMD demonstrates that the implementation provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.

  7. Lethal mutagenesis: targeting the mutator phenotype in cancer.

    Science.gov (United States)

    Fox, Edward J; Loeb, Lawrence A

    2010-10-01

    The evolution of cancer and RNA viruses share many similarities. Both exploit high levels of genotypic diversity to enable extensive phenotypic plasticity and thereby facilitate rapid adaptation. In order to accumulate large numbers of mutations, we have proposed that cancers express a mutator phenotype. Similar to cancer cells, many viral populations, by replicating their genomes with low fidelity, carry a substantial mutational load. As high levels of mutation are potentially deleterious, the viral mutation frequency is thresholded at a level below which viral populations equilibrate in a traditional mutation-selection balance, and above which the population is no longer viable, i.e., the population undergoes an error catastrophe. Because their mutation frequencies are fine-tuned just below this error threshold, viral populations are susceptible to further increases in mutational load and, recently this phenomenon has been exploited therapeutically by a concept that has been termed lethal mutagenesis. Here we review the application of lethal mutagenesis to the treatment of HIV and discuss how lethal mutagenesis may represent a novel therapeutic approach for the treatment of solid cancers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Antimutation effect of an E. coli membrane fraction on UV-mutagenesis

    International Nuclear Information System (INIS)

    Harper, D.; Kristoff, S.; Bockrath, R.; Indiana Univ., Indianapolis; Indiana Univ., Indianapolis

    1980-01-01

    The depression of mutagenesis that occurs when irradiated E. coli are plated at high densities is studied. The number of mutant colonies indicated increases linearly with increasing plate density to about 10 8 bacteria per plate. At higher plate densities, suppressor mutations are very sensitive to crowding depression of mutagenesis and backmutations are somewhat sensitive. (orig./AJ)

  9. Codon cassette mutagenesis: a general method to insert or replace individual codons by using universal mutagenic cassettes.

    Science.gov (United States)

    Kegler-Ebo, D M; Docktor, C M; DiMaio, D

    1994-05-11

    We describe codon cassette mutagenesis, a simple method of mutagenesis that uses universal mutagenic cassettes to deposit single codons at specific sites in double-stranded DNA. A target molecule is first constructed that contains a blunt, double-strand break at the site targeted for mutagenesis. A double-stranded mutagenic codon cassette is then inserted at the target site. Each mutagenic codon cassette contains a three base pair direct terminal repeat and two head-to-head recognition sequences for the restriction endonuclease Sapl, an enzyme that cleaves outside of its recognition sequence. The intermediate molecule containing the mutagenic cassette is then digested with Sapl, thereby removing most of the mutagenic cassette, leaving only a three base cohesive overhang that is ligated to generate the final insertion or substitution mutation. A general method for constructing blunt-end target molecules suitable for this approach is also described. Because the mutagenic cassette is excised during this procedure and alters the target only by introducing the desired mutation, the same cassette can be used to introduce a particular codon at all target sites. Each cassette can deposit two different codons, depending on the orientation in which it is inserted into the target molecule. Therefore, a series of eleven cassettes is sufficient to insert all possible amino acids at any constructed target site. Thus codon cassettes are 'off-the-shelf' reagents, and this methodology should be a particularly useful and inexpensive approach for subjecting multiple different positions in a protein sequence to saturation mutagenesis.

  10. A function of mutagenesis on rhodotorula RY strain irradiated by heavy ion

    International Nuclear Information System (INIS)

    Li Hongyu; Li Chenghua; Ding Xinchun; Wang Jufang; Zhou Guangming; Xie Hongmei; Li Qiang; Dang bingrong; Wen Xiaoqiong; Li Wenjian; Wei Zengquan

    2004-01-01

    In this paper, red yeast (Rhodotorula RY Strain) that produces carotene is irradiated by 50 MeV/u 12 C 6+ heavy ion from Heavy Ion Accelerator in IMP. Fermentation tests show that 50 MeV/u 12 C 6+ heavy ion has a mutagenesis effect on the red yeast. Some strains of red yeast with changed production of carotene were found by screening. Meanwhile, by RFLP and RAPD analysis, authors have a further evidence that heavy ion can cause mutagenesis in Rhodotorula RY Strain. This presents a new prospect for the mutagenesis breeding by heavy ion in industry

  11. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    International Nuclear Information System (INIS)

    Yao Risheng; Li Manman; Deng Shengsong; Hu Huajia; Wang Huai; Li Fenghe

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  12. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  13. El último urbanismo de Antonio Bonet: el poblado SOS (1970

    Directory of Open Access Journals (Sweden)

    Juan Fernando Ródenas García

    2018-04-01

    Full Text Available El poblado SOS de Aldeas Infantiles, Sant Feliu de Codines, Barcelona (1970, junto al poblado Hifrensa (realizado y los planes urbanísticos de Prat I y II (no realizados, constituyen los últimos conjuntos urbanísticos de cierto calado proyectados por Antonio Bonet, si exceptuamos su producción turística. Bonet plantea un conjunto residencial para alojar a niños huérfanos con equipamientos comunitarios educacionales y deportivos. Bonet recrea en el poblado SOS la atmósfera, a escala humana, que se respira en aquellos pueblos que aparecen fotografiados en el número 18 (1935 de la revista del GATEPAC, AC Documentos de Actividad Contemporánea, dedicado a la arquitectura popular. Pabellones encalados, bóvedas, porches, patios, muros y plataformas de piedra dispuestas como bancales agrícolas, constituyen los elementos que construyen el paisaje de un poblado de trazo moderno y formas arcaicas. Se propone el análisis de una obra inédita que, aunque no se llevó a cabo, expresa la singular lectura del autor de las condiciones de habitabilidad para niños huérfanos, del paisaje, y al mismo tiempo, la obra condensa la experiencia de Bonet como urbanista ya experimentado que en los años 70 pone a prueba con perspectiva histórica su credo teórico fundamental: la Carta de Atenas.

  14. Pilot study of large-scale production of mutant pigs by ENU mutagenesis.

    Science.gov (United States)

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-06-22

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research.

  15. Structural analyses of polymorphic transitions of sn-1, 3-distearoyl-2-oleoylglycerol (SOS) and sn-1, 3-dioleoyl-2-stearoylglycerol (OSO): assessment on steric hindrance of unsaturated and saturated acyl chain interactions.

    Science.gov (United States)

    Yano, J; Sato, K; Kaneko, F; Small, D M; Kodali, D R

    1999-01-01

    Polymorphic transformations in two saturated-unsaturated mixed acid triacylglycerols, SOS (sn -1,3-distearoyl-2-oleoylglycerol) and OSO (sn -1,3-dioleoyl-2-stearoylglycerol), have been studied by FT-IR spectroscopy using deuterated specimens in which stearoyl chains are fully deuterated. A reversible phase transition between sub alpha and alpha and a series of irreversible transitions (alpha-->gamma-->beta'-->beta (beta2, beta1) for SOS and alpha-->beta'-->beta for OSO) were studied with an emphasis on the conformational ordering process of stearoyl and oleoyl chains. The alpha-->sub alpha reversible transition was due to the orientational change of stearoyl chains in the lateral directions from the hexagonal subcell to a perpendicularly packed one. As the first stage of the series of irreversible transitions from alpha to beta, the conformational ordering of saturated chains took place in the alpha-->gamma transition of SOS and in the alpha-->beta' transition of OSO; one stearoyl chain in SOS and OSO takes the all-trans conformation and the second stearoyl chain in SOS takes the bent conformation like those observed in the most stable beta-type. As the final stage, the ordering of unsaturated chains occurred in the beta'-->beta transition both for SOS and OSO. A conversion in the layered structure from bilayer to trilayer was also accompanied by the conformational ordering in the alpha-->gamma transition of SOS and in the beta'-->beta transition of OSO.

  16. Peripheral Quantitative Computed Tomography (pQCT), Broad Band Ultrasound Attenuation (BUA) and Speed of Sound (SOS) in a population of normal females aged from 8 to 20 years

    International Nuclear Information System (INIS)

    Bagni, B.; Corazzari, T.; Bagni, I.; Garuti, F.; Franceschetto, A.; Casolo, A.; Pansini, F.

    2002-01-01

    Aim: To evaluate, in a population of young healthy females aged from 8 to 20 years the bone mass peak (or density), the normal ranges versus age and menarche-age using two method: pQCT (peripheral Quantitative Computed Tomography) and ultrasound absorptiometry. Material and Methods: From 1998 to 2000 selective measurement of Bone Mineral Density (BMD) of trabecular bone at the ultradistal radius using pQCT, BUA (Broad Band Attenuation) and SOS ( Speed Of Sound) was carried out on 426 healthy females (aged from 8 to 20 years) in north Italy. BMD were measured using a single photon miniaturized tomographic scanner in the ultradistal radius, SOS and BUA were measured at the same time, using a water bath device obtaining parametric bidimensional images of BUA and SOS. The population studied refers to normal females free of bone metabolism alteration, in pre and post-pubertal status. Results: A normal range of BMD, BUA and SOS versus age and menarche age were established. A linear correlation was found between BUA and BMD measured with pQCT. SOS does not show any correlation with BMD. The pre-puberty and the post-puberty groups show statistically significant differences between SOS, BUA and BMD. We found the peak bone density (measured with pQCT) in the trabecular bone at the ultradistal radius at 15 years of age (mean menarche age of 10 years). The same position of the peak was found for BUA, for SOS the situation is not well defined. The analytical fitting of the data highlights a polynomial correlation of BMD vs. age, SOS vs. age, BUA vs. age. Conclusions: It appears that the sexual growth influences the position of peak bone density. The results obtained show a statistically significant correlation between BUA and BMD versus age, the menarche-age and the period of exposure of bone tissue to the oestrogen. After all, pQCT and ultrasound are useful techniques to evaluate bone density and structure also in a growing population. The results of this study shows the

  17. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Effects of voluntary and treadmill exercise on spontaneous withdrawal signs, cognitive deficits and alterations in apoptosis-associated proteins in morphine-dependent rats.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali

    2014-09-01

    Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells.

    Science.gov (United States)

    Mitsuda, Yoshihide; Morita, Ken; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Obara, Moeka; Hirata, Masahiro; Kataoka, Tatsuki R; Muto, Manabu; Kaneda, Yasufumi; Nakahata, Tatsutoshi; Liu, Pu Paul; Adachi, Souichi; Sugiyama, Hiroshi; Kamikubo, Yasuhiko

    2018-04-23

    The dual function of runt-related transcriptional factor 1 (RUNX1) as an oncogene or oncosuppressor has been extensively studied in various malignancies, yet its role in gastric cancer remains elusive. Up-regulation of the ErbB2/HER2 signaling pathway is frequently-encountered in gastric cancer and contributes to the maintenance of these cancer cells. This signaling cascade is partly mediated by son of sevenless homolog (SOS) family, which function as adaptor proteins in the RTK cascades. Herein we report that RUNX1 regulates the ErbB2/HER2 signaling pathway in gastric cancer cells through transactivating SOS1 expression, rendering itself an ideal target in anti-tumor strategy toward this cancer. Mechanistically, RUNX1 interacts with the RUNX1 binding DNA sequence located in SOS1 promoter and positively regulates it. Knockdown of RUNX1 led to the decreased expression of SOS1 as well as dephosphorylation of ErbB2/HER2, subsequently suppressed the proliferation of gastric cancer cells. We also found that our novel RUNX inhibitor (Chb-M') consistently led to the deactivation of the ErbB2/HER2 signaling pathway and was effective against several gastric cancer cell lines. Taken together, our work identified a novel interaction of RUNX1 and the ErbB2/HER2 signaling pathway in gastric cancer, which can potentially be exploited in the management of this malignancy.

  20. Target-selected mutagenesis of the rat

    NARCIS (Netherlands)

    Smits, B.M.; Mudde, J.B.; Plasterk, R.; Cuppen, E.

    2004-01-01

    The rat is one of the most extensively studied model organisms, and with its genome being sequenced, tools to manipulate gene function in vivo have become increasingly important. We here report proof of principle for target-selected mutagenesis as a reverse genetic or knockout approach for the rat.

  1. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium.

    Science.gov (United States)

    Li, Cheng-Lin Frank; Santhanam, Balaji; Webb, Amanda Nicole; Zupan, Blaž; Shaulsky, Gad

    2016-09-01

    Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Non-homologous end joining dependency of {gamma}-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Erich [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)]. E-mail: erich.heidenreich@meduniwien.ac.at; Eisler, Herfried [Institute of Cancer Research, Division of Molecular Genetics, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)

    2004-11-22

    There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Here, we show that the occasional NHEJ component Pol4, which is the yeast ortholog of mammalian DNA polymerase lambda, is not required for adaptive mutagenesis. An artificially imposed excess of DSBs by {gamma}-irradiation resulted in a dramatic increase in the incidence of adaptive, cell cycle arrest-releasing frameshift reversions. By the use of DNA ligase IV-deficient strains we detected that the majority of the {gamma}-induced adaptive mutations were also dependent on a functional NHEJ pathway. This suggests that the same mutagenic NHEJ mechanism acts on spontaneously arising as well as on ionizing radiation-induced DSBs. Inaccuracy of the NHEJ repair pathway may extensively contribute to the incidence of frameshift mutations in resting (non-dividing) eukaryotic cells, and thus act as a driving force in tumor development.

  3. Non-homologous end joining dependency of γ-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells

    International Nuclear Information System (INIS)

    Heidenreich, Erich; Eisler, Herfried

    2004-01-01

    There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Here, we show that the occasional NHEJ component Pol4, which is the yeast ortholog of mammalian DNA polymerase lambda, is not required for adaptive mutagenesis. An artificially imposed excess of DSBs by γ-irradiation resulted in a dramatic increase in the incidence of adaptive, cell cycle arrest-releasing frameshift reversions. By the use of DNA ligase IV-deficient strains we detected that the majority of the γ-induced adaptive mutations were also dependent on a functional NHEJ pathway. This suggests that the same mutagenic NHEJ mechanism acts on spontaneously arising as well as on ionizing radiation-induced DSBs. Inaccuracy of the NHEJ repair pathway may extensively contribute to the incidence of frameshift mutations in resting (non-dividing) eukaryotic cells, and thus act as a driving force in tumor development

  4. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (-)-isolongifolene.

    Science.gov (United States)

    Sakata, Kazuki; Oda, Yoshimitsu; Miyazawa, Mitsuo

    2010-02-24

    In this study, biotransformation of (-)-isolongifolene (1) by Glomerella cingulata and suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B(1) (AFB(1)) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, 1 was carried out the microbial transformation by G. cingulata. The result found that 1 was converted into (-)-isolongifolen-9-one (2), (-)-(2S)-13-hydroxy-isolongifolen-9-one (3), and (-)-(4R)-4-hydroxy-isolongifolen-9-one (4) by G. cingulata, and their conversion rates were 60, 25, and 15%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramid and AFB(1) in the umu test. Comound 2 showed gene expression by chemical mutagens furylfuramide and AFB(1) was suppressed 54 and 50% at <0.5 mM, respectively. Compound 2 is the most effective compound in this experiment.

  5. The use of plant tissue culture system in the mutagenesis of Secale cereale L

    International Nuclear Information System (INIS)

    Rybczynski, J.J.; KozIowska, W.; Turzynski, D.

    1990-01-01

    Full text: Among cereals, Secale cereale L. is the worst species for 'in vitro' mutagenesis. In the case of seed mutagenesis of rye each seed is expected to be a different genotype and only somatic embryogenesis assures propagation towards numerous individuals possessing the same genotype. Therefore, another system of in-vitro mutagenesis is explored. Immature embryos were isolated from spikes of field growing plants. The established cultures were irradiated with 0.5; 1.0 and 1.5 kR gamma rays on the first day of the culture and after 6 weeks in culture. After irradiation all cultures were subcultured. For mutagenesis in general uniformity of the original material is very important. Therefore, in rye, irradiation of regenerated somatic embryos may be a good approach. (author)

  6. Modeling insertional mutagenesis using gene length and expression in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Alex S Nord

    2007-07-01

    Full Text Available High-throughput mutagenesis of the mammalian genome is a powerful means to facilitate analysis of gene function. Gene trapping in embryonic stem cells (ESCs is the most widely used form of insertional mutagenesis in mammals. However, the rules governing its efficiency are not fully understood, and the effects of vector design on the likelihood of gene-trapping events have not been tested on a genome-wide scale.In this study, we used public gene-trap data to model gene-trap likelihood. Using the association of gene length and gene expression with gene-trap likelihood, we constructed spline-based regression models that characterize which genes are susceptible and which genes are resistant to gene-trapping techniques. We report results for three classes of gene-trap vectors, showing that both length and expression are significant determinants of trap likelihood for all vectors. Using our models, we also quantitatively identified hotspots of gene-trap activity, which represent loci where the high likelihood of vector insertion is controlled by factors other than length and expression. These formalized statistical models describe a high proportion of the variance in the likelihood of a gene being trapped by expression-dependent vectors and a lower, but still significant, proportion of the variance for vectors that are predicted to be independent of endogenous gene expression.The findings of significant expression and length effects reported here further the understanding of the determinants of vector insertion. Results from this analysis can be applied to help identify other important determinants of this important biological phenomenon and could assist planning of large-scale mutagenesis efforts.

  7. Spatial Dependent Spontaneous Emission of an Atom in a Semi-Infinite Waveguide of Rectangular Cross Section

    Science.gov (United States)

    Song, Hai-Xi; Sun, Xiao-Qi; Lu, Jing; Zhou, Lan

    2018-01-01

    We study a quantum electrodynamics (QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time. There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. Supported by National Natural Science Foundation of China under Grant Nos. 11374095, 11422540, 11434011, and 11575058, National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103, and Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001

  8. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  9. Time-dependent Autler-Townes spectroscopy

    International Nuclear Information System (INIS)

    Qamar, Sajid; Zhu, S.-Y.; Zubairy, M Suhail

    2003-01-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly

  10. Time-dependent Autler-Townes spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Sajid [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zhu, S.-Y. [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States); Zubairy, M Suhail [Institute for Quantum Studies, Department of Physics, Texas A and M University, College Station, TX 77843-4242 (United States)

    2003-04-01

    Autler-Townes spontaneous emission spectroscopy is revisited for a time-dependent case. We report the results of spontaneous emission spectra for nonstationary scattered light signals using the definition of the time-dependent physical spectrum. This is a rare example of problems where time-dependent spectra can be calculated exactly.

  11. Symposium on molecular and cellular mechanisms of mutagenesis

    International Nuclear Information System (INIS)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents

  12. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    Science.gov (United States)

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  13. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    Science.gov (United States)

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  14. Inhibition of the SOS response of Escherichia coli by the Ada protein

    International Nuclear Information System (INIS)

    Vericat, J.A.; Guerrero, R.; Barbe, J.

    1988-01-01

    Induction of the adaptive response by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) caused a decrease in the UV-mediated expression of both recA and sfiA genes but not of the umuDC gene. On the other hand, the adaptive response did not affect the temperature-promoted induction of SOS response in a RecA441 mutant. The inhibitory effect on the UV-triggered expression of the recA and sfiA genes was not dependent on either the alkA gene or the basal level of RecA protein, but rather required the ada gene. Furthermore, an increase in the level of the Ada protein, caused by the runaway plasmid pYN3059 in which the ada gene is regulated by the lac promoter, inhibited UV-mediated recA gene expression even in cells to which the MNNG-adaptive treatment had not been applied. This inhibitory effect of the adaptive pretreatment was not observed either in RecBC- strains or in RecBC mutants lacking exonuclease V-related nuclease activity. However, RecF- mutants showed an adaptive response-mediated decrease in UV-promoted induction of the recA gene

  15. Seed mutagenesis in Portulaca grandiflora (Hook)

    International Nuclear Information System (INIS)

    Bennani, F.; Rossi-Hassani, B.D.

    2001-01-01

    Betalain pigments have been used as natural additives. Despite their importance, the biochemistry and genetics of betalain synthesis remain relatively undetermined. Portulaca grandiflora represents an ideal material for genetic analysis. In the present work, seed mutagenesis was examined with a view to enhance the chance of detection of new genetic markers in this species

  16. Symposium on molecular and cellular mechanisms of mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  17. Temperature dependence of the spontaneous magnetisation of ferromagnetic insulators: Does it obey the 3/2-5/2-β law?

    International Nuclear Information System (INIS)

    Kuz'min, M.D.; Tishin, A.M.

    2005-01-01

    Temperature dependence of the spontaneous magnetisation is analysed for three archetypal ferromagnetic insulators, EuS, EuO and CrBr 3 . The main point is the shape, rather than scale, of the curve M s (T). As far as the available data enable us to judge, this shape is adequately described by the simple ''3/2-5/2-β'' expression (m=[1-sτ 3/2 -(1-s)τ 5/2 ] β ), proposed previously for metallic ferromagnets, and depends on a single dimensionless parameter s. The lack of direct experimental data makes this conclusion a preliminary one. In order to resolve the question definitively, accurate magnetic measurements on single crystals are required as a matter of priority

  18. [Influence of diethyl sulfate (DES) mutagenesis on growth properties and pigment secondary metabolites of Phellinus igniarius].

    Science.gov (United States)

    Wang, Jing; Wu, Xin-yuan; Ma, Wei; Chen, Jing; Liu, Cheng; Wu, Xiu-li

    2015-06-01

    The diethyl sulfate (DES) mutagenesis was chosen for the mutagenic treatment to Phellinus igniarius, and the relationship of mutagenesis time and death rate was investigated with 0.5% DES. The differences of mycelial growth speed, liquid fermentation mycelia biomass, morphology and pigment classes of secondary metabolites production speed and antioxidant activities of metabolite products were discussed. The study displayed that DES mutagenesis could change mycelial morphology without obvious effect on mycelium growth, and the DES mutagenesis improved antioxidant activities of the active ingredients of P. igniarius and had more antioxidant activity of hypoxia/sugar PC12 nerve cells than that of P. igniarius.

  19. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice

    Science.gov (United States)

    Tomberg, Kärt; Khoriaty, Rami; Westrick, Randal J.; Fairfield, Heather E.; Reinholdt, Laura G.; Brodsky, Gary L.; Davizon-Castillo, Pavel; Ginsburg, David; Di Paola, Jorge

    2016-01-01

    During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains. PMID:26950939

  20. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Kärt Tomberg

    Full Text Available During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS, an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10-7. Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.

  1. Novel patterns of ultraviolet mutagenesis and Weigle reactivation in Staphylococcus aureus and phage phi II

    International Nuclear Information System (INIS)

    Thompson, J.K.; Hart, M.G.R.

    1981-01-01

    The effects of u.v. irradiation on the survival of Staphylococcus aureus and its phage phi11 were studied. The recA and uvr mutations affected their survival like synonymous mutations in Escherichia coli. Weigle reactivation (W-reactivation) of phi11 occurred in wild-type S. aureus and in a uvr mutant. Reactivation was recA-dependent and was accompanied by u.v.-induced mutagenesis in a temperature-sensitive mutant of phi11. Bacterial mutation to streptomycin resistance was induced by u.v. and was also recA-dependent. In S. aureus, as in E. coli, u.v. was a more effective mutagen in the uvr genetic background. However, a dose-squared response for u.v.-induced mutation of wild-type and uvr strains of S. aureus to streptomycin resistance, and of a trp auxotroph to tryptophan independence, was found only with u.v. doses below 1 J m -2 . In relation to the Uvr mechanism of DNA repair, u.v. mutagenesis in S. aureus may involve both repairable and non-repairable lesions. As in E. Coli, the uvr genetic background reduced the u.v. dose required for maximal W-reactivation of u.v.-irradiated phage. However, there was no enhancement of W-reactivation by post-irradiation broth incubation of S. aureus. The results are compatible with a non-inducible mechanism for this phenomenon. (author)

  2. Towards controlled mutagenesis with transposons Ac and Tam3

    Energy Technology Data Exchange (ETDEWEB)

    Haring, M; Veken, J; Windrich, R; Kneppers, T; Rommens, C; Nijkamp, H J.J.; Hille, J [Department of Genetics, Free University, Amsterdam (Netherlands)

    1990-01-01

    Full text: The discovery of mobile genetic elements in plants has permitted the use of these transposons for insertional mutagenesis. This applies so far only to Zea mays and Antirrhinum majus, because other plant transposable elements have not been characterised so thoroughly at the genetic and the molecular level. To establish whether transposons (Ac from maize and Tam3 from Antirrhinum) remain mobile in heterologous hosts, either in somatic tissue or after meiosis, a phenotypic assay system for transposition was developed. The separation of the two transposition functions will allow controlled mutagenesis of plant genes. Our results indicate that both transposable elements remain active in heterologous hosts. (author)

  3. Tissue culture regeneration and radiation induced mutagenesis in banana

    International Nuclear Information System (INIS)

    Kulkarni, V.M.; Ganapathi, T.R.

    2009-01-01

    Radiation induced mutagenesis is an important tool for banana genetic improvement. At BARC, protocols for shoo-tip multiplication of commercial banana varieties have been developed and transferred to user agencies for commercial production. Excellent embryogenic cell suspensions were established in banana cvs. Rasthali and Rajeli, and were maintained at low temperatures for long-term storage. Normal plantlets were successfully regenerated from these cell suspensions. The cell suspensions and shoot-tip cultures were gamma-irradiated for mutagenesis. The mutagenized populations were field screened and a few interesting mutants have been isolated. The existence of genetic variation was confirmed using DNA markers. Further evaluation of these mutants is in progress. (author)

  4. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis

  5. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis

  6. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis.

  7. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.

  8. Cellular components required for mutagenesis

    International Nuclear Information System (INIS)

    Elledge, S.J.; Perry, K.L.; Krueger, J.H.; Mitchell, B.B.; Walker, G.C.

    1983-01-01

    We have cloned the umuD and umuC genes of Escherichia coli and have shown that they code for two proteins of 16,000 and 45,000 daltons respectively; the two genes are organized in an operon that is repressed by the LexA protein. Similarly, we have shown that the mucA and mucB genes of the mutagenesis-enhancing plasmid pKM101 code for proteins of 16,000 and 45,000 daltons respectively and, like umuD/C, the genes are organized in an operon. Preliminary sequencing studies have indicated that the umuD/C and mucA/B loci are approximately 50% homologous at both the nucleic acid and deduced protein sequence levels and that the umuD gene is preceeded by two putative LexA binding sites separated by 4 basepairs. Like umuD/C, the mucA/B genes of pKM101 are induced by DNA damage and are repressed by LexA. In addition to inducing recA + lexA + -regulated din genes, DNA damaging agents such as uv and nalidixic acid also induce the heat shock proteins GroEL and DnaK in an htpR-dependent fashion. 22 references, 1 figure, 1 table

  9. Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, S. A.; Kussmann, J.; Ochsenfeld, C., E-mail: Christian.Ochsenfeld@cup.uni-muenchen.de [Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München (Germany); Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München (Germany)

    2014-08-07

    We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset perturbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like graphics processing units (GPU). The scaling is reduced from O(N{sup 5}) to O(N{sup 3}) by a reformulation of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the 3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the conventional algorithm. Instead, our reformulation allows to replace the rate-determining contraction step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs. Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient manner on a single GPU-server.

  10. Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units.

    Science.gov (United States)

    Maurer, S A; Kussmann, J; Ochsenfeld, C

    2014-08-07

    We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset perturbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like graphics processing units (GPU). The scaling is reduced from O(N⁵) to O(N³) by a reformulation of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the 3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the conventional algorithm. Instead, our reformulation allows to replace the rate-determining contraction step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs. Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient manner on a single GPU-server.

  11. Targeted mutagenesis in sea urchin embryos using TALENs.

    Science.gov (United States)

    Hosoi, Sayaka; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi

    2014-01-01

    Genome editing with engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) has been reported in various animals. We previously described ZFN-mediated targeted mutagenesis and insertion of reporter genes in sea urchin embryos. In this study, we demonstrate that TALENs can induce mutagenesis at specific genomic loci of sea urchin embryos. Injection of TALEN mRNAs targeting the HpEts transcription factor into fertilized eggs resulted in the impairment of skeletogenesis. Sequence analyses of the mutations showed that deletions and/or insertions occurred at the HpEts target site in the TALEN mRNAs-injected embryos. The results suggest that targeted gene disruption using TALENs is feasible in sea urchin embryos. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  12. Quantitative Missense Variant Effect Prediction Using Large-Scale Mutagenesis Data.

    Science.gov (United States)

    Gray, Vanessa E; Hause, Ronald J; Luebeck, Jens; Shendure, Jay; Fowler, Douglas M

    2018-01-24

    Large datasets describing the quantitative effects of mutations on protein function are becoming increasingly available. Here, we leverage these datasets to develop Envision, which predicts the magnitude of a missense variant's molecular effect. Envision combines 21,026 variant effect measurements from nine large-scale experimental mutagenesis datasets, a hitherto untapped training resource, with a supervised, stochastic gradient boosting learning algorithm. Envision outperforms other missense variant effect predictors both on large-scale mutagenesis data and on an independent test dataset comprising 2,312 TP53 variants whose effects were measured using a low-throughput approach. This dataset was never used for hyperparameter tuning or model training and thus serves as an independent validation set. Envision prediction accuracy is also more consistent across amino acids than other predictors. Finally, we demonstrate that Envision's performance improves as more large-scale mutagenesis data are incorporated. We precompute Envision predictions for every possible single amino acid variant in human, mouse, frog, zebrafish, fruit fly, worm, and yeast proteomes (https://envision.gs.washington.edu/). Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Faux Mutagenesis: Teaching Troubleshooting through Controlled Failure

    Science.gov (United States)

    Hartberg, Yasha

    2006-01-01

    By shifting pedagogical goals from obtaining successful mutations to teaching students critical troubleshooting skills, it has been possible to introduce site-directed mutagenesis into an undergraduate teaching laboratory. Described in this study is an inexpensive laboratory exercise in which students follow a slightly modified version of…

  14. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections.

    Directory of Open Access Journals (Sweden)

    Janire Mingo

    Full Text Available Site-directed mutagenesis (SDM is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis.

  15. Construction of a ColD cda Promoter-Based SOS-Green Fluorescent Protein Whole-Cell Biosensor with Higher Sensitivity toward Genotoxic Compounds than Constructs Based on recA, umuDC, or sulA Promoters

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2005-01-01

    Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-......Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N......-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies....

  16. Dorsomedial prefontal cortex supports spontaneous thinking per se.

    Science.gov (United States)

    Raij, T T; Riekki, T J J

    2017-06-01

    Spontaneous thinking, an action to produce, consider, integrate, and reason through mental representations, is central to our daily experience and has been suggested to serve crucial adaptive purposes. Such thinking occurs among other experiences during mind wandering that is associated with activation of the default mode network among other brain circuitries. Whether and how such brain activation is linked to the experience of spontaneous thinking per se remains poorly known. We studied 51 healthy subjects using a comprehensive experience-sampling paradigm during 3T functional magnetic resonance imaging. In comparison with fixation, the experiences of spontaneous thinking and spontaneous perception were related to activation of wide-spread brain circuitries, including the cortical midline structures, the anterior cingulate cortex and the visual cortex. In direct comparison of the spontaneous thinking versus spontaneous perception, activation was observed in the anterior dorsomedial prefrontal cortex. Modality congruence of spontaneous-experience-related brain activation was suggested by several findings, including association of the lingual gyrus with visual in comparison with non-verbal-non-visual thinking. In the context of current literature, these findings suggest that the cortical midline structures are involved in the integrative core substrate of spontaneous thinking that is coupled with other brain systems depending on the characteristics of thinking. Furthermore, involvement of the anterior dorsomedial prefrontal cortex suggests the control of high-order abstract functions to characterize spontaneous thinking per se. Hum Brain Mapp 38:3277-3288, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Primer Extension Mutagenesis Powered by Selective Rolling Circle Amplification

    Science.gov (United States)

    Huovinen, Tuomas; Brockmann, Eeva-Christine; Akter, Sultana; Perez-Gamarra, Susan; Ylä-Pelto, Jani; Liu, Yuan; Lamminmäki, Urpo

    2012-01-01

    Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material. PMID:22355397

  18. Directed mutagenesis affects recombination in Azospirillum brasilense nif genes

    Directory of Open Access Journals (Sweden)

    C.P. Nunes

    2000-12-01

    Full Text Available In order to improve the gene transfer/mutagenesis system for Azospirillum brasilense, gene-cartridge mutagenesis was used to replace the nifD gene with the Tn5 kanamycin resistance gene. The construct was transferred to A. brasilense by electrotransformation. Of the 12 colonies isolated using the suicide plasmid pSUP202 as vector, only four did not show vector integration into the chromosome. Nevertheless, all 12 colonies were deficient in acetylene reduction, indicating an Nif- phenotype. Four Nif- mutants were analyzed by Southern blot, using six different probes spanning the nif and Km r genes and the plasmid vector. Apparently, several recombination events occurred in the mutant genomes, probably caused mainly by gene disruption owing to the mutagenesis technique used: resistance gene-cartridge mutagenesis combined with electrotransformation.Com o objetivo de melhorar os sistemas de transferência gênica e mutagênese para Azospirillum brasilense, a técnica de mutagênese através do uso de um gene marcador ("gene-cartridge mutagenesis" foi utilizada para substituir a região genômica de A. brasilense correspondente ao gene nifD por um segmento de DNA do transposon Tn5 contendo o gene que confere resistência ao antibiótico canamicina. A construção foi transferida para a linhagem de A. brasilense por eletrotransformação. Doze colônias transformantes foram isoladas com o plasmídeo suicida pSUP202 servindo como vetor. Dessas, somente quatro não possuíam o vetor integrado no cromossomo da bactéria. Independentemente da integração ou não do vetor, as 12 colônias foram deficientes na redução do gás acetileno, evidenciando o fenótipo Nif -. Quatro mutantes Nif - foram analisados através da técnica de Southern blot, utilizando-se seis diferentes fragmentos contendo genes nif, de resistência à canamicina e do vetor como sondas. Os resultados sugerem a ocorrência de eventos recombinacionais variados no genoma dos mutantes. A

  19. Phage transposon mutagenesis.

    Science.gov (United States)

    Siegrist, M Sloan; Rubin, Eric J

    2009-01-01

    Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.

  20. Study of UV-induced mutagenesis in Bacillus subtilis

    International Nuclear Information System (INIS)

    Filippov, V.D.; Lotareva, O.V.

    1978-01-01

    The mechanism of UV-induced mutagenesis was studied in Bacillus subtilis departing from the assumption that a lower yield of UV-induced mutations should be found in mutants deficient in the recombination if production of mutations is coupled with the recombination process. Three recombination-deficient strains were used: two (recA and recF) with defects in different recombination pathways and the third (recB) has a block at a stage common for both of them. UV light induced reversions to prototrophy in recB cells and did not in recA and recF strains. Direct mutations, which confer to the cell additional growth requirements, were induced by UV light in recA and recF mutants. It is concluded that UV-induced mutagenesis in B subtilis is independent of the two known recombination mechanisms

  1. A System of Systems (SoS) Approach to Sustainable Energy Planning

    Science.gov (United States)

    Madani, Kaveh; Hadian, Saeed

    2015-04-01

    The general policy of mandating fossil fuel replacement with "green" energies may not be as effective and environmental-friendly as perceived, due to the secondary impacts of renewable energies on different natural resources. An integrated systems analysis framework is essential to developing sustainable energy supply systems with minimal unintended impacts on valuable natural resources such as water, climate, and ecosystem. This presentation discusses how a system of systems (SoS) framework can be developed to quantitatively evaluate the desirability of different energy supply alternatives with respect to different sustainability criteria under uncertainty. Relative Aggregate Footprint (RAF) scores of a range of renewable and nonrenewable energy alternatives are determined using their performance values under four sustainability criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production. Our results suggest that despite their lower emissions, some renewable energy sources are less promising than non-renewable energy sources from a SoS perspective that considers the trade-offs between carbon footprint of energies and their effects on water, ecosystem, and economic resources. A new framework based on the Modern Portfolio Theory (MPT) is also proposed for analyzing the overall sustainability of different energy mixes for different risk of return levels with respect to the trade-offs involved. It is discussed how the proposed finance-based sustainability evaluation method can help policy makers maximize the energy portfolio's expected sustainability for a given amount of portfolio risk, or equivalently minimize risk for a given level of expected sustainability level, by revising the energy mix.

  2. Repair on the go: E. coli maintains a high proliferation rate while repairing a chronic DNA double-strand break.

    Directory of Open Access Journals (Sweden)

    Elise Darmon

    Full Text Available DNA damage checkpoints exist to promote cell survival and the faithful inheritance of genetic information. It is thought that one function of such checkpoints is to ensure that cell division does not occur before DNA damage is repaired. However, in unicellular organisms, rapid cell multiplication confers a powerful selective advantage, leading to a dilemma. Is the activation of a DNA damage checkpoint compatible with rapid cell multiplication? By uncoupling the initiation of DNA replication from cell division, the Escherichia coli cell cycle offers a solution to this dilemma. Here, we show that a DNA double-strand break, which occurs once per replication cycle, induces the SOS response. This SOS induction is needed for cell survival due to a requirement for an elevated level of expression of the RecA protein. Cell division is delayed, leading to an increase in average cell length but with no detectable consequence on mutagenesis and little effect on growth rate and viability. The increase in cell length caused by chronic DNA double-strand break repair comprises three components: two types of increase in the unit cell size, one independent of SfiA and SlmA, the other dependent of the presence of SfiA and the absence of SlmA, and a filamentation component that is dependent on the presence of either SfiA or SlmA. These results imply that chronic checkpoint induction in E. coli is compatible with rapid cell multiplication. Therefore, under conditions of chronic low-level DNA damage, the SOS checkpoint operates seamlessly in a cell cycle where the initiation of DNA replication is uncoupled from cell division.

  3. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.

    Science.gov (United States)

    Davidson, Edgar; Doranz, Benjamin J

    2014-09-01

    Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs. © 2014 John Wiley & Sons Ltd.

  4. Plasmid pKM101-dependent repair and mutagenesis in Escherichia coli cells with mutations lexB30 tif and zab-53 in the recA gene

    International Nuclear Information System (INIS)

    Blanco, M.; Rebollo, J.E.

    1981-01-01

    Bacterial survival after UV irradiation was increased in E. coli K12 lex B30 and tif zab-53 mutants harboring plasmid pKM101. Mutagenesis in response to UV was observed in these bacteria which, in absence of pKM101, are not UV-mutable. The mutator effect observed in unirradiated wild-type cells containing pKM101 was higher after incubation at 30 0 C with adenine than at 37 0 C. This effect was still enhanced by tif mutation, even in the tif zab-53 strain, but it was abolished by lexB30 mutation. In the tif zab-53 (pKM101) strain, repair and mutagenesis of UV-irradiated phage lambda was observed, but not in the lexB30 mutant carrying pKM101. The pKM101 mutant, pGW1, was unable to protect tif zab-53 bacteria against killing by UV, whereas the protection of lexB30 was intermediate; moreover, it did not promote the mutator effect at 30 0 C or enhance phage repair and mutagenesis in tif zab-53 cells. All UV-induced bacterial mutations in lexB30 (pKM101) strain were suppressors; in contrast, true revertants were found after UV irradiation of the tif zab-53 (pKM101) cells. (orig./AJ)

  5. Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.

    Science.gov (United States)

    Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi

    2016-01-01

    Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations.

  6. Spontaneous cooperation for prosocials, but not for proselfs: Social value orientation moderates spontaneous cooperation behavior

    Science.gov (United States)

    Mischkowski, Dorothee; Glöckner, Andreas

    2016-01-01

    Cooperation is essential for the success of societies and there is an ongoing debate whether individuals have therefore developed a general spontaneous tendency to cooperate or not. Findings that cooperative behavior is related to shorter decision times provide support for the spontaneous cooperation effect, although contrary results have also been reported. We show that cooperative behavior is better described as person × situation interaction, in that there is a spontaneous cooperation effect for prosocial but not for proself persons. In three studies, one involving population representative samples from the US and Germany, we found that cooperation in a public good game is dependent on an interaction between individuals’ social value orientation and decision time. Increasing deliberation about the dilemma situation does not affect persons that are selfish to begin with, but it is related to decreasing cooperation for prosocial persons that gain positive utility from outcomes of others and score high on the related general personality trait honesty/humility. Our results demonstrate that the spontaneous cooperation hypothesis has to be qualified in that it is limited to persons with a specific personality and social values. Furthermore, they allow reconciling conflicting previous findings by identifying an important moderator for the effect. PMID:26876773

  7. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.

    Science.gov (United States)

    Gagnon, James A; Valen, Eivind; Thyme, Summer B; Huang, Peng; Akhmetova, Laila; Ahkmetova, Laila; Pauli, Andrea; Montague, Tessa G; Zimmerman, Steven; Richter, Constance; Schier, Alexander F

    2014-01-01

    The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs) initiating with a 5' adenine were improved by rescuing 5' end homogeneity of the sgRNA. In some cases, direct injection of Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an attractive approach for labs of all sizes.

  8. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A.; Podratz, P.L.; Graceli, J.B.; Abreu, G.R.

    2015-01-01

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women

  9. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    M.V. Borgo

    2016-01-01

    Full Text Available Drospirenone (DRSP is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2 and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87 at 12 weeks of age were randomly divided into sham operated (Sham, OVX, OVX treated with E2 (E2, and OVX treated with E2 and DRSP (E2+DRSP groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  10. Hormonal therapy with estradiol and drospirenone improves endothelium-dependent vasodilation in the coronary bed of ovariectomized spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Borgo, M.V.; Claudio, E.R.G.; Silva, F.B.; Romero, W.G.; Gouvea, S.A.; Moysés, M.R.; Santos, R.L.; Almeida, S.A. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil); Podratz, P.L.; Graceli, J.B. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Abreu, G.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal de Espírito Santo, Vitória, ES (Brazil)

    2015-11-17

    Drospirenone (DRSP) is a progestin with anti-aldosterone properties and it reduces blood pressure in hypertensive women. However, the effects of DRSP on endothelium-dependent coronary vasodilation have not been evaluated. This study investigated the effects of combined therapy with estrogen (E2) and DRSP on endothelium-dependent vasodilation of the coronary bed of ovariectomized (OVX) spontaneously hypertensive rats. Female spontaneously hypertensive rats (n=87) at 12 weeks of age were randomly divided into sham operated (Sham), OVX, OVX treated with E2 (E2), and OVX treated with E2 and DRSP (E2+DRSP) groups. Hemodynamic parameters were directly evaluated by catheter insertion into the femoral artery. Endothelium-dependent vasodilation in response to bradykinin in the coronary arterial bed was assessed using isolated hearts according to a modified Langendorff method. Coronary protein expression of endothelial nitric oxide synthase and estrogen receptor alpha (ER-α) was assessed by Western blotting. Histological slices of coronary arteries were stained with hematoxylin and eosin, and morphometric parameters were analyzed. Oxidative stress was assessed in situ by dihydroethidium fluorescence. Ovariectomy increased systolic blood pressure, which was only prevented by E2+DRSP treatment. Estrogen deficiency caused endothelial dysfunction, which was prevented by both treatments. However, the vasodilator response in the E2+DRSP group was significantly higher at the three highest concentrations compared with the OVX group. Reduced ER-α expression in OVX rats was restored by both treatments. Morphometric parameters and oxidative stress were augmented by OVX and reduced by E2 and E2+DRSP treatments. Hormonal therapy with E2 and DRSP may be an important therapeutic option in the prevention of coronary heart disease in hypertensive post-menopausal women.

  11. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  12. Spontaneous emission from active dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    and engineered due to the dependence of the emission rate on the location and polarisation of the emitters in the structure. This paper addresses the methods of quantum electrodynamics of dielectric media which enable calculation of the local rate of spontaneous emission in active microstructures....

  13. The relation between repair of DNA and radiation and chemical mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, L.

    1976-01-01

    The effect of various genes involved in DNA repair functions on radiation and chemical mutagenesis in Escherichia coli is discussed and compared to similar studies done in yeast. Results of the effect of various genes conferring radiation-sensitivty on mutation induction in yeast are presented and related to current ideas of mutagenesis

  14. Excision repair and mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kilbey, Brian

    1987-01-01

    This and succeeding letters discuss the James and Kilbey (1977 and 1978) model for the initiation of u.v. mutagenesis in Saccharomyces cerevisiae and its application to include a number of chemical mutagens. The Baranowska et al (1987) results indicating the role of DNA replication, the differing mechanisms in Escherichia coli, are all discussed. (UK)

  15. Complementation of a pKM101 derivative that decreases resistance to UV killing but increases susceptibility to mutagenesis

    International Nuclear Information System (INIS)

    Langer, P.J.; Perry, K.L.; Walker, G.C.

    1985-01-01

    The drug resistance plasmid pKM101 makes Escherichia coli resistant to the lethal effects of ultraviolet (UV) irradiation and more susceptible to mutagenesis by a variety of agents. The plasmid operon responsible for increasing mutagenesis has been termed mucAB (Mutagenesis, UV and chemical). The authors have isolated a derivative of pKM101 called pGW1975 which makes cells more sensitive to killing by UV but which retains the ability of pKM101 to increase susceptibility to methyl methanesulfonate (MMS) mutagenesis. pGW1975 increases UV mutagenesis less than pKM101 in a uvrA + strain but more than pKM101 in a uvrA - strain. muc - point and insertion mutants of pKM101 and pGW1975 complement to restore the plasmid-mediated: (i) ability to reactivate UV-irradiated phage, (ii) resistance to killing by UV, and (iii) level of susceptibility to UV mutagenesis. They have identified a 2.0 kb region of pKM101 which is responsible for the complementation and which maps counterclockwise of mucAB. (Auth)

  16. The Fanconi anemia pathway limits the severity of mutagenesis.

    Science.gov (United States)

    Hinz, John M; Nham, Peter B; Salazar, Edmund P; Thompson, Larry H

    2006-08-13

    Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.

  17. Facile Site-Directed Mutagenesis of Large Constructs Using Gibson Isothermal DNA Assembly.

    Science.gov (United States)

    Yonemoto, Isaac T; Weyman, Philip D

    2017-01-01

    Site-directed mutagenesis is a commonly used molecular biology technique to manipulate biological sequences, and is especially useful for studying sequence determinants of enzyme function or designing proteins with improved activity. We describe a strategy using Gibson Isothermal DNA Assembly to perform site-directed mutagenesis on large (>~20 kbp) constructs that are outside the effective range of standard techniques such as QuikChange II (Agilent Technologies), but more reliable than traditional cloning using restriction enzymes and ligation.

  18. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    Science.gov (United States)

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  19. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor expression and function.

    Science.gov (United States)

    Bill, Anke; Rosethorne, Elizabeth M; Kent, Toby C; Fawcett, Lindsay; Burchell, Lynn; van Diepen, Michiel T; Marelli, Anthony; Batalov, Sergey; Miraglia, Loren; Orth, Anthony P; Renaud, Nicole A; Charlton, Steven J; Gosling, Martin; Gaither, L Alex; Groot-Kormelink, Paul J

    2014-01-01

    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.

  20. High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP receptor expression and function.

    Directory of Open Access Journals (Sweden)

    Anke Bill

    Full Text Available The human prostacyclin receptor (hIP receptor is a seven-transmembrane G protein-coupled receptor (GPCR that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structure-function relationship of GPCRs.