WorldWideScience

Sample records for sos evolve anticancer

  1. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.

    Science.gov (United States)

    Torres-Barceló, Clara; Kojadinovic, Mila; Moxon, Richard; MacLean, R Craig

    2015-10-07

    Exposure to antibiotics induces the expression of mutagenic bacterial stress-response pathways, but the evolutionary benefits of these responses remain unclear. One possibility is that stress-response pathways provide a short-term advantage by protecting bacteria against the toxic effects of antibiotics. Second, it is possible that stress-induced mutagenesis provides a long-term advantage by accelerating the evolution of resistance. Here, we directly measure the contribution of the Pseudomonas aeruginosa SOS pathway to bacterial fitness and evolvability in the presence of sublethal doses of ciprofloxacin. Using short-term competition experiments, we demonstrate that the SOS pathway increases competitive fitness in the presence of ciprofloxacin. Continued exposure to ciprofloxacin results in the rapid evolution of increased fitness and antibiotic resistance, but we find no evidence that SOS-induced mutagenesis accelerates the rate of adaptation to ciprofloxacin during a 200 generation selection experiment. Intriguingly, we find that the expression of the SOS pathway decreases during adaptation to ciprofloxacin, and this helps to explain why this pathway does not increase long-term evolvability. Furthermore, we argue that the SOS pathway fails to accelerate adaptation to ciprofloxacin because the modest increase in the mutation rate associated with SOS mutagenesis is offset by a decrease in the effective strength of selection for increased resistance at a population level. Our findings suggest that the primary evolutionary benefit of the SOS response is to increase bacterial competitive ability, and that stress-induced mutagenesis is an unwanted side effect, and not a selected attribute, of this pathway. © 2015 The Authors.

  2. Ribonuclease E modulation of the bacterial SOS response.

    Directory of Open Access Journals (Sweden)

    Robert Manasherob

    Full Text Available Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes-leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed.

  3. Ribonuclease E modulation of the bacterial SOS response.

    Science.gov (United States)

    Manasherob, Robert; Miller, Christine; Kim, Kwang-sun; Cohen, Stanley N

    2012-01-01

    Plants, animals, bacteria, and Archaea all have evolved mechanisms to cope with environmental or cellular stress. Bacterial cells respond to the stress of DNA damage by activation of the SOS response, the canonical RecA/LexA-dependent signal transduction pathway that transcriptionally derepresses a multiplicity of genes-leading to transient arrest of cell division and initiation of DNA repair. Here we report the previously unsuspected role of E. coli endoribonuclease RNase E in regulation of the SOS response. We show that RNase E deletion or inactivation of temperature-sensitive RNase E protein precludes normal initiation of SOS. The ability of RNase E to regulate SOS is dynamic, as down regulation of RNase E following DNA damage by mitomycin C resulted in SOS termination and restoration of RNase E function leads to resumption of a previously aborted response. Overexpression of the RraA protein, which binds to the C-terminal region of RNase E and modulates the actions of degradosomes, recapitulated the effects of RNase E deficiency. Possible mechanisms for RNase E effects on SOS are discussed.

  4. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Science.gov (United States)

    Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K

    2017-01-01

    Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  5. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Bryan E Bunnell

    Full Text Available Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  6. [SOS-repair--60 years].

    Science.gov (United States)

    Zavil'gel'skiĭ, G B

    2013-01-01

    This review integrates 60 years of research on SOS-repair and SOS-mutagenesis in procaryotes and eucaryotes, from Jean Weigle experiment in 1953 year (mutagenesis of lambda bacteriophage in UV-irradiated bacteria) to the latest achievements in studying SOS-mutagenesis on all living organisms--Eukarya, Archaea and Bacteria. A key role in establishing of a biochemical basis for SOS-mutagenesis belonges to the finding in 1998-1999 years that specific error-prone DNA polymerases (PolV and others) catalysed translesion synthesis on damaged DNA. This review focuses on recent studies addressing the new models for SOS-induced mutagenesis in Escherichia coli and Home sapiens cells.

  7. NOAA NDBC SOS - waves

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...

  8. Stent-over-sponge (SOS): a novel technique complementing endosponge therapy for foregut leaks and perforations.

    Science.gov (United States)

    Valli, Piero V; Mertens, Joachim C; Kröger, Arne; Gubler, Christoph; Gutschow, Christian; Schneider, Paul M; Bauerfeind, Peter

    2018-02-01

     Endoluminal vacuum therapy (EVT) has evolved as a promising option for endoscopic treatment of foregut wall injuries in addition to the classic closure techniques using clips or stents. To improve vacuum force and maintain esophageal passage, we combined endosponge treatment with a partially covered self-expandable metal stent (stent-over-sponge; SOS).  Twelve patients with infected upper gastrointestinal wall defects were treated with the SOS technique.  Indications for SOS were anastomotic leakage after surgery (n = 11) and chronic foregut fistula (n = 1). SOS treatment was used as a first-line treatment in seven patients with a success rate of 71.4 % (5/7) and as a second-line treatment after failed previous EVT treatment in five patients (success rate 80 %; 4/5). Overall, SOS treatment was successful in 75 % of patients (9/12). No severe adverse events occurred. CONCLUSION : SOS is an effective method to treat severely infected foregut wall defects in patients where EVT has failed, and also as a first-line treatment. Comparative prospective studies are needed to confirm our preliminary results. © Georg Thieme Verlag KG Stuttgart · New York.

  9. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3

    OpenAIRE

    Halfter, Ursula; Ishitani, Manabu; Zhu, Jian-Kang

    2000-01-01

    The Arabidopsis thaliana SOS2 and SOS3 genes are required for intracellular Na+ and K+ homeostasis and plant tolerance to high Na+ and low K+ environments. SOS3 is an EF hand type calcium-binding protein having sequence similarities with animal neuronal calcium sensors and the yeast calcineurin B. SOS2 is a serine/threonine protein kinase in the SNF1/AMPK family. We report here that SOS3 physically interacts with and activates SOS2 protein kinase. Genetically, sos2sos3 double mutant analysis ...

  10. Vesiculation from Pseudomonas aeruginosa under SOS.

    Science.gov (United States)

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F; Yu, Jiehjuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity.

  11. NOAA NDBC SOS, 2007-present, currents

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have currents data. Because of the nature of SOS requests, requests for...

  12. NOAA NDBC SOS, 2006-present, winds

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have winds data. Because of the nature of SOS requests, requests for data...

  13. The investigation of SOS-response of Escherichia coli after γ-irradiation by means of SOS-chromotest

    International Nuclear Information System (INIS)

    Kozubek, S.; Ogievetskaya, M.M.; Krasavin, E.A.; Drasil, V.; Soska, J.

    1988-01-01

    The kinetics of the E.coli PQ37 SOS-system induction by γ-radiation has been studied by the SOS-chromotest technique. The experimental data are consistent with the following hypotheses. The production of DNA damages inducing the SOS-system is 0,021 Gy -1 per genome. The SOS-system is switched off approximately 200 min after γ-irradiation. The spontaneous triggering of the SOS-system is induced in the exponentially growing cells. The probability of its induction is independent of time up to 180 min of incubation. The synthesis of constitutive alkaline phosphatase proceeds for some time in the cells that suffered lethal damages from γ-irradiation. A correction has been proposed for the calculation of the induction factor. 5 refs.; 11 figs

  14. Ras activation by SOS

    DEFF Research Database (Denmark)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual ...

  15. A Modular SOS for Action Notation - Revisited

    DEFF Research Database (Denmark)

    Mosses, Peter David

    A draft modular SOS for the new version of AN, referred to as AN-2, has been available since 2000. It is written in CASL and has been checked for well-formedness using CATS (CASL Tool Set). It appears to be significantly more accessible than the original SOS of AN-1. However, it now appears......-notation for the modular SOS rules. After discussing the issues, we look at some illustrative examples taken from an improved modular SOS of AN-2 (in preparation). We also look at the possibility of empirical testing of the modular SOS by a straightforward translation to Prolog....

  16. SoS contract verification using statistical model checking

    Directory of Open Access Journals (Sweden)

    Alessandro Mignogna

    2013-11-01

    Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.

  17. Sinusoidal obstruction syndrome (SOS) related to chemotherapy for colorectal liver metastases: factors predictive of severe SOS lesions and protective effect of bevacizumab.

    Science.gov (United States)

    Hubert, Catherine; Sempoux, Christine; Humblet, Yves; van den Eynde, Marc; Zech, Francis; Leclercq, Isabelle; Gigot, Jean-François

    2013-11-01

    The most frequent presentation of chemotherapy-related toxicity in colorectal liver metastases (CRLM) is sinusoidal obstruction syndrome (SOS). The purpose of the present study was to identify preoperative factors predictive of SOS and to establish associations between type of chemotherapy and severity of SOS. A retrospective study was carried out in a tertiary academic referral hospital. Patients suffering from CRLM who had undergone resection of at least one liver segment were included. Grading of SOS on the non-tumoral liver parenchyma was accomplished according to the Rubbia-Brandt criteria. A total of 151 patients were enrolled and divided into four groups according to the severity of SOS (grades 0-3). Multivariate analysis identified oxaliplatin and 5-fluorouracil as chemotherapeutic agents responsible for severe SOS lesions (P SOS lesions (P = 0.005). Univariate analysis identified the score on the aspartate aminotransferase : platelets ratio index (APRI) as the most significant biological factor predictive of severe SOS lesions. Splenomegaly is also significantly associated with the occurrence of severe SOS lesions. The APRI score and splenomegaly are effective as factors predictive of SOS. Bevacizumab has a protective effect against SOS. © 2013 International Hepato-Pancreato-Biliary Association.

  18. NOAA NOS SOS, EXPERIMENTAL - Currents

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have currents data. *These services are for testing and evaluation use...

  19. NOAA NOS SOS, EXPERIMENTAL - Wind

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have wind data. *These services are for testing and evaluation use only*...

  20. The meaning of ordered SOS

    NARCIS (Netherlands)

    Mousavi, M.R.; Phillips, I.C.C.; Reniers, M.A.; Ulidowski, I.; Arun-Kumar, S.; Garg, N.

    2006-01-01

    Structured Operational Semantics (SOS) is a popular method for defining semantics by means of deduction rules. An important feature of deduction rules, or simply SOS rules, are negative premises, which are crucial in the definitions of such phenomena as priority mechanisms and time-outs. Orderings

  1. NOAA NDBC SOS, 2006-present, sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  2. SNAP Operating System (SOS) user's guide

    International Nuclear Information System (INIS)

    Sabuda, J.D.; Polito, J.; Walker, J.L.; Grant, F.H. III.

    1982-03-01

    The SNAP Operating System (SOS) is a FORTRAN 77 program which provides assistance to the safeguards analyst who uses the Safeguards Automated Facility Evaluation (SAFE) and the Safeguards Network Analysis Procedure (SNAP) techniques. Features offered by SOS are a data base system for storing a library of SNAP applications, computer graphics representation of SNAP models, a computer graphics editor to develop and modify SNAP models, a SAFE-to-SNAP interface, automatic generation of SNAP input data, and a computer graphics postprocessor for SNAP. The SOS User's Guide is designed to provide the user with the information necessary to use SOS effectively. Examples are used throughout to illustrate the concepts. The format of the user's guide follows the same sequence as would be used in executing an actual application

  3. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    Science.gov (United States)

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  4. An orthosteric inhibitor of the RAS-SOS interaction.

    Science.gov (United States)

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling. © 2013 Elsevier Inc. All rights reserved.

  5. Prototyping SOS meta-theory in Maude

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Mosses, P.D.; Ulidowski, I.

    2006-01-01

    We present a prototype implementation of SOS meta-theory in the Maude term rewriting language. The prototype defines the basic concepts of SOS meta-theory (e.g., transition formulae, deduction rules and transition system specifications) in Maude. Besides the basic definitions, we implement methods

  6. Semantics and expressiveness of ordered SOS

    NARCIS (Netherlands)

    Mousavi, M.R.; Phillips, I.C.C.; Reniers, M.A.; Ulidowski, I.

    2009-01-01

    Structured Operational Semantics (SOS) is a popular method for defining semantics by means of transition rules. An important feature of SOS rules is negative premises, which are crucial in the definitions of such phenomena as priority mechanisms and time-outs. However, the inclusion of negative

  7. Absence of both Sos-1 and Sos-2 in peripheral CD4+ T cells leads to PI3K pathway activation and defects in migration

    Science.gov (United States)

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-01-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-Guanine Exchange Factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4+ T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4+ T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4+ T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. PMID:25973715

  8. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  9. The Salt Overly Sensitive (SOS) pathway: established and emerging roles.

    Science.gov (United States)

    Ji, Hongtao; Pardo, José M; Batelli, Giorgia; Van Oosten, Michael J; Bressan, Ray A; Li, Xia

    2013-03-01

    Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.

  10. Absence of both Sos-1 and Sos-2 in peripheral CD4(+) T cells leads to PI3K pathway activation and defects in migration.

    Science.gov (United States)

    Guittard, Geoffrey; Kortum, Robert L; Balagopalan, Lakshmi; Çuburu, Nicolas; Nguyen, Phan; Sommers, Connie L; Samelson, Lawrence E

    2015-08-01

    Sos-1 and Sos-2 are ubiquitously expressed Ras-guanine exchange factors involved in Erk-MAP kinase pathway activation. Using mice lacking genes encoding Sos-1 and Sos-2, we evaluated the role of these proteins in peripheral T-cell signaling and function. Our results confirmed that TCR-mediated Erk activation in peripheral CD4(+) T cells does not depend on Sos-1 and Sos-2, although IL-2-mediated Erk activation does. Unexpectedly, however, we show an increase in AKT phosphorylation in Sos-1/2dKO CD4(+) T cells upon TCR and IL-2 stimulation. Activation of AKT was likely a consequence of increased recruitment of PI3K to Grb2 upon TCR and/or IL-2 stimulation in Sos-1/2dKO CD4(+) T cells. The increased activity of the PI3K/AKT pathway led to downregulation of the surface receptor CD62L in Sos-1/2dKO T cells and a subsequent impairment in T-cell migration. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  11. Nominal SOS

    NARCIS (Netherlands)

    Cimini, M.; Mousavi, M.R.; Reniers, M.A.; Gabbay, M.J.

    2012-01-01

    Plotkin's style of Structural Operational Semantics (SOS) has become a de facto standard in giving operational semantics to formalisms and process calculi. In many such formalisms and calculi, the concepts of names, variables and binders are essential ingredients. In this paper, we propose a formal

  12. Inhibitors of Ras-SOS Interactions.

    Science.gov (United States)

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis

    OpenAIRE

    Quintero, Francisco J.; Ohta, Masaru; Shi, Huazhong; Zhu, Jian-Kang; Pardo, José M.

    2002-01-01

    The Arabidopsis thaliana SOS1 protein is a putative Na H antiporter that functions in Na extrusion and is essential for the NaCl tolerance of plants. sos1 mutant plants share phenotypic similarities with mutants lacking the protein kinase SOS2 and the Ca2 sensor SOS3. To investigate whether the three SOS proteins function in the same response pathway, we have reconstituted the SOS system in yeast cells. Expression of SOS1 improved the Na tolerance of yeast mutants la...

  14. Evelin Ilves avas SOS Lasteküla

    Index Scriptorium Estoniae

    2010-01-01

    SOS Lasteküla patroon proua Evelin Ilves avas 1. juunil 2010 Põltsamaal Eesti teise SOS Lasteküla. Presidendi abikaasa tõi kingiks õunapuuistikuid ja lasteraamatuid. Ilmunud ka: Eesti Päevaleht 2. juuni 2010, lk. 4

  15. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have salinity data. *These services are for testing and evaluation use...

  16. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Conductivity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have conductivity data. *These services are for testing and evaluation use...

  17. Bacterial SOS response: a food safety perspective

    NARCIS (Netherlands)

    Veen, van der S.; Abee, T.

    2011-01-01

    The SOS response is a conserved inducible pathway in bacteria that is involved in DNA repair and restart of stalled replication forks. Activation of the SOS response can result in stress resistance and mutagenesis. In food processing facilities and during food preservation, bacteria are exposed to

  18. SOS-projektet

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2007-01-01

    Artiklen beretter om og analyserer det såkaldte SOS-projekt, hvor matematiklærere fra grundskolen, gymnasiet og læreruddannelsen har samarbejdet med matematikdidaktiske forskere om at undersøge og afhjælpe nogle af de udfordringer som danske elever møder i matematik ved overgangen fra grundskole...

  19. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. CMOS/SOS processing

    Science.gov (United States)

    Ramondetta, P.

    1980-01-01

    Report describes processes used in making complementary - metal - oxide - semiconductor/silicon-on-sapphire (CMOS/SOS) integrated circuits. Report lists processing steps ranging from initial preparation of sapphire wafers to final mapping of "good" and "bad" circuits on a wafer.

  1. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Barometric Pressure

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have barometric pressure data. *These services are for testing and...

  2. Mathematical model of the SOS response regulation in wild-type Escherichia coli

    International Nuclear Information System (INIS)

    Aksenov, S.V.

    1997-01-01

    Regulation of the SOS response in Escherichia coli, which is a set of inducible cellular reactions introduced after DNA damage, is due to specific interaction of LexA and RecA proteins. LexA protein is a common repressor of the genes of the SOS system, and RecA protein, once transiently activated by the so-called SOS-inducing signal, promotes LexA protein destruction. We have described the SOS regulation by means of differential equations with regard to LexA and RecA concentrations elsewhere. The 'input' function for model equations is the level of the SOS-inducing signal against time. Here we present a means for calculating the concentration of single-stranded DNA (SOS-inducing signal) as a function of time in wild-type cells after ultraviolet irradiation. With model equations one can simulate kinetic curves of SOS regulatory proteins after DNA damage to survey the SOS response kinetics. Simulation of LexA protein kinetics agrees with experimental data. We compare simulated LexA kinetic curves in wild-type and uνr - mutant bacteria, which is useful in investigating the way uνrABC-dependent excision repair modulates the SOS response kinetics. Possible applications of the model to investigating various aspects of the SOS induction are discussed

  3. Quinolone Resistance Reversion by Targeting the SOS Response.

    Science.gov (United States)

    Recacha, E; Machuca, J; Díaz de Alba, P; Ramos-Güelfo, M; Docobo-Pérez, F; Rodriguez-Beltrán, J; Blázquez, J; Pascual, A; Rodríguez-Martínez, J M

    2017-10-10

    Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog 10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog 10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. IMPORTANCE The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this

  4. SOS, the formidable strategy of bacteria against aggressions.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-11-01

    The presence of an abnormal amount of single-stranded DNA in the bacterial cell constitutes a genotoxic alarm signal that induces the SOS response, a broad regulatory network found in most bacterial species to address DNA damage. The aim of this review was to point out that beyond being a repair process, SOS induction leads to a very strong but transient response to genotoxic stress, during which bacteria can rearrange and mutate their genome, induce several phenotypic changes through differential regulation of genes, and sometimes acquire characteristics that potentiate bacterial survival and adaptation to changing environments. We review here the causes and consequences of SOS induction, but also how this response can be modulated under various circumstances and how it is connected to the network of other important stress responses. In the first section, we review articles describing the induction of the SOS response at the molecular level. The second section discusses consequences of this induction in terms of DNA repair, changes in the genome and gene expression, and sharing of genomic information, with their effects on the bacteria's life and evolution. The third section is about the fine tuning of this response to fit with the bacteria's 'needs'. Finally, we discuss recent findings linking the SOS response to other stress responses. Under these perspectives, SOS can be perceived as a powerful bacterial strategy against aggressions. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Air Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have air temperature data. *These services are for testing and evaluation...

  6. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and evaluation...

  7. Theoretical model of the SOS effect

    Energy Technology Data Exchange (ETDEWEB)

    Darznek, S A; Mesyats, G A; Rukin, S N; Tsiranov, S N [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics

    1997-12-31

    Physical principles underlying the operation of semiconductor opening switches (SOS) are highlighted. The SOS effect occurs at a current density of up to 60 kA/cm{sup 2} in silicon p{sup +}-p-n-n{sup +} structures filled with residual electron-hole plasma. Using a theoretical model developed for plasma dynamic calculations, the mechanism by which current passes through the structure at the stage of high conduction and the processes that take place at the stage of current interruption were analyzed. The dynamics of the processes taking place in the structure was calculated with allowance for both diffusive and drift mechanisms of carrier transport. In addition, two recombination types, viz. recombination via impurities and impact Auger recombination, were included in the model. The effect of the structure on the pumping-circuit current and voltage was also taken into account. The real distribution of the doped impurity in the structure and the avalanche mechanism of carrier multiplication were considered. The results of calculations of a typical SOS are presented. The dynamics of the electron-hole plasma is analyzed. It is shown that the SOS effect represents a qualitatively new mechanism of current interruption in semiconductor structures. (author). 4 figs., 7 refs.

  8. The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Barrena, María José; Moreno-Pérez, Sandra; Angulo, Iván; Martínez-Ripoll, Martín; Albert, Armando, E-mail: xalbert@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas, Serrano 119, E-28006 Madrid (Spain)

    2007-07-01

    Recombinant SOS3 and SOS2 regulatory domain from A. thaliana have been coexpressed in E. coli, purified and crystallized by the hanging-drop vapour-diffusion method. An X-ray data set has been collected at 2.0 Å resolution. The salt-tolerance genes SOS3 (salt overly sensitive 3) and SOS2 (salt overly sensitive 2) regulatory domain of Arabidopsis thaliana were cloned into a polycistronic plasmid and the protein complex was expressed in Escherichia coli, allowing purification to homogeneity in three chromatographic steps. Crystals were grown using vapour-diffusion techniques. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 44.14, b = 57.39, c = 141.90 Å.

  9. NOAA NOS SOS, EXPERIMENTAL, 1853-present, Water Level

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water surface height above a reference datum. *These services are for...

  10. SNAP/SOS: a package for simulating and analyzing safeguards systems

    International Nuclear Information System (INIS)

    Grant, F.H. III; Polito, J.; Sabuda, J.

    1983-01-01

    The effective analysis of safeguards systems at nuclear facilities requires significant effort. The Safeguards Network Analysis Procedure (SNAP) and the SNAP Operating System (SOS) reduce that effort to a manageable level. SNAP provides a detailed analysis of site safeguards for tactical evaluation. SOS helps the analyst organize and manage the SNAP effort effectively. SOS provides a database for model storage, automatic model generation, and computer graphics. The SOS/SNAP combination is a working example of a simulation system including executive-level control, database system, and facilities for model creation, editing, and output analysis

  11. NOAA NDBC SOS, 2008-present, sea_floor_depth_below_sea_surface

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_floor_depth_below_sea_surface data. Because of the nature of SOS...

  12. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  13. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  14. SOS response and its regulation on the fluoroquinolone resistance.

    Science.gov (United States)

    Qin, Ting-Ting; Kang, Hai-Quan; Ma, Ping; Li, Peng-Peng; Huang, Lin-Yan; Gu, Bing

    2015-12-01

    Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.

  15. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Erik Hermann; Meseguer, José

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  16. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José

    2003-01-01

    Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution and verif......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  17. Quinolone Resistance Reversion by Targeting the SOS Response

    Directory of Open Access Journals (Sweden)

    E. Recacha

    2017-10-01

    Full Text Available Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs and dynamic (killing curves or flow cytometry methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs. Killing curve assays showed a clear disadvantage for survival (Δlog10 CFU per milliliter [CFU/ml] of 8 log units after 24 h, and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog10 CFU/g of 1.76 log units in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy.

  18. SOS - Der kaldes på Smartere Offentlig Styring

    DEFF Research Database (Denmark)

    Hjortdal, Henrik

    2017-01-01

    Smartere Offentlig Styring eller SOS. Det var temaet da over hundrede kommunale direktører drøftede offentlig ledelse med en lang række toneangivende danske forskere.......Smartere Offentlig Styring eller SOS. Det var temaet da over hundrede kommunale direktører drøftede offentlig ledelse med en lang række toneangivende danske forskere....

  19. Mutational specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1986-01-01

    In an approach to the isolation of mutants of E. coli unable to produce mutations by ultraviolet light, the author has found new umuC-mutants. Their properties could be explained by ''SOS hypothesis of Radman and Witkin'', which has now been justified by many investigators. Analysis of the umuC region of E. coli chromosome cloned in pSK 100 has led to the conclusion that two genes, umuD and umuC, having the capacity of mutation induction express in the same mechanism as that of SOS genes, which is known to be inhibited by LexA protein bonding to ''SOS box'' found at promotor region. Suppressor analysis for mutational specificity has revealed: (i) umuDC-independent mutagens, such as EMS and (oh) 4 Cy, induce selected base substitution alone; and (ii) umuDC-dependent mutagens, such as X-rays and gamma-rays, induce various types of base substitution simultaneously, although they have mutational specificity. In the umuDC-dependent processes of basechange mutagenesis, the spectra of base substitution were a mixture of base substitution reflecting the specific base damages induced by individual mutagens and nonspecific base substitution. In conclusion, base substitution plays the most important role in umuDC-dependent mutagenesis, although mutagenesis of umuDC proteins remains uncertain. (Namekawa, K.)

  20. Advances/applications of MAGIC and SOS

    Science.gov (United States)

    Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce

    1993-12-01

    MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.

  1. Thymineless death is inhibited by CsrA in Escherichia coli lacking the SOS response.

    Science.gov (United States)

    Hamilton, Holly M; Wilson, Ray; Blythe, Martin; Nehring, Ralf B; Fonville, Natalie C; Louis, Edward J; Rosenberg, Susan M

    2013-11-01

    Thymineless death (TLD) is the rapid loss of colony-forming ability in bacterial, yeast and human cells starved for thymine, and is the mechanism of action of common chemotherapeutic drugs. In Escherichia coli, significant loss of viability during TLD requires the SOS replication-stress/DNA-damage response, specifically its role in inducing the inhibitor of cell division, SulA. An independent RecQ- and RecJ-dependent TLD pathway accounts for a similarly large additional component of TLD, and a third SOS- and RecQ/J-independent TLD pathway has also been observed. Although two groups have implicated the SOS-response in TLD, an SOS-deficient mutant strain from an earlier study was found to be sensitive to thymine deprivation. We performed whole-genome resequencing on that SOS-deficient strain and find that, compared with the SOS-proficient control strain, it contains five mutations in addition to the SOS-blocking lexA(Ind(-)) mutation. One of the additional mutations, csrA, confers TLD sensitivity specifically in SOS-defective strains. We find that CsrA, a carbon storage regulator, reduces TLD in SOS- or SulA-defective cells, and that the increased TLD that occurs in csrA(-) SOS-defective cells is dependent on RecQ. We consider a hypothesis in which the modulation of nucleotide pools by CsrA might inhibit TLD specifically in SOS-deficient (SulA-deficient) cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Lastekaitsepäeval avati Põltsamaal SOS-peremajad / Raivo Feldmann

    Index Scriptorium Estoniae

    Feldmann, Raivo

    2010-01-01

    Eesti teise SOS Lasteküla ametlikul avamisel Põltsamaal 1. juunil 2010. a. osalesid ka Norra suursaadik Eestis Stein Vegard Hagen ja SOS Lasteküla patroon proua Evelin Ilves. Presidendi abikaasa kinkis igale perele pereõunapuu ja koos kirjastusega Varrak igale peremajale väikese koduraamatukogu

  3. Suppression of the E. coli SOS response by dNTP pool changes.

    Science.gov (United States)

    Maslowska, Katarzyna H; Makiela-Dzbenska, Karolina; Fijalkowska, Iwona J; Schaaper, Roel M

    2015-04-30

    The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30(+)-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. Factors limiting SOS expression in log-phase cells of Escherichia coli.

    Science.gov (United States)

    Massoni, Shawn C; Leeson, Michael C; Long, Jarukit Edward; Gemme, Kristin; Mui, Alice; Sandler, Steven J

    2012-10-01

    In Escherichia coli, RecA-single-stranded DNA (RecA-ssDNA) filaments catalyze DNA repair, recombination, and induction of the SOS response. It has been shown that, while many (15 to 25%) log-phase cells have RecA filaments, few (about 1%) are induced for SOS. It is hypothesized that RecA's ability to induce SOS expression in log-phase cells is repressed because of the potentially detrimental effects of SOS mutagenesis. To test this, mutations were sought to produce a population where the number of cells with SOS expression more closely equaled the number of RecA filaments. Here, it is shown that deleting radA (important for resolution of recombination structures) and increasing recA transcription 2- to 3-fold with a recAo1403 operator mutation act independently to minimally satisfy this condition. This allows 24% of mutant cells to have elevated levels of SOS expression, a percentage similar to that of cells with RecA-green fluorescent protein (RecA-GFP) foci. In an xthA (exonuclease III gene) mutant where there are 3-fold more RecA loading events, recX (a destabilizer of RecA filaments) must be additionally deleted to achieve a population of cells where the percentage having elevated SOS expression (91%) nearly equals the percentage with at least one RecA-GFP focus (83%). It is proposed that, in the xthA mutant, there are three independent mechanisms that repress SOS expression in log-phase cells. These are the rapid processing of RecA filaments by RadA, maintaining the concentration of RecA below a critical level, and the destabilizing of RecA filaments by RecX. Only the first two mechanisms operate independently in a wild-type cell.

  5. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    Science.gov (United States)

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  6. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Directory of Open Access Journals (Sweden)

    Sanchez-Alberola Neus

    2012-02-01

    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  7. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes.

    Science.gov (United States)

    Sanchez-Alberola, Neus; Campoy, Susana; Barbé, Jordi; Erill, Ivan

    2012-02-03

    The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the

  8. Construct Validity of the Societal Outreach Scale (SOS).

    Science.gov (United States)

    Fike, David S; Denton, Jason; Walk, Matt; Kish, Jennifer; Gorman, Ira

    2018-04-01

    The American Physical Therapy Association (APTA) has been working toward a vision of increasing professional focus on societal-level health. However, performance of social responsibility and related behaviors by physical therapists remain relatively poorly integrated into practice. Promoting a focus on societal outreach is necessary for all health care professionals to impact the health of their communities. The objective was to document the validity of the 14-item Societal Outreach Scale (SOS) for use with practicing physical therapists. This study used a cross-sectional survey. The SOS was transmitted via email to all therapists who were licensed and practicing in 10 states in the United States that were purposefully selected to assure a broad representation. A sample of 2612 usable responses was received. Factor analysis was applied to assess construct validity of the instrument. Of alternate models, a 3-factor model best demonstrated goodness of fit with the sample data according to conventional indices (standardized root mean squared residual = .03, comparative fit index .96, root mean square error of approximation = .06). The 3 factors measured by the SOS were labeled Societal-Level Health Advocacy, Community Engagement/Social Integration, and Political Engagement. Internal consistency reliability was 0.7 for all factors. The 3-factor SOS demonstrated acceptable validity and reliability. Though the sample included a broad representation of physical therapists, this was a single cross-sectional study. Additional confirmatory factor analysis, reliability testing, and word refinement of the tool are warranted. Given the construct validity and reliability of the 3-factor SOS, it is recommended for use as a validated instrument to measure physical therapists' performance of social responsibility and related behaviors.

  9. Bevacizumab exacerbates sinusoidal obstruction syndrome (SOS) in the animal model and increases MMP 9 production.

    Science.gov (United States)

    Jafari, Azin; Matthaei, Hanno; Wehner, Sven; Tonguc, Tolga; Kalff, Jörg C; Manekeller, Steffen

    2018-04-24

    Thanks to modern multimodal treatment the ouctome of patients with colorectal cancer has experienced significant improvements. As a downside, agent specific side effects have been observed such as sinusoidal obstruction syndrome (SOS) after oxaliplatin chemotherapy (OX). Bevazicumab targeting VEGF is nowadays comprehensively used in combination protocols with OX but its impact on hepatotoxicity is thus far elusive and focus of the present study. After MCT administration 67% of animals developed SOS. GOT serum concentration significantly increased in animals developing SOS ( p SOS. In contrast, animals receiving VEGF developed SOS merely in 40% while increasing the VEGF dose led to a further decrease in SOS development to 25%. MMP 9 concentration in animals developing SOS was significantly higher compared to controls ( p SOS paralleled by MMP 9 production. Therefore, OX-Bevacizumab combination therapies should be administered with caution, especially if liver parenchyma damage is apparent. Male Sprague-Dawley rats were gavaged Monocrotaline (MCT) to induce SOS. Recombinant VEGF or an Anti-VEGF antibody was administered to MCT-treated rats and the hepatotoxic effect monitored in defined time intervals. MMP 9 expression in the liver was measured by ELISA.

  10. A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars H.; Sørensen, Søren Johannes

    2006-01-01

    /mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS...

  11. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-04

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. Copyright © 2014, American Association for the Advancement of Science.

  12. Congruence for SOS with data

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Groote, J.F.

    2004-01-01

    Abstract While studying the specification of the operational semantics of different programming languages and formalisms, one can observe the following three facts. Firstly, Plotkin¿s style of Structured Operational Semantics (SOS) has become a standard in defining operational semantics. Secondly,

  13. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    Science.gov (United States)

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  14. Specificity in suppression of SOS expression by recA4162 and uvrD303.

    Science.gov (United States)

    Massoni, Shawn C; Sandler, Steven J

    2013-12-01

    Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Consequences of SOS1 deficiency: Intracellular physiology and transcription

    KAUST Repository

    Ha, OhDong

    2010-06-01

    As much as there is known about the function of the sodium/proton antiporter SOS1 in plants, recent studies point towards a more general role for this protein. The crucial involvement in salt stress protection is clearly one of its functions –confined to the N-terminus, but the modular structure of the protein includes a segment with several domains that are functionally not studied but comprise more than half of the protein’s length. Additional functions of the protein appear to be an influence on vesicle trafficking, vacuolar pH and general ion homeostasis during salt stress. Eliminating SOS1 leads to the expression of genes that are not strictly salinity stress related. Functions that are regulated in sos1 mutants included pathogen responses, and effects on circadian rhythm.

  16. Collection for SOS animaux

    CERN Multimedia

    2005-01-01

    The Pays de Gex animal shelter is collecting funds. There will be things to buy. You will be able to make a donation and/or become a member of the association or simply get information. SOS Animaux stall (Hall, Build. 60, next to restaurant 1) On Wednesday 23 November 2005 (from 9h - 17h non-stop)

  17. The SOS Suicide Prevention Program: Further Evidence of Efficacy and Effectiveness.

    Science.gov (United States)

    Schilling, Elizabeth A; Aseltine, Robert H; James, Amy

    2016-02-01

    This study replicated and extended previous evaluations of the Signs of Suicide (SOS) prevention program in a high school population using a more rigorous pre-test post-test randomized control design than used in previous SOS evaluations in high schools (Aseltine and DeMartino 2004; Aseltine et al. 2007). SOS was presented to an ethnically diverse group of ninth grade students in technical high schools in Connecticut. After controlling for the pre-test reports of suicide behaviors, exposure to the SOS program was associated with significantly fewer self-reported suicide attempts in the 3 months following the program. Ninth grade students in the intervention group were approximately 64% less likely to report a suicide attempt in the past 3 months compared with students in the control group. Similarly, exposure to the SOS program resulted in greater knowledge of depression and suicide and more favorable attitudes toward (1) intervening with friends who may be exhibiting signs of suicidal intent and (2) getting help for themselves if they were depressed or suicidal. In addition, high-risk SOS participants, defined as those with a lifetime history of suicide attempt, were significantly less likely to report planning a suicide in the 3 months following the program compared to lower-risk participants. Differential attrition is the most serious limitation of the study; participants in the intervention group who reported a suicide attempt in the previous 3 months at baseline were more likely to be missing at post-test than their counterparts in the control group.

  18. Differential requirements of two recA mutants for constitutive SOS expression in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Jarukit Edward Long

    Full Text Available Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recA(C in the absence of external DNA damage in log phase cells.Genetic analysis of two recA(C mutants was used to determine the mechanism of constitutive SOS (SOS(C expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp. SOS(C expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOS(C expression in recA730 mutants was affected by none of the mutations or conditions tested above.It is concluded that not all recA(C alleles cause SOS(C expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOS(C expression by binding to ssDNA in a mechanism yet to be determined.

  19. Characterization of the SOS meta-regulon in the human gut microbiome.

    Science.gov (United States)

    Cornish, Joseph P; Sanchez-Alberola, Neus; O'Neill, Patrick K; O'Keefe, Ronald; Gheba, Jameel; Erill, Ivan

    2014-05-01

    Data from metagenomics projects remain largely untapped for the analysis of transcriptional regulatory networks. Here, we provide proof-of-concept that metagenomic data can be effectively leveraged to analyze regulatory networks by characterizing the SOS meta-regulon in the human gut microbiome. We combine well-established in silico and in vitro techniques to mine the human gut microbiome data and determine the relative composition of the SOS network in a natural setting. Our analysis highlights the importance of translesion synthesis as a primary function of the SOS response. We predict the association of this network with three novel protein clusters involved in cell wall biogenesis, chromosome partitioning and restriction modification, and we confirm binding of the SOS response transcriptional repressor to sites in the promoter of a cell wall biogenesis enzyme, a phage integrase and a death-on-curing protein. We discuss the implications of these findings and the potential for this approach for metagenome analysis.

  20. CMOS/SOS 4k Rams hardened to 100 Krads (s:)

    International Nuclear Information System (INIS)

    Napoli, L.S.; Heagerty, W.F.; Smeltzer, R.K.; Yeh, J.L.

    1982-01-01

    Two CMOS/SOS 4K memories were fabricated with a recently developed, hardened SOS process. Memory functionality after radiation doses well in excess of 100 Krads(Si) was demonstrated. The critical device processing steps were identified. The radiationinduced failure mode of the memories is understood in terms of the circuit organization and the radiation behavior of the individual transistors in the memories

  1. Sinusoidal obstruction syndrome (SOS): A light and electron microscopy study in human liver.

    Science.gov (United States)

    Vreuls, C P H; Driessen, A; Olde Damink, S W M; Koek, G H; Duimel, H; van den Broek, M A J; Dejong, C H C; Braet, F; Wisse, E

    2016-05-01

    Oxaliplatin is an important chemotherapeutic agent, used in the treatment of hepatic colorectal metastases, and known to induce the sinusoidal obstruction syndrome (SOS). Pathophysiological knowledge concerning SOS is based on a rat model. Therefore, the aim was to perform a comprehensive study of the features of human SOS, using both light microscopy (LM) and electron microscopy (EM). Included were all patients of whom wedge liver biopsies were collected during a partial hepatectomy for colorectal liver metastases, in a 4-year period. The wedge biopsy were perfusion fixated and processed for LM and EM. The SOS lesions were selected by LM and details were studied using EM. Material was available of 30 patients, of whom 28 patients received neo-adjuvant oxaliplatin. Eighteen (64%) of the 28 patients showed SOS lesions, based on microscopy. The lesions consisted of sinusoidal endothelial cell detachment from the space of Disse on EM. In the enlarged space of Disse a variable amount of erythrocytes were located. Sinusoidal endothelial cell detachment was present in human SOS, accompanied by enlargement of the space of Disse and erythrocytes in this area. These findings, originally described in a rat model, were now for the first time confirmed in human livers under clinically relevant settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    Science.gov (United States)

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Influence of the gene xthA in the activation of SOS response of Escherichia coli; Influencia del gen xthA en la activacion de la respuesta SOS de Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez M, V.

    2013-07-01

    The SOS response is one of the strategies that has Escherichia coli to counteract the lesions in the genetic material. The response is integrated for approximately 60 genes that when are activated they provide to the cell a bigger opportunity to survive. For the activation of this system is necessary that DNA regions of simple chain are generated, in such a way that most of the lesions should be processed, to be able to induce this answer. Some genes that intervene in this procedure, as recO, recB and recJ are recognized since when being exposed to the radiation, their activity SOS is smaller than in a wild strain. In previous works has been studied that to inactivate the genes that are involves in the lesions processing to generate DNA of simple chain, the SOS induction level diminishes with regard to a wild strain, but that when eliminating the genes that are involves directly in the repair, the SOS response increases. In this work a strain with defects in the gene xthA was built, which encodes for an endonuclease AP that participates in the repair mechanism by base excision and was evaluated their sensibility as the activity of the SOS response when exposing it to UV light and gamma radiation. The results showed that the lethality of the strain with the defect is very similar to the wild strain; while the activation level of the SOS response is bigger in comparison with the wild strain when being exposed to UV light; suggesting the existence of an enzyme that recognizes the lesions that produces this radiation, however, is not this the main repair channel, since the survival is similar to that of the wild strain. On the contrary, the results obtained with gamma radiation showed that the lethality diminishes in comparison to that of the wild strain, like the SOS activity; due surely to that the gene product intervenes in the repair for base excision, participating in the formation of the previous substrate to the activation of the SOS response. (Author)

  4. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains.

    Science.gov (United States)

    Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi

    2016-01-01

    Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.

  5. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.).

    Science.gov (United States)

    Maughan, P J; Turner, T B; Coleman, C E; Elzinga, D B; Jellen, E N; Morales, J A; Udall, J A; Fairbanks, D J; Bonifacio, A

    2009-07-01

    Salt tolerance is an agronomically important trait that affects plant species around the globe. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in germination and growth of plants in saline environments. Quinoa (Chenopodium quinoa Willd.) is a halophytic, allotetraploid grain crop of the family Amaranthaceae with impressive nutritional content and an increasing worldwide market. Many quinoa varieties have considerable salt tolerance, and research suggests quinoa may utilize novel mechanisms to confer salt tolerance. Here we report the cloning and characterization of two homoeologous SOS1 loci (cqSOS1A and cqSOS1B) from C. quinoa, including full-length cDNA sequences, genomic sequences, relative expression levels, fluorescent in situ hybridization (FISH) analysis, and a phylogenetic analysis of SOS1 genes from 13 plant taxa. The cqSOS1A and cqSOS1B genes each span 23 exons spread over 3477 bp and 3486 bp of coding sequence, respectively. These sequences share a high level of similarity with SOS1 homologs of other species and contain two conserved domains, a Nhap cation-antiporter domain and a cyclic-nucleotide binding domain. Genomic sequence analysis of two BAC clones (98 357 bp and 132 770 bp) containing the homoeologous SOS1 genes suggests possible conservation of synteny across the C. quinoa sub-genomes. This report represents the first molecular characterization of salt-tolerance genes in a halophytic species in the Amaranthaceae as well as the first comparative analysis of coding and non-coding DNA sequences of the two homoeologous genomes of C. quinoa.

  6. SoS Notebook: An Interactive Multi-Language Data Analysis Environment.

    Science.gov (United States)

    Peng, Bo; Wang, Gao; Ma, Jun; Leong, Man Chong; Wakefield, Chris; Melott, James; Chiu, Yulun; Du, Di; Weinstein, John N

    2018-05-22

    Complex bioinformatic data analysis workflows involving multiple scripts in different languages can be difficult to consolidate, share, and reproduce. An environment that streamlines the entire processes of data collection, analysis, visualization and reporting of such multi-language analyses is currently lacking. We developed Script of Scripts (SoS) Notebook, a web-based notebook environment that allows the use of multiple scripting language in a single notebook, with data flowing freely within and across languages. SoS Notebook enables researchers to perform sophisticated bioinformatic analysis using the most suitable tools for different parts of the workflow, without the limitations of a particular language or complications of cross-language communications. SoS Notebook is hosted at http://vatlab.github.io/SoS/ and is distributed under a BSD license. bpeng@mdanderson.org.

  7. Effect of radiation doses rate on SOS response induction in irradiated Escherichia coli Cells

    International Nuclear Information System (INIS)

    Cuetara Lugo, Elizabeth B.; Fuentes Lorenzo, Jorge L.; Almeida Varela, Eliseo; Prieto Miranda, Enrique F.; Sanchez Lamar, Angel; Llagostera Casal, Montserrat

    2005-01-01

    The present work is aimed to study the effect of radiation dose rate on the induction of SOS response in Escherichia coli cells. We measured the induction of sul A reporter gene in PQ-37 (SOS Chromotest) cells. Lead devises were built with different diameter and these were used for diminishing the dose rate of PX- -30M irradiator. Our results show that radiation doses rate significantly modifies the induction of SOS response. Induction factor increases proportionally to doses rate in Escherichia coli cells defective to nucleotide excision repair (uvrA), but not in wild type cells. We conclude that the dose rate affects the level of induction of SOS response

  8. SOS response activation and competence development are antagonistic mechanisms in Streptococcus thermophilus.

    Science.gov (United States)

    Boutry, Céline; Delplace, Brigitte; Clippe, André; Fontaine, Laetitia; Hols, Pascal

    2013-02-01

    Streptococcus includes species that either contain or lack the LexA-like repressor (HdiR) of the classical SOS response. In Streptococcus pneumoniae, a species which belongs to the latter group, SOS response inducers (e.g., mitomycin C [Mc] and fluoroquinolones) were shown to induce natural transformation, leading to the hypothesis that DNA damage-induced competence could contribute to genomic plasticity and stress resistance. Using reporter strains and microarray experiments, we investigated the impact of the SOS response inducers mitomycin C and norfloxacin and the role of HdiR on competence development in Streptococcus thermophilus. We show that both the addition of SOS response inducers and HdiR inactivation have a dual effect, i.e., induction of the expression of SOS genes and reduction of transformability. Reduction of transformability results from two different mechanisms, since HdiR inactivation has no major effect on the expression of competence (com) genes, while mitomycin C downregulates the expression of early and late com genes in a dose-dependent manner. The downregulation of com genes by mitomycin C was shown to take place at the level of the activation of the ComRS signaling system by an unknown mechanism. Conversely, we show that a ComX-deficient strain is more resistant to mitomycin C and norfloxacin in a viability plate assay, which indicates that competence development negatively affects the resistance of S. thermophilus to DNA-damaging agents. Altogether, our results strongly suggest that SOS response activation and competence development are antagonistic processes in S. thermophilus.

  9. Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response.

    Science.gov (United States)

    Mori, Tetsuya; Nakamura, Tatsuro; Okazaki, Naoto; Furukohri, Asako; Maki, Hisaji; Akiyama, Masahiro Tatsumi

    2012-01-01

    The SOS response is readily triggered by replication fork stalling caused by DNA damage or a dysfunctional replicative apparatus in Escherichia coli cells. E. coli dinB encodes DinB DNA polymerase and its expression is upregulated during the SOS response. DinB catalyzes translesion DNA synthesis in place of a replicative DNA polymerase III that is stalled at a DNA lesion. We showed previously that DNA replication was suppressed without exogenous DNA damage in cells overproducing DinB. In this report, we confirm that this was due to a dose-dependent inhibition of ongoing replication forks by DinB. Interestingly, the DinB-overproducing cells did not significantly induce the SOS response even though DNA replication was perturbed. RecA protein is activated by forming a nucleoprotein filament with single-stranded DNA, which leads to the onset of the SOS response. In the DinB-overproducing cells, RecA was not activated to induce the SOS response. However, the SOS response was observed after heat-inducible activation in strain recA441 (encoding a temperature-sensitive RecA) and after replication blockage in strain dnaE486 (encoding a temperature-sensitive catalytic subunit of the replicative DNA polymerase III) at a non-permissive temperature when DinB was overproduced in these cells. Furthermore, since catalytically inactive DinB could avoid the SOS response to a DinB-promoted fork block, it is unlikely that overproduced DinB takes control of primer extension and thus limits single-stranded DNA. These observations suggest that DinB possesses a feature that suppresses DNA replication but does not abolish the cell's capacity to induce the SOS response. We conclude that DinB impedes replication fork progression in a way that does not activate RecA, in contrast to obstructive DNA lesions and dysfunctional replication machinery.

  10. A syntactic commutativity format for SOS

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Groote, J.F.

    2005-01-01

    Considering operators defined using Structural Operational Semantics (SOS), commutativity axioms are intuitive properties that hold for many of them. Proving this intuition is usually a laborious task, requiring several pages of boring and standard proof. To save this effort, we propose a syntactic

  11. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage.

    Science.gov (United States)

    Kubiak, Jeffrey M; Culyba, Matthew J; Liu, Monica Yun; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2017-11-17

    The bacterial SOS stress-response pathway is a pro-mutagenic DNA repair system that mediates bacterial survival and adaptation to genotoxic stressors, including antibiotics and UV light. The SOS pathway is composed of a network of genes under the control of the transcriptional repressor, LexA. Activation of the pathway involves linked but distinct events: an initial DNA damage event leads to activation of RecA, which promotes autoproteolysis of LexA, abrogating its repressor function and leading to induction of the SOS gene network. These linked events can each independently contribute to DNA repair and mutagenesis, making it difficult to separate the contributions of the different events to observed phenotypes. We therefore devised a novel synthetic circuit to unlink these events and permit induction of the SOS gene network in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic SOS circuit demonstrate small-molecule inducible expression of SOS genes as well as the associated resistance to UV light. Exploiting our ability to activate SOS genes independently of upstream events, we further demonstrate that the majority of SOS-mediated mutagenesis on the chromosome does not readily occur with orthogonal pathway induction alone, but instead requires DNA damage. More generally, our approach provides an exemplar for using synthetic circuit design to separate an environmental stressor from its associated stress-response pathway.

  12. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen; Yadav, KamleshK.; Fodale, Valentina; Sarkozy, Anna; Pandit, Bhaswati; Oishi, Kimihiko; Martinelli, Simone; Schackwitz, Wendy; Ustaszewska, Anna; Martin, Joes; Bristow, James; Carta, Claudio; Lepri, Francesca; Neri, Cinzia; Vasta,Isabella; Gibson, Kate; Curry, Cynthia J.; Lopez Siguero, Juan Pedro; Digilio, Maria Cristina; Zampino, Giuseppe; Dallapiccola, Bruno; Bar-Sagi, Dafna; Gelb, Brude D.

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalities but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.

  13. SOS hotline for women victims of discrimination at the workplace

    OpenAIRE

    Dobrosavljević-Grujić Ljiljana S.

    2004-01-01

    SOS hotline for women victims of discrimination at the workplace offers free legal assistance to women, whenever their labor rights are endangered. If the dispute cannot be resolved peacefully by mediation between employer and employees, female lawyer skilled for the labor law starts up judicial proceedings. Some characteristic cases of discrimination of women from the practice of SOS telephone, such as dismissal from the work, physical violence and sexual blackmail, are presented in the paper.

  14. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain

    KAUST Repository

    Quintero, Francisco J.; Martí nez-Atienza, Juliana; Villalta, Irene; Jiang, Xingyu; Kim, Woeyeon; Ali, Zhair; Fujii, Hiroaki; Mendoza, Imelda; Yun, Daejin; Zhu, Jian-Kang; Pardo, José Manuel

    2011-01-01

    The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex upregulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.

  15. Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain

    KAUST Repository

    Quintero, Francisco J.

    2011-01-24

    The plasma membrane sodium/proton exchanger Salt-Overly-Sensitive 1 (SOS1) is a critical salt tolerance determinant in plants. The SOS2-SOS3 calcium-dependent protein kinase complex upregulates SOS1 activity, but the mechanistic details of this crucial event remain unresolved. Here we show that SOS1 is maintained in a resting state by a C-terminal auto-inhibitory domain that is the target of SOS2-SOS3. The auto-inhibitory domain interacts intramolecularly with an adjacent domain of SOS1 that is essential for activity. SOS1 is relieved from auto-inhibition upon phosphorylation of the auto-inhibitory domain by SOS2-SOS3. Mutation of the SOS2 phosphorylation and recognition site impeded the activation of SOS1 in vivo and in vitro. Additional amino acid residues critically important for SOS1 activity and regulation were identified in a genetic screen for hypermorphic alleles.

  16. Design rules for RCA self-aligned silicon-gate CMOS/SOS process

    Science.gov (United States)

    1977-01-01

    The CMOS/SOS design rules prepared by the RCA Solid State Technology Center (SSTC) are described. These rules specify the spacing and width requirements for each of the six design levels, the seventh level being used to define openings in the passivation level. An associated report, entitled Silicon-Gate CMOS/SOS Processing, provides further insight into the usage of these rules.

  17. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome.

    Science.gov (United States)

    Yamamoto, Guilherme Lopes; Aguena, Meire; Gos, Monika; Hung, Christina; Pilch, Jacek; Fahiminiya, Somayyeh; Abramowicz, Anna; Cristian, Ingrid; Buscarilli, Michelle; Naslavsky, Michel Satya; Malaquias, Alexsandra C; Zatz, Mayana; Bodamer, Olaf; Majewski, Jacek; Jorge, Alexander A L; Pereira, Alexandre C; Kim, Chong Ae; Passos-Bueno, Maria Rita; Bertola, Débora Romeo

    2015-06-01

    Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. SOS reaction kinetics of bacterial cells induced by ultraviolet radiation and α particles

    International Nuclear Information System (INIS)

    Bonev, M.; Kolev, S.

    2000-01-01

    It is the purpose of the work to apply the SOS lux test for detecting α particles, as well as to study the SOS system kinetics. Two strains with plasmid pPLS-1 are used: wild type C600 lux and its isogen lysogen with α prophage one. Irradiation is done on dacron nuclear filters. The source of α particles is Am 241 with power 5 Gy/min, and the ultraviolet source - a lamp emitting rays with wave length 254 nm. The light yield is measured by installations made up of scintilometer VA-S-968, High-voltage electric power, and one channel analyzer Strahlugsmessgerat 20046. The SOS lux text is based on the recombinant plasmid pPLS-1 which is a derivative of pBR322 where the lux gene is set under the control of an SOS promoter. E coly recA + strains containing the construction produce considerable amount of photons in the visible zone following treatment with agents damaging the DNA of cells. The kinetic curves of SOS response are obtained after irradiation with α particles and UV rays. DNA damaging agents cause an increase in the initial SOS response rate in the range od smaller doses, and a decrease reaching to block of the one in the high doses range. The light yield of lysogenic cells is lower. As compared to nonelysogene ones. DNA damage caused by α particles are more difficult to repair as compared to pyrimidine dimers. (author)

  19. A hierarchy of SOS rule formats

    NARCIS (Netherlands)

    Groote, J.F.; Mousavi, M.R.; Reniers, M.A.; Mosses, P.D.; Ulidowski, I.

    2006-01-01

    In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way to define operational semantics of programming languages by a set of rules of a certain shape [G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, Computer Science Department,

  20. Hydrothermal Carbonization of Spent Osmotic Solution (SOS Generated from Osmotic Dehydration of Blueberries

    Directory of Open Access Journals (Sweden)

    Kaushlendra Singh

    2014-09-01

    Full Text Available Hydrothermal carbonization of spent osmotic solution (SOS, a waste generated from osmotic dehydration of fruits, has the potential of transformation into hydrochars, a value-added product, while reducing cost and overall greenhouse gas emissions associated with waste disposal. Osmotic solution (OS and spent osmotic solution (SOS generated from the osmotic dehydration of blueberries were compared for their thermo-chemical decomposition behavior and hydrothermal carbonization. OS and SOS samples were characterized for total solids, elemental composition, and thermo-gravimetric analysis (TGA. In addition, hydrothermal carbonization was performed at 250 °C and for 30 min to produce hydrochars. The hydrochars were characterized for elemental composition, Brunauer-Emmett-Teller (BET surface area, particle shape and surface morphology. TGA results show that the SOS sample loses more weight in the lower temperature range than the OS sample. Both samples produced, approximately, 40%–42% (wet-feed basis hydrochar during hydrothermal carbonization but with different properties. The OS sample produced hydrochar, which had spherical particles of 1.79 ± 1.30 μm diameter with a very smooth surface. In contrast, the SOS sample produced hydrochar with no definite particle shape but with a raspberry-like surface.

  1. SOS hotline for women victims of discrimination at the workplace

    Directory of Open Access Journals (Sweden)

    Dobrosavljević-Grujić Ljiljana S.

    2004-01-01

    Full Text Available SOS hotline for women victims of discrimination at the workplace offers free legal assistance to women, whenever their labor rights are endangered. If the dispute cannot be resolved peacefully by mediation between employer and employees, female lawyer skilled for the labor law starts up judicial proceedings. Some characteristic cases of discrimination of women from the practice of SOS telephone, such as dismissal from the work, physical violence and sexual blackmail, are presented in the paper.

  2. Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation.

    Science.gov (United States)

    Krin, Evelyne; Pierlé, Sebastian Aguilar; Sismeiro, Odile; Jagla, Bernd; Dillies, Marie-Agnès; Varet, Hugo; Irazoki, Oihane; Campoy, Susana; Rouy, Zoé; Cruveiller, Stéphane; Médigue, Claudine; Coppée, Jean-Yves; Mazel, Didier

    2018-05-21

    The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is

  3. Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership.

    Science.gov (United States)

    Mo, Charlie Y; Culyba, Matthew J; Selwood, Trevor; Kubiak, Jeffrey M; Hostetler, Zachary M; Jurewicz, Anthony J; Keller, Paul M; Pope, Andrew J; Quinn, Amy; Schneck, Jessica; Widdowson, Katherine L; Kohli, Rahul M

    2018-03-09

    The RecA/LexA axis of the bacterial DNA damage (SOS) response is a promising, yet nontraditional, drug target. The SOS response is initiated upon genotoxic stress, when RecA, a DNA damage sensor, induces LexA, the SOS repressor, to undergo autoproteolysis, thereby derepressing downstream genes that can mediate DNA repair and accelerate mutagenesis. As genetic inhibition of the SOS response sensitizes bacteria to DNA damaging antibiotics and decreases acquired resistance, inhibitors of the RecA/LexA axis could potentiate our current antibiotic arsenal. Compounds targeting RecA, which has many mammalian homologues, have been reported; however, small-molecules targeting LexA autoproteolysis, a reaction unique to the prokaryotic SOS response, have remained elusive. Here, we describe the logistics and accomplishments of an academic-industry partnership formed to pursue inhibitors against the RecA/LexA axis. A novel fluorescence polarization assay reporting on RecA-induced self-cleavage of LexA enabled the screening of 1.8 million compounds. Follow-up studies on select leads show distinct activity patterns in orthogonal assays, including several with activity in cell-based assays reporting on SOS activation. Mechanistic assays demonstrate that we have identified first-in-class small molecules that specifically target the LexA autoproteolysis step in SOS activation. Our efforts establish a realistic example for navigating academic-industry partnerships in pursuit of anti-infective drugs and offer starting points for dedicated lead optimization of SOS inhibitors that could act as adjuvants for current antibiotics.

  4. and in anticancer therapy

    Directory of Open Access Journals (Sweden)

    Monika Toma

    2014-09-01

    Full Text Available Nowadays, cancer and anticancer therapy are increasingly mentioned topics. Groups of researchers keep looking for a tool that will specifically and efficiently eliminate abnormal cells without any harm for the normal ones. Such method entails the reduction of therapy’s side effects, thus also improving patient’s recovery. Discovery of synthetic lethality has become a new hope to create effective, personalized therapy of cancer. Researchers noted that pairs of simultaneously mutated genes can lead to cell death, whereas each gene from that pair mutated individually does not result in cell lethality. Cancer cells accumulate numerous changes in their genetic material. By defining the pairs of genes interacting in cell pathways we are able to identify a potential anticancer therapy. It is believed that such a process has evolved to create cell resistance for a single gene mutation. Proper functioning of a pathway is not dependent on a single gene. Such a solution, however, also led to the evolution of multifactorial diseases such as cancer. Research techniques using iRNA, shRNA or small molecule libraries allow us to find genes that are connected in synthetic lethality interactions. Synthetic lethality may be applied not only as an anticancer therapy but also as a tool for identifying the functions of recently recognized genes. In addition, studying synthetic lethality broadens our understanding of the molecular mechanisms governing cancer cells, which should be helpful in designing highly effective personalized cancer therapies.

  5. [Expressions of Ras and Sos1 in epithelial ovarian cancer tissues and their clinical significance].

    Science.gov (United States)

    Xiao, Zheng-Hua; Linghu, Hua; Liu, Qian-Fen

    2016-11-20

    To detect the expressions of Ras and Sos1 proteins in human epithelial ovarian cancer (EOC) tissues and explore their correlation with the clinicopathological features of the patients. The expressions of Ras and Sos1 proteins were detected immunohistochemically in 62 EOC tissues, 5 borderline ovarian cancer tissues, 15 benign epithelial ovarian neoplasm tissues, and 18 normal ovarian tissues. The EOC tissues showed significantly higher expression levels of both Ras and Sos1 than the other tissues tested (Ptissues, Ras and Sos1 proteins were expressed mostly on the cell membrane and in the cytoplasm. The expression level of Ras was correlated with pathological types of the tumor (Ptissue-specific variation of Ras expression can lend support to a specific diagnosis of ovarian serous adenocarcinoma. The association of Ras and Sos1 protein expression with the tumor-free survival time of the patients awaits further investigation with a larger sample size.

  6. Genetic analysis of the SOS response of Escherichia coli

    International Nuclear Information System (INIS)

    Mount, D.W.; Wertman, K.F.; Ennis, D.G.; Peterson, K.R.; Fisher, B.L.; Lyons, G.

    1983-01-01

    In the SOS response, a large number of E. coli genes having different functions are derepressed when the cellular DNA is damaged. This derepression occurs through inactivation of a repressor, the product of the lexA gene, by a protease activity of the recA gene product. The protease is thought to be activated in response to changes in DNA metabolism which follow the damage. After the SOS functions have acted, the protease activity declines and repression is again established. Because the DNA sequence of both lexA and recA have been determined, it is possible to induce many mutations in their regulatory and structural regions in order to analyze further the control of the SOS response. We are studying the effects of mutations in both the lexA and recA regulatory regions, and mutations which affect the protease activity or the sensitivity of repressor to the protease. Finally, we are using genetic methods to analyze a newly identified requirement for recA protein, induced mutagenesis in cells lacking repressor. 16 references, 3 figures

  7. Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis

    International Nuclear Information System (INIS)

    Radman, M.

    1974-01-01

    A hypothesis is proposed according to which E. coli possesses an inducible DNA repair system. This hypothetical repair, which we call SOS repair, is manifested only following damage to DNA, and requires de novo protein synthesis. SOS repair in E. coli requires some known genetic elements: recA + , lex + and probably zab + . Mutagenesis by ultraviolet light is observed only under conditions of functional SOS repair: we therefore suspect that this is a mutation-prone repair. A number of phenomena and experiments is reviewed which at this point can best be interpreted in terms of an inducible mutagenic DNA repair system. Two recently discovered phenomena support the proposed hypothesis: existence of a mutant (tif) which, after a shift to elevated temperature, mimicks the effect of uv irradiation in regard to repair of phage lambda and uv mutagenesis, apparent activation of SOS repair by introduction into the recipient cell of damaged plasmid or Hfr DNA. Several specific predictions based on SOS repair hypothesis are presented in order to stimulate further experimental tests. (U.S.)

  8. Genetic characterization of the inducible SOS-like system of Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Love, P.E.; Yasbin, R.E.

    1984-12-01

    The SOS-like system of Bacillus subtilis consists of several coordinately induced phenomena which are expressed after cellular insult such as DNA damage of inhibition of DNA replication. Mutagenesis of the bacterial chromosomes and the development of maintenance of competence also appear to be involved in the SOS-like response in this bacterium. The genetic characterization of the SOS-like system has involved an analysis of (i) the effects of various DNA repair mutations on the expression of inducible phenomena and (ii) the tsi-23 mutation, which renders host strains thermally inducible for each of the SOS-like functions. Bacterial filamentation was unaffected by any of the DNA repair mutations studied. In contrast, the induction of prophage after thermal or UV pretreatment was abolished in strains carrying the recE4, recA1, recB2, or recG13 mutation. The Weigle reactivation of UV-damaged bacteriophage was also inhibited by the recE4, recA1, recB2, or recG13 mutation, whereas levels of Weigle reactivation were lower in strains which carried the uvrA42, polA5, or rec-961 mutation than in the DNA repair-proficient strain. Strains which carried the recE4 mutation were incapable of chromosomal DNA-mediated transformation, and the frequency of this event was decreased in strains carrying recA1, recB2, or tsi-23 mutation. Plasmid DNA transformation efficiency was decreased only in strains carrying the tsi-23 mutation in addition to the recE4, recA1, or recB2 mutation. The results indicate that the SOS-like system of B. subtilis is regulated at different levels by two or more gene products. In this report, the current data regarding the genetic regulation of inducible phenomena are summarized, and a model is proposed to explain the mechanism of SOS-like induction in B. subtillis. 50 references, 3 figures, 6 tables.

  9. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    Science.gov (United States)

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  10. Paraísos fiscales en la globalización financiera

    Directory of Open Access Journals (Sweden)

    Alberto Garzón Espinosa

    2011-10-01

    Full Text Available Los paraísos fiscales son espacios financieros caracterizados ante todo por su baja o nula tributación. En este artículo examinaremos con detalle el uso de los mismos por parte de los agentes económicos, centrándonos especialmente en los bancos y los fondos de inversión colectiva. No obstante, como elementos clave de un nuevo contexto financiero los paraísos fiscales han tenido un papel fundamental en la gestación y expansión de todas las crisis financieras recientes, razón por la cual también estudiaremos las consecuencias que la existencia misma de los paraísos fiscales tiene sobre la economía y el sistema financiero.Palabras clave: Paraísos fiscales, globalización financiera, neoliberalismo_______________Abstract:The tax haven are financial spaces which it characterize for its shorts taxations. In this article we will analyze the use of that by the economic agent, specially the banks and the funds of collective investment. However, like key elements of the new financial context, the tax haven was been a leading role in gestation and expansion of all financial crisis of our days. For that, we will study the consequences of this fact in the economy and financial system.Keywords: tax haven, financial globalization, neoliberalism.

  11. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    Science.gov (United States)

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-04

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  12. Validation of the Chinese Version of the Sense of Self (SOS) Scale

    Science.gov (United States)

    King, Ronnel B.; Ganotice, Fraide A., Jr.; Watkins, David A.

    2012-01-01

    This study explored the cross-cultural applicability of the Sense of Self (SOS) Scale in the Hong Kong Chinese cultural context. The SOS Scale is a 26-item questionnaire designed to measure students' sense of purpose, self-reliance, and self-concept in school. Six hundred ninety-seven Hong Kong Chinese high school students participated in the…

  13. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system.

    Science.gov (United States)

    Guthrie, O'neil W

    2017-10-01

    In response to DNA damage from ultraviolet (UV) radiation, bacteria deploy the SOS response in order to limit cell death. This bacterial SOS response is characterized by an increase in the recA gene that transactivates expression of multiple DNA repair genes. The current series of experiments demonstrate that a mammalian organ system (the cochlea) that is not evolutionarily conditioned to UV radiation can elicit SOS responses that are reminiscent of that of bacteria. This mammalian SOS response is characterized by an increase in the p53 gene with activation of multiple DNA repair genes that harbor p53 response elements in their promoters. Furthermore, the experimental results provide support for the notion of a convergent trigger paradox, where independent SOS triggers facilitate disparate physiologic sequelae (loss vs. recovery of function). Therefore, it is proposed that the mammalian SOS response is multifunctional and manipulation of this endogenous response could be exploited in future biomedical interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis

    NARCIS (Netherlands)

    Varhimo, Emilia; Savijoki, Kirsi; Jalava, Jari; Kuipers, Oscar P.; Varmanen, Pekka

    Streptococci have been considered to lack the classical SOS response, defined by increased mutation after UV exposure and regulation by LexA. Here we report the identification of a potential self-regulated SOS mutagenesis gene cassette in the Streptococcaceae family. Exposure to UV light was found

  15. SOS score: an optimized score to screen acute stroke patients for obstructive sleep apnea.

    Science.gov (United States)

    Camilo, Millene R; Sander, Heidi H; Eckeli, Alan L; Fernandes, Regina M F; Dos Santos-Pontelli, Taiza E G; Leite, Joao P; Pontes-Neto, Octavio M

    2014-09-01

    Obstructive sleep apnea (OSA) is frequent in acute stroke patients, and has been associated with higher mortality and worse prognosis. Polysomnography (PSG) is the gold standard diagnostic method for OSA, but it is impracticable as a routine for all acute stroke patients. We evaluated the accuracy of two OSA screening tools, the Berlin Questionnaire (BQ), and the Epworth Sleepiness Scale (ESS) when administered to relatives of acute stroke patients; we also compared these tools against a combined screening score (SOS score). Ischemic stroke patients were submitted to a full PSG at the first night after onset of symptoms. OSA severity was measured by apnea-hypopnea index (AHI). BQ and ESS were administered to relatives of stroke patients before the PSG and compared to SOS score for accuracy and C-statistics. We prospectively studied 39 patients. OSA (AHI ≥10/h) was present in 76.9%. The SOS score [area under the curve (AUC): 0.812; P = 0.005] and ESS (AUC: 0.789; P = 0.009) had good predictive value for OSA. The SOS score was the only tool with significant predictive value (AUC: 0.686; P = 0.048) for severe OSA (AHI ≥30/h), when compared to ESS (P = 0.119) and BQ (P = 0.191). The threshold of SOS ≤10 showed high sensitivity (90%) and negative predictive value (96.2%) for OSA; SOS ≥20 showed high specificity (100%) and positive predictive value (92.5%) for severe OSA. The SOS score administered to relatives of stroke patients is a useful tool to screen for OSA and may decrease the need for PSG in acute stroke setting. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Induction of the SOS system in Escherichia coli after UVA (320 - 400 nm) irradiation

    International Nuclear Information System (INIS)

    Batbyamba, G.; Drasil, V.

    1988-01-01

    Induction of the SOS repair system in E. coli caused by broad-band (320 - 400 nm) UVA radiation and an oxygen effect in this induction were studied using the sfiA::lacZ operon fusion. Moreover, an oxygen effect on the broad-band UVA radiation-induced cell killing was studied. The experiments indicate that: (1) Broad-band UVA light can produce lethal damage to cells as well as DNA damage able to generate an SOS-inducing signal. This damage is O 2 -dependent to a significant extent: SOSIP (O 2 )/ SOSIP (Ar) = 1.61 and OER = 1.96; (2) After UVA irradiation the SOS induction factor increases monotonously in the time interval longer than 4 h indicating that the SOS-inducing DNA damage caused by UVA irradiation has a 'long-lived' character; (3) Oxic and hypoxic incubation following UVA irradiation carried out under aerobic and anaerobic conditions resulted in a strong oxygen effect: SOSIP(O 2 )/SOSIP(Ar) ∼ 5. On the basis of these results and literary data it was concluded that one of the main toxic photoproducts formed as a result of UVA irradiation of the cells in a culture medium might be hydrogen peroxide (H 2 O 2 ). H 2 O 2 decays gradually during post-irradiation incubation and yields reactive radical species, mainly OH radical, that result in a formation of SOS-inducing DNA damages and contribute to cell lethality, and prolonged SOS induction. (author)

  17. SOS Children's Friendly Community Historical Overview

    Science.gov (United States)

    Lukaš, Mirko; Lenard, Ivan

    2014-01-01

    SOS Children's Village Croatia is categorized as a children's home whose primary goal is taking care of children without an adequate parental care or parents themselves. Moreover, it aims at providing children, regardless of their racial, national or religious affiliation, with affection and love in a safe family environment. In addition, SOS…

  18. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    International Nuclear Information System (INIS)

    Conotte, R.; Colet, J.-M.

    2014-01-01

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. 1 H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea

  19. Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2017-01-01

    In the first paper of the series [Paper I, C. Song and T. J. Martinez, J. Chem. Phys. 144, 174111 (2016)], we showed how tensor-hypercontracted (THC) SOS-MP2 could be accelerated by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs). This reduced the formal scaling of the SOS-MP2 energy calculation to cubic with respect to system size. The computational bottleneck then becomes the THC metric matrix inversion, which scales cubically with a large prefactor. In this work, the local THC approximation is proposed to reduce the computational cost of inverting the THC metric matrix to linear scaling with respect to molecular size. By doing so, we have removed the primary bottleneck to THC-SOS-MP2 calculations on large molecules with O(1000) atoms. The errors introduced by the local THC approximation are less than 0.6 kcal/mol for molecules with up to 200 atoms and 3300 basis functions. Together with the graphical processing unit techniques and locality-exploiting approaches introduced in previous work, the scaled opposite spin MP2 (SOS-MP2) calculations exhibit O(N2.5) scaling in practice up to 10 000 basis functions. The new algorithms make it feasible to carry out SOS-MP2 calculations on small proteins like ubiquitin (1231 atoms/10 294 atomic basis functions) on a single node in less than a day.

  20. Onderzoek naar de toepasbaarheid van SOS-chromotest

    NARCIS (Netherlands)

    Voogd CE; van der Stel JJ; Verharen HW; van Bruchem MC

    1988-01-01

    Met 35 stoffen werd de mutagene activiteit onderzocht met een SOS-chromotest kit, de Ames-test en de fluctuatietest met Klebsiella pneumoniae. Voorzover het alkylerende stoffen betreft die basenpaar substituties veroorzaken, blijkt er een goede overeenstemming te bestaan met de resultaten van

  1. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    Science.gov (United States)

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  2. Influence of the gene xthA in the activation of SOS response of Escherichia coli

    International Nuclear Information System (INIS)

    Dominguez M, V.

    2013-01-01

    The SOS response is one of the strategies that has Escherichia coli to counteract the lesions in the genetic material. The response is integrated for approximately 60 genes that when are activated they provide to the cell a bigger opportunity to survive. For the activation of this system is necessary that DNA regions of simple chain are generated, in such a way that most of the lesions should be processed, to be able to induce this answer. Some genes that intervene in this procedure, as recO, recB and recJ are recognized since when being exposed to the radiation, their activity SOS is smaller than in a wild strain. In previous works has been studied that to inactivate the genes that are involves in the lesions processing to generate DNA of simple chain, the SOS induction level diminishes with regard to a wild strain, but that when eliminating the genes that are involves directly in the repair, the SOS response increases. In this work a strain with defects in the gene xthA was built, which encodes for an endonuclease AP that participates in the repair mechanism by base excision and was evaluated their sensibility as the activity of the SOS response when exposing it to UV light and gamma radiation. The results showed that the lethality of the strain with the defect is very similar to the wild strain; while the activation level of the SOS response is bigger in comparison with the wild strain when being exposed to UV light; suggesting the existence of an enzyme that recognizes the lesions that produces this radiation, however, is not this the main repair channel, since the survival is similar to that of the wild strain. On the contrary, the results obtained with gamma radiation showed that the lethality diminishes in comparison to that of the wild strain, like the SOS activity; due surely to that the gene product intervenes in the repair for base excision, participating in the formation of the previous substrate to the activation of the SOS response. (Author)

  3. Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate.

    Science.gov (United States)

    Lee, Young Kwang; Low-Nam, Shalini T; Chung, Jean K; Hansen, Scott D; Lam, Hiu Yue Monatrice; Alvarez, Steven; Groves, Jay T

    2017-04-28

    The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification.

  4. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  5. Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.

    Science.gov (United States)

    Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes

    2015-03-01

    Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.

  6. SOS System Induction Inhibits the Assembly of Chemoreceptor Signaling Clusters in Salmonella enterica.

    Science.gov (United States)

    Irazoki, Oihane; Mayola, Albert; Campoy, Susana; Barbé, Jordi

    2016-01-01

    Swarming, a flagellar-driven multicellular form of motility, is associated with bacterial virulence and increased antibiotic resistance. In this work we demonstrate that activation of the SOS response reversibly inhibits swarming motility by preventing the assembly of chemoreceptor-signaling polar arrays. We also show that an increase in the concentration of the RecA protein, generated by SOS system activation, rather than another function of this genetic network impairs chemoreceptor polar cluster formation. Our data provide evidence that the molecular balance between RecA and CheW proteins is crucial to allow polar cluster formation in Salmonella enterica cells. Thus, activation of the SOS response by the presence of a DNA-injuring compound increases the RecA concentration, thereby disturbing the equilibrium between RecA and CheW and resulting in the cessation of swarming. Nevertheless, when the DNA-damage decreases and the SOS response is no longer activated, basal RecA levels and thus polar cluster assembly are reestablished. These results clearly show that bacterial populations moving over surfaces make use of specific mechanisms to avoid contact with DNA-damaging compounds.

  7. Endovascular stentectomy using the snare over stent-retriever (SOS technique: An experimental feasibility study.

    Directory of Open Access Journals (Sweden)

    Tareq Meyer

    Full Text Available Feasibility of endovascular stentectomy using a snare over stent-retriever (SOS technique was evaluated in a silicon flow model and an in vivo swine model. In vitro, stentectomy of different intracranial stents using the SOS technique was feasible in 22 out of 24 (92% retrieval maneuvers. In vivo, stentectomy was successful in 10 out of 10 procedures (100%. In one case self-limiting vasospasm was observed angiographically as a technique related complication in the animal model. Endovascular stentectomy using the SOS technique is feasible in an experimental setting and may be transferred to a clinical scenario.

  8. Sos - response induction by gamma radiation in Escherichia coli strains with different repair capacities

    International Nuclear Information System (INIS)

    Serment Guerrero, J.H.

    1992-01-01

    The Sos - response in Escherichia coli is formed by several genes involved in mechanisms of tolerance and/or repair, and only activates when a DNA - damage appears. It is controlled by recA and lexA genes. In normal circumstances, LexA protein is linked in every Sos operators, blocking the transcription. When a DNA damage occurs, a Sos signal is generated, Rec A protein changes its normal functions, starts acting as a protease and cleaves Lex A, allowing the transcription of all Sos genes. This response can be quantified by means of Sos Chromo test, performed by Quillardet and Ofnung (1985). In using the Chromo test, it has been observed that the DNA damage made by gamma radiation in Escherichia coli depends on both the doses and the doses rate. It has been shown that the exposure of Escherichia coli PQ37 strain (uvrA) to low doses at low dose rate appears to retard the response, suggesting the action of a repair mechanism. (Brena 1990). In this work, we compare the response in Escherichia coli strains deficient in different mechanisms of repair and/or tolerance. It is observed the importance of rec N gene in the repair of DNA damage produced by gamma radiation. (Author)

  9. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  10. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    Science.gov (United States)

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. 77 FR 65896 - Award of a Single-Source Replacement Grant to SOS Children's Villages Illinois in Chicago, IL

    Science.gov (United States)

    2012-10-31

    ....623] Award of a Single-Source Replacement Grant to SOS Children's Villages Illinois in Chicago, IL... (FYSB) announces the award of a single-source replacement grant to SOS Children's Villages Illinois in... grant. ACYF/FYSB has designated SOS Children's Villages Illinois, a 501(c)(3) non-profit organization...

  12. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats

    Energy Technology Data Exchange (ETDEWEB)

    Conotte, R.; Colet, J.-M., E-mail: jean-marie.colet@umons.ac.be

    2014-04-15

    The main curative treatment of colorectal cancer remains the surgery. However, when metastases are suspected, surgery is followed by a preventive chemotherapy using oxaliplatin which, unfortunately, may cause liver sinusoidal obstruction syndrome (SOS). Such hepatic damage is barely detected during or after chemotherapy due to a lack of effective diagnostic procedures, but liver biopsy. The primary objective of the present study was to identify potential early diagnosis biomarkers of SOS using a metabonomic approach. SOS was induced in rats by monocrotaline, a prototypical toxic substance. {sup 1}H NMR spectroscopy analysis of urine samples collected from rats treated with monocrotaline showed significant metabolic changes as compared to controls. During a first phase, cellular protective mechanisms such as an increased synthesis of GSH (reduced taurine) and the recruitment of cell osmolytes in the liver (betaine) were seen. In the second phase, the disturbance of the urea cycle (increased ornithine and urea reduction) leading to the depletion of NO, the alteration in the GSH synthesis (increased creatine and GSH precursors (glutamate, dimethylglycine and sarcosine)), and the liver necrosis (decrease taurine and increase creatine) all indicate the development of SOS. - Highlights: • Urine metabonomic profiles of SOS have been identified. • Urine osmoprotectants and anti-oxidants indicated an initial liver protection. • Liver necrosis was demonstrated by increased urine levels of taurine and creatine. • NO depletion was suggested by changes in ornithine and urea.

  13. Effect of the SOS response on the mean fitness of unicellular populations: a quasispecies approach.

    Science.gov (United States)

    Kama, Amit; Tannenbaum, Emmanuel

    2010-11-30

    The goal of this paper is to develop a mathematical model that analyzes the selective advantage of the SOS response in unicellular organisms. To this end, this paper develops a quasispecies model that incorporates the SOS response. We consider a unicellular, asexually replicating population of organisms, whose genomes consist of a single, double-stranded DNA molecule, i.e. one chromosome. We assume that repair of post-replication mismatched base-pairs occurs with probability , and that the SOS response is triggered when the total number of mismatched base-pairs is at least . We further assume that the per-mismatch SOS elimination rate is characterized by a first-order rate constant . For a single fitness peak landscape where the master genome can sustain up to mismatches and remain viable, this model is analytically solvable in the limit of infinite sequence length. The results, which are confirmed by stochastic simulations, indicate that the SOS response does indeed confer a fitness advantage to a population, provided that it is only activated when DNA damage is so extensive that a cell will die if it does not attempt to repair its DNA.

  14. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution.

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Embrey, Kevin J; Golovanov, Alexander P

    2016-07-14

    The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (Sos(Cat)) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of Sos(Cat), while Sos(Cat) also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos.

  15. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    Science.gov (United States)

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Suppressive effects of coffee on the SOS responses induced by UV and chemical mutagens

    International Nuclear Information System (INIS)

    Obana, Hirotaka; Nakamura, Sei-ichi; Tanaka, Ryou-ichi

    1986-01-01

    SOS-inducing activity of UV or chemical mutagens was strongly suppressed by instant coffee in Salmonella typhimurium TA1535/pSK1002. As decaffeinated instant coffee showed a similarly strong suppressive effect, it would seem that caffeine, a known inhibitor of SOS responses, is not responsible for the effect observed. The suppression was also shown by freshly brewed coffee extracts. However, the suppression was absent in green coffee-bean extracts. These results suggest that coffee contains some substance(s) which, apart from caffeine, suppresses SOS-inducing activity of UV or chemical mutagens and that the suppressive substance(s) are produced by roasting coffee beans. (Auth.)

  17. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  18. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    Science.gov (United States)

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  19. Sensor Data from the NERACOOS SOS Server, 2000-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS) Sensor Observation Service (SOS) The OCEANS IE -- formally approved as an OGC...

  20. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    Science.gov (United States)

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Physical modeling of SOS P channel MOSFET and comparison with bulk devices

    International Nuclear Information System (INIS)

    Merckel, G.; Gris, Y.

    1976-01-01

    The main technological steps applied to P channel MOSFET's on SOS are recalled. A large-signal model derived from a physical analysis is presented. Gate-source and gate-drain capacitors have been linearized versus drain voltage. Due to low injection, the only diffusion capacitance of the source-substrate forward biased diode, and the depletion capacitance of the drain-substrate reverse biased diode were taken into account. Some typical parameters measured on SOS and bulk devices are given [fr

  2. First evidence on the validity and reliability of the Safety Organizing Scale-Nursing Home version (SOS-NH).

    Science.gov (United States)

    Ausserhofer, Dietmar; Anderson, Ruth A; Colón-Emeric, Cathleen; Schwendimann, René

    2013-08-01

    The Safety Organizing Scale is a valid and reliable measure on safety behaviors and practices in hospitals. This study aimed to explore the psychometric properties of the Safety Organizing Scale-Nursing Home version (SOS-NH). In a cross-sectional analysis of staff survey data, we examined validity and reliability of the 9-item Safety SOS-NH using American Educational Research Association guidelines. This substudy of a larger trial used baseline survey data collected from staff members (n = 627) in a variety of work roles in 13 nursing homes (NHs) in North Carolina and Virginia. Psychometric evaluation of the SOS-NH revealed good response patterns with low average of missing values across all items (3.05%). Analyses of the SOS-NH's internal structure (eg, comparative fit indices = 0.929, standardized root mean square error of approximation = 0.045) and consistency (composite reliability = 0.94) suggested its 1-dimensionality. Significant between-facility variability, intraclass correlations, within-group agreement, and design effect confirmed appropriateness of the SOS-NH for measurement at the NH level, justifying data aggregation. The SOS-NH showed discriminate validity from one related concept: communication openness. Initial evidence regarding validity and reliability of the SOS-NH supports its utility in measuring safety behaviors and practices among a wide range of NH staff members, including those with low literacy. Further psychometric evaluation should focus on testing concurrent and criterion validity, using resident outcome measures (eg, patient fall rates). Copyright © 2013 American Medical Directors Association, Inc. All rights reserved.

  3. Kinetic and dose dependencies of the SOS-induction in E.coli K-12 (uvrA) cells exposed to different UV doses

    International Nuclear Information System (INIS)

    Komova, O.V.; Kandiano, E.S.; Malavina, G.; )

    2000-01-01

    Kinetic and dose dependencies of the SOS-induction in E. coli (uvrA) cells exposed to UV light were investigated. below 2 J/m 2 the rate of the SOS-induction increased with dose. Maximal level of the SOS-response was proportional to the UV dose. Pyrimidine dimers were necessary for the induction. In the dose range 2-10 J/m 2 the rate of SOS-induction decreased with dose. Dose-maximum response curve was non-linear. Pyrimidine dimers were not required for the induction. nature of the molecular events leading to the SOS-induction at low and high doses was discussed [ru

  4. Chemical trapping and characterization of small oxoacids of sulfur (SOS) generated in aqueous oxidations of H2S.

    Science.gov (United States)

    Kumar, Murugaeson R; Farmer, Patrick J

    2018-04-01

    Small oxoacids of sulfur (SOS) are elusive molecules like sulfenic acid, HSOH, and sulfinic acid, HS(O)OH, generated during the oxidation of hydrogen sulfide, H 2 S, in aqueous solution. Unlike their alkyl homologs, there is a little data on their generation and speciation during H 2 S oxidation. These SOS may exhibit both nucleophilic and electrophilic reactivity, which we attribute to interconversion between S(II) and S(IV) tautomers. We find that SOS may be trapped in situ by derivatization with nucleophilic and electrophilic trapping agents and then characterized by high resolution LC MS. In this report, we compare SOS formation from H 2 S oxidation by a variety of biologically relevant oxidants. These SOS appear relatively long lived in aqueous solution, and thus may be involved in the observed physiological effects of H 2 S. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Evaluation of effects of busulfan and DMA on SOS in pediatric stem cell recipients.

    Science.gov (United States)

    Kerl, Kornelius; Diestelhorst, Christian; Bartelink, Imke; Boelens, Jaap; Trame, Mirjam N; Boos, Joachim; Hempel, Georg

    2014-02-01

    Busulfan (Bu) is a DNA-alkylating agent used for myeloablative conditioning in stem cell transplantation in children and adults. While the use of intravenous rather than oral administration of Bu has reduced inter-individual variability in plasma levels, toxicity still occurs frequently after hematopoietic stem cell transplantation (HSCT). Toxicity (especially hepatotoxic effects) of intravenous (IV) Bu may be related to both Bu and/or N,N-dimethylacetamide (DMA), the solvent of Bu. In this study, we assessed the relation between the exposure of Bu and DMA with regards to the clinical outcome in children from two cohorts. In a two-centre study Bu and DMA AUC (area under the curve) were correlated in pediatric stem cell recipients to the risk of developing SOS and to the clinical outcome. In patients receiving Bu four times per day Bu levels >1,500 µmol/L minute correlate to an increased risk of developing a SOS. In the collective cohort, summarizing data of all 53 patients of this study, neither high area under the curve (AUC) of Bu nor high AUC of DMA appears to be an independent risk factor for the development of SOS in children. In this study neither Bu nor DMA was observed as an independent risk factor for the development of SOS. To identify subgroups (e.g., infants), in which Bu or DMA might be risk factors for the induction of SOS, larger cohorts have to be evaluated. © 2013 Wiley Periodicals, Inc.

  6. SOS formats and meta-theory : 20 years after

    NARCIS (Netherlands)

    Mousavi, M.R.; Reniers, M.A.; Groote, J.F.

    2007-01-01

    In 1981 Structural Operational Semantics (SOS) was introduced as a systematic way to define operational semantics of programming languages by a set of rules of a certain shape [G.D. Plotkin, A structural approach to operational semantics, Technical Report DAIMI FN-19, Computer Science Department,

  7. Characterization of the Burkholderia thailandensis SOS response by using whole-transcriptome shotgun sequencing.

    Science.gov (United States)

    Ulrich, Ricky L; Deshazer, David; Kenny, Tara A; Ulrich, Melanie P; Moravusova, Anna; Opperman, Timothy; Bavari, Sina; Bowlin, Terry L; Moir, Donald T; Panchal, Rekha G

    2013-10-01

    The bacterial SOS response is a well-characterized regulatory network encoded by most prokaryotic bacterial species and is involved in DNA repair. In addition to nucleic acid repair, the SOS response is involved in pathogenicity, stress-induced mutagenesis, and the emergence and dissemination of antibiotic resistance. Using high-throughput sequencing technology (SOLiD RNA-Seq), we analyzed the Burkholderia thailandensis global SOS response to the fluoroquinolone antibiotic, ciprofloxacin (CIP), and the DNA-damaging chemical, mitomycin C (MMC). We demonstrate that a B. thailandensis recA mutant (RU0643) is ∼4-fold more sensitive to CIP in contrast to the parental strain B. thailandensis DW503. Our RNA-Seq results show that CIP and MMC treatment (P SOS response were induced and include lexA, uvrA, dnaE, dinB, recX, and recA. At the genome-wide level, we found an overall decrease in gene expression, especially for genes involved in amino acid and carbohydrate transport and metabolism, following both CIP and MMC exposure. Interestingly, we observed the upregulation of several genes involved in bacterial motility and enhanced transcription of a B. thailandensis genomic island encoding a Siphoviridae bacteriophage designated E264. Using B. thailandensis plaque assays and PCR with B. mallei ATCC 23344 as the host, we demonstrate that CIP and MMC exposure in B. thailandensis DW503 induces the transcription and translation of viable bacteriophage in a RecA-dependent manner. This is the first report of the SOS response in Burkholderia spp. to DNA-damaging agents. We have identified both common and unique adaptive responses of B. thailandensis to chemical stress and DNA damage.

  8. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    Science.gov (United States)

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  9. Integral formula for elliptic SOS models with domain walls and a reflecting end

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Jules, E-mail: j.lamers@uu.nl

    2015-12-15

    In this paper we extend previous work of Galleas and the author to elliptic SOS models. We demonstrate that the dynamical reflection algebra can be exploited to obtain a functional equation characterizing the partition function of an elliptic SOS model with domain-wall boundaries and one reflecting end. Special attention is paid to the structure of the functional equation. Through this approach we find a novel multiple-integral formula for that partition function.

  10. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chenchen; Martínez, Todd J. [Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-07

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N{sup 2.6} for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  11. Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity.

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J

    2016-05-07

    We present a tensor hypercontracted (THC) scaled opposite spin second order Møller-Plesset perturbation theory (SOS-MP2) method. By using THC, we reduce the formal scaling of SOS-MP2 with respect to molecular size from quartic to cubic. We achieve further efficiency by exploiting sparsity in the atomic orbitals and using graphical processing units (GPUs) to accelerate integral construction and matrix multiplication. The practical scaling of GPU-accelerated atomic orbital-based THC-SOS-MP2 calculations is found to be N(2.6) for reference data sets of water clusters and alanine polypeptides containing up to 1600 basis functions. The errors in correlation energy with respect to density-fitting-SOS-MP2 are less than 0.5 kcal/mol for all systems tested (up to 162 atoms).

  12. POTENTIAL APPLICATIONS OF SOS-GFP BIOSENSOR TO IN VITRO RAPID SCREENING OF CYTOTOXIC AND GENOTOXIC EFFECT OF ANTICANCER AND ANTIDIABETIC PHARMACIST RESIDUES IN SURFACE WATER

    Directory of Open Access Journals (Sweden)

    Marzena Matejczyk

    2014-12-01

    Full Text Available Escherichia coli K-12 GFP-based bacterial biosensors allowed the detection of cytotoxic and genotoxic effect of anticancer drug– cyclophosphamide and antidiabetic drug – metformin in PBS buffer and surface water. Experimental data indicated that recA::gfpmut2 genetic system was sensitive to drugs and drugs mixture applied in experiment. RecA promoter was a good bioindicator in cytotoxic and genotoxic effect screening of cyclophosphamide, metformin and the mixture of the both drugs in PBS buffer and surface water. The results indicated that E. coli K-12 recA::gfp mut2 strain could be potentially useful for first-step screening of cytotoxic and genotoxic effect of anticancer and antidiabetic pharmacist residues in water. Next steps in research will include more experimental analysis to validate recA::gfpmut2 genetic system in E. coli K-12 on different anticancer drugs.

  13. istSOS, a new sensor observation management system: software architecture and a real-case application for flood protection

    Directory of Open Access Journals (Sweden)

    M. Cannata

    2015-11-01

    Full Text Available istSOS (Istituto scienze della Terra Sensor Observation Service is an implementation of the Sensor Observation Service (SOS standard from the Open Geospatial Consortium. The development of istSOS started in 2009 in order to provide a simple implementation of the SOS for the management, provision and integration of hydro-meteorological data collected in Canton Ticino (Southern Switzerland. istSOS is an Open Source, entirely written in Python and based on reliable software like PostgreSQL/PostGIS and Apache/mod_wsgi. This paper illustrates the latest software enhancements, including a RESTful Web service and a Web-based graphical user interface, which enable a better and simplified interaction with measurements and SOS service settings. The robustness of the implemented solution has been validated in a real-case application: the Verbano Lake Early Warning System. In this application, near real-time data have to be exchanged by inter-regional partners and used in a hydrological model for lake level forecasting and flooding hazard assessment. This system is linked with a dedicated geoportal used by the civil protection for the management, alert and protection of the population and the assets of the Locarno area. Practical considerations, technical issues and foreseen improvements are presented and discussed.

  14. Mutation-Specific Mechanisms of Hyperactivation of Noonan Syndrome SOS Molecules Detected with Single-molecule Imaging in Living Cells.

    Science.gov (United States)

    Nakamura, Yuki; Umeki, Nobuhisa; Abe, Mitsuhiro; Sako, Yasushi

    2017-10-26

    Noonan syndrome (NS) is a congenital hereditary disorder associated with developmental and cardiac defects. Some patients with NS carry mutations in SOS, a guanine nucleotide exchange factor (GEF) for the small GTPase RAS. NS mutations have been identified not only in the GEF domain, but also in various domains of SOS, suggesting that multiple mechanisms disrupt SOS function. In this study, we examined three NS mutations in different domains of SOS to clarify the abnormality in its translocation to the plasma membrane, where SOS activates RAS. The association and dissociation kinetics between SOS tagged with a fluorescent protein and the living cell surface were observed in single molecules. All three mutants showed increased affinity for the plasma membrane, inducing excessive RAS signalling. However, the mechanisms by which their affinity was increased were specific to each mutant. Conformational disorder in the resting state, increased probability of a conformational change on the plasma membrane, and an increased association rate constant with the membrane receptor are the suggested mechanisms. These different properties cause the specific phenotypes of the mutants, which should be rescuable with different therapeutic strategies. Therefore, single-molecule kinetic analyses of living cells are useful for the pathological analysis of genetic diseases.

  15. DinB Upregulation Is the Sole Role of the SOS Response in Stress-Induced Mutagenesis in Escherichia coli

    Science.gov (United States)

    Galhardo, Rodrigo S.; Do, Robert; Yamada, Masami; Friedberg, Errol C.; Hastings, P. J.; Nohmi, Takehiko; Rosenberg, Susan M.

    2009-01-01

    Stress-induced mutagenesis is a collection of mechanisms observed in bacterial, yeast, and human cells in which adverse conditions provoke mutagenesis, often under the control of stress responses. Control of mutagenesis by stress responses may accelerate evolution specifically when cells are maladapted to their environments, i.e., are stressed. It is therefore important to understand how stress responses increase mutagenesis. In the Escherichia coli Lac assay, stress-induced point mutagenesis requires induction of at least two stress responses: the RpoS-controlled general/starvation stress response and the SOS DNA-damage response, both of which upregulate DinB error-prone DNA polymerase, among other genes required for Lac mutagenesis. We show that upregulation of DinB is the only aspect of the SOS response needed for stress-induced mutagenesis. We constructed two dinB(oc) (operator-constitutive) mutants. Both produce SOS-induced levels of DinB constitutively. We find that both dinB(oc) alleles fully suppress the phenotype of constitutively SOS-“off” lexA(Ind−) mutant cells, restoring normal levels of stress-induced mutagenesis. Thus, dinB is the only SOS gene required at induced levels for stress-induced point mutagenesis. Furthermore, although spontaneous SOS induction has been observed to occur in only a small fraction of cells, upregulation of dinB by the dinB(oc) alleles in all cells does not promote a further increase in mutagenesis, implying that SOS induction of DinB, although necessary, is insufficient to differentiate cells into a hypermutable condition. PMID:19270270

  16. Motion-insensitive carotid intraplaque hemorrhage imaging using 3D inversion recovery preparation stack of stars (IR-prep SOS) technique.

    Science.gov (United States)

    Kim, Seong-Eun; Roberts, John A; Eisenmenger, Laura B; Aldred, Booth W; Jamil, Osama; Bolster, Bradley D; Bi, Xiaoming; Parker, Dennis L; Treiman, Gerald S; McNally, J Scott

    2017-02-01

    Carotid artery imaging is important in the clinical management of patients at risk for stroke. Carotid intraplaque hemorrhage (IPH) presents an important diagnostic challenge. 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) has been shown to accurately image carotid IPH; however, this sequence can be limited due to motion- and flow-related artifact. The purpose of this work was to develop and evaluate an improved 3D carotid MPRAGE sequence for IPH detection. We hypothesized that a radial-based k-space trajectory sequence such as "Stack of Stars" (SOS) incorporated with inversion recovery preparation would offer reduced motion sensitivity and more robust flow suppression by oversampling of central k-space. A total of 31 patients with carotid disease (62 carotid arteries) were imaged at 3T magnetic resonance imaging (MRI) with 3D IR-prep Cartesian and SOS sequences. Image quality was determined between SOS and Cartesian MPRAGE in 62 carotid arteries using t-tests and multivariable linear regression. Kappa analysis was used to determine interrater reliability. In all, 25 among 62 carotid plaques had carotid IPH by consensus from the reviewers on SOS compared to 24 on Cartesian sequence. Image quality was significantly higher with SOS compared to Cartesian (mean 3.74 vs. 3.11, P SOS acquisition yielded sharper image features with less motion (19.4% vs. 45.2%, P SOS (kappa = 0.89), higher than that of Cartesian (kappa = 0.84). By minimizing flow and motion artifacts and retaining high interrater reliability, the SOS MPRAGE has important advantages over Cartesian MPRAGE in carotid IPH detection. 1 J. Magn. Reson. Imaging 2017;45:410-417. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Anti-cancer vaccine therapy for hematologic malignancies: An evolving era.

    Science.gov (United States)

    Nahas, Myrna R; Rosenblatt, Jacalyn; Lazarus, Hillard M; Avigan, David

    2018-02-15

    The potential promise of therapeutic vaccination as effective therapy for hematologic malignancies is supported by the observation that allogeneic hematopoietic cell transplantation is curative for a subset of patients due to the graft-versus-tumor effect mediated by alloreactive lymphocytes. Tumor vaccines are being explored as a therapeutic strategy to re-educate host immunity to recognize and target malignant cells through the activation and expansion of effector cell populations. Via several mechanisms, tumor cells induce T cell dysfunction and senescence, amplifying and maintaining tumor cell immunosuppressive effects, resulting in failure of clinical trials of tumor vaccines and adoptive T cell therapies. The fundamental premise of successful vaccine design involves the introduction of tumor-associated antigens in the context of effective antigen presentation so that tolerance can be reversed and a productive response can be generated. With the increasing understanding of the role of both the tumor and tumor microenvironment in fostering immune tolerance, vaccine therapy is being explored in the context of immunomodulatory therapies. The most effective strategy may be to use combination therapies such as anti-cancer vaccines with checkpoint blockade to target critical aspects of this environment in an effort to prevent the re-establishment of tumor tolerance while limiting toxicity associated with autoimmunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mechanism of SOS-induced targeted and untargeted mutagenesis in E. coli

    International Nuclear Information System (INIS)

    Maenhaut-Michel, G.

    1985-01-01

    This paper retraces the evolution of hypotheses concerning mechanisms of SOS induced mutagenesis. Moreover, it reports some recent data which support a new model for the mechanism of targeted and untargeted mutagenesis in E. coli. In summary, the SOS mutator effect, which is responsible for untargeted mutagenesis and perhaps for the misincorporation step in targeted mutagenesis, is believed to involve a fidelity function associated with DNA polymerase III and does not require the umuC gene product. umuC and umuD gene products are probably required specifically for elongation of DNA synthesis past blocking lesions, i.e. to allow mutagenic replication of damaged DNA

  19. Induction of the SOS response in ultraviolet-irradiated Escherichia coli analyzed by dynamics of LexA, RecA and SulA proteins

    International Nuclear Information System (INIS)

    Aksenov, S.V.

    1999-01-01

    The SOS response in Escherichia coli is induced after DNA-damaging treatments including ultraviolet light. Regulation of the SOS response is accomplished through specific interaction of the two SOS regulator proteins, LexA and RecA. In ultraviolet light treated cells nucleotide excision repair is the major system that removes the induced lesions from the DNA. Here, induction of the SOS response in Escherichia coli with normal and impaired excision repair function is studied by simulation of intracellular levels of regulatory LexA and RecA proteins, and SulA protein. SulA protein is responsible for SOS-inducible cell division inhibition. Results of the simulations show that nucleotide excision repair influences time-courses of LexA , RecA and SulA induction by modulating the dynamics of RecA protein distribution between its normal and SOS-activated forms

  20. Kinetic and dose dependences of the SOS-induction in E.coli K-12 (uvrA) cells exposed to the different UV doses

    International Nuclear Information System (INIS)

    Komova, O.V.; Kandiano, E.S.; Malavya, G.

    1999-01-01

    The kinetic and dose dependences of the SOS-induction in E.coli (uvrA) cells exposed to UV light were investigated. Below 2 J/m 2 the rate of the SOS-induction increased with dose. The maximal level of the SOS-response was proportional to the UV dose. Pyrimidine dimers were necessary for the induction. In the dose range 2-10 J/m 2 the rate of the SOS-induction decreased with dose. The dose-response curve was non-linear. Pyrimidine dimers were not required for the induction. The nature of the molecular events leading to the SOS-induction at low and high UV doses was discussed. (author)

  1. The SOS Chromotest applied for screening plant antigenotoxic agents against ultraviolet radiation.

    Science.gov (United States)

    Fuentes, J L; García Forero, A; Quintero Ruiz, N; Prada Medina, C A; Rey Castellanos, N; Franco Niño, D A; Contreras García, D A; Córdoba Campo, Y; Stashenko, E E

    2017-09-13

    In this work, we investigated the usefulness of the SOS Chromotest for screening plant antigenotoxic agents against ultraviolet radiation (UV). Fifty Colombian plant extracts obtained by supercritical fluid (CO 2 ) extraction, twelve plant extract constituents (apigenin, carvacrol, β-caryophyllene, 1,8-cineole, citral, p-cymene, geraniol, naringenin, pinocembrin, quercetin, squalene, and thymol) and five standard antioxidant and/or photoprotective agents (curcumin, epigallocatechin gallate, resveratrol, α-tocopherol, and Trolox®) were evaluated for their genotoxicity and antigenotoxicity against UV using the SOS Chromotest. None of the plant extracts, constituents or agents were genotoxic in the SOS Chromotest at tested concentrations. Based on the minimal extract concentration that significantly inhibited UV-genotoxicity (CIG), five plant extracts were antigenotoxic against UV as follows: Baccharis nítida (16 μg mL -1 ) = Solanum crotonifolium (16 μg mL -1 ) > Hyptis suaveolens (31 μg mL -1 ) = Persea caerulea (31 μg mL -1 ) > Lippia origanoides (62 μg mL -1 ). Based on CIG values, the flavonoid compounds showed the highest antigenotoxic potential as follows: apigenin (7 μM) > pinocembrin (15 μM) > quercetin (26 μM) > naringenin (38 μM) > epigallocatechin gallate (108 μM) > resveratrol (642 μM). UV-genotoxicity inhibition with epigallocatechin gallate, naringenin and resveratrol was related to its capability for inhibiting protein synthesis. A correlation analysis between compound antigenotoxicity estimates and antioxidant activity evaluated by the oxygen radical absorbance capacity (ORAC) assay showed that these activities were not related. The usefulness of the SOS Chromotest for bioprospecting of plant antigenotoxic agents against UV was discussed.

  2. Is the S.O.S. diagnostic algorithm applicable to creating highly safe protective systems?

    International Nuclear Information System (INIS)

    Drab, F.

    1994-01-01

    The S.O.S. diagnostic system is analyzed and compared with KOMPARACE and MIN-MAX type diagnostic systems. Designed for the identification of failed sensors, the S.O.S. dynamic algorithm is based on a digital monitoring of output signals from a pair of sensors measuring the same technological parameter. The last 3 output signal data from the two sensors are stored in the algorithm memory. The analysis indicates that S.O.S. is no major achievement in the field of diagnosis because its properties are nearly identical with those of the conventional MIN-MAX system. Some degradation failures of the sensor are incorrectly interpreted by the new algorithm, some failures are not detected at all. From this point of view the new algorithm is inferior to the KOMPARACE type algorithm. (J.B.). 2 figs., 5 refs

  3. Identification of genes involved in low aminoglycoside-induced SOS response in Vibrio cholerae: a role for transcription stalling and Mfd helicase.

    Science.gov (United States)

    Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier

    2014-02-01

    Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated.

  4. Apoptosis-like death, an extreme SOS response in Escherichia coli.

    Science.gov (United States)

    Erental, Ariel; Kalderon, Ziva; Saada, Ann; Smith, Yoav; Engelberg-Kulka, Hanna

    2014-07-15

    In bacteria, SOS is a global response to DNA damage, mediated by the recA-lexA genes, resulting in cell cycle arrest, DNA repair, and mutagenesis. Previously, we reported that Escherichia coli responds to DNA damage via another recA-lexA-mediated pathway resulting in programmed cell death (PCD). We called it apoptosis-like death (ALD) because it is characterized by membrane depolarization and DNA fragmentation, which are hallmarks of eukaryotic mitochondrial apoptosis. Here, we show that ALD is an extreme SOS response that occurs only under conditions of severe DNA damage. Furthermore, we found that ALD is characterized by additional hallmarks of eukaryotic mitochondrial apoptosis, including (i) rRNA degradation by the endoribonuclease YbeY, (ii) upregulation of a unique set of genes that we called extensive-damage-induced (Edin) genes, (iii) a decrease in the activities of complexes I and II of the electron transport chain, and (iv) the formation of high levels of OH˙ through the Fenton reaction, eventually resulting in cell death. Our genetic and molecular studies on ALD provide additional insight for the evolution of mitochondria and the apoptotic pathway in eukaryotes. Importance: The SOS response is the first described and the most studied bacterial response to DNA damage. It is mediated by a set of two genes, recA-lexA, and it results in DNA repair and thereby in the survival of the bacterial culture. We have shown that Escherichia coli responds to DNA damage by an additional recA-lexA-mediated pathway resulting in an apoptosis-like death (ALD). Apoptosis is a mode of cell death that has previously been reported only in eukaryotes. We found that E. coli ALD is characterized by several hallmarks of eukaryotic mitochondrial apoptosis. Altogether, our results revealed that recA-lexA is a DNA damage response coordinator that permits two opposite responses: life, mediated by the SOS, and death, mediated by the ALD. The choice seems to be a function of the degree

  5. Refined functional relations for the elliptic SOS model

    Energy Technology Data Exchange (ETDEWEB)

    Galleas, W., E-mail: w.galleas@uu.nl [ARC Centre of Excellence for the Mathematics and Statistics of Complex Systems, University of Melbourne, VIC 3010 (Australia)

    2013-02-21

    In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang-Baxter relation and its solution is given in terms of multiple contour integrals.

  6. Refined functional relations for the elliptic SOS model

    International Nuclear Information System (INIS)

    Galleas, W.

    2013-01-01

    In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang–Baxter relation and its solution is given in terms of multiple contour integrals.

  7. Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific components of the SOS response pathway.

    Science.gov (United States)

    Theodore, Alyssa; Lewis, Kim; Vulic, Marin

    2013-12-01

    Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without becoming genetically resistant. Survival of these phenotypically resistant cells, commonly called "persisters," depends on the SOS gene network. We have examined mutants in all known SOS-regulated genes to identify functions essential for tolerance in Escherichia coli. The absence of DinG and UvrD helicases and the Holliday junction processing enzymes RuvA and RuvB leads to a decrease in survival. Analysis of the respective mutants indicates that, in addition to repair of double-strand breaks, tolerance depends on the repair of collapsed replication forks and stalled transcription complexes. Mutation in recF results in increased survival, which identifies RecAF recombination as a poisoning mechanism not previously linked to FQ lethality. DinG acts upstream of SOS promoting its induction, whereas RuvAB participates in repair only. UvrD directly promotes all repair processes initiated by FQ-induced damage and prevents RecAF-dependent misrepair, making it one of the crucial SOS functions required for tolerance.

  8. The SOS response is permitted in Escherichia coli strains deficient in the expression of the mazEF pathway.

    Science.gov (United States)

    Kalderon, Ziva; Kumar, Sathish; Engelberg-Kulka, Hanna

    2014-01-01

    The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin mazEF pathway. Since the mazEF module is present on the chromosomes of most E. coli strains, here we asked: Why is the SOS response found in so many E. coli strains? Is the mazEF module present but inactive in those strains? We examined three E. coli strains used for studies of the SOS response, strains AB1932, BW25113, and MG1655. We found that each of these strains is either missing or inhibiting one of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only takes place in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF or its downstream pathway is not functioning.

  9. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Glutathione S-transferase M1-null genotype as risk factor for SOS in oxaliplatin-treated patients with metastatic colorectal cancer.

    Science.gov (United States)

    Vreuls, C P H; Olde Damink, S W M; Koek, G H; Winstanley, A; Wisse, E; Cloots, R H E; van den Broek, M A J; Dejong, C H C; Bosman, F T; Driessen, A

    2013-02-19

    Oxaliplatin is used as a neo-adjuvant therapy in hepatic colorectal carcinoma metastasis. This treatment has significant side effects, as oxaliplatin is toxic to the sinusoidal endothelial cells and can induce sinusoidal obstruction syndrome (SOS), which is related to decreased overall survival. Glutathione has an important role in the defence system, catalysed by glutathione S-transferase (GST), including two non-enzyme producing polymorphisms (GSTM1-null and GSTT1-null). We hypothesise that patients with a non-enzyme producing polymorphism have a higher risk of developing toxic injury owing to oxaliplatin. In the nontumour-bearing liver, the presence of SOS was studied histopathologically. The genotype was determined by a semi-nested PCR. Thirty-two of the 55 (58%) patients showed SOS lesions, consisting of 27% mild, 22% moderate and 9% severe lesions. The GSTM1-null genotype was present in 25 of the 55 (46%). Multivariate analysis showed that the GSTM1-null genotype significantly correlated with the presence of (moderate-severe) SOS (P=0.026). The GSTM1-null genotype is an independent risk factor for SOS. This finding allows us, in association with other risk factors, to conceive a potential risk profile predicting whether the patient is at risk of developing SOS, before starting oxaliplatin, and subsequently might result in adjustment of treatment.

  11. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    Science.gov (United States)

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  12. Architecture and performance of radiation-hardened 64-bit SOS/MNOS memory

    International Nuclear Information System (INIS)

    Kliment, D.C.; Ronen, R.S.; Nielsen, R.L.; Seymour, R.N.; Splinter, M.R.

    1976-01-01

    This paper discusses the circuit architecture and performance of a nonvolatile 64-bit MNOS memory fabricated on silicon on sapphire (SOS). The circuit is a test vehicle designed to demonstrate the feasibility of a high-performance, high-density, radiation-hardened MNOS/SOS memory. The array is organized as 16 words by 4 bits and is fully decoded. It utilizes a two-(MNOS) transistor-per-bit cell and differential sensing scheme and is realized in PMOS static resistor load logic. The circuit was fabricated and tested as both a fast write random access memory (RAM) and an electrically alterable read only memory (EAROM) to demonstrate design and process flexibility. Discrete device parameters such as retention, circuit electrical characteristics, and tolerance to total dose and transient radiation are presented

  13. Mapping Modular SOS to Rewriting Logic

    DEFF Research Database (Denmark)

    Braga, Christiano de Oliveira; Haeusler, Edward Hermann; Meseguer, José

    2003-01-01

    and verification of MSOS specifications, we have defined a mapping, named , from MSOS to rewriting logic (RWL), a logic which has been proposed as a logical and semantic framework. We have proven the correctness of and implemented it as a prototype, the MSOS-SL Interpreter, in the Maude system, a high......Modular SOS (MSOS) is a framework created to improve the modularity of structural operational semantics specifications, a formalism frequently used in the fields of programming languages semantics and process algebras. With the objective of defining formal tools to support the execution...

  14. SOS: Observation, Intervention, and Scaffolding towards Successful Online Students

    Science.gov (United States)

    Ainsa, Trisha

    2017-01-01

    Research, reflection, and evaluation of online classes indicated a need for graduated scaffolding for first time students experiencing distance learning. In order to promote student engagement in the online learning process, I designed SOS for beginning online students. Sixty-three online students were offered an opportunity to participate in a…

  15. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  16. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon.

    Science.gov (United States)

    Kelley, William L

    2006-12-01

    The SOS response that responds to DNA damage induces many genes that are under LexA repression. A detailed examination of LexA regulons using genome-wide techniques has recently been undertaken in both Escherichia coli and Bacillus subtilis. These extensive and elegant studies have now charted the extent of the LexA regulons, uncovered many new genes, and exposed a limited overlap in the LexA regulon between the two bacteria. As more bacterial genomes are analysed, more curiosities in LexA regulons arise. Several notable examples include the discovery of a LexA-like protein, HdiR, in Lactococcus lactis, organisms with two lexA genes, and small DNA damage-inducible cassettes under LexA control. In the cyanobacterium Synechocystis, genetic and microarray studies demonstrated that a LexA paralogue exerts control over an entirely different set of carbon-controlled genes and is crucial to cells facing carbon starvation. An examination of SOS induction evoked by common therapeutic drugs has shed new light on unsuspected consequences of drug exposure. Certain antibiotics, most notably fluoroquinolones such as ciprofloxacin, can induce an SOS response and can modulate the spread of virulence factors and drug resistance. SOS induction by beta-lactams in E. coli triggers a novel form of antibiotic defence that involves cell wall stress and signal transduction by the DpiAB two-component system. In this review, we provide an overview of these new directions in SOS and LexA research with emphasis on a few themes: identification of genes under LexA control, the identification of new endogenous triggers, and antibiotic-induced SOS response and its consequences.

  17. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun

    2011-04-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  18. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun; Baek, Dongwon; Oh, Dongha; Park, Jiyoung; Hong, Hyewon; Kim, Woeyeon; Bohnert, Hans Jü rgen; Bressan, Ray Anthony; Park, Hyeongcheol; Yun, Daejin

    2011-01-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  19. Novel Escherichia coli umuD′ Mutants: Structure-Function Insights into SOS Mutagenesis

    Science.gov (United States)

    McLenigan, Mary; Peat, Thomas S.; Frank, Ekaterina G.; McDonald, John P.; Gonzalez, Martín; Levine, Arthur S.; Hendrickson, Wayne A.; Woodgate, Roger

    1998-01-01

    Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′. PMID:9721309

  20. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nevine M.Y. Elsayed

    2015-06-01

    Full Text Available Apoptosis is a chief regulator of cellular homeostasis. Impairment of apoptotic machinery is a main characteristic of several diseases such as cancer, where the evasion of apoptosis is a cardinal hallmark of cancer. Apoptosis is regulated by contribution of pro- and anti- apoptotic proteins, where caspases are the main executioners of the apoptotic machinery. IAP (inhibitors of apoptosis proteins is a family of endogenous inhibitors of apoptosis, which perform their function through interference with the function of caspases. Smac (second mitochondria-derived activator of caspases is endogenous inhibitor of IAPs, thus it is one of the major proapoptotic endogenous proteins. Thus, the development of Smac mimetics has evolved as an approach for anticancer therapy. Several Smac mimetic agents have been introduced to clinical trial such as birinapanet 12. Herein, the history of development of Smac mimetics along with the recent development in this field is briefly discussed.

  1. Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin

    Science.gov (United States)

    Bernier, Steve P.; Lebeaux, David; DeFrancesco, Alicia S.; Valomon, Amandine; Soubigou, Guillaume; Coppée, Jean-Yves; Ghigo, Jean-Marc; Beloin, Christophe

    2013-01-01

    High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin. PMID:23300476

  2. Regulation of the E. coli SOS response by the lexA gene product

    International Nuclear Information System (INIS)

    Brent, R.

    1983-01-01

    In an Escherichia coli that is growing normally, transcription of many genes is repressed by the product of the lexA gene. If cellular DNA is damaged, proteolytically competent recA protein (recA protease) inactivates lexA protein and these genes are induced. Many of the cellular phenomena observed during the cellular response to DNA damage (the SOS response) are the consequence of the expression of these lexA-prepressed genes. Since the SOS response of E. coli has recently been the subject of a comprehensive review, in this paper I would like to concentrate on some modifications to the picture based on new data. 12 references, 2 figures

  3. Simultaneous Scheduling of Jobs, AGVs and Tools Considering Tool Transfer Times in Multi Machine FMS By SOS Algorithm

    Science.gov (United States)

    Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.

    2017-08-01

    This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.

  4. DNA compaction in the early part of the SOS response is dependent on RecN and RecA.

    Science.gov (United States)

    Odsbu, Ingvild; Skarstad, Kirsten

    2014-05-01

    The nucleoids of undamaged Escherichia coli cells have a characteristic shape and number, which is dependent on the growth medium. Upon induction of the SOS response by a low dose of UV irradiation an extensive reorganization of the nucleoids occurred. Two distinct phases were observed by fluorescence microscopy. First, the nucleoids were found to change shape and fuse into compact structures at midcell. The compaction of the nucleoids lasted for 10-20 min and was followed by a phase where the DNA was dispersed throughout the cells. This second phase lasted for ~1 h. The compaction was found to be dependent on the recombination proteins RecA, RecO and RecR as well as the SOS-inducible, SMC (structural maintenance of chromosomes)-like protein RecN. RecN protein is produced in high amounts during the first part of the SOS response. It is possible that the RecN-mediated 'compact DNA' stage at the beginning of the SOS response serves to stabilize damaged DNA prior to recombination and repair.

  5. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  6. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  7. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  8. Proceedings of the NKS/SOS-2 seminar on risk informed principles

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Simola, K.

    1999-09-01

    The aim of this NKS/SOS-2 seminar was to present the status and plans of applications of Risk Informed Principles both by nuclear authorities and industry in Finland and Sweden. Furthermore, views from the off-shore industry were presented. (EHS)

  9. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS).

    Science.gov (United States)

    Rabbow, E; Rettberg, P; Baumstark-Khan, C; Horneck, G

    2003-01-01

    In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system

  10. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  11. Physics Teacher SOS: Supporting New Teachers without Pushing an Agenda

    Science.gov (United States)

    Baird, Dean

    2013-01-01

    Few workshops for teachers focus primarily on instruction methods for basic high school physics. In Northern California, Physics Teacher SOS (PTSOS) has gained popularity doing just that. PTSOS workshops are directed toward early-career science teachers, though veterans are welcome too. The program is not influenced by scientific supply companies,…

  12. Radiation-hardened CMOS/SOS LSI circuits

    International Nuclear Information System (INIS)

    Aubuchon, K.G.; Peterson, H.T.; Shumake, D.P.

    1976-01-01

    The recently developed technology for building radiation-hardened CMOS/SOS devices has now been applied to the fabrication of LSI circuits. This paper describes and presents results on three different circuits: an 8-bit adder/subtractor (Al gate), a 256-bit shift register (Si gate), and a polycode generator (Al gate). The 256-bit shift register shows very little degradation after 1 x 10 6 rads (Si), with an increase from 1.9V to 2.9V in minimum operating voltage, a decrease of about 20% in maximum frequency, and little or no change in quiescent current. The p-channel thresholds increase from -0.9V to -1.3V, while the n-channel thresholds decrease from 1.05 to 0.23V, and the n-channel leakage remains below 1nA/mil. Excellent hardening results were also obtained on the polycode generator circuit. Ten circuits were irradiated to 1 x 10 6 rads (Si), and all continued to function well, with an increase in minimum power supply voltage from 2.85V to 5.85V and an increase in quiescent current by a factor of about 2. Similar hardening results were obtained on the 8-bit adder, with the minimum power supply voltage increasing from 2.2V to 4.6V and the add time increasing from 270 to 350 nsec after 1 x 10 6 rads (Si). These results show that large CMOS/SOS circuits can be hardened to above 1 x 10 6 rads (Si) with either the Si gate or Al gate technology. The paper also discusses the relative advantages of the Si gate versus the Al gate technology

  13. Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis.

    Science.gov (United States)

    Mo, Charlie Y; Birdwell, L Dillon; Kohli, Rahul M

    2014-05-20

    Bacteria utilize the tightly regulated stress response (SOS) pathway to respond to a variety of genotoxic agents, including antimicrobials. Activation of the SOS response is regulated by a key repressor-protease, LexA, which undergoes autoproteolysis in the setting of stress, resulting in derepression of SOS genes. Remarkably, genetic inactivation of LexA's self-cleavage activity significantly decreases acquired antibiotic resistance in infection models and renders bacteria hypersensitive to traditional antibiotics, suggesting that a mechanistic study of LexA could help inform its viability as a novel target for combating acquired drug resistance. Despite structural insights into LexA, a detailed knowledge of the enzyme's protease specificity is lacking. Here, we employ saturation and positional scanning mutagenesis on LexA's internal cleavage region to analyze >140 mutants and generate a comprehensive specificity profile of LexA from the human pathogen Pseudomonas aeruginosa (LexAPa). We find that the LexAPa active site possesses a unique mode of substrate recognition. Positions P1-P3 prefer small hydrophobic residues that suggest specific contacts with the active site, while positions P5 and P1' show a preference for flexible glycine residues that may facilitate the conformational change that permits autoproteolysis. We further show that stabilizing the β-turn within the cleavage region enhances LexA autoproteolytic activity. Finally, we identify permissive positions flanking the scissile bond (P4 and P2') that are tolerant to extensive mutagenesis. Our studies shed light on the active site architecture of the LexA autoprotease and provide insights that may inform the design of probes of the SOS pathway.

  14. Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis

    NARCIS (Netherlands)

    Haijema, BJ; vanSinderen, D; Winterling, K; Kooistra, J; Venema, G; Hamoen, LW

    1996-01-01

    It has been hypothesized that the dinR gene product of Bacillus subtilis acts as a repressor of the SOS regulon by binding to DNA sequences located upstream of SOS genes, including dinR and recA. Following activation as a result of DNA damage, RecA is believed to catalyse DinR-autocleavage, thus

  15. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation

    Science.gov (United States)

    Chen, Peng-Chieh; Wakimoto, Hiroko; Conner, David; Araki, Toshiyuki; Yuan, Tao; Roberts, Amy; Seidman, Christine E.; Bronson, Roderick; Neel, Benjamin G.; Seidman, Jonathan G.; Kucherlapati, Raju

    2010-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%–15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated phenotypes, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS. PMID:21041952

  16. Description and use of the SOS Plabord code

    International Nuclear Information System (INIS)

    Morera, J.P.; Samain, A.; Capes, H.; Ghendrih, P.

    1990-09-01

    The SOS Plabord code calculates the local steady states at the plasma edge. Plasma impurities and neutral particles freed from the wall are included in the calculations. The coordinates of the two axes that limit the plasma edge layer are defined in the program. Three sorts of ions and electrons are considered. The physical parameters, the equations and the boundary conditions are given. The method chosen for solving the nonlinear differential equations and the computer program are presented [fr

  17. CMOS/SOS RAM transient radiation upset and ''inversion'' effect investigation

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Poljakov, I.V.

    1996-01-01

    The Complementary Metal-Oxide-Semiconductor/Silicon-on-Sapphire Random Access Memory (CMOS/SOS RAM) transient upset and inversion effect were investigated with pulsed laser, pulsed voltage generator and low-intensity light simulators. It was found that the inversion of information occurs due to memory cell photocurrents simultaneously with the power supply voltage drop transfer to memory cells outputs

  18. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network.

    Science.gov (United States)

    Culyba, Matthew J; Kubiak, Jeffrey M; Mo, Charlie Y; Goulian, Mark; Kohli, Rahul M

    2018-06-01

    Biochemical pathways are often genetically encoded as simple transcription regulation networks, where one transcription factor regulates the expression of multiple genes in a pathway. The relative timing of each promoter's activation and shut-off within the network can impact physiology. In the DNA damage repair pathway (known as the SOS response) of Escherichia coli, approximately 40 genes are regulated by the LexA repressor. After a DNA damaging event, LexA degradation triggers SOS gene transcription, which is temporally separated into subsets of 'early', 'middle', and 'late' genes. Although this feature plays an important role in regulating the SOS response, both the range of this separation and its underlying mechanism are not experimentally defined. Here we show that, at low doses of DNA damage, the timing of promoter activities is not separated. Instead, timing differences only emerge at higher levels of DNA damage and increase as a function of DNA damage dose. To understand mechanism, we derived a series of synthetic SOS gene promoters which vary in LexA-operator binding kinetics, but are otherwise identical, and then studied their activity over a large dose-range of DNA damage. In distinction to established models based on rapid equilibrium assumptions, the data best fit a kinetic model of repressor occupancy at promoters, where the drop in cellular LexA levels associated with higher doses of DNA damage leads to non-equilibrium binding kinetics of LexA at operators. Operators with slow LexA binding kinetics achieve their minimal occupancy state at later times than operators with fast binding kinetics, resulting in a time separation of peak promoter activity between genes. These data provide insight into this remarkable feature of the SOS pathway by demonstrating how a single transcription factor can be employed to control the relative timing of each gene's transcription as a function of stimulus dose.

  19. Evaluating the management strategies of a forestland estate--the S-O-S approach.

    Science.gov (United States)

    Kangas, Jyrki; Kurttila, Mikko; Kajanus, Miika; Kangas, Annika

    2003-12-01

    Connecting Multiple Criteria Decision Support (MCDS) methods with SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis yields analytical priorities for the factors included in SWOT analysis and makes them commensurable. In addition, decision alternatives can be evaluated with respect to each SWOT factor. In this way, SWOT analysis provides the basic frame within which to perform analyses of decision situations. MCDS methods, in turn, assist in carrying out SWOT more analytically and in elaborating the results of the analyses so that alternative strategic decisions can be prioritized also with respect to the entire SWOT. The A'WOT analysis is an example of such hybrid methods. It makes combined use of the Analytic Hierarchy Process (AHP) and SWOT. In this study, a hybrid method of the Stochastic Multicriteria Acceptability Analysis with Ordinal criteria (SMAA-O) and SWOT is developed as an elaboration of the basic ideas of A'WOT. The method is called S-O-S (SMAA-O in SWOT). SMAA-O enables the handling of ordinal preference information as well as mixed data consisting of both ordinal and cardinal information. Using SMAA-O is enough to just rank decision elements instead of giving them cardinal preference or priority ratios as required by the most commonly used MCDS methods. Using SMAA-O, in addition to analyzing what the recommended action is under certain priorities of the criteria, enables one to analyze what kind of preferences would support each action. The S-O-S approach is illustrated by a case study, where the shareholders of a forest holding owned by a private partnership prepared the SWOT analysis. Six alternative strategies for the management of their forest holding and of old cottage located on the holding were formed. After S-O-S analyses were carried out, one alternative was found to be the most recommendable. However, different importance orders of the SWOT groups would lead to different recommendations, since three of the six alternatives

  20. Anticancer peptides from bacteria

    OpenAIRE

    Tomasz M. Karpiński; Anna K. Szkaradkiewicz

    2013-01-01

    Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data ...

  1. Effect of SOS-induced levels of imuABC on spontaneous and damage-induced mutagenesis in Caulobacter crescentus.

    Science.gov (United States)

    Alves, Ingrid R; Lima-Noronha, Marco A; Silva, Larissa G; Fernández-Silva, Frank S; Freitas, Aline Luiza D; Marques, Marilis V; Galhardo, Rodrigo S

    2017-11-01

    imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of an umuC-mutation on the SOS-response in E.coli cells exposed to UV-light and γ-radiation

    International Nuclear Information System (INIS)

    Komova, O.V.; Candiano, E.S.; Krasavin, E.A.

    1999-01-01

    Kinetics dependences of the SOS-induction in E.coli cells of wild type and deficient in umuC gene exposed to UV and γ-rays were analyzed. In the presence of UmuC protein SOS-induction was 3 -- 5.5 times lower and delayed for about 30 minutes after both UV and γ-rays. It was shown that the decrease of the SOS-induction in wild type cells irradiated by UV was due to more effective elimination of the photolesions from DNA by excision repair system. UmuCD-dependent inhibition of DNA replication was discussed as a possible mechanism allowing additional time for error-free repair. (author)

  3. Structural inhibition and reactivation of Escherichia coli septation by elements of the SOS and TER pathways

    International Nuclear Information System (INIS)

    Dopazo, A.; Tormo, A.; Aldea, M.; Vicente, M.

    1987-01-01

    The inhibition of cell division caused by induction of the SOS pathway in Escherichia coli structurally blocks septation, as deduced from two sets of results. Potential septation sites active at the time of SOS induction became inactivated, while those initiated during the following doubling time were active. Penicillin resistance increased in wild-type UV light-irradiated cells, a behavior similar to that observed in mutants in which structural blocks were introduced by inactivation of FtsA. Potential septation sites that have been structurally blocked by either the SOS division inhibitor, furazlocillin inhibition of PBP3, or inactivation of a TER pathway component, FtsA3, could be reactivated one doubling time after removal of the inhibitory agent in the presence of an active lon gene product. Reactivation of potential septation sites blocked by the presence of an inactivated FtsA3 was significantly lower when the lon protease was not active, suggesting that Lon plays a role in the removal of inactivated TER pathway products from the blocked potential septation sites

  4. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.

    Science.gov (United States)

    Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D

    1993-05-06

    Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

  5. Coronary artery ectasia in Noonan syndrome: Report of an individual with SOS1 mutation and literature review.

    Science.gov (United States)

    Calcagni, Giulio; Baban, Anwar; De Luca, Enrica; Leonardi, Benedetta; Pongiglione, Giacomo; Digilio, Maria Cristina

    2016-03-01

    Noonan syndrome (NS) is the second most frequent hereditary syndrome with cardiac involvement. Pulmonary valve stenosis and hypertrophic cardiomyopathy are the most prevalent cardiovascular abnormalities. We report on a 14-year-old girl with NS due to SOS1 mutation with pulmonary stenosis and idiopathic coronary ectasia. To the best of our knowledge, this is the first report describing coronary ectasia in a patient with NS secondary to a SOS1 mutation. We include a literature review of this rare association. © 2015 Wiley Periodicals, Inc.

  6. Evelin Ilves ja kirjastus "Varrak" kinkisid SOS Lastekülale jõuludeks raamatuid

    Index Scriptorium Estoniae

    2009-01-01

    Proua Evelin Ilves ja kirjastus "Varrak" viisid 21. detsembril 2009 Keila SOS Lastekülale jõulukingiks raamatuid. Kingitud raamatud valiti välja laste soovide põhjal, nende hulgas on nii lastekirjandust kui ka teatmeteoseid

  7. Stellar parameters and H α line profile variability of Be stars in the BeSOS survey

    Science.gov (United States)

    Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.

    2018-03-01

    The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.

  8. Interaction of caffeine with the SOS response pathway in Escherichia coli.

    Science.gov (United States)

    Whitney, Alyssa K; Weir, Tiffany L

    2015-01-01

    Previous studies have highlighted the antimicrobial activity of caffeine, both individually and in combination with other compounds. A proposed mechanism for caffeine's antimicrobial effects is inhibition of bacterial DNA repair pathways. The current study examines the influence of sub-lethal caffeine levels on the growth and morphology of SOS response pathway mutants of Escherichia coli. Growth inhibition after treatment with caffeine and methyl methane sulfonate (MMS), a mutagenic agent, was determined for E. coli mutants lacking key genes in the SOS response pathway. The persistence of caffeine's effects was explored by examining growth and morphology of caffeine and MMS-treated bacterial isolates in the absence of selective pressure. Caffeine significantly reduced growth of E. coli recA- and uvrA-mutants treated with MMS. However, there was no significant difference in growth between umuC-isolates treated with MMS alone and MMS in combination with caffeine after 48 h of incubation. When recA-isolates from each treatment group were grown in untreated medium, bacterial isolates that had been exposed to MMS or MMS with caffeine showed increased growth relative to controls and caffeine-treated isolates. Morphologically, recA-isolates that had been treated with caffeine and both caffeine and MMS together had begun to display filamentous growth. Caffeine treatment further reduced growth of recA- and uvrA-mutants treated with MMS, despite a non-functional SOS response pathway. However, addition of caffeine had very little effect on MMS inhibition of umuC-mutants. Thus, growth inhibition of E. coli with caffeine treatment may be driven by caffeine interaction with UmuC, but also appears to induce damage by additional mechanisms as evidenced by the additive effects of caffeine in recA- and uvrA-mutants.

  9. Detection of early psychotic symptoms: Validation of the Spanish version of the "Symptom Onset in Schizophrenia (SOS) inventory".

    Science.gov (United States)

    Mezquida, Gisela; Cabrera, Bibiana; Martínez-Arán, Anabel; Vieta, Eduard; Bernardo, Miguel

    2018-03-01

    The period of subclinical signs that precedes the onset of psychosis is referred to as the prodrome or high-risk mental state. The "Symptom Onset in Schizophrenia (SOS) inventory" is an instrument to characterize and date the initial symptoms of a psychotic illness. The present study aims to provide reliability and validity data for clinical and research use of the Spanish version of the SOS. Thirty-six participants with a first-episode of psychosis meeting DSM-IV criteria for schizophrenia/schizoaffective/schizophreniform disorder were administered the translated SOS and other clinical assessments. The internal validity, intrarater and interrater reliability were studied. We found strong interrater reliability. To detect the presence/absence of prodromal symptoms, Kappa coefficients ranged between 0.8 and 0.7. Similarly, the raters obtained an excellent level of agreement regarding the onset of each symptom and the duration of symptoms until first treatment (intraclass correlation coefficients between 0.9 and 1.0). Cronbach's alpha was 0.9-1.0 for all the items. The interrater reliability and concurrent validity were also excellent in both cases. This study provides robust psychometric properties of the Spanish version of the SOS. The translated version is adequate in terms of good internal validity, intrarater and interrater reliability, and is as time-efficient as the original version. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  11. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  12. Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level

    Science.gov (United States)

    Nanda, Arun M.; Heyer, Antonia; Krämer, Christina; Grünberger, Alexander; Kohlheyer, Dietrich

    2014-01-01

    The genome of the Gram-positive soil bacterium Corynebacterium glutamicum ATCC 13032 contains three integrated prophage elements (CGP1 to -3). Recently, it was shown that the large lysogenic prophage CGP3 (∼187 kbp) is excised spontaneously in a small number of cells. In this study, we provide evidence that a spontaneously induced SOS response is partly responsible for the observed spontaneous CGP3 induction. Whereas previous studies focused mainly on the induction of prophages at the population level, we analyzed the spontaneous CGP3 induction at the single-cell level using promoters of phage genes (Pint2 and Plysin) fused to reporter genes encoding fluorescent proteins. Flow-cytometric analysis revealed a spontaneous CGP3 activity in about 0.01 to 0.08% of the cells grown in standard minimal medium, which displayed a significantly reduced viability. A PrecA-eyfp promoter fusion revealed that a small fraction of C. glutamicum cells (∼0.2%) exhibited a spontaneous induction of the SOS response. Correlation of PrecA to the activity of downstream SOS genes (PdivS and PrecN) confirmed a bona fide induction of this stress response rather than stochastic gene expression. Interestingly, the reporter output of PrecA and CGP3 promoter fusions displayed a positive correlation at the single-cell level (ρ = 0.44 to 0.77). Furthermore, analysis of the PrecA-eyfp/Pint2-e2-crimson strain during growth revealed the highest percentage of spontaneous PrecA and Pint2 activity in the early exponential phase, when fast replication occurs. Based on these studies, we postulate that spontaneously occurring DNA damage induces the SOS response, which in turn triggers the induction of lysogenic prophages. PMID:24163339

  13. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    Science.gov (United States)

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections.

  14. SOS1 gene polymorphisms are associated with gestational diabetes mellitus in a Chinese population: Results from a nested case-control study in Taiyuan, China.

    Science.gov (United States)

    Chen, Qiong; Yang, Hailan; Feng, Yongliang; Zhang, Ping; Wu, Weiwei; Li, Shuzhen; Thompson, Brian; Wang, Xin; Peng, Tingting; Wang, Fang; Xie, Bingjie; Guo, Pengge; Li, Mei; Wang, Ying; Zhao, Nan; Wang, Suping; Zhang, Yawei

    2018-03-01

    Gestational diabetes mellitus is a growing public health concern due to its large disease burden; however, the underlying pathophysiology remains unclear. Therefore, we examined the relationship between 107 single-nucleotide polymorphisms in insulin signalling pathway genes and gestational diabetes mellitus risk using a nested case-control study. The SOS1 rs7598922 GA and AA genotype were statistically significantly associated with reduced gestational diabetes mellitus risk ( p trend  = 0.0006) compared with GG genotype. At the gene level, SOS1 was statistically significantly associated with gestational diabetes mellitus risk after adjusting for multiple comparisons. Moreover, AGGA and GGGG haplotypes in SOS1 gene were associated with reduced risk of gestational diabetes mellitus. Our study provides evidence for an association between the SOS1 gene and risk of gestational diabetes mellitus; however, its role in the pathogenesis of gestational diabetes mellitus will need to be verified by further studies.

  15. Induction of sos response in Escherichia Coli cells by gamma rays

    International Nuclear Information System (INIS)

    Fuentes Lorenzo, J.L.; Padron Soler, E.; Martin Hernandez, G.; Perez Tamayo, N.; del Sol Abascal, E.R.; Almeida Varela, E.

    1996-01-01

    The kinetics of sos response induction in Escherichia Coli cells was studied by means of the gene fusion SfiA:LacZ. In these cells, the specific beta galactosidase activity and the cellular growth rate showed an exponential behaviour. The sensitivity of the GC 2181 starin to gamma irradiation is equal to Do -1= 0.00088/Gy. The beta galactosidase activity

  16. Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157:H7 Shiga toxin release and role of the SOS response.

    Science.gov (United States)

    Nassar, Farah J; Rahal, Elias A; Sabra, Ahmad; Matar, Ghassan M

    2013-09-01

    Treatment of Escherichia coli O157:H7 by certain antimicrobial agents often exacerbates the patient's condition by increasing either the release of preformed Shiga toxins (Stx) upon cell lysis or their production through the SOS response-triggered induction of Stx-producing prophages. Recommended subinhibitory concentrations (sub-MICs) of azithromycin (AZI), gentamicin (GEN), imipenem (IMI), and rifampicin (RIF) were evaluated in comparison to norfloxacin (NOR), an SOS-inducer, to assess the role of the SOS response in Stx release. Relative expression of recA (SOS-inducer), Q (late antitermination gene of Stx-producing prophage), stx1, and stx2 genes was assessed at two sub-MICs of the antimicrobials for two different strains of E. coli O157:H7 using reverse transcription-real-time polymerase chain reaction. Both strains at the two sub-MICs were also subjected to Western blotting for LexA protein expression and to reverse passive latex agglutination for Stx detection. For both strains at both sub-MICs, NOR and AZI caused SOS-induced Stx production (high recA, Q, and stx2 gene expression and high Stx2 production), so they should be avoided in E. coli O157:H7 treatment; however, sub-MICs of RIF and IMI induced Stx2 production in an SOS-independent manner except for one strain at the first twofold dilution below MIC of RIF where Stx2 production decreased. Moreover, GEN caused somewhat increased Stx2 production due to its mode of action rather than any effect on gene expression. The choice of antimicrobial therapy should rely on the antimicrobial mode of action, its concentration, and on the nature of the strain.

  17. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode

    NARCIS (Netherlands)

    Driessen, A.B.J.M.; Heesch, van E.J.M.; Huiskamp, T.; Beckers, F.J.C.M.; Pemen, A.J.M.

    2014-01-01

    In this paper, a compact circuit topology is presented for pulsed power generation with a semiconductor opening switch (SOS). Such circuits require the generation of a fast forward current through the diode, followed by a reverse current that activates the recovery process. In general, magnetic

  18. Managing the SOS Response for Enhanced CRISPR-Cas-Based Recombineering in E. coli through Transient Inhibition of Host RecA Activity.

    Science.gov (United States)

    Moreb, Eirik Adim; Hoover, Benjamin; Yaseen, Adam; Valyasevi, Nisakorn; Roecker, Zoe; Menacho-Melgar, Romel; Lynch, Michael D

    2017-12-15

    Phage-derived "recombineering" methods are utilized for bacterial genome editing. Recombineering results in a heterogeneous population of modified and unmodified chromosomes, and therefore selection methods, such as CRISPR-Cas9, are required to select for edited clones. Cells can evade CRISPR-Cas-induced cell death through recA-mediated induction of the SOS response. The SOS response increases RecA dependent repair as well as mutation rates through induction of the umuDC error prone polymerase. As a result, CRISPR-Cas selection is more efficient in recA mutants. We report an approach to inhibiting the SOS response and RecA activity through the expression of a mutant dominant negative form of RecA, which incorporates into wild type RecA filaments and inhibits activity. Using a plasmid-based system in which Cas9 and recA mutants are coexpressed, we can achieve increased efficiency and consistency of CRISPR-Cas9-mediated selection and recombineering in E. coli, while reducing the induction of the SOS response. To date, this approach has been shown to be independent of recA genotype and host strain lineage. Using this system, we demonstrate increased CRISPR-Cas selection efficacy with over 10 000 guides covering the E. coli chromosome. The use of dominant negative RecA or homologues may be of broad use in bacterial CRISPR-Cas-based genome editing where the SOS pathways are present.

  19. Modeling of kinetics of the inducible protein complexes of the SOS system in bacteria E. coli which realize TLS process

    International Nuclear Information System (INIS)

    Belov, O.V.

    2008-01-01

    The mathematical model describing kinetics of the inducible genes of the protein complexes, formed during SOS response in bacteria Escherichia coli is developed. Within the bounds of developed approaches the auxiliary mathematical model describing changes in concentrations of the dimers, which are the components of final protein complexes, is developed. The solutions of both models are based on the experimental data concerning expression of the basic genes of the SOS system in bacteria Escherichia coli

  20. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  1. SOS gene induction and possible mutagenic effects of freeze-drying in Escherichia coli and Salmonella typhimurium.

    Science.gov (United States)

    Rosen, Rachel; Buchinger, Sebastian; Pfänder, Ramona; Pedhazur, Rami; Reifferscheid, Georg; Belkin, Shimshon

    2016-11-01

    We report the results of a study of the potential negative effects of the freeze-drying process, normally considered a benign means for long-term conservation of living cells and the golden standard in bacterial preservation. By monitoring gene induction using a whole-cell Escherichia coli bioreporter panel, in which diverse stress-responsive gene promoters are fused to luminescent or fluorescent reporting systems, we have demonstrated that DNA repair genes belonging to the SOS operon (recA, sulA, uvrA, umuD, and lexA) were induced upon resuscitation from the freeze-dried state, whereas other stress-responsive promoters such as grpE, katG, phoA, soxS, and sodA were not affected. This observation was confirmed by the UMU-chromotest (activation of the umuD gene promoter) in Salmonella typhimurium, as well as by real-time PCR analyses of selected E. coli SOS genes. We further show that a functional SOS operon is important in viability maintenance following resuscitation, but that at the same time, this repair system may introduce significantly higher mutation rates, comparable to those induced by high concentrations of a known mutagen. Our results also indicate that the entire freeze-drying process, rather than either freezing or drying separately, is instrumental in the induction of DNA damage.

  2. SOS! Ayuda para Padres: Una Guia Practica para Manejar Problemas de Conducta Comunes y Corrientes. (SOS! Help for Parents: A Practical Guide for Handling Common Everyday Behavior Problems.) Leader's Guide.

    Science.gov (United States)

    Clark, Lynn

    This Spanish-language version of "SOS" provides parents with guidance for handling a variety of common behavior problems based on the behavior approach to child rearing and discipline. This approach suggests that good and bad behavior are both learned and can be changed, and proposes specific methods, skills, procedures, and strategies…

  3. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  4. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Science.gov (United States)

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  5. NKS/SOS-1 seminar on safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, K. [Risoe National Lab., Roskilde (Denmark); Anderson, K. [Karinta-Konsult (Sweden); Pulkkinen, U. [VTT Automation (Finland)

    2001-05-01

    The report describes presentations and discussions at a seminar held at Risoe on March 22-23, 2000. The title of the seminar was NKS/SOS-1 - Safety Analysis. It dealt with issues of relevance for the safety analysis for the entire nuclear safety field (notably reactors and nuclear waste repositories). Such issues were: objectives of safety analysis, risk criteria, decision analysis, expert judgement and risk communication. In addition, one talk dealt with criteria for chemical industries in Europe. The seminar clearly showed that the concept of risk is multidimensional, which makes clarity and transparency essential elements in risk communication, and that there are issues of common concern between different applications, such as how to deal with different kinds of uncertainty and expert judgement. (au)

  6. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-01

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  7. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  8. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Directory of Open Access Journals (Sweden)

    Anwar Rayan

    Full Text Available Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  9. Anticancer drugs during pregnancy.

    Science.gov (United States)

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    Science.gov (United States)

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  11. Differential expression of SOS genes in an E. coli mutant producing unstable lexA protein enhances excision repair but inhibits mutagenesis

    International Nuclear Information System (INIS)

    Peterson, K.R.; Ganesan, A.K.; Mount, D.W.; Stanford Univ., CA)

    1986-01-01

    The SOS response is displayed following treatments which damage DNA or inhibit DNA replication. Two associated activities include enhanced capacity for DNA repair resulting from derepression of the recA, uvrA, uvrB and uvrD genes and increased mutagenesis due to derepression of recA, umuC and umuD. These changes are the consequence of the derepression of at least seventeen unlinked operons negatively regulated by LexA repressor. Following treatments that induce the SOS response, a signal molecule interacts with RecA protein, converting it to an activated form. Activated RecA protein facilitates the proteolytic cleavage of LexA repressor, which results in derepression of the regulon. The cell then enters a new physiological state during which time DNA repair processes are augmented. The lexA41 mutant of E. coli is a uv-resistant derivative of another mutant, lexA3, which produces a repressor that is not cleaved following inducing treatments. The resultant protein is unstable. Lac operon fusions to most of the genes in the SOS regulon were used to show that the various damage-inducible genes were derepressed to different extents. uvrA, B, and D were almost fully derepressed. Consistent with this finding, the rate of removal of T4 endonuclease V-sensitive sites was more rapid in the uv-irradiated lexA41 mutant than in normal cells, suggesting a more active excision repair system. We propose that the instability of the LexA41 protein reduces the intracellular concentration of repressor to a level that allows a high level of excision repair. The additional observation that SOS mutagenesis was only weakly induced in a lexA41 uvrA - mutant implies that the mutant protein partially represses one or more genes whose products promote SOS mutagenesis. 17 refs., 4 figs., 1 tab

  12. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response.

    Directory of Open Access Journals (Sweden)

    Luciane S Fonseca

    Full Text Available Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2 one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.

  13. The role of complementary and alternative medicine (CAM) routines and rituals in men with cancer and their significant others (SOs): a qualitative investigation.

    Science.gov (United States)

    Klafke, Nadja; Eliott, Jaklin A; Olver, Ian N; Wittert, Gary A

    2014-05-01

    Complementary and alternative medicine (CAM) is frequently used in cancer patients, often with contribution of the significant others (SOs), but without consultation of healthcare professionals. This research explored how cancer patients integrate and maintain CAM use in their everyday life, and how SOs are involved in it. In this qualitative study, male participants were selected from a preceding Australian survey on CAM use in men with cancer (94 % response rate and 86 % consent rate for follow-up interview). Semistructured interviews were conducted with 26 men and 24 SOs until data saturation was reached. Interview transcripts were coded and analyzed thematically, thereby paying close attention to participants' language in use. A major theme associated with high CAM use was "CAM routines and rituals," as it was identified that men with cancer practiced CAM as (1) functional routines, (2) meaningful rituals, and (3) mental/spiritual routines or/and rituals. Regular CAM use was associated with intrapersonal and interpersonal benefits: CAM routines provided men with certainty and control, and CAM rituals functioned for cancer patients and their SOs as a means to create meaning, thereby working to counter fear and uncertainty consequent upon a diagnosis of cancer. SOs contributed most to men's uptake and maintenance of dietary-based CAM in ritualistic form resulting in interpersonal bonding and enhanced closeness. CAM routines and rituals constitute key elements in cancer patients' regular and satisfied CAM use, and they promote familial strengthening. Clinicians and physicians can convey these benefits to patient consultations, further promoting the safe and effective use of CAM.

  14. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae

    International Nuclear Information System (INIS)

    Galvao, C.W.; Pedrosa, F.O.; Souza, E.M.; Yates, M.G.; Chubatsu, L.S.; Steffens, M.B.R.

    2003-01-01

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable σ 70 -dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response. (author)

  15. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, C.W.; Pedrosa, F.O.; Souza, E.M.; Yates, M.G.; Chubatsu, L.S.; Steffens, M.B.R. [Univ. Federal do Parana, Dept. of Biochemistry and Molecular Biology, Curitiba (Brazil)]. E-mail: steffens@bioufpr.br

    2003-02-15

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable {sigma}{sup 70}-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response. (author)

  16. The recX gene product is involved in the SOS response in Herbaspirillum seropedicae.

    Science.gov (United States)

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2003-02-01

    The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable sigma70-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response.

  17. Investigation of potential genotoxic activity using the SOS Chromotest for real paracetamol wastewater and the wastewater treated by the Fenton process.

    Science.gov (United States)

    Kocak, Emel

    2015-01-01

    The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.

  18. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor.

    Science.gov (United States)

    McDonald, Caleb B; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Developments in platinum anticancer drugs

    Science.gov (United States)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  20. Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units

    Science.gov (United States)

    Song, Chenchen; Martínez, Todd J.

    2017-10-01

    Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. The resulting energy conservation in micro-canonical AIMD demonstrates that the implementation provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.

  1. Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis

    International Nuclear Information System (INIS)

    Battista, J.R.; Ohta, Toshihiro; Nohmi, Takehiko; Sun, W.; Walker, G.C.

    1990-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. The UmuD protein shares homology with a family of proteins that includes LexA and several bacteriophage repressors. UmuD is posttranslationally activated for its role n mutagenesis by a RecA-mediated proteolytic cleavage that yields UmuD'. A set of missense mutants of umuD was isolated and shown to encode mutant UmuD proteins that are deficient in RecA-mediated cleavage in vivo. Most of these mutations are dominant to umuD + with respect to UV mutagenesis yet do not interfere with SOS induction. Although both UmuD and UmuD' form homodimers, the authors provide evidence that they preferentially form heterodimers. The relationship of UmuD to LexA, λ repressor, and other members of the family of proteins is discussed and possible roles intact UmuD in modulating SOS mutagenesis are discussed

  2. El último urbanismo de Antonio Bonet: el poblado SOS (1970

    Directory of Open Access Journals (Sweden)

    Juan Fernando Ródenas García

    2018-04-01

    Full Text Available El poblado SOS de Aldeas Infantiles, Sant Feliu de Codines, Barcelona (1970, junto al poblado Hifrensa (realizado y los planes urbanísticos de Prat I y II (no realizados, constituyen los últimos conjuntos urbanísticos de cierto calado proyectados por Antonio Bonet, si exceptuamos su producción turística. Bonet plantea un conjunto residencial para alojar a niños huérfanos con equipamientos comunitarios educacionales y deportivos. Bonet recrea en el poblado SOS la atmósfera, a escala humana, que se respira en aquellos pueblos que aparecen fotografiados en el número 18 (1935 de la revista del GATEPAC, AC Documentos de Actividad Contemporánea, dedicado a la arquitectura popular. Pabellones encalados, bóvedas, porches, patios, muros y plataformas de piedra dispuestas como bancales agrícolas, constituyen los elementos que construyen el paisaje de un poblado de trazo moderno y formas arcaicas. Se propone el análisis de una obra inédita que, aunque no se llevó a cabo, expresa la singular lectura del autor de las condiciones de habitabilidad para niños huérfanos, del paisaje, y al mismo tiempo, la obra condensa la experiencia de Bonet como urbanista ya experimentado que en los años 70 pone a prueba con perspectiva histórica su credo teórico fundamental: la Carta de Atenas.

  3. Current situation and future usage of anticancer drug databases.

    Science.gov (United States)

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  4. Functional characterization of two SOS-regulated genes involved in mitomycin C resistance in Caulobacter crescentus.

    Science.gov (United States)

    Lopes-Kulishev, Carina O; Alves, Ingrid R; Valencia, Estela Y; Pidhirnyj, María I; Fernández-Silva, Frank S; Rodrigues, Ticiane R; Guzzo, Cristiane R; Galhardo, Rodrigo S

    2015-09-01

    The SOS response is a universal bacterial regulon involved in the cellular response to DNA damage and other forms of stress. In Caulobacter crescentus, previous work has identified a plethora of genes that are part of the SOS regulon, but the biological roles of several of them remain to be determined. In this study, we report that two genes, hereafter named mmcA and mmcB, are involved in the defense against DNA damage caused by mitomycin C (MMC), but not against lesions induced by other common DNA damaging agents, such as UVC light, methyl methanesulfonate (MMS) and hydrogen peroxide. mmcA is a conserved gene that encodes a member of the glyoxalases/dioxygenases protein family, and acts independently of known DNA repair pathways. On the other hand, epistasis analysis showed that mmcB acts in the same pathway as imuC (dnaE2), and is required specifically for MMC-induced mutagenesis, but not for that induced by UV light, suggesting a role for MmcB in translesion synthesis-dependent repair of MMC damage. We show that the lack of MMC-induced mutability in the mmcB strain is not caused by lack of proper SOS induction of the imuABC operon, involved in translesion synthesis (TLS) in C. crescentus. Based on this data and on structural analysis of a close homolog, we propose that MmcB is an endonuclease which creates substrates for ImuABC-mediated TLS patches. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Structural analyses of polymorphic transitions of sn-1, 3-distearoyl-2-oleoylglycerol (SOS) and sn-1, 3-dioleoyl-2-stearoylglycerol (OSO): assessment on steric hindrance of unsaturated and saturated acyl chain interactions.

    Science.gov (United States)

    Yano, J; Sato, K; Kaneko, F; Small, D M; Kodali, D R

    1999-01-01

    Polymorphic transformations in two saturated-unsaturated mixed acid triacylglycerols, SOS (sn -1,3-distearoyl-2-oleoylglycerol) and OSO (sn -1,3-dioleoyl-2-stearoylglycerol), have been studied by FT-IR spectroscopy using deuterated specimens in which stearoyl chains are fully deuterated. A reversible phase transition between sub alpha and alpha and a series of irreversible transitions (alpha-->gamma-->beta'-->beta (beta2, beta1) for SOS and alpha-->beta'-->beta for OSO) were studied with an emphasis on the conformational ordering process of stearoyl and oleoyl chains. The alpha-->sub alpha reversible transition was due to the orientational change of stearoyl chains in the lateral directions from the hexagonal subcell to a perpendicularly packed one. As the first stage of the series of irreversible transitions from alpha to beta, the conformational ordering of saturated chains took place in the alpha-->gamma transition of SOS and in the alpha-->beta' transition of OSO; one stearoyl chain in SOS and OSO takes the all-trans conformation and the second stearoyl chain in SOS takes the bent conformation like those observed in the most stable beta-type. As the final stage, the ordering of unsaturated chains occurred in the beta'-->beta transition both for SOS and OSO. A conversion in the layered structure from bilayer to trilayer was also accompanied by the conformational ordering in the alpha-->gamma transition of SOS and in the beta'-->beta transition of OSO.

  6. Peripheral Quantitative Computed Tomography (pQCT), Broad Band Ultrasound Attenuation (BUA) and Speed of Sound (SOS) in a population of normal females aged from 8 to 20 years

    International Nuclear Information System (INIS)

    Bagni, B.; Corazzari, T.; Bagni, I.; Garuti, F.; Franceschetto, A.; Casolo, A.; Pansini, F.

    2002-01-01

    Aim: To evaluate, in a population of young healthy females aged from 8 to 20 years the bone mass peak (or density), the normal ranges versus age and menarche-age using two method: pQCT (peripheral Quantitative Computed Tomography) and ultrasound absorptiometry. Material and Methods: From 1998 to 2000 selective measurement of Bone Mineral Density (BMD) of trabecular bone at the ultradistal radius using pQCT, BUA (Broad Band Attenuation) and SOS ( Speed Of Sound) was carried out on 426 healthy females (aged from 8 to 20 years) in north Italy. BMD were measured using a single photon miniaturized tomographic scanner in the ultradistal radius, SOS and BUA were measured at the same time, using a water bath device obtaining parametric bidimensional images of BUA and SOS. The population studied refers to normal females free of bone metabolism alteration, in pre and post-pubertal status. Results: A normal range of BMD, BUA and SOS versus age and menarche age were established. A linear correlation was found between BUA and BMD measured with pQCT. SOS does not show any correlation with BMD. The pre-puberty and the post-puberty groups show statistically significant differences between SOS, BUA and BMD. We found the peak bone density (measured with pQCT) in the trabecular bone at the ultradistal radius at 15 years of age (mean menarche age of 10 years). The same position of the peak was found for BUA, for SOS the situation is not well defined. The analytical fitting of the data highlights a polynomial correlation of BMD vs. age, SOS vs. age, BUA vs. age. Conclusions: It appears that the sexual growth influences the position of peak bone density. The results obtained show a statistically significant correlation between BUA and BMD versus age, the menarche-age and the period of exposure of bone tissue to the oestrogen. After all, pQCT and ultrasound are useful techniques to evaluate bone density and structure also in a growing population. The results of this study shows the

  7. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Complexity of the ultraviolet mutation frequency response curve in Escherichia coli B/r: SOS induction, one-lesion and two-lesion mutagenesis

    International Nuclear Information System (INIS)

    Doudney, C.O.

    1976-01-01

    Three distinct sections of the ultraviolet mutation frequency response (MFR) curve toward tryptophan prototrophy have been demonstrated in Escherichia coli B/r WP2 trp thy and its uvrA derivative in log-phase growth in minimal medium. The initial section, which appears fluence-squared, may reflect the necessity, if mutation is to result, for induction of two lesions, one located within the potentially mutated genetic locus and the other damaging deoxyribonucleic acid replication and resulting in induction of the error-prone SOS repair function. A second linear section is ascribed to the continued induction, after exposure above that sufficient for complete SOS expression, of isolated lesions which lead to mutation in potentially mutated loci. The third section demonstrates an increased rate of mutagenesis and suggests the induction of two lesions in proximity which result in additional mutations. Split-exposure studies support the inducible nature of the SOS function and suggest that mutation frequency decline (MFD) is due to excision resulting from or related to the prevention of SOS induction by inhibition of protein synthesis. Preirradiation tryptophan starvation of the uvr + strain for 30 min decreases MFR in the first and second sections of the curve. Reduction of MFR in the third section requires more prestarvation time and is blocked by nalidixic acid. The decreased MFR of the first and second sections is ascribed to promotion of postirradiation MFD based on excision and that of the third section to completion of the chromosome during the prestarvation period

  9. RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells.

    Science.gov (United States)

    Mitsuda, Yoshihide; Morita, Ken; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Obara, Moeka; Hirata, Masahiro; Kataoka, Tatsuki R; Muto, Manabu; Kaneda, Yasufumi; Nakahata, Tatsutoshi; Liu, Pu Paul; Adachi, Souichi; Sugiyama, Hiroshi; Kamikubo, Yasuhiko

    2018-04-23

    The dual function of runt-related transcriptional factor 1 (RUNX1) as an oncogene or oncosuppressor has been extensively studied in various malignancies, yet its role in gastric cancer remains elusive. Up-regulation of the ErbB2/HER2 signaling pathway is frequently-encountered in gastric cancer and contributes to the maintenance of these cancer cells. This signaling cascade is partly mediated by son of sevenless homolog (SOS) family, which function as adaptor proteins in the RTK cascades. Herein we report that RUNX1 regulates the ErbB2/HER2 signaling pathway in gastric cancer cells through transactivating SOS1 expression, rendering itself an ideal target in anti-tumor strategy toward this cancer. Mechanistically, RUNX1 interacts with the RUNX1 binding DNA sequence located in SOS1 promoter and positively regulates it. Knockdown of RUNX1 led to the decreased expression of SOS1 as well as dephosphorylation of ErbB2/HER2, subsequently suppressed the proliferation of gastric cancer cells. We also found that our novel RUNX inhibitor (Chb-M') consistently led to the deactivation of the ErbB2/HER2 signaling pathway and was effective against several gastric cancer cell lines. Taken together, our work identified a novel interaction of RUNX1 and the ErbB2/HER2 signaling pathway in gastric cancer, which can potentially be exploited in the management of this malignancy.

  10. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    Science.gov (United States)

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  11. Geographical Simulation and Optimization System (GeoSOS and Its Application in the Analysis of Geographic National Conditions

    Directory of Open Access Journals (Sweden)

    LI Xia

    2017-10-01

    Full Text Available Since the Chinese first survey on geographic national conditions has completed, an urgent need is to analyze these geographical data, such as mining of spatial distribution patterns, land use transition rules, development trends. The analysis is crucial for extracting the knowledge from these big data about geographic national conditions. The remote sensing interpretation data and land use/cover data generated by these geographic national conditions monitoring projects are the basic data sources for a variety of research and applications in terms of land use change detection, urban dynamic analysis, and urban/land use planning. The information can be used for assisting in the coordination of land resource use and decision making for urban and rural development, ecological environment protection and other issues that depends on spatial intelligent decisions. We proposed the theoretical framework of geographical simulation and optimization system (GeoSOS, which coupled geographic process simulation/prediction and spatial optimization, provides powerful theoretical support and practical tools for above researches. This paper develops the extension of GeoSOS software-GeoSOS for ArcGIS, which is an ArcGIS Add-In runs on ArcGIS platform for facilitating the above analyses. We take the urban expansion and ecological protection research in rapid urbanization area as an example, use the software to tackle a series of urbanization issues in the study area. The simulation results show that the predicted land development intensity of Guangdong Province will exceed the constraint index in 2020 according to the national development plan. However, the urbanization expansion based on the constraints of land development intensity and ecological protection can satisfy these constraints, and obtain a more compact landscape pattern. The analysis has shown that GeoSOS can be a useful tool for assisting in the analysis of geographic national conditions information

  12. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    Belov, O.V.; Kapralov, M.I.; Chuluunbaatar, O.; Sweilam, N.H.

    2012-01-01

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD' 2 C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  13. Suppression of SOS-inducing activity of chemical mutagens by metabolites from microbial transformation of (-)-isolongifolene.

    Science.gov (United States)

    Sakata, Kazuki; Oda, Yoshimitsu; Miyazawa, Mitsuo

    2010-02-24

    In this study, biotransformation of (-)-isolongifolene (1) by Glomerella cingulata and suppressive effect on umuC gene expression by chemical mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and aflatoxin B(1) (AFB(1)) of the SOS response in Salmonella typhimurium TA1535/pSK1002 were investigated. Initially, 1 was carried out the microbial transformation by G. cingulata. The result found that 1 was converted into (-)-isolongifolen-9-one (2), (-)-(2S)-13-hydroxy-isolongifolen-9-one (3), and (-)-(4R)-4-hydroxy-isolongifolen-9-one (4) by G. cingulata, and their conversion rates were 60, 25, and 15%, respectively. The metabolites suppressed the SOS-inducing activity of furylfuramid and AFB(1) in the umu test. Comound 2 showed gene expression by chemical mutagens furylfuramide and AFB(1) was suppressed 54 and 50% at <0.5 mM, respectively. Compound 2 is the most effective compound in this experiment.

  14. Polypharmacology of Approved Anticancer Drugs.

    Science.gov (United States)

    Amelio, Ivano; Lisitsa, Andrey; Knight, Richard A; Melino, Gerry; Antonov, Alexey V

    2017-01-01

    The major drug discovery efforts in oncology have been concentrated on the development of selective molecules that are supposed to act specifically on one anticancer mechanism by modulating a single or several closely related drug targets. However, a bird's eye view on data from multiple available bioassays implies that most approved anticancer agents do, in fact, target many more proteins with different functions. Here we will review and systematize currently available information on the targets of several anticancer drugs along with revision of their potential mechanisms of action. Polypharmacology of the current antineoplastic agents suggests that drug clinical efficacy in oncology can be achieved only via modulation of multiple cellular mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Anticancer Properties of Capsaicin Against Human Cancer.

    Science.gov (United States)

    Clark, Ruth; Lee, Seong-Ho

    2016-03-01

    There is persuasive epidemiological and experimental evidence that dietary phytochemicals have anticancer activity. Capsaicin is a bioactive phytochemical abundant in red and chili peppers. While the preponderance of the data strongly indicates significant anticancer benefits of capsaicin, more information to highlight molecular mechanisms of its action is required to improve our knowledge to be able to propose a potential therapeutic strategy for use of capsaicin against cancer. Capsaicin has been shown to alter the expression of several genes involved in cancer cell survival, growth arrest, angiogenesis and metastasis. Recently, many research groups, including ours, found that capsaicin targets multiple signaling pathways, oncogenes and tumor-suppressor genes in various types of cancer models. In this review article, we highlight multiple molecular targets responsible for the anticancer mechanism of capsaicin. In addition, we deal with the benefits of combinational use of capsaicin with other dietary or chemotherapeutic compounds, focusing on synergistic anticancer activities. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  17. Manifestations and management of veno-occlusive disease/sinusoidal obstruction syndrome in the era of contemporary therapies.

    Science.gov (United States)

    Tewari, Priti; Wallis, Whitney; Kebriaei, Partow

    2017-02-01

    The concept of veno-occlusive disease (VOD), along with our understanding of it, has historically been and remains an evolving phenomenon. This review presents a broad view of VOD, also known as sinusoidal obstruction syndrome (SOS), including (1) traditional hematopoietic stem cell transplant-associated VOD/SOS, (2) late-onset VOD/SOS, (3) pulmonary VOD, and (4) VOD/SOS associated with chemotherapy only. Several VOD/SOS management modalities exist that include modes for both prophylaxis and treatment. An extensive review of the literature on monoclonal antibodies, both approved and pending approval by the US Food and Drug Administration, reveals that only a few have been associated with an increased risk for VOD/SOS. In fact, bevacizumab appears to have a protective effect against the development of VOD/SOS. As the landscape of cancer treatment changes, careful attention needs to be focused on how new therapies affect the incidence of VOD/SOS.

  18. Quantification, modelling and design for signal history dependent effects in mixed-signal SOI/SOS circuits; Quantification, modelisation et conception prenant en compte les etats anterieurs des signaux dans les circuits mixtes SOI/SOS

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.F.; Redman-White, W.; Bracey, M.; Tenbroek, B.M.; Lee, M.S. [Southampton Univ., Dept. of Electronics and Computer Sciences (United Kingdom); Uren, M.J.; Brunson, K.M. [DERA Farnborough, GU, Hants (United Kingdom)

    1999-07-01

    This paper deals with how the radiation hardness of mixed signal SOI/SOS CMOS circuits is taken into account at both architectural terms as well as the the transistor level cell designs. The primary issue is to deal with divergent transistor threshold shifts, and to understand the effects of large amplitude non stationary signals on analogue cell behaviour. (authors)

  19. Anticancer Activity of Amauroderma rude

    Science.gov (United States)

    Yang, Xiangling; Li, Haoran; Li, Xiang-Min; Pan, Hong-Hui; Cai, Mian-Hua; Zhong, Hua-Mei; Yang, Burton B.

    2013-01-01

    More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities. PMID:23840494

  20. Anticancer activity of Amauroderma rude.

    Directory of Open Access Journals (Sweden)

    Chunwei Jiao

    Full Text Available More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities.

  1. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  2. Glutamic acid as anticancer agent: An overview

    OpenAIRE

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K.

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. I...

  3. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    Directory of Open Access Journals (Sweden)

    Chi H.J. Kao

    2013-02-01

    Full Text Available ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides being widely known as the major active ingredients, the different biological pathways by which they exert their anti-cancer effect remain poorly defined. Therefore, understanding the mechanisms of action may lead to more widespread use of Ganoderma as an anti-cancer agent.The aim of this paper is to summarise the various bioactive mechanisms that have been proposed for the anti-cancer properties of triterpenes and polysaccharides extracted from G. lucidum. A literature search of published papers on NCBI with keywords “Ganoderma” and “cancer” was performed. Among those, studies which specifically examined the anti-cancer activities of Ganoderma triterpenes and polysaccharides were selected to be included in this paper.We have found five potential mechanisms which are associated with the anti-cancer activities of Ganoderma triterpenes and three potential mechanisms for Ganoderma polysaccharides. In addition, G. lucidum has been used in combination with known anti-cancer agents to improve the anti-cancer efficacies. This suggests Ganoderma’s bioactive pathways may compliment that of anti-cancer agents. In this paper we present several potential anti-cancer mechanisms of Ganoderma triterpenes and polysaccharides which can be used for the development of Ganoderma as an anti-cancer agent.

  4. Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, S. A.; Kussmann, J.; Ochsenfeld, C., E-mail: Christian.Ochsenfeld@cup.uni-muenchen.de [Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München (Germany); Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München (Germany)

    2014-08-07

    We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset perturbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like graphics processing units (GPU). The scaling is reduced from O(N{sup 5}) to O(N{sup 3}) by a reformulation of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the 3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the conventional algorithm. Instead, our reformulation allows to replace the rate-determining contraction step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs. Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient manner on a single GPU-server.

  5. Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units.

    Science.gov (United States)

    Maurer, S A; Kussmann, J; Ochsenfeld, C

    2014-08-07

    We present a low-prefactor, cubically scaling scaled-opposite-spin second-order Møller-Plesset perturbation theory (SOS-MP2) method which is highly suitable for massively parallel architectures like graphics processing units (GPU). The scaling is reduced from O(N⁵) to O(N³) by a reformulation of the MP2-expression in the atomic orbital basis via Laplace transformation and the resolution-of-the-identity (RI) approximation of the integrals in combination with efficient sparse algebra for the 3-center integral transformation. In contrast to previous works that employ GPUs for post Hartree-Fock calculations, we do not simply employ GPU-based linear algebra libraries to accelerate the conventional algorithm. Instead, our reformulation allows to replace the rate-determining contraction step with a modified J-engine algorithm, that has been proven to be highly efficient on GPUs. Thus, our SOS-MP2 scheme enables us to treat large molecular systems in an accurate and efficient manner on a single GPU-server.

  6. Construction of a ColD cda Promoter-Based SOS-Green Fluorescent Protein Whole-Cell Biosensor with Higher Sensitivity toward Genotoxic Compounds than Constructs Based on recA, umuDC, or sulA Promoters

    DEFF Research Database (Denmark)

    Norman, Anders; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2005-01-01

    Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N-methyl-N'-......Four different green fluorescent protein (GFP)-based whole-cell biosensors were created based on the DNA damage inducible SOS response of Escherichia coli in order to evaluate the sensitivity of individual SOS promoters toward genotoxic substances. Treatment with the known carcinogen N......-cell biosensor which is not only able to detect minute levels of genotoxins but, due to its use of the green fluorescent protein, also a reporter system which should be applicable in high-throughput screening assays as well as a wide variety of in situ detection studies....

  7. Quantification, modelling and design for signal history dependent effects in mixed-signal SOI/SOS circuits

    International Nuclear Information System (INIS)

    Edwards, C.F.; Redman-White, W.; Bracey, M.; Tenbroek, B.M.; Lee, M.S.; Uren, M.J.; Brunson, K.M.

    1999-01-01

    This paper deals with how the radiation hardness of mixed signal SOI/SOS CMOS circuits is taken into account at both architectural terms as well as the the transistor level cell designs. The primary issue is to deal with divergent transistor threshold shifts, and to understand the effects of large amplitude non stationary signals on analogue cell behaviour. (authors)

  8. A System of Systems (SoS) Approach to Sustainable Energy Planning

    Science.gov (United States)

    Madani, Kaveh; Hadian, Saeed

    2015-04-01

    The general policy of mandating fossil fuel replacement with "green" energies may not be as effective and environmental-friendly as perceived, due to the secondary impacts of renewable energies on different natural resources. An integrated systems analysis framework is essential to developing sustainable energy supply systems with minimal unintended impacts on valuable natural resources such as water, climate, and ecosystem. This presentation discusses how a system of systems (SoS) framework can be developed to quantitatively evaluate the desirability of different energy supply alternatives with respect to different sustainability criteria under uncertainty. Relative Aggregate Footprint (RAF) scores of a range of renewable and nonrenewable energy alternatives are determined using their performance values under four sustainability criteria, namely carbon footprint, water footprint, land footprint, and cost of energy production. Our results suggest that despite their lower emissions, some renewable energy sources are less promising than non-renewable energy sources from a SoS perspective that considers the trade-offs between carbon footprint of energies and their effects on water, ecosystem, and economic resources. A new framework based on the Modern Portfolio Theory (MPT) is also proposed for analyzing the overall sustainability of different energy mixes for different risk of return levels with respect to the trade-offs involved. It is discussed how the proposed finance-based sustainability evaluation method can help policy makers maximize the energy portfolio's expected sustainability for a given amount of portfolio risk, or equivalently minimize risk for a given level of expected sustainability level, by revising the energy mix.

  9. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The

  10. The SOS and RpoS Regulons Contribute to Bacterial Cell Robustness to Genotoxic Stress by Synergistically Regulating DNA Polymerase Pol II.

    Science.gov (United States)

    Dapa, Tanja; Fleurier, Sébastien; Bredeche, Marie-Florence; Matic, Ivan

    2017-07-01

    Mitomycin C (MMC) is a genotoxic agent that induces DNA cross-links, DNA alkylation, and the production of reactive oxygen species (ROS). MMC induces the SOS response and RpoS regulons in Escherichia coli SOS-encoded functions are required for DNA repair, whereas the RpoS regulon is typically induced by metabolic stresses that slow growth. Thus, induction of the RpoS regulon by MMC may be coincidental, because DNA damage slows growth; alternatively, the RpoS regulon may be an adaptive response contributing to cell survival. In this study, we show that the RpoS regulon is primarily induced by MMC-induced ROS production. We also show that RpoS regulon induction is required for the survival of MMC-treated growing cells. The major contributor to RpoS-dependent resistance to MMC treatment is DNA polymerase Pol II, which is encoded by the polB gene belonging to the SOS regulon. The observation that polB gene expression is controlled by the two major stress response regulons that are required to maximize survival and fitness further emphasizes the key role of this DNA polymerase as an important factor in genome stability. Copyright © 2017 by the Genetics Society of America.

  11. Quantitative Proteomic Analysis of Staphylococcus aureus Treated With Punicalagin, a Natural Antibiotic From Pomegranate That Disrupts Iron Homeostasis and Induces SOS.

    Science.gov (United States)

    Cooper, Bret; Islam, Nazrul; Xu, Yunfeng; Beard, Hunter S; Garrett, Wesley M; Gu, Ganyu; Nou, Xiangwu

    2018-05-01

    Staphylococcus aureus, a bacterial, food-borne pathogen of humans, can contaminate raw fruits and vegetables. While physical and chemical methods are available to control S. aureus, scientists are searching for inhibitory phytochemicals from plants. One promising compound from pomegranate is punicalagin, a natural antibiotic. To get a broader understanding of the inhibitory effect of punicalagin on S. aureus growth, high-throughput mass spectrometry and quantitative isobaric labeling was used to investigate the proteome of S. aureus after exposure to a sublethal dose of punicalagin. Nearly half of the proteins encoded by the small genome were interrogated, and nearly half of those exhibited significant changes in accumulation. Punicalagin treatment altered the accumulation of proteins and enzymes needed for iron acquisition, and it altered amounts of enzymes for glycolysis, citric acid cycling, protein biosynthesis, and purine and pyrimidine biosynthesis. Punicalagin treatment also induced an SOS cellular response to damaged DNA. Transcriptional comparison of marker genes shows that the punicalagin-induced iron starvation and SOS responses resembles those produced by EDTA and ciprofloxacin. These results show that punicalagin adversely alters bacterial growth by disrupting iron homeostasis and that it induces SOS, possibly through DNA biosynthesis inhibition. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function

    DEFF Research Database (Denmark)

    Li, Man; Li, Yong; Weeks, Olivia

    2017-01-01

    Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum...... creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1......associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10(-8) by sequence kernel...

  13. DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes

    DEFF Research Database (Denmark)

    Løbner-Olesen, Anders; Slominska-Wojewodzka, Monika; Hansen, Flemming G.

    2008-01-01

    Background: Initiation of chromosome replication in E. coli requires the DnaA and DnaC proteins and conditionally-lethal dnaA and dnaC mutants are often used to synchronize cell populations. Methodology/Principal Findings: DNA microarrays were used to measure mRNA steady-state levels in initiatio......C genes was increased at the non-permissive temperature in the respective mutant strains indicating auto-regulation of both genes. Induction of the SOS regulon was observed in dnaC2 cells at 38 degrees C and 42 degrees C. Flow cytometric analysis revealed that dnaC2 mutant cells at non......-permissive temperature had completed the early stages of chromosome replication initiation. Conclusion/Significance: We suggest that in dnaC2 cells the SOS response is triggered by persistent open-complex formation at oriC and/or by arrested forks that require DnaC for replication restart....

  14. The Self-help Online against Suicidal thoughts (SOS) trial

    DEFF Research Database (Denmark)

    Mühlmann, Charlotte; Madsen, Trine; Hjorthøj, Carsten Rygaard

    2017-01-01

    -list assignment for 32 weeks. The primary outcomes are frequency and intensity of suicidal thoughts. Secondary outcome measures include depressive symptoms, hopelessness, worrying, quality of life, costs related to health care utilization and production loss. Number of deliberate self-harm episodes, suicides......BACKGROUND: Suicidal thoughts are common, causing distress for millions of people all over the world. However, people with suicidal thoughts might not access support due to financial restraints, stigma or a lack of available treatment offers. Self-help programs provided online could overcome...... these barriers, and previous efforts show promising results in terms of reducing suicidal thoughts. This study aims to examine the effectiveness of an online self-help intervention in reducing suicidal thoughts among people at risk of suicide. The Danish Self-help Online against Suicidal thoughts (SOS) trial...

  15. Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli.

    Science.gov (United States)

    Smirnova, Galina V; Tyulenev, Aleksey V; Muzyka, Nadezda G; Peters, Mikhail A; Oktyabrsky, Oleg N

    2017-01-01

    An in-depth understanding of the physiological response of bacteria to antibiotic-induced stress is needed for development of new approaches to combatting microbial infections. Fluoroquinolone ciprofloxacin causes phase alterations in Escherichia coli respiration and membrane potential that strongly depend on its concentration. Concentrations lower than the optimal bactericidal concentration (OBC) do not inhibit respiration during the first phase. A dose higher than the OBC provokes immediate SOS-independent inhibition of respiration and growth that can contribute to a decreased SOS response and lowered susceptibility to high concentrations of ciprofloxacin. Cells retain their metabolic activity, membrane potential and accelerated K + uptake and produce low levels of superoxide and H 2 O 2 during the first phase. The time before initiation of the second phase is inversely correlated with the ciprofloxacin concentration. The second phase is SOS-dependent and characterized by respiratory inhibition, membrane depolarization, K + and glutathione leakage and cessation of glucose consumption and may be considered as cell death. atpA, gshA and kefBkefC knockouts, which perturb fluxes of protons and K + , can modify the degree and duration of respiratory inhibition and potassium retention. Loss of K + efflux channels KefB and KefC enhances the susceptibility of E. coli to ciprofloxacin. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  17. Anticancer Properties of Lamellarins

    Directory of Open Access Journals (Sweden)

    Christian Bailly

    2015-02-01

    Full Text Available In 1985 the first lamellarins were isolated from a small oceanic sea snail. Today, more than 50 lamellarins have been inventoried and numerous derivatives synthesized and tested as antiviral or anticancer agents. The lead compound in the family is lamellarin D, characterized as a potent inhibitor of both nuclear and mitochondrial topoisomerase I but also capable of directly interfering with mitochondria to trigger cancer cell death. The pharmacology and chemistry of lamellarins are discussed here and the mechanistic portrait of lamellarin D is detailed. Lamellarins frequently serve as a starting point in the design of anticancer compounds. Extensive efforts have been devoted to create novel structures as well as to improve synthetic methods, leading to lamellarins and related pyrrole-derived marine alkaloids.

  18. Antimicrobial and anticancer activities of extracts from Urginea ...

    African Journals Online (AJOL)

    Background: Increasing antibiotic resistance among human pathogenic microorganisms and the failure of conventional cancer therapies attracting great attention among scientists in the field of herbal medicine to develop natural antimicrobial and anticancer drugs. Thus, the antimicrobial and anticancer activities from fruits ...

  19. Anticancer Effect of AntiMalarial Artemisinin Compounds | Das ...

    African Journals Online (AJOL)

    A PubMed search of about 127 papers on anti‑cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. ... Keywords: Anticancer agents, Antimalarials, Antitumor activity, Artemisinins, Novel chemotherapy ...

  20. Observation and Analysis of Anti-cancer Drug Use and Dose ...

    African Journals Online (AJOL)

    As all anti-cancer drugs are of narrow therapeutic window so dose individualization is required to be done. A study was conducted to check the use of anti-cancer drugs in the local anti-cancer facility of Bahawalpur i.e. Bahawalpur Institute of Nuclear Medicine and Oncology (BINO). In this study, the dose individualization ...

  1. Bioactivity-Guided Isolation of Anticancer Agents from Bauhinia ...

    African Journals Online (AJOL)

    Background: Flowers of Bauhinia kockiana were investigated for their anticancer properties. Methods: Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was ...

  2. The success of opening single chronic total occlusion lesions to improve myocardialviabilitytrial (SOS-COMEDY)

    Science.gov (United States)

    Huang, Rongchong; Song, Xiantao; Zhang, Haishan; Tian, Wen; Huang, Zheng; Zhang, Xingwei; Yang, Junqing; Zhang, Dongfeng; Wu, Jian; Zhong, Lei; Ting, Henry H.

    2018-01-01

    Abstract Aims: Success of opening single (SOS)-comedy is a prospective multicenter study to compare the improvement in the decrease of myocardial viability by percutaneous coronary intervention (PCI) with that by optimal medical therapy (OMT) alone in patients with chronic total occlusion (CTO) of a single coronary artery. Methods and results: The risks and the benefits of both options (PCI and OMT) were listed in a CTO decision aid (DA). Eligible participants detected by invasive coronary angiography (ICA) or coronary computed tomography angiography (CCTA) were divided into PCI or OMT groups according to patients’ choice after shared-decision making process with DA. Participants will undergo positron emission tomography/computed tomography (PET/CT), cardiac magnetic resonance (CMR) and transthoracic echocardiography (TTE), and proceed to ICA and revascularization if possible. Blinded core laboratory interpretation will be performed for ICA, CCTA, PET/CT, CMR, and TTE. All participants will be followed up for 12 months. The primary endpoint is the improvement to the decrease of myocardial viability from baseline assessed with the use of PET/CT after 12-month follow-up. Conclusions: All of the patients are appropriately consented before enrolling in this study, which has been approved by the Ethics Committee. Results of SOS-COMEDY will be helpful to develop a strategy for single CTO patients. PMID:29668609

  3. SOS Móvel: sistema para auxiliar pessoas na solicitação de socorro

    Directory of Open Access Journals (Sweden)

    Suellem Stephanne Fernandes Queiroz

    2016-11-01

    Full Text Available Devido aos índices elevados de acidentes, incidentes e ocorrências, qualquer um está vulnerável e pode necessitar de informações sobre centros de saúde mais próximos para o socorro. Na busca de reduzir o alto índice de ocorrências fatais em acidentes e incidentes quaisquer, medidas tecnológicas passaram a ser empregadas para contatar rapidamente o socorro. O SOS móvel é um sistema para auxiliar pessoas na solicitação de socorro. O sistema faz reconhecimento de atividades, utiliza sensores móveis com sensibilidade ao contexto e um agente inteligente para detecção de situações de risco e disparo de solicitações de socorro automáticas. O sistema é composto por uma parte web e uma móvel. O aplicativo móvel é utilizado ativamente pelo usuário, enquanto que a interface web é utilizada pelos familiares ou gestores da saúde que podem monitorar o usuário e visualizar sua localização e alertas. Os experimentos com o SOS Móvel foram realizados em um ambiente de simulações e permitiram concluir que esse apresentou desempenho satisfatório ao detectar riscos e fazer o envio de solicitações de socorro automaticamente.

  4. Gene Expression in Class 2 Integrons Is SOS-Independent and Involves Two Pc Promoters.

    Science.gov (United States)

    Jové, Thomas; Da Re, Sandra; Tabesse, Aurore; Gassama-Sow, Amy; Ploy, Marie-Cécile

    2017-01-01

    Integrons are powerful bacterial genetic elements that permit the expression and dissemination of antibiotic-resistance gene cassettes. They contain a promoter Pc that allows the expression of gene cassettes captured through site-specific recombination catalyzed by IntI, the integron-encoded integrase. Class 1 and 2 integrons are found in both clinical and environmental settings. The regulation of intI and of Pc promoters has been extensively studied in class 1 integrons and the regulatory role of the SOS response on intI expression has been shown. Here we investigated class 2 integrons. We characterized the P intI2 promoter and showed that intI2 expression is not regulated via the SOS response. We also showed that, unlike class 1 integrons, class 2 integrons possess not one but two active Pc promoters that are located within the attI2 region that seem to contribute equally to gene cassette expression. Class 2 integrons mostly encode an inactive truncated integrase, but the rare class 2 integrons that encode an active integrase are associated with less efficient Pc2 promoter variants. We propose an evolutionary model for class 2 integrons in which the absence of repression of the integrase gene expression led to mutations resulting in either inactive integrase or Pc variants of weaker activity, thereby reducing the potential fitness cost of these integrons.

  5. Test CMOS/SOS RAM for transient radiation upset comparative research and failure analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Poljakov, I.V.

    1995-01-01

    The test Complementary Metal-Oxide-Semiconductor/Silicon-on-Sapphire Random Access Memory (CMOS/SOS RAM) with eight types of memory cells was designed and tested at high dose rates with a flash X-ray machine and laser simulator. The memory cell (MC) design with additional transistors and RC-chain was found to be upset free up to 2 x 10 12 rad(Si)/s. An inversion effect was discovered in which almost 100% logic upset was observed in poorly protected memory cell arrays at very high dose rates

  6. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis.

    Science.gov (United States)

    Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H

    2014-12-01

    Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.

  7. Anticancer Activity of Bacterial Proteins and Peptides.

    Science.gov (United States)

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  8. Prediction of anticancer activity of aliphatic nitrosoureas using ...

    African Journals Online (AJOL)

    Design and development of new anticancer drugs with low toxicity is a very challenging task and computer aided methods are being increasingly used to solve this problem. In this study, we investigated the anticancer activity of aliphatic nitrosoureas using quantum chemical quantitative structure activity relation (QSAR) ...

  9. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  10. The Walker A motif mutation recA4159 abolishes the SOS response and recombination in a recA730 mutant of Escherichia coli.

    Science.gov (United States)

    Šimatović, Ana; Mitrikeski, Petar T; Vlašić, Ignacija; Sopta, Mary; Brčić-Kostić, Krunoslav

    2016-01-01

    In bacteria, the RecA protein forms recombinogenic filaments required for the SOS response and DNA recombination. In order to form a recombinogenic filament, wild type RecA needs to bind ATP and to interact with mediator proteins. The RecA730 protein is a mutant version of RecA with superior catalytic abilities, allowing filament formation without the help of mediator proteins. The mechanism of RecA730 filament formation is not well understood, and the question remains as to whether the RecA730 protein requires ATP binding in order to become competent for filament formation. We examined two mutants, recA730,4159 (presumed to be defective for ATP binding) and recA730,2201 (defective for ATP hydrolysis), and show that they have different properties with respect to SOS induction, conjugational recombination and double-strand break repair. We show that ATP binding is essential for all RecA730 functions, while ATP hydrolysis is required only for double-strand break repair. Our results emphasize the similarity of the SOS response and conjugational recombination, neither of which requires ATP hydrolysis by RecA730. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Anticancer Activity Of Plant Genus Clerodendrum (Lamiaceae: A Review

    Directory of Open Access Journals (Sweden)

    Donald Emilio Kalonio

    2017-12-01

    Full Text Available Plants of the genus Clerodendrum (Lamiaceae is widespread in tropical and subtropical regions. Plants of this genus are used both empirically and scientifically as anti-inflammatory, antidiabetic, antimalarial, antiviral, antihypertensive, hypolipidemic, antioxidant, and antitumor. Results of the molecular docking simulation of chemical content of these plants could potentially provide an anticancer effect. This paper aims to review the anticancer activity of plant genus Clerodendrum based on scientific data. The method used in this study is the literature study. Searches were conducted online (in the database PubMed, Science Direct and Google Scholar and on various books (Farmakope Herbal Indonesia and PROSEA. A total 12 plants of the genus Clerodendrum have anticancer activity in vitro and in vivo, thus potentially to be developed as a source of new active compounds with anticancer activity.

  12. The antimicrobial lysine-peptoid hybrid LP5 inhibits DNA replication and induces the SOS response in Staphylococcus aureus

    DEFF Research Database (Denmark)

    Gottschalk, Sanne; Ifrah, Dan; Lerche, Sandra

    2013-01-01

    the growth of S. aureus without ATP leakage. Instead, LP5 bound DNA and inhibited macromolecular synthesis. The binding to DNA also led to inhibition of DNA gyrase and topoisomerase IV and caused induction of the SOS response. CONCLUSIONS: Our data demonstrate that LP5 may have a dual mode of action against...

  13. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  14. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    and retention (EPR) effect. The liposomes consists of sPLA2 IIA sensitive phospholipids having anticancer drugs covalently attached to the sn-2 position of the glycerol backbone in the phospholipids, hence drug leakage is avoided from the carrier system. Various known anticancer agents, like chlorambucil, all......) based strategy using a limited number of reaction types. Upon coupling of unsaturated building blocks ring closing metathesis cascades were used to “reprogram” the molecular scaffold and highly diverse structures were obtained. In total 20 novel compounds with a broad structural diversity were prepared...

  15. Ethnomedicine Claim Directed in Silico Prediction of Anticancer ...

    African Journals Online (AJOL)

    2018-01-01

    Jan 1, 2018 ... 0.70, MACCS fingerprint), and the top 346 compounds it identified were identical to compounds with proven anticancer activity on 60 cell lines (23). Given such performance of. CDRUG, our finding can be taken as a preliminary evidence of anticancer activity by many of the medicinal plants used for treating.

  16. Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics

    Science.gov (United States)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng

    2018-01-01

    We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.

  17. Effect of rifampicin and gentamicin on Shiga toxin 2 expression level and the SOS response in Escherichia coli O104:H4.

    Science.gov (United States)

    Fadlallah, Sukayna M; Rahal, Elias A; Sabra, Ahmad; Kissoyan, Kohar A B; Matar, Ghassan M

    2015-01-01

    A novel pathotype, Shiga toxin-producing Escherichia coli O104:H4, was the cause of a severe outbreak that affected European countries, mainly Germany, in 2011. The effect of different regimens of rifampicin and gentamicin were evaluated to determine possible treatment modes for the novel strain, and to evaluate the SOS response and its effect on toxin release. Pulsed-field gel electrophoresis (PFGE) was performed on the novel E. coli O104:H4 pathotype and two pre-outbreak E. coli O104:H4 CDC strains. Transcript levels of the stx2 and recA gene (SOS response inducer) were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) in the novel E. coli O104:H4 samples subjected to different regimens of rifampicin and gentamicin. Consequently, reverse passive latex agglutination (RPLA) was used to determine the Stx2 titers in these samples. Western blot was performed to determine the LexA levels (SOS response repressor) in E. coli O104:H4. The efficacy of treatment with antimicrobial agents was assessed in BALB/c mice. The outbreak and pre-outbreak strains are closely related as shown by PFGE, which demonstrated slight genomic differences between the three strains. The transcription level of the stx2 gene in the new pathotype was 1.41- and 1.75-fold that of the 2009 EL-2050 and 2009 EL-2071 pre-outbreak strains, respectively. Moreover, the transcription level of the stx2 gene in the new pathotype was substantially decreased as a result of treatment with the different concentrations of the antimicrobial agents, but was enhanced when the antibiotics were administered at two subinhibitory levels. RPLA data were in accordance with the qRT-PCR results. E. coli O104:H4 exposed to gentamicin at both sub-minimum inhibitory concentration (MIC) levels led to high transcription levels of the recA gene and lack of expression of the LexA protein, implying that the SOS response was activated. Rifampicin at both sub-MIC levels resulted in low

  18. Induction of UV-resistant DNA replication in Escherichia coli: Induced stable DNA replication as an SOS function

    International Nuclear Information System (INIS)

    Kogoma, T.; Torrey, T.A.; Connaughton, M.J.

    1979-01-01

    The striking similarity between the treatments that induce SOS functions and those that result in stable DNA replication (continuous DNA replication in the absence of protein synthesis) prompted us to examine the possibility of stable DNA replication being a recA + lexA + -dependent SOS function. In addition to the treatments previously reported, ultraviolet (UV) irradiation or treatment with mitomycin C was also found to induce stable DNA replication. The thermal treatment of tif-1 strains did not result in detectable levels of stable DNA replication, but nalidixic acid readily induced the activity in these strains. The induction of stable DNA replication with nalidixic acid was severely suppressed in tif-1 lex A mutant strains. The inhibitory activity of lexA3 was negated by the presence of the spr-5l mutation, an intragenic suppressor of lexA3. Induced stable DNA replication was found to be considerably more resistant to UV irradiation than normal replication both in a uvr A6 strain and a uvr + strain. The UV-resistant replication occurred mostly in the semiconservative manner. The possible roles of stable DNA replication in repair of damaged DNA are discussed. (orig.)

  19. SOS1 and PTPN11 mutations in five cases of Noonan syndrome with multiple giant cell lesions.

    Science.gov (United States)

    Beneteau, Claire; Cavé, Hélène; Moncla, Anne; Dorison, Nathalie; Munnich, Arnold; Verloes, Alain; Leheup, Bruno

    2009-10-01

    We report five cases of multiple giant cell lesions in patients with typical Noonan syndrome. Such association has frequently been referred to as Noonan-like/multiple giant cell (NL/MGCL) syndrome before the molecular definition of Noonan syndrome. Two patients show mutations in PTPN11 (p.Tyr62Asp and p.Asn308Asp) and three in SOS1 (p.Arg552Ser and p.Arg552Thr). The latter are the first SOS1 mutations reported outside PTPN11 in NL/MGCL syndrome. MGCL lesions were observed in jaws ('cherubism') and joints ('pigmented villonodular synovitis'). We show through those patients that both types of MGCL are not PTPN11-specific, but rather represent a low penetrant (or perhaps overlooked) complication of the dysregulated RAS/MAPK signaling pathway. We recommend discarding NL/MGCL syndrome from the nosology, as this presentation is neither gene-nor allele-specific of Noonan syndrome; these patients should be described as Noonan syndrome with MGCL (of the mandible, the long bone...). The term cherubism should be used only when multiple giant cell lesions occur without any other clinical and molecular evidence of Noonan syndrome, with or without mutations of the SH3BP2 gene.

  20. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fascaplysin Sensitizes Anti-Cancer Effects of Drugs Targeting AKT and AMPK

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-12-01

    Full Text Available Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB, also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK, which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.

  2. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Rachael E Hawtin

    2010-04-01

    Full Text Available Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer

  3. Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.

    Science.gov (United States)

    Enck, Kevin; McQuilling, John Patrick; Orlando, Giuseppe; Tamburrini, Riccardo; Sivanandane, Sittadjody; Opara, Emmanuel C

    2017-01-01

    Islet transplantation (IT) has recently been shown to be a promising alternative to pancreas transplantation for reversing diabetes. IT requires the isolation of the islets from the pancreas, and these islets can be used to fabricate a bio-artificial pancreas. Enzymatic digestion is the current gold standard procedure for islet isolation but has lingering concerns. One such concern is that it has been shown to damage the islets due to nonselective tissue digestion. This chapter provides a detailed description of a nonenzymatic method that we are exploring in our lab as an alternative to current enzymatic digestion procedures for islet isolation from human and nonhuman pancreatic tissues. This method is based on selective destruction and protection of specific cell types and has been shown to leave the extracellular matrix (ECM) of islets intact, which may thus enhance islet viability and functionality. We also show that these SOS-isolated islets can be microencapsulated for transplantation.

  4. The SOS model partition function and the elliptic weight functions

    International Nuclear Information System (INIS)

    Pakuliak, S; Silantyev, A; Rubtsov, V

    2008-01-01

    We generalized a recent observation (Khoroshkin and Pakuliak 2005 Theor. Math. Phys. 145 1373) that the partition function of the six-vertex model with domain wall boundary conditions can be obtained from a calculation of projections of the product of total currents in the quantum affine algebra U q (sl 2 -hat) in its current realization. A generalization is done for the elliptic current algebra (Enriquez and Felder 1998 Commun. Math. Phys. 195 651, Enriquez and Rubtsov 1997 Ann. Sci. Ecole Norm. Sup. 30 821). The projections of the product of total currents in this case are calculated explicitly and are presented as integral transforms of a product of the total currents. It is proved that the integral kernel of this transform is proportional to the partition function of the SOS model with domain wall boundary conditions

  5. Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It

    DEFF Research Database (Denmark)

    Mengistu, Henok; Lehman, Joel Anthony; Clune, Jeff

    2016-01-01

    of evolvable digital phenotypes. Although some types of selection in evolutionary computation indirectly encourage evolvability, one unexplored possibility is to directly select for evolvability. To do so, we estimate an individual's future potential for diversity by calculating the behavioral diversity of its...... immediate offspring, and select organisms with increased offspring variation. While the technique is computationally expensive, we hypothesized that direct selection would better encourage evolvability than indirect methods. Experiments in two evolutionary robotics domains confirm this hypothesis: in both...... domains, such Evolvability Search produces solutions with higher evolvability than those produced with Novelty Search or traditional objective-based search algorithms. Further experiments demonstrate that the higher evolvability produced by Evolvability Search in a training environment also generalizes...

  6. Medicinal plants combating against cancer--a green anticancer approach.

    Science.gov (United States)

    Sultana, Sabira; Asif, Hafiz Muhammad; Nazar, Hafiz Muhammad Irfan; Akhtar, Naveed; Rehman, Jalil Ur; Rehman, Riaz Ur

    2014-01-01

    Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.

  7. Estimation for aerial detection effectiveness with cooperation efficiency factors of early-warning aircraft in early-warning detection SoS under BSC framework

    Science.gov (United States)

    Zhu, Feng; Hu, Xiaofeng; He, Xiaoyuan; Guo, Rui; Li, Kaiming; Yang, Lu

    2017-11-01

    In the military field, the performance evaluation of early-warning aircraft deployment or construction is always an important problem needing to be explored. As an effective approach of enterprise management and performance evaluation, Balanced Score Card (BSC) attracts more and more attentions and is studied more and more widely all over the world. It can also bring feasible ideas and technical approaches for studying the issue of the performance evaluation of the deployment or construction of early-warning aircraft which is the important component in early-warning detection system of systems (SoS). Therefore, the deep explored researches are carried out based on the previously research works. On the basis of the characteristics of space exploration and aerial detection effectiveness of early-warning detection SoS and the cardinal principle of BSC are analyzed simply, and the performance evaluation framework of the deployment or construction of early-warning aircraft is given, under this framework, aimed at the evaluation issue of aerial detection effectiveness of early-warning detection SoS with the cooperation efficiency factors of the early-warning aircraft and other land based radars, the evaluation indexes are further designed and the relative evaluation model is further established, especially the evaluation radar chart being also drawn to obtain the evaluation results from a direct sight angle. Finally, some practical computer simulations are launched to prove the validity and feasibility of the research thinking and technologic approaches which are proposed in the paper.

  8. Anticancer properties of brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Swaczynová, Jana; Malíková, J.; Hoffmannová, L.; Kohout, Ladislav; Strnad, Miroslav

    2007-01-01

    Roč. 72, č. 11 (2007), - ISSN 0032-0943. [Annual Congress on Medicinal Plant Research /54./. 29.08.2006-02.09.2006, Helsinki] Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511 Keywords : brassinosteroids * anticancer activity * proliferation * apoptosis Subject RIV: CC - Organic Chemistry

  9. Natural flora and anticancer regime: milestones and roadmap.

    Science.gov (United States)

    Bhatnagar, Ira; Thomas, Noel Vinay; Kim, Se-Kwon

    2013-07-01

    Cancer has long been an area of extensive research both at the molecular as well as pharmaceutical level. However, lack of understanding of the underlying molecular signalling and the probable targets of therapeutics is a major concern in successful treatment of cancer. The situation becomes even worse, with the increasing side effects of the existing synthetic commercial drugs. Natural compounds especially those derived from plants have been best explored for their anticancer properties and most of them have been efficient against the known molecular targets of cancer. However, advent of biotechnology and resulting advances in medical arena have let to the increasing knowledge of newer carcinogenic signaling agents which has made the anticancer drug discovery even more demanding. The present review aims to bring forward the molecular mediators of cancer and compiles the plant derived anticancer agents with special emphasis on their clinical status. Since marine arena has proved to be a tremendous source of pharmaceutical agents, this review also focuses on the anticancer potential of marine plants especially algae. This is a comprehensive review covering major aspects of cancer mediation and utilization of marine flora for remediation of this deadly disease.

  10. Melatonin Anticancer Effects: Review

    Directory of Open Access Journals (Sweden)

    Luigi Di Bella

    2013-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine, MLT, the main hormone produced by the pineal gland, not only regulates circadian rhythm, but also has antioxidant, anti-ageing and immunomodulatory properties. MLT plays an important role in blood composition, medullary dynamics, platelet genesis, vessel endothelia, and in platelet aggregation, leukocyte formula regulation and hemoglobin synthesis. Its significant atoxic, apoptotic, oncostatic, angiogenetic, differentiating and antiproliferative properties against all solid and liquid tumors have also been documented. Thanks, in fact, to its considerable functional versatility, MLT can exert both direct and indirect anticancer effects in factorial synergy with other differentiating, antiproliferative, immunomodulating and trophic molecules that form part of the anticancer treatment formulated by Luigi Di Bella (Di Bella Method, DBM: somatostatin, retinoids, ascorbic acid, vitamin D3, prolactin inhibitors, chondroitin-sulfate. The interaction between MLT and the DBM molecules counters the multiple processes that characterize the neoplastic phenotype (induction, promotion, progression and/or dissemination, tumoral mutation. All these particular characteristics suggest the use of MLT in oncological diseases.

  11. Electrical and crystallographic evaluation of SOS implanted with silicon and/or oxygen

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Kobayashi, H.; Takahashi, T.; Inada, T.

    1985-01-01

    RBS and Hall measurements have revealed that the formation of an amorphous laer in SOS near in the Si/sapphire interface by oxygen implantation at 130 K followed by regrowth by thermal annealing above 800 0 C for 20 min in N 2 is effective in improving crystalline quality and Hall mobility as well as in increasing activation of implanted P. The temperature dependence of the mobility was measured. The mobility increased by 80% and 40% at 77 K and RT, respectively, after improvement in crystalline quality. The costly low temperature implantation of O can be replaced with dual implantation of Si and O; formation of an amorphous layer by Si implantation and Al gettering by oxygen implantation. (orig.)

  12. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    Directory of Open Access Journals (Sweden)

    Xuejing Lin

    2015-05-01

    Full Text Available Costunolide (CE and dehydrocostuslactone (DE are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.

  13. Green tea phytocompounds as anticancer: A review

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2016-04-01

    Full Text Available Green tea is universally considered significant and its benefits have been experimentally explored by researchers and scientists. Anticancer potential of green tea has been completely recognized now. Green tea contains anti-cancerous constituents and nutrients that have powerful remedial effects. By using electronic data base (1998–2015, different compounds in green tea possessing anticancer activity including epigallocatechin-3-gallate, paclitaxel and docetaxel combinations, ascorbic acid, catechins, lysine, synergistic arginine, green tea extract, proline, and green tea polyphenols has been reported. Green tea extracts exhibited remedial potential against cancer of lung, colon, liver, stomach, leukemic cells, prostate, breast, human cervical cells, head, and neck. For centuries, green tea has been utilized as medicine for therapeutic purposes. It originated in China and extensively used in Asian countries for blood pressure depression and as anticancer medicine. Green tea has therapeutic potential against many diseases such as lowering of blood pressure, Parkinson’s disease, weight loss, esophageal disease, skin-care, cholesterol, Alzheimer’s disease and diabetes.

  14. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  15. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  16. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  17. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    Science.gov (United States)

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  18. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS

    Science.gov (United States)

    Schroeder, Dana L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive and time consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion and beam interaction impedance characteristics of a ferruleless coupled-cavity traveling-wave tube slow-wave circuit were simulated using the code. Computer results agree closely with experimental data. Variations in the cavity geometry dimensions of period length and gap-to-period ratio were modeled. These variations can be used in velocity taper designs to reduce the radiofrequency (RF) phase velocity in synchronism with the decelerating electron beam. Such circuit designs can result in enhanced TWT power and efficiency.

  19. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    Science.gov (United States)

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  20. Development of the software of the data taking system SOS for the SAPHIR experiment. Entwicklung der Software des Datennahmesystems SOS fuer das SAPHIR-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Manns, J.

    1989-02-01

    The data acquistion system SOS has been developed for the SAPHIR experiment at the Bonn stretcher ring ELSA. It can handle up to 280 kilobytes of data per second or a maximum triggerrate of 200 Hz. The multiprocessor based online system consists of twenty VIP-microprocessors and two VAX-computers. Each component of the SAPHIR experiment has at least one program in the online system to maintain special functions for this specific component. All of these programs can receive event data without interfering with the transfer of events to a mass storage for offline analysis. A special program SOL has been developed to serve as a user interface to the data acquisition system and as a status display for most of the programs of the online system. Using modern features like windowing and mouse control on a VAX-station the SAPHIR online SOL establishes an easy way of controlling the data acquisition system. (orig.).

  1. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide.

    Science.gov (United States)

    Yakimov, Alexander; Pobegalov, Georgii; Bakhlanova, Irina; Khodorkovskii, Mikhail; Petukhov, Michael; Baitin, Dmitry

    2017-09-19

    The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming.

    Science.gov (United States)

    Irazoki, Oihane; Aranda, Jesús; Zimmermann, Timo; Campoy, Susana; Barbé, Jordi

    2016-01-01

    In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  3. Molecular interaction and cellular location of RecA and CheW proteins in Salmonella enterica during SOS response and their implication in swarming

    Directory of Open Access Journals (Sweden)

    Oihane Irazoki

    2016-10-01

    Full Text Available In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  4. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs

    International Nuclear Information System (INIS)

    Maeda, Noriyuki; Miyazawa, Souichiro; Shimizu, Kosuke; Asai, Tomohiro; Yonezawa, Sei; Oku, Naoto; Kitazawa, Sadaya; Namba, Yukihiro; Tsukada, Hideo

    2006-01-01

    We previously observed the enhanced anticancer efficacy of anticancer drugs encapsulated in Ala-Pro-Arg-Pro-Gly-polyethyleneglycol-modified liposome (APRPG-PEG-Lip) in tumor-bearing mice, since APRPG peptide was used as an active targeting tool to angiogenic endothelium. This modality, antineovascular therapy (ANET), aims to eradicate tumor cells indirectly through damaging angiogenic vessels. In the present study, we examined the in vivo trafficking of APRPG-PEG-Lip labeled with [2- 18 F]2-fluoro-2-deoxy- D -glucose ([2- 18 F]FDG) by use of positron emission tomography (PET), and observed that the trafficking of this liposome was quite similar to that of non-targeted long-circulating liposome (PEG-Lip). Then, histochemical analysis of intratumoral distribution of both liposomes was performed by use of fluorescence-labeled liposomes. In contrast to in vivo trafficking, intratumoral distribution of both types of liposomes was quite different: APRPG-PEG-Lip was colocalized with angiogenic endothelial cells that were immunohistochemically stained for CD31, although PEG-Lip was localized around the angiogenic vessels. These results strongly suggest that intratumoral distribution of drug carrier is much more important for therapeutic efficacy than the total accumulation of the anticancer drug in the tumor, and that active delivery of anticancer drugs to angiogenic vessels is useful for cancer treatment. (author)

  5. Pengaruh Suhu Terhadap Tegangan Permukaan Sabun Cuci Piring Cair Buatan Sendiri, Sunlight, Dan S.O.S

    OpenAIRE

    Siahaan, Okio Patar

    2011-01-01

    The effect of temperature on the surface tension of homemade liquid dish soap, Sunlight, and SOS was carried out. The temperatures was variated 280C(without heating), 300C, 400C and 500C. The homemade liquid dish soap was prepared by using an active ingredients. The active ingredient of the liquid dishwashing soap were sodium lauryl ether sulphate, sodium alkyl benzene sulfonate, and sodium lauril ether sulfate, respectively. The determination of surface tension was based the increasing of t...

  6. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  7. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  8. SOS switch system (SSS) in the radiation treatment room

    International Nuclear Information System (INIS)

    Komiyama, Takafumi; Motoyama, Tsuyoshi; Nakamura, Koji; Onishi, Hiroshi; Araya, Masayuki; Sano, Naoki

    2009-01-01

    We applied patient's self-breath hold irradiation system to a device to declare the patient's intentions (SOS switch system: SSS) in the radiation room and examined a utility for problem recognition and improvement of risk management during radiation therapy by induction of SSS. Between May 2005 and October 2006, we used SSS with 65 patients. The study involved 32 men and 33 women with a median age of 65 (range, 26-88) years. The reason for using SSS was as a shell in 57, a history of laryngectomy in 2, a cough in 6, convulsions in 1, and anxiety in 3. The treatment with SSS was performed 1,120 times. The hand switch was pushed 11 times. The reasons the switch was pushed were for nausea, aspiration, pain, and cough one time each. For the others, the reasons were unclear, and it was thought due to the clouding of consciousness from brain metastases. No problems were observed with the use of SSS. SSS was a useful device for improvement of risk management during the radiation therapy. (author)

  9. Anticancer and cytotoxic compounds from seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2009-12-01

    Full Text Available Background: Pre-clinical studies for isolation and purification of marine compounds continued at an active pace since the last decade. Today, more than 60% of the anticancer drugs commercially available are of naturally origin thus the sea is a very favorable bed for the discovery of novel anticancer agents. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed databse to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Anticancer agents were isolated and purified for 8 genera. These compounds had various structures they were polypeptide, polysaccharide, glycoprotein, alkaloid, cerebroside, and cembranoid which had different mechanism of actions including induction of apoptosis, destroying the skeletal structures of the cells, immune bioactivity and inhibition of topoisomerase I. Spisulosine is the only anticancer agent which is currently under clinical trial. Conclusions: Although, the known seashells from the Persian Gulf have potential anticancer and cytotoxic compounds but a very few investigations had been reported. Further investigations for isolation and purification on bioactive compounds from seashells of the Persian Gulf is recommended.

  10. Exploring the influence of culture conditions on kefir's anticancer properties.

    Science.gov (United States)

    Hatmal, Ma'mon M; Nuirat, Abeer; Zihlif, Malek A; Taha, Mutasem O

    2018-05-01

    Cancer is a major health problem in many parts of the world. Conventional anticancer treatments are painful, expensive, and unsafe. Therefore, demand is increasing for cancer treatments preferentially in the form of functional foods or nutritional supplements. Kefir, a traditional fermented milk dairy product, has significant antimutagenic and antitumor properties. This research addresses the hypothesis that kefir's anticancer properties are affected by fermentation conditions. Initially, kefir extracts prepared under standard conditions were screened against 7 cancer cell lines using the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Colon cancer and chronic myelogenous leukemia cells were found to be most susceptible to kefir extracts. Subsequently, a factorial design was implemented to assess the effects of 3 fermentation times (24, 48, and 72 h), 3 kefir-to-milk ratios (2, 5, and 10% wt/vol), and 3 fermentation temperatures (4, 25, and 40°C) on kefir's anticancer properties. Remarkably, exploration of the fermentation conditions allowed the anticancer properties of kefir to be enhanced by 5- to 8-fold against susceptible cell lines. Overall, these results demonstrate the possibility of optimizing the anticancer properties of kefir as a functional food in cancer therapy. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. [The Necessity and the Current Status of Safe Handling of Anticancer Drugs].

    Science.gov (United States)

    Kanda, Kiyoko

    2017-07-01

    Number of people who handle anticancer drugs in their profession is increasing. Anticancer drugs, which are hazardous drugs(HD), exert cytocidal effects on cancer cells, but many have also been shown to have mutagenicity, teratogenicity and carcinogenicity; therefore, safe handling of anticancer drugs is necessary. In July 2015, the first Japanese guidelines for exposure control measures, namely, the "Joint Guidelines for Safe Handling of Cancer Chemotherapy Drugs", were published jointly by 3 societies. Our guideline is the creation of the Japanese Society of Cancer Nursing(JSCN), Japanese Society of Medical Oncology(JSMO)and Japanese Society of Pharmaceutical Oncology(JASPO)and has a historical significance. This paper states the necessity of safe handling of anticancer drugs, Japan's recent movement of safe handling, the introduction of joint guidelines of safe handling of anticancer drugs, and new movement of safe handling of USP chapter 800 in the United States.

  12. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    Science.gov (United States)

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  13. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  14. The SOS Response Master Regulator LexA Regulates the Gene Transfer Agent of Rhodobacter capsulatus and Represses Transcription of the Signal Transduction Protein CckA.

    Science.gov (United States)

    Kuchinski, Kevin S; Brimacombe, Cedric A; Westbye, Alexander B; Ding, Hao; Beatty, J Thomas

    2016-02-01

    The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a genetic exchange element that combines central aspects of bacteriophage-mediated transduction and natural transformation. RcGTA particles resemble a small double-stranded DNA bacteriophage, package random ∼4-kb fragments of the producing cell genome, and are released from a subpopulation (SOS response in many bacteria, as a regulator of RcGTA activity. Deletion of the lexA gene resulted in the abolition of detectable RcGTA production and an ∼10-fold reduction in recipient capability. A search for SOS box sequences in the R. capsulatus genome sequence identified a number of putative binding sites located 5' of typical SOS response coding sequences and also 5' of the RcGTA regulatory gene cckA, which encodes a hybrid histidine kinase homolog. Expression of cckA was increased >5-fold in the lexA mutant, and a lexA cckA double mutant was found to have the same phenotype as a ΔcckA single mutant in terms of RcGTA production. The data indicate that LexA is required for RcGTA production and maximal recipient capability and that the RcGTA-deficient phenotype of the lexA mutant is largely due to the overexpression of cckA. This work describes an unusual phenotype of a lexA mutant of the alphaproteobacterium Rhodobacter capsulatus in respect to the phage transduction-like genetic exchange carried out by the R. capsulatus gene transfer agent (RcGTA). Instead of the expected SOS response characteristic of prophage induction, this lexA mutation not only abolishes the production of RcGTA particles but also impairs the ability of cells to receive RcGTA-borne genes. The data show that, despite an apparent evolutionary relationship to lambdoid phages, the regulation of RcGTA gene expression differs radically. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Sensitivity test of tumor cell to anticancer drug using diffusion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Soejima, S [Hirosaki Univ., Aomori (Japan). School of Medicine

    1978-11-01

    The diffusion chamber method and xenogeneic transplantation of human cancer cells in rats were studied clinically to test the sensitivity of these cells to anticancer drugs. The growth of Hirosaki sarcoma in a diffusion chamber inserted in to Wistar rats was influenced by the difference in tumor cell counts in the chamber. The growth rate in the chamber inserted in to the subcutaneous tissue was more constant than in the abdominal cavity, but the degree of proliferation of tumor cells in the abdominal cavity was more than in the subcutaneous tissue. Sarcoma and solid type sarcoma were affected by mitomycin C (MMC). The effect was greater in dd-mice than in Donryu rats. Solid type Yoshida sarcoma inserted in to the subcutaneous tissue of Donryu rat was not affected by MMC. The degree of sensitivity of methylcholanthrene induced tumor cells, inserted in to the subcutaneous tissue of Donryu rats, to MMC differed according to various conditions of the hosts. Clinically, the influences of anticancer drugs on human cancer cells inserted in to the subcutaneous tissue of /sup 60/Co-irradiated Donryu rats were observed. There were various grades of sensitivity of gastric cancer cells to anticancer drugs. MMC was effective in 53% of the cases, Cyclophosphamide in 40%, 5-FU in 54%, cytosine arabinoside in 32%, and FT-207 in 57%. Twenty-seven percent were not affected by anticancer drugs. On histological examination, tubular adenocarcinoma cells had a high sensitivity to anticancer drugs, while poorly differentiated adenocarcinoma cells had a low sensitive. Anticancer drugs selected according to the sensitivity of human cancer cells had a marked effective on advanced cancer cells. The diffusion chamber method was useful in determining the degree of bone marrow toxicity of anticancer drugs.

  16. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, C.; Kanaan, S.; Curé, M. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso. Av. Gran Bretana 1111, Valparaíso (Chile); Jones, C. E.; Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-06-10

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {sub ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.

  18. A Network of Resistances against a Multiple Crisis. SOS Rosarno and the Experimentation of Socio-Economic Alternative Models

    Directory of Open Access Journals (Sweden)

    Federico Oliveri

    2015-07-01

    Full Text Available SOS Rosarno was launched in 2011 by a group of small farmers and activists based in the Gioia Tauro Plain, Calabria, Southern Italy. The idea was to sell organic citrus fruits through short self-organized supply chains, essentially based on Solidarity Purchase Groups, in order to allow producers to pay migrant workers according to the law, to receive a fair remuneration, to guarantee healthy and affordable food to consumers, to protect the integrity of the environment. This paper aims to reconstruct the ideological frame and the genealogy, the organization and the practices, the impact and the limits of SOS Rosarno, drawing mainly on the political documents produced by the association and in-depth interviews with its diverse members. It clarifies, on one side, the strategies of alternative economy and the new social alliances implemented in order to challenge those conditions which impoverish small producers and let migrant farmworkers be exploited and become the target of racism in many Italian countrysides. It explores, on the other side, the development of a new peasant civilization as alternative to the current economic and environmental crises, in terms of de-commodification of nature and labour, construction of a convivial democratic society, transition from monoculture to food sovereignty.

  19. Anticancer effects of Ganoderma lucidum: a review of scientific evidence.

    Science.gov (United States)

    Yuen, John W M; Gohel, Mayur Danny I

    2005-01-01

    "Lingzhi" (Ganoderma lucidum), a popular medicinal mushroom, has been used in China for longevity and health promotion since ancient times. Investigations into the anticancer activity of lingzhi have been performed in both in vitro and in vivo studies, supporting its application for cancer treatment and prevention. The proposed anticancer activity of lingzhi has prompted its usage by cancer patients. It remains debatable as to whether lingzhi is a food supplement for health maintenance or actually a therapeutic "drug" for medical proposes. Thus far there has been no report of human trials using lingzhi as a direct anticancer agent, despite some evidence showing the usage of lingzhi as a potential supplement to cancer patients. Cellular immune responses and mitogenic reactivity of cancer patients have been enhanced by lingzhi, as reported in two randomized and one nonrandomized trials, and the quality of life of 65% of lung cancer patients improved in one study. The direct cytotoxic and anti-angiogenesis mechanisms of lingzhi have been established by in vitro studies; however, clinical studies should not be neglected to define the applicable dosage in vivo. At present, lingzhi is a health food supplement to support cancer patients, yet the evidence supporting the potential of direct in vivo anticancer effects should not be underestimated. Lingzhi or its products can be classified as an anticancer agent when current and more direct scientific evidence becomes available.

  20. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  1. Anticancer Efficacy of Polyphenols and Their Combinations

    Directory of Open Access Journals (Sweden)

    Aleksandra Niedzwiecki

    2016-09-01

    Full Text Available Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract with vitamin C, amino acids and other micronutrients (EPQ demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion

  2. Activation of the SOS response increases the frequency of small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Ingmer, Hanne

    2015-01-01

    BACKGROUND: In Staphylococcus aureus sub-populations of slow-growing cells forming small colony variants (SCVs) are associated with persistent and recurrent infections that are difficult to eradicate with antibiotic therapies. In SCVs that are resistant towards aminoglycosides, mutations have been...... with different mechanism of action influence the formation of SCVs that are resistant to otherwise lethal concentrations of the aminoglycoside, gentamicin. We found that exposure of S. aureus to fluoroquinolones and mitomycin C increased the frequency of gentamicin resistant SCVs, while other antibiotic classes...... failed to do so. The higher proportion of SCVs in cultures exposed to fluoroquinolones and mitomycin C compared to un-exposed cultures correlate with an increased mutation rate monitored by rifampicin resistance and followed induction of the SOS DNA damage response. CONCLUSION: Our observations suggest...

  3. Apoptin towards safe and efficient anticancer therapies.

    Science.gov (United States)

    Backendorf, Claude; Noteborn, Mathieu H M

    2014-01-01

    The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.

  4. Glyceride structure and sterol composition of SOS-7 halophyte oil

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1991-06-01

    Full Text Available Glyceride structure of SOS-7 halophyte oil was studied using the lipase hydrolysis technique. This halophyte sample was obtained from 1988 harvest planted in Ghardaka, on the border of the Red Sea, Egypt. The oilseed was ground and extracted for its oil using commercial hexane in Soxhlet extractor. The unsaturated fatty acids were found centralized in the 2-position of triglycerides, whereas oleic and linolenic acids showed more preference for this position. It was found that P3 was the major component of GS3, whereas P2L and PStL; PL2, POL and StL2 are predominating among GS2U and GSU3 respectively. L3 manifested itself as the principal constituent of GU3 type. Sterol composition of the halophyte oil was determined by GLC as TMS derivative. It was found that the oil contains campsterol, β-sitosterol, stigmasterol and 7-stigmasterol of which 7-stigmasterol is the major sterol and constitute 52.4%.

    Se ha estudiado usando la técnica de hidrólisis mediante lipasa la estructura glicerídica de aceite de halofito SOS-7. Esta muestra de halofito fue obtenida a partir de una cosecha de 1988 plantada en Ghardaka, en la orilla del Mar Rojo, Egipto. Para la extracción del aceite de la semilla molida se utilizó hexano comercial en extractor Soxhlet. Los ácidos grasos insaturados se encontraron centralizados en la posición 2 de los triglicéridos, siendo los ácidos oleico y linolénico los que mostraron mayor preferencia por esta posición. Se encontró que P3 fue el componente mayoritario de GS3, mientras que P2L y PStL; PL2 POL y StL2 son los predominantes para GS2U y GSU3 respectivamente. L3 se manifestó como el principal constituyente de los GU3. La composición esterólica del aceite de halofito se determinó por GLC como derivados del

  5. Anticancer potency of black sea cucumber (Holothuria atra) from Mentawai Islands, Indonesia

    OpenAIRE

    Mieke Hemiawati Satari; Utmi Arma; Syafruddin Ilyas; Dian Handayani

    2017-01-01

    ABSTRACT Introduction: The source of bioactive compounds believed to have strong anticancer potency is derived from sea cucumber. Black sea cucumber (Holothuria atra) is a dominant species in Mentawai Islands, West Sumatera, Indonesia. Key factor compound that acts as anticancer in sea cucumber extract is tritepenoid also known as Frondoside A. The purpose of this study was to determine the effectiveness of the active compound taken from black sea cucumber as anticancer. Methods: Methods u...

  6. Paraísos artificiales. La imagen drogada en la pintura europea del entresiglos XIX-XX

    OpenAIRE

    Barrón, Sofía

    2015-01-01

    Paraísos artificiales. La imagen drogada en la pintura europea del entresiglos XIX-XX. La presente investigación recopila y analiza la imagen pictórica drogada en el entresiglos XIX-XX europeo, prestando especial atención al caso español, desde la exposición descriptiva; un trabajo elaborado con voluntad de catálogo. Las conclusiones teóricas dan cuenta no sólo de que el leitmotiv tóxico puede convertirse en una temática cambiosecular en sí misma, también pone de manifiesto como el uso y ...

  7. Recent discoveries of anticancer flavonoids.

    Science.gov (United States)

    Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Plescia, Fabiana; Daidone, Giuseppe

    2017-12-15

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  9. Una ciudad de los vascones en el yacimiento de Campo Real/Fillera (Sos del Rey Católico-Sangüesa

    Directory of Open Access Journals (Sweden)

    Andreu Pintado, Javier

    2008-12-01

    Full Text Available The following paper deals with the detailed and preliminary study of the archaeological site of Campo Real/Fillera (Sos del Rey Católico/Sangüesa, between today Zaragoza and Navarra provinces specially focusing in its Roman period. The paper exposes a review of the archeological and epigraphical material from the site, proposes an urban condition for it and raises some hypothesis on its identification with one of the cities that ancient sources tribued to Vascones.El presente trabajo aborda el estudio detallado y preliminar del yacimiento arqueológico de Campo Real/Fillera (Sos del Rey Católico/Sangüesa, en el límite entre las actuales provincias de Zaragoza y Navarra con especial atención a su etapa romana. Se procede a la revisión del material arqueológico y epigráfico procedente del lugar, se defiende la condición de enclave urbano del yacimiento y se plantea una hipótesis respecto de su identificación con las ciudades que las fuentes antiguas atribuyen a los Vascones.

  10. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  11. Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-02-01

    Full Text Available A total of forty novel glycyrrhetinic acid (GA derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231 in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively and merits further exploration as a new anticancer agent.

  12. The SOS system like model to study the response to the ionizing radiation; El sistema SOS como modelo para estudiar la respuesta a la radiacion ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Serment G, J.; Brena V, M., E-mail: jorge.serment@inin.gob.m [ININ, Departamento de Radiobiologia, Laboratorio de Genetica Microbiana, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    One of the important aspects in the radiobiology is the study of the strategies that the alive beings follow to counteract the genetic lesions generated by ionizing radiation. Among these is the SOS response of the bacteria, a group of 60 genes approximately that is activated when they happen lesions in the DNA and whose causes and structural diversity are multiple. So, an interest point in this response is to elucidate as all this lesions diversity activates this response in turn since, the protein that begins the process only recognizes simple ruptures of the double helix. For this is comes off that in the great majority of the cases is required of a previous prosecution of the damages so that the structure is generated that shoots this system. In this work a brief summary of the contributions in this field is made by part of the Microbiology Laboratory of the Instituto Nacional de Investigaciones Nucleares (ININ). (Author)

  13. Pharmacokinetic-Pharmacodynamic Modelling & Simulation for Anticancer Drugs with Complex Absorption Characteristics

    NARCIS (Netherlands)

    Yu, Huixin

    2016-01-01

    Cancer is still one of the leading causes of death in the world. In recent years, targeted anticancer agents have shown to be a major breakthrough in the battle against cancer. These targeted anticancer agents, mostly administered orally, specifically target molecular defects of tumour cells

  14. Unique characteristics of regulatory approval and pivotal studies of orphan anticancer drugs in Japan.

    Science.gov (United States)

    Nakayama, Hiroki; Tsukamoto, Katsura

    2018-04-17

    The approval of orphan anticancer drugs has increased, with the number exceeding that of non-orphan drugs in Japan in recent years. Although orphan anticancer drugs may have unique characteristics due to their rarity, these have not been fully characterized. We investigated anticancer drugs approved in Japan between April 2004 and November 2017 to reveal the characteristics of regulatory approval and pivotal studies on orphan anticancer drugs compared to non-orphan drugs. The median regulatory review time and number of patients in pivotal studies on orphan anticancer drugs (281.0 days [interquartile range, 263.3-336.0]; 222.5 patients [66.0-454.3]) were significantly lower than those on non-orphan drugs (353.0 days [277.0-535.5]; 521.0 patients [303.5-814.5], respectively) (P < 0.001). Phase II, non-randomized and non-controlled designs were more frequently used in pivotal studies on orphan anticancer drugs (45.9%, 41.9% and 43.2%) than non-orphan drugs (17.2%, 14.1% and 14.1%, respectively). Response rate was more commonly used as a primary endpoint in pivotal studies on orphan anticancer drugs (48.6%) than non-orphan drugs (17.2%). Indications limited by molecular features, second or later treatment line, and accelerated approval in the United States were associated with the use of response rate in orphan anticancer drug studies. In conclusion, we demonstrated that orphan anticancer drugs in Japan have unique characteristics compared to non-orphan drugs: shorter regulatory review and pivotal studies frequently using phase II, non-randomized, or non-controlled designs and response rate as a primary endpoint, with fewer patients.

  15. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  16. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  17. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S. (Keio Univ., Tokyo (Japan). School of Medicine)

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  18. Studies on anticancer activities of lactoferrin and lactoferricin.

    Science.gov (United States)

    Yin, Cui Ming; Wong, Jack Ho; Xia, Jiang; Ng, Tzi Bun

    2013-09-01

    This review mainly summarizes results of recent studies on the anticancer activity of the multifunctional protein lactoferrin (Lf) and its derived peptide lactoferricin (Lfcin). The basic information on Lf and Lfcin, such as their sources, structures, and biological properties which favor their antitumor activity is introduced. The major anticancer mechanisms of Lf and Lfcin including cell cycle arrest, apoptosis, anti-angiogenesis, antimetastasis, immune modulation and necrosis are discussed. Other information from in vivo studies employing a mouse model is also provided. In addition, the roles of talatoferrin and delta lactoferrin, as well as improvement in drug delivery will be covered.

  19. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S [Keio Univ., Tokyo (Japan). School of Medicine

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  20. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    Science.gov (United States)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  1. ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change

    Science.gov (United States)

    Weiss, N.; Wood, J. H.

    2016-12-01

    The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.

  2. Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no [Centre for Theoretical and Computational Chemistry CTCC, Department of Chemistry, University of Tromsø, N-9037 Tromsø (Norway); Törk, Lisa; Hättig, Christof, E-mail: christof.haettig@rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum (Germany)

    2014-11-21

    We present scaling factors for vibrational frequencies calculated within the harmonic approximation and the correlated wave-function methods coupled cluster singles and doubles model (CC2) and Møller-Plesset perturbation theory (MP2) with and without a spin-component scaling (SCS or spin-opposite scaling (SOS)). Frequency scaling factors and the remaining deviations from the reference data are evaluated for several non-augmented basis sets of the cc-pVXZ family of generally contracted correlation-consistent basis sets as well as for the segmented contracted TZVPP basis. We find that the SCS and SOS variants of CC2 and MP2 lead to a slightly better accuracy for the scaled vibrational frequencies. The determined frequency scaling factors can also be used for vibrational frequencies calculated for excited states through response theory with CC2 and the algebraic diagrammatic construction through second order and their spin-component scaled variants.

  3. Anticancer Effect of AntiMalarial Artemisinin Compounds

    African Journals Online (AJOL)

    Artemisinin is a naturally occurring antimalarial showing anticancer properties. ..... Artemisinins usually promote apoptosis rather than necrosis in most cases ... artemisinin-mediated inhibition of vascular endothelial growth factor C (VEGF-C).

  4. Metabolic immune restraints: implications for anticancer vaccines.

    Science.gov (United States)

    Mocellin, Simone

    2010-01-01

    Metabolic immune restraints belong to a highly complex network of molecular mechanisms underlying the failure of naturally occurring and therapeutically induced immune responses against cancer. In the light of the disappointing results yielded so far with anticancer vaccines in the clinical setting, the dissection of the cascade of molecular events leading to tumor immune escape appears the most promising way to develop more effective immunotherapeutic strategies. Here we review the significant advances recently made in the understanding of the tumor-specific metabolic features that contribute to keep malignant cells from being recognized and destroyed by immune effectors. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits and thus to enhance the effectiveness of anticancer vaccines.

  5. Proteomics of anti-cancer drugs

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Hana; Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Hajdůch, M.; Gadher, S. J.

    2009-01-01

    Roč. 276, Supplement 1 (2009), s. 84-84 E-ISSN 1742-4658. [34th FEBS Congress. 04.07.2009-09.07.2009, Praha] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * anti-cancer drugs * biomarkers Subject RIV: FD - Oncology ; Hematology

  6. Isocorydine Derivatives and Their Anticancer Activities

    Directory of Open Access Journals (Sweden)

    Mei Zhong

    2014-08-01

    Full Text Available In order to improve the anticancer activity of isocorydine (ICD, ten isocorydine derivatives were prepared through chemical structure modifications, and their in vitro and in vivo activities were experimentally investigated. 8-Amino-isocorydine (8 and 6a,7-dihydrogen-isocorydione (10 could inhibit the growth of human lung (A549, gastric (SGC7901 and liver (HepG2 cancer cell lines in vitro. Isocorydione (2 could inhibit the tumor growth of murine sarcoma S180-bearing mice, and 8-acetamino-isocorydine (11, a pro-drug of 8-amino-isocorydine (8, which is instable in water solution at room temperature, had a good inhibitory effect on murine hepatoma H22-induced tumors. The results suggested that the isocorydine structural modifications at C-8 could significantly improve the biological activity of this alkaloid, indicating its suitability as a lead compound in the development of an effective anticancer agent.

  7. Robustness to Faults Promotes Evolvability: Insights from Evolving Digital Circuits.

    Science.gov (United States)

    Milano, Nicola; Nolfi, Stefano

    2016-01-01

    We demonstrate how the need to cope with operational faults enables evolving circuits to find more fit solutions. The analysis of the results obtained in different experimental conditions indicates that, in absence of faults, evolution tends to select circuits that are small and have low phenotypic variability and evolvability. The need to face operation faults, instead, drives evolution toward the selection of larger circuits that are truly robust with respect to genetic variations and that have a greater level of phenotypic variability and evolvability. Overall our results indicate that the need to cope with operation faults leads to the selection of circuits that have a greater probability to generate better circuits as a result of genetic variation with respect to a control condition in which circuits are not subjected to faults.

  8. Towards Developing Science of Survival (SOS) Pamphlets for "Typhoon, Flashflood, Storm Surge and Tsunami" and for "Earthquakes and Their Aftermath": A Pilot Study

    Science.gov (United States)

    Nivera, Gladys; Camacho, Vic Marie; Sia, Shila Rose; Avilla, Ruel; Butron, Benilda; Fernandez, Eisha Vienna; Pastor, Crist John; Reyes, Allan; Palomar, Brando

    2017-01-01

    The catastrophic devastation from recent natural calamities in the Philippines such as Typhoon Yolanda and Central Visayas earthquake in 2013 had made disaster preparedness a primary concern in the country. Prompted by the critical need to use science to save lives, this study developed Science of Survival (SOS) pamphlets titled "When the…

  9. Consensus-based evaluation of clinical significance and management of anticancer drug interactions

    NARCIS (Netherlands)

    Jansman, F.G.A.; Reyners, A.K.L.; van Roon, E.N.; Smorenburg, C.H.; Helgason, H.H.; le Comte, M.; Wensveen, B.M.; van den Tweel, A.M.A.; de Blois, M.; Kwee, W.; Kerremans, A.L.; Brouwers, J.R.B.J.

    Background: Anticancer drug interactions can affect the efficacy and toxicity of anticancer treatment and that of the interacting drugs. However, information on the significance, prevention, and management of these interactions is currently lacking. Objective: The purpose of this study was to assess

  10. Novel walnut peptide–selenium hybrids with enhanced anticancer synergism: facile synthesis and mechanistic investigation of anticancer activity

    Directory of Open Access Journals (Sweden)

    Liao W

    2016-04-01

    Full Text Available Wenzhen Liao,1 Rong Zhang,1 Chenbo Dong,2 Zhiqiang Yu,3 Jiaoyan Ren11College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China; 2Civil and Environmental Engineering, Rice University, Houston, TX, USA; 3School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, Guangdong, People’s Republic of ChinaAbstract: This contribution reports a facile synthesis of degreased walnut peptides (WP1-functionalized selenium nanoparticles (SeNPs hybrids with enhanced anticancer activity and a detailed mechanistic evaluation of its superior anticancer activity. Structural and chemical characterizations proved that SeNPs are effectively capped with WP1 via physical absorption, resulting in a stable hybrid structure with an average diameter of 89.22 nm. A panel of selected human cancer cell lines demonstrated high susceptibility toward WP1-SeNPs and displayed significantly reduced proliferative behavior. The as-synthesized WP1-SeNPs exhibited excellent selectivity between cancer cells and normal cells. The targeted induction of apoptosis in human breast adenocarcinoma cells (MCF-7 was confirmed by the accumulation of arrested S-phase cells, nuclear condensation, and DNA breakage. Careful investigations revealed that an extrinsic apoptotic pathway can be attributed to the cell apoptosis and the same was confirmed by activation of the Fas-associated with death domain protein and caspases 3, 8, and 9. In addition, it was also understood that intrinsic apoptotic pathways including reactive oxygen species generation, as well as the reduction in mitochondrial membrane potential, are also involved in the WP1-SeNP-induced apoptosis. This suggested the involvement of multiple apoptosis pathways in the anticancer activity. Our results indicated that WP1-SeNP hybrids with Se core encapsulated in a WP1 shell could be a highly

  11. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  12. A rapid in vitro screening system for the identification and evaluation of anticancer drugs

    International Nuclear Information System (INIS)

    Kao, J.W.; Collins, J.L.

    1989-01-01

    We report the development of an in vitro screening system that can be used to identify new anticancer drugs that are specifically cytotoxic for dividing cells. The screening system takes advantage of the potential of many cell lines, including tumor cells, to stop dividing when they are plated at high cell density. The cytotoxic effects of anticancer drugs on dividing (i.e., cells plated at low cell density) and nondividing cells (i.e., cells plated at high cell density) is measured by the incorporation of 51Cr. This in vitro system was evaluated by measuring the cytotoxic effects of the anticancer drugs cisplatin, thiotepa, doxorubicin, methotrexate, and vinblastine on the cell lines B/C-N, ME-180, and MCF-7. In this in vitro system the concentrations of the anticancer drugs that produced significant cytotoxicity on only dividing cells are similar to the concentrations that are used clinically. The fact that this in vitro system is rapid, simple, applicable to many cell types, and able to predict effective concentrations of anticancer drugs should make it useful for the screening of new anticancer drugs and for the design of preclinical studies

  13. Preface: evolving rotifers, evolving science: Proceedings of the XIV International Rotifer Symposium

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Fontaneto, D.; Jersabek, Ch.D.; Welch, D.B.M.; May, L.; Walsh, E.J.

    2017-01-01

    Roč. 796, č. 1 (2017), s. 1-6 ISSN 0018-8158 Institutional support: RVO:60077344 Keywords : evolving rotifers * 14th International Rotifer Symposium * evolving science Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.056, year: 2016

  14. The Numerical Simulation of the Nanosecond Switching of a p-SOS Diode

    Science.gov (United States)

    Podolska, N. I.; Lyublinskiy, A. G.; Grekhov, I. V.

    2017-12-01

    Abrupt high-density reverse current interruption has been numerically simulated for switching from forward to reverse bias in a silicon p + P 0 n + structure ( p-SOS diode). It has been shown that the current interruption in this structure occurs as a result of the formation of two dynamic domains of a strong electric field in regions in which the free carrier concentration substantially exceeds the concentration of the doping impurity. The first domain is formed in the n + region at the n + P 0 junction, while the second domain is formed in the P 0 region at the interface with the p + layer. The second domain expands much faster, and this domain mainly determines the current interruption rate. Good agreement is achieved between the simulation results and the experimental data when the actual electric circuit determining the electron-hole plasma pumping in and out is accurately taken into account.

  15. Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?

    Directory of Open Access Journals (Sweden)

    Nelson G. M. Gomes

    2015-06-01

    Full Text Available Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i selectivity between normal and cancer cells (ii activity against multidrug-resistant (MDR cancer cells; and (iii a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.

  16. New chroman-4-one/thiochroman-4-one derivatives as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Seref Demirayak

    2017-11-01

    Full Text Available The synthesis of 3-[3/4-(2-aryl-2-oxoethoxyarylidene]chroman/thiochroman-4-one derivatives (1–34 and evaluation of their anticancer activities were aimed in this work. Final compounds were obtained in multistep synthesis reactions using phenol/thiophenol derivatives as starting materials. For anticancer activity evaluation, all compounds were offered to National Cancer Institute (NCI, USA and selected ones were tested against sixty human tumor cell lines derived from nine neoplastic diseases. The activity results were evaluated according to the drug screening protocol of the institute. Compounds containing thiochromanone skeleton exhibited higher anticancer activity.

  17. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Science.gov (United States)

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  18. Density functionalized [RuII(NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets.

    Science.gov (United States)

    Mir, Jan Mohammad; Jain, N; Jaget, P S; Maurya, R C

    2017-09-01

    Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH 2 ), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl 3 (PPh 3 ) 3 ] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC 50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as

  19. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    Science.gov (United States)

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  20. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    OpenAIRE

    Chi H.J. Kao; Amalini C. Jesuthasan; Karen S. Bishop; Marcus P. Glucina; Lynnette R. Ferguson

    2013-01-01

    ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides bei...

  1. Comparison of digital tomosynthesis and computed tomography for lung nodule detection in SOS screening program.

    Science.gov (United States)

    Grosso, Maurizio; Priotto, Roberto; Ghirardo, Donatella; Talenti, Alberto; Roberto, Emanuele; Bertolaccini, Luca; Terzi, Alberto; Chauvie, Stéphane

    2017-08-01

    To compare the lung nodules' detection of digital tomosynthesis (DTS) and computed tomography (CT) in the context of the SOS (Studio OSservazionale) prospective screening program for lung cancer detection. One hundred and thirty-two of the 1843 subjects enrolled in the SOS study underwent CT because non-calcified nodules with diameters larger than 5 mm and/or multiple nodules were present in DTS. Two expert radiologists reviewed the exams classifying the nodules based on their radiological appearance and their dimension. LUNG-RADS classification was applied to compare receiver operator characteristics curve between CT and DTS with respect to final diagnosis. CT was used as gold standard. DTS and CT detected 208 and 179 nodules in the 132 subjects, respectively. Of these 208 nodules, 189 (91%) were solid, partially solid, and ground glass opacity. CT confirmed 140/189 (74%) of these nodules but found 4 nodules that were not detected by DTS. DTS and CT were concordant in 62% of the cases applying the 5-point LUNG-RADS scale. The concordance rose to 86% on a suspicious/non-suspicious binary scale. The areas under the curve in receiver operator characteristics were 0.89 (95% CI 0.83-0.94) and 0.80 (95% CI 0.72-0.89) for CT and DTS, respectively. The mean effective dose was 0.09 ± 0.04 mSv for DTS and 4.90 ± 1.20 mSv for CT. The use of a common classification for nodule detection in DTS and CT helps in comparing the two technologies. DTS detected and correctly classified 74% of the nodules seen by CT but lost 4 nodules identified by CT. Concordance between DTS and CT rose to 86% of the nodules when considering LUNG-RADS on a binary scale.

  2. Design and implementation of a radiation hardened silicon on sapphire (SOS) embedded signal conditioning unit controller (SCUC) for the RAPID instrument on the Cluster satellites

    International Nuclear Information System (INIS)

    Ersland, L.

    1992-07-01

    The Cluster mission consistens of four spacecrafts equipped with instruments capable of making comprehensive measurements of plasma particles and electromagnetic fields. The RAPID (Research with Adaptive Particle Imaging Detectors) spectrometer is one of many instruments on board the Cluster satellites. It is designed for fast analysis of energetic electrons and ions with a complete coverage of the unit sphere in phase space. This thesis describes the development and testing of an embedded controller for the Spectroscopic Camera for Electrons, Neutral and Ion Compositions (SCENIC), which is a part of the RAPID instrument. The design is implemented in two different CMOS circuit technologies, namely Actel's Field Programmable Gate Arrays and GEC Plessey's CMOS Silicon On Sapphire (SOS) gate array. The prototypes of the SOS gate array have been verified and characterized. This includes measurements of DC and AC parameters under different conditions, including total dose of gamma irradiation. 42 refs., 92 figs., 44 tabs

  3. Multiple spinal nerve enlargement and SOS1 mutation: Further evidence of overlap between neurofibromatosis type 1 and Noonan phenotype.

    Science.gov (United States)

    Santoro, C; Giugliano, T; Melone, M A B; Cirillo, M; Schettino, C; Bernardo, P; Cirillo, G; Perrotta, S; Piluso, G

    2018-01-01

    Neurofibromatosis type 1 (NF1) has long been considered a well-defined, recognizable monogenic disorder, with neurofibromas constituting a pathognomonic sign. This dogma has been challenged by recent descriptions of patients with enlarged nerves or paraspinal tumors, suggesting that neurogenic tumors and hypertrophic neuropathy may be a complication of Noonan syndrome with multiple lentigines (NSML) or RASopathy phenotype. We describe a 15-year-old boy, whose mother previously received clinical diagnosis of NF1 due to presence of bilateral cervical and lumbar spinal lesions resembling plexiform neurofibromas and features suggestive of NS. NF1 molecular analysis was negative in the mother. The boy presented with Noonan features, multiple lentigines and pectus excavatum. Next-generation sequencing analysis of all RASopathy genes identified p.Ser548Arg missense mutation in SOS1 in the boy, confirmed in his mother. Brain and spinal magnetic resonance imaging scans were negative in the boy. No heart involvement or deafness was observed in proband or mother. This is the first report of a SOS1 mutation associated with hypertrophic neuropathy resembling plexiform neurofibromas, a rare complication in Noonan phenotypes with mutations in RASopathy genes. Our results highlight the overlap between RASopathies, suggesting that NF1 diagnostic criteria need rethinking. Genetic analysis of RASopathy genes should be considered when diagnosis is uncertain. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Determining mode excitations of vacuum electronics devices via three-dimensional simulations using the SOS code

    Science.gov (United States)

    Warren, Gary

    1988-01-01

    The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.

  5. Ganoderma: insights into anticancer effects.

    Science.gov (United States)

    Kladar, Nebojša V; Gavarić, Neda S; Božin, Biljana N

    2016-09-01

    The genus Ganoderma includes about 80 species growing on cut or rotten trees. The most commonly used species is Ganoderma ludicum. Biomolecules responsible for the health benefits of Ganoderma are polysaccharides with an immunostimulative effect and triterpenes with a cytotoxic action. For more than 2000 years, it has been used traditionally in the treatment of various pathological conditions and recently, its immunoregulatory, antiviral, antibacterial, antioxidant, hepatoprotective, and anticancer potential has been confirmed. A wide range of Ganoderma extracts and preparations arrest the cell cycle in different phases and consequently inhibit the growth of various types of cancer cells. Extracts containing polysaccharides stimulate immunological reactions through the production of various cytokines and mobilization of immune system cells. In-vivo studies have confirmed the anticancer potential and the antimetastatic effects of compounds originating from Ganoderma. There is also evidence for the chemopreventive action of Ganoderma extracts in bladder, prostate, liver, and breast cancer. The results of clinical studies suggest the combined use of G. lucidum with conventional chemotherapy/radiotherapy, but the methodology and the results of these studies are being questioned. Therefore, a constant need for new clinical trials exists.

  6. Anticancer and antiproliferative activity of natural brassinosteroids

    Czech Academy of Sciences Publication Activity Database

    Malíková, J.; Swaczynová, Jana; Kolář, Z.; Strnad, Miroslav

    2008-01-01

    Roč. 69, č. 2 (2008), s. 418-426 ISSN 0031-9422 Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroids * Anticancer activity * Cell cycle Subject RIV: CE - Biochemistry Impact factor: 2.946, year: 2008

  7. Artemisinin–Second Career as Anticancer Drug?

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2015-10-01

    Full Text Available Artemisinin represents a showcase example not only for the activity of medicinal herbs deriving from traditional chinese medicine, but for phytotherapy in general. Its isolation from Sweet Wormwood (qinhao, Artemisia annua L. represents the starting point for an unprecedent success story in the treatment of malaria worldwide. Beyond the therapeutic value against Plasmodium parasites, it turned out in recent years that the bioactivity of artemisinin is not restricted to malaria. We and others found that this sesquiterpenoid also exerts profound anticancer activity in vitro and in vivo. Artemisinin-type drugs exert multi-factorial cellular and molecular actions in cancer cells. Ferrous iron reacts with artemisinin, which leads to the formation of reactive oxygen species and ultimately to a plethora anticancer effects of artemisinins, e.g. expression of antioxidant response genes, cell cycle arrest (G1 as well as G2 phase arrests, DNA damage that is repaird by base excision repair, homogous recombination and non-homologous end-joining, as well as different modes of cell death (intrinsic and extrinsic apoptosis, autophagy, necrosis, necroptosis, oncosis, and ferroptosis. Furthermore, artemisinins inhibit neoangiogenesis in tumors. The signaling of major transcription factors (NF-κB, MYC/MAX, AP-1, CREBP, mTOR etc. and signaling pathways are affected by artemisinins (e.g. Wnt/β-catenin pathway, AMPK pathway, metastatic pathways, nitric oxide signaling, and others. Several case reports on the compassionate use of artemisinins as well as clinical Phase I/II pilot studies indicate the clinical activity of artemisinins in veterinary and human cancer patients. Larger scale of Phase II and III clinical studies are required now to further develop artemisinin-type compounds as novel anticancer drugs.

  8. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Di Santo, Nicola; Ehrisman, Jessie

    2014-01-01

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  9. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  10. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties

    Directory of Open Access Journals (Sweden)

    YiingYng Chow

    2015-11-01

    Full Text Available Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition to pink (alkaline condition. The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40, followed by O. diffusa (25, C. citratus (14 and M. koenigii (10. Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL−1 min−1. l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.

  11. Efficacy of multiple anticancer therapies may depend on host immune response

    Directory of Open Access Journals (Sweden)

    Kritika Karri

    2017-06-01

    Full Text Available The host immune system is a key player in anticancer therapy response and resistance. Although the impact of host immune response in the ‘war against cancer’ has been studied and it has been the basis for immunotherapy, understanding of its role in attenuating the action of conventional anticancer therapies is an area that has not been fully explored. In spite of advances in systemic therapy, the 5-year survival rate for adenocarcinoma is still a mere 13% and the primary reason for treatment failure is believed to be due to acquired resistance to therapy. Hence, there is a need for identifying reliable biomarkers for guided treatment of lung and colon adenocarcinoma and to better predict the outcomes of specific anticancer therapies. In this work, gene expression data were analyzed using public resources and this study shows how host immune competence underscores the efficacy of various anticancer therapies. Additionally, the result provides insight on the regulation of certain biochemical pathways relating to the immune system, and suggests that smart chemotherapeutic intervention strategies could be based on a patient’s immune profile.

  12. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    Science.gov (United States)

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Photochemistry in Power Plant and Urban Plumes over Forested and Agricultural Regions during SOS (1990s) and SENEX (2013) field intensives (Invited)

    Science.gov (United States)

    Trainer, M.; Frost, G. J.; Kim, S.; Ryerson, T. B.; Pollack, I. B.; Roberts, J. M.; Veres, P. R.; Flocke, F. M.; Neuman, J. A.; Nowak, J. B.; Nenes, A.; Warneke, C.; Graus, M.; Gilman, J.; Lerner, B. M.; Kuster, W.; Atlas, E. L.; Hanisco, T. F.; Wolfe, G. M.; Keutsch, F. N.; Kaiser, J.; Lee, Y.; Brock, C. A.; Middlebrook, A. M.; Liao, J.; Welti, A.; Parrish, D. D.; Fehsenfeld, F. C.; De Gouw, J. A.

    2013-12-01

    Extensive forested regions of the southeastern United States show high emissions of biogenic reactive hydrocarbons such as isoprene, while emissions of these compounds are typically much lower from agricultural areas. The Southern Oxidant Study (SOS) field intensives during the 1990s contributed to an improved understanding of ozone (O3) formation resulting from nitrogen oxides (NOx) emitted from urban areas and power plants in the presence and absence of the biogenic hydrocarbons. Decreases in NOx emissions from power plants and urban areas have contributed to the widespread reduction of ambient O3 over the southeastern US during the past two decades. Measurements of Volatile Organic Compounds (VOCs), NOx, and their reaction products made at successive distances downwind of emission sources during the SOS (1999) and the Southeast Nexus (SENEX, 2013) campaigns reflect the modulation of the photochemical processing of biogenic VOCs by ambient NOx concentrations. The results constrain the ambient levels of HOx radicals as a function of NOx, and they reflect the mechanisms of the coupling between anthropogenic and biogenic emissions that form species such as ozone, formaldehyde, PeroxyAcetic Nitric anhydride (PAN), nitric acid, as well as, inorganic and organic aerosols.

  15. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves

    Science.gov (United States)

    Ganogpichayagrai, Aunyachulee; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Diabetes and cancer are a major global public health problem. Plant-derived agents with undesirable side-effects were required. This study aimed to evaluate antidiabetic and anticancer activities of the ethanolic leaf extract of Mangifera indica cv. Okrong and its active phytochemical compound, mangiferin. Antidiabetic activities against yeast α-glucosidase and rat intestinal α-glucosidase were determined using 1 mM of p-nitro phenyl-α-D-glucopyranoside as substrate. Inhibitory activity against porcine pancreatic α-amylase was performed using 1 mM of 2-chloro-4 nitrophenol-α-D-maltotroside-3 as substrate. Nitrophenol product was spectrophotometrically measured at 405 nm. Anticancer activity was evaluated against five human cancer cell lines compared to two human normal cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Mango leaf extract and mangiferin exhibited dose-dependent inhibition against yeast α-glucosidase with the IC50 of 0.0503 and 0.5813 mg/ml, respectively, against rat α-glucosidase with the IC50 of 1.4528 and 0.4333 mg/ml, respectively, compared to acarbose with the IC50 of 11.9285 and 0.4493 mg/ml, respectively. For anticancer activity, mango leaf extract, at ≥200 μg/ml showed cytotoxic potential against all tested cancer cell lines. In conclusion, mango leaf possessed antidiabetic and anticancer potential in vitro. PMID:28217550

  16. Genetic tests for predicting the toxicity and efficacy of anticancer chemotherapy.

    Science.gov (United States)

    Mladosievicova, B; Carter, A; Kristova, V

    2007-01-01

    The standard anticancer therapy based "on one size fits all" modality has been determined to be ineffective or to be the cause of adverse drug reactions in many oncologic patients. Most pharmacogenetic and pharmacogenomic studies so far have been focused on toxicity of anticancer drugs such as 6-mercaptopurine, thioguanine, irinotecan, methotrexate, 5-fluorouracil (5-FU). Variation in genes are known to influence not only toxicity, but also efficacy of chemotherapeutics such as platinum analogues, 5-FU and irinotecan. The majority of current pharmacogenetic studies focus on single enzyme deficiencies as predictors of drug effects; however effects of most anticancer drugs are determined by the interplay of several gene products. These effects are polygenic in nature. This review briefly describes genetic variations that may impact efficacy and toxicity of drugs used in cancer chemotherapy.

  17. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e

  18. Anticancer potential of Hericium erinaceus extracts against particular human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Younis AM

    2017-06-01

    Full Text Available Cancer is a leading cause of death worldwide. Cancer resulted in 8.2 million human deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2013 to 22 million within the next two decades. Mushrooms are extensively used as nutritional supplements in many countries. Moreover, mushrooms have many medicinal properties, including anticancer activity. In this study, the anticancer activity of different polar and non-polar extracts of Hericium erinaceus were evaluated against different human cancer cell lines including human liver carcinoma (Hep G2, the human colonic epithelial carcinoma (HCT 116, the human cervical cancer cells (HeLa and the human breast adenocarcinoma (MCF-7 using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Furthermore, as a control, the cytotoxicity effect of the different extracts were tested against isolated mouse hepatocytes. It was observed that the extracts by water and methanol from fresh and lyophilized fruiting bodies of H. erinaceus had the strongest anticancer effect. In contrast, the extracts by ether and ethyl acetate from mycelia and broth of H. erinaceus showed lower anticancer activity against the tested carcinoma cell lines. The highest anticancer activity was recorded for aqueous extract of lyophilized fruiting bodies with half maximal inhibitory concentration (IC50 values of 6.1±0.2, 5.1±0.1, 5.7±0.2 and 5.8±0.3 µg/ml against Hep G2, HCT 116, HeLa and MCF-7 cells, respectively with non-significant effect on the normal mouse hepatocytes. To summarise, polar extracts of H. erinaceus can be good sources for isolating natural anticancer compounds. I recommend further chemical studies to isolate the active principles of the extract of H. erinaceus evaluated in the present.

  19. The success of opening single chronic total occlusion lesions to improve myocardialviabilitytrial (SOS-COMEDY): Study protocol of a prospective multicenter study.

    Science.gov (United States)

    Huang, Rongchong; Song, Xiantao; Zhang, Haishan; Tian, Wen; Huang, Zheng; Zhang, Xingwei; Yang, Junqing; Zhang, Dongfeng; Wu, Jian; Zhong, Lei; Ting, Henry H

    2018-04-01

    Success of opening single (SOS)-comedy is a prospective multicenter study to compare the improvement in the decrease of myocardial viability by percutaneous coronary intervention (PCI) with that by optimal medical therapy (OMT) alone in patients with chronic total occlusion (CTO) of a single coronary artery. The risks and the benefits of both options (PCI and OMT) were listed in a CTO decision aid (DA). Eligible participants detected by invasive coronary angiography (ICA) or coronary computed tomography angiography (CCTA) were divided into PCI or OMT groups according to patients' choice after shared-decision making process with DA. Participants will undergo positron emission tomography/computed tomography (PET/CT), cardiac magnetic resonance (CMR) and transthoracic echocardiography (TTE), and proceed to ICA and revascularization if possible. Blinded core laboratory interpretation will be performed for ICA, CCTA, PET/CT, CMR, and TTE. All participants will be followed up for 12 months. The primary endpoint is the improvement to the decrease of myocardial viability from baseline assessed with the use of PET/CT after 12-month follow-up. All of the patients are appropriately consented before enrolling in this study, which has been approved by the Ethics Committee. Results of SOS-COMEDY will be helpful to develop a strategy for single CTO patients.

  20. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    Science.gov (United States)

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  1. Comparative study of SOS response induced by hydrogen peroxide in the absence or presence of iron ions, in Escherichia coli; Estudo comparativo da resposta SOS induzida pelo peroxido de hidrogenio em presenca e ausencia de ions ferro, em Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Carlos Eduardo Bonacossa de

    1994-07-01

    The H{sub 2}O{sub 2} is an reactive oxygen specie that arises from cell respiration process. It may cause deleterious effects on cell, by reacting with transition metals like iron. In this way it yields free radicals that are able to damage organic molecules, mainly DNA. Recent works have suggested that in the absence of Fe ions H{sub 2}O{sub 2} still damages Escherichia coli DNA. This work presents a comparative analysis of cell SOS responses to DNA damage in Escherichia coli and Salmonella typhimurium mutants pretreated or not with a Fe{sup 2+} ion chelator (dipyridyl) and then treated with H{sub 2}O{sub 2}. The systems analysed were the lysogenic induction, Weigle reactivation, mutagenesis and cell inactivation curves. The cell inactivation curves were themselves distinct, in relation to both treatments. The increased sensitivity found in the lexA1 and recA13 mutants, when treated with dipyridyl and H{sub 2}O{sub 2}, suggests an important role of SOS response in repairing the lesions caused by this treatment. The profiles of the lysogenic induction and mutagenesis curves were also distinct in both treatments. The results of Weigle reactivation suggest that the products of uvrA and lexA genes have an important role in UV-damaged bacteriophage DNA repair, when dipyridyl-pretreated cells are treated with H{sub 2}O{sub 2}. All the results suggest that Fe-independent lesions produced by H{sub 2}O{sub 2} are different from the ones produced in the presence of this ion. (author)

  2. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    Full Text Available Katherine Ververis,1 Alison Hiong,1 Tom C Karagiannis,1,* Paul V Licciardi2,*1Epigenomic Medicine, Alfred Medical Research and Education Precinct, 2Allergy and Immune Disorders, Murdoch Childrens Research Institute, Melbourne, VIC, Australia*These authors contributed equally to this workAbstract: Histone deacetylase (HDAC inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza and depsipeptide (romidepsin, Istodax. More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the

  3. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    KAUST Repository

    Van Oosten, Michael James

    2013-08-08

    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3′H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins. © 2013 Springer Science+Business Media Dordrecht.

  4. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents. © 2014 Wiley Periodicals, Inc.

  5. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools

    Science.gov (United States)

    El-Said, Waleed A.; Yoon, Jinho; Choi, Jeong-Woo

    2018-04-01

    Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.

  6. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications.

    Science.gov (United States)

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary

    2016-01-01

    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects. © 2016 S. Karger AG, Basel.

  7. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  8. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  9. Randomized anticancer and cytotoxicity activities of Guibourtia ...

    African Journals Online (AJOL)

    Materials and Methods: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, ...

  10. Isolation and identification of flavonoids from anticancer and ...

    African Journals Online (AJOL)

    Isolation and identification of flavonoids from anticancer and neuroprotective extracts of Trigonella foenum graecum. Shabina Ishtiaq Ahmed, Muhammad Qasim Hayat, Saadia Zahid, Muhammad Tahir, Qaisar Mansoor, Muhammad Ismail, Kristen Keck, Robert Bates ...

  11. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs

    Directory of Open Access Journals (Sweden)

    Tabassum Khan

    2018-02-01

    Full Text Available Natural resources continue to be an invaluable source of new, novel chemical entities of therapeutic utility due to the vast structural diversity observed in them. The quest for new and better drugs has witnessed an upsurge in exploring and harnessing nature especially for discovery of antimicrobial, antidiabetic, and anticancer agents. Nature has historically provide us with potent anticancer agents which include vinca alkaloids [vincristine (VCR, vinblastine, vindesine, vinorelbine], taxanes [paclitaxel (PTX, docetaxel], podophyllotoxin and its derivatives [etoposide (ETP, teniposide], camptothecin (CPT and its derivatives (topotecan, irinotecan, anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, and others. In fact, half of all the anti-cancer drugs approved internationally are either natural products or their derivatives and were developed on the basis of knowledge gained from small molecules or macromolecules that exist in nature. Three new anti-cancer drugs introduced in 2007, viz. trabectedin, epothilone derivative ixabepilone, and temsirolimus were obtained from microbial sources. Selective drug targeting is the need of the current therapeutic regimens for increased activity on cancer cells and reduced toxicity to normal cells. Nanotechnology driven modified drugs and drug delivery systems are being developed and introduced in the market for better cancer treatment and management with good results. The use of nanoparticulate drug carriers can resolve many challenges in drug delivery to the cancer cells that includes: improving drug solubility and stability, extending drug half-lives in the blood, reducing adverse effects in non-target organs, and concentrating drugs at the disease site. This review discusses the scientific ventures and explorations involving application of nanotechnology to some selected plant derived molecules. It presents a comprehensive review of formulation strategies of phytoconstituents in

  12. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    van Leeuwen, R. W. F.; Brundel, D. H. S.; Neef, C.; van Gelder, T.; Mathijssen, R. H. J.; Burger, D. M.; Jansman, F. G. A.

    2013-01-01

    Background: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment. Methods: A

  13. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    R.W.F. van Leeuwen (Roelof); D.H.S. Brundel (D. H S); C. Neef (Cees); T. van Gelder (Teun); A.H.J. Mathijssen (Ron); D.M. Burger (David); F.G.A. Jansman (Frank)

    2013-01-01

    textabstractBackground: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment.

  14. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    Science.gov (United States)

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Unraveling the Anticancer Effect of Curcumin and Resveratrol

    Science.gov (United States)

    Pavan, Aline Renata; da Silva, Gabriel Dalio Bernardes; Jornada, Daniela Hartmann; Chiba, Diego Eidy; Fernandes, Guilherme Felipe dos Santos; Man Chin, Chung; dos Santos, Jean Leandro

    2016-01-01

    Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs. PMID:27834913

  16. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    Science.gov (United States)

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation.

    Science.gov (United States)

    Sajid, Arfaa; Manzoor, Qaisar; Iqbal, Munawar; Tyagi, Amit Kumar; Sarfraz, Raja Adil; Sajid, Anam

    2018-01-01

    The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.

  18. Ethnobotany and ethnopharmacy--their role for anti-cancer drug development.

    Science.gov (United States)

    Heinrich, Michael; Bremner, Paul

    2006-03-01

    Local and traditional knowledge has been the starting point for many successful drug development projects over the last decades. Here we discuss some examples of anti-cancer drugs which have had enormous impact as anti-cancer agents (camptothecan, taxol and derivatives) and a few examples of drugs currently under various stages of preclinical development. Ethnobotanists investigate the relationship between humans and plants in all its complexity, and such research is generally based on a detailed observation and study of the use a society makes of plants. The requirements of modern research on natural products as, for example, outlined in the Convention on Biological Diversity (Rio Convention) and the overall approach in ethnobotanical research are also discussed. Selected phytochemical-pharmacological studies based on traditional plant use are used to highlight the potential of ethnobotany driven anti-cancer research. The link between traditionally used plants and targets of the NF-kappaB pathway is discussed using on an EU-funded, multidisciplinary project as an example. Lastly the potential of chemopreventive agents derived from traditional food plants is briefly addressed.

  19. Actual versus recommended storage temperatures of oral anticancer medicines at patients' homes.

    Science.gov (United States)

    Vlieland, N D; van den Bemt, Bjf; van Riet-Nales, D A; Bouvy, M L; Egberts, Acg; Gardarsdottir, H

    2017-01-01

    Background Substantial quantities of unused medicines are returned by patients to the pharmacy each year. Redispensing these medicines would reduce medicinal waste and health care costs. However, it is not known if medicines are stored by patients as recommended in the product label. Inadequate storage may negatively affect the medicine and reduce clinical efficacy whilst increasing the risk for side effects. Objective To investigate the proportion of patients storing oral anticancer medicines according to the temperature instructions in the product label. Methods Consenting adult patients from six Dutch outpatient hospital pharmacies were included in this study if they used an oral anticancer medicine during February 2014 - January 2015. Home storage temperatures were assessed by inclusion of a temperature logger in the original cancer medicines packaging. The primary outcome was the proportion of patients storing oral anticancer medicines as specified in the Summary of Product Characteristics, either by recalculating the observed temperature fluctuations to a single mean kinetic temperature or by following the temperature instructions taking into account a consecutive 24-h tolerance period. Results Ninety (81.1%) of the 111 included patients (47.8% female, mean age 65.2 (SD: 11.1)) returned their temperature loggers to the pharmacy. None of the patients stored oral anticancer medicines at a mean kinetic temperature above 25℃, one patient stored a medicine requiring storage below 25℃ longer than 24 h above 25℃. None of the patients using medicines requiring storage below 30℃ kept their medicine above 30℃ for a consecutive period of 24 h or longer. Conclusion The majority of patients using oral anticancer medicines store their medicines according to the temperature requirements on the product label claim. Based on our results, most oral anticancer medicines will not be negatively affected by temperature conditions at patients' homes for a maximum of

  20. Plant derived substances with anti-cancer activity: from folklore to practice

    Directory of Open Access Journals (Sweden)

    Marcelo eFridlender

    2015-10-01

    Full Text Available Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early 19th century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next 2 decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.

  1. Antithrombotic/anticoagulant and anticancer activities of selected ...

    African Journals Online (AJOL)

    Antithrombotic/anticoagulant and anticancer activities of selected medicinal plants from South Africa. NLA Kee, N Mnonopi, H Davids, RJ Naudé, CL Frost. Abstract. Nine plants available in the Eastern Cape Province of South Africa were tested for antithrombotic and/or anticoagulant activity. Organic (methanol) and aqueous ...

  2. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  3. Redesigned Spider Peptide with Improved Antimicrobial and Anticancer Properties.

    Science.gov (United States)

    Troeira Henriques, Sónia; Lawrence, Nicole; Chaousis, Stephanie; Ravipati, Anjaneya S; Cheneval, Olivier; Benfield, Aurélie H; Elliott, Alysha G; Kavanagh, Angela Maria; Cooper, Matthew A; Chan, Lai Yue; Huang, Yen-Hua; Craik, David J

    2017-09-15

    Gomesin, a disulfide-rich antimicrobial peptide produced by the Brazilian spider Acanthoscurria gomesiana, has been shown to be potent against Gram-negative bacteria and to possess selective anticancer properties against melanoma cells. In a recent study, a backbone cyclized analogue of gomesin was shown to be as active but more stable than its native form. In the current study, we were interested in improving the antimicrobial properties of the cyclic gomesin, understanding its selectivity toward melanoma cells and elucidating its antimicrobial and anticancer mode of action. Rationally designed analogues of cyclic gomesin were examined for their antimicrobial potency, selectivity toward cancer cells, membrane-binding affinity, and ability to disrupt cell and model membranes. We improved the activity of cyclic gomesin by ∼10-fold against tested Gram-negative and Gram-positive bacteria without increasing toxicity to human red blood cells. In addition, we showed that gomesin and its analogues are more toxic toward melanoma and leukemia cells than toward red blood cells and act by selectively targeting and disrupting cancer cell membranes. Preference toward some cancer types is likely dependent on their different cell membrane properties. Our findings highlight the potential of peptides as antimicrobial and anticancer leads and the importance of selectively targeting cancer cell membranes for drug development.

  4. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Translesion DNA synthesis and mutation induced in a plasmid with a single adduct of the environmental contaminant 3-nitrobenzanthrone in SOS-induced Escherichia coli

    International Nuclear Information System (INIS)

    Kawanishi, M.; Kanno, T.; Yagi, T.; Enya-Takamura, T.; Fuchs, R.P.

    2003-01-01

    Full text: 3-Nitrobenzanthrone (NBA) is a powerfully mutagenic nitrated aromatic hydrocarbon found in diesel exhaust and in airborne particulate matters. NBA forms an unusual DNA adduct in vitro that has a C-C bond between the C-8 position of deoxyguanosine and the C-2 position of NBA. We previously found that this adduct is also present in the human cells treated with NBA, and induces mutations in supF shuttle vector system. In this study, we analyzed translesion DNA synthesis (TLS) over a single adduct in lacZ' gene in a plasmid in uvrAmutS Escherichia coli. The result showed that the adduct blocked DNA replication and an observed TLS frequency was 5.4% in non-SOS-induced E. coli. All progenies after the TLS had no mutation. On the other hand, TLS increased to 11.3%, and 4.8% of them had mostly G to T mutations in SOS-induced E. coli. These results suggest that this unusual adduct would be one of causes of lung cancer that is increasing in the urban areas polluted with diesel exhaust. It must be interesting to reveal which DNA polymerase is involved in this TLS

  6. Antioxidant and Anticancer Activities of Wampee (Clausena lansium (Lour. Skeels Peel

    Directory of Open Access Journals (Sweden)

    K. Nagendra Prasad

    2009-01-01

    Full Text Available Antioxidant activities of wampee peel extracts using five different solvents (ethanol, hexane, ethyl acetate, butanol and water were determined by using in-vitro antioxidant models including total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity, reducing power, and superoxide scavenging activity. Ethyl acetate fraction (EAF exhibited the highest antioxidant activity compared to other fractions, even higher than synthetic antioxidant butylated hydroxyl toluene (BHT. In addition, the EAF exhibited strong anticancer activities against human gastric carcinoma (SGC-7901, human hepatocellular liver carcinoma (HepG-2 and human lung adenocarcinoma (A-549 cancer cell lines, higher than cisplatin, a conventional anticancer drug. The total phenolic content of wampee fraction was positively correlated with the antioxidant activity. This is the first report on the antioxidant and anticancer activities of the wampee peel extract. Thus, wampee peel can be used potentially as a readily accessible source of natural antioxidants and a possible pharmaceutical supplement.

  7. Repair promoted by plasmid pKM101 is different from SOS repair

    International Nuclear Information System (INIS)

    Goze, A.; Devoret, R.

    1979-01-01

    In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid PKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although Wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions. (Auth.)

  8. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2010-12-01

    Full Text Available The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(L-g-glutamylglutamine-paclitaxel nano-conjugate (PGG-PTX. PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  9. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    International Nuclear Information System (INIS)

    Yang, Danbo; Yu, Lei; Van, Sang

    2010-01-01

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic

  10. Clinically Relevant Anticancer Polymer Paclitaxel Therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Danbo [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Yu, Lei, E-mail: yu-lei@gg.nitto.co.jp [Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062 (China); Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States); Van, Sang [Biomedical Group, Nitto Denko Technical Corporation, 501 Via Del Monte, Oceanside, CA 92058 (United States)

    2010-12-23

    The concept of utilizing polymers in drug delivery has been extensively explored for improving the therapeutic index of small molecule drugs. In general, polymers can be used as polymer-drug conjugates or polymeric micelles. Each unique application mandates its own chemistry and controlled release of active drugs. Each polymer exhibits its own intrinsic issues providing the advantage of flexibility. However, none have as yet been approved by the U.S. Food and Drug Administration. General aspects of polymer and nano-particle therapeutics have been reviewed. Here we focus this review on specific clinically relevant anticancer polymer paclitaxel therapeutics. We emphasize their chemistry and formulation, in vitro activity on some human cancer cell lines, plasma pharmacokinetics and tumor accumulation, in vivo efficacy, and clinical outcomes. Furthermore, we include a short review of our recent developments of a novel poly(l-γ-glutamylglutamine)-paclitaxel nano-conjugate (PGG-PTX). PGG-PTX has its own unique property of forming nano-particles. It has also been shown to possess a favorable profile of pharmacokinetics and to exhibit efficacious potency. This review might shed light on designing new and better polymer paclitaxel therapeutics for potential anticancer applications in the clinic.

  11. In vitro investigating of anticancer activity of focuxanthin from marine brown seaweed species

    Directory of Open Access Journals (Sweden)

    M. Karkhane Yousefi

    2018-01-01

    Full Text Available Breast cancer is the most common cancer type among women all over the world. Chemotherapy is the use of anticancer medicines for treating cancer but it has many side effects and cells may become resistant to these chemical medicines. Therefore, finding new compounds of natural origin could be a promising solution to this problem. The aim of the current study was to evaluate anticancer activity of fucoxanthin which is the most important carotenoid found in the marine brown seaweeds and diatoms. fucoxanthin has many properties (antioxidant, antibacterial, anticancer, antiobesity, anti-inflammatory and etc. due to its unique structure. Samples with different concentrations (10, 25 and 50 µg/ml and at various incubation times were collected (6, 24 and 48 hours from four different species (Padina tenuis, Colpomenia sinuosa, Iyengaria stellate and Dictyota indica of brown seaweeds from Qeshm Island, Persian Gulf. Moreover, the anticancer activity of fucoxanthin-containing extracts on breast cancer cells line and normal human skin fibroblast cells line was assessed by MTT [3-(4,5-dimethylthiazolyl-2,5-diphenyl-tetrazolium bromide] assay to specify the cytotoxic effects. The results showed that fucoxanthin extract from Dictyota. indica at 24-hour treatment and 50 µg/ml concentration has the most effective anticancer activity on the breast cancer cells line, without toxic effects to the normal cells. According to the obtained results, it seems that Dictyota. Indica is a good candidate for further analysis and can be introduced to the food and pharmaceutical industries.

  12. Comparative study of SOS response induced by hydrogen peroxide in the absence or presence of iron ions, in Escherichia coli

    International Nuclear Information System (INIS)

    Almeida, Carlos Eduardo Bonacossa de

    1994-01-01

    The H 2 O 2 is an reactive oxygen specie that arises from cell respiration process. It may cause deleterious effects on cell, by reacting with transition metals like iron. In this way it yields free radicals that are able to damage organic molecules, mainly DNA. Recent works have suggested that in the absence of Fe ions H 2 O 2 still damages Escherichia coli DNA. This work presents a comparative analysis of cell SOS responses to DNA damage in Escherichia coli and Salmonella typhimurium mutants pretreated or not with a Fe 2+ ion chelator (dipyridyl) and then treated with H 2 O 2 . The systems analysed were the lysogenic induction, Weigle reactivation, mutagenesis and cell inactivation curves. The cell inactivation curves were themselves distinct, in relation to both treatments. The increased sensitivity found in the lexA1 and recA13 mutants, when treated with dipyridyl and H 2 O 2 , suggests an important role of SOS response in repairing the lesions caused by this treatment. The profiles of the lysogenic induction and mutagenesis curves were also distinct in both treatments. The results of Weigle reactivation suggest that the products of uvrA and lexA genes have an important role in UV-damaged bacteriophage DNA repair, when dipyridyl-pretreated cells are treated with H 2 O 2 . All the results suggest that Fe-independent lesions produced by H 2 O 2 are different from the ones produced in the presence of this ion. (author)

  13. Synthesis, docking and anticancer activity studies of D-proline ...

    Indian Academy of Sciences (India)

    D-proline-incorporated wainunuamide — a cyclic octapeptide was synthesized and characterized ... Cyclic octapeptide; molecular docking; solution phase synthesis; anticancer activity ..... dynamics and their binding affinities, using free energy.

  14. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  15. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-06-01

    Full Text Available For enhanced anti-cancer performance, human serum albumin fragments (HSAFs nanoparticles (NPs were developed as paclitaxel (PTX carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs.

  16. Robust prediction of anti-cancer drug sensitivity and sensitivity-specific biomarker.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc. and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.

  17. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  18. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    Science.gov (United States)

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Wenqi

    2008-04-01

    Full Text Available Abstract Background It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU loaded block copolymers, with poly(γ-benzyl-L-glutamate (PBLG as the hydrophobic block and poly(ethylene glycol (PEG as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. Methods 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC. To study in vivo effects, LoVo cells (human colon cancer cell line or Tca8113 cells (human oral squamous cell carcinoma cell line were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. Results 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min, lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L, and greater distribution volume (VD, 0.114 L vs. 0.069 L. Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p 0.05. Conclusion In our model system, 5-FU/PEG-PBLG nanoparticles

  20. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  1. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    Science.gov (United States)

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  3. Trial Watch: Anticancer radioimmunotherapy.

    Science.gov (United States)

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-09-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in

  4. Synthesis, characterization, antimicrobial and anticancer studies of new steroidal pyrazolines

    Directory of Open Access Journals (Sweden)

    Shamsuzzaman

    2016-01-01

    Full Text Available A convenient synthesis of 2′-(2″,4″-dinitrophenyl-5α-cholestano [5,7-c d] pyrazolines 4–6 from cholest-5-en-7-one 1–3 was performed and structural assignment of the products was confirmed on the basis of IR, 1H NMR, 13C NMR, MS and analytical data. The synthesized compounds were screened for in vitro antimicrobial activity against different strains during which compound 6 showed potent antimicrobial behaviour against Corynebacterium xerosis and Staphylococcus epidermidis. The synthesized compounds were also screened for in vitro anticancer activity against human cancer cell lines during which compound 5 exhibited significant anticancer activity.

  5. An Insight into the Anticancer Activities of Ru(II-Based Metallocompounds Using Docking Methods

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2013-09-01

    Full Text Available Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.

  6. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  7. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and ...

    African Journals Online (AJOL)

    Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in ... of linalool on cell morphology and apoptotic body formation in DU145 cells ... It was observed that 4.36, 11.54, 21.88 and 15.54 % of the cells underwent ...

  8. Oral anticancer agent medication adherence by outpatients.

    Science.gov (United States)

    Kimura, Michio; Usami, Eiseki; Iwai, Mina; Nakao, Toshiya; Yoshimura, Tomoaki; Mori, Hiromi; Sugiyama, Tadashi; Teramachi, Hitomi

    2014-11-01

    In the present study, medication adherence and factors affecting adherence were examined in patients taking oral anticancer agents. In June 2013, 172 outpatients who had been prescribed oral anticancer agents by Ogaki Municipal Hospital (Ogaki, Gifu, Japan) completed a questionnaire survey, with answers rated on a five-point Likert scale. The factors that affect medication adherence were evaluated using a customer satisfaction (CS) analysis. For patients with good and insufficient adherence to medication, the median ages were 66 years (range, 21-85 years) and 73 years (range, 30-90 years), respectively (P=0.0004), while the median dosing time was 131 days (range, 3-3,585 days) and 219 days (24-3,465 days), respectively (P=0.0447). In 36.0% (62 out of 172) of the cases, there was insufficient medication adherence; 64.5% of those cases (40 out of 62) showed good medication compliance (4-5 point rating score). However, these patients did not fully understand the effects or side-effects of the drugs, giving a score of three points or less. The percentage of patients with good medication compliance was 87.2% (150 out of 172). Through the CS analysis, three items, the interest in the drug, the desire to consult about the drug and the condition of the patient, were extracted as items for improvement. Overall, the medication compliance of the patients taking the oral anticancer agents was good, but the medication adherence was insufficient. To improve medication adherence, a better understanding of the effectiveness and necessity of drugs and their side-effects is required. In addition, the interest of patients in their medication should be encouraged and intervention should be tailored to the condition of the patient. These steps should lead to improved medication adherence.

  9. Anticancer Activities of Surfactin and Potential Application of Nanotechnology Assisted Surfactin Delivery

    Directory of Open Access Journals (Sweden)

    Yuan-Seng Wu

    2017-10-01

    Full Text Available Surfactin, a cyclic lipopeptide biosurfactant produced by various strains of Bacillus genus, has been shown to induce cytotoxicity against many cancer types, such as Ehrlich ascites, breast and colon cancers, leukemia and hepatoma. Surfactin treatment can inhibit cancer progression by growth inhibition, cell cycle arrest, apoptosis, and metastasis arrest. Owing to the potent effect of surfactin on cancer cells, numerous studies have recently investigated the mechanisms that underlie its anticancer activity. The amphiphilic nature of surfactin allows its easy incorporation nano-formulations, such as polymeric nanoparticles, micelles, microemulsions, liposomes, to name a few. The use of nano-formulations offers the advantage of optimizing surfactin delivery for an improved anticancer therapy. This review focuses on the current knowledge of surfactin properties and biosynthesis; anticancer activity against different cancer models and the underlying mechanisms involved; as well as the potential application of nano-formulations for optimal surfactin delivery.

  10. Simulation of TunneLadder traveling-wave tube cold-test characteristics: Implementation of the three-dimensional, electromagnetic circuit analysis code micro-SOS

    Science.gov (United States)

    Kory, Carol L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.

  11. Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.

    Science.gov (United States)

    González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana

    2016-01-01

    Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.

  12. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  13. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies.

    Directory of Open Access Journals (Sweden)

    Chandraiah Godugu

    Full Text Available Three-dimensional (3D in-vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in-vivo conditions. Taking the advantages of 3D culture, we have developed the in-vitro tumor model for anticancer drug screening.Cancer cells grown in 6 and 96 well AlgiMatrix™ scaffolds resulted in the formation of multicellular spheroids in the size range of 100-300 µm. Spheroids were grown in two weeks in cultures without compromising the growth characteristics. Different marketed anticancer drugs were screened by incubating them for 24 h at 7, 9 and 11 days in 3D cultures and cytotoxicity was measured by AlamarBlue® assay. Effectiveness of anticancer drug treatments were measured based on spheroid number and size distribution. Evaluation of apoptotic and anti-apoptotic markers was done by immunohistochemistry and RT-PCR. The 3D results were compared with the conventional 2D monolayer cultures. Cellular uptake studies for drug (Doxorubicin and nanoparticle (NLC were done using spheroids.IC(50 values for anticancer drugs were significantly higher in AlgiMatrix™ systems compared to 2D culture models. The cleaved caspase-3 expression was significantly decreased (2.09 and 2.47 folds respectively for 5-Fluorouracil and Camptothecin in H460 spheroid cultures compared to 2D culture system. The cytotoxicity, spheroid size distribution, immunohistochemistry, RT-PCR and nanoparticle penetration data suggested that in vitro tumor models show higher resistance to anticancer drugs and supporting the fact that 3D culture is a better model for the cytotoxic evaluation of anticancer drugs in vitro.The results from our studies are useful to develop a high throughput in vitro tumor model to study the effect of various anticancer agents and various molecular pathways affected by the anticancer drugs and formulations.

  14. Disgust: Evolved function and structure

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.; Kurzban, R.; DeScioli, P.

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and

  15. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    Science.gov (United States)

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Systems Thinking for the Enterprise: A Thought Piece

    Science.gov (United States)

    Rebovich, George

    This paper suggests a way of managing the acquisition of capabilities for large-scale government enterprises that is different from traditional "specify and build" approaches commonly employed by U.S. government agencies in acquiring individual systems or systems of systems (SoS). Enterprise capabilities evolve through the emergence and convergence of information and other technologies and their integration into social, institutional and operational organizations and processes. Enterprise capabilities evolve whether or not the enterprise has processes in place to actively manage them. Thus the critical role of enterprise system engineering (ESE) processes should be to shape, enhance and accelerate the "natural" evolution of enterprise capabilities. ESE processes do not replace or add a layer to traditional system engineering (TSE) processes used in developing individual systems or SoS. ESE processes should complement TSE processes by shaping outcome spaces and stimulating interactions among enterprise participants through marketlike mechanisms to reward those that create innovation which moves and accelerates the evolution of the enterprise.

  17. Sphingolipid metabolism enzymes as targets for anticancer therapy

    NARCIS (Netherlands)

    Kok, JW; Sietsma, H

    Treatment with anti-cancer agents in most cases ultimately results in apoptotic cell death of the target tumour cells. Unfortunately, tumour cells can develop multidrug resistance, e.g., by a reduced propensity to engage in apoptosis by which they become insensitive to multiple chemotherapeutics.

  18. Roles of Reactive Oxygen Species in Anticancer Therapy with Salvia miltiorrhiza Bunge

    Directory of Open Access Journals (Sweden)

    Yu-Chiang Hung

    2016-01-01

    Full Text Available Cancer is a leading cause of death worldwide. We aim to provide a systematic review about the roles of reactive oxygen species (ROS in anticancer therapy with Salvia miltiorrhiza Bunge (Danshen. Danshen, including its lipophilic and hydrophilic constituents, is potentially beneficial for treating various cancers. The mechanisms of ROS-related anticancer effects of Danshen vary depending on the specific type of cancer cells involved. Danshen may enhance TNF-α-induced apoptosis, upregulate caspase-3, caspase-8, caspase-9, endoplasmic reticulum stress, P21, P53, Bax/Bcl-2, DR5, and AMP-activated protein kinase, or activate the p38/JNK, mitogen-activated protein kinase, and FasL signaling pathways. Conversely, Danshen may downregulate human telomerase reverse transcriptase mRNA, telomerase, survivin, vascular endothelial growth factor/vascular endothelial growth factor receptor 2, CD31, NF-κB, Erk1/2, matrix metalloproteinases, microtubule assembly, and receptor tyrosine kinases including epidermal growth factor receptors, HER2, and P-glycoprotein and inhibit the PI3K/Akt/mTOR or estrogen receptor signaling pathways. Therefore, Danshen may inhibit cancer cells proliferation through antioxidation on tumor initiation and induce apoptosis or autophagy through ROS generation on tumor progression, tumor promotion, and tumor metastasis. Based on the available evidence regarding its anticancer properties, this review provides new insights for further anticancer research or clinical trials with Danshen.

  19. Monitoring of anti-cancer therapies and chemoresistance

    Czech Academy of Sciences Publication Activity Database

    Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Džubák, P.; Hajdúch, M.; Gadher, S. J.; Kovářová, Hana

    2009-01-01

    Roč. 6, č. 1 (2009), s. 63-63 ISSN 1109-6535. [International Conference of the Hellenic Proteomic Society /3./. 30.03.2009-01.04.2009, Nafplio] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : anti-cancer therapies Subject RIV: CE - Biochemistry

  20. Characterization and in vitro studies on anticancer activity of ...

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... The exopolymer produced by B. thuringiensis S13, showed potent ... Polysaccharides derived from a microorganism have specific broad .... polymer and cisplatin (an anticancer drug as standard) separately in triplicates to ...

  1. Coevolution between human's anticancer activities and functional foods from crop origin center in the world.

    Science.gov (United States)

    Zeng, Ya-Wen; Du, Juan; Pu, Xiao-Ying; Yang, Jia-Zhen; Yang, Tao; Yang, Shu-Ming; Yang, Xiao-Meng

    2015-01-01

    Cancer is the leading cause of death around the world. Anticancer activities from many functional food sources have been reported in years, but correlation between cancer prevalence and types of food with anticancer activities from crop origin center in the world as well as food source with human migration are unclear. Hunger from food shortage is the cause of early human evolution from Africa to Asia and later into Eurasia. The richest functional foods are found in crop origin centers, housing about 70% in the world populations. Crop origin centers have lower cancer incidence and mortality in the world, especially Central Asia, Middle East, Southwest China, India and Ethiopia. Asia and Africa with the richest anticancer crops is not only the most important evolution base of humans and origin center of anticancer functional crop, but also is the lowest mortality and incidence of cancers in the world. Cancer prevention of early human migrations was associated with functional foods from crop origin centers, especially Asia with four centers and one subcenter of crop origin, accounting for 58% of the world population. These results reveal that coevolution between human's anticancer activities associated with functional foods for crop origin centers, especially in Asia and Africa.

  2. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  3. Proceedings of the Combined 20th International Workshop on Expressiveness in Concurrency and 10th Workshop on Structural Operational Semantics (EXPRESS/SOS 2013, Buenos Aires, Argentina, August 26, 2013)

    NARCIS (Netherlands)

    Borgström, J.; Luttik, B.

    2013-01-01

    This volume contains the proceedings of the Combined 20th International Workshop on Expressiveness in Concurrency and the 10th Workshop on Structural Operational Semantics (EXPRESS/SOS 2013) which was held on 26th August, 2013 in Buenos Aires, Argentina, as an affiliated workshop of CONCUR 2013, the

  4. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-11-01

    Full Text Available In addition to its well-known abortifacient effect, mifepristone (MIF has been used as an anticancer drug for various cancers in many studies with an in-depth understanding of the mechanism of action. However, application of MIF is limited by its poor water solubility and low oral bioavailability. In this work, we developed a drug delivery system based on chitosan nanoparticles (CNs to improve its bioavailability and anticancer activity. The MIF-loaded chitosan nanoparticles (MCNs were prepared by convenient ionic gelation techniques between chitosan (Cs and tripolyphosphate (TPP. The preparation conditions, including Cs concentration, TPP concentration, Cs/MIF mass ratio, and pH value of the TPP solution, were optimized to gain better encapsulation efficiency (EE and drug loading capacity (DL. MCNs prepared with the optimum conditions resulted in spherical particles with an average size of 200 nm. FTIR and XRD spectra verified that MIF was successfully encapsulated in CNs. The EE and DL of MCNs determined by HPLC were 86.6% and 43.3%, respectively. The in vitro release kinetics demonstrated that MIF was released from CNs in a sustained-release manner. Compared with free MIF, MCNs demonstrated increased anticancer activity in several cancer cell lines. Pharmacokinetic studies in male rats that were orally administered MCNs showed a 3.2-fold increase in the area under the curve from 0 to 24 h compared with free MIF. These results demonstrated that MCNs could be developed as a potential delivery system for MIF to improve its anticancer activity and bioavailability.

  5. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli.

    Science.gov (United States)

    Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew

    2018-01-09

    Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.

  6. Radiation hardness tests with a demonstrator preamplifier circuit manufactured in silicon on sapphire (SOS) VLSI technology

    International Nuclear Information System (INIS)

    Bingefors, N.; Ekeloef, T.; Eriksson, C.; Paulsson, M.; Moerk, G.; Sjoelund, A.

    1992-01-01

    Samples of the preamplifier circuit, as well as of separate n and p channel transistors of the type contained in the circuit, were irradiated with gammas from a 60 Co source up to an integrated dose of 3 Mrad (30 kGy). The VLSI manufacturing technology used is the SOS4 process of ABB Hafo. A first analysis of the tests shows that the performance of the amplifier remains practically unaffected by the radiation for total doses up to 1 Mrad. At higher doses up to 3 Mrad the circuit amplification factor decreases by a factor between 4 and 5 whereas the output noise level remains unchanged. It is argued that it may be possible to reduce the decrease in amplification factor in future by optimizing the amplifier circuit design further. (orig.)

  7. Identification of novel anticancer terpenoids from Prosopis juliflora ...

    African Journals Online (AJOL)

    Purpose: To identify a novel source of terpenoid anticancer compounds from P. juliflora (Sw.) DC. (Leguminosae) pods as a medicinal substitute for cancer medicines. Methods: The pods were collected, dried and pulverized. The ethanol extract was prepared by maceration. Various phyto-constituents were detected in the ...

  8. Preclinical and clinical pharmacology of oral anticancer drugs

    NARCIS (Netherlands)

    Oostendorp, R.L.

    2009-01-01

    Nowadays, more than 25% of all anticancer drugs are developed as oral formulations. Oral administration of drugs has several advantages over intravenous (i.v.) administration. It will on average be more convenient for patients, because they can take oral medication themselves, there is no need for

  9. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, G. (Universite Libre de Bruxelles (Belgium) Rijksuniversiteit Leiden (Netherlands)); Abrahams, P.J. (Rijksuniversiteit Leiden (Netherlands)); Chen, Y.Q. (Universite Libre de Bruxelles (Belgium)); Schouten, R. (Rijksuniversiteit Leiden (Netherlands)); Cornelis, J.J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France)); Lowe, J.E. (Sussex Univ., Brighton (UK)); Eb, A.J. van der (Rijksuniversiteit Leiden (Netherlands)); Rommelaere, J. (Universite Libre de Bruxelles (Belgium) Institut Pasteur, 75 - Paris (France))

    1989-01-01

    Radiosensitive fibroblasts from patients with ataxia telangiectasia (AT) were studied for their proficiency in two putative eukaryotic SOS-like responses, namely the enhanced reactivation (ER) and enhanced mutagenesis of damaged viruses infecting pre-irradiated versus mock-treated cells. A previous report indicated that, unlike normal human cells, a line of AT fibroblasts (AT5BIVA) could not be induced to express ER of damaged parvovirus H-1, a single-stranded DNA virus, by UV- or X-irradiation. In the present study, AT5BIVA fibroblasts were also distinguished from normal cells by the inability of the former to achieve enhanced mutagenesis of damaged H-1 virus upon cell UV-irradiation. In contrast, dose-response and time-course experiments revealed normal levels of ER of Herpes simplex virus 1, a double-stranded DNA virus, in X- or UV-irradiated AT5BIVA cells. Taken together, these data point to a possible deficiency of AT cells in a conditioned mutagenic process that contributes to a greater extent to the recovery of damaged single-stranded than double-stranded DNA. Such a defect may concern the replication of damaged DNA or the generation of signals promoting the latter process and may be related to the lack of radiation-induced delay that is typical of AT cell DNA synthesis. (author).

  10. Impaired recovery and mutagenic SOS-like responses in ataxia telangiectasia cells

    International Nuclear Information System (INIS)

    Hilgers, G.; Abrahams, P.J.; Chen, Y.Q.; Schouten, R.; Cornelis, J.J.; Lowe, J.E.; Eb, A.J. van der; Rommelaere, J.

    1989-01-01

    Radiosensitive fibroblasts from patients with ataxia telangiectasia (AT) were studied for their proficiency in two putative eukaryotic SOS-like responses, namely the enhanced reactivation (ER) and enhanced mutagenesis of damaged viruses infecting pre-irradiated versus mock-treated cells. A previous report indicated that, unlike normal human cells, a line of AT fibroblasts (AT5BIVA) could not be induced to express ER of damaged parvovirus H-1, a single-stranded DNA virus, by UV- or X-irradiation. In the present study, AT5BIVA fibroblasts were also distinguished from normal cells by the inability of the former to achieve enhanced mutagenesis of damaged H-1 virus upon cell UV-irradiation. In contrast, dose-response and time-course experiments revealed normal levels of ER of Herpes simplex virus 1, a double-stranded DNA virus, in X- or UV-irradiated AT5BIVA cells. Taken together, these data point to a possible deficiency of AT cells in a conditioned mutagenic process that contributes to a greater extent to the recovery of damaged single-stranded than double-stranded DNA. Such a defect may concern the replication of damaged DNA or the generation of signals promoting the latter process and may be related to the lack of radiation-induced delay that is typical of AT cell DNA synthesis. (author)

  11. Comparison of VOC measurements in Nashville, TN, during the southern oxidants study (SOS) 1999

    International Nuclear Information System (INIS)

    Grabmer, W.; Wisthaler, A.; Hansel, A.; Stroud, C.; Roberts, J.M.; Fehsenfeld, F.C.

    2002-01-01

    Full text: During the Southern Oxidants Study (SOS) 1999 Nashville campaign ambient air samples were analyzed at Cornelia Fort Airport (CFA) for organic compounds by two independent methods: 1) a gas chromatographic systems operated by NOAAs Aeronomy Laboratory, which performed immediate analysis of collected samples and 2) an in situ proton transfer reaction mass spectrometer (PTR-MS) system operated by the Univ. of Innsbruck. The sample protocols were quite different for the different methods. The GC system sequentially collected and analyzed air samples each 60 minutes for VOCs. The in-situ PTR-MS system measured more than 20 VOCs on a time shared basis for 5 to 15 seconds respectively, once each 5 minutes. The PTR-MS system is not able to distinguish between isobaric species, therefore acetone and propanal (MVK and MACR) values measured by NOAAs GC were added up prior to comparison with the respective PTR-MS values. For all species mentioned above the different measurement methods show good agreement. (author)

  12. Comparison of VOC measurements in Nashville, TE, during the southern oxidants study (SOS) 1999

    International Nuclear Information System (INIS)

    Grabmer, W.; Wisthaler, A.; Hansel, A.; Stroud, C.; Roberts, J.M.; Fehsenfeld, F.C.

    2002-01-01

    During the Southern Oxidants Study (SOS) 1999 Nashville campaign ambient air samples were analyzed at Cornelia Fort Airport (CFA) for organic compounds by two independent methods: 1) a gas chromatographic systems operated by NOAAs Aeronomy Laboratory, which performed immediate analysis of collected samples and 2) an in situ proton transfer reaction mass spectrometer (PTR M S) system operated by the University of Innsbruck. The sample protocols were quite different for the different methods. The GC system sequentially collected and analyzed air samples each 60 minutes for VOCs. The in-situ PTR-MS system measured more than 20 VOCs on a time shared basis for 5 to 15 seconds respectively, once each five minutes. The PTR-MS system is not able to distinguish between isobaric species, therefor acetone and propanal (MVK and MACR) values measured by NOAAs GC were added up prior to comparison with the respective PTR-MS values. For all species mentioned above the different measurement methods show good agreement. (author)

  13. Development of the software of the data taking system SOS for the SAPHIR experiment

    International Nuclear Information System (INIS)

    Manns, J.

    1989-02-01

    The data acquistion system SOS has been developed for the SAPHIR experiment at the Bonn stretcher ring ELSA. It can handle up to 280 kilobytes of data per second or a maximum triggerrate of 200 Hz. The multiprocessor based online system consists of twenty VIP-microprocessors and two VAX-computers. Each component of the SAPHIR experiment has at least one program in the online system to maintain special functions for this specific component. All of these programs can receive event data without interfering with the transfer of events to a mass storage for offline analysis. A special program SOL has been developed to serve as a user interface to the data acquisition system and as a status display for most of the programs of the online system. Using modern features like windowing and mouse control on a VAX-station the SAPHIR online SOL establishes an easy way of controlling the data acquisition system. (orig.)

  14. Marine Fungi: A Source of Potential Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Sunil K. Deshmukh

    2018-01-01

    Full Text Available Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

  15. Synthesis of some new heterocyclic compounds bearing a sulfonamide moiety and studying their combined anticancer effect with γ-radiation

    International Nuclear Information System (INIS)

    El-Hossary, E.M.M.

    2010-01-01

    In search for new cytotoxic agents with improved anticancer profile, some new halogen-containing quinoline and pyrimido[4,5-b]quinoline derivatives bearing a free sulfonamide moiety were synthesized. All the newly synthesized target compounds were subjected to in vitro anticancer screening against human breast cancer cell line (MCF7). The most potent compounds, as concluded from the in vitro anticancer screening, were selected to be evaluated again for their in vitro anticancer activity in combination with radiation. Also, the newly synthesized compounds were docked in the active site of the carbonic anhydrase enzyme

  16. Uptake, delivery, and anticancer activity of thymoquinone nanoparticles in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fakhoury, Isabelle [American University of Beirut, Department of Biology (Lebanon); Saad, Walid [American University of Beirut, Department of Chemical and Petroleum Engineering (Lebanon); Bouhadir, Kamal [American University of Beirut, Department of Chemistry (Lebanon); Nygren, Peter [Uppsala University, Department of Immunology, Genetics and Pathology, Experimental and Clinical Oncology (Sweden); Schneider-Stock, Regine [University of Erlangen-Nuremberg, Experimental Tumor Pathology, Institute for Pathology (Germany); Gali-Muhtasib, Hala, E-mail: amro@aub.edu.lb [American University of Beirut, Department of Biology (Lebanon)

    2016-07-15

    Thymoquinone (TQ) is a promising anticancer molecule but its development is hindered by its limited bioavailability. Drug encapsulation is commonly used to overcome low drug solubility, limited bioavailability, and nonspecific targeting. In this project, TQ nanoparticles (TQ-NP) were synthesized and characterized. The cytotoxicity of the NP was investigated in nontumorigenic MCF-10-A breast cells, while the uptake, distribution, as well as the anticancer potential were investigated in MCF-7 and MDA-MB-231 breast cancer cells. Flash Nanoprecipitation and dynamic light scattering coupled with scanning electron microscopy were used to prepare and characterize TQ-NP prior to measuring their anticancer potential by MTT assay. The uptake and subcellular intake of TQ-NP were evaluated by fluorometry and confocal microscopy. TQ-NP were stable with a hydrodynamic average diameter size around 100 nm. Entrapment efficiency and loading content of TQ-NP were high (around 80 and 50 %, respectively). In vitro, TQ-NP had equal or enhanced anticancer activity effects compared to TQ in MCF-7 and aggressive MDA-MB-231 breast cancer cells, respectively, with no significant cytotoxicity of the blank NP. In addition, TQ and TQ-NP were relatively nontoxic to MCF-10-A normal breast cells. TQ-NP uptake mechanism was both time and concentration dependent. Treatment with inhibitors of endocytosis suggested the involvement of caveolin in TQ-NP uptake. This was further confirmed by subcellular localization findings showing the colocalization of TQ-NP with caveolin and transferrin as well as with the early and late markers of endocytosis. Altogether, the results describe an approach for the enhancement of TQ anticancer activity and uncover the mechanisms behind cell-TQ-NP interaction.Graphical Abstract.

  17. Prosa y verso en Umbral: entre la dispersión y el cancionero de Mis paraísos artificiales

    Directory of Open Access Journals (Sweden)

    Díez, J. Ignacio

    2015-08-01

    Full Text Available In contrast with the whole classical tradition that abhors the mixture of prose and verse, Umbral mixes poems (sometimes in verse and sometimes in prose in his work. Umbral filled his literary path with fragments of poetry showing him to be a genuine poet; these pieces also serve to compensate for his giving up poetry for more productive pursuits and to compose a sort of giant songbook that, significantly, he never wanted to compile. In Mis paraísos artificiales the technique is quantitatively and qualitatively different: to organise a single songbook that alternates prose and verse in the old Renaissance style, although Umbral prefers to tie in with with Juan Ramón Jiménez. This technique is used in Mortal y rosa, to a lesser extent and with other features.Frente a toda la tradición clásica que aborrece la mezcla de prosa y verso, Umbral entrevera los poemas (en verso a veces y también en prosa dentro de su obra. Llena Umbral su camino literario con piezas poéticas que demuestren que es poeta, que suplan su abandono de la poesía por más productivas dedicaciones y que compongan una suerte de gigantesco cancionero que, muy significativamente, nunca quiso reunir. En Mis paraísos artificiales el recurso es cuantitativa y cualitativamente distinto: componer un cancionero único que alterne prosa y verso al viejo estilo renacentista, aunque Umbral prefiere entroncar con Juan Ramón Jiménez. El recurso también se utiliza en Mortal y rosa, en menor medida y con otras funciones.

  18. Autophagic Mechanism in Anti-Cancer Immunity: Its Pros and Cons for Cancer Therapy.

    Science.gov (United States)

    Li, Ying-Ying; Feun, Lynn G; Thongkum, Angkana; Tu, Chiao-Hui; Chen, Shu-Mei; Wangpaichitr, Medhi; Wu, Chunjing; Kuo, Macus T; Savaraj, Niramol

    2017-06-19

    Autophagy, a self-eating machinery, has been reported as an adaptive response to maintain metabolic homeostasis when cancer cells encounter stress. It has been appreciated that autophagy acts as a double-edge sword to decide the fate of cancer cells upon stress factors, molecular subtypes, and microenvironmental conditions. Currently, the majority of evidence support that autophagy in cancer cells is a vital mechanism bringing on resistance to current and prospective treatments, yet whether autophagy affects the anticancer immune response remains unclear and controversial. Accumulated studies have demonstrated that triggering autophagy is able to facilitate anticancer immunity due to an increase in immunogenicity, whereas other studies suggested that autophagy is likely to disarm anticancer immunity mediated by cytotoxic T cells and nature killer (NK) cells. Hence, this contradiction needs to be elucidated. In this review, we discuss the role of autophagy in cancer cells per se and in cancer microenvironment as well as its dual regulatory roles in immune surveillance through modulating presentation of tumor antigens, development of immune cells, and expression of immune checkpoints. We further focus on emerging roles of autophagy induced by current treatments and its impact on anticancer immune response, and illustrate the pros and cons of utilizing autophagy in cancer immunotherapy based on preclinical references.

  19. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-08-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  20. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-01-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  1. Inhibition of the SOS response of Escherichia coli by the Ada protein

    International Nuclear Information System (INIS)

    Vericat, J.A.; Guerrero, R.; Barbe, J.

    1988-01-01

    Induction of the adaptive response by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) caused a decrease in the UV-mediated expression of both recA and sfiA genes but not of the umuDC gene. On the other hand, the adaptive response did not affect the temperature-promoted induction of SOS response in a RecA441 mutant. The inhibitory effect on the UV-triggered expression of the recA and sfiA genes was not dependent on either the alkA gene or the basal level of RecA protein, but rather required the ada gene. Furthermore, an increase in the level of the Ada protein, caused by the runaway plasmid pYN3059 in which the ada gene is regulated by the lac promoter, inhibited UV-mediated recA gene expression even in cells to which the MNNG-adaptive treatment had not been applied. This inhibitory effect of the adaptive pretreatment was not observed either in RecBC- strains or in RecBC mutants lacking exonuclease V-related nuclease activity. However, RecF- mutants showed an adaptive response-mediated decrease in UV-promoted induction of the recA gene

  2. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    International Nuclear Information System (INIS)

    Li, Su; Wang, Anxun; Jiang, Wenqi; Guan, Zhongzhen

    2008-01-01

    It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t 1/2 , 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (V D , 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05). In our

  3. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  4. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil; Kaur, Mandeep; Esau, Luke E.

    2014-01-01

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  5. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic drugs

  6. Carnosol: a promising anti-cancer and anti-inflammatory agent.

    Science.gov (United States)

    Johnson, Jeremy J

    2011-06-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicinal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.524, year: 2013

  8. Botanical, Phytochemical, and Anticancer Properties of the Eucalyptus Species.

    Science.gov (United States)

    Vuong, Quan V; Chalmers, Anita C; Jyoti Bhuyan, Deep; Bowyer, Michael C; Scarlett, Christopher J

    2015-06-01

    The genus Eucalyptus (Myrtaceae) is mainly native to Australia; however, some species are now distributed globally. Eucalyptus has been used in indigenous Australian medicines for the treatment of a range of aliments including colds, flu, fever, muscular aches, sores, internal pains, and inflammation. Eucalyptus oils containing volatile compounds have been widely used in the pharmaceutical and cosmetics industries for a multitude of purposes. In addition, Eucalyptus extracts containing nonvolatile compounds are also an important source of key bioactive compounds, and several studies have linked Eucalyptus extracts with anticancer properties. With the increasing research interest in Eucalyptus and its health properties, this review briefly outlines the botanical features of Eucalyptus, discusses its traditional use as medicine, and comprehensively reviews its phytochemical and anticancer properties and, finally, proposes trends for future studies. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Transportan 10 improves the anticancer activity of cisplatin.

    Science.gov (United States)

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a

  10. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group

    Directory of Open Access Journals (Sweden)

    Subtel’na I. Yu.

    2011-04-01

    Full Text Available The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program, among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected.

  11. Classification of mitocans, anti-cancer drugs acting on mitochondria

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Dong, L. F.; Rohlena, Jakub; Truksa, Jaroslav; Ralph, S. J.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 199-208 ISSN 1567-7249 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitocans * Anti-cancer therapeutics * Classification Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 3.524, year: 2013

  12. Screening of potent anticancer drug taxol from Entophytic fungus ...

    African Journals Online (AJOL)

    Muthumary

    2011-02-21

    Feb 21, 2011 ... Isolation and detection of taxol, an anticancer drug produced from ... cancer cell line, taxol produced by the test fungus in MID culture medium was isolated for its .... then plotted on a graph. RESULTS AND ... Wavelength (nm).

  13. Role of Dopamine Receptors in the Anticancer Activity of ONC201.

    Science.gov (United States)

    Kline, Christina Leah B; Ralff, Marie D; Lulla, Amriti R; Wagner, Jessica M; Abbosh, Phillip H; Dicker, David T; Allen, Joshua E; El-Deiry, Wafik S

    2018-01-01

    ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201's interaction with DRD2 plays a role in ONC201's anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type-specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201's anticancer effects. Although ONC201's anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201's anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201's ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity. Copyright © 2018 The Authors

  14. Role of Dopamine Receptors in the Anticancer Activity of ONC201

    Directory of Open Access Journals (Sweden)

    Christina Leah B. Kline

    2018-01-01

    Full Text Available ONC201/TIC10 is a first-in-class small molecule inducer of TRAIL that causes early activation of the integrated stress response. Its promising safety profile and broad-spectrum efficacy in vitro have been confirmed in Phase I/II trials in several advanced malignancies. Binding and reporter assays have shown that ONC201 is a selective antagonist of the dopamine D2-like receptors, specifically, DRD2 and DRD3. We hypothesized that ONC201’s interaction with DRD2 plays a role in ONC201’s anticancer effects. Using cBioportal and quantitative reverse-transcription polymerase chain reaction analyses, we confirmed that DRD2 is expressed in different cancer cell types in a cell type–specific manner. On the other hand, DRD3 was generally not detectable. Overexpressing DRD2 in cells with low DRD2 levels increased ONC201-induced PARP cleavage, which was preceded and correlated with an increase in ONC201-induced CHOP mRNA expression. On the other hand, knocking out DRD2 using CRISPR/Cas9 in three cancer cell lines was not sufficient to abrogate ONC201’s anticancer effects. Although ONC201’s anticancer activity was not dependent on DRD2 expression in the cancer cell types tested, we assessed the cytotoxic potential of DRD2 blockade. Transient DRD2 knockdown in HCT116 cells activated the integrated stress response and reduced cell number. Pharmacological antagonism of DRD2 significantly reduced cell viability. Thus, we demonstrate in this study that disrupting dopamine receptor expression and activity can have cytotoxic effects that may at least be in part due to the activation of the integrated stress response. On the other hand, ONC201’s anticancer activity goes beyond its ability to antagonize DRD2, potentially due to ONC201’s ability to activate other pathways that are independent of DRD2. Nevertheless, blocking the dopamine D1-like receptor DRD5 via siRNA or the use of a pharmacological antagonist promoted ONC201-induced anticancer activity.

  15. In vitro method determing sensitivity of anticancer agents by incorporation of radioactive precursors

    International Nuclear Information System (INIS)

    Sakakibara, Satoshi

    1983-01-01

    A new sensitivity test of anticancer agents was developed to measure the lethal effects of cancer cells by the incorporation of radioactive precursors. The thousand cancer cells were cultured in a microplate in the presence of anticancer agents. These cells were exposed to radioactive precursors. Two or three days later, the cancer cells were harvested on a glass fiver filter by a multiple automatic cell-harvester and the incorporation of precursors was counted by a liquid scintillation counter. In this study, the in vivo results of drug testing in animal model systems were compared with drug sensitivities. Mice inoculated Ehrlich ascites cells were treated with various kinds of anticancer drugs. The development of the cells was compatible with the result of the sensitivity test. The growths of Lauson and ME-180 cells derived from human cancers implanted subcutaneously to nude mice were also well correlated with this sensitivity test. (author)

  16. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  17. Understanding Patterns for System-of-Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Nielsen, Claus Ballegård; Schmid, Klaus

    Creating a successful system of systems—one that meets the needs of its stakeholders today and can evolve and scale to sustain those stakeholders into the future—is a very complex engineering challenge. In a system of systems (SoS), one of the biggest challenges is in achieving cooperation and in...

  18. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  19. Synthesis and biological evaluation of conformationally restricted and nucleobase-modified analogs of the anticancer compound 3'-C-ethynylcytidine (ECyd)

    DEFF Research Database (Denmark)

    Hrdlicka, Patrick J; Jepsen, Jan S; Wengel, Jesper

    2005-01-01

    A series of conformationally restricted and nucleobase-modified analogs of the anticancer compound 3'-C-ethynylcytidine (ECyd) and its uracil analog (EUrd) have been synthesized. While none of the conformationally restricted analogs displayed anticancer activity, 5-iodo-EUrd and 5-bromo-EUrd disp......-EUrd displayed potent anticancer activity with IC50 values of 35 nM and 0. 73 microM....

  20. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    Science.gov (United States)

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916