WorldWideScience

Sample records for sorption takes place

  1. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  2. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-11-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 m g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great as those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  3. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-07-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 ml g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great at those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland Cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  4. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor

    International Nuclear Information System (INIS)

    Escudero, Carlos; Fiol, Nuria; Poch, Jordi; Villaescusa, Isabel

    2009-01-01

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  5. Effect of pH on the sorption properties of bentonite Kopernica

    International Nuclear Information System (INIS)

    Galambos, M.; Paucova, V.

    2009-01-01

    In this work sorption of strontium-85 on Slovak bentonites was studied. Sorption experiments that were conducted at four different values of pH = 2, 4, 6 and 8 showed that by increasing of pH in the solution an increasing of values of percentage of sorption and of distribution relationships occur. Value approaching 99% was achieved during the sorption of strontium cations from the bentonite deposits Kopernica only at pH = 8. It can be concluded that in addition to the basic mechanism of sorption, which is ion exchange, complex-forming reactions with surface groups of bentonite take place there at higher values. The increase in value attributable to R 'hydrolytic' adsorption, because there is a reaction between Sr(OH) + and OH-groups and H + ion competition is stifled. At pH = 2 in the whole studied range of concentrations low values of sorption percent, distribution ratio and adsorbed amount of strontium were observed. It can be attributed to a significant competitive impact of hydrogen ions and disruption of the structure of bentonite.

  6. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid become locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicated that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 refs., 3 figs., 3 tabs

  7. Sorption-capacity limited retardation of radionuclides transport in water-saturated packing materials

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.

    1984-01-01

    Radionuclides breakthrough times as calculated through constant retardation factors obtained in dilute solutions are non-conservative. The constant retardation approach regards the solid as having infinite sorption capacity throughout the solid. However, as the solid becomes locally saturated, such as in the proximity of the waste form-packing materials interface, it will exhibit no retardation properties, and transport will take place as if the radionuclides were locally non-reactive. The magnitude of the effect of finite sorption capacity of the packing materials on radionuclide transport is discussed with reference to high-level waste package performance. An example based on literature sorption data indicates that the breakthrough time may be overpredicted by orders of magnitude using a constant retardation factor as compared to using the entire sorption isotherm to obtain a concentration-dependent retardation factor. 8 references, 3 figures, 3 tables

  8. Sorption behaviour of caesium on a bentonite sample

    International Nuclear Information System (INIS)

    Hurel, C.; Marmier, N.; Fromage, F.; Seby, F.; Bourg, A.C.M.; Giffaut, E.

    2002-01-01

    Sorption of elements like Cs on clay is one of the principal processes delaying their release from deep repositories of nuclear wastes into the environment. The sorption processes taking place between non-purified natural clay material (bentonite) and synthetic groundwater (containing Ca, Mg, Na, K and carbonates) were therefore studied experimentally and modelled for Cs to determine whether thermodynamic computer codes capable of predicting the behaviour of this element in natural systems might be developed. The model used, based on the properties of a pure montmorillonite phase, incorporates the surface reactions for natural major ions and sorbing cations but does not have any adjustable parameters. The weight of each parameters used in the model is assessed. Surface reactions are classified as either major or minor, and a simplified model of Cs sorption that considers only the major processes is proposed. This simplified model might correspond to the less sophisticated thermodynamic model included in coupled geochemistry-transport models. (orig.)

  9. Nature of transition element ions sorption by AN-61 and ANKB-10 ionites

    International Nuclear Information System (INIS)

    Mekvabishvili, T.V.; Kotov, Yu.I.; Kopylova, V.D.; Kachevskij, O.V.; Saldadze, K.M.

    1983-01-01

    The results of investigations into nature of sorption of iron (3), copper (2), zinc (2) cobalt (2), uranyl ions at contact of their salt solutions with AN-61 and ANKB-10 ionites using the; methods of IR-spectroscopy and potentiometry as well as experimental data on sorption properties of ionites are presented. Investigation into the nature of sorption of transition metals by AN-61 and ANKB-10 ionites has revealed that sorption of transition metals takes place at the expense of coordination and ion bonds formation between ions of the metals and functional groups of ionites. The effect of ion force of the solution on electro-donating properties of AN-61 and ANKB-10 ionites hous disclosed. Increase of ion force of the solution results in improvement of electron-donating properties in anionite and it does not practically affect ampholyte

  10. Sorption of Europium in zirconium silicate; Sorcion de Europio en silicato de circonio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia R, G. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)

    2004-07-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO{sub 4}). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  11. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  12. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [College of Environmental Science and Engineering, Anhui Normal University, South Jiuhua Road, 189, 241002 Wuhu (China); Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Fiol, Núria [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Villaescusa, Isabel, E-mail: Isabel.Villaescusa@udg.edu [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Poch, Jordi [Applied Mathematics Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain)

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data.

  13. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    International Nuclear Information System (INIS)

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-01

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data

  14. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride.

    Science.gov (United States)

    Krajišnik, Danina; Daković, Aleksandra; Milojević, Maja; Malenović, Anđelija; Kragović, Milan; Bogdanović, Danica Bajuk; Dondur, Vera; Milić, Jela

    2011-03-01

    In this study an investigation of a model drug sorption onto cationic surfactant-modified natural zeolites as a drug formulation excipient was performed. Natural zeolite was modified with cetylpyridinium chloride in amounts equivalent to 100, 200 and 300% of its external cation-exchange capacity. The starting material and obtained organozeolites were characterized by Fourier transform infrared spectroscopy, zeta potential measurements and thermal analysis. In vitro sorption of diclofenac sodium as a model drug was studied for all surfactant/zeolite composites by means of sorption isotherm measurements in aqueous solutions (pH 7.4). The modified zeolites with three levels of surfactant coverage within the short activation time were prepared. Zeta potential measurements and thermal analysis showed that when the surfactant loading level was equal to external cation-exchange value, almost monolayer of organic phase were present at the zeolitic surface while higher amounts of surfactant produced less extended bilayers, ordered bilayers or admicelles at the zeolitic surface. Modified zeolites, obtained in this manner, were effective in diclofenac sodium sorption and the organic phase derived from adsorbed cetylpyridinium chloride was the primary sorption phase for the model drug. The Langmuir isotherm was found to describe the equilibrium sorption data well over the entire concentration range. The separate contributions of the adsorption and partition to the total sorption of DS were analyzed mathematically. Results revealed that that adsorption and partitioning of the model drug take place simultaneously. 2010 Elsevier B.V. All rights reserved.

  15. Taking place, screening place

    DEFF Research Database (Denmark)

    Hansen, Kim Toft; Waade, Anne Marit

    2019-01-01

    We introduce location studies as a new empirical approach to screen studies. Location studies represent an interdisciplinary perspective, including media, aesthetics and geography, and reflect a growing interest in places in a global media and consumption culture. The chapter analyses two recent......) with one being traditional and the other being commercial; both dramas include discussions of localities and social heritage, and both use local sports as a common metaphor for social cohesion; and both series have been partly funded by a local film Danish commissioner. However, The Legacy is shot...... to a large extent in studios, while Norskov is shot entirely on location. The study is based on interviews with producers, broadcasters, location scouts, production designers and writers, as well as quantitative and qualitative textual analyses of television drama series, the geographical places, and related...

  16. Sorption of sodium hydroxide by type I collagen and bovine corneas.

    Science.gov (United States)

    Whikehart, D R; Edwards, W C; Pfister, R R

    1991-01-01

    There are no quantitative studies on the uptake of alkali into corneal tissues. To study this phenomenon, both type I collagen and bovine corneas were incubated in sodium hydroxide (NaOH) under varying conditions for periods up to 27.5 h. The sorption (absorption or adsorption) of the alkali to protein and tissue was measured as the quantity of NaOH no longer available for titration to neutrality with hydrochloric acid. Sorption was found to be dependent on the concentration of NaOH (0.01-1 N) but independent of the incubation temperature (4-35 degrees C). In whole cornea, sorption of 1 N NaOH began immediately and increased with time up to 6 h. After 6 h, sorption decreased, together with the observed degradation and solubilization of the tissue. Stripping of the corneal endothelium alone or of the endothelium and epithelium increased sorption in a similar manner when compared to whole corneas for periods up to 4 h. These observations are compatible with ionic and nonionic bonding of hydroxide ions to collagen (including that of the cornea) and the subsequent release of hydroxide ions during hydrolysis of the protein itself. Indirect evidence also suggests the inclusion of quantities of unbound hydroxide ions in hydrated gels of glycosaminoglycans. It is proposed that in a chemical burn of the cornea, alkali is both stored in the tissue (by sorption) and reacted with it (by hydrolysis), without any net consumption of alkali taking place.

  17. Test of zircon materials for sorption of europium

    International Nuclear Information System (INIS)

    Ordonez R, E.; Fernandez V, S.M.; Garcia R, G.

    2003-01-01

    In previous works it has already been made notice that some phosphates have the property of sipping radioactive metals in solution, what takes advantage to fabricate reactive barriers that are placed in the repositories of nuclear wastes. In our laboratory it has been obtained to the zirconium silicate (ZrSiO 4 ) and the alpha zirconium hydrogen phosphate (Zr(HPO 4 ) 2H 2 0) starting from sea sand in an easy and economic way. With the interest of knowing if these compounds can be used in contention barriers the evaluation of their surface properties it is made and of europium sorption. (Author)

  18. Sorption of cesium and uranium to Feldspar

    International Nuclear Information System (INIS)

    Wijland, G.C.; Pennders, R.M.J.

    1990-07-01

    Within safety assessment studies, for nuclear waste disposal in deep geologic formations, calculation for the migration of radionuclides through the geosphere are often carried out with models taking sorption into account. In the past 8 years the insight grew that other physico-chemical processes, besides sorption, could affect migration behaviour. While the currently used transport models were being improved taking either linear or non-linear sorption into account, the coupling of geochemical and transport models came into scope. In spite of these developments models which are still based on the sorption theory are frequently applied in studying migration behaviour of radionuclides. This is caused by the necessity of making preliminary pronouncements, while coupled models are still in stage of development and thermodynamic data are very limited available. Therefore one has to obtain insight in the reliability of the models based on the sorption theory. within the sorption database there is a lack of knowledge about mineralogy, composition of the fluid and the experimental conditions underlying the data. Therefore the Expert Group on geochemical Modelling supported by the Finnish proposal in order to obtain insight in the possible deviation of the sorption coefficients that can be estimated from experiments performed with standard samples, fluid composition and experimental conditions. Nine laboratories from OECD membership countries took part in this intercalibration study. In the framework of the Dutch safety assessment studies the Dutch National Institute of Public health and Environmental protection (RIVM) has decided to participate in this exercise. In this report the results are presented of sorption experiments for cesium and natural Uranium to Feldspar. (H.W.). 4 refs.; 1 fig.; 7 tabs

  19. Sorption of 241Am onto montmorillonite, illite and hematite colloids

    International Nuclear Information System (INIS)

    Degueldre, C.; Ulrich, H.J.; Silby, H.

    1994-01-01

    Actinide sorption on colloids may be described as a competition between the formation of complexes in solution and the build up of surface complexes. The role of particle and of carbonate concentrations on the sorption/desorption of 241 Am on montmorillonite, illite and hematite colloids is investigated. Since the partition coefficient (K p ) values are virtually independent of the colloid concentrations, within the range 1 to 300 ppm, no significant aggregation takes place in the sorption/desorption experiment. At pH 8, a slight decrease of K p is observed if the concentration of total carbonate exceeds 10 -2 M. The formation of the carbonato- (and hydroxo-carbonato-) complexes in the solution competes with the formation of surface complexes on the colloids. A relationship between the sorption coefficient and the complexation of 241 Am in the solution has been found. This leads to the conclusion that, besides free americium cation, the hydroxo-, and carbonato- as well as the mixed hydroxo-carbonato-complexes are sorbed. Only when the tricarbonatocomplex [Am(CO 3 ) 3 ] 3- prevails (total carbonate concentration > 10 -2 M), a significant decrease of the distribution coefficient is observed. At pH 10 this decrease disappears because under these conditions the strong hydroxo-complexes dominate. A pragmatic and relatively simple application of surface complexation model describes the observed features. (orig.)

  20. The one-dimensional transport code CHET2, taking into account nonlinear, element-specific equilibrium sorption

    International Nuclear Information System (INIS)

    Luehrmann, L.; Noseck, U.

    1996-03-01

    While the verification report on CHET1 primarily focused on aspects such as the correctness of algorithms with respect to the modeling of advection, dispersion and diffusion, the report in hand is intended to primarily deal with nonlinear sorption and numerical sorption modeling. Another aspect discussed is the correct treatment of decay within established radioactive decay chains. First, the physical fundamentals are explained of the processes determining the radionuclide transport in the cap rock, and hence are the basis of the program discussed. The numeric algorithms the CHET2 code is based are explained, showing the details of realisation and the function of the various defaults and corrections. The iterative coupling of transport and sorption computation is illustrated by means of a program flowchart. Furthermore, the actvities for verification of the program are explained, as well as qualitative effects of computations assuming concentration-dependent sorption. The computation of the decay within decay chains is verified, and application programming using nonlinear sorption isotherms as well as the entire process of transport calculations with CHET2 are shown. (orig./DG) [de

  1. Geochemical modelling of the sorption of tetravalent radioelements

    International Nuclear Information System (INIS)

    Bond, K.A.; Tweed, C.J.

    1991-05-01

    The results of an experimental study of the sorption of a range of tetravalent radioelements, plutonium (IV), tin (IV), thorium(IV) and uranium(IV), onto clay at pH8 and pH11 have been successfully simulated using a triple layer sorption model. The model has been incorporated into HARPHRQ, a geochemical program based on PHREEQE. The model has been parameterised using data for sorption onto ferric oxyhydroxide and goethite. The effects of hydroxycarboxylic acids on the sorption process have also been investigated experimentally. It was generally observed that in the presence of 2x10 -3 M gluconate, sorption was reduced by up two orders of magnitude. The model has satisfactorily simulated these lower sorptivities, through assuming competing sorption and complexation reactions. This work, therefore, further confirms the need to take account of such organic materials in safety assessment modelling. (author)

  2. Kinetics and reversibility of micropollutant sorption in sludge.

    Science.gov (United States)

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  3. Sorption mechanisms and sorption models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.; Duc, M.; Neskovic, C.; Milonjic, S.

    2004-01-01

    Sorption at the solid-liquid interfaces play a major role in many phenomena and technologies: chemical separations, catalysis, biological processes, transport of toxic and radioactive species in surface and underground waters. The long term safety of radioactive waste repositories is based on artificial and natural barriers, intended to sorb radionuclides after the moment when the storage matrixes and containers will be corroded. Predictions on the efficiency of sorption for more than 10 6 years have to be done in order to demonstrate the safety of such depositories, what is a goal never encountered in the history of sciences and technology. For all these purposes, and, especially for the long term prediction, acquiring of sorption data constitutes only a first step of studies. Modeling based on a very good knowledge of sorption mechanisms is needed. In this review, we shall examine the main approaches and models used to quantify sorption processes, including results taken from the literature and from our own studies. We shall compare sorption models and examine their adequacy with sorption mechanisms. The cited references are only a few examples of the numerous articles published in that field. (orig.)

  4. Modeling of Cd(II) sorption on mixed oxide

    International Nuclear Information System (INIS)

    Waseem, M.; Mustafa, S.; Naeem, A.; Shah, K.H.; Hussain, S.Y.; Safdar, M.

    2011-01-01

    Mixed oxide of iron and silicon (0.75 M Fe(OH)3:0.25 M SiO/sub 2/) was synthesized and characterized by various techniques like surface area analysis, point of zero charge (PZC), energy dispersive X-rays (EDX) spectroscopy, Thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR) and X-rays diffraction (XRD) analysis. The uptake of Cd/sup 2+/ ions on mixed oxide increased with pH, temperature and metal ion concentration. Sorption data have been interpreted in terms of both Langmuir and Freundlich models. The Xm values at pH 7 are found to be almost twice as compared to pH 5. The values of both DH and DS were found to be positive indicating that the sorption process was endothermic and accompanied by the dehydration of Cd/sup 2+/. Further, the negative value of DG confirms the spontaneity of the reaction. The ion exchange mechanism was suggested to take place for each Cd/sup 2+/ ions at pH 5, whereas ion exchange was found coupled with non specific adsorption of metal cations at pH 7. (author)

  5. Model of Wagons’ Placing-In and Taking-Out Problem in a Railway Station and Its Heuristic Algorithm

    Directory of Open Access Journals (Sweden)

    Chuijiang Guo

    2014-01-01

    Full Text Available Placing-in and taking-out wagons timely can decrease wagons’ dwell time in railway stations, improve the efficiency of railway transportation, and reduce the cost of goods transportation. We took the locomotive running times between goods operation sites as weights, so the wagons’ placing-in and taking-out problem could be regarded as a single machine scheduling problem, 1pijCmax, which could be transformed into the shortest circle problem in a Hamilton graph whose relaxation problem was an assignment problem. We used a Hungarian algorithm to calculate the optimal solution of the assignment problem. Then we applied a broken circle and connection method, whose computational complexity was O(n2, to find the available satisfactory order of wagons’ placing-in and taking-out. Complex problems, such as placing-in and transferring combined, taking-out and transferring combined, placing-in and taking-out combined, or placing-in, transferring, and taking-out combined, could also be resolved with the extended algorithm. A representative instance was given to illustrate the reliability and efficiency of our results.

  6. DETERMINING THE FEATURES OF SPORTSWEAR TAKING PLACE IN FAST FASHION COLLECTIONS

    Directory of Open Access Journals (Sweden)

    Birsen ÇİLEROĞLU

    2014-07-01

    Full Text Available Spor ts occupies the first place among most siginificant factors increasing quality of life . It has b ecome difficult to allocate proper time for sports in the course of heavy work pace and flow of life . Such circumstances have led people to increase minor sport activities which could be done during short times allocated from daily living, thus, orienting people‟s clothing preference towards sportswear . The feeling of easiness and comfort sportswear offer to individuals enhances further such preference . The feeling of comfort individuals feel in their clothing depends on the presence of physiologic and psy chologic coherence between their bodies and environment . Demand for sportswear allowing easy - movement increased upon rise in life dynamism and standards, it began to be preferred regarding comfort of use and to take its place in daily clothing, too, define d as “casual” clothing . Spor tswear being preferred very much ; has caused the firms making and producing fashion and clothing design to give place in their collections to sportswear category . Particularly, in firms where model and clothing varieties are pl enty and new model design is made in short intervals, named as, “fast fashion” , tendency towards sportswear is growing increasingly . The sale rates of sportswear, utilization rates of which are growing increasingly, has maximum value among total clothing s ales in E - business field, too. In this research, it has been aimed to determine the features of sportswear taking place in “fast fashion” clothing collections . In order to accomplish this aim, 2014 collections of four different brands taking place in natio nal and international markets have been examined through visual analysis method . In the examinations; sportswear styles of the brand, model and style differences between brands and states of using 2014 fashion trends have been taken into account. The data obtained at the end of the analyses made have been

  7. Kinetics of strontium sorption in calcium phosphate

    International Nuclear Information System (INIS)

    Bacic, S.; Komarov, V.F.; Vukovic, Z.

    1989-01-01

    Kinetics of strontium sorption by highly dispersed solids: tricalcium phosphate (Ca 3 (PO 4 ) 2 , TCP) and hydroxyapatite (Ca 5 (PO 4 ) 3 )H, HAP) were investigated. Analysis of sorption data was made taking into consideration composition and morphology of ultra micro particles. Conclusion is that the isomorphous strontium impurity is structurally sensitive element for calcium phosphate. It was determined that the beginning of strontium desorption corresponds to the beginning of transformation of the TCP - HAP (author)

  8. Then Daddy Takes His Place in an Australian Landscape

    OpenAIRE

    ERIN GAYLE CROUCH

    2018-01-01

    This writing accompanies a 62 minute, single channel, digital film work also titled Then Daddy Takes His Place in an Australian Landscape. The research considers themes of loss and disorientation in the above film and the film practice of Belgian filmmaker Chantal Akerman. Formally, the following writing interweaves critical engagements with Akerman’s films including No Home Movie (2015), Jeanne Dielman, 23 Commerce Quay, 1080 Brussels(1975), Là Bas (2006), with personal stories and reflecti...

  9. Autoradiographic studies of actinide sorption in groundwater systems

    International Nuclear Information System (INIS)

    O'Kelley, G.D.; Beall, G.W.; Allard, B.

    1980-01-01

    Autoradiography is a convenient and sensitive technique for the study of spacial distributions of alpha radioactive nuclides on slabs of rock or on other planar surfaces. The autoradiographic camera contains an arrangement for placing in firm contact Polaroid sheet film, a plastic scintillator screen, and the radioactive face of the specimen. As an example of the use of the autoradiographic method, a series of sorption experiments were carried out in which synthetic groundwater solutions of americium, neptunium, uranium, and plutonium were contacted with Climax Stock granite under aerated and anoxic conditions at pH 8 to 9. The sorption observed at specific mineral sites was correlated with data on sorption of these actinides on pure minerals

  10. Sorption of europium (3) by polymer sorbents with grafted heterocyclic nitrogen-containing groupings

    International Nuclear Information System (INIS)

    Bel'tyukova, S.V.; Kravchenko, T.B.; Balamtsarashvili, G.M.; Roska, A.S.

    1990-01-01

    On polymer sorbents (copolymer of styrene-divinylbenzene) with grafted heterocyclic nitrogen-containing functional groupings of tetrazole, triazole and imidazole (sorbents 1,2,3, respectively). It is stated that europium sorption takes place from neutral solutions in presence of organic solvents. Luminescent properties of europium on sorbent are used to develope methods of its determination in high purity lanthanide and yttrium oxides. Europium determination limits consist 7.5·10 -5 μg/ml on 1 and 3 sorbents and 1.5·10 -4 μg/ml on sorbent 2, S p value is 0.089 and 0.075, respectivaly

  11. DSC studies of retrogradation and amylose-lipid transition taking place in gamma-irradiated wheat starch

    International Nuclear Information System (INIS)

    Ciesla, K.; Gluszewski, W.; Eliasson, A.C.

    2006-01-01

    It has been already shown that degradation resulting from gamma irradiation induces a decrease in order of starch granules and influences gelatinisation taking place during heating of starch and flour suspensions. In presented paper, DSC (differential scanning calorimetry) studies were carried out for wheat starch, non-irradiated and irradiated using doses in the range from 5 to 30 kGy. The influence of the conditions applied during DSC measurements on the possibility to observe differences between the amylose-lipid complex transition and retrogradation taking place in the non-irradiated and particularly irradiated starch samples was checked. The better differentiation between the amylose-lipid complex transition taking place in particular samples accompanied by the better reproducity were obtained in the case of dense suspensions as compared to the watery suspensions as well as during the first analysis performed for the recrystallised gels

  12. Gamma-induced radiation polymerization of kaolin composite for sorption of lanthanum, europium and uranium ions from low-grade monazite leachate

    International Nuclear Information System (INIS)

    Metwally, S.S.; Hassan, R.S.; El-Masry, E.H.; Borai, E.H.

    2018-01-01

    Gamma radiation polymerization method was used for the modification of kaolin to produce (poly acrylamide-acrylic acid)-Kaolin (PAM-AA-K). Monazite ore is one of the main resources of uranium and lanthanide elements, therefore, this work focused on sorption of uranium, lanthanum and europium ions from low grade monazite leachate. The removal percent for Eu 3+ , La 3+ and UO 2 2+ are 94.6, 91.6 and 73.4%, respectively. Monolayer capacity of Eu 3+ , La 3+ and UO 2 2+ were found to be 54.64, 45.87 and 37.59 mg/g, respectively. The sorption mechanism of lanthanum and europium ions on PAM-AA-K composite mainly takes place as Ln(OH) 2+ , and for uranium as uranyl ion, UO 2 2+ . (author)

  13. Dispersion, sorption and photodegradation of petroleum hydrocarbons in dispersant-seawater-sediment systems.

    Science.gov (United States)

    Zhao, Xiao; Liu, Wen; Fu, Jie; Cai, Zhengqing; O'Reilly, S E; Zhao, Dongye

    2016-08-15

    This work examined effects of model oil dispersants on dispersion, sorption and photodegradation of petroleum hydrocarbons in simulated marine systems. Three dispersants (Corexit 9500A, Corexit 9527A and SPC 1000) were used to prepare dispersed water accommodated oil (DWAO). While higher doses of dispersants dispersed more n-alkanes and PAHs, Corexit 9500A preferentially dispersed C11-C20 n-alkanes, whereas Corexit 9527A was more favorable for smaller alkanes (C10-C16), and SPC 1000 for C12-C28 n-alkanes. Sorption of petroleum hydrocarbons on sediment was proportional to TPH types/fractions in the DWAOs. Addition of 18mg/L of Corexit 9500A increased sediment uptake of 2-3 ring PAHs, while higher dispersant doses reduced the uptake, due to micelle-enhanced solubilization effects. Both dispersed n-alkanes and PAHs were susceptible to photodegradation under simulated sunlight. For PAHs, both photodegradation and photo-facilitated alkylation were concurrently taking place. The information can facilitate sounder assessment of fate and distribution of dispersed oil hydrocarbons in marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  15. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  16. Effects of sorption behaviour on contaminant migration

    International Nuclear Information System (INIS)

    Melnyk, T.W.

    1985-11-01

    The effects of sorption behaviour on contaminant migration in groundwater systems are varied. Retardation of migration and dispersive effects can vary widely and contaminant concentration profiles can take a number of different shapes. This report examines the nature of some of these effects, especially those due to sorption behaviours that are dependent on the concentration of the contaminant in the groundwater. The effects are calculated using, in most cases, analytical solutions to the chemical equations imbedded in a simple reaction-cell or box-model transport algorithm. The hydrogeological parameters are held constant, and radioactive decay and hydrodynamic dispersion are excluded. A general discussion of the role of sorption equations in transport modelling is followed by presentation of migration results for a number of models of sorption behaviour varying from linear isotherms, Langmuir, Freundlich and ion-exchange isotherms, to precipitation reactions and multiple-site sorption reactions. The results are compared and general conclusions are drawn about the various migration behaviours calculated. The conclusions are that equilibrium sorption of trace contaminants can be modelled with linear isotherms (constant distribution coefficients or constant retardation factors) but the evaluation and extrapolation of the distribution coefficient are not easy. Nonlinear isotherms lead to unsymmetrical migration fronts. A comparison of Freundlich and linear isotherms is made. Sorption/desorption kinetic factors can be significant on the time scale of laboratory experiments and can cause large dispersive effects. Slow but important reactions can be missed altogether. Precipitation or mineralization behaviour cannot be modelled with constant distribution coefficients. Also, mineralization reactions can be kinetically slow even on the geological time scale. 89 refs

  17. Geochemistry of REE in Acid Mine Drainage: Sorption onto Basaluminite and Schwertmannite.

    Science.gov (United States)

    Lozano Letellier, A.; Ayora, C.; Fernandez-Martinez, A.

    2017-12-01

    The geochemistry of Rare Earth Elements (REE) has been investigated in natural streams and in mine areas during the last decades. Most of these studies agree that REE are mobile in acidic waters and they transferred to a solid phase when pH increases. However, there is no agreement on the pH range, on which precipitates can retain REE and the mechanisms responsible for the retention. Thus, whereas some authors determined that hydrous ferric oxides (HFOs) scavenge REE from pH 3, other authors observed REE retention by hydrous aluminum oxides (HAOs) from pH 4 to 6.1. A field survey conducted in the Odiel River in the SW Spain showed that pH values higher than 5, REE, Cu, Al and Fe concentrations in the river were lower than expected from a theoretical mixture because they were trapped in the precipitates. For pH below 4, however, only schwertmannite (Fe8O8OH6SO4) and no basaluminite (Al4SO4OH10·5H2O) precipitated. Then, REE, Cu and Al behaved conservatively and Fe does not, indicating that REE are trapped in the Al but not in the Fe solid phase. These observations are perfectly consistent with the REE accumulation in the Al-rich precipitates in the AMD treatment systems. Taking into account these observations, sorption experiments with synthetic basaluminite and schwertmannite at different pH were performed in the laboratory. For Lanthanides and Yttrium, sorption edge took place at pH higher than 5, whereas Sc sorption started at pH 4. A surface complexation model is proposed to explain the retention mechanism onto these two precipitates. Both minerals, schwertmannite and basaluminite showed similar sorption behavior. However, as schwertmannite formation occurs at pH lower than 4, no REE elements are sorbed on it.

  18. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  19. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  20. Positron Spectroscopy of Nanodiamonds after Hydrogen Sorption

    Directory of Open Access Journals (Sweden)

    Lyudmila Nikitina

    2018-01-01

    Full Text Available The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation.

  1. Test of zircon materials for sorption of europium; Pruebas de materiales circoniferos para sorcion de europio

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Fernandez V, S.M.; Garcia R, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    In previous works it has already been made notice that some phosphates have the property of sipping radioactive metals in solution, what takes advantage to fabricate reactive barriers that are placed in the repositories of nuclear wastes. In our laboratory it has been obtained to the zirconium silicate (ZrSiO{sub 4}) and the alpha zirconium hydrogen phosphate (Zr(HPO{sub 4}) 2H{sub 2}0) starting from sea sand in an easy and economic way. With the interest of knowing if these compounds can be used in contention barriers the evaluation of their surface properties it is made and of europium sorption. (Author)

  2. Comparison of sorption measurements on argillaceous rocks and bentonite with predictions using the SGT-E2 approach to derive sorption data bases

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M. H.; Baeyens, B; Marques Fernandes, M.

    2014-11-15

    In Stage 1 of the Sectoral Plan for Deep Geological Repositories, four rock types have been identified as being suitable host rocks for a radioactive waste repository, namely, Opalinus Clay for a high-level (HLW) and a low- and intermediate-level (L/ILW) repository, and 'Brauner Dogger', Effingen Member and Helvetic Marls for a L/ILW repository. Sorption data bases (SDBs) for all of these host rocks are required for the provisional safety analyses, including all of the bounding porewater and mineralogical composition combinations. In addition, SDBs are needed for the rock formations lying below Opalinus Clay (lower confining units) and for the bentonite backfill in the HLW repository. A detailed procedure was developed for deriving SDBs for argillaceous rocks (and bentonite) based on sorption edge measurements on illite (and montmorillonite), the hypothesis that 2:1 clay minerals are the dominant sorbents and a series of so called conversion factors which take into account the different radionuclide speciations in the different porewaters. Since this methodology for generating SDBs is relatively new, a validation and demonstration of the robustness and reliability of the sorption values derived was required. This report describes an extensive piece of work in which blind predictions of sorption values were compared with measured ones. Sorption isotherms were measured for the following metal ions Cs(I), Co(II), Ni(II), Eu(III), Th(IV) and U(VI) in a range of realistic porewater chemistries for a range of host rock mineralogies. In the end 53 isotherm data sets were measured. For each of these isotherms a prediction was made of the sorption at trace concentrations using the SDB derivation methodology. A comparison between measured and predicted values for each case was then made. This validation study shows that the methodology used for the derivation of the sorption data bases for argillaceous rocks and bentonite produces reliable sorption values. (authors)

  3. Sorption data bases and mechanistic sorption studies

    International Nuclear Information System (INIS)

    Bradbury, M.H.

    2000-01-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  4. Autoradiographic study of actinide sorption on climax stock granite

    International Nuclear Information System (INIS)

    Beall, G.W.; O'Kelley, G.D.; Allard, B.

    1980-06-01

    An autoradiographic technique that employed an arrangement for placing in firm contact Polaroid sheet film, a scintillator screen, and the radioactive face of a specimen was applied to a study of the sorption of americium, neptunium, plutonium, and uranium on Climax Stock granite under varying conditions of pH and Eh. Qualitative agreement was found between the sorption of americium on crushed, pure minerals and on the minerals comprising the specimen of Climax Stock granite. The observations also supported a mechanism for reduction of Np(V) to Np(IV) and Pu(VI) to Pu(IV) by Fe(II)-containing minerals. There was no evidence for reduction of U(VI) by the Fe(II)-containing minerals, although the uranium, assumed to be present as UO 2 2+ , appeared to be the only actinide species to exhibit sorption by a simple, cation-exchange mechanism at particular mineral sites. Some implications of these results for nuclear waste isolation are discussed briefly

  5. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    Zinigrad, M.

    2002-01-01

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives

  6. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork.

    Science.gov (United States)

    Gallardo-Chacón, Joan-Josep; Karbowiak, Thomas

    2015-08-15

    Cork shows an active role in the sorption of volatile phenols from wine. The sorption properties of 4-ethylphenol and 4-ethylguaiacol phenols in hydro-alcoholic medium placed in contact with suberin extracted from cork were especially investigated. To that purpose, suberin was immersed in model wine solutions containing several concentrations of each phenol and the amount of the compound remaining in the liquid phase was determined by SPME-GC-MS. Sorption isotherms of 4-ethylguaiacol and 4-ethylphenol by suberin followed the Henry's model. The solid/liquid partition coefficients (KSL) between the suberin and the model wine were also determined for several other volatile phenols. Suberin displayed rather high sorption capacity, which was positively correlated to the hydrophobicity of the volatile. Finally, the capacity of suberin to decrease the concentration of 4-ethylphenol and 4-ethylguaiacol was also tested in real wines affected by a Brettanomyces character. It also lead to a significant reduction of their concentration in wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sorption data bases and mechanistic sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H

    2000-07-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  8. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2013-01-01

    Based on the sorption distribution coefficients (K d ) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K d values of Cs onto Mizunami granite carried out by JAEA with the K d values predicted by the model, the effect of the ionic strength on the K d values of Cs onto granite was evaluated. It was found that K d values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10 -2 to 5 x 10 -1 mol/dm 3 . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  9. Parametric study of the sorption of Cs(I) and Sr(II) on mixture of bentonite and magnetite using SCM + IEXM

    International Nuclear Information System (INIS)

    Filipska, H.; Stamberg, K.

    2005-01-01

    of sorption, K(Cs/Sr), on total KD, % of sorption for Cs and Sr and for their individual species, etc. The individual quantities were related to the mass of bentonite and/or magnetite or to the type of functional group mentioned (edge and/or layer sites). From the results it is evident that the sorption selectivity depends not only on pH and type of sorbent, but also on the type of functional group; e.g., in the pH interval studied (4-9), the sorption of Cs is more selective than sorption of Sr on layer sites, on edge sites it is vice versa. On the whole, the sorption reactions of Cs(I) and Sr(II) taking place on layer sites play the most important role in the sorption process. (authors)

  10. 4th openlab Board of Sponsors Meeting takes place at CERN on July 6, 2005

    CERN Multimedia

    Patrice Loïez

    2005-01-01

    The 4th openlab Board of Sponsors Meeting is taking place at CERN, room 513, 1-024, the 6th July 2005. The meeting will open with an Executive Session in the presence of Dr. Robert Aymar, Director General of CERN

  11. Sorption behavior of neptunium on bentonite -- Effect of calcium ion on the sorption

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Muraoka, Susumu

    1995-01-01

    The sorption behavior of neptunium on bentonite was studied with batch type sorption and desorption experiments over a pH range of 2 to 8. A series of parallel studies using Na-smectite, Ca-smectite and admixtures of Na-smectite and calcite quantified the capacity of Ca 2+ (which occurs in bentonite as an exchangeable cation of smectite and as a component of calcite) to inhibit the sorption of neptunium. The distribution coefficient (K d ) of neptunium for bentonite was constant from pH 2 to 7, while for pure Na-smectite K d increased below pH 5 due to specific sorption of neptunium on Na-smectite. Specific sorption was defined as occurring when neptunium could be desorbed by a strong acid (1 M HCl) but was stable in the presence of 1 M KCl. It was found that the quantity of neptunium sorbed on Na-smectite was inversely proportional to the concentration of Ca 2+ in solution, an effect most pronounced at pH 2+ limits the specific sorption capacity of Na-smectite for neptunium. Similarly, in the mixture of Na-smectite and calcite, sufficient Ca 2+ was solubilized to depress neptunium sorption. This investigation demonstrates that Ca 2+ contained in bentonite as exchangeable cation and released from calcite reduces the specific sorption of neptunium

  12. Sorption of cadmium and lead by clays from municipal incinerator ash- water suspensions

    Science.gov (United States)

    Roy, W.R.; Krapac, I.G.; Steele, J.D.

    1993-01-01

    The effect of Cl complexation in extracts of a flue gas-scrubber incinerator fly ash sample on the sorption of Cd and Pb by kaolinite and illite was investigated using batch-sorption methods. In the pH range of 5 to 9, Cl complexation may reduce sorption and thus increase the mobility of these metals. When an ash-water suspension was acidified to pH 6.85, the dissolution of Cl and Ca essentially eliminated Cd sorption because of complexation and cationic competition. Cadmium would be considered as either mobile or very mobile under these conditions. Lead was not soluble in the pH- 6.85 suspension. At pH 12, the approximate pH of water in contact with flue gas-scrubber fly ash, Cd was essentially insoluble and Pb occurred as anionic Pb hydroxide. Anionic Pb was sorbed by the two clays, and the extent of sorption was not influenced by Cl or carbonate complexation. Sorption constants, derived from isotherms, suggested that Pb would be relatively immobile in saturated soil-water systems. The recent concern that highly alkaline, flue gas-scrubber fly ash may release environmentally significant concentrations of mobile Pb when placed in an ash-disposal site with a soil liner should be reevaluated in light of this study.

  13. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S., E-mail: nagasas@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2013-07-01

    Based on the sorption distribution coefficients (K{sub d}) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K{sub d} values of Cs onto Mizunami granite carried out by JAEA with the K{sub d} values predicted by the model, the effect of the ionic strength on the K{sub d} values of Cs onto granite was evaluated. It was found that K{sub d} values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10{sup -2} to 5 x 10{sup -1} mol/dm{sup 3} . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  14. Radionuclide sorption kinetics and column sorption studies with Columbia River basalts

    International Nuclear Information System (INIS)

    Barney, G.S.

    1983-09-01

    The kinetics of radionuclide sorption and desorption reactions in basalt-groundwater systems were evaluated at 60 degrees C using a batch equilibration method. It was found that many sorption reactions on surfaces of fresh (unaltered) basalt from the Umtanum and Cohassett flows are slow. Some reactions require more than 50 days to reach a steady state. Sorption of neptunium and uranium in oxidizing (air saturated) groundwater appears to be controlled by slow reduction of these elements by the basalt surfaces. The resulting lower oxidation states are more strongly sorbed. Technetium and selenium, which are anionic under oxidizing conditions, are not measurably sorbed on fresh basalt surfaces, but are slightly sorbed on the altered surfaces of flow top basalt. Under reducing conditions, where the groundwater contains dilute hydrazine, sorption is faster for neptunium, uranium, technetium, selenium, and lead. Plutonium sorption rates were not affected by the groundwater Eh. It was shown that radium was precipitated rather than sorbed under the conditions of these experiments. Umtanum flow top material sorbed radionuclides much faster than fresh basalt surfaces due to its greater surface area and cation exchange capacity. Desorption rates for plutonium, uranium, neptunium, technetium, and selenium were generally much less than sorption rates (especially for reducing conditions). These radionuclides are irreversibly sorbed on the basalts. 25 refs., 20 figs., 19 tabs

  15. Sorption of Eu(III) on Pseudomonas fluorescens in the presence of citric acid

    International Nuclear Information System (INIS)

    Suzuki, Yoshinori; Tsushima, Satoru; Yamamoto, Ichiro; Nankawa, Takuya; Yoshida, Takahiro; Ozaki, Takuo; Ohnuki, Toshihiko; Francis, Arokiasamy J.; Enokida, Youichi

    2005-01-01

    We studied the sorption of Eu(III) on Pseudomonas fluorescens in the absence and presence of citric acid by a batch method. The cells were placed in a solution containing 2 μM of Eu(III) and 0, 100, or 1000 μM of citric acid at pH 3 9 for 5 hours. In the absence of citric acid, almost 100% of Eu(III) was sorbed on P. fluorescens at pHs below 7; above 7, sorption decreased with an increase in pH. The time course of Eu(III) sorption on P. fluorescens showed that a fraction of it was desorbed into the solution at alkaline pHs, suggesting that the bacterium may release some exudates. With citric acid present, we found that at higher concentrations there was lower sorption of Eu(III), reflecting the formation of Eu(III)-citrate complexes with the Eu(III)-cell-surface complexes. This decrease in Eu(III) sorption was significant in alkaline pHs. These findings suggest that citric acid which is ubiquitously found in the environment enhances migration of trivalent actinides in the alkaline environment. (author)

  16. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Parveen Kumar; Pathak, Priyanath; Mohapatra, Manoj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Yadav, Ashok Kumar; Jha, Sambhunath; Bhattacharyya, Dibyendu [Bhabha Atomic Research Centre, Mumbai (India). Atomic and Molecular Physics Div.

    2015-06-01

    } edge. There was shift in the absorbance edge which was attributed to decrease in electron density at U(VI) due to surface or ligand complexation. The R space spectra are mainly dominated by the back-scattering from the axial oxygens in the first shell. The inner-sphere multinuclear complex formation takes place during the U(VI) sorption onto bentonite.

  17. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  18. Influence of sorption competition on sorption data for MX-80 bentonite used in performance assessment

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Marques Fernandes, M.

    2012-01-01

    Document available in extended abstract form only. In order to obtain a (quasi) mechanistic understanding of radionuclide uptake on clay minerals and argillaceous rocks, the majority of sorption experiments have been carried out on purified clay minerals such as montmorillonite and illite at trace concentrations (sorption edges), or as a function of concentration (sorption isotherms), with a single radionuclide under well-defined conditions in simple background electrolytes. As a result of such studies the 2 site proto-lysis non electrostatic surface complexation cation exchange (2SPNE SC/CE) sorption model, was developed and has been successfully applied to quantitatively describe the uptake of numerous radionuclides of differing valences as a function of pH and concentration on montmorillonite. In a deep geological repository for high level waste, stable impurities arise from many sources: they are present in the pore waters, in the tunnel back fill materials and host rock formations, they arise from the corrosion of the carbon steel canister and finally they are dissolved from the spent fuel and vitrified high level waste simultaneously with the radionuclides. These impurities, which are an integral part of a realistic repository system, can potentially compete with radionuclides for the sorption sites on the backfill materials and host rock and thus reduce their uptake on them. The influence of competitive sorption is not intrinsically included (or only partly so) in the sorption model. It is clearly an inherently important issue to quantify the influence of sorption competition on the transport of released radionuclides through the multi-barrier system in a deep repository. In this study an extreme case of a competitive sorption scenario in the near field of a HLW repository is presented. Two factors are considered: one associated with the high concentrations and the other with competitive sorption effects. The tendency in both cases is to cause a reduction in

  19. Sorption analyses in materials science: selected oxides

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Condon, J.B.; Eager, M.H.; Jones, L.L.

    1981-01-01

    Physical adsorption studies have been shown to be extremely valuable in studying the chemistry and structure of dispersed materials. Many processes rely on the access to the large amount of surface made available by the high degree of dispersion. Conversely, there are many applications where consolidation of the dispersed solids is required. Several systems (silica gel, alumina catalysts, mineralogic alumino-silicates, and yttrium oxide plasters) have been studied to show the type and amount of chemical and structural information that can be obtained. Some review of current theories is given and additional concepts are developed based on statistical and thermodynamic arguments. The results are applied to sorption data to show that detailed sorption analyses are extremely useful and can provide valuable information that is difficult to obtain by any other means. Considerable emphasis has been placed on data analyses and interpretation of a nonclassical nature to show the potential of such studies that is often not recognized nor utilized

  20. Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium Sp.: A mechanism proposal

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, J.M.; MuNoz, J.; Gonzlez, F.; Blazquez, M.L.; Ballester, A.

    2016-07-01

    The aim of this work was to assess the uptake of Fe(II) by extracellular polymeric substances (EPS) from the acidophilic bacterium Acidiphillium 3.2Sup(5). These EPS were extracted using EDTA. EPS of A. 3.2Sup(5) loaded in sorption tests with Fe(II), were characterized using the following experimental techniques: scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that EPS adsorb ferrous iron according to Freundlich model with a metal sorption uptake of K = 1.14 mg1−1/n L1/n g−1 and a sorption intensity of 1/n = 1.26. In addition, ferrous iron sorption by EPS took place by preferential interaction with the carboxyl group which promotes the formation of ferrous iron oxalates (FeC2O4). Since the interaction reaction was reversible (Log K = 0.77 ± 0.33), that means that the cation sorption can be reversed at convenience. (Author)

  1. Sorption of actinides onto nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Shiryaev, Andrei [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry; Kalmykov, Stepan [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Vernadsky Institute of Geochemistry and Analytical Chemistry

    2015-06-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  2. Sorption of actinides onto nanodiamonds

    International Nuclear Information System (INIS)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna; Shiryaev, Andrei; Russian Academy of Sciences, Moscow; Kalmykov, Stepan; Russian Academy of Sciences, Moscow; Russian Academy of Sciences, Moscow

    2015-01-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  3. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    International Nuclear Information System (INIS)

    Choi, Hyeok; Al-Abed, Souhail R.

    2009-01-01

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K F (L kg -1 ) spanned several orders of magnitude, ranging from log K F of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  4. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K{sub F} (L kg{sup -1}) spanned several orders of magnitude, ranging from log K{sub F} of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  5. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    with a Be window. Determination of Sm in the solutions derived from sorption-desorption experiments. Samarium concentrations were determined with ICP-OES and ICP-MS. The wavelength used in the ICP-OES was 359.3 nm, whereas the isotope 147 Sm was used in the ICP-MS. The quantification limits for the ICP-OES and ICP-MS were 30 μg L -1 and 10 ng L -1 , respectively. The initial sample shows an asymmetric 001 reflexion whose maximum corresponds to a basal spacing of 14.6 A and a shoulder to a higher 2θ. This is compatible with a heterogeneity composition of the interlayer space where divalent cations predominate. After sorption in water and at increasing Sm concentrations, the peaks became symmetric and the 001 reflexion shifted progressively to lower 2θ up to a basal spacing of 15.3 A compatible with a more homogeneous composition of the interlayer space and the exchange of the original interlayer divalent cations with Sm. These results indicated that whereas at lower concentration sorption was controlled by inner-sphere mechanisms, at higher initial Sm concentrations the predominant sorption mechanism was cationic exchange. The scenario differed when the sorption took place in the interstitial water medium, as the 001 reflexion did not shift to lower 2θ, but it widened and slightly shifted to higher 2θ. Both facts indicate competitiveness between Sm and the cations in the solution. Although the affinity for the interlayer space, in general, increases with the cation charge and then favors Sm, this was only observed for the highest initial Sm concentrations. Samarium sorption-desorption Samarium sorption was higher in water than in the interstitial, basically due to the cationic competition effect both for specific and for ionic-exchange, regular sites. This was consistent with results from the XRD analyses, and it was corroborated by the increase in the divalent cation concentrations in the final solutions after sorption when increasing samarium initial

  6. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  7. Web-based sorption database (KAERI-SDB)

    International Nuclear Information System (INIS)

    Lee, Jae Kwang; Baik, Min Hoon

    2010-10-01

    Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the accessibility to the nuclide sorption database is limited. The web-based sorption database (KAERI-SDB) was developed to provide sorption data in a convenient way. The development of the KAERI-SDB was achieved by improving the performance of pre-existing sorption DB programme (SDB-21C) and incorporating the user requirement. The KAERI-SDB was designed that users can access it by using a web browser. Main functions of the KAERI-SDB include (1) log-in/join, (2) search and store of sorption data and (3) scatter plot chart and index chart. It is expected that the KAERI-SDB is widely applied to the safety assessment of radioactive waste disposal by enhancing the accessibility to experts and practitioner related the nuclear industry and governmental administration. It is also expected that reliabilities for the radioactive waste disposal increased by opening the web-based sorption DB to public

  8. Waste Disposal: Processes Taking Place (on the way) from the Repository to the Biosphere

    International Nuclear Information System (INIS)

    Put, M.

    2000-01-01

    The main objective of SCK-CEN's R and D programme on the processes taking place on the way from the repository to the biosphere is to provide reliable and defensible models and parameters on the migration of dissolved radionuclides and gases through the host formation (Boom Clay) and the backfill materials of a deep geological repository for high level radioactive waste. The programme and main achievements in this topical area in 1999 are summarised

  9. Kinetics and thermodynamic for sorption of arsenate by Lanthanum-exchanged zeolite

    International Nuclear Information System (INIS)

    Mohd Jelas Haron; Saiful Adli Masdan; Mohd Zobir Hussein; Zulkarnain Zainal; Anuar Kassim

    2007-01-01

    Zeolites are crystalline, hydrated aluminosilicate containing exchangeable alkaline and alkaline earth cations in their structural frameworks. Since zeolites have permanent negative charges on their surfaces, they have no affinity for anions. However recent studies have shown that modification of zeolites with certain surfactants or metal cations yield sorbents with a strong affinity for many anions. In this paper, modification of zeolites (zeolite A, X and ZSM5) were performed by exchange of naturally occurring cations with lanthanum ion that forms low solubility arsenate salt. The exchanged zeolites were used to sorb arsenate from aqueous solution. Among parameters investigated were effect of pH, arsenate initial concentrations, contact time and temperature. The maximum exchanged capacity of La (III) ion was obtained when using solution with initial pH of 4. Zeolite X gives the highest La (III) exchanged capacity compared to other zeolites. The results showed that As (V) sorption by La-zeolites occurred at about pH 6.5 and increased as pH increased and reaching maximum at equilibrium pH about 7.8. On the other hand, almost no arsenate sorption occurred on un exchanged zeolites. This indicates that La (III) ion on the exchanged zeolites is taking part on the As(V) sorption via surface precipitation. The results also showed that the sorption capacities increased with increasing initial As (V) concentrations. The sorption followed Langmuir model with maximum sorption capacities of 0.41, 0.21 and 0.19 mmol/g at 25 degree Celsius for La exchanged zeolite X (La-ZX), La exchanged zeolite ZSM5 (La-ZSM) and La exchanged zeolite A (La-ZA), respectively. The amounts of sorption of As (V) by La exchanged zeolite increased as temperature increased from 25 to 70 degree Celsius indicating that the process is endothermic. The free energy changes ( ΔG degree) for the sorption at 25 degree Celsius were -10.25, -9.65 and -8.49 kJ/ mol for La-ZX, La-ZSM and La-ZA, respectively. The

  10. Experimental Results and Model Calculations of a Hybrid Adsorption-Compression Heat Pump Based on a Roots Compressor and Silica Gel-Water Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.

    2013-10-15

    Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.

  11. Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus

    DEFF Research Database (Denmark)

    Sundbæk, Kasper Bjerrum; Due Würtzner Koch, Ida; Greve Villaro, Clara

    2018-01-01

    .65 mg L−1 (corresponding to 597 particles per mL) in filtrated seawater (50 mL) to treat F. vesiculosus distal tips in blue cap flasks (100 mL) placed in a rotary box for 2 h. Results showed sorption of PS microplastic particles to F. vesiculosus analysed by microscopy and a significant reduction...

  12. Production of sorption-active polypropylene fibers by radiation-induce grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.; Kravets, L.I.

    2004-01-01

    Full text: Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of glycidyl methacrylate (GMA) with subsequent chemical modification of the epoxy groups of poly-GMA graft chains. The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 o C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. It was shown that for the samples with GMA grafting degree more than 50% two simultaneous processes take place during the sulfonation reaction, namely the incorporation of the sulfonate groups via opening of the GMA epoxy-rings as well as hydrolysis of the GMA epoxy-rings with the formation of α-glycol groups. Amine groups were incorporated by treatment of GMA-grafted polypropylene fibers with excess of diethylene triamine reagent. The conversion of the epoxy groups into the functional groups was investigated as a function of the degree of GMA grafting and reaction time. The ion-exchange characteristics of obtained sorption-active polypropylene fibers were determined

  13. Production of sorption-active polypropylene fiber by radiation-induce grafting of glycidyl methacrylate as a precursor monomer

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Kim, H.J.; Lim, Y.J.; Kravets, L.I.

    2004-01-01

    Two types of sorption-active polypropylene fiber carrying strong-acid sulfonate groups and amino groups have been synthesized by radiation-induced graft polymerization of glycidyl methacrylate (GMA) with subsequent chemical modification of the epoxy groups of poly-GMA graft chains. The effect of various polymerization parameters on the GMA grafting degree was investigated in detail. The epoxy ring-opening of poly-GMA graft chains with introduction of strong-acid sulfonate groups was carried out with sodium hydrogen sulfite in water-dimethylformamide solution at 70 o C. The main peculiarities of the sulfonation reaction in depending on the reaction time and GMA grafting degree have been investigated. It was shown that for the samples with GMA grafting degree more than 50% two simultaneous processes take place during the sulfonation reaction, namely the incorporation of the sulfonate groups via opening of the GMA epoxy-rings as well as hydrolysis of the GMA epoxy-rings with the formation of α-glycol groups. Amine groups were incorporated by treatment of GMA-grafted polypropylene fibers with excess of diethylene triamine reagent. The conversion of the epoxy groups into the functional groups was investigated as a function of the degree of GMA grafting and reaction time. The ion-exchange characteristics of obtained sorption-active polypropylene fibers were determined. (author)

  14. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories

    International Nuclear Information System (INIS)

    Rojo Sanz, H.

    2010-01-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  15. Sorption mechanisms of perfluorinated compounds on carbon nanotubes

    International Nuclear Information System (INIS)

    Deng Shubo; Zhang Qiaoying; Nie Yao; Wei Haoran; Wang Bin; Huang Jun; Yu Gang; Xing Baoshan

    2012-01-01

    Sorption of perfluorinated compounds (PFCs) on carbon nanotubes (CNTs) is critical for understanding their subsequent transport and fate in aqueous environments, but the sorption mechanisms remain largely unknown. In this study, the sorption of six PFCs on CNTs increased with increasing C-F chain length when they had a same functional group, and the CNTs with hydroxyl and carboxyl groups had much lower adsorbed amount than the pristine CNTs, indicating that hydrophobic interaction dominated the sorption of PFCs on the CNTs. Electrostatic repulsion suppressed the sorption of PFCs on the CNTs, resulting in the lower sorption with increasing pH. Hydrogen bonding interaction was negligible. The hydrophobic C-F chains can be closely adsorbed on the CNTs surface in parallel to the axis or along the curvature, making it impossible to form micelles on the CNT surface, leading to the lower sorption than other adsorbents. Highlights: ► Sorption capacities of PFOA on different CNTs are less than that on activated carbon and resins. ► Hydrophobic interaction is principally involved in the sorption of PFCs on CNTs. ► Electrostatic repulsion suppresses the sorption of PFCs on CNTs. - Hydrophobic interaction dominated the sorption of perfluorinated compounds on carbon nanotubes, while electrostatic repulsion suppressed their sorption.

  16. Methods for in-place testing of HEPA and iodine filters used in nuclear power plants

    International Nuclear Information System (INIS)

    Holmberg, R.; Laine, J.

    1978-04-01

    The purpose of this work was a general investigation of existing in-place test methods and to build an equipment for in-place testing of HEPA and iodine sorption filters. In this work the discussion is limited to methods used in in-place testing of HEPA and iodine sorption filters used in light-water-cooled reactor plants. Dealy systems, built for the separation of noble gases, and testing of them is not discussed in the work. Contaminants present in the air of a reactor containment can roughly be diveded into three groups: aerosols, reactive gases, and noble gases. The aerosols are filtered with HEPA (High Efficiency Particulate Air) filters. The most important reactive gases are molecular iodine and its two compounds: hydrogen iodide and methyl iodide. Of gases to be removed by the filters methyl iodide is the gas most difficult to remove especially at high relative humidities. Impregnated activated charcoal is generally used as sorption material in the iodine filters. Experience gained from the use of nuclear power plants proves that the function of high efficiency air filter systems can not be considered safe until this is proved by in-place tests. In-place tests in use are basically equal. A known test agent is injected upstream of the filter to be tested. The efficiency is calculated from air samples taken from both sides of the filter. (author)

  17. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  18. Metal sorption on kaolinite

    International Nuclear Information System (INIS)

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-01-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs + , Sr 2+ , and Ba 2+ ) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba 2+ to Sr 2+ to Cs + , with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs + also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs + is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals

  19. Experimental and Theoretical Studies on Alkaline Degradation of Cellulose and its Impact on the Sorption of Radionuclides

    International Nuclear Information System (INIS)

    Loon, L.R. van; Glaus, M.A.

    1998-08-01

    For more than ten years, cellulose degradation has been regarded as an important process which can adversely effect the sorption of radionuclides on cement in a radioactive waste repository. However, so far, it was not possible to quantify this effect. This study reports new experimental data on alkaline degradation of cellulose, together with a re-evaluation of old literature data. For the first time now, it becomes possible to quantitatively estimate the potential role of cellulose degradation in performance assessment studies. In the first part of this study, a literature overview of other studies on alkaline degradation of cellulose is given, together with a general discussion on the effect of organic ligands on the sorption of radionuclides. Further, an overview of the important mechanisms of alkaline degradation of cellulose and some kinetic aspects of the main reactions taking place is presented. The relevance of the processes for performance assessment is explained in detail. The discussion forms the starting-point for a detailed experimental program for evaluating the role of alkaline degradation of cellulose in performance assessment. In the second part, experimental studies on alkaline degradation are presented. Different cellulosic materials were degraded in an artificial cement pore water, representing the first stage of cement degradation. The most important degradation products (α- and β-isosaccharinic acid) were characterised and the results compared with other studies. Kinetic parameters for the main reactions were measured and discussed. A good agreement was found between the measured values and values extrapolated from the literature. The solubility of the sparingly soluble Ca-salt of α-isosaccharinic acid (ISA) was studied as well as the interaction of ISA with cement. Sorption of ISA on cement can keep the ISA concentration in the pore water of a repository at a low level. The effect of pure ISA and degradation products on the sorption of

  20. Experimental and Theoretical Studies on Alkaline Degradation of Cellulose and its Impact on the Sorption of Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L.R. van; Glaus, M A

    1998-08-01

    For more than ten years, cellulose degradation has been regarded as an important process which can adversely effect the sorption of radionuclides on cement in a radioactive waste repository. However, so far, it was not possible to quantify this effect. This study reports new experimental data on alkaline degradation of cellulose, together with a re-evaluation of old literature data. For the first time now, it becomes possible to quantitatively estimate the potential role of cellulose degradation in performance assessment studies. In the first part of this study, a literature overview of other studies on alkaline degradation of cellulose is given, together with a general discussion on the effect of organic ligands on the sorption of radionuclides. Further, an overview of the important mechanisms of alkaline degradation of cellulose and some kinetic aspects of the main reactions taking place is presented. The relevance of the processes for performance assessment is explained in detail. The discussion forms the starting-point for a detailed experimental program for evaluating the role of alkaline degradation of cellulose in performance assessment. In the second part, experimental studies on alkaline degradation are presented. Different cellulosic materials were degraded in an artificial cement pore water, representing the first stage of cement degradation. The most important degradation products ({alpha}- and {beta}-isosaccharinic acid) were characterised and the results compared with other studies. Kinetic parameters for the main reactions were measured and discussed. A good agreement was found between the measured values and values extrapolated from the literature. The solubility of the sparingly soluble Ca-salt of {alpha}-isosaccharinic acid (ISA) was studied as well as the interaction of ISA with cement. Sorption of ISA on cement can keep the ISA concentration in the pore water of a repository at a low level. The effect of pure ISA and degradation products on the

  1. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  2. Neptunium(V) sorption on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Amayri, S.; Jermolajev, A.; Reich, T. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2011-07-01

    The sorption behavior of neptunium(V) onto the clay mineral kaolinite was studied in batch experiments under different experimental conditions: [Np(V)] = 7 x 10{sup -12}-8 x 10{sup -6} M, solid-to-liquid ratio 2-20 g L{sup -1}, I = 0.1 and 0.01 M NaClO{sub 4}, pH = 6-10, ambient air and Ar atmosphere. The short-lived isotope {sup 239}Np (T{sub 1/2} = 2.36 d) was used instead of {sup 237}Np (T{sub 1/2} = 2.14 x 10{sup 6} a) to study the sorption behavior of Np(V) at environmentally-relevant concentrations, i.e., 7 x 10{sup -12} M Np. In addition, {sup 239}Np(V) served as tracer to measure sorption isotherms over six orders of magnitude in Np concentration (4.8 x 10{sup -12}-1.0 x 10{sup -4} M). The results show that Np(V) sorption on kaolinite is strongly influenced by pH, CO{sub 2}, and ionic strength. The sorption of 8 x 10{sup -6} M Np(V) at pH 9.0, and ionic strength of 0.1 M NaClO{sub 4} was proportional to the solid-to-liquid ratio of kaolinite in the range of 2-10 g L{sup -1}. In the absence of CO{sub 2}, the Np(V) uptake increased continuously with increasing pH value up to 97% at pH 10. Under ambient CO{sub 2}, the sorption of Np decreased above pH 8 up to zero at pH 10. An increase of Np(V) concentration from 7 x 10{sup -12} to 8 x 10{sup -6} M resulted in a shift of the sorption pH edge by up to one pH unit to higher pH values. The ionic strength influenced the Np(V) sorption onto kaolinite only in the presence of ambient CO{sub 2}. Under Ar atmosphere the sorption of Np(V) was independent from ionic strength, indicating the formation of inner-sphere complexes of Np(V) with kaolinite. Time-dependent batch experiments at pH 9.0 under ambient CO{sub 2} showed that the sorption of Np(V) on kaolinite is fast and fully reversible over six orders in Np(V) concentration. (orig.)

  3. Sorption properties of wool

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Strict ecological legislation, especially in highly developed countries, imposed requirements for the purification of industrial effluents and the need for efficient oil clean up after sea and inland water spills. Although numerous processes have been developed, the application of sorbents is still one of the most efficient methods to remove heavy metal ions, dyes and crude oil from water. Recently, special attention was paid to sorbents based on natural fibres. A review of studies concerning the sorption properties of wool is presented in this paper. The presence of various functional groups on the wool fibre surface contributes to the efficient sorption of heavy metal ions and dyes. A hydrophobic, scaly surface and fibre crimp strongly influence the high sorption capacity of wool for oil. Wool has great sorption potential even as a recycled material. Accordingly, it can be used as a viable substitute to commercially available synthetic sorbents that show poor biodegradab ility.

  4. Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Klamer, Morten; Venås, Thomas Mark

    2010-01-01

    The complex wood-water relationship has been the topic of numerous studies. Sorption isotherms – in particular – have been derived for hundreds of wood species, their sap- and heartwood sections as well as for decayed, engineered and modified wood materials. However, the traditional methods...... for obtaining sorption isotherms are very time consuming. With new dynamic vapour sorption (DVS) instrumentation, the acquisition of data for constructing sorption isotherms is suddenly dramatically lowered. Where the traditional methods often required months, data can now be obtained in a matter of days...... depending on the number of data points required. The fast data acquisition makes DVS a useful tool in studying the sorption properties of wood, and especially in studying the effect of different modification treatments on these properties. This study includes an investigation of the sorption properties...

  5. Prediction of metal sorption in soils

    International Nuclear Information System (INIS)

    Westrich, Henry R.; Anderson, Harold L. Jr.; Arthur, Sara E.; Brady, Patrick V.; Cygan, Randall T.; Liang, Jianjie; Zhang, Pengchu; Yee, N.

    2000-01-01

    Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K D approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K D 's), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs + , Sr 2+ and Ba 2+ (analogue for Ra 2+ ) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba 2+ and Sr 2+ onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr 2+ sorbs weakly onto geothite and quartz, and is pH-dependent. Sr 2+ sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba 2+ is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba 2+ and the mineral substrate. This suggests that Ba 2+ adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed

  6. Diffusion mechanisms taking place at the early stages of cobalt deposition on Au(111)

    International Nuclear Information System (INIS)

    Oviedo, O A; Leiva, E P M; Mariscal, M M

    2008-01-01

    In the present work a detailed atomic-level analysis of some of the main diffusion mechanisms which take place during cobalt adatom deposition are studied within atom dynamics (AD) and the nudged elastic band (NEB) method. Our computer simulations reveal a very fast exchange between Co and Au atoms when the deposit is a single cobalt adatom. However, when the nucleus size increases, a decrease in the exchange probability is observed. Activation energies for different transitions are obtained using AD in combination with the NEB method

  7. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  8. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid

    International Nuclear Information System (INIS)

    Milosavljevic, Nedeljko B.; Ristic, Mirjana D.; Peric-Grujic, Aleksandra A.; Filipovic, Jovanka M.; Strbac, Svetlana B.; Rakocevic, Zlatko Lj.; Kalagasidis Krusic, Melina T.

    2011-01-01

    Highlights: → A removal of Zn 2+ ions by pH-sensitive Ch/IA/MAA hydrogel from aqueous solutions was studied. → SEM/EDX analysis and AFM surface topography indicate that sorption takes place on the surface of the hydrogel and in the bulk. → FTIR spectra of the Ch/IA/MAA hydrogel, free and Zn-loaded, indicate that -NH 2 , -OH and -COOH groups are involved in the sorption process. → The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. → The adsorption capacities did not show any significant decrease after the third reuse cycle. - Abstract: Novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid were applied as adsorbents for the removal of Zn 2+ ions from aqueous solution. In batch tests, the influence of solution pH, contact time, initial metal ion concentration and temperature was examined. The sorption was found pH dependent, pH 5.5 being the optimum value. The adsorption process was well described by the pseudo-second order kinetic. The hydrogels were characterized by spectral (Fourier transform infrared-FTIR) and structural (SEM/EDX and atomic force microscopy-AFM) analyses. The surface topography changes were observed by atomic force microscopy, while the changes in surface composition were detected using phase imaging AFM. The negative values of free energy and enthalpy indicated that the adsorption is spontaneous and exothermic one. The best fitting isotherms were Langmuir and Redlich-Peterson and it was found that both linear and nonlinear methods were appropriate for obtaining the isotherm parameters. However, the increase of temperature leads to higher adsorption capacity, since swelling degree increased with temperature.

  9. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  10. Sorption properties of carbon nanostructures

    International Nuclear Information System (INIS)

    Eletskii, Aleksandr V

    2004-01-01

    The current status of research in sorption properties of carbon nanotubes (CNTs) is reviewed. The structural peculiarities of CNTs, determining their sorption characteristics, are considered. The mechanisms of sorption of gaseous and condensed substances by such structures are analyzed. Special attention is paid to the problem of using CNTs for storing hydrogen and other gaseous substances. Methods for filling CNTs with liquid materials, based on capillary phenomena and wetting the graphite surface of the CNT with liquids of various nature, are considered. Properties of 'peapods' formed as a result of filling single-walled CNTs with fullerene molecules are reviewed. Also considered are perspectives on the applied usage of the sorption properties of CNTs in electrochemical and fuel cells, and material storage devices, as well as for producing superminiature metallic conductors. (reviews of topical problems)

  11. Studies of the effects of organic materials on the sorption of uranium and plutonium

    International Nuclear Information System (INIS)

    Berry, J.A.; Bond, K.A.; Ferguson, D.R.; Pilkington, N.J.

    1989-10-01

    The effects of the presence of cellulosic degradation products on the sorption of uranium and plutonium on London clay and Caithness flagstones have been studied using the batch sorption method. Experimental conditions were chosen to simulate both those expected close to a cementitious repository (pH ∼ 11) and at the edge of the zone of migration of the calcium plume (pH ∼ 8). Work was carried out (i) under baseline conditions, in the absence of organic materials (ii) with gluconate, acting as a well-characterised simulant (iii) with authentic degradation products. These experimental studies are complemented by thermodynamic modelling work, the results of which are presented in a companion paper. The results have shown that organic degradation products can have a marked effect on sorption and the present work provides further evidence of the need to take account of the presence of such materials in safety assessment modelling. (author)

  12. Application of simplified desorption method to sorption study. (2) Sorption of neptunium (V) on montmorillonite-based mixtures

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko

    2013-01-01

    To elucidate the sorption behaviors of radionuclides in multi-mineral systems and the mutual effects of minerals on the sorption, this paper carried out the sorption and desorption experiments of neptunium(V) on montmorillonite-based two-mineral mixtures. The Np sorbed on montmorillonite at pH from 4 to 8 was desorbed with 1M KCl solutions, indicating that the sorption was cation exchange. The Np sorbed on apatite and calcite was nondesorbable with 1M KCl solutions, which is in harmony with the knowledge that Np forms strong complexes with the phosphate groups of apatite and the carbonate groups of calcite. This study utilized these clear distinguishes of the desorption behaviors for examining the two-mineral systems. In montmorillonite-apatite mixtures, the sorption on the montmorillonite was decreased and Np was accumulated on the apatite. In montmorillonite-calcite mixtures, the sorption on the montmorillonite was decreased due to the interference by the calcium and carbonate ions dissolved from calcite while no accumulation of Np to calcite was observed. (author)

  13. Sorption of streptococcus faecium to glass

    International Nuclear Information System (INIS)

    Oerstavik, D.

    1977-01-01

    A method has been developed by which to study the sorption of Streptococcus faecium to soda-lime cover glasses. Conditions were chosen to minimize the influence on sorption of bacterial polymer production, passive sorption being studied rather than attachment mediated by metabolic activities. Sorption of S. faecium increased with increasing temperature (to 50degC), time, and cell concentration, but equilibrium apparently was not reached even after incubation for 8 hours or at a cell concentration of 3 x 10 10 per ml. Sorption increased with solute molarity up to 0.1 M concentration of NaCl and KCl, indicating an effect of the electrical double layers on the apposition of cells to the glass surface. Desorption of bacteria could be obtained after multiple washings of the glasses in buffer or by the action of Tween 80, but not if sorbed bacteria were left in distilled water, various salt solutions, urea, or in suspensions of unlabelled bacteria. It was concluded that sorption occurred as a result of chemical interactions between the glass and the cell surface. Tween 80 at a concentration of 1 per cent inhibited sorption to 26 per cent of buffer controls, 2 M urea was less effective, and 1 M NaCl was without effect. It is suggested that hydrophobic interactions may be of importance in the binding of S. faecium to glass. (author)

  14. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  15. Sorption of U(VI) species on hydroxyapatite

    International Nuclear Information System (INIS)

    Thakur, P.; Moore, R.C.; Choppin, G.R.

    2005-01-01

    The sorption of uranyl (UO 2 2+ ) cations to hydroxyapatite was studied as a function of the amount of sorbent, ionic strength, U(VI) concentration, pH and temperature. The rate of uranyl sorption on hydroxyapatite decreased with increased uranyl concentrations. The amount sorbed decreased with increased ionic strength and increased with pH to a maximum at 7-8. The sorption data for UO 2 2+ were fitted well by the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The anions Cl - , NO 3 - , SO 4 2- and CH 3 COO - decreased the sorption of uranium on hydroxyapatite while S 2 O 3 2- slightly increased it. The sorbed uranium was desorbed by 0.10 M and 1.00 M solutions of HCl and HNO 3 . The thermodynamic parameters for the sorption of UO 2 2+ were measured at temperatures of 298, 313, 323 and 333 K. The temperature dependence confirmed an endothermic heat of sorption. The activation energy for the sorption process was calculated to be +2.75±0.02 kJ/mol. (orig.)

  16. SORPTION OF Au(III BY Saccharomyces cerevisiae BIOMASS

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2010-07-01

    Full Text Available Au(III sorption by S. cerevisiae biomass extracted from beer waste industry was investigated. Experimentally, the sorption was conducted in batch method. This research involved five steps: 1 identification the functional groups present in the S. cerevisiae biomass by infrared spectroscopic technique, 2 determination of optimum pH, 3 determination of the sorption capacity and energy, 4 determination of the sorption type by conducting desorption of sorbed Au(III using specific eluents having different desorption capacity such as H2O (van der Waals, KNO3 (ion exchange, HNO3 (hydrogen bond, and tiourea (coordination bond, 5 determination of effective eluents in Au(III desorption by partial desorption of sorbed Au(III using thiourea, NaCN and KI. The remaining Au(III concentrations in filtrate were analyzed using Atomic Absorption Spectrophotometer. The results showed that: 1 Functional groups of S. cerevisiae biomass that involved in the sorption processes were hydroxyl (-OH, carboxylate (-COO- and amine (-NH2, 2 maximum sorption was occurred at pH 4, equal to 98.19% of total sorption, 3 The sorption capacity of biomass was 133.33 mg/g (6.7682E-04 mol/g and was involved sorption energy 23.03 kJ mol-1, 4 Sorption type was dominated by coordination bond, 5 NaCN was effective eluent to strip Au(III close to 100%.   Keywords: sorption, desorption, S. cerevisiae biomass, Au(III

  17. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  18. Europium sorption on zirconia at elevated temperatures: experimental study and modeling

    International Nuclear Information System (INIS)

    Eglizaud, N.; Catalette, H.

    2005-01-01

    Full text of publication follows: Direct disposal of spent nuclear fuel in deep underground repository is being considered by several countries. The waste package maintains an elevated temperature for thousands of years. As sorption is one of the main phenomenon limiting the dispersion of radionuclides in the environment, it has to be studied at elevated temperatures. Zirconia is an oxide produced by cladding oxidation which is suspected in the near field of a nuclear repository. It then could possibly be in contact with waste elements as Europium (III), the sorption of which is therefore studied on zirconia. Experiments were performed by the batch method at a solid/liquid ratio of 10 g.L-1. The sorption edges were recorded in the pH-range from 2 to 10 at 2.10 -5 mol.L -1 Eu(NO 3 ) 3 (I = 0.1 mol.L -1 KNO 3 ). An over-pressure device in an autoclave with an incorporated filtering system allowed the experiments, carbonate free, at 25 deg. C, 50 deg. C, 80 deg. C, 120 deg. C and 150 deg. C and in situ pH measurements. Filtrates were analyzed by the ICP-AES method. Sorption isotherms show an increase in the sorption phenomenon when the temperature raises. The half sorption pH decreases from 7 at 25 deg. C to 3,6 at 150 deg. C. The distribution coefficients that were obtained at elevated temperatures enriched the databases of integrated performance assessment codes. Raw data were modeled with the surface complexation theory using the double layer model (DLM). Several possible surface complexes were examined and discussed, taking into account aqueous hydrolyzed and precipitated species of Europium. A good agreement between experimental values and modeled isotherms was found at all studied temperatures. Results were consistent with a bidentate complex formed by Europium (III) on the zirconia surface. Associated formation constants were then determined with the geochemical computer code CHESS. (authors)

  19. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C

    2018-01-16

    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  20. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  2. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  3. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  4. Alligator Rivers Analogue project. Uranium sorption. Final Report - Volume 13

    International Nuclear Information System (INIS)

    Waite, T.D.; Payne, T.E.; Davis, J.A.; Sekine, K.

    1992-01-01

    In this volume, the results of studies of uranium sorption (adsorption and desorption) to both single, well-defined mineral phases, and to selected natural (Koongarra) substrates are reported. The single phases included the amorphous iron oxide ferrihydrite, crystalline silica and two naturally occurring kaolinites, KGa-1 and Nichika. The surface properties of these materials were rigorously defined, and adsorption studies were conducted over a range of solution pH, ionic strength, carbonate content, adsorbent and adsorbate concentrations, and in the presence of uranium complexants and (potentially) competing adsorbates (such as phosphate and fluoride). The results of these studies were modelled using the 'surface complexation' approach, with a diffuse layer description of the electrical double layer. The impacts of mineral phase transformations (specifically the aging of amorphous ferrihydrite to more crystalline forms) on the uptake and desorption of uranium are also reported. The amount of data obtained in this study, with a number of experimental parameters being varied over a wide range, has enabled more confidence to be placed in the modelling results. The derived model for ferrihydrite adequately accounts for the effect on U sorption of a number of parameters, most notably pH, pCO 2 and total U present. Few (if any) of the models previously proposed are adequate in this respect. While the modelling of the data for the natural substrates is not as advanced, the U sorption data on the natural substrates show similar features to the U sorption on the model substrates. This suggests that the insights obtained in the modelling of the data for ferrihydrite will be valuable in deriving a model for the more complex natural substrates

  5. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  6. Integrated sorption and diffusion model for bentonite. Part 1. Clay-water interaction and sorption modeling in dispersed systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael

    2014-01-01

    To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)

  7. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  8. Sorption of fission nuclides on model milk components. II. Sorption of radiostrontium on hydroxyapatite in milk and whey

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.

    1999-01-01

    In this work the whey was chosen as a model solution of liquid phase for sorption study of strontium on hydroxyapatite. The whey was obtained using two methods - ultracentrifugation and precipitation of casein. The sorption was studied at a different pH and at a different concentration of calcium. The sorption of strontium on hydroxyapatite from milk was studied, too. (authors)

  9. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  10. Dynamics of arsenic-containing compounds' sorption on sediments

    Energy Technology Data Exchange (ETDEWEB)

    Reczynski, W.; Posmyk, G.; Nowak, K. [AGH Univ. of Science and Technology, Faculty of Material Science and Ceramics, Dept. of Analytical Chemistry, Krakow (Poland)

    2004-07-01

    River and lake sediments constitute complex and difficult analytical samples. On the other hand, sediments play a fundamental role in the distribution of toxic compounds in aquatic systems and in the evaluation of the current state and the course of changes taking place in the environment. Among elements present in the environment in trace concentrations, but having well-elaborated toxic properties, one of most dangerous is arsenic. The element occurs in the environment in several chemical forms, predominant are inorganic forms of As(V) and As(III), and methylated forms such as monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). Objectives. Reported herein are experiments, which were undertaken with the aim of examining the dynamics of arsenic sorption in sediments and its dependence on speciation of the element and the pH in the environment. Simultaneously, influence of organic matter content and chemical composition of the sediments on As sorption, were investigated. Methods. Sediment samples (upper 10 cm layer) were collected from three sites located in the vicinity of Cracow: Rudawa river - 37 km long river, flowing mainly through the suburban area; Vistula river - heavily contaminated, main Polish river; Dobczyce reservoir - artificial reservoir on Raba river, total capacity of 125,000,000 m{sup 3}, supplying about 60% of drinking water to the of Cracow. Using XRD and IR methods, mineral composition of sediments was analysed. Concentrations of iron, manganese, aluminium and arsenic as well as organic matter content in solid samples were analysed. Examined sediments of Vistula river and Dobczyce lake were characterised by relatively high concentrations of arsenic, iron, manganese and aluminium. Rudawa river. At pH 3, the concentration of inorganic As in solution decreased from an initial value of 0.049 {mu}g/ml to 0.012 {mu}g/ml in 7.5 hours time. The same decreasing tendency was found at pH 5 (initial value 0.046 {mu}g/ml, after 7.5 hours - 0

  11. Development of JAEA sorption database (JAEA-SDB). Update of sorption/QA data in FY2015

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro

    2016-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in these barrier materials is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop databases compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in bentonites and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on improving and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting and mechanistic sorption model development. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on statistical data evaluation and grouping of data related to potential perturbations. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 11,206 K d data from 83 references were added, total number of K d values in the JAEA-SDB reached about 58,000. The QA/classified K d data reached about 60% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to

  12. Iodine sorption by microwave irradiated hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, S.P. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico); Instituto Politecnico Nacional, ESIQIE, C.P. 07738, Mexico, D.F. (Mexico); Fetter, G. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico)]. E-mail: geolarfetter@yahoo.com.mx; Bosch, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, C.P. 04510, Mexico, D.F. (Mexico); Bulbulian, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801, Mexico, D.F. (Mexico)

    2006-12-15

    Mg-Al hydrotalcite-like compounds (HT) were prepared by the microwave method on the one hand with ethoxide-acetylacetonate and on the other with acetylacetonate as precursors. They presented a maximum sorption capacity of 2.179 and 1.517 meq of {sup 131}I{sup -}/g of hydrotalcite respectively. When the hydrotalcites were calcined and rehydrated in a {sup 131}I{sup -} solution, iodine sorption decreased in both samples to 1.515 and 1.446, respectively. The corresponding value for nitrated hydrotalcite which was prepared by the conventional method for comparison purposes, was 0.570. The radionuclide content in hydrotalcites was determined by {gamma}-spectrometry. {sup 131}I{sup -} sorption is dependent on two main parameters: one is the type of the interlayer organic material and the second the surface area. It was found that hydrotalcites prepared with ethoxide-acetylacetonate were better sorbents for {sup 131}I{sup -} than those with acetylacetonate. Still, if the specific surface area increased, {sup 131}I{sup -}sorption increased as well; nitrated HT resulted in low specific surface area and a low sorption capacity. It is, therefore, concluded that organic residues present in the samples prepared by the microwave method favor the sorption of radioactive anions, in particular {sup 131}I{sup -} if compared with nitrated and/or carbonate interlayered hydrotalcites.

  13. Assessing the Portion of the Crack Length Contributing to Water Sorption in Concrete Using X-ray Absorption

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Couch, Jon; Geiker, Mette Rica

    2009-01-01

    While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify the in......-ray absorption measurements over time. The effect cracks have on sorption is discussed and compared to the behavior of pristine concrete. In addition, the maximum water sorption depth after one hour of exposure is compared to crack lengths determined by the cracked hinge model.......While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify...... the influence of cracks with varying width and length on water sorption in concrete. Concrete wedge splitting specimens, conditioned to 50% relative humidity, were loaded to varying crack openings. Water sorption was monitored for ponded specimens with varying crack widths and lengths by taking multiple x...

  14. Applicability of microautoradiography to sorption studies

    International Nuclear Information System (INIS)

    Thompson, J.L.; Wolfsberg, K.

    1979-01-01

    The technique of microautoradiography was applied to the study of the sorption of uranium and americium on five rock types which exist at the Nevada Test Site. It was found that autoradiograms could be prepared in a few days which would allow the specific minerals responsible for sorption to be identified. Furthermore, the state of aggregation of the sorbed species was clearly indicated. It was concluded that microautoradiography was a useful adjunct to currently used methods for studying sorption of certain radionuclides

  15. Does olfactory specific satiety take place in a natural setting?

    Science.gov (United States)

    Fernandez, P; Bensafi, M; Rouby, C; Giboreau, A

    2013-01-01

    Olfactory-specific satiety (OSS) is characterized by a specific decrease in the odor pleasantness of a food eaten to satiety or smelled without ingestion. The usual protocol for studying OSS takes place in laboratory, a setting rather removed from the real world. Here, we set out to examine OSS in a natural setting: during a meal in a restaurant. We hypothesized that an aroma contained in a food that is eaten at the beginning of a meal decreases the pleasantness of the flavor of a food with the same aroma eaten at the end of the meal. In the first experiment (Experiment 1), a test group received an appetizer flavored with a test aroma (anise) at the beginning of the meal. After the main dish, they received a dessert flavored with the same aroma. A control group received the same aromatized dessert, but after a non-aromatized appetizer. This experiment was replicated (Experiment 2) using verbena as the test aroma. For both experiments, results revealed that aroma pleasantness, but not intensity or familiarity, significantly decreased in the test groups vs. the control groups. These findings extend the concept of OSS to a realistic eating context. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Development of Web-based Software for Sorption Database

    International Nuclear Information System (INIS)

    Han, Byoung Sub; Lee, Jae Min; Seo, Min Seok; Kim, Dong Keon

    2009-08-01

    Sorption studies of radionuclides are important parts of research on radioactive waste disposal which is commonly faced in most countries where nuclear programs (power production, a variety of peaceful applications, and research) are implemented. The Sorption Database (DB) plays a very important role in the safety assessment of the radioactive waste disposal. The Sorption DB which is opened externally can be used as reference material of establishing a national policy by improving and changing the pre-developed Sorption program to be web-based. From the industrial point of view, if the Sorption DB is opened to the outside, the safety-related confidence can be achieved for nuclear industry. As the information of Sorption DB is opened, not only credibility can be provided to the administration, local governments and nearby residents, but also input of the collected information can be achieved by online. In addition, the reference material and external awareness/reliability about the domestic level of the Sorption DB management system and the current state can be achieved internationally. In order to provide the information of Sorption DB to users in more efficient way, the analysis and complement of management and search capability for the existing Sorption DB program have been performed and web-based management system has been built to provide services to users. In addition, by applying statistical techniques, it has been designed and implemented to display the accuracy and error of the information

  17. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  18. Artificial Weathering of Biotite and Uranium Sorption Characteristics

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon; Lee, Jae Kwang

    2009-01-01

    An experiment for uranium sorption onto fresh and weathered biotites was performed. After centrifugation, concentrations of uranium in the supernatants were analyzed using ICP-MS, and biotite samples were investigated using XRD and SEM. With powdered biotites (<3 mm in size), we have conducted uranium sorption experiments about fresh and weathered biotites to obtain uranium sorption amounts in various pH conditions. The uranium sorption was not high at a low pH (e.g., pH 3), but increased with increasing pH. There were lower uranium sorption by the weathered biotites than by the fresh ones, and the difference was much larger at higher pH (e.g., pH 11). The lower sorption values of uranium by the weathered biotites may be caused by a change of mineral surfaces and a chemical behavior of surrounding dissolved elements. It seems that the uranium-mineral interaction has been diminished, especially, in the weathered biotite by a destruction and dissolution of preferential sorption sites on the mineral surfaces and by the colloidal formation from dissolved elements.

  19. Radionuclide sorption on crushed and intact granitic rock

    International Nuclear Information System (INIS)

    Eriksen, Tryggve E.; Locklund, Birgitta

    1989-05-01

    The specific surface areas and distribution ratios for sorption of 85 Sr, 137 Cs and 152 Eu were measured for crushed and intact granite rock. The experimental data can be accommodated by a sorption model encompassing sorption on outer and inner surface. It is clearly demonstrated that the time required to obtain reliable Kd-values for the sorption of strongly sorbing radionuclides like 152 Eu is very long due to solution depletion and slow diffusion into the rock. A combination of surface area measurements and batch sorption with small particles may therefore be preferable when studying strongly sorbing nuclides. (authors) (17 figs., 6 tabs.)

  20. Sorption of uranyl ions on hydrous oxides

    International Nuclear Information System (INIS)

    Gupta, A.R.; Venkataramani, B.

    1988-01-01

    Sorption of uranyl ions on hydrous titanium oxide (HTiO), magnetite (MAG), and hydrous thorium oxide (HThO) has been studied as a function of pH. Hydrous oxides have been characterized by their pH-titration curves, intrinsic dissociation constants (pK ai * ) and point of zero charge (pH pzc ). The fraction of protonated surface hydroxyl groups as well as the surface pH (pH surf ) as a function of solution pH have been computed. The distribution of various hydrolyzed species of uranyl ions with solution pH have been compared with uranyl sorption isotherm on these oxides. Sorption edge in all the cases occurs when free hydroxyl groups are available on the surface and pH surf is sufficiently high to favor the formation of dimer-like species on the surface. A new model for the sorption process, called surface hydrolysis model, which explains these and other features of uranyl sorption on hydrous oxides has been proposed. The model visualizes the sorption process as linking of uranyl ions with two adjacent free surface hydroxyl groups without deprotonation (provided the surface pH is high for the hydrolysis of uranyl ions) and formation of dimer-like structures on the surface. The new model has been successfully applied to the present and other available data on uranyl ion sorption on hydrous oxides. (author)

  1. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils

    International Nuclear Information System (INIS)

    Sastre, J.; Rauret, G.; Vidal, M.

    2006-01-01

    We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K d ) were determined in 0.02 eq l -1 CaCl 2 and in a solution that simulated the soil solution cationic composition. The K d values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K d values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K d versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl 2 medium in soils with a markedly different soil solution composition. - Sorption solution composition modifies metal sorption-desorption pattern in soils

  2. Sorption compressor/mechanical expander hybrid refrigeration

    Science.gov (United States)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  3. Sorption of humic acid to functionalized multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Fei; Yao, Jun; Chen, Huilun; Yi, Zhengji; Xing, Baoshan

    2013-01-01

    The environmental behavior of carbon nanotubes (CNTs) and humic acid (HA) is a prominent concern, but effect of functionalities on their sorption is not clear yet. Functionalized multi-walled CNTs (MCNT15) and HA were used to study their sorption behavior. Sorption rate of HA to MCNTs was dominantly controlled by its diffusion from liquid-MCNT boundary to MCNT surfaces. The sorption is in the sequence of MCNT15 > MCNT15-NH 2 > MCNT15-OH > MCNT15-COOH > MCNT15-Ni, which was dependent on their surface area and meso- and macro-pore volume. The functionalities of MCNTs regulated the sorption by affecting their interaction mechanisms (i.e., H-bonding, π–π, and hydrophobic interaction). Additionally, the amount of these functionalities on the MCNT surface reduced indirectly the sorption sites due to the steric hindrance. Electrostatic repulsion deceased the sorption of HA by MCNTs with increasing pH. This study demonstrated the importance of functionalities on the MCNTs for the sorption of HA. -- Highlights: •HA sorption kinetics was well fitted using Lagergren pseudo second-order model. •Sorption rate of HA was controlled by diffusion from liquid-MCNT boundary to MCNT surfaces. •Sorption was dependent on their surface area and meso- and macro-pore volume. •Functionalities of MCNTs regulated the sorption by affecting interaction mechanisms. -- The functionalities of MCNTs regulated the sorption behavior between MCNTs and HA

  4. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  5. Alligator Rivers Analogue project. Uranium sorption. Final Report - Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    Waite, T D; Payne, T E [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Davis, J A [United States Geological Survey, Water Resources Division, Menlo Park, CA (United States); Sekine, K [Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki (Japan)

    1993-12-31

    In this volume, the results of studies of uranium sorption (adsorption and desorption) to both single, well-defined mineral phases, and to selected natural (Koongarra) substrates are reported. The single phases included the amorphous iron oxide ferrihydrite, crystalline silica and two naturally occurring kaolinites, KGa-1 and Nichika. The surface properties of these materials were rigorously defined, and adsorption studies were conducted over a range of solution pH, ionic strength, carbonate content, adsorbent and adsorbate concentrations, and in the presence of uranium complexants and (potentially) competing adsorbates (such as phosphate and fluoride). The results of these studies were modelled using the `surface complexation` approach, with a diffuse layer description of the electrical double layer. The impacts of mineral phase transformations (specifically the aging of amorphous ferrihydrite to more crystalline forms) on the uptake and desorption of uranium are also reported. The amount of data obtained in this study, with a number of experimental parameters being varied over a wide range, has enabled more confidence to be placed in the modelling results. The derived model for ferrihydrite adequately accounts for the effect on U sorption of a number of parameters, most notably pH, pCO{sub 2} and total U present. Few (if any) of the models previously proposed are adequate in this respect. While the modelling of the data for the natural substrates is not as advanced, the U sorption data on the natural substrates show similar features to the U sorption on the model substrates. This suggests that the insights obtained in the modelling of the data for ferrihydrite will be valuable in deriving a model for the more complex natural substrates 87 refs., 27 tabs., 56 figs.

  6. Strontium sorption on Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1984-12-01

    A laboratory study of strontium-85 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that strontium sorption is most strongly a function of pH. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence strontium sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect. Ferrous ion, added to groundwater to simulate the conditions of water at the bottom of waste trenches, did not account for low strontium sorption observed with some trench waters

  7. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-montmorillonite. Part III: modelling

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1995-07-01

    Titration and sorption measurements, carried out under a wide variety of conditions on Na-montmorillonite, were examined in terms of cation exchange and surface complexation mechanisms. A computer code called MINSORB was developed and used throughout this work. This code allowed the uptake of radionuclides by both mechanisms to be calculated simultaneously; also taking into account competitive reactions from other cations present. A stepwise iterative fitting/modelling procedure is described. For the case of Na-montmorillonite it is demonstrated that an electrostatic term in the surface complexation model is not required. A basic data set comprising of site capacities and protonation/deprotonation constants was defined, which was valid for all surface complexation sorption reactions. The main study was carried out with Ni, but impurity cations present in the system, particularly Zn, had to be examined in addition due to their competitive effects on Ni sorption. The surface complexation behaviour of Ni and Zn was investigated in detail to give intrinsic surface complexation constants on two of the =SOH type sites included in the model. The sorption of Mg, Ca and Mn is also considered, though in less detail, and estimated surface complexation constants for these nuclides are presented. Cation exchange was included in all of the calculations. Measured selectivity coefficients for Ni-Na, Zn-Na and Ca-Na exchange reactions are given. The model, with the derived parameters, allowed all the data from titration measurements through sorption edges to sorption isotherms to be calculated. (author) 31 figs., 9 tabs., refs

  8. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-Montmorillonite. Part III: Modelling

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1995-07-01

    Titration and sorption measurements, carried out under a wide variety of conditions on Na-montmorillonite, were examined in terms of cation exchange and surface complexation mechanisms. A computer code called MINSORB was developed and used throughout this work. This code allowed the uptake of radionuclides by both mechanisms to be calculated simultaneously; also taking into account competitive reactions from other cations present. A stepwise iterative fitting/modelling procedure is described. For the case of Na-montmorillonite it is demonstrated that an electrostatic term in the surface complexation model is not required. A basic data set comprising of site capacities and protonation/deprotonation constants was defined, which was valid for all surface complexation sorption reactions. The main study was carried out with Ni, but impurity cations present in the system, particularly Zn, had to be examined in addition due to their competitive effects on Ni sorption. The surface complexation behaviour of Ni and Zn was investigated in detail to give intrinsic surface complexation constants on two of the ≡SOH type sites included in the model. The sorption of Mg, Ca and Mn is also considered, though in less detail, and estimated surface complexation constants for these nuclides are presented. Cation exchange was included in all of the calculations. Measured selectivity coefficients for Ni-Na, Zn-Na and Ca-Na exchange reactions are given. The model, with the derived parameters, allowed all the data from titration measurements through sorption edges to sorption isotherms to be calculated. (author) 31 figs., 9 tabs., refs

  9. Study of the radium sorption/desorption on goethite

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Mallet, C.; Lefebvre, C.; Ferreux, J.-M.

    2000-01-01

    The oxi-hydroxides, present at trace level in uranium mill tailings, are responsible of about 70% of the 226 radium sorption, half being fixed on crystallized forms. This radionuclide (half time=1622y), present at high level (50 to 100kBq.kg -1 ), can be released in groundwater, involving a possible contamination of the food chain (actual concentration limit=0.37Bq.1 -1 ). So, it is very important to point out the mechanisms of the radium sorption/desorption on crystallized oxi-hydroxides as a function of chemical conditions of the system. The radium sorption on synthetic goethite α-FeOOH has been studied as a function of contact time, initial radium activity, pH, sodium and calcium concentrations. The results show that, after one hour of contact time (necessary to reach equilibrium), the radium sorption increases widely in a pH range 6-7. The increase of Na + concentration is without influence on the radium sorption, indicating the low interactions between sodium and surface sites. At the opposite, the presence of calcium in solution decreases widely the radium sorption, that indicates a competition between calcium and radium for the same kind of sorption sites of the oxi-hydroxide surface. The percentage of radium desorbed increases widely with time, from 1 to 120h and becomes constant at a time higher than 120h. This long equilibrium time for desorption in comparison with sorption one can be explain by a local evolution of the sorption sites of the solid, which become less accessible for the solution in contact. (author)

  10. Influence of selected factors on strontium sorption on bentonites

    International Nuclear Information System (INIS)

    Galambos, M.; Kufcakova, J.; Rajec, P.

    2007-01-01

    Sorption on bentonite will play an important role in retarding the migration of radionuclides from a waste repository. Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level nuclear waste. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by sorption. Bentonite is characterized by low permeability, water swelling capability and excellent sorption potential for cationic radionuclides. To correctly assess the sorption potential of radionuclides on bentonite is essential for the development of predictive migration models. The sorption of strontium on bentonite from different Slovak deposits - Jelsovy potok, Kopernica and Lieskovec has been investigated under various experimental conditions, such as contact time, sorbate concentrations, presence of complementary cation. Sorption was studied using the batch technique. The uptake of Sr was rapid and equilibrium was reached almost instantaneously. The instantaneous uptake may be due to adsorption and/or exchange of the metal with some ions on the surface of the adsorbent. The best sorption characteristics distinguish bentonite Kopernica, sorption capacity for Sr of the fraction under 45 mm is 0,48 mmol·g -1 for Sr. The highest values of distribution coefficient were reached for the bentonite Jelsovy potok. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites, which can be explained by the increase of specific surface of the bentonite samples. The presence of complementary cations depresses the sorption of Sr on bentonite. Cations Ca 2+ exhibit higher effect on cesium sorption than the Na 2+ ions. Results indicate that the sorption of Sr 2+ on bentonite will be affected by the presence of high concentrations of various salts in the waste water

  11. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    Science.gov (United States)

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-valuesoil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  13. Sorption isolation of strontium from seawater

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Zheleznov, V.V.; Kaplun, E.V.; Sokol'nitskaya, T.A.; Yukhkam, A.A.

    2001-01-01

    Sorption isolation of strontium from seawater is considered and prospects of use of selective adsorbents for purification of seawater or liquid radioactive wastes mixed with seawater from 90 Sr are discussed. Comparative analysis of sorptive properties of adsorbents of different nature is done. It is shown that sorption-reagent materials developed by authors can to afford effective separation of 90 Sr from seawater. Possible mechanism of strontium sorption by these adsorbents is considered. The prospect of their use for purification of liquid radioactive wastes from strontium is shown [ru

  14. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  15. Sorption of strontium on bentonites from Slovak deposits

    International Nuclear Information System (INIS)

    Kufcakova, J.; Galambos, M.; Rajc, P.

    2005-01-01

    Sorption on bentonite from different Slovak deposits / Jelsovy potok, Kopernica and Lieskove has been investigated under various experimental conditions, such as contact time, pH, sorbate concentrations, presence of complementary cation. The sorption of strontium from aqueous solutions was investigated using a radiometric determination of distribution coefficient, Kd. The individual solutions were labelled with radiotracer. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites /tab.l/ , which can be explained by the increase of specific surface and change of solubility of the irradiated samples of bentonite. The presence of complementary cations, Na + , K + , NH 4 + , Ca 2+ , Mg 2+ and Ba 2+ depresses the sorption of Sr on bentonite. In the case of bentonite Kopernica the effectiveness in reducing the sorption of strontium by cations followed the order K + 4 + + 2+ 2+ 2+ . Results indicate that the sorption of Sr + on bentonite will be affected by the presence of high concentrations of various salts in the waste water effluents. (author)

  16. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  17. Moisture sorption of Thai red curry powder

    Directory of Open Access Journals (Sweden)

    Sudathip Inchuen

    2009-12-01

    Full Text Available Moisture sorption study was conducted on Thai red curry powder prepared by two different drying methods, viz. microwave and hot-air drying. Moisture sorption isotherms of the red curry powder at 30 C and water activity in the range of 0.113-0.970 were determined by a static gravimetric method. The isotherms exhibited Type III behaviour. The moisture sorption data were fitted to several sorption models and a non-linear regression analysis method was used to evaluate the constants of the sorption equations. The fit was evaluated using the coefficient of determination (R2, the reduced chi-square (2 and the root mean square error (RMSE. The GAB model followed by the Lewiski-3 model gave the best fit to the experimental data. The monolayer moisture content, taken as the safe minimum moisture level in the red curry powder, was determined using the BET equation and was found to range between 0.080 - 0.085 gram water per gram dry matter.

  18. Sorption of metaldehyde using granular activated carbon

    Directory of Open Access Journals (Sweden)

    S. Salvestrini

    2017-09-01

    Full Text Available In this work, the ability of granular activated carbon (GAC to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

  19. Carbon dioxide sorption on EDTA modified halloysite

    Directory of Open Access Journals (Sweden)

    Waszczuk Patrycja

    2016-01-01

    Full Text Available In this paper the sorption study of CO2 on EDTA surface modified halloysite was conducted. In the paper chemical modification of halloysite from the Dunino deposit (Poland and its influence on sorption of CO2 are presented. A halloysite samples were washed with water-EDTA 1% solution, centrifuged to separate liquid and impurities and dried. The samples were tested for the sorption capacity using a manometric method with pressure up to 3 MPa. A Langmuir adsorption model was fitted to the data. The results showed that EDTA had a limited effect on the increase of sorption potential at low pressure and the samples exhibited similar results to that ones treated solely with the water solution.

  20. Modelling Ni diffusion in bentonite using different sorption models

    International Nuclear Information System (INIS)

    Pfingsten, W.; Baeyens, B.; Bradbury, M.

    2010-01-01

    different modelling approaches a) an analytical solution with constant Kd using a constant Ni(II) concentration level at x = 0 (e.g. at the canister surface) and zero Ni(II) initial background concentration in the bentonite, b) a numerical 'constant K d approach' taking into account the initial Ni(II) background concentration in the bentonite pore water, and c) a reactive transport approach using the code MCOTAC in one-dimensional spatial geometry with an incorporated mechanistic sorption model which includes surface proto-lysis, surface complexation and cation exchange reactions. Charge balance is explicitly formulated for the surface complexation reactions. Selectivity coefficients and surface complexation data for Ni(II) were taken from Bradbury and Baeyens (2005); the related Fe(II) data were obtained from the Linear Free Energy Relationship (LFER) contained in the same publication. The Ni(II) breakthrough in the bentonite was calculated for different Ni(II) concentration levels with and without considering competition with Fe(II) on exchange and surface complexation sites for different Fe(II) concentrations in the bentonite pore water. The comparison allows the following observations to be made: for trace Ni(II) concentrations, the numerical 'constant K d approach' yield similar results to the reactive transport approach. For higher Ni(II) concentrations, the calculated Ni(II) breakthroughs differ from each other: the reactive transport approach yields an earlier breakthrough than the numerical 'constant K d approach' for a Ni concentration level of 10 -5 M. However, for a Ni(II) concentration level of 10 -4 M, the reactive transport approach yield a later but steeper breakthrough, reaching the maximum Ni(II) concentration level earlier than the numerical 'constant K d approach'. Fe(II) competition reactions could only be taken into account using the reactive transport approach. The results yield a general dependency of the Ni

  1. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1994-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study

  2. Technetium sorption by stibnite from natural water

    International Nuclear Information System (INIS)

    Peretroukhine, V.; Sergeant, C.; Deves, G.; Poulain, S.; Vesvres, M.H.; Thomas, B.; Simonoff, M.

    2006-01-01

    The sorption of technetium by powdered and polished mineral stibnite Sb 2 S 3 has been investigated in simulated and natural underground waters from the Meuse/Haute-Marne region (France). The sorption by powdered stibnite has been found to be complete under both aerobic and anaerobic conditions in batch experiments. The sorption rate is higher in the absence of oxygen than under aerobic condition. Increasing the temperature from 30 C to 60 C results in a rise of the sorption rate by 9.1 and 27 times under anaerobic and aerobic conditions, respectively. The observed differences in sorption kinetics in the presence and in absence of oxygen are explained by the interaction of oxygen with sulfide ion in aerobic conditions and by the reduction of technetium(VII) by iron(II) and by other impurities present in natural water and in the mineral, and by the subsequent sorption of Tc(IV) on stibnite under anaerobic conditions. The sorption on a polished mineral surface resulted in the formation of a technetium film, probably Tc 2 S 7 , with a thickness of 1-3 μg Tc/cm 2 pH 3-6 and 4-12 μg Tc/cm 2 at 9-12. The simultaneous formation of stibnite colloids with adsorbed technetium occurs at pH 9-12. The study of the technetium film on the mineral by proton induced X-ray emission analysis showed it to be at least one order of magnitude thinner on the SiO 2 impurities than on the main Sb 2 S 3 component and the iron impurities. (orig.)

  3. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  4. Sorption of fission nuclides on model milk components. I. Sorption of radiostrontium on hydroxyapatite in aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.; Kristin, J.

    1999-01-01

    Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 is a mineral widely spread in nature as a main constituent of phosphate rocks, and also as the major inorganic component of bones and teeth. It was found that sorption process occurs by an ion exchange reaction mechanism between strontium ions in solution and calcium ions in apatite. Ca 2+ → Sr 2+ substitution in hydroxyapatite is important since it explains the mechanism of incorporation of beta-active Sr-90 of atomic debris into the human skeletal system. The strontium uptake at 100 grad C is done by adsorption and diffusion while at 25 grad C it is done by the process of adsorption only. The hydroxyapatite was prepared from aqueous solutions and characterized by standard analytical methods. Some samples of hydroxyapatite were modified by heating after its precipitation from aqueous solution. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. Also, commercial hydroxy-apatites were used. Sorption of strontium ions on synthetic hydroxyapatite was examined using batch method and sorption depends on the method of preparation of hydroxyapatite. In generally, sorption of strontium decreases with the increase in the particle size of hydroxyapatite and decreases with the increase in the pH ( hydroxyapatite surface is amphoteric and acts as a buffer in a wide pH range). The sorption of strontium increases with the increase in [Sr 2+ ] or [Ca 2+ ] in solution to ∼ 10 -5 mol · dm -3 for the hydroxyapatite prepared by heating. The experimental data for sorption of strontium has been fitted with Langmuir-adsorption isotherm. (authors)

  5. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  6. 3.3. Sorption activity of cross-linked polymers of ethynyl-piperidol

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption activity of cross-linked polymers of ethynyl-piperidol was studied. The bilirubin sorption was studied as well. The kinetic of bilirubin sorption and human serum albumin at their joint presence in hydrogel solutions was defined. Bilirubin sorption and change of albumin composition was considered. The sorption of middle molecular peptides was considered as well. The sorption of endogenous toxin by means of ethynyl-piperidol polymers was done.

  7. Understanding Where Americas Public Discussion Takes Place In Todays Society: Case Studies of Concealed Weapons Carry Reform

    Science.gov (United States)

    2016-06-01

    arguing that concealed carry permit holders are a danger to public safety and that mass shootings are taking place by citizens who are legally armed.2...who worked at an abortion clinic that had recently been bombed and whose life had been threatened was denied a license to carry because he was not...populace. The new law laid out new prohibitions and penalties enforceable statewide. Additionally, the Preemption Act was necessary to set the legal

  8. Radionuclide sorption on granitic drill core material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Locklund, B.

    1987-11-01

    Distribution ratios were determined for Sr-85, Cs-134 and Eu-152 on crushed granite and fissure coating/filling material from Stripa mines. Measurements were also carried out on intact fissure surfaces. The experimental data for Sr-85, Cs-134 on crushed material can be accomodated by a sorption model based on the assumption that the crushed material consists of porous spheres with outer and inner surfaces available for sorption. In the case of Eu-152 only sorption on the outer surfaces of the crushed material was observed. The absence of sorption on inner surfaces is most probably due to high depletion of the more strongly sorbed Eu-152 in the water phase and very low diffusivity of Eu-152 in the sorbed state. (orig./HP)

  9. Study of sorption of technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen Dong; Fan Xianhua; Su Xiguang; Zeng Jishu

    2001-01-01

    The sorption behaviors of technetium on pyrrhotine are studied with batch experiment and dilute sulfuric acid is used to dissolve the technetium adsorbed on pyrrhotine. Sorption and desorption experiment are performed under aerobic and anaerobic conditions (inert gas box). The results show that a significant sorption of technetium on pyrrhotine is found under aerobic and anaerobic conditions, and the sorption on the mineral is supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 ·nH 2 O. Desorption process of the sorbed technetium into dilute sulfuric acid is found to be different under aerobic and anaerobic conditions. On addition of H 2 O 2 to the leach solution a sudden increase of the technetium concentration is observed

  10. Recent progress in sorption mechanisms and models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.

    2005-01-01

    Full text of publication follows: Sorption-desorption phenomena play an important role in the migration of radioactive species in surface and underground waters. In order to predict the transport of these species, we need a good knowledge of sorption processes and data, together with reliable models able to be included in transport calculation. Traditional approaches based on experimentally determined distribution coefficients (Kd) and sorption isotherms have a limited predictive capability, since they are very sensitive to the numerous parameters characterizing the solution and the solid. Models based on thermodynamic equilibria were developed to account for the influence these parameters: the ion exchange model and the surface complexation models (2-pK mono-site, 1-pK multi-site, with several different electrostatic models: CCM, DLM, BSM, TLM,...). Although these models are very useful, studies performed in recent years showed that they have important theoretical and experimental limitations, which result in the fact that we must be very careful when we use them for extrapolating sorption data to long term and to large natural systems. Among all problems which can be found are: the possibility to fit a set of experimental data with different models, sometimes bad adequacy with the real sorption processes, some theoretical limitations such as a rigorous definition of reference and standard states in surface equilibria, slow kinetics which prevent from equilibrium achievement, irreversibility, solubility and evolution of solid phases... Through the increase of the number of sensitive spectroscopic methods, we are now able to know more about sorption processes at the atomic scale. Models such as the 1-pK CD-MUSIC model can account for the influence of orientation of the faces of the solid. More and more examples of the influence of this orientation on the sorption properties are known. Calculations performed by 'ab initio' modeling is also useful to predict the

  11. Modelling of a diffusion-sorption experiment on sandstone

    International Nuclear Information System (INIS)

    Smith, P.A.

    1989-11-01

    The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs

  12. Radionuclide sorption from the safety evaluation perspective

    International Nuclear Information System (INIS)

    1992-01-01

    Research and development directed towards the assessment of the long-term performance of radioactive waste disposal systems has been recognised as a priority area with a strong need for international co-operation and co-ordination. The ultimate aims is to promote the quality and credibility of safety assessment techniques for radioactive waste disposal. Sorption in the geosphere is one of the key processes for retarding the transport of radionuclide from the underground disposal facility to the biosphere. In many cases, sorption in the near field and in the biosphere is also important. A workshop, organised to favor discussion around a small number of invited papers, was held in October 1991: - to evaluate critically the way sorption processes are incorporated in performance assessment models; - to identify open issues of high priority, and; - to propose future activities to resolve these issues. These proceedings reproduce the invited papers and the conclusions and recommendations adopted by the workshop. Eight papers are in the INIS SCOPE. The main subjects studied are: sorption database comparison, sorption database development and three case studies, experimental techniques, adsorption models

  13. Sorption and diffusion of Cs and I in concrete

    International Nuclear Information System (INIS)

    Andersson, K.; Torstenfelt, B.; Allard, B.

    1983-01-01

    Concrete has been suggested as a possible encapsulation material for long-term storage of low and medium level radioactive waste. At an underground storage of concrete encapsulated waste, a slow release of radioactive elements into the groundwater by diffusion through the concrete must be considered in the safety analysis. The diffusion may be delayed by sorption reactions on the solid. A wide range of long-lived radionuclides may be present in the low and medium level radioactive waste. Here, the sorption and diffusion of iodide and cesium on slag cement paste and concrete has been studied. The influence of four different water phases (pore water, groundwater, Baltic Sea water and sea water) as well as the influence of some added species (carbonate, sulphate and magnesium) has been investigated. A significant sorption of iodide on cement paste in contact with pore water was observed, indicating that the diffusion may be expected to be retarded in this medium. For cesium the highest sorption was found for concrete and groundwater. This means that the sorption increases as the concrete is weathered. Low or insignificant sorption was found for the cement paste, indicating that the ballast is responsible for the Cs-sorption. Carbonatization enhances the Cs-sorption by about a factor of 3. The diffusivity of Cs in concrete and cement paste was determined to between 2x10 - 14 and 8x10 - 14 m 2 /s in pore water (where an insignificant sorption was observed). The choice of ballast as well as addition of suitable getters with high sorption of the long-lived radionuclides might decrease the mass transfer rate through the cement. (Authors)

  14. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  15. Study of sorption processes of copper on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Ometakova, J.; Rajec, P.; Caplovicova, M.

    2012-01-01

    The sorption of copper on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite sample prepared by a wet precipitation process was of high crystallinity with Ca/P ratio of 1.688. The sorption of copper on hydroxyapatite was pH independent ranging from 4 to 6 as a result of buffering properties of hydroxyapatite. The adsorption of copper was rapid and the percentage of Cu sorption was >98% during the first 15-30 min of the contact time. The experimental data for sorption of copper have been interpreted in the term of Langmuir isotherm. The sorption of Cu 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Zn 2+ , Fe 2+ and Pb 2+ towards Cu 2+ sorption was stronger than that of Co 2+ , Ni 2+ and Ca 2+ ions. The ability of the bivalent cations to depress the sorption of copper on hydroxyapatite was in the following order Pb 2+ > Fe 2+ > Zn 2+ > Co 2+ ∼ Ni 2+ . (author)

  16. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  17. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  18. Study on sorption capacity of synthetic zeolite for simulated nuclide Cs+

    International Nuclear Information System (INIS)

    Wang Jinming; Yi Facheng

    2006-01-01

    For the sake of understanding the functionary order of simulated nuclide Cs + and Synthetic Zeolite (ZF), the sorption equilibrium time and sorption capacity of simulated nuclide Cs + on ZF are studied with the intermittence method. The difference of temperature, pH value, Cs + concentration and medium on sorption capacity and sorption ratio are investigated. The results show that the sorption complexion of simulated nuclide Cs + on ZF in the same concentration solution are sorption equilibrium quantity in range of 155-190 mg/g in different temperatures and that in range of 165-190 mg/g in different pH values and that in range of 120-210 mg/g in different media; and changing order of equilibrium adsorption ratio is the same to that of sorption equilibrium quantity, but their changing range are wider than that of sorption equilibrium quantity; equilibrium adsorption quantity in range of 180-380 mg/g in different concentration solutions, and changing order of equilibrium adsorption ratio is opposite to that of sorption equilibrium quantity, and more-over, their changing range are wider than that of the sorption equilibrium quantity. Sorption equilibrium time of simulated nuclide Cs + on ZF is about ten to fifteen days. So the changing range of sorption capacity of simulated nuclide Cs + on ZF with conditions effects is smaller and the sorption equilibrium time is also less and ZF preferably absorbs Cs in radiation wastes and thus consumedly reduces the effect of radwaste on the environment. (authors)

  19. Yucca Mountain Project far-field sorption studies and data needs

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-09-01

    Batch sorption experiments in which radionuclides dissolved in groundwaters from Yucca Mountain were sorbed onto samples of crushed tuff have resulted in a substantial database of sorption coefficients for radionuclides of interest to the repository program. Although this database has been useful in preliminary evaluations of Yucca Mountain as a potential site for a nuclear waste repository, the database has limitations that must be addressed before it can be used for performance assessment calculations in support of a license application for a waste repository. The purpose of this paper is to: review the applicability of simple (constant) sorption coefficients in transport calculations; review and evaluate alternative methods for the derivation of sorption coefficients; summarize and evaluate the present YMP sorption database to identify areas of data sufficiency and significant data gaps; summarize our current understanding of pertinent sorption mechanisms and associated kinetic parameters; evaluate the significance to the YMP of potential problems in the experimental determination and field application of sorption coefficients as enumerated by the NRC (Nuclear Regulatory Commission, 1987) in its technical position paper on sorption; formulate and evaluate strategies for the resolution of NRC concerns regarding experimental problems; and formulate a position on the sorption coefficient database and the level of understanding of sorption mechanisms likely to be required in the licensing application. 75 refs., 1 fig., 2 tabs

  20. Sorption of radionuclides on inorganic sorbents

    International Nuclear Information System (INIS)

    Rajec, P.; Matel, L.

    1995-01-01

    The sorption of cesium, strontium, plutonium and americium from water solution on natural zeolite, clay minerals, synthetic zeolites and ferrocyanides in silica gel matrix was studied. The same experiments but with synthetic zeolites irradiated by the dose 100 kGy proved no change in sorption properties. 1 tab., 4 refs

  1. Sorption data bases for argillaceous rocks and bentonite for the provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Baeyens, B.; Thoenen, T.; Bradbury, M. H.; Marques Fernandes, M.

    2014-11-01

    In Stage 1 of the Sectoral Plan for Deep Geological Repositories, four rock types have been identified as being suitable host rocks for a radioactive waste repository, namely, Opalinus Clay for a high-level (HLW) and a low- and intermediate-level (L/ILW) repository, and 'Brauner Dogger', Effingen Member and Helvetic Marls for a L/ILW repository. Sorption data bases (SDBs) for all of these host rocks are required for the provisional safety analyses, including all of the bounding porewater and mineralogical composition combinations. In addition, SDBs are needed for the rock formations lying below Opalinus Clay (lower confining units) and for the bentonite backfill in the HLW repository. In some previous work Bradbury et al. (2010) have described a methodology for developing sorption data bases for argillaceous rocks and compacted bentonite. The main factors influencing the sorption in such systems are the phyllosilicate mineral content, particular the 2:1 clay mineral content (illite/smectite/illite-smectite mixed layers) and the water chemistry which determines the radionuclide species in the aqueous phase. The source sorption data were taken predominantly from measurements on illite (or montmorillonite in the case of bentonite) and converted to the defined conditions in each system considered using a series of so called conversion factors to take into account differences in mineralogy, in pH and in radionuclide speciation. Finally, a Lab → Field conversion factor was applied to adapt sorption data measured in dispersed systems (batch experiments) to intact rock under in-situ conditions. This methodology to develop sorption data bases has been applied to the selected host rocks, lower confining units and compacted bentonite taking into account the mineralogical and porewater composition ranges defined. Confidence in the validity and correctness of this methodology has been built up through additional studies: (i) sorption values obtained in the manner

  2. Sorption data bases for argillaceous rocks and bentonite for the provisional safety analyses for SGT-E2

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, B.; Thoenen, T.; Bradbury, M. H.; Marques Fernandes, M.

    2014-11-15

    In Stage 1 of the Sectoral Plan for Deep Geological Repositories, four rock types have been identified as being suitable host rocks for a radioactive waste repository, namely, Opalinus Clay for a high-level (HLW) and a low- and intermediate-level (L/ILW) repository, and 'Brauner Dogger', Effingen Member and Helvetic Marls for a L/ILW repository. Sorption data bases (SDBs) for all of these host rocks are required for the provisional safety analyses, including all of the bounding porewater and mineralogical composition combinations. In addition, SDBs are needed for the rock formations lying below Opalinus Clay (lower confining units) and for the bentonite backfill in the HLW repository. In some previous work Bradbury et al. (2010) have described a methodology for developing sorption data bases for argillaceous rocks and compacted bentonite. The main factors influencing the sorption in such systems are the phyllosilicate mineral content, particular the 2:1 clay mineral content (illite/smectite/illite-smectite mixed layers) and the water chemistry which determines the radionuclide species in the aqueous phase. The source sorption data were taken predominantly from measurements on illite (or montmorillonite in the case of bentonite) and converted to the defined conditions in each system considered using a series of so called conversion factors to take into account differences in mineralogy, in pH and in radionuclide speciation. Finally, a Lab → Field conversion factor was applied to adapt sorption data measured in dispersed systems (batch experiments) to intact rock under in-situ conditions. This methodology to develop sorption data bases has been applied to the selected host rocks, lower confining units and compacted bentonite taking into account the mineralogical and porewater composition ranges defined. Confidence in the validity and correctness of this methodology has been built up through additional studies: (i) sorption values obtained in the manner

  3. Sorption and diffusion of FE(II) in bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Tournassat, C.; Hadi, J.; Greneche, J.-M.

    2014-02-01

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ( 55 Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  4. Sorption and diffusion of FE(II) in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Tournassat, C.; Hadi, J. [BRGM, Orleans (France); Greneche, J.-M. [LPCE, Le Mans (France)

    2014-02-15

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ({sup 55}Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  5. The NEA sorption data base (SDB)

    International Nuclear Information System (INIS)

    Ruegger, B.; Ticknor, K.

    1992-01-01

    The current NEA Sorption Data Base is developed to replace the former International Sorption Information Retrieval System (ISIRS) initiated at Pacific Northwest Laboratory and contains about 11,000 distribution coefficients with corresponding experimental condition parameters describing sorption of key nuclides for a large variety of solid and liquid phases. The SDB is designed to run on a micro-computer using the commercially available database software dBASE III Plus. For each recorded sorption experiment, the SDB provides a bibliographical reference, the most complete characterization of the solid and liquid phases available, a description of the experimental conditions and the distribution coefficient or retardation factor for each element studied. When available, parameters such as temperature, initial radionuclide concentration, pH, Eh, contact time, solid to solution ratio, sample origin, oxidation state and type of solution are included. The SDB provides information for a wide variety of rocks or geological materials, buffer backfill candidates, concretes/cements, elements (Am, Cs, Co, I, Np, Pu, Ra, Sr, Se, Tc, U and, to a lesser extent, Ag, Ba, C, Ce, Eu, Fe, Mn, Mo, Na, Nb, Ni, Pd, Pm, Ru, Sb, Sn, Y, Zn, and Zr), or radioisotopes. A compilation of sorption data like SDB provide a readily available source of data for radioactive waste repository performance assessments when site specific data are not available or essential, for example, during a site selection phase. 2 appendices

  6. Sorption of uranium and cesium by Hanford basalts and associated secondary smectite

    International Nuclear Information System (INIS)

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.; Salter, P.F.

    1982-01-01

    Three characterized basalts and an associated secondary smectite were used in comparative uranium and cesium sorption studies. Experiments utilizing two synthetic characteristic basalt groundwaters at 23 and 60 0 C allowed comparison of increased temperature and carbonate concentration effects on Cs and U sorption. The sorption data were fitted to the Dubinin-Radushkevich (D-R) isotherm, and loading maxima and energetics derived. An increase in temperature caused a decrease in Cs sorption maxima on all solids from all groundwaters studied and an increase in U sorption maxima, especially from the higher-carbonate-content groundwater. Sorption energies were characteristic of ion exchange for both Cs and U sorption processes. Basalt U sorption maxima were relatively insignificant, but smectite U sorption maxima surpassed Cs sorption maxima in both groundwaters at 60 0 C. The uranyl carbonate complexes thus may be relatively temperature-sensitive. Upon removal of excess Fe-oxides from the secondary smectite, U sorption decreased and the D-R isotherm reverted to a normal Freundlich sorption isotherm. Removal of excess Fe-oxides from the basalts and secondary smectite would probably result in Freundlich sorption isotherms for both Cs and U. (Auth.)

  7. The sorption behaviour of 99Tc on activated carbon

    International Nuclear Information System (INIS)

    Xia Deying; Zeng Jishu

    2004-01-01

    The sorption behaviour of 99 Tc on apricot-pit activated carbon with batch experiment is studied. The influence of such factors as sorbent particle size, temperature, pH value on sorption ratio, and the Freundlich sorption isotherms are reported in this paper. (author)

  8. β-Zeolite modified by ethylenediamine for sorption of Th(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Wu, Hanyu; Yuan, Ni; Yin, Zhuoxin; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Lab.; Ministry of Education, Lanzhou (China). Key Lab. of Special Function Materials and Structure Design

    2017-08-01

    β-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5-4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.

  9. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite

    International Nuclear Information System (INIS)

    Marques Fernandes, Maria; Vér, Nóra; Baeyens, Bart

    2015-01-01

    Highlights: • Contaminant retention in argillaceous rocks controlled by sorption on clay minerals. • Cs, Ni, Co, Eu, Th and UO 2 sorption isotherm measurements on Boda and Opalinus Clay. • Boda and Opalinus Clay exhibit different mineralogies and porewater compositions. • Blind predictions using quasi-mechanistic sorption models developed for illite. • Good agreement between measurements and blind predictions. - Abstract: Reliable predictions of radiocontaminant migration are a requirement for the establishment of radioactive waste repositories. Parametrization of the necessary sorption models seems to be, however, extremely challenging given the multi-mineralic composition of the lithosphere. In this study it is shown for two argillaceous rocks – Boda and Opalinus Clay relevant for the Hungarian and Swiss repository concepts, respectively – that this task can be substantially simplified by taking into account only the most sorptive mineral fraction, namely the 2:1 clay minerals illite and illite/smectite mixed layers. Two different models were required to blind predict the sorption isotherms of Cs, Co, Ni, Eu, Th and UO 2 measured on the two clay rock samples in a synthetic porewater. Cs sorption was modelled with the generalised Cs (GCs) sorption model and the sorption of the other cations with the 2site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model. The 2SPNE SC/CE model for illite was extended with surface complexation reactions on weak sites for Co, Ni, Eu, UO 2 and on strong sites for Eu-carbonato complexes. Complementary to the sorption measurements and modelling, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the retention mechanism of Ni on illite, Boda and Opalinus Clay at higher loadings. The reliable blind predictions of the selected metal cations, which are representative for monovalent alkaline metals, divalent transition metals, lanthanides, and trivalent

  10. Experimental studies of Cs, Sr, Ni, and Eu sorption on Na-illite and the modelling of Cs sorption

    International Nuclear Information System (INIS)

    Poinssot, C.; Baeyens, B.; Bradbury, M.H.

    1999-08-01

    A natural illite (illite du Puy) was purified and converted to the homo-ionic Na-form. The conditioned Na-illite was characterised in terms of its mineralogy, chemical inventory and physico-chemical properties. The structural formula was determined from energy dispersive spectroscopic analyses (SEM/TEM-EDS) and bulk chemistry measurements. A cation exchange capacity of 127 meq kg -1 was determined by the 22 Na isotope dilution method at neutral pH. The Na-CEC was also measured as a function of pH. The stability of Na-illite as a function of pH in the range between 3 and 6 was investigated. At low pH values partial dissolution of the illite occurs releasing the structural elements Al, Si, Mg, and K into solution. The presence of Ca and Sr in solution was interpreted as being due to desorption from cation exchange sites. All of these elements are also present at neutral pH but at considerably lower levels. Such effects cannot be avoided and must be considered in the interpretation of the sorption measurements. The main focus of the experimental work presented here is on the sorption behaviour of Cs, Sr, Ni and Eu on conditioned Na-illite as a function of NaClO 4 background electrolyte concentration (0.1 and 0.01 M), nuclide concentration and pH in the range between 3 and 11. Sorption edge data (R d versus pH) and sorption isotherms (quantity of nuclide sorbed versus equilibrium nuclide concentration) are presented for these four elements. Prior to beginning these experiments, sorption kinetics were measured. The broad based pool of sorption measurements generated from this work will provide the source data sets for subsequent modelling. So far only the Cs sorption measurements have been modelled. A two site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two site types were termed 'frayed edge sites' (FES, high affinity/low capacity) and 'type II sites' (low affinity/high capacity). Selectivity

  11. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  12. Compilation of radionuclide sorption coefficients for performance assessment

    International Nuclear Information System (INIS)

    Carbol, P.; Engkvist, I.

    1997-09-01

    The report presents four possible site-specific conditions in Sweden. The different sorption mechanisms applicable to the studied elements together with the K d concept are shortly summarised. The influence of organic substances present in the groundwater on the element's sorption and mobility is also discussed. Criteria for selection of K d values are presented together with sensitivity of the values to pH, E h and salinity. Sorption coefficients are recommended for elements in the repository with half-life above 5.3 years. The elements reviewed are: Cs, Sr, Ra, Ln, Ac, Th, Pa, U, Np, Pu, Am, Cm, Co, Ni, Cd, Zr, Nb, Tc, Pd, Ag, Sn, C, I, Cl, Se and Kr. For every element there is a recommendation of a realistic K d value with an uncertainty limit. The selection is based on experimental investigations or chemical analogues. In some cases few or no K d data were found, and it is recommended that sorption studies be performed on elements such as Cd, Pa, Cm, Zr, Nb, Pd, Ag and Sn. The recommended K d values for the different element's sorption on granitic rock, serve as a guidance of the sorption performance

  13. Competitive sorption of heavy metals by water hyacinth roots.

    Science.gov (United States)

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  15. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  16. Computer simulation of molecular sorption in zeolites

    International Nuclear Information System (INIS)

    Calmiano, Mark Daniel

    2001-01-01

    The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computational studies where we show our work to be in good agreement. In Chapter 5 we present a systematic study of the sorption of oxygen and nitrogen in five lithium substituted zeolites using a transferable interatomic potential that we have developed from ab initio calculations. We show increased loading of nitrogen compared to oxygen in all five zeolites studied as expected and simulate adsorption isotherms, which we compare to experimental and simulated data in the literature. In Chapter 6 we present work on the sorption of ferrocene in the zeolite NaY. We show that a simulated, low energy sorption site for ferrocene is correctly located by comparing to X-ray powder diffraction results for this same system. The thesis concludes with some overall conclusions and discussion of opportunities for future work. (author)

  17. Migration and sorption phenomena in packaged foods.

    Science.gov (United States)

    Gnanasekharan, V; Floros, J D

    1997-10-01

    Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.

  18. Sorption behaviour of well-defined oxidation states

    International Nuclear Information System (INIS)

    Allard, B.; Olofsson, U.; Torstenfelt, B.; Kipatsi, H.

    1983-05-01

    The sorption of the actinides Am(III), Th(IV), Np(V), Pa(V), U(VI) and Pu has been studied as a function of pH (2-12) for two nuclide concentrations (10 -7 -10 -9 M) (only one for Pa and U) in the systems Al 2 0 3 - 0.01 M NaCl0 4 and Si0 2 - 0.01 M NaCl0 4 . Distribution coefficients have been determined by a batch technique after various contact times (6h - 6w) at constant temperature (25degreeC) in systems equilibrated with air. The observed sorption behaviour indicates a predominantly physical adsorption mechanism, where pH of the aqueous phase is the principal chemical parameter of influence. The sorption is highly related to the degree of hydrolysis, with a maximum in the pH-region where neutral species dominate and with a reduction of the sorption under conditions when anionic species (hydroxides or carbonates) would exist in solution. This is particularly the case for U(VI) at pH above 7-8 when anionic carbonate complexes would be formed. Plutonium is predominantly tetravalent under the present conditions, as indicated by the sorption behaviour. (authors)

  19. A study of selenium and tin sorption on granite and geothite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, [TDS], natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was, low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in [DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (orig.)

  20. Experimental measurements and integrated modelling studies of actinide sorption onto cement

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Baston, G.M.N.

    2003-01-01

    An Integrated Cement Sorption Model (ICSM) for actinides onto Ordinary Portland Cement (OPC) is developed. The experimental measurements using the batch sorption technique for actinides onto cement and constituent minerals, which were considered in the modelling calculations, are also described. The actinide elements studied (thorium, uranium, neptunium, plutonium and americium) were strongly sorbed onto OPC. An initial comparison of the experimental data relating the sorption values of actinides onto cement-component phases with those onto OPC is carried out. The results suggest that the Calcium Silicate Hydrate (C-S-H) phases were found to be the most likely candidates to be the dominant-sorbing phases in order to describe the sorption of a actinides onto OPC. An approach to develop the integrated cement sorption model, based on a thermodynamic surface complexation model, is described with discussions on the possible mineralogy and phase distribution of OPC. Another approach than sorption, assuming that co-precipitation on the surface of the cement phase dominates 'sorption', is proposed and discussed. A scoring system is introduced to assess the applicability of the proposed ICSMs. It is suggested that the thermodynamic sorption model is recommended for the sorption of ionic species and the surface co-precipitation model is recommended for the sorption of neutral species though the sorption model is still recommended to be used to model OPC-based systems. (author)

  1. A study of selenium and tin sorption on granite and goethite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, (TDS), natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in (DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (author)

  2. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils.

    Science.gov (United States)

    Leal, Rafael Marques Pereira; Alleoni, Luis Reynaldo Ferracciú; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges

    2013-08-01

    Animal production is a leading economic activity in Brazil and antibiotics are widely used. However, the occurrence, behavior, and impacts of antibiotics in Brazilian soils are still poorly known. We evaluated the sorption behavior of four fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) and five sulfonamides (sulfadiazine, sulfachloropyridazine, sulfamethoxazole, sulfadimidine, and sulfathiazole) in 13 Brazilian soils with contrasting physical, chemical, and mineralogical properties. Fluoroquinolone sorption was very high (Kd≥544 L kg(-1)) whereas sulfonamide sorption ranged from low to high (Kd=0.7-70.1 L kg(-1)), consistent with previous reports in the literature. Soil texture and cation exchange capacity were the soil attributes that most affected sorption. Cation exchange was the most important sorption mechanism for the fluoroquinolones in highly weathered tropical soils, although cation bridging and ion pairing could not be ruled out. Hydrophobic partition played an important role in the sorption of the sulfonamides, but sorption was also affected by non-hydrophobic interactions with organic and/or mineral surfaces. Sorption for both compound classes tended to be higher in soils with high Al and Fe oxihydroxide contents, but they were not correlated with Kd values. No direct effect of soil pH was seen. The fluoroquinolones are not expected to leach even in worst-case scenarios (soils rich in sand and poor in organic carbon), whereas soil attributes dictate leaching potential for the sulfonamides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Development of JAEA sorption database (JAEA-SDB). Update of data evaluation functions and sorption/QA data

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael; Ganter, Charlotte

    2011-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop database compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in buffer materials (bentonite) and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on developing and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on multi-parameter dependence, operating method, PA-related applications of the web-based JAEA-SDB. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 4,250 K d data from 32 references are added, total K d values in the JAEA-SDB are about 28,540. The QA/classified K d data are about 39% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to have suitable access to the respective data

  4. Compilation of radionuclide sorption coefficients for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P.; Engkvist, I. [PI Chemical Consulting HB, Landvetter (Sweden)

    1997-09-01

    The report presents four possible site-specific conditions in Sweden. The different sorption mechanisms applicable to the studied elements together with the K{sub d} concept are shortly summarised. The influence of organic substances present in the groundwater on the element`s sorption and mobility is also discussed. Criteria for selection of K{sub d} values are presented together with sensitivity of the values to pH, E{sub h} and salinity. Sorption coefficients are recommended for elements in the repository with half-life above 5.3 years. The elements reviewed are: Cs, Sr, Ra, Ln, Ac, Th, Pa, U, Np, Pu, Am, Cm, Co, Ni, Cd, Zr, Nb, Tc, Pd, Ag, Sn, C, I, Cl, Se and Kr. For every element there is a recommendation of a realistic K{sub d} value with an uncertainty limit. The selection is based on experimental investigations or chemical analogues. In some cases few or no K{sub d} data were found, and it is recommended that sorption studies be performed on elements such as Cd, Pa, Cm, Zr, Nb, Pd, Ag and Sn. The recommended K{sub d} values for the different element`s sorption on granitic rock, serve as a guidance of the sorption performance 87 refs, 18 tabs

  5. Sorption isotherms, GAB parameters and isosteric heat of sorption

    NARCIS (Netherlands)

    Quirijns, E.J.; Boxtel, van A.J.B.; Loon, van W.K.P.; Straten, van G.

    2005-01-01

    The diffusion-sorption drying model has been developed as a physics-based way to model the decreasing drying rate at low moisture contents. This new model is founded on the existence of different classes of water: free and bound water. The transition between these classes and the corresponding

  6. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    Full text: Use of selective sorbents in liquid radioactive waste (LRW) management is widely spread in the field of nuclear power objects liquid waste decontamination, since the main objective there is to remove long-lived radionuclides of the nuclear cycle. The latter include, first of all, cesium-137, strontium-90, cobalt-60 and a number of α-irradiators. In this case LRW composition for most of the nuclear power objects is rather simple, except acidic deactivation solutions. At the same time, liquid radioactive wastes of different research centers have a variable chemical and radiochemical composition depending on objectives and tasks of a given center research activities. As a result, application of sorption technologies in such waste decontamination determines special requirements to these sorbents selectivity: a wide spectrum of radionuclides that can be removed and fairly high selectivity enabling to remove radionuclides from solutions of complex chemical composition (containing surfactants, complexing agents etc.). This paper is concerned with studying properties of new materials selective to different radionuclides. These materials are capable to interact with solution components whether already contained in the waste or deliberately added into resulting solution. Such sorption-reagent materials combine universal character of co-precipitation methods with simplicity of sorption methods. In this work we studied sorption-reagent inorganic ion-exchange materials interacting with sulfate-, carbonate-, oxalate-, sulfide-, and permanganate-ions. Insoluble compounds formed as a result of this interaction increase tens- and hundreds-fold the sorption selectivity of different radionuclides - strontium, cobalt, mercury, iron, and manganese as compared to conventional ion-exchange system. By means of X-ray phase analysis, IR-spectroscopy, chemical and radiochemical analysis, we have studied the mechanism of radionuclide sorption on different sorption

  7. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  8. Sorption of radioactive technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen, D.; Fan, X.H.; Su, X.G.; Zeng, J.S.; Dong, Y.

    2002-01-01

    The sorption behavior of technetium on pyrrhotine was studied with batch experiments and diluted sulfuric acid (less than 2.88 mol/l) was used to dissolve the technetium adsorbed on pyrrhotine. A significant sorption of technetium on pyrrhotine was observed under aerobic and anaerobic conditions, and the sorption on the mineral was supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 x nH 2 O. Sorbed technetium on the mineral could be desorbed by diluted sulfuric acid. The maximum desorption ratio under aerobic conditions was much higher than that of under anaerobic conditions, meanwhile, the desorption rates under anaerobic conditions were higher than that of under aerobic conditions in the initial stage of the experiments. (author)

  9. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Suitability of Moshi Pumice for Phosphorus Sorption in Constructed ...

    African Journals Online (AJOL)

    The study of Moshi Pumice's phosphorus sorption behaviours and properties was carried out in laboratory scale where by 1-2 mm, 2-4 mm and 4-8 mm grains were tested using batch experiments. The results show that Moshi Pumice has high phosphorus sorption capacity. The sorption capacity for the Moshi Pumice was ...

  11. Sorption of curium by silica colloids: Effect of humic acid

    International Nuclear Information System (INIS)

    Kar, Aishwarya Soumitra; Kumar, Sumit; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Sorption of curium by silica colloids has been studied as a function of pH and ionic strength using 244 Cm as a tracer. The sorption was found to increase with increasing pH and reach a saturation value of ∼95% at pH beyond 5.3. The effect of humic acid on the sorption of 244 Cm onto silica was studied by changing the order of addition of the metal ion and humic acid. In general, in the presence of humic acid (2 mg/L), the sorption increased at lower pH (<5) while it decreased in the pH range 6.5-8 and above pH 8, the sorption was found to increase again. As curium forms strong complex with humic acid, its presence results in the enhancement of curium sorption at lower pH. At higher pH the humic acid present in the solution competes with the surface sites for curium thus decreasing the sorption. The decrease in the Cm sorption in presence of humic acid was found to be less when humic acid was added after the addition of curium. Linear additive model qualitatively reproduced the profile of the Cm(III) sorption by silica in presence of humic acid at least in the lower pH region, however it failed to yield quantitative agreement with the experimental results. The results of the present study evidenced the incorporation of Cm into the silica matrix.

  12. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    Factors that influence the sorption of Cr(VI) and Cr(III) on aluminium hydroxide were investigated. The sorption of chromates decreases as the pH of the suspension increases. The mechanism of CrOsub(4)sup(2-) sorption was interpreted in terms of reactions between chromates and -OH and/or Hsub(2)O groups at the hydroxide/liquid interface. It was shown that chromates are more tightly sorbed on aluminium hydroxide compared to other anions, e.g. chlorides. On the other hand, specifically absorbed anions, such as molybdates, compete strongly with chromates for the sorption sites. The sorption of chromium(III) increases with the pH of the suspension. Also, the sorption of chromium(III) is suppressed in the presence of citrate ions. The best conditions for the fixation of Cr(VI) and Cr(III) by aluminium hydroxide are presented. (author)

  13. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  14. Experimental study of strontium sorption on fissure filling material

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, T E; Cui, Daqing [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemistry

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs.

  15. Experimental study of strontium sorption on fissure filling material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Cui, Daqing

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs

  16. Radionuclide sorption database for Swiss safety assessment

    International Nuclear Information System (INIS)

    McKinley, I.G.; Hadermann, J.

    1984-10-01

    Recommended sorption data for use in transport models for a Swiss High-Level Waste repository are presented. The models used in 'Project Gewaehr 1985' assume linear sorption isotherms and require elemental partition coefficient (Kd) data. On the basis of a literature search 'realistic' Kd data for 22 elements have been selected for weathered crystalline rock and sediments in contact with a reducing groundwater and also sediments with a less reducing groundwater. In an appendix sorption data for 28 elements on bentonite backfill are given. These data are supplemented with 'conservative' estimates taken to represent minimum reasonable values. Available data are discussed for each element clearly exhibiting (i) the large gaps in knowledge, (ii) their unbalanced distribution between different elements and, hence, (iii) the need for further experiments in the laboratory, the field and analogue studies. An overview of the theoretical concepts of sorption, experimental methodology and data interpretation is given in order to put the values into context. General problem areas are identified. (Auth.)

  17. INFLUENCES OF SOIL PROPERTIES ON CHROMIUM (III SORPTION

    Directory of Open Access Journals (Sweden)

    R. Salmasi, F. Salmasi

    2007-07-01

    Full Text Available Soil adsorbing properties reduce sorption ability of the metal, which in turn may influence decision for remediation at contaminated sites. The objective of this study is presentation of a model based on soil properties to estimate the sorption of Cr(III in chromium contaminated soils. Twenty uncontaminated soil samples, with properties similar to the contaminated soils were selected from around of city of Tabriz and treated with Cr as CrCl3. A multiple regression analysis with statgraph software was used to drive an expression that related Cr sorption to common soil properties. The results showed that four soil properties were important in determining the amount of Cr adsorbed by the soils including pH, cation exchange capacity, total inorganic carbon and clay content with nearly 80% variability in Cr sorption and a reasonable level of confidence by this model. The obtained model suggested that Cr(III sorption was enhanced by higher soil pH, more total inorganic carbon, more clay, and higher cation exchange capacity.

  18. Influence of light-weight organic matters on strontium sorption to bentonite

    International Nuclear Information System (INIS)

    Wang, Tsing-Hai; Wu, Ding-Chiang; Teng, Shi-Ping

    2010-01-01

    Document available in extended abstract form only. Light-weight organic matters were frequently observed in groundwater. Their existence had significant influence on the transport of radionuclides. In this study, light-weight organic acid species including oxalic (MW 90), succinic (MW 118), adipic (MW 146), azelaic (MW 188), eicosanedioic (MW 306), benzoic (MW 122), salicylic (MW 138), and gallic (MW 170) were selected as the surrogate of natural organic matters. Their effects on strontium sorption to bentonite were evaluated by using a surface complexation model MINEQL+. Under this framework, three sorption mechanisms were considered: 1. structure sorption sites, 2. edge sorption sites, 3. further hydration of adsorbed Sr 2+ . The presence of organic species had no influence on Sr cation sorption to structure sorption sites. However, Sr cation sorption to edge sorption was affected by the organics to certain extent. For example, sorption capability of edge sites toward Sr was increased by the gallic species. Furthermore, hydration of adsorbed Sr was significantly affected by the presence of organic species. This might relate to that adsorbed Sr would become the bridge associating organic species on bentonite surfaces, but this argument required more solid spectral evidences to support. Some preliminary observations on Sr sorption to bentonite were obtained in this work; however, further experiments are still required by conducting experiments with more variety of organic species. By doing a comprehensive study, it would be much beneficial to make a more accurate evaluation of the influence of organic matters on Sr sorption

  19. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures

    International Nuclear Information System (INIS)

    Zheng, Hao; Wang, Zhenyu; Zhao, Jian; Herbert, Stephen; Xing, Baoshan

    2013-01-01

    Sorption of sulfonamides on biochars is poorly understood, thus sulfamethoxazole (SMX) sorption on biochars produced at 300–600 °C was determined as a function of pH and SMX concentration, as well as the inorganic fractions in the biochars. Neutral SMX molecules (SMX 0 ) were dominant for sorption at pH 1.0–6.0. Above pH 7.0, although biochars surfaces were negatively-charged, anionic SMX species sorption increased with pH and is regulated via charge-assisted H-bonds. SMX 0 sorption at pH 5.0 was nonlinear and adsorption-dominant for all the biochars via hydrophobic interaction, π–π electron donor–acceptor interaction and pore-filling. The removal of inorganic fraction reduced SMX sorption by low-temperature biochars (e.g., 300 °C), but enhanced the sorption by high-temperature biochars (e.g., 600 °C) due to the temperature-dependent inorganic fractions in the biochars. These observations are useful for producing designer biochars as engineered sorbents to reduce the bioavailability of antibiotics and/or predict the fate of sulfonamides in biochar-amended soils. -- Highlights: •Sulfamethoxazole (SMX) sorption on biochars at pH 5.0 was adsorption-dominant. •Removal of inorganic fractions in low-temperature biochars reduced SMX sorption. •Removal of inorganic fractions in high-temperature biochars enhanced SMX sorption. •Anionic SMX was adsorbed on negatively charged biochar via charge-assisted H-bond. -- Solution pH and biochar property control the sorption amount and mechanisms of antibiotic sulfamethoxazole

  20. Mathematical Modeling of Moisture Sorption Isotherms and Determination of Isosteric Heats of Sorption of Ziziphus Leaves

    Directory of Open Access Journals (Sweden)

    Amel Saad

    2014-01-01

    Full Text Available Desorption and adsorption equilibrium moisture isotherms of Ziziphus spina-christi leaves were determined using the gravimetric-static method at 30, 40, and 50°C for water activity (aw ranging from 0.057 to 0.898. At a given aw, the results show that the moisture content decreases with increasing temperature. A hysteresis effect was observed. The experimental data of sorption were fitted by eight models (GAB, BET, Henderson-Thompson, modified-Chung Pfost, Halsey, Oswin, Peleg, and Adam and Shove. After evaluating the models according to several criteria, the Peleg and Oswin models were found to be the most suitable for describing the sorption curves. The net isosteric heats of desorption and adsorption of Ziziphus spina-christi leaves were calculated by applying the Clausius-Clapeyron equation to the sorption isotherms and an expression for predicting these thermodynamic properties was given.

  1. Let us play: (unshackling liaisons, (unmasking games and (unhindered dialogue in the arena where theology takes place

    Directory of Open Access Journals (Sweden)

    Tanya van Wyk

    2017-10-01

    Full Text Available This contribution is a political-theological and hermeneutical reflection on the origin, nature, intention and contribution of a research theme identified within the dynamics of an institutional space, by taking a critical look at the �rules� and the �game� of university academia. Specific reference is made to institutional and faculty research themes, namely �reconciling diversity� and �Ecodomy � life in its fullness�. The institutional academic space is compared to a Hunger Games-style panopticon, with its �rules� and �play�. It is argued that these research themes can only make an authentic contribution if the �play� and �game�of the space in which these themes originate, are deconstructed. If this deconstruction can take place, there might be an authentic chance for unhindered dialogue towards the transformation of the academic space and the greater community it serves.

  2. Experimental determination of sorption in fractured flow systems

    Science.gov (United States)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  3. Correlational study between sorption and goo apparent organoclays

    International Nuclear Information System (INIS)

    Silva, D.L.; Silva, M.R.O.; Ferreira, H.S.; Brasileiro, C.T.

    2016-01-01

    The sorption of surfactants in bentonite clay can occur through the mechanism of adsorption and absorption, this being a very supple phenomenon according clay and surfactant utilized. Thus the more surfactant sorbed at the organoclay it becomes, and can be used in various applications, including in oil drilling fluid. This study aimed to correlate the sorption of surfactants with the rheological properties of non-aqueous fluids (oil base). In organophilization process was used Bentongel clay which had its concentration varied from 3.16 to 7.16% by weight of clay. It was used to organophilization an ionic surfactant Praepagem WB with 75% of active matter, where its concentration ranged from 127-181 mEq. After organophilizated the clays were filtered, dried in an oven for 48 hours and passed in ABNT sieve No. 200, to be so characterized. Sorption was calculated from mathematical equations. Non-aqueous fluids were prepared according to standard Petrobras (EP-1EP-00023A) for rheological testing. Correlating the sorption of surfactant, and the rheological properties of non-aqueous fluid, obtained satisfactory results where observed through the scatter plots there is a strong correlation between the variables sorption and apparent viscosity, it should also be noted that the viscosity is a variable which increases with an increase in sorption, confirming that the surfactant concentration influences the viscosity. (author)

  4. Taking back place-names – from dusty library to digital life

    DEFF Research Database (Denmark)

    Knudsen, Bo Nissen

    Danish place-names have been under publication since 1922 in the scientific series Danmarks Stednavne (Place-Names of Denmark) but only recently the huge project of a digitization of the series has been undertaken. Around 120,000 name articles are now on their way to the web as part of the Digital...... atlas of the Danish historical-administrative geography. Digitization and presentation of a scientific place-names edition poses many interesting problems in itself, especially regarding the variation over time in both the selection of names and the build-up of scholarly knowledge. How are we to convey...... mobility of the book format into a digital context – by making the content available as an application for mobile devices such as smart phones and iPads? Adding geocodes to the name articles could open up the possibility of a digital place-name lexicon allowing the end user to move around in a place...

  5. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids

    NARCIS (Netherlands)

    Koelmans, A.A.; Meulman, B.; Meijer, T.; Jonker, M.T.O.

    2009-01-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to

  6. Sorption of microamount of colloidal silver iodide on hydrated iron(III) oxide

    International Nuclear Information System (INIS)

    Kepak, F.; Nova, J.

    1975-01-01

    Sorption of a microamount of colloidal silver iodide labelled with 131 I on hydrated iron/III/ oxide suspension was studied. The sorption dependence upon pH, sorbent amount, and inert electrolyte concentration has revealed that sorption of silver iodide reaches no more than 63%. The sorption lasted one hour during which the maximum value was reached. Desorption time was one hour, as well. Except for measuring the sorption dependence on pH, the sorption pH was 7.0, temperature 24+-2 0 C. (F.G.)

  7. On the derivation of a sorption database

    International Nuclear Information System (INIS)

    Ewart, F.T.; Haworth, A.; Wisbey, S.J.

    1992-01-01

    The safety arguments in support of many radioactive waste repository concepts are heavily dependent on the existence of a sorption reaction. Such a reaction will, in the near field, reduce the magnitude of the release of a number of hazardous radionuclides so that their release to the geosphere is dispersed in time. In the geosphere, the sorption reactions provide a mechanism whereby the migration of the elements released from the repository is retarded and the radioisotopes then subsequently decay. The processes involved in sorption cannot in many cases be satisfactorily represented in thermodynamic terms such as are employed in the description of dissolution and precipitation. Experiments that investigate these reactions are not easy to perform. The sorption parameters that are obtained experimentally for the near field relate, in the UK case, to sorption on to a cementitious surface. These surfaces, since they consist substantially of calcium hydroxide or calcium silicate hydrates, control the aqueous chemistry, do not permit pH changes to be made and limit the range of concentrations of sorbate that may be used. In the far field, on the other hand, the surfaces are not in general so active with respect to the solution chemistry and data can be obtained across a wide spectrum of aqueous chemistries. These data, although they may be useful in testing and parameterizing models, may not have validity under field conditions since the minerals will, inevitably, react to the changes in water chemistry, over geological timescales. The uncertainties in the experimental data are, for many elements and solids, balanced by a reasonable agreement between workers in the values of the parameters used to describe sorption. 22 refs., 1 fig., 1 tab

  8. Comparison of neptunium sorption results using batch and column techniques

    International Nuclear Information System (INIS)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases

  9. Sorption data bases for generic Swiss argillaceous rock systems

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.; Thoenen, T.

    2010-09-01

    In Switzerland the site selection procedure for both high level waste (HLW) and low and intermediate level waste (L/ILW) repositories is specified by the Swiss Federal Office of Energy in the Sectoral Plan for Deep Geological Repositories. In the forthcoming stage 2 of this plan, potential sites will be identified within regions previously selected based on the presence of suitable host rocks, namely Opalinus Clay, 'Brauner Dogger', Effingen Member and Helvetic Marl. Preliminary safety analyses are an integral part of this procedure, and require, amongst other information, the radionuclide sorption properties of the host rock. This report describes a methodology to develop a Generic Rock Sorption Data Base (GR-SDB) for argillaceous rocks. The method will be used to compile specific SDBs for the above mentioned host rocks. Arguments are presented that the main factor influencing sorption on argillaceous rocks is the phyllosilicate mineral content. These minerals are particularly effective at binding metals to their surfaces by cation exchange and surface complexation. Generally, the magnitude of sorption is directly correlated with the phyllosilicate content (2:1 type clays: illite/smectite/illitesmectite mixed layers), and this parameter best reflects the sorption potential of a given mineral assembly. Consequently, sorption measurements on illite were preferably used as source data for the GR-SDB. The second component influencing radionuclide sorption is the porewater chemistry. In the present report, generic water compositions were extracted from the analytical ranges of deep ground waters in various sedimentary formations in Switzerland. In order to cover the range of ionic strength (I) and pH values of Swiss ground waters in argillaceous rocks, five types of generic water compositions were defined, combining low, intermediate and high values of ionic strength and pH. The GR-SDB for in situ conditions was derived using conversion factors (CF). As the name

  10. Effect of humic acid (HA) on sulfonamide sorption by biochars

    International Nuclear Information System (INIS)

    Lian, Fei; Sun, Binbin; Chen, Xi; Zhu, Lingyan; Liu, Zhongqi; Xing, Baoshan

    2015-01-01

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. - Highlights: • Effect of quantity and fractionation of coated HA on sorption of sulfonamides by BC was studied. • Fractionation of coated HA is tailored by surface properties of BC. • Roles of HA in BC sorption depend on interaction between HA adlayer and sorbate. • Roles of HA in sulfonamide sorption by BC also depend on HA aqueous concentration. - The quantity and fractionation of adsorbed HA play a major role in sulfonamide sorption by biochars

  11. Sorption ability of the soil and its impact on environmental contamination

    Science.gov (United States)

    Gargošová, Helena Zlámalová; Vávrová, Milada

    2014-01-01

    From the physical point of view, soil is a heterogenic polydisperse system. It often becomes a place of a secondary contamination during extinguishing uncontrolled areal fires in nature. Foam extinguishing agents (FEAs), used at these events, basically contain surface active substances and perfluorinated compounds. These tend to be captured in the soil matrix due to their specific properties. Contaminants could be partly flushed out with rainwater, which causes several times dilution of contamination and lower ecotoxic activity. However in the dry season, foam solution infiltrates into the bed soil without any dilution. This study deals with the direct influence of soil the sorption complex on ecotoxicity of five selected FEAs, i.e. Expyrol F 15, Finiflam F 15, Moussol APS F 15, Pyrocool B and Sthamex F 15. The substances tested were prepared in concentration of work solution and then applied on standard soil matrix LUFA 2.3. For experimental purposes, a column infiltration apparatus was designed and compiled. Filtrates were collected and then tested using the plant organisms Sinapis alba and Allium cepa L. The study compared ecotoxicologic effects of filtrates with an original work solution. Moussol APS F 15 seems to be the least ecotoxic of the FEAs tested. A direct influence of soil sorption complex onto ecotoxicity reduction was also established. This finding demonstrates the sorption ability of soil particles and ion exchange activity of the soil matrix. It is a positive finding for biota of aquatic environment, yet at the expense of those in soil. PMID:26109897

  12. Immobilization of metal hexa-cyanoferrates in chitin beads for cesium sorption: synthesis and characterization

    International Nuclear Information System (INIS)

    Vincent, T.; Guibal, E.; Vincent, C.; Barre, Y.; Guari, Y.; Le Saout, G.

    2014-01-01

    Five metal-potassium hexacyanoferrate/chitin composites (based on Cu, Ni, Zn, Co or Fe co-metal) have been prepared and characterized, using SEM-EDX, TEM, X-ray diffraction and FT-IR, before being compared for Cs(I) and 137 Cs(I) sorption. The Zn-ion exchanger was characterized by a much larger crystal size of about 250 nm compared with a few tens of nm for other ion-exchangers. The ion exchangers are well distributed in the whole mass of the composite and they are fully accessible to Cs(I), as evidenced by Cs(I) distribution after metal sorption. Uptake kinetics can be modeled using both the pseudo-second order rate equation and the Crank equation (resistance to intra-particle diffusion coefficient). Sorption isotherms showed substantial differences in the sorbents that can be ranked as Cu ≥ Ni ≥ Zn ≥ Co ≥ Fe. However, based on 137 Cs K d values, the sorbents can be ranked as Co≥≥Fe≥≥Cu≥≥Ni≥Zn. Taking into account the cost and toxicity of metals (both in terms of manufacturing and potential metal release) a Prussian Blue based sorbent (i.e., iron-potassium hexacyanoferrate/chitin composite) sounds to be a good composite for Cs(I) recovery from radionuclide-containing effluents. (authors)

  13. SORPTION OF Cu2+ IONS ONTO DIATOMITE CONSTITUENTS

    Directory of Open Access Journals (Sweden)

    Vasile Rusu

    2009-06-01

    Full Text Available Studies of the sorption capacity towards Cu2+ ions of diatomite from the Ghidirim location of RM, as well as of the extracted clay phase are presented. Separated clay fraction from diatomic material is clean enough, and especially is rich in montmorillonite. Maximum sorption capacity for studied clay fraction is achieved by rising the temperature of calcination treatment up to 200oC. At higher temperatures the lattice of montmorillonite is contracted and its sorption capacity towards Cu2+ ions decreases strongly.

  14. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol

    Directory of Open Access Journals (Sweden)

    Ding Feng Jin

    2016-10-01

    Full Text Available Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC, mesoporous carbon (MPC, bamboo biochar (BBC and oak wood biochar (OBC were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the π–π electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively, compared to MPC (73.00 mg/g and AC, indicating an ineffective potential for phenol removal from water.

  15. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  16. Sorption of radionickel to goethite: Effect of water quality parameters and temperature

    International Nuclear Information System (INIS)

    Baowei Hu; ShaoXing University, ShaoXing; Wen Cheng; Hui Zhang; Guodong Sheng; Chinese Academy of Sciences, Hefei

    2010-01-01

    In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na + /H + on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. (author)

  17. A mechanistic approach to the generation of sorption databases

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1992-01-01

    Sorption of radionuclides in the near and far fields of an underground nuclear waste repository is one of the most important processes retarding their release to the environment. In the vast majority of cases sorption data have been presented in terms of empirical parameters such as distribution coefficients and isotherm equations. A consequence of this empirical methodology is that the sorption data are only strictly valid under the experimental conditions at which they were measured. Implicit in this approach is the need to generate large amounts of data and fitting parameters necessary for an empirical description of sorption under all realistically conceivable conditions which may arise in space and time along the migration pathway to Man. An alternative approach to the problem is to try to understand, and develop model descriptions of, underlying retention mechanisms and to identify those systems parameters which essentially determine the extent of sorption. The aim of this work is to see to what extent currently existing mechanistic models, together with their associated data, can be applied to predict sorption data from laboratory experiments on natural systems. This paper describes the current status of this work which is very much in an early stage of development. An example is given whereby model predictions are compared with laboratory results for the sorption of Np at trace concentrations under oxidizing conditions on a series of minerals relevant to granite formations. 31 refs., 11 figs., 5 tabs

  18. Physical-chemical hydrodynamics of the processes of sorption-membrane technology of LRW treatment

    International Nuclear Information System (INIS)

    Alexander D Efanov; Pyotr N Martynov; Yuri D Boltoev; Ivan V Yagodkin; Nataliya G Bogdanovich; Sergey S Skvortsov; Alexander R Sokolovsky; Elena V Ignatova; Gennady V Grigoriev; Vitaly V Grigorov

    2005-01-01

    Full text of publication follows: Liquid radioactive NPP waste is generated, when radioactive water is collected and mixed from various routine and non-routine process measures being performed in accordance with the operating regulations of reactor units with water coolant. The main sources of LRW are the primary loop water coolant, deactivation, regeneration and rinse waters, waste laundry and showers water producing the initial averaged LRW as well as spent fuel element cooling pond water and water of biological protection tanks. LRW handling can be substantially advanced, in particular, through development and introduction of the non-conventional sorption-membrane technology of NPP LRW treatment, being developed at SSC RF IPPE. This technology makes use of natural inorganic sorbents (tripolite, zeolite, ion-exchange materials) and filtering nano-structured metallic and ceramic membranes (titanium, zirconium, chromium and other or their oxides, carbides and nitrides). The efficiency of the sorption membrane technology is associated just with the investigation of the physical-chemical processes of sorption, coagulation and sedimentation under the conditions of forced and free convection occurring in LRW. Besides, it is necessary to take into consideration that the hydrodynamics of the flows of LRW being decontaminated by membrane filtration depends on the structure and composition of the porous composition pare 'nano-structured membrane-substrate'. Neglecting these peculiarities can result in drastic reduction of the time of stable LRW filtration, reduction of the operability resource of filtration systems or in quick mechanical destruction of porous materials. The paper presents the investigation results on: -the effect of the convection flows being generated by air bubbling or LRW stirring by agitator on the static sorption conditions (sorption time, medium pH, sorbent dispersity, sorbent concentration in liquid medium) and on the efficiency of extraction by

  19. Sericitization of illite decreases sorption capabilities for cesium

    Science.gov (United States)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction

  20. Sorption and desorption of insecticides in Brazilian soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Lord, K.A.; Ruegg, E.F.

    1980-01-01

    The sorption from aqueous solution of ten Brazilian soil types of four organochlorine, two organophosphorus and one carbamate insecticide was determined in the laboratory using gas chromatographic and radiometric techniques. Measurements showed that soils richest in organic matter, sorbed all substances except aldrin more strongly than the other soils. DDT was the most and aldrin the least sorbed organochlorine pesticide, being dieldrin sorbed two to four times more strongly than aldrin. Sorption of lindane varied in different soils. The organophosphate insecticides malathion and parathion were strongly sorbed in the soils richest in organic matter and weakly sorbed in the poorest soils heing moderately sorbed by the other soils. Sorption of carbaryl by all soils is small. Lindane was desorbed from the soil richest in organic matter and the extent of desorption was dependent on the sorption time. (Author) [pt

  1. Sorption of neptunium(V) on opalinus clay under aerobic/anaerobic conditions

    International Nuclear Information System (INIS)

    Froehlich, D.R.; Amayri, S.; Drebert, J.; Reich, T.

    2011-01-01

    The interaction between neptunium(V) and a natural argillaceous rock (Opalinus Clay (OPA), Mont Terri, Switzerland) has been investigated in batch sorption experiments by varying pH (6-10), Np(V) concentration (10 -12 -10 -4 M), solid-to-liquid ratio (2-20 g/L), and partial pressure of CO 2 (10 -3.5 and 10 -2.3 atm) under aerobic/anaerobic conditions in saturated calcite solution. All batch experiments were carried out using well characterized aerobic and anaerobic dry powders of OPA. The results show a great influence of pH on Np(V) sorption. Under aerobic conditions sorption increases with increasing pH until maximum sorption is reached between pH 8-9. At pH > 9 sorption decreases due to the formation of negatively charged Np(V)-carbonate complexes. By increasing p CO 2 from 10 -3.5 to 10 -2.3 atm, the sorption edge is shifted ∼ 0.5 units to lower pH values. Under anaerobic conditions stronger sorption of 8 x 10 -6 M Np(V) was found, possibly due to partial reduction of Np(V) to Np(IV). The sorption of 8 x 10 -6 M Np(V) under aerobic conditions at pH 8.2 in saturated calcite solution increases continuously with increasing solid-to-liquid ratio of OPA in the range of 2-20 g/L with a constant K d value of 126 ± 13 L/kg. The sorption isotherm was measured over seven orders of magnitude in Np(V) concentration using 239 Np as tracer. The sorption isotherm could be divided in a part of linear sorption behaviour between 10 -13 -10 -9 M Np(V) and non-linear behaviour in the range of 10 -9 -10 -4 M Np(V). (orig.)

  2. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Guo Xueyan; Luo Lei; Ma Yibing; Zhang Shuzhen

    2010-01-01

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13 C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  3. Sorption of perfluoroalkyl substances to two types of minerals.

    Science.gov (United States)

    Hellsing, Maja S; Josefsson, Sarah; Hughes, Arwel V; Ahrens, Lutz

    2016-09-01

    The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sorption of Co2+ on modified inorganic materials

    International Nuclear Information System (INIS)

    Hanzel, R.; Rajec, P.

    1999-01-01

    The aim of this study was preparation and characterization of sorbents on the base a silica-gel matrix with immobilized functional group (imidazole or crown-ether). Sorption of cobalt from aqueous solutions on prepared sorbents in static conditions (by 'batch' method) in the dependence of concentration, pH value,, as well as kinetics of sorption were studied. The influence of heavy or toxic metals [Hg(II), Cd(II), Mn(II), Zn(II), Cu(II), Fe(III), Cr(III), Al(III), Na and K] on sorption of cobalt was studied, too

  5. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  6. suitability of murram for phosphorus sorption in constructed wetlands

    African Journals Online (AJOL)

    Mimi

    sorption isotherms, determination of Phosphorus sorption capacity of the substrates, determination of. Phosphorus sorption as the function of time and determination of effect of temperature on the ... (Na2O + K2O) % SiO2. %. P2O5. %. TiO2. %. LOI. %. 19.2. 1.3. 0.69. 5.13. 0.05. 6.7. 61.9. 0.04. 0.51. 4.4. As presented in ...

  7. Influence of the redox state on the neptunium sorption under alkaline conditions. Batch sorption studies on titanium dioxide and calcium silicate hydrates

    International Nuclear Information System (INIS)

    Tits, Jan; Laube, Andreas; Wieland, Erich; Gaona, Xavier

    2014-01-01

    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO 2 ) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO 2 was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO 2 R d values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, R d values for the three redox states are also identical at pH = 10. While the R d values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the R d values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO 2 whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar R d values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic repulsion, allows the weaker sorption of the

  8. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    Science.gov (United States)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged

  9. Understanding hydrogen sorption in a metal-organic framework with open-metal sites and amide functional groups

    KAUST Repository

    Pham, Tony T.

    2013-05-09

    Grand canonical Monte Carlo (GCMC) studies of the mechanism of hydrogen sorption in an rht-MOF known as Cu-TPBTM are presented. The MOF is a decorated/substituted isostructural analogue to the unembellished rht-MOF, PCN-61, that was studied previously [ Forrest, K. A.J. Phys. Chem. C 2012, 116, 15538-15549. ]. The simulations were performed using three different hydrogen potentials of increasing complexity. Simulated hydrogen sorption isotherms and calculated isosteric heat of adsorption, Qst, values were in excellent agreement with the reported experimental data for only a polarizable model in one of four experimentally observed crystal structure configurations. The study demonstrates the ability of modeling to distinguish the differential sorption of distinct strucures; one configuration is found to be dominant due to favorable interactions with substrates. In addition, it was discovered that the presence of polar amide groups had a significant effect on the electrostatics of the Cu2+ ions and directs the low-pressure physisorption of hydrogen in the MOF. This is in contrast to what was observed in PCN-61, where an exterior copper ion had a higher relative charge and was the favored loading site. This tunability of the electrostatics of the copper ions via chemical substitution on the MOF framework can be explained by the presence of the negatively charged oxygen atom of the amide group that causes the interior Cu2+ ion to exhibit a higher positive charge through an inductive effect. Further, control simulations, taking advantage of the flexibility afforded by theoretical modeling, include artificially modified charges for both Cu2+ ions chosen equal to or with a higher charge on the exterior Cu2+ ion. This choice resulted in distinctly different hydrogen sorption characteristics in Cu-TPBTM with no direct sorption on the open-metal sites. Thus, this study demonstrates both the tunable nature of MOF platforms and the possibility for rational design of sorption

  10. Understanding mechanisms to predict and optimize biochar for agrochemical sorption

    Science.gov (United States)

    Hall, Kathleen; Gámiz, Beatriz; Cox, Lucia; Spokas, Kurt; Koskinen, William

    2017-04-01

    The ability of biochars to bind various organic compounds has been widely studied due to the potential effects on pesticide fate in soil and interest in the adoption of biochar as a "low-cost" filter material. However, the sorptive behaviors of biochars are extremely variable and much of the reported data is limited to specific biochar-chemical interactions. The lack of knowledge regarding biochar sorption mechanisms limits our current ability to predict and optimize biochar's use. This work unveils mechanistic drivers of organic pesticide sorption on biochars through targeted alteration of biochar surface chemistry. Changes in the quantity and type of functional groups on biochars and other black carbon materials were achieved through treatments with H2O2, and CO2, and characterized using Fourier transform infrared spectroscopy and scanning electron microscope (SEM/EDX). The sorption capacities of these treated biochars were subsequently measured to evaluate the effects of different surface moieties on the binding of target herbicides cyhalofop acid ((R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionic acid) and clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-1,2-oxazolidin-3-one). Sorption of both herbicides on the studied biochars increased following H2O2 activation; however, the influence of the H2O2 activation on sorption was more pronounced for cyhalofop acid (pKa = 3.9) than clomazone, which is non-ionizable. Increased cyhalofop acid sorption on H2O2 treated biochars can be attributed to the increase in oxygen containing functional groups as well as the decrease in biochar pH. In contrast, CO2 activation reduced the sorption of cyhalofop acid compared to untreated biochar. FTIR data suggest the reduced sorption on CO2 -treated biochar was due to the removal of surface carboxyl groups, further supporting the role of specific functionality in the sorption of ionizable herbicides. Results from this work offer insight into the mechanisms of sorption and

  11. Sorption of lanthanoids by polymer-supported diaza-18-crown-6

    International Nuclear Information System (INIS)

    Bel'tyukova, S.I.; Malinka, E.V.; Kravchenko, T.B.; Roska, A.S.; Zitsmanis, A.Kh.

    1990-01-01

    Sorption of thenoyltrifluoroacetonates of rare earths on polymeric sorbent (copolymer of styrene-divinylbenzene) containing the functional groups of macrocyclic polyether diazo-18-crown-6 is studied. Sorption capacity of a sorbent and sorption coefficients are calculated. It is shgown that Eu 3+ , Sm 3+ and Gd 3+ are sorbed most of all, and Ce 3+ , Pr 3+ , Yb 3+ , Lu 3+ - worst of all. Luminescence properties of the sorption europium adduct is studied. The Eu detection limit in the sorbent is 0.00005 μg/ml, Sm - 0.01 μg/ml

  12. The sorption of polonium, actinium and protactinium onto geological materials

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-01-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results

  13. The sorption of polonium, actinium and protactinium onto geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-07-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results.

  14. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    Science.gov (United States)

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  15. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  16. The sorption of silver by poorly crystallized manganese oxides

    Science.gov (United States)

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  17. Reversibility of sorption of plutonium-239 onto hematite and goethite colloids

    International Nuclear Information System (INIS)

    Lu, N.; Cotter, C.R.; Kitten, H.D.; Bentley, J.; Triay, I.R.

    1998-01-01

    Laboratory batch sorption experiments were conducted to evaluate: (1) sorption of plutonium-239 ( 239 Pu) on different iron oxide colloids (hematite and geothite), (2) sorption kinetics of colloidal Pu(IV) and soluble Pu(V) onto these two colloids, and (3) desorption of colloidal Pu(IV) and soluble Pu(V) from 239 Pu-loaded colloids as a function of time. Natural groundwater and carbonate-rich synthetic groundwater were used in this study. To examine the possible influence of bicarbonate on 239 Pu sorption, an additional set of experiments was conducted in sodium nitrate (NaNO 3 ) solutions under carbon dioxide free environments. Our results show that colloidal Pu(IV) as well as soluble Pu(V) was rapidly adsorbed by hematite and goethite colloids in both natural and synthetic groundwater. The amount of 239 Pu adsorbed by both iron oxide colloids in synthetic groundwater was higher than in natural groundwater. The presence of carbonate did not influence the sorption of 239 Pu. While sorption of soluble Pu(V) is a slow process, sorption of colloidal Pu(IV) occurs rapidly. Desorption of Pu from iron oxide colloids is much slower than the sorption processes. Our findings suggest that different sorption and desorption behaviors of 239 Pu by iron oxide colloids in groundwater may facilitate the transport of 239 Pu along potential flowpaths from the areas contaminated by radionuclide and release to the accessible environment. (orig.)

  18. Sorption of radioiodine in organo-clays and -soils

    International Nuclear Information System (INIS)

    Bors, J.

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R D -value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY + ) and benzethonium (BE + ) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R D -values were found after cation exchange with hexadecyltrimethylammonium (HDTMA + ), while the applications of trimethylphenylammonium (TMPA + ) and tetramethylammonium (TMA + ) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.)

  19. Sorption of fomesafen in Brazilian soils

    OpenAIRE

    Silva,G.R.; D'Antonino,L.; Faustino,L.A.; Silva,A.A.; Ferreira,F.A.; Texeira,C.C.

    2013-01-01

    The study of the dynamics of a herbicide in the soil focus on the interactions with environmental components to obtain agronomic efficiency, ensuring selectivity to the culture and risk reduction of environmental impact. This study evaluated the sorption process of fomesafen in the Brazilian soils Ultisol, Cambisol, and Organosol. Besides soil, washed sand was used as an inert material for determination of the sorption ratio of fomesafen in the soil. The bioassay method was applied, using Sor...

  20. Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI, Cu(II and Zn(II—Hydrazide Derivative of Glycine-Grafted Chitosan

    Directory of Open Access Journals (Sweden)

    Mohammed F. Hamza

    2017-05-01

    Full Text Available A new magnetic functionalized derivative of chitosan is synthesized and characterized for the sorption of metal ions (environmental applications and metal valorization. The chemical modification of the glycine derivative of chitosan consists of: activation of the magnetic support with epichlorohydrin, followed by reaction with either glycine to produce the reference material (i.e., Gly sorbent or glycine ester hydrochloride, followed by hydrazinolysis to synthesize the hydrazide functionalized sorbent (i.e., HGly sorbent. The materials are characterized by titration, elemental analysis, FTIR analysis (Fourrier-transform infrared spectrometry, TGA analysis (thermogravimetric analysis and with SEM-EDX (scanning electron microscopy coupled to energy dispersive X-ray analysis. The sorption performances for U(VI, Cu(II, and Zn(II are tested in batch systems. The sorption performances are compared for Gly and HGly taking into account the effect of pH, the uptake kinetics (fitted by the pseudo-second order rate equation, and the sorption isotherms (described by the Langmuir and the Sips equations. The sorption capacities of the modified sorbent reach up to 1.14 mmol U g−1, 1.69 mmol Cu g−1, and 0.85 mmol Zn g−1. In multi-metal solutions of equimolar concentration, the chemical modification changes the preferences for given metal ions. Metal ions are desorbed using 0.2 M HCl solutions and the sorbents are re-used for five cycles of sorption/desorption without significant loss in performances.

  1. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity

    Science.gov (United States)

    Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.

    2000-01-01

    The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.

  2. Sorption of thiabendazole in sub-tropical Brazilian soils.

    Science.gov (United States)

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  3. Phosphorus sorption in relation to soil grain size and geochemical ...

    African Journals Online (AJOL)

    By using stepwise regression, the combination of Al, Fe, clay and Ca predicted more than 94% of the variation in the P sorption capacity of soils samples from Simiyu and Kagera basins. These four soil properties, which are strongly related to P sorption, could therefore be used as quick tests for predicting the P sorption ...

  4. Arsenic Sorption on Mechanically Activated Magnetite and Olivine

    Directory of Open Access Journals (Sweden)

    Zdenka Bujňáková

    2012-12-01

    Full Text Available Arsenic sorption on mechanically activated minerals such as magnetite Fe3O4 (Kiruna, Sweden and olivine (Mg,Fe2SiO4 (Ǻheim,Norway has been studied and compared in this work. Experiments were carried out with non-activated and mechanically activatedsamples. The activation of both minerals was performed in a planetary mill at different milling conditions. The specific surface areaand consequent sorption activity were enhanced by mechanical activation. The using of olivine seems to be better than magnetite fromthe point of view of milling time, which is necessary for achievement of the same sorption effect.

  5. Sorption of chromium(III) and chromium(VI) on lead sulfide

    International Nuclear Information System (INIS)

    Music, S.

    1985-01-01

    The sorption of chromium(III) and chromium(VI) on lead sulfide was investigated in dependence on pH, time of sorption, and on the concnetrations of sorbate and sorbent. The mechanisms of the sorption of Crsup(3+) and CrOsub(4)sup(2-) traces on lead sulfide are discussed; a difference between CrOsub(4)sup(2-) sorption on PbS and α-Fesub(2)Osub(3) was found. Sulfates and molybdates affect the removal of chromates from aqueous solutions. Lead sulfide carrier prepared in this work was also used for the preconcentration of chromium(III) and chromium(VI) from tap water. (author)

  6. 2.6. Sorption of serum albumin by ethynyl-piperidol hydrogels

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption of serum albumin by ethynyl-piperidol hydrogels was studied in this article. Albumins adsorption on the surface of solids was considered. The capacity of cross-linked ethynyl piperidol polymers to the serum albumin was considered as well. The kinetic curves of sorption of human serum albumin by triple copolymer of isopropenyl trimethyl ethynyl piperidol were constructed. Sorption activity of ethynyl-piperidol polymers depending on ph of solution of human serum albumin were defined. Influence of solution ionic strength on sorption of human serum albumin was defined as well. The desorption of human serum albumin from the complexes with hydrogels was examined.

  7. Sorption of Np (Ⅴ) on Beishan granite fracture filling materials

    International Nuclear Information System (INIS)

    Jiang Tao; Wang Bo; Bao Liangjin; Zhou Duo; Long Haoqi; Song Zhixin; Chen Xi

    2012-01-01

    The sorption behaviors of Np (Ⅴ) on the granite fracture filling materials were studied by batch experiments under anaerobic in Beishan groundwater. The impact of pH of groundwater, CO 3 2- , humic acid and different components of granite fracture filling materials on sorption of Np (Ⅴ) was investigated. The results show that the granite fracture filling materials have strong capacity of Np (Ⅴ) adsorption. The value of K d , for Np (Ⅴ) sorption on the granite fracture filling materials is 843 mL/g. With the increase of pH, the value of K d increases at first and then decreases. K d of Np sorption on granite fracture filling materials in the presence of CO 3 2- and humic acid decreases. The chlorite and feldspar are major contributors to the sorption of Np (Ⅴ) on Beishan granite fracture filling materials. (authors)

  8. Role of interlayer hydration in lincomycin sorption by smectite clays.

    Science.gov (United States)

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  9. Sorption of 226Ra from oil effluents onto synthetic cation exchangers

    International Nuclear Information System (INIS)

    Attar, L.; Safia, M.

    2014-01-01

    Increasing environmental awareness is being urged for the safe disposal of 226 Ra-contaminated production water generated in the oil industry. Brainiest, antimony silicate and their cationic derivatives were studied for the take-up of 226 Ra using the batch-type method under experimentally determined parameters, viz. contact time, solution-solid ratio and 226 Ra concentration. Data was expressed in terms of distribution coefficients. Sorption experiments were performed in different concentrations of nitric acid in order to speculate the mechanism of 226 Ra uptake. Variation in the magnitude of sorption efficiency of the materials in the presence of the major components of waste streams, i.e. Na + , K + and Ca 2+ , revealed that K + was the greatest competitor and Na + the least. The application of the materials to sorb 226 Ra from actual oil co-production water samples, collected from Der Ezzor and Al Fourat petroleum companies (DEZPC and AFPC), was interpreted in terms of the exchange properties of the materials and water characterisation. Of the parameters studied, the selectivity of materials was shown to be greatly dependent on the pH of wastewater to be treated. (author)

  10. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.

    Science.gov (United States)

    Chen, Hong; Chen, Shuo; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2008-12-01

    Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil-water distribution coefficients (K(oil)). The resulting oil-contaminated soil-water distribution coefficients (K(d)) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (C(oil)) but sorption-reducing (competitive) effects at intermediate C(oil) (approximately 1 g kg(-1)). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in K(d) at C(oil) above approximately 1 g kg(-1) were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.

  11. Thermodynamic parameters and sorption of U(VI) on ACSD

    International Nuclear Information System (INIS)

    Donat, R.; Cilgi, G.K.; Cetisli, H.; Aytas, S.

    2009-01-01

    This paper discusses the sorption properties for U(VI) by alginate coated CaSO 4 x 2H 2 O sepiolite and calcined diatomite earth (Kieselguhr) (ACSD). The removal of U(VI) from aqueous solution by sorption onto ACSF in a single component system with various contact times, pH, temperatures, and initial concentrations of U(VI) was investigated. The sorption patterns of uranium on the composite adsorbent followed the Langmuir, Freundlich and Dubinin-Radushkhevic (D-R) isotherms. The Freundlich, Langmuir, and D-R models have been applied and the data correlated well with Freundlich model and that the sorption was physical in nature (sorption energy, E a = 17.05 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK 0 vs. 1/T plots. Thermodynamic parameters (ΔH ads = 31.83 kJ/mol, ΔS ads = 167 J/mol x K, ΔGdeg ads (293.15 K) = -17.94 kJ/mol) showed the endothermic heat of sorption and the feasibility of the process. The thermodynamics of U(VI) ion/ACSD system indicates the spontaneous and endothermic nature of the process. It was noted that an increase in temperature resulted in a higher uranium loading per unit weight of the adsorbent. (author)

  12. Sorption of radioiodine in organo-clays and -soils

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany, F.R.))

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R{sub D}-value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY{sup +}) and benzethonium (BE{sup +}) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R{sub D}-values were found after cation exchange with hexadecyltrimethylammonium (HDTMA{sup +}), while the applications of trimethylphenylammonium (TMPA{sup +}) and tetramethylammonium (TMA{sup +}) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.).

  13. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  14. Sorption of radionuclides on geologic media - A literature survey. I: Fission Products

    International Nuclear Information System (INIS)

    Andersson, K.; Allard, B.

    1983-01-01

    The fission products investigated were cobalt, nickel, strontium, cesium, technetium and iodine. Parameters of importance to sorption have been identified and a tabulation of distribution coefficients for groundwater conditions (pH 7-9, low to medium ionic strength) is included in the report. For cobalt and nickel the sorption is related to hydrolysis. High sorption is observed at a pH where hydrolysis become important and the sorption is high as long as cationic hydrolysis products are formed. When pH is increased or negatively charged hydrolysis products may be formed and the sorption decreases. For strontium hydrolysis is of no importance at the normal pH of groundwater, but in groundwater above pH 9 carbonate complexation may occur. For most minerals, the sorption is low, ususally with a pronounced pH dependence. Other important parameters are ionic strength and CEC. A nonselective sorption due to electrostatic interactions between negatively charged mineral surfaces and Sr 2+ seems to occur. For cesium no hydrolysis may be expected and pH has less importance than for Sr. For most minerals, however, the sorption of Cs is higher than for Sr. Important parameters are nuclide concentration and ionic strength. A selective for Cs-sorption is found for some minerals, mostly sheet-silicates. For technetium sorption is due to a reduction of TcO 4 - TcO 2 (s) and as anions are poorly sorbed, the sorption is dependent on the redox potential. Iodine is also anionic and poorly sorbed. Minerals containing ions capable of forming iodides with low solubility (Ag, Mg, Pb etc) are, however, sorbing I - . (Author)

  15. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  16. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    Science.gov (United States)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  17. Sorption behaviour of perfluoroalkyl substances in soils.

    Science.gov (United States)

    Milinovic, Jelena; Lacorte, Silvia; Vidal, Miquel; Rigol, Anna

    2015-04-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonic acid (PFBS), was studied in six soils with contrasting characteristics, especially in the organic carbon content. Sorption isotherms were obtained by equilibrating the soil samples with 0.01 mol L(-1) CaCl2 solutions spiked with increasing concentrations of the target PFAS. The sorption reversibility of PFASs was also tested for some of the samples. Liquid chromatography coupled to tandem mass spectrometry was used to quantify the target PFASs in the solutions. Both the Freundlich and linear models were appropriate to describe the sorption behaviour of PFASs in soils, and enabled us to derive solid-liquid distribution coefficients (Kd) for each compound in each soil. Kd values increased from 19 to 295 mL g(-1) for PFOS, from 2.2 to 38 mL g(-1) for PFOA and from 0.4 to 6.8 mL g(-1) for PFBS, and were positively correlated with the organic carbon content of the soil. KOC values obtained from the correlations were 710, 96 and 17 mL g(-1) for PFOS, PFOA and PFBS, respectively. Whereas Kd values decreased in the sequence PFOS>PFOA>PFBS, desorption yields were lower than 13% for PFOS, from 24 to 58% for PFOA, and from 32 to 60% for PFBS. This shows that the physicochemical characteristics of PFASs, basically their hydrophobicity, controlled their sorption behaviour in soils, with PFOS being the most irreversibly sorbed PFAS. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Transport and sorption of volatile organic compounds and water vapor in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tsair-Fuh [Univ. of California, Berkeley, CA (United States)

    1995-07-01

    To gain insight on the controlling mechanisms for VOC transport in porous media, the relations among sorbent properties, sorption equilibrium and intraparticle diffusion processes were studied at the level of individual sorbent particles and laboratory columns for soil and activated carbon systems. Transport and sorption of VOCs and water vapor were first elucidated within individual dry soil mineral grains. Soil properties, sorption capacity, and sorption rates were measured for 3 test soils; results suggest that the soil grains are porous, while the sorption isotherms are nonlinear and adsorption-desorption rates are slow and asymmetric. An intragranular pore diffusion model coupled with the nonlinear Freundlich isotherm was developed to describe the sorption kinetic curves. Transport of benzene and water vapor within peat was studied; partitioning and sorption kinetics were determined with an electrobalance. A dual diffusion model was developed. Transport of benzene in dry and moist soil columns was studied, followed by gaseous transport and sorption in activated carbon. The pore diffusion model provides good fits to sorption kinetics for VOCs to soil and VOC to granular activated carbon and activated carbon fibers. Results of this research indicate that: Intraparticle diffusion along with a nonlinea sorption isotherm are responsible for the slow, asymmetric sorption-desorption. Diffusion models are able to describe results for soil and activated carbon systems; when combined with mass transfer equations, they predict column breakthrough curves for several systems. Although the conditions are simplified, the mechanisms should provide insight on complex systems involving transport and sorption of vapors in porous media.

  19. Investigation of rare earths sorption from sulfuric- and hydrochloric media

    International Nuclear Information System (INIS)

    Nikonov, V.N.; Mikhlin, E.B.; Norina, T.M.; Afonina, T.A.

    1978-01-01

    A rate of equilibrium attainment has been studied during REE sorption from sulfuric and hydrochloric acid solutions and pulps. It has been shown that equilibrium upon sorption from hydrochloric acid solutions is attained faster than from sulfuric acid solutions. Equilibrium upon sorption from pulps is attained considerably slower than upon sorption from solutions. In all cases REM of cerium subgroup are sorbed better. An effect has been studied of the medium acidity on sorbability of REM and elements of iron and calcium impurities. It has been established that sorbability of these elements decreases with increasing acid concentration. Selectivity of REM sorption from sulfuric acid solutions decreases with a rise in H 2 SO 4 concentration in the solution. For hydrochloric acid solutions it remains constant in a wide range of HCl concentrations. Sorption leaching of REM from concentrates and cakes of sulfuric and hydrochloric acids in the presence of KU-2 leads to high technical and economic indexes: extraction with respect to the total amount of REM and yttrium into a commercial product is 76-86% for sulfuric acid solutions and 81-90% for hydrochloric solutions

  20. Sorption of V and VI group metalloids (As, Sb, Te on modified peat sorbents

    Directory of Open Access Journals (Sweden)

    Ansone-Bertina Linda

    2016-01-01

    Full Text Available The present work investigates arsenic, antimony and tellurium sorption using iron modified peat. The results were obtained using batch tests and the sorption was studied as a function of initial metalloid concentration, pH and sorption time, as well as the presence of competing substances. The obtained results indicate that modification of peat with Fe compounds significantly enhances the sorption capacity of the sorbents used for sorption of arsenic, antimony and tellurium. The optimal pH interval for the sorption of Sb(III is 6.5–9 and for As(V and Sb(V – 3–6, while As(III and tellurium sorption using Fe-modified peat is favourable in a wider interval of 3–9. The presence of competing ions as well as HA affect sorption of metalloids on Fe-modified peat. A minor impact on the reduction of metalloid sorption was detected in the presence of nitrate, sulphate, carbonate and tartrate ions, while in the presence of phosphate and HA the sorption ability of metalloids can be considerably reduced. The obtained results of kinetic experiments indicate that sorption of metalloids on Fe-modified peat mainly occurs relying on mechanisms of physical sorption processes.

  1. Copper foliar sorption: study of cuticular uptake and penetration

    International Nuclear Information System (INIS)

    Chamel, Andre; Bougie, Bernadette

    1977-01-01

    Results show that copper is easily retained by enzymatically isolated cuticles from pear leaves discs. The sorption is very rapid during the first hour, then progressively slower with increasing time. Upper and lower cuticles exhibit the same sorption when immersed, but the sorption by the upper internal surface is greater than that by the external surface. Sorption depends on the dates of sampling of the leaves and vegetal species. The variation of the process with concentrations is hyperbolic. The retained copper may be partially exchanged: from 16 to 95% after 24 hours of exchange in a cupric solution, as the Cu concentration increases from 10 -6 to 10 -2 M. The penetration of copper through astomatous cuticular discs is extremely reduced if there is pure water in the receiver unit [fr

  2. Sorption behaviour of cobalt-60 on Suez Canal bottom sediments

    International Nuclear Information System (INIS)

    Abdel Gawad, S.A.; El-Shinawy, R.M.K.; Abdel Malik, W.E.Y.

    1981-01-01

    Mineralogical, elemental analysis and sorption behaviour of the Suez Canal bottom sediments in the Port Said area were investigated. It was found that the bottom sediment consist mainly of quartz, feldspars and traces of calcite mineral. The cation-exchange capacity was found to increase as the particle size of the sediment decreased. Sorption of 60 Co by the bottom sediment increased with contact time up to 6 h. Variation of the solution pH from 4 to 9 showed limited increase in the sorption of 60 Co. As carrier concentrations increase from 10 -7 N to 10 -3 N, sorption of Co was found to increase linearly following Freundlich isotherm. The presence of Mg 2+ and Fe 3+ in solution depressed the sorption of 60 Co by the sediments. The desorption of 60 Co from bottom sediment with distilled and Suez Canal water was found to increase with contact time. (author)

  3. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    Science.gov (United States)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  4. Tritium sorption on protective coatings for concrete

    International Nuclear Information System (INIS)

    Miller, J.M.; Senohrabek, J.A.; Allsop, P.A.

    1992-11-01

    Because of the high sorption level of tritium on unprotected concrete, a program to examine the effectiveness of various concrete coatings and sealants in reducing tritium sorption was undertaken, and various exposure conditions were examined. Coatings of epoxy, polyurethane, bituminous sealant, bituminous sealant covered with polyvinylidene chloride wrap, alkyd paint, and sodium silicate were investigated with tritium (HTO) vapor concentration, humidity and contact time being varied. An exposure to HT was also carried out, and the effect of humidity on the tritium desorption rate was investigated. The relative effectiveness of the coatings was in the order of bituminous sealant + wrap > bituminous sealant > solvent-based epoxy > 100%-solids epoxy > alkyd paint > sodium silicate. The commercially available coatings for concrete resulted in tritium sorption being reduced to less than 7% of unprotected concrete. This was improved to ∼0.1% with the use of the Saran wrap (polyvinylidene chloride). The amount of tritium sorbed was proportional to tritium concentration. The total tritium sorbed decreased with an increase in humidity. A saturation effect was observed with increasing exposure time for both the coated and unprotected samples. Under the test conditions, complete saturation was not achieved within the maximum 8-hour contact time, except for the solvent-based epoxy. The desorption rate increased with a higher-humidity air purge stream. HT desorbed more rapidly than HTO, but the amount sorbed was smaller. The experimental program showed that HTO sorption by concrete can be significantly reduced with the proper choice of coating. However, tritium sorption on concrete and proposed coatings will continue to be a concern until the effects of the various conditions that affect the adsorption and desorption of tritium are firmly established for both chronic and acute tritium release conditions. Material sorption characteristics must also be considered in

  5. Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms.

    Science.gov (United States)

    Zhang, Liwen; Dong, Deming; Hua, Xiuyi; Guo, Zhiyong

    2018-06-01

    Natural biofilms have strong affinities for organic contaminants, and their extracellular polymeric substances (EPS) have been thought to control the sorption process. However, the role of EPS in the sorption of antibiotics, an emerging concern, is poorly understood. Here, soluble (SEPS) and bound EPS (BEPS) were extracted from intact biofilms incubated at different lengths of time to obtain SEPS- and BEPS-free biofilms. Batch sorption experiments and infrared spectroscopy were used to investigate the role of EPS in the sorption of ofloxacin (OFL) by natural biofilms. The sorption capacities of OFL onto intact biofilms were lower than that those onto SEPS-free and BEPS-free biofilms. Partition and Langmuir adsorption contributed to the sorption of OFL onto these biofilms. SEPS and BEPS suppressed partitioning of OFL into biofilm organic matter. Meanwhile, the formation of hydrogen bonds could affect the Langmuir adsorption of OFL onto BEPS-free biofilms. These sorption mechanisms occurred simultaneously and enhanced the sorption capacities of biofilms after EPS removal. The information obtained in this study is beneficial for understanding the interaction mechanisms between antibiotics and natural biofilms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Study of sorption properties of nickel on chitosan; Studium sorpcnych vlastnosti niklu na chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pivarciova, L; Rosskopfova, O; Galambos, M [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Sorption of nickel on the selected sorbent was studied by a batch method. The effect of contact time and pH to reach sorption equilibrium was studied. During sorption of Ni{sup 2+} ions there proceed predominantly ion-exchange reactions on its surface. Time to reach sorption equilibrium of nickel on chitosan was 14 hours. Sorption percentage after 14 hours reached a value of 84 %. Solutions with starting pH value between 3.9 and 8.1 were used for sorption of nickel. A sorption of nickel on chitosan was > 97% in monitored interval of pH after 24 hours of contact . At an initial pH from 3.9 to 6.4 was the final pH 6.6 due to protonisation of amino groups. A pH value was 6.4 after sorption of 7.1. Sorption of nickel is reduced by increasing of concentrations of Ni{sup 2+} ions in the solution. Langmuir isotherm was used for interpretation of nickel sorption on chitosan. A maximum sorption capacity for chitosan was 2,67 {center_dot} 10{sup -3} mol/g{sup -}1. (authors)

  7. Sorption of radionuclides on hard rocks

    International Nuclear Information System (INIS)

    Berry, J.A.; Bourke, P.J.; Green, A.; Littleboy, A.K.

    1987-09-01

    Methods for measuring sorption on hard rocks, particularly of strontium, caesium, neptunium and americium on Darley Dale sandstone and Welsh slate have been investigated. The methods tried included batch tests with crushed rock and tests of simultaneous diffusion and convection with sorption on intact rock. High pressures (800m H 2 O) were used in the convective tests to pump water quickly through the rock samples and to measure high sorptivities in times shorter than those needed in the diffusive methods with intact samples. (author)

  8. Pollution and pollution tolerance as regards the sorption of organic chemicals in urban soils; Sorption organischer Chemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Wu Qinglan; Strehl, M. [Kiel Univ. (Germany). Inst. fuer Pflanzenernaehrung und Bodenkunde; Abend, S. [Kiel Univ. (Germany). Inst. fuer Anorganische Chemie; Rexilius, L. [Pflanzenschutzamt des Landes Schleswig-Holstein, Kiel (Germany); Schleuss, U. [Kiel Univ. (Germany). Oekologie-Zentrum]|[Zentrum fuer Agrarlandschafts- und Landnutzungsforschung Muencheberg (Germany)

    1997-12-31

    The behaviour of pollutants in soils concerning, for example, their immobilisation, transport, biodegradation, or uptake by useful plants is to large degree determined by the sorption properties of the soil in question. The degree of sorption is an all-important parameter in any model description of the behaviour of pollutants in soils. The aim of the present part-project was to estimate by means of simple field methods the binding capacity of anthropogenic urban soils for environmentally consequential organic chemicals and to assess the results with regard to soil and water protection. [Deutsch] Das Verhalten von Schadstoffen in Boeden, wie z.B. Immobilisierung, Transport, biologischer Abbau, Aufnahme durch Kulturpflanzen, wird von den Sorptionseigenschaften im Boden wesentlich beeinflusst. Bei allen Modellbeschreibungen ueber das Verhalten von Schadstoffen in Boeden ist die Staerke der Sorption ein unersetzbarer Parameter. Ziel dieses Teilprojektes war es, das Bindungsvermoegen der anthropogenen Stadtboeden fuer umweltrelevante organische Chemikalien mittels einfacher Feldmethoden abzuschaetzen und im Hinblick auf Boden- und Gewaesserschutz zu bewerten. (orig./SR)

  9. CO2 sorption of a ceramic separation membrane

    NARCIS (Netherlands)

    Wormeester, Herbert; Benes, Nieck Edwin; Spijksma, G.I.; Verweij, H.; Poelsema, Bene

    2004-01-01

    The ellipsometric characterization of the CO2 sorption of a silica membrane provides a fast and accurate technique for the characterization of maximum sorption and the heat of adsorption. Both parameters are evaluated for the 73 nm thick silica layer as well as the 1650 nm thick supporting γ-layer.

  10. Status report on SIRS: sorption information retrieval system

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Serne, R.J.; Baldwin, A.J.; Petrie, G.M.

    1980-11-01

    Two major uses were identified for the Sorption Information Retrieval System: (1) to aid geochemists in the elucidation of sorption mechanisms; and (2) to aid safety assessment modelers in selection of Kds for any given scenerio. Other benefits such as providing an auditable vehicle for the Kd selection were also discussed

  11. Study of the sorption properties of the peat for removal of heavy metals

    International Nuclear Information System (INIS)

    Hayrapetyan, S.S.; Gevorgyan, S.A.; Hayrapetyan, L.S.; Bareghamyan, S.F.; Pirumyan, G.P.

    2016-01-01

    The processes of sorption of several heavy metals on peat samples taken from basin of lake Sevan (near Vardenis Gegharkunik region of Armenia) were investigated. The peat samples were taken from different locations from 1 m depth. The sorption processes have been done in the static mode. The peat samples were used without any modification, i.e. the sorption properties of natural raw peat were studied. The studies were conducted on the basis of synthetic solution containing ions of these following metals - Ni, Co, As, U, Ba. The sorption properties of peat were estimated by ICP-MS. Thus, peat can be a very effective sorption medium for removal of heavy metals from water. Most of them are absorbed in the first minutes of peat exposure to aqueous solution. For the sorption of barium, uranium, arsenic peat exhibits very high sorption efficiency. For comparison, their relative sorption values about 10 times more than those of cobalt, nickel and zinc.

  12. Review of sorption models, and their suitability for use in performance assessments

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-02-01

    The sorption of radionuclides on mineral surfaces is an important mechanism for retarding the movement of radionuclides from a geological nuclear fuel disposal vault, through the geosphere, to the biosphere. Sorption processes are known to increase the travel times for some radionuclides by 103 to 106 times relative to the groundwater flow, and this delay can provide the opportunity for radioactive decay before the radionuclide enters the biosphere. Sorption models are, or can be, used as a means of including the effects of sorption in the transport equations which describe the movement of radionuclides through the geosphere. Sorption models are, or could be, based on sorption isotherms, such as the Langmuir and Freundlich isotherms, ion-exchange models, surface-complexation models, or parametric models that are, essentially, interpolated databases. All national nuclear fuel waste disposal programs currently assume the linear adsorption isotherm, which states that the degree of sorption on a surface is a linear function of the concentration of sorbing ion in solution. The sorption models that are, or could be, applied to the movement of radionuclides in the geosphere are reviewed. It is concluded that, at the present state of knowledge, no single model has been demonstrated to provide an adequate description of radionuclide sorption. Reasons for this inadequacy vary, ranging from lack of data, through restricted ability to describe sorption under a variety of conditions, to current levels of development of the models. It is concluded that a parametric model, associated with a linear sorption isotherm, is currently the most practical choice that can be made. Following the completion of an earlier draft of this report, a new approach to surface complexation modelling, the 'discrete-log-K-spectrum' model, was published. This model appears to have the potential to achieve a synthesis of many of the concepts used in sorption modelling. For this reason, a description of

  13. Interim report on modeling sorption with EQ3/6

    International Nuclear Information System (INIS)

    Viani, B.

    1988-01-01

    Reversible, equilibrium models of sorption to be incorporated into the EQ3/6 geochemical modeling package are summarized. Empirical sorption models as formulated in linear, Langmuir, and Freundlich isotherms will be developed as options to EQ3/6. This work will be done at LLNL. Options for modeling sorption using surface- complexation constructs (diffuse, constant capacitance, and triple-layer models) will also be developed. Development of the surface-complexation options will require part of the work be done under contract. 27 refs., 1 fig

  14. Implementation of sorption hysteresis in multi-Fickian moisture transport

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Svensson, Staffan

    2007-01-01

    In the cellular structure of wood, bound-water diffusion and water-vapor diffusion interact via sorption in a complex moisture-transportation system. At low relative humidities, moisture transport may be modeled by a Fickian diffusion equation with a good approximation. At higher relative......-35% in moisture content. Hence, for a precise moisture content computation, sorption hysteresis must be taken into account. The present paper explains the relation between sorption hysteresis and multi-Fickian moisture transport, and clarifies how models for the two phenomena are coupled. To illustrate...

  15. Enhanced chlorophenol sorption of soils by rice-straw-ash amendment

    International Nuclear Information System (INIS)

    Liu, Jen-Chyi; Tzou, Yu-Min; Lu, Yi-Hsien; Wu, Jeng-Tzung; Cheng, Mei-Ping; Wang, Shan-Li

    2010-01-01

    Rice-straw burning is a common post-harvest practice on rice paddy land, which results in the accumulation of rice-straw ash (RSA) in paddy soil. Because the occurrence of RSA in soil may affect the fate and transport of contaminants, this study investigated the sorption of 3-chlorophenol (3-CP) on RSA and RSA amended soils to evaluate the sorptive properties of RSA in soils. The results showed that the sorption of 3-CP to RSA proceeds through a surface reaction rather than through partitioning and that the neutral form of 3-CP is preferentially sorbed to the surface when compared to the deprotonated anionic form of 3-CP. The addition of RSA to the soils enhanced the overall 3-CP sorption, indicating that RSA amendment may be applied to retard the movement of 3-CP in contaminated soils. As the RSA content in the soils was increased from 0% to 2%, the Langmuir sorption maximum of the soils increased from 18-80 to 256-274 mg kg -1 . Thus, RSA contributed more to the total sorption of the soils than other major components in the soils. Nonetheless, the 3-CP sorption of the soils containing RSA was less than the combination of pure RSA and the soils, thereby indicating that the 3-CP sorption of RSA was suppressed. This may be attributed to the competition of organic matter or other soil components for the surface binding sites of RSA.

  16. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  17. Sorption of uranyl species on zircon and zirconia

    International Nuclear Information System (INIS)

    Lomenech, C.; Drot, R.; Simoni, E.; Ehrhardt, J.J.; Mielczarski, J.

    2002-01-01

    The safety of a long-term storage of radioactive waste in deep geological repositories would be strongly affected by the migration properties of radionuclides through the different barriers to the surface of the earth. Since the main process involved in the retention of radioactive ions is their sorption at the water/ mineral interface, a quantitative description of the sorption reactions is needed. Macroscopic data have for a long time been the only source of information used to propose a modelling of sorption equilibria, although they bring no direct information on the nature of the sorbed species; a microscopic structural investigation of the surface complexes is difficult indeed, because of the small amount of matter sorbed. Thus, in this study, parallel to the macroscopic measurements, different complementary spectroscopic techniques have been used in order to determine the nature of the surface species. As the final purpose of such a study is the simulation of the experimental retention data, the precise structural identification of the sorption equilibria will then be very useful to constrain the data simulation code. In this work, we present the results of both macroscopic and microscopic studies of the sorption of uranyl species on zircon and zirconia. The first part of our macroscopic approach was the surface characterisation of the non-sorbed materials by the determination of the specific areas, of the pH of the isoelectric points, and of the sorption site numbers, while the second part aimed at obtaining the sorption isotherms (percentage of sorption versus pH), which was performed using alpha spectrometry, for different uranyl concentrations, media (NaClO 4 or KNO 3 ) and ionic strengths. The spectroscopic identification of the different surface complexes and sorption sites has been carried out using four different spectroscopies. Whereas tune-resolved laser spectro-fluorimetry gave a direct answer concerning the number of surface species (only for a

  18. Sorption of radionuclides from spent fuel in crystalline rocks

    International Nuclear Information System (INIS)

    Nikula, A.

    1982-10-01

    The safe disposal of spent nuclear fuel or reprocessed waste is an essential element in the expansion of the nuclear power industry. Stable rock formations e.g. granite are considered to be potential sites for disposal. A major factor in evaluating the degree of safety of the disposal is the sorption of radionuclides in rock, which affects their retardation. The report considers the chemical forms of the hazardous radionuclides of spent nuclear fuel in groundwater and the effects of the water's properties on them. In the groundwater near the Olkiluoto power plant site cesium, strontium and radium are in cationic form, iodine as I - . Technetium would occur as TcO +2 , but the pertechnetate form is also possible. Uranium most probably would be as U(VI) plutonium and neptunium as Np(IV) or Np(V). The valences for thorium, americium and curium are not changed in this groundwater and would be +4, +3 and +3, respectively. The actinides in groundwater are all in hydrated or complex form. An increase on the ionic stregth of the groundwater in most instances causes a decrease in the sorption of nuclides since the ion exchange capacity of the rock is limited. Anionic ligands also decrease sorption of cations by complex formation. In some case, on the other hand, high salt concentrations may cause formation of radiocolloids of lanthanides and neptunium and thus increase sorption. In all cases the degree of sorption described by the distribution ratio Ksub(d) was influenced by the pH of the groundwater. Sorption of cesium and strontium increased with growing pH. The sorption behaviour of actinides was in positive correlation with formation of hydroxide complexes at different pH values. The Ksub(d) values of Cs, Sr, Co, Ni and Am for Olkiluoto granites were found to agree with Swedish values, also determined at ambient atmospheric conditions

  19. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  20. Thallium(I) sorption using Prussian blue immobilized in alginate capsules.

    Science.gov (United States)

    Vincent, Thierry; Taulemesse, Jean-Marie; Dauvergne, Agnès; Chanut, Thomas; Testa, Flaviano; Guibal, Eric

    2014-01-01

    Prussian blue (PB) was immobilized in alginate capsules. The composite sorbent was used for the recovery of Tl(I) ions from slightly acidic solutions: optimum pH being close to 4. The sorption isotherm can be described by the bi-site Langmuir sorption isotherm. This means that the metal ion can be bound through two different sorption sites: one having a strong affinity for Tl(I) (probably PB), the other having a lower affinity (probably the encapsulating material). The kinetics are described by either the pseudo-second order rate equation or the Crank's equation (resistance to intraparticle diffusion). The ionic strength (increased by addition of NaCl, KCl or CaCl₂) slightly decreased sorption capacity. The SEM-EDX analysis of PB-alginate capsules (before and after Tl(I) sorption) shows that the PB is homogeneously distributed in the capsules and that all reactive groups remain available for metal binding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  2. Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the k{sub oc} concept?

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Nicholas, E-mail: nicholas.jarvis@slu.se

    2016-01-01

    Models used to assess leaching of pesticides to groundwater still rely on the sorption k{sub oc} value, even though its limitations have been known for several decades, especially for soils of low organic carbon content (i.e. subsoils). This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was to test and compare alternative models of sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 785 data entries from 34 different published studies and for 21 different active substances. Overall, the apparent k{sub oc} value, k{sub oc(app)}, roughly doubled as the soil organic carbon content decreased by a factor of ten. Nevertheless, in nearly half of the individual datasets, a constant k{sub oc} value proved to be an adequate model. Further analysis showed that significant increases in k{sub oc(app)} in subsoil were found primarily for the more weakly adsorbing compounds (k{sub oc} values < ca. 100–200 L kg{sup −1}) and that sorption to clay in loamy and clayey-textured subsoil horizons was the main cause. Tests with the MACRO model demonstrated that sorption to clay minerals may significantly affect the outcome of regulatory exposure and risk assessments for leaching to groundwater. The k{sub oc} concept currently used in leaching models should therefore be replaced by an alternative approach that gives a more realistic representation of pesticide sorption in subsoil. The two alternative models tested in this study appear to have widespread applicability and are also simple enough to parameterize for this purpose. - Highlights: • A database was collated

  3. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    Science.gov (United States)

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  4. Impact of water quality parameters on the sorption of U(VI) onto hematite

    International Nuclear Information System (INIS)

    Zhao Donglin; Wang Xianbiao; Yang Shitong; Guo Zhiqiang; Sheng Guodong

    2012-01-01

    In this study, the sorption of U(VI) from aqueous solution on hematite was studied as a function of various water quality parameters such as contact time, pH, ionic strength, soil humic acid (HA) or fulvic acid (FA), solid content and temperature by using a batch technique. The results demonstrated that the sorption of U(VI) was strongly dependent on ionic strength at pH 6.0 and the sorption was mainly dominated by inner-sphere surface complexation. The presence of HA/FA increases U(VI) sorption at low pH, whereas decreases U(VI) sorption at high pH. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) were calculated from the temperature dependent sorption isotherms, and the results suggested that U(VI) sorption was a spontaneous and endothermic process. The results might be important for the application of hematite in U(VI) pollution management. Highlights: ► The sorption of U(VI) was strongly dependent on ionic strength at pH 6.0. ► A positive effect of HA/FA on U(VI) sorption was found at low pH, whereas a negative effect was observed at high pH. ► U(VI) sorption was a spontaneous and endothermic process. ► The results are quite important for the application of hematite in U(VI) pollution management.

  5. Sorption of molybdenum by cellulose polyphosphate from acid solutions

    International Nuclear Information System (INIS)

    Luneva, N.K.; Oputina, A.G.; Ermolenko, I.N.

    1985-01-01

    The sorption of molybdenum on cellulose polyphosphate from acid solutions of ammonium molybdate depending on the phosphorus content in samples, concentration and pH of the solution, sorption time is studied. It is shown that a maximum molybdenum content on the cellulose samples with different phosphorus content is pointed out at an ammonium molybdate concentration 0.02 M. Saturation of the sorption curve is attained at molar ratio of adsrbed molybdenum to phosphorus 1:4. In case of small fillings the compound with molybdenum to phosphorus ratio 1:10 is formed

  6. Evaluation of sorption affinity of cadmium(II) on Haro river sand from aqueous solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Chaudhary, M.H.

    2001-01-01

    The sorption of Cd(II) on Haro river sand from deionized water is reported. The sorption system obeyed according to the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich parameters 1/n = 0.67±0.05 and of A = 1.38±1.14 mmole x g -1 have been ascertained. D-R isotherm yields the values of β = -0.003741±0.000321 kJ 2 x mole -2 , X m = 0.23±0.21 μmole x g -1 and of E = 11.6±0.5 kJ x mole -1 . The influence of common anions and cations on the sorption was examined. Trivalent Bi enhances the sorption whereas Fe, Cr, Al and chromate ions reduce the sorption significantly. Hf(IV) and Ag(I) indicate substantial sorption (61-98%) whereas Gd(III), Re(VII) and Sc(III) show low sorption (<5%). The elements having low sorption can be separated from elements indicating higher sorption using Haro river sand column. (author)

  7. On some investigation features of sorption of flotation reagents labelled by soft β-emitters on mineral surface

    International Nuclear Information System (INIS)

    Korobochkin, V.P.; Gladyshev, V.P.; Latypova, O.A.

    1983-01-01

    A correction for self-absorption, taking into account concrete dimensions of mineral grain during sorption of flotation reagents on mineral surface is deduced. On the basis of the regularity obtained problems of the sensitivity of the determination method of reagent activity sorbed by minerals which are labelled by radioactive isotopes are considered. Improved technique is described and statistical analysis of the experimental data obtained is carried out

  8. Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds

    International Nuclear Information System (INIS)

    Carro, Leticia; Barriada, Jose L.; Herrero, Roberto; Sastre de Vicente, Manuel E.

    2011-01-01

    Highlights: → Native and protonated macroalga S. muticum are good materials for mercury removal. → Fast kinetic process and high mercury uptakes have been found for those materials. → Diffusion control is the rate limiting step of the process. → Competition effects by organic compounds, inorganic salts and divalent cations were analyzed. → Continuous flow experiments allowed identification of mercury reduction during metal removal. - Abstract: Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed.

  9. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2012-01-01

    Highlights: ► Organic pollutants are present as complex mixtures in the marine environment. ► The competitive sorption of phenanthrene and DDT in a bi-solute system was investigated onto PVC and PE. ► DDT outcompeted phenanthrene for sorption onto plastic. ► DDT also appeared to have a negative effect on the sorption of phenanthrene onto plastic when added at high concentration. - Abstract: Plastics are known to sorb persistent organic pollutants from seawater. However, studies to quantify sorption rates have only considered the affinity of chemicals in isolation, unlike the conditions in the environment where contaminants are present as complex mixtures. Here we examine whether phenanthrene and 4,4′-DDT, in a mixture, compete for sorption sites onto PVC with no added additives (unplasticised PVC or uPVC) and Ultra-High Molecular Weight polyethylene. Interactions were investigated by exposing particles of uPVC and UHMW PE to mixtures of 3H and 14C radiolabelled Phe and DDT. Changes in sorption capacity were modelled by applying a Freundlich binding sorption isotherms. An Extended Langmuir Model and an Interaction Factor Model were also applied to predict equilibrium concentrations of pollutants onto plastic. This study showed that in a bi-solute system, DDT exhibited no significantly different sorption behaviour than in single solute systems. However, DDT did appear to interfere with the sorption of Phe onto plastic, indicating an antagonistic effect.

  10. The sorption of uranium and technetium on bentonite, tuff and granodiorite

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Cowper, M.M.; Heath, T.G.; Tweed, C.J.

    1995-01-01

    A combined experimental and modeling study of the sorption of uranium and technetium on geological materials has been carried out as part of the PNC program to increase confidence in the performance assessment for a high-level radioactive waste (HLW) repository in Japan. Batch sorption experiments have been performed in order to study the sorption of uranium and technetium onto bentonite, tuff and granodiorite from both equilibrated seawater and de-ionized water under strongly-reducing and non-reducing conditions. A preliminary study of the sorption of uranium on mineral surfaces in granodiorite has also been undertaken using a nuclear microprobe. Mathematical modeling using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database has been carried out in order to interpret the results of the sorption experiments

  11. Sorption of Triangular Silver Nanoplates on Polyurethane Foam

    Science.gov (United States)

    Furletov, A. A.; Apyari, V. V.; Garshev, A. V.; Volkov, P. A.; Tolmacheva, V. V.; Dmitrienko, S. G.

    2018-02-01

    The sorption of triangular silver nanoplates on polyurethane foam is investigated as a procedure for creating a nanocomposite sensing material for subsequent use in optical means of chemical analysis. Triangular silver nanoplates are synthesized and characterized, and a simple sorption technique for the formation of a composite material based on these nanoplates is proposed.

  12. Sorption behavior of cesium on various soils under different pH levels

    International Nuclear Information System (INIS)

    Giannakopoulou, F.; Haidouti, C.; Chronopoulou, A.; Gasparatos, D.

    2007-01-01

    In the present study we investigated the sorption behavior of Cs in four different soils (sandyloam, loam, clayloam and clay) by using batch experiment. Cs sorption characteristics of the studied soils were examined at 4 mg L -1 Cs concentration, at various pH levels, at room temperature and with 0.01 M CaCl 2 as a background electrolyte. Among different soils the decrease of k d (distribution coefficient) of cesium, at all pH levels, followed the sequence sandyloam > loam > clayloam > clay, indicating that the particle size fractions and especially the clay content plays predominant role on sorption of Cs. The effect of pH on cesium sorption displays a similar pattern for all soils, depending on soil type. At acid pH levels less cesium was sorbed, due to a greater competition with other cations for available sorption sites. The maximum sorption of Cs was observed at pH 8, where the negative charge density on the surface of the absorbents was the highest. For all soils was observed significantly lower Cs sorption at pH 10

  13. Sorption of cesium, strontium, and technetium onto organic-extracted shales

    International Nuclear Information System (INIS)

    Ho, P.C.

    1992-01-01

    The sorption of Cs(I), Sr(II), and Tc(VII) onto organic-extracted shales from synthetic brine groundwaters and from 0.03-M NaHCO 3 solution under oxid conditions at room temperature has been studied. The shale samples used in this study were Pumpkin Valley, Upper Dowelltown, Pierre and Green River Formation Shales. The organic content of these shales ranges from less than 2 wt% to 13 wt%. Soxhlet extraction with chloroform and a mixture of chloroform and methanol removed 0.07 to 5.9 wt% of the total organic matter from these shales. In comparison with the results of sorption of these three metal ions onto the corresponding untreated shales, it was observed that there were moderate to significant sorption decreases of Cs(I) and Sr(II) on all four organic-extracted shale samples and moderate sorption decrease of Tc(VII) on the organic-extracted Pumpkin Valley, Pierre, and Green River Shale samples, but only moderate sorption increases of Tc(VII) on the organic-extracted Upper Dowelltown Shale samples from the brine groundwaters. Nevertheless, sorption of Cs(I), Sr(II), and Tc(VII) on all four organic-extracted shale samples from the bicarbonate solution in most cases did not show a consistent pattern. (orig.)

  14. Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms

    International Nuclear Information System (INIS)

    Salvestrini, Stefano; Leone, Vincenzo; Iovino, Pasquale; Canzano, Silvana; Capasso, Sante

    2014-01-01

    Highlights: • Different methods to derive sorption thermodynamic parameters have been discussed. • ΔG° and, ΔS° values depend on the selected standard states. • Isosteric heat values help in evaluating the applicability of the sorption models. -- Abstract: This is a comparative analysis of popular methods currently in use to derive sorption thermodynamic parameters from temperature dependence of sorption isotherms. It is emphasized that the standard and isosteric thermodynamic parameters have sharply different meanings. Moreover, it is shown with examples how the sorption model adopted conditions the standard state and consequently the value of ΔG° and ΔS°. These trivial but often neglected aspects should carefully be considered when comparing thermodynamic parameters from different literature sources. An effort by the scientific community is needed to define criteria for the choice of the standard state in sorption processes

  15. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2010-01-01

    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  16. Sorption of uranyl ions on hydrous silicon dioxide

    International Nuclear Information System (INIS)

    Lieser, K.H.; Quandt-Klenk, S.; Thybusch, B.

    1992-01-01

    Sorption of uranyl ions on SiO 2 .χH 2 O (silica gel) is investigated in absence and in presence of carbonate as function of pH. The curves obtained are very similar to those observed for sorption of uranyl ion on TiO 2 .χH 2 O, indicating the dominating influence of the uranium species in solution. Between pH 2 and 5 the sorption ratio R s increases with hydrolysis of uranyl ions (formation of UO 2 OH + ), around pH 7 it is nearly independent of pH, and at higher pH it decreases again. The equilibrium constants are calculated for these ranges. In presence of carbonate R s decreases drastically above pH 6, due to the formation of carbonato complexes in solution. Sorption of uranyl ions on SiO 2 .χH 2 O, on TiO 2 .χH 2 O, and on cryst. SiO 2 and Al 2 O 3 is compared. The problems of 'surface complexation' modelling are discussed. (orig.)

  17. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  18. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  19. Removal of cobalt and strontium from groundwater by sorption onto fishbone

    International Nuclear Information System (INIS)

    Younjin Park; Won Sik Shin; Sang-June Choi

    2013-01-01

    Fishbone as a main backfill material of permeable reactive barrier to remediate groundwater contaminated with Co and Sr was investigated through single- and bi-solute competitive sorptions. The single-solute sorption data were fitted by Freundlich, Langmuir and Dubinin-Radushkevich models. The coefficients of determination (R 2 > 0.91) indicated that all models fitted well. Maximum sorption capacities (q mL ) of Co and Sr predicted by the Langmuir model were 0.55 mmol/g and 0.50 mmol/g, respectively. The bi-solute competitive sorption of the metals was analyzed by the Langmuir, competitive Langmuir, Sheindorf-Rebhun-Sheintuch (SRS) and P-factor models. The sorbed amount of one solute in bi-solute system decreased due to competition with the other solute. Langmuir model parameters for single- (q mL and b L ) and bi-solute (q mL * and b L * ) competitive sorptions were compared to analyze the effect of competition between the metals. The competitive Langmuir, SRS and P-factor models predicted the bi-solute competitive sorption data well (R 2 > 0.93). (author)

  20. Dinamics of BF3 sorption on activated carbons

    International Nuclear Information System (INIS)

    Polevoj, A.S.; Petrenko, A.E.

    1989-01-01

    The dynamics of BF 3 sorption on BAUAG-3 and SKT-4A carbons is studied by recording the curve of BF 3 concentration change in time at the outlet from the column filled with activated carbon when blowing it with a current of BF 3 and helium mixture. The effect of sorbent type, temperature and pressure of the gaseous mixture, BF 3 content in it and its partial pressure, BF 3 consumption on the width of sorption zone is studied. The results of studies can be used to calculate and optimize the conditions of sorption processes connected with the absorption of BF 3 by carbons from the gaseous flows in the dynamic mode

  1. Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hualin, E-mail: hlwang@hfut.edu.cn [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Peng; Ma, Xingkong; Jiang, Suwei; Huang, Yan; Zhai, Linfeng [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Jiang, Shaotong [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2014-01-30

    Highlights: • PVA/HA nanofibers could change into meso-HA nanofibers by calcination process. • Sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. • Sorption kinetic data were well fitted by the pseudo-second-order rate equation. • Sorption isotherms could be well described by the Langmuir model. • Sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic. -- Abstract: In this work, mesoporous hydroxylapatite (meso-HA) nanofibers were prepared via calcination process with polyvinyl alcohol/HA (PVA/HA) hybrid nanofibers fabricated by electrospinning technique as precursors, and the removal efficiency of meso-HA nanofibers toward Co(II) was evaluated via sorption kinetics and sorption isotherms. Furthermore, the sorption behaviors of Co(II) on meso-HA nanofibers were explored as a function of pH, ionic strength, and thermodynamic parameters. There existed hydrogen bonds between HA and PVA matrix in precursor nanofibers which could change into meso-HA nanofibers with main pore diameter at 27 nm and specific surface area at 114.26 m{sup 2}/g by calcination process. The sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. Outer-sphere surface complexation or ion exchange was the main mechanisms of Co(II) adsorption on meso-HA at low pH, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. The sorption kinetic data were well fitted by the pseudo-second-order rate equation. The sorption isotherms could be well described by the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms suggested that the sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic.

  2. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Manley-Harris, Merilyn

    2013-01-01

    We investigated the effect of soil pH, organic carbon, ionic strength and steroid hormones on the sorption of sulfamethoxazole (SMO) and sulfachloropyridazine (SCP) in three pastoral soils of New Zealand. A model linking sorbate speciation with species-specific sorption coefficients describing the pH dependence of the apparent sorption coefficients was used to derive the fraction of each species of SMO. All soils displayed a decrease in sorption when pH was increased, with SMO exhibiting the highest sorption at pH 2. The cationic form of SMO appeared to sorb more close to pH ≥ pK a1 and, when pH ≥ pK a2 (6.5, 7.5 and 8.5) the anionic species seems to dominate, however, its sorption affinity to all soils was low. SMO sorption was affected by ionic strengths and organic carbon content, while the presence of hormones showed only a subtle decrease in SCP sorption in a selected model pasture soil. -- Highlights: •The effect of OC content on sulfamethoxazole sorption is nullified by the pH effect. •Steroid hormone has a subtle influence on the sulfachloropyridazine sorption in pastoral soil. •Increased hormone concentrations decrease sulfachloropyridazine sorption in soils. -- Sorption affinity of SMO and SCP are strongly governed by multitude of factors, and variations in these factors can be significant when manure and fertilisers are added to soil

  3. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons

    Directory of Open Access Journals (Sweden)

    Pietrzyk Andżelika

    2017-01-01

    Full Text Available The article rated removal efficiency of organic matter in the processes of sorption and sono-sorption of underground water grasped for municipal purposes. The studies were conducted in laboratory scale and verified in pilot scale at the Water Treatment Plant Tarnobrzeg-Jeziórko. In the research used granular activated carbons, ie. WD-Extra, WG-12, Norit Row 0.8 and Filtrasorb 300. The processes efficiency was evaluated on the basis of changes in the following parameters, ie.: total organic carbon (TOC, permanganate index, UV absorbance, turbidity and colour. The ultrasounds were generated by means of disintegrator Sonics&Materials VCX 130, using the sonication time of 1 and 5 minutes. The results obtained for the batch tests allowed to observe a beneficial effect of ultrasound on the efficiency of the removal of organic material in the sorption process. The combination of sonication and sorption on activated carbon increased the efficiency of the removal of organic matter by 6–37% for TOC, and 18.6–27.9% for permanganate index, depending on the sorbent used. The positive laboratory results were not confirmed in a pilot scale. In the flow conditions the sonication process did not affect the efficiency of removal of organic matter on the filter model with a bed of activated carbon.

  4. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments

    International Nuclear Information System (INIS)

    Zhong Huan; Wang Wenxiong

    2009-01-01

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments. - Mercury-particle sorption was more important than mercury-organic matter and organic matter-particle sorption in controlling the partitioning of Hg or MeHg in sediments

  5. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Huan [Atmospheric, Marine and Coastal Environment Program and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong [Atmospheric, Marine and Coastal Environment Program and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)], E-mail: wwang@ust.hk

    2009-03-15

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments. - Mercury-particle sorption was more important than mercury-organic matter and organic matter-particle sorption in controlling the partitioning of Hg or MeHg in sediments.

  6. Sorption of technetium on composite chitosan-hydroxyapatite from aqueous solutions

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2013-01-01

    Biomaterials such as natural polymers (chitosan) and hydroxyapatite have an important application in material for bone replacement. Most of chitosan/hydroxyapatite composites are prepared by mixing hydroxyapatite particles with chitosan matrices. Another method of preparation of chitosan/hydroxyapatite composite is in-situ generation of nano-hydroxyapatite in chitosan matrix. The most common biomaterial used in the past years in hard tissue regeneration was hydroxyapatite, owing to its properties as biocompatibility, bioactivity, non-toxicity, non-immunogenicity etc. Chitosan is a polyaminosacharide, partially deacetylated product of chitin. Chitosan can be used in combination with other materials to enhance bone growth such as bone filling paste. The aims of this work were: the influence of the contact time on sorption of pertechnate anions on chitosan/hydroxyapatite composites; the effect of pH on sorption of pertechnate anions on chitosan/hydroxyapatite composites; the effect of foreign ions on sorption of pertechnate anions on chitosan/hydroxyapatite composites. The author concluded: the percentage of technetium sorption after 1 hour of contact time was > 97 %. In the initial pH range of 2.9-10.2, the percentage of technetium sorption on chitosan/hydroxyapatite composites CH/HA(A), CH/HA(B), CH/HA 30:70, ZCH was > 98 % and on CH/HA 50:50 was > 94%. The competition effect of Fe 2+ towards TcO 4 :- sorption is stronger than competition effect of other observed cations for all examined composites with the same weight ratio. The percentage of the technetium sorption was the same for all composites with the weight ratio of 30:70. (authors)

  7. Young People Take Their Rightful Places as Full and Contributing Members of a World Class Workforce: Philadelphia Youth Network Annual Report 2006

    Science.gov (United States)

    Philadelphia Youth Network, 2006

    2006-01-01

    The title of this year's annual report has particular meaning for all of the staff at the Philadelphia Youth Network. The phrase derives from Philadelphia Youth Network's (PYN's) new vision statement, developed as part of its recent strategic planning process, which reads: All of our city's young people take their rightful places as full and…

  8. An update of the sorption database. Correction and addition of published literature data

    International Nuclear Information System (INIS)

    Saito, Yoshihiko; Suyama, Tadahiro; Kitamura, Akira; Shibata, Masahiro; Sasamoto, Hiroshi; Ochs, Michael

    2007-07-01

    Japan Nuclear Cycle Development Institute (JNC) had developed the sorption database (JNC-SDB) which includes distribution coefficient (K d ) data of important radioactive elements for bentonite and rocks in order to define a dataset to evaluate the safety function of retardation by natural barrier and engineered barrier in the H12 report. Then, JNC added to the database the sorption data from 1998 to 2003 collected by literature survey. In this report, Japan Atomic Energy Agency (JAEA) has updated the sorption database: (1) JAEA has widely collected the sorption data in order to extend the sorption database. The JNC-SDB has been added the published data which are not registered in the sorption database so far. (2) For the convenience of users the JNC-SDB was partially improved such as the automatic graph function. (3) Moreover, errors during data input in the part of the JNC-SDB were corrected on the basis of reviewing data in the database according to the guideline; 'evaluating and categorizing the reliability of distribution coefficient values in the sorption database'. In this updated JNC-SDB, 3,205 sorption data for 23 elements, which are important for performance assessment were included. The frequency of K d for some elements was clearly shown by addition of the sorption data. (author)

  9. What it Takes to Successfully Implement Technology for Aging in Place: Focus Groups With Stakeholders.

    Science.gov (United States)

    Peek, Sebastiaan Theodorus Michaël; Wouters, Eveline J M; Luijkx, Katrien G; Vrijhoef, Hubertus J M

    2016-05-03

    There is a growing interest in empowering older adults to age in place by deploying various types of technology (ie, eHealth, ambient assisted living technology, smart home technology, and gerontechnology). However, initiatives aimed at implementing these technologies are complicated by the fact that multiple stakeholder groups are involved. Goals and motives of stakeholders may not always be transparent or aligned, yet research on convergent and divergent positions of stakeholders is scarce. To provide insight into the positions of stakeholder groups involved in the implementation of technology for aging in place by answering the following questions: What kind of technology do stakeholders see as relevant? What do stakeholders aim to achieve by implementing technology? What is needed to achieve successful implementations? Mono-disciplinary focus groups were conducted with participants (n=29) representing five groups of stakeholders: older adults (6/29, 21%), care professionals (7/29, 24%), managers within home care or social work organizations (5/29, 17%), technology designers and suppliers (6/29, 21%), and policy makers (5/29, 17%). Transcripts were analyzed using thematic analysis. Stakeholders considered 26 different types of technologies to be relevant for enabling independent living. Only 6 out of 26 (23%) types of technology were mentioned by all stakeholder groups. Care professionals mentioned fewer different types of technology than other groups. All stakeholder groups felt that the implementation of technology for aging in place can be considered a success when (1) older adults' needs and wishes are prioritized during development and deployment of the technology, (2) the technology is accepted by older adults, (3) the technology provides benefits to older adults, and (4) favorable prerequisites for the use of technology by older adults exist. While stakeholders seemed to have identical aims, several underlying differences emerged, for example, with regard

  10. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  11. Determination of Sorption Coefficient of Phosphorus Applied for Sugarcane Production in Southwestern Florida.

    Science.gov (United States)

    Muwamba, A; Nkedi-Kizza, P; Morgan, K T

    2016-09-01

    Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. A suggested approach toward measuring sorption and applying sorption data to repository performance assessment

    International Nuclear Information System (INIS)

    Rundberg, R.S.

    1991-01-01

    The sorption of radioisotopes in relation to geologic disposal of radioactive wastes is discussed. Properties of the radioactive materials, rocks, and minerals, and the chemistry involved are described. 51 refs., 12 figs. CBS

  13. [Marketing approval and market surveillance of medical devices in Germany: Where does policy integration take place?].

    Science.gov (United States)

    Lang, Achim

    2014-01-01

    Since 2011 new regulatory measures regarding medical devices have been set up with the aim to eliminate obstacles to innovations and to find more coordinated ways to marketing authorisation and market surveillance. This essay investigates whether these new and existing coordination mechanisms build up to a Joined-up Government approach. The analysis shows that the regulatory process should be adjusted along several dimensions. First, many organisations lack awareness regarding their stakeholders and focus solely on their immediate organisational activities. Second, the regulatory process (marketing authorisation and market surveillance) is too fragmented for an effective communication to take place. Finally, the underlying strategy process is an ad-hoc approach lacking continuity and continued involvement of, in particular, the responsible federal ministries. Copyright © 2013. Published by Elsevier GmbH.

  14. Sorption of benzothiazoles onto sandy aquifer material under equilibrium and nonequlibrium conditions

    Directory of Open Access Journals (Sweden)

    Kragulj Marijana M.

    2014-01-01

    Full Text Available In this study, the sorption behaviour of 1,3-benzothiazole (BT and 2-(methylthiobenzothiazole (MTBT was investigated on Danube geosorbent under equilibrium and nonequilibrium conditions. All sorption isotherms fitted well with the Freundlich model (R2=0.932-0.993. The results showed that organic matter of the Danube geosorbent has a higher sorption affinity for the more hydrophobic MTBT compared to BT. However, sorption-desorption experiments showed that MTBT was more easily desorbed than BT molecules, which indicates the importance of absorption relative to adsorption in the overall sorption mechanism of MTBT. In general, molecules of BT and MTBT were more easily desorbed in the lower concentration range, which resulted in an increase in the hysteresis indices with increasing concentrations. Column experiments revealed that retention of the investigated compounds on the aquifer material followed the compound’s hydrophobicity. BT showed a lower retention, in accordance with its lower sorption affinity obtained in the static experiments, while MTBT showed a greater sorption affinity, and thus had a longer retention time on the column. Thus during transport BT represent greater risk for groundwaters than MTBT. These results have increased our understanding of benzothiazoles sorption and desorption process which represent one of the most important factors which influence the behaviour of organic compounds in the environment.

  15. Speciation of plutonium during sorption and diffusion in Opalinus clay

    International Nuclear Information System (INIS)

    Kaplan, Ugras

    2013-01-01

    The presented work was carried out in the framework of the BMWi-project ''Interaction and migration of actinides in natural clay rocks taking into account humic substances and clay organic matter - Interactions of neptunium and plutonium with natural clay rocks''. For the long-term safety assessments of nuclear repositories, the possible migration of the radiotoxic wastes into the environment must be considered. Due to its long half-life (T 1/2 = 24000 y) 239 Pu has a significant contribution to the radiotoxicity of spent nuclear fuel in a repository after long periods of storage. The redox-sensitive plutonium has a very complicated chemical behavior. In aqueous solution under environmental relevant conditions Pu can exist in oxidation states +III to +VI and it can exist in up to four oxidation states simultaneously in a solution. Clays are considered as a possible host rock formation for of high-level radioactive waste disposal. Therefore, detailed information on the mobilization and immobilization of plutonium through / into the groundwater from a repository are of special interest. In this work new insights into the interaction between Pu and natural Opalinus clay (OPA, Mont Terri, Switzerland) are obtained with regard to the disposal of heat-generating radioactive waste in a deep geological repository.rnThe focus of this work was on the determination of the speciation of Pu on the mineral surface after sorption and diffusion process by different synchrotron based techniques (μ-XRF, μ-XANES/-EXAFS, μ-XRD, and EXAFS/XANES). The interaction between Pu and OPA was studied in batch sorption and diffusion experiments in dependence of various experimental parameters (e.g. pH, Pu oxidation state). Sorption experiments showed that some experimental parameters (e.g. temperature, humic acid) have a significant impact on the sorption of Pu on OPA. Speciation studies were performed as a function of various chemical parameters on powder samples form batch experiments as

  16. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  17. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  18. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  19. Sorption of heteropoly acids by polyurethane foam

    International Nuclear Information System (INIS)

    Dmitreinko, S.G.; Goncharova, L.V.; Runov, V.K.; Zakharov, V.N.; Aslanova, L.A.

    1997-01-01

    Sorption of oxidized and reduced forms of molybdosilicic, molybdophosphoric and molybdovanadophosphoric acids by polyurethane foam based on ethers and esters is studied. On the basis of sorption dependence on solution pH, polyurethane foam type and spectral characteristics of sorbates the suggestion has been made that in the polyurethane foam phase there are two main types of sorbent-sorbate interaction: electrostatic (ion-ion) and with hydrogen bond formation: and it is impossible to determine the contribution of every interaction

  20. Sorption behaviour of radioactive technetium in soils

    International Nuclear Information System (INIS)

    Xia Deying

    1996-01-01

    The sorption behaviour of technetium in different soils has been studied by batch experiments under aerobic conditions. The soil samples have been taken to study the characteristics and to derive the pH-Eh values. In addition, the activated carbon and reduced iron powder have been selected as additives to the JAERI sand according to the former research work, so that the technetium sorption behaviour in the artificial soils can be studied under similar conditions. The experimental results show that all these soil samples except for the gluey soil have a very small distribution coefficient for Tc, while the artificial soils have a very large distribution coefficient for Tc. Besides, for artificial soils, the distribution coefficient (R d ) values will become larger and larger when more additive is added and more contact time is allowed. The physico-chemical fixation processes and possible sorption modes have been discussed as well

  1. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  2. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  3. Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.; Goede, P.

    2014-01-01

    This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)

  4. Sorption Properties of Some Romanian Gingerbread

    Directory of Open Access Journals (Sweden)

    Tulbure Anca

    2014-06-01

    Full Text Available Water activity of gingerbread is very important for keeping the product freshness and shelf life. Water activity is influenced by composition, water content and temperature. The water content of gingerbread could vary according with storage condition. i.e. rH. 11 gingerbread samples were analysed. The water content and water activity lies between 7.0 and 12.6% and respectively 0.590 and 0.715. The sorption isotherms were determined at 30°C by gravimetric method. The moisture sorption is influenced by composition, especially sweeteners and humectants. Honey and invert sugar have the same impact on gingerbread higroscopicity.

  5. The sorption of acids in cellular side of apple pressing

    International Nuclear Information System (INIS)

    Asoev, M.G.; Mukhiddinov, Z.K.

    1994-01-01

    Equilibrium swell of sample refuse after separation of water is use for study of sorption of hydrochloric acid. Quantity adsorb acids set a price to difference her concentration before and after equilibrium sorption

  6. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    Science.gov (United States)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional

  7. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Abdullah Al, E-mail: mamun@toki.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Morita, Masao, E-mail: masao.swimer@akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Matsuoka, Mitsuaki, E-mail: m-matsuoka@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Tokoro, Chiharu, E-mail: tokoro@waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2017-07-15

    Highlights: • Coprecipitation showed twice the sorption density of simple adsorption at pH 5. • Mechanism shift from outer- to inner-sphere surface complexation at high Cr/Fe. • In coprecipitation the mechanism shift occurs at lower Cr/Fe ratios than adsorption. • Higher-molar-ratio bidentate binuclear Cr−Fe bonds; yielded ferrihydrite expansion. - Abstract: Hexavalent chromium (Cr(VI)) attracted researchers’ interest for its toxicity, natural availability and removal difficulty. Nevertheless, its sorption mechanism is not clearly understood yet. In this work, we elucidated the sorption mechanism of the co-precipitation of chromates with ferrihydrite through quantitative analysis. The influence of Cr/Fe molar ratio on sorption was investigated by zeta potential measurements, X-ray diffraction (XRD) and X-ray adsorption fine-structure analysis (XAFS). Coprecipitation at pH 5 showed almost twice the sorption density of adsorption at pH 5. In co-precipitation, a shift of the XRD peak due to inner-sphere sorption of chromate was observed at Cr/Fe molar ratio 0.5. For adsorption, the same peak shift was confirmed at Cr/Fe molar ratio of 1. Zeta potential at pH 5 suggested that the sorption mechanism changed at Cr/Fe molar ratio 0.25 for coprecipitation and at Cr/Fe molar ratio of 1 for adsorption. Fitting of Cr and Fe K-edge extended X-ray adsorption fine-structure suggested that ferrihydrite immobilized Cr(VI) via outer sphere surface complexation for lower Cr/Fe ratios and via inner-sphere surface complexation for higher molar ratios. At higher molar ratios, bidentate binuclear Cr−Fe bonds were well established, thus resulting in the expansion of the ferrihydrite structure.

  8. Effect of temperature on kinetics of phosphorus isotope sorption by soils

    International Nuclear Information System (INIS)

    Osztoics, E.; Konya, J.; Nagy, N.; Varallyay, L.

    1994-01-01

    Sorption of water soluble P by soils may be approximated by a rapid plus a slow processes. The rapid process of P sorption was studied on samples of five characteristic Hungarian soil types (meadow soil from Hajduboszormeny, brown forest soil from Keszthely, chernozem soil from Oroshaza and sandy soil from Orbottyan), using 32 P isotope technique. Kinetics of 32 P sorption and the effect of temperature (0, 25, and 40 o C) on the processes were investigated. The kinetic data were evaluated using the Christiansen equation. The activation energy and activation entropy of the processes were calculated from the temperature-dependence of the kinetic constants. The following conclusions were drawn: 1. The amount of sorbed P increases with increasing temperature, the increase is different in different soil types depending on soil characteristics. 2. Two processes of different velocity may be distinguished in the rapid P sorption under our experimental conditions. 3. The activation energy of the faster process is 25-50 kJ/mol. This suggests that film diffusion of phosphorus is the rate-limiting process in the first step of P sorption. 4. The activation energy of the slower process of rapid sorption is less than that of the faster process. 5. In contrast, the activation entropy of the slower process is twice as high (in absolute values) as that of the first, instantaneous process. The slower process is probably connected with a structural rearrangement of the sorption layer, i.e. the phosphorus becomes more firmly held. 6. This rearrangement is supported also by our previous studies on the reversibility of 32 P sorption. (author)

  9. Understanding the sorption behavior of Pu{sup 4+} on poly(amidoamine) dendrimer functionalized carbon nanotube. Sorption equilibrium, mechanism, kinetics, radiolytic stability, and back-extraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Parveen [Indian Institute of Technology, Himachal Pradesh (India); Sengupta, Arijit [Bahbha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Deb, Ashish Kumar Singha; Ali, S. Musharaf [Bahbha Atomic Research Centre, Mumbai (India). Chemical Engineering Div.; Homi Bhabha National Institute, Mumbai (India); Dasgupta, Kinshuk [Bhabha National Institute, Mumbai (India). Mechanical Metallurgy Div.

    2017-07-01

    Poly(amidoamine) dendrimer functionalized carbon nanotube was demonstrated as highly efficient sorbent of the Pu{sup 4+} from radioactive waste solution. The second generation dendrimer was found to have more efficiency as compared to the 1{sup st} generation might be due to the availability of more functionality for coordinating to the Pu{sup 4+} ion. Analysis of different isotherm models revealed that, Langmuir isotherm was predominantly operating through chemi-sorption (with the sorption energy 10.07 and 16.95 kJ mol{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer) with the sorption capacity 89.22 mg g{sup -1} and 92.48 mg g{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer, respectively. Analysis of different sorption kinetics model revealed that the sorption proceeded via pseudo 2{sup nd} order reaction. The 2{sup nd} generation dendrimer was found to be radiolytically more stable while oxalic acid was found to be suitable for quantitative back extraction of Pu{sup 4+}.

  10. Sorption equilibrium of mercury onto ground-up tree fern.

    Science.gov (United States)

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  11. Sorption of 237Pu by the diatom Asterionella formosa

    International Nuclear Information System (INIS)

    Conway, H.L.; Wahlgren, M.A.; Peterson, N.; Nelson, D.M.

    1976-01-01

    Knowledge of the behavior of the man-made radionuclide plutonium within aquatic environments is of fundamental importance in assessing its potential hazards and ecological impact. The sorption of plutonium by phytoplankton and other algae is the dominant factor in the biological transport of plutonium in the aquatic environment, and it has been suggested that sorption by phytoplankton may be responsible for the seasonal loss of plutonium from the epilimnion of Lake Michigan. A unialgal diatom culture was spiked with 237 Pu tracer solution in an attempt to simulate the behavior of fallout plutonium observed in field studies. The results were encouraging in that the 237 Pu in the filtered lake water medium exhibited strongly anionic properties similar to fallout plutonium in Lake Michigan, with limited sorption on container walls. The purpose of the present study was to extend the investigations of the sorption of plutonium by phytoplankton in a controlled environment using continuous culture techniques

  12. Sorption equilibrium of mercury onto ground-up tree fern

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Wang, C.-C.

    2008-01-01

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as ΔG o , ΔH o , and ΔS o , were calculated and compared with the sorption of mercury by other sorbents

  13. Sorption equilibrium of mercury onto ground-up tree fern

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Y.-S. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)], E-mail: ysho@isu.edu.tw; Wang, C.-C. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o}, were calculated and compared with the sorption of mercury by other sorbents.

  14. A study on the uranium sorption properties of a domestic granite

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Kang, Mun Ja; Keum, Dong Kwon; Hahn, Pil Soo

    2003-01-01

    In this report, we selected a domestic granite rock as a studying medium. Granite rock is considered as candidate rock for a high-level radioactive waste repository site and as a representative system of the composite mineral systems. We performed sorption experiments for crushed particles, intact rock surfaces, and natural fracture surfaces of the domestic granite rock and investigated the effects of important geochemical parameters such as pH, ionic strength, carbonate concentration. Fracture surfaces showed higher sorption capacities than intact rock surfaces due to the higher content of secondary minerals and the amount of sorbed uranium was greatly dependent on pH, surface types, and carbonate concentration but little on ionic strength. Besides, we tried to investigate the nuclide sorption behaviors of composite mineral systems in terms of mineralogy in order to evaluate the contribution of constituent minerals and to analyze the sorption properties using sequential chemical extraction and XRD, and EPMA methods. It was found that one dominant mineral(mica in case of intact rock surfaces and chlorite in case of fracture surfaces) controls the uranium sorption and nuclide sorption behavior of composite mineral systems are quite different with that of single mineral systems.

  15. Connecting people to place

    NARCIS (Netherlands)

    Horlings, L.G.

    2016-01-01

    The article describes a process of preparing a research design on place-shaping, as outcome of a process of co-design between academic actors and non-academic actors in Brazil, South Africa and The Netherlands, taking place in the context of the project TRANSPLACE. The joint research design

  16. DSC Studies of Retrogradation and Amylose-Lipid Complex Transition Taking Place in Gamma Irradiated Wheat Starch

    International Nuclear Information System (INIS)

    Ciesla, K.

    2006-01-01

    Degradation resulting from gamma irradiation induces decrease in order of starch granules and influences the processes occurring in starch-water system. Differential scanning calorimetry (DSC) was applied at present for studying the effect of radiation with doses of 5 - 30 kGy on amylose-lipid complex transition and retrogradation occurring in wheat starch gels. Influence of the conditions applied during DSC measurements and intermediate storage was tested on the possibility to observe radiation effect. Wheat starch was irradiated with 60 C o gamma rays in a gamma cell Issledovatiel placed in the Department of Radiation Chemistry, INCT. DSC measurements were performed for ca. 50% and ca. 20% gels during heating - cooling - heating cycles (up to 3 cycles) in the temperature range 10 - 150 degree at heating and cooling rates of 10, 5 and 2.5 degree min - 1. The Seiko DSC 6200 calorimeter was used. Decrease in amylose-lipid complex transition temperature was found already after irradiation of wheat starch with a dose of 5 kGy showing modificatin of the complex structure. The differences between the irradiated and the non-irradiated samples became the easier seen in the every foregoing heating or cooling cycle as compared to the preceeding one. It is because that thermal treatment causes decrease of transition temperature in all the irradiated samples, with no effect or increase of that temperature observed in the non-irradiated ones. Irradiation hinders retrogradation taking place in ca. 50% gels but facilitates retrogradation occurring in ca. 20 % gels. Moreover, the expanded differences between the amylose-lipid complex formed in the irradiated and non-irradiated gels result due to their recrystallisation. Storage of the gels induces decrease in the temperature of the complex transition as compared to the last cycle of the first analysis. That decrease was, however, more significant in the case of all the irradiated samples than in the case of the initial sample. In

  17. The measurement and estimation method of the sorption of lead onto cementitious materials

    International Nuclear Information System (INIS)

    Nakanishi, Kiyoshi; Tsukamoto, Masaki; Fujita, Tomonari; Sugiyama, Daisuke

    2002-01-01

    Cementitious material is a potential waste packaging material for radioactive waste disposal, and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cementitious material is a very important parameter when considering the release of radionuclides from radioactive waste. In this study, sorption of lead, onto hydrated Ordinary Portland Cement (OPC), OPC/Blast Furnace Slag blended cement (BFS), Highly containing Flyash and Silica Fume Cement (HFSC) and cement constituent minerals (portlandite, ettringite, hydrotalcite and C-S-H gels (Ca/Si = 0.9 and 1.65)) was measured using the batch sorption technique. Lead is one of the important nuclides for safety assessment. The obtained distribution ratios, Rd values, for sorption of lead onto hydrated (freshly cured) OPC and HFSC are very high:>1000 cm3g-1. The distribution ratio for sorption of lead onto OPC/BFS could not be determined quantitatively due to the precipitation of PbS. Comparing the Rd values onto cements and minerals, it was suggested the sorption onto C-S-H gel phases dominate the sorption for lead onto hydrated cements. Once a cementitious material is altered in the disposal environment, its sorption ability may be affected. The sorption of lead onto degraded OPC and degraded HFSC, which were altered in the presence of distilled water, was also measured. It was observed that the alteration did not cause changes that decreased the sorption of lead onto OPC and HFSC. An approach, in which it is assumed that each of the component phases contributes to the composite material, is proposed and discussed to describe the sorption of lead onto cement using a knowledge of the phase components in a linear additive manner. The results showed reasonably good agreement between the predicted and measured Rd values for lead onto freshly cured and altered cements. (author)

  18. Sorption of short-lived radionuclides in a layer of sorbent with spherical granules

    International Nuclear Information System (INIS)

    Karlin, Yu.V.

    1993-01-01

    Sorption methods have found wide application in the purification of liquid radioactive wastes. The working element in sorption methods for this purpose is usually a sorption column with a fixed layer of sorbent. Continuous-action equipment with a moving layer of sorbent is very seldom used. When a fixed layer of sorbent is used its wear and prolonged mixing in the sorption column are reduced to a minimum, and maximum purification is achieved due to the advantages of the dynamic method of sorption over the static method. The time of protective action of the sorbent layer is determined by the time taken for the radionuclide to pass through the sorption column, and for the majority of radionuclides is determined by numerous parameters, including the type of sorbent and radionuclide, the rate of flow through the sorbent, the size of the sorbent granules, etc. The physical and chemical aspects of this process have been investigated in detail, and numerous methods for modeling it mathematically have been developed and have been used to develop methods of designing sorption column apparatus. The specific nature of the radionuclides as unstable materials enables the hypothetical case of a open-quotes perpetualclose quotes sorption filter to be represented. In fact, to achieve this it is only necessary to assume that the half-life of the radionuclide is so small that the rate of decay of the radionuclide in the sorption column (both in the sorbed state and in the aqueous phase of the sorption layer) is equal to the rate that it is fed into the column in the flow of liquid radioactive waste. In this case the sorption front of the radionuclide in the column wall remains fixed after a certain initial period. In this paper, a mathematical model of such a hypothetical filter for the case of spherical sorbent granules is considered

  19. Study of sorption of platinum metals, gold and silver by phosphonium hydroxide antonite

    International Nuclear Information System (INIS)

    Khudaybergenov, U.; Tajibaev, D.; Yuldasheva, K.T.

    2002-01-01

    The aim of the work was to study and to use a phosphonium hydroxide anionite for concentrating of trace amounts of platinum metals, gold and silver from the mixed solutions composed of copper, nickel, cobalt, iron and zinc. The experiments were done using radionuclides of determined and interfered elements. Conditions for sorption concentrating of the noble metals by phosphonium hydroxide were determined by the selectivity of the phosphonium hydroxide to the noble metals from acid solutions. A noble metal sorption degree was observed from the experiments to be rather high at the acid concentration level of 0.1-0.5 M. At higher than 0.5 M acid concentration sorption activity decreased. With increase of chlorine acid-concentration sorption of palladium was observed to considerably decrease, while iridium sorption was increased. The latter fact can be caused by lowering of hydration of iridium ions. A considerable decrease of capability of the noble metal sorption from nitric acid solutions was observed. It is possible that HNO 3 anions are strongly bound with the anionite functional group. Thus, nitric acid reduces sorption of the noble metals in the following order: Ir>Ru>Pd>Pt>Os, and it does not have effect on the sorption activity of Au and Ag. Increase of H 2 SO 4 concentration in the solution has slightly reduced noble metal sorption activity. Copper, nickel, iron and other metals accompanying the noble metals, at concentration ratio of 1:1000 have resulted in decrease of sorption activity of the noble metals, although sorption of iridium was increased in the presence of copper, silver and nickel. We suggest that copper, silver and nickel have formed the complex functional compounds, which can probably undergo an anion exchange

  20. Sorption behavior of Sn(II) onto Haro river sand from aqueous acidic solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Khurshid, S.J.

    1999-01-01

    The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2 x 10 -5 M) and sorbent (50 mg) for 120 minutes at a V/W ratio of 90 cm 3 x g -1 . The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, K d , comes out to be 8.75 x 10 -8 mol x g -1 x min -1/2 and the first order rate constant for sorption is 0.0416 min -1 . The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant, Q, related to sorption capacity and, b, related to sorption energy are computed to be 10.6±1.1 μmol x g -1 and 1123±137 dm 3 x mol -1 , respectively. The D-R isotherm yields the values of C m = 348±151 μmol x g -1 and β = -0.01044±0.0008 mol 2 x kJ -2 and of E = 6.9±0.3 kJ x mol -1 . In all three isotherms correlation factor (γ) is ≥ 0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. (author)

  1. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    International Nuclear Information System (INIS)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-01-01

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of ''local equilibrium'' assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of

  2. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    Science.gov (United States)

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  3. Picloram and Aminopyralid Sorption to Soil and Clay Minerals

    Science.gov (United States)

    Aminopyralid sorption data are lacking, and these data are needed to predict off-target transport and plant available herbicide in soil solution. The objective of this research was to determine the sorption of picloram and aminopyralid to five soils and three clay minerals and determine if the pote...

  4. Sorption of natural uranium by algerian bentonite

    International Nuclear Information System (INIS)

    Megouda, N.; Kadi, H.; Hamla, M.S.; Brahimi, H.

    2004-01-01

    Full text.Batch sorption experiments have been used to assess the sorption behaviour of uranium onto natural and drilling bentonites. The operating parameters (pH, aolis-liquid ratio, particle size, time and initial uranium concentration) influenced the rate of adsorption. The distribution coefficient (Kd) range values at equilibrium time are 45.95-1079.26 ml/g and 32.81-463053 ml/g for the drilling and natural bentonites respectively. The equilibrium isotherms show that the data correlate with both Freundlich and Langmuir models

  5. A study of sorption mechanism onto cement hydrates by isotherm measurements

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2003-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cement material, which controls the aqueous concentrations of elements in the porewater, is a very important parameter when considering the release of radionuclides from the near field of a repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium and thorium onto Ordinary Portland Cement (OPC) and Calcium Silicate Hydrate (C-S-H gel), to justify and support this assumption. In addition, the effect of competitive sorption between thorium and uranium and other groundwater ions is studied by examining sorption using a range of sodium chloride concentrations to simulate different groundwater ionic strengths. Based on the experimental results, we have showed that: Caesium and strontium sorb by substitution for Ca in C-S-H phases and the presence of some calcium sites with different ion-exchange log K values is suggested; Thorium would be fixed in a surface co-precipitation to form a solubility-limiting phase. The results of sorption experiments are reasonably well modelled by the ion-exchange model for caesium and strontium and the surface co-precipitation model for thorium, respectively. (author)

  6. Sorption study of U+6 in Brazilian soils

    International Nuclear Information System (INIS)

    Junior, Antonio P.; Wasserman, Maria A.V.; Mantovano, Jose L.; Carvalho, Leonel M.; Perez, Daniel V.

    2015-01-01

    The uranium mining is one of the main activities of the nuclear fuel cycle that can contribute to the increased exposure to radioactive materials and is one of the main routes of contamination of soil by natural radionuclides. This study investigated the sorption of uranium in brazilian soils, through sorption isotherms performed in batch. In this study, two types of soils were selected: Ferralsols Red and Nitosol. The adjustment of the experimental data to the kinetic models were evaluated by two approaches: the traditional, based on the coefficient of determination (R 2 ); and the theoretical and informative, based on Corrected Akaike Information Criteria (AIC C ). The coefficient of determination (R 2 ), revealed that, although empirical, both the kinetic model, Freundlich and Langmuir, describes satisfactorily the experimental data, showing R 2 values higher than 0.9, while the partition constant model was not suitable for describe these sorption data. The AICC model analysis showed that the Langmuir model fit the U sorption curve well for Ferralsols Red, while the Freundlich model fits better to Nitosol. This study has highlighted the role of organic matter on the sorption of uranium in highly weathered soils, rich in oxyhydroxides and low activity clays. The Kd values reported in this study differ from those recommended by the United States Environmental Protection Agency, therefore must be considered as reference values for highly weathered soils, since it refers to Brazilian pedoenvironmental conditions. The low Kd values obtained in this study allowed to evaluate the high vulnerability of highly weathered soils to uranium contamination. (author)

  7. Sorption of organic gases in a furnished room

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

    2003-11-30

    We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m{sup 3} room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten Hazardous Air Pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl-tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C{sub 8}-C{sub 10} aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5 to >6 h{sup -1} and partitioned 95 to >99% in the sorbed phase at equilibrium.

  8. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  9. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  10. Sorption-desorption of radiocesium interception potential in tropical soils

    International Nuclear Information System (INIS)

    Roque, Mario L.; Boaretto, Rodrigo M.; Boaretto, Antonio E.; Smolders, Erik E.T.

    2000-01-01

    A study of sorption of radiocaesium in soils of tropical climate (Brazil) was carried. The values of definitive fixation of the radiocaesium were determined by analytic methodology of sorption-desorption and the availability to plants were calculated by the determination of radiocesium interception potential (RIP). The values of sorption varied from 1,2 to 74,8% and the fixation varied from 3,2% to 32,2%. The results shown that the radiocaesium did remain adsorbed mainly to the frayed edge site. The low values of interception potential and definitive fixation demonstrated high capacity of the tropical soils in disposal the radionuclide for the solution and, consequently, to plants. (author)

  11. Characterization of the sorption behavior of trivalent actinides on zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Eibl, Manuel; Huittinen, Nina [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Virtanen, S.; Merilaeinen, S.; Lehto, J. [Helsinki Univ. (Finland); Rabung, T. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The uptake of trivalent Eu and Cm on zirconium(IV) oxide was investigated in batch sorption and TRLFS studies, respectively. Sorption of Eu{sup 3+} was found to start at a pH-value of 4. Based on TRLFS results, sorption of Cm{sup 3+} was assigned to occur through innersphere complex formation at the zirconia surface. A deconvolution of the TRLFS emission spectra gave three different sorption species with strong red-shifts of the peak positions (600.3 nm, 604.3 nm and 608.2 nm) compared to similar systems.

  12. Organomineral Interactions and Herbicide Sorption in Brazilian Tropical and Subtropical Oxisols under No-Tillage.

    Science.gov (United States)

    Bonfleur, Eloana J; Kookana, Rai S; Tornisielo, Valdemar L; Regitano, Jussara B

    2016-05-25

    We evaluated the effects of the soil organic matter (SOM) composition, distribution between soil aggregates size, and their interactions with the mineral phase on herbicide sorption (alachlor, bentazon, and imazethapyr) in tropical and subtropical Oxisols under no-till systems (NT). Using soil physical fractionation approach, sorption experiments were performed on whole soils and their aggregates. SOM chemistry was assessed by CP/MAS (13)C NMR. The lower sorption observed in tropical soils was attributed to the greater blockage of SOM sorption sites than in subtropical soils. When these sites were exposed upon physical fractionation, sorption of the three herbicides in tropical soils increased, especially for imazethapyr. High amounts of poorly crystallized sesquioxides in these soils may have contributed to masking of sorption sites, indicating that organomineral interactions may lead to blockage of sorption sites on SOM in tropical soils.

  13. Batch-Versuche zur Bestimmung der Sorption und Reaktionskinetik von fluoreszierenden Tracern

    Science.gov (United States)

    Vaitl, Tobias; Wohnlich, Stefan

    2018-06-01

    For many tracer experiments, prior determination of interaction between solid medium and used tracers is of major interest in order to achieve efficient, economic and successful field experiments. In the present study, three different types of batch experiments were performed with three fluorescent dyes (Na-Fluorescein, Amidorhodamin G and Tinopal CBS-X) and three different rock types (sandstone, claystone and limestone), to determine distribution coefficients and reaction kinetics. All three rock types were analysed for organic carbon content, specific surface area and mineralogical composition to identify the main sorption mechanisms. For all tracers, different sorption properties were found depending on the type of rock. The strongest sorption was observed for Tinopal CBS-X in contact with claystone. Only Na-Fluorescein showed sorption (albeit limited) in contact with the sandstones. The investigated limestones indicated a high sorption for the tracer Tinopal CBS-X. Regarding reaction kinetics, in most cases, thermodynamic equilibrium conditions were reached after two weeks.

  14. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Berhaut, Christopher L

    2011-08-29

    Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD) have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid) have been evaluated. The sorption properties of granular activated carbon (GAC) were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (granular activated carbon (GAC ~10³ m²/g). The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i) surface area of the sorbent; (ii) CD content and accessibility; and (iii) and the chemical nature of the sorbent material.

  15. Quantifying the effect of sorption and bioavailability of hydrophobic organic contaminants

    International Nuclear Information System (INIS)

    Zhang, W.; Bouwer, E.; Cunningham, A.

    1994-01-01

    In-situ bioremediation has been applied successfully at a few sites. Several restrictions presently exist which could greatly limit the effectiveness of this promising technology. Hydrophobic organic contaminants tend to sorb onto soil. However, microorganisms are most effective in utilizing substrates from the aqueous phase. Sorption tends to separate the direct contact between microorganisms and contaminants necessary for biodegradation to occur. A series of experiments, which represented scenarios with fast sorption/desorption, slow sorption/desorption, mass transfer across boundary layer and mass transfer within attached microorganisms (biofilm), was conducted to demonstrate the concentration effect and the mass transfer effect. A method has been developed to quantify bioavailability of organic contaminants in aquatic environments. Bioavailability Factor (B f ), a dimensionless parameter derived from mathematical models and verified by experimental results, has been formulated to describe the impact of equilibrium sorption, nonequilibrium sorption, and mass transfer processes on the rate and extent of biodegradation of petroleum hydrocarbons

  16. Surface complexation modeling of zinc sorption onto ferrihydrite.

    Science.gov (United States)

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  17. Sorption of Cs onto γ-Al2O3 using batch technique

    International Nuclear Information System (INIS)

    Wang Xiangke

    2004-01-01

    The sorption of Cs onto γ-Al 2 O 3 is studied by using batch technique, ultra-filtration method and UV vis spectrophotometer at room temperature, pH 4.0, 6.0 and 8.0, the ionic strength of NaClO 4 is from 0.001 mol/L to 0.1 mol/L. The concentration of humic acid in the solution is determined at wavelength of 254 nm. The sorption of humic acid on the γ-Al 2 O 3 is strong (≅98% HA is sorbed on the surface of alumina at pH zpc =9.2)) and strongly dependent on pH values. At pH>9.2, the sorption of HA is decreased markedly with the increasing of pH. Humic acid has a little negative effect on the sorption of Cs onto alumina, this may be attributed to the formation of HA-Cs complexation in the solution. The sorption of Cs onto γ-Al 2 O 3 is weakly dependent on the pH and independent on the ionic strength. Freundlich isotherm can fit the sorption isotherms very well. The sorption of Cs onto γ-Al 2 O 3 may be contributed to cation exchange and surface complexation mechanisms. (authors)

  18. Sorption of phosphates and thiocyanates on isomorphic substituted Mg/Zn–Al-type hydrotalcites

    Directory of Open Access Journals (Sweden)

    RODICA PODE

    2008-08-01

    Full Text Available The sorption equilibriums of phosphate and thiocyanate anions on isomorphic substituted Mg/Zn–Al-type hydrotalcites were investigated in this study. Langmuir and Freundlich isotherms were used to interpret the equilibrium data for phosphate. The sorption equilibriums of phosphate on Mg3Al, Mg2ZnAl and Mg1.5Zn1.5Al hydrotalcites were well described by the Langmuir isotherm. The highest maximum sorption capacities for these adsorbents were as follows: 111, 101 and 95 mg g-1. The equilibrium constant and standard Gibbs energy changes were also calculated from the sorption data. Standard Gibbs energy changes of about –20 kJ mol-1 indicated that the process might be considered as physical adsorption. The sorption equilibriums of phosphate on isomorphic substituted samples of MgZn2Al and Zn3Al were well described by the Freundlich isotherm. Thiocyanate showed a relative low affinity for the studied materials, as indicated by both the “S”-shaped isotherms and low sorption capacities. The sorption of phosphate and thiocyanate on the investigated hydrotalcites showed a continuous decrease of the sorption capacity in the following order: Mg3Al > Mg2ZnAl > Mg1.5Zn1.5Al > MgZn2Al > Zn3Al.

  19. Sorption behavior of thorium onto montmorillonite and illite

    International Nuclear Information System (INIS)

    Iida, Yoshihisa; Barr, Logan; Yamaguchi, Tetsuji; Hemmi, Ko

    2016-01-01

    Thorium (Th)-229 is one of the important radionuclides for the performance assessment calculations for high-level radioactive waste repositories. The sorption behavior of Th onto montmorillonite and illite were investigated by batch sorption experiments. Experiments were carried out under variable pH and carbonate concentrations. The sorbability of montmorillonite was higher than that of illite. Distribution coefficients, K d (m 3 kg -1 ), decreased with increased carbonate concentrations and showed the minimal value at around pH 10. The sorption behaviors of Th were analyzed by the non-electrostatic surface complex model with PHREEQC computer program. The model calculations were able to explain the experimental results reasonably well. The decreases of K d was likely due to the stabilization of aqueous species by hydroxo-carbonate complexations in the solutions. (author) [ja

  20. Sorption and Transport of Sildenafil in Natural Soils

    Science.gov (United States)

    Boudinot, F. G.; Vulava, V. M.

    2013-12-01

    Pharmaceutical Chemicals (PCs) mainly enter our ecosystems from discharges of treated wastewater and have direct effects on the ecological health of that area. Sildenafil citrate (Viagra) is one such PC, whose presence has been reported in stream waters. Although one study has shown that sildenafil is not harmful in bacterial and fungal environments, there remains much unknown about its fate elsewhere in ecosystems. Sildenafil is a complex organic molecule with two amino functional groups that result in pKa's of 7.27 and 5.97. It also has a high solubility of 3.5 g/L. Given that sildenafil consumption (and concurrently disposal) is on the rise, it is essential that its behavior in the natural environment be better understood. The goal of this study was to quantify the sorption and transport behavior of sildenafil in differing natural soils with varying compositions. Pristine A- and B- horizon soil samples from several soil series were collected in a managed forest near Charleston, SC and used for these studies. The soils were characterized for physical and chemical properties: soil organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 4-5. These soils were then used to perform kinetic reaction, sorption, and column transport experiments. Batch kinetic experiments showed a fast reaction rate in both clay-rich and organic-rich soils and an equilibration time of less than 24 hours. Batch reactor sorption experiments provided data for sorption isotherms (plot of sildenafil in solution, C vs. sildenafil sorbed in soil, q) which were nonlinear. The isotherms were fit using Freundlich model (q=KfCn, where Kf and n are fitting parameters). Sildenafil sorbed more strongly to clay-rich soils compared with organic-rich soils with less clay. It is hypothesized that permanent negative charge on clay mineral surfaces form ionic bonds with positively charged amines in sildenafil in acidic pHs. Transport experiments were conducted using

  1. Np(V)O2+ sorption on hydroxyapatite-effect of calcium and phosphate anions

    International Nuclear Information System (INIS)

    Thakur, P.; Choppin, G.R.; Moore, R.C.

    2006-01-01

    The sorption of NpO 2 + from aqueous solution on hydroxyapatite was studied as a function of the amount of sorbent, initial NpO 2 + concentration, ionic strength and pcH. The hydroxyapatite was characterized by SEM, EDS, XRD, FT-IR and ICP-MS measurements. At ionic strengths of 0.10 to 5.00 M NaClO 4 , the sorption increased with increased pcH to a maximum between pcH 8-8.5, then decreased as the pcH increased. The kinetics of NpO 2 + sorption on hydroxyapatite followed Lagergren first order kinetics. The temperature dependence of sorption was small in the range of 273-283 K, but increased more sharply at higher temperatures of 298-333 K. The heat of sorption of NpO 2 + was endothermic and the free energy values were exothermic indicating large, positive entropy. The activation energy for the sorption process was calculated to be 29.52 ± 1.2 kJ/mole. The effect of calcium and phosphate on NpO 2 + sorption was studied as a function of concentration and pcH. (orig.)

  2. Technetium Sorption Media Review

    International Nuclear Information System (INIS)

    Duncan, J.B.; Kelly, S.E.; Robbins, R.A.; Adams, R.D.; Thorson, M.A.; Haass, C.C.

    2011-01-01

    This report presents information and references to aid in the selection of 99Tc sorption media for feasibility studies regarding the removal of 99Tc from Hanford's low activity waste. The report contains literature search material for sorption media (including ion exchange media) for the most tested media to date, including SuperLig 639, Reillex HPQ, TAM (Kruion), Purolite A520E and A530E, and Dowex 1X8. The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities in a safe, environmentally compliant, cost-effective and energy-effective manner.

  3. TECHNETIUM SORPTION MEDIA REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; KELLY SE; ROBBINS RA; ADAMS RD; THORSON MA; HAASS CC

    2011-08-25

    This report presents information and references to aid in the selection of 99Tc sorption media for feasibility studies regarding the removal of 99Tc from Hanford's low activity waste. The report contains literature search material for sorption media (including ion exchange media) for the most tested media to date, including SuperLig 639, Reillex HPQ, TAM (Kruion), Purolite A520E and A530E, and Dowex 1X8. The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities in a safe, environmentally compliant, cost-effective and energy-effective manner.

  4. Sorption characteristics of radioactive cesium and strontium on smectite

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Kozai, Naofumi

    1994-01-01

    Sorption of 137 Cs and 85 Sr on smectite has been studied by combining sorption and desorption experiments. In the desorption experiments, the 137 Cs and 85 Sr were desorbed from the smectite by 0.1 N different desorption reagents solution of Li + , Na + , K + , Rb + , Cs + , Mg 2+ , Ca 2+ and Ba 2+ . The effects of Cs and Sr concentrations on sorption were examined by desorption experiments using 1 N KCl as a desorption reagent over a Cs and Sr concentrations range from 10 -8 to 1 N (saturated). All of Sr sorbed was desorbed with a 1 N KCl solution over Sr concentrations range of 10 -8 and 1 M. Approximately 50% of the 137 Cs sorbed at a concentration of 10 -8 M was desorbed with a 1 N KCl solution, and the fraction desorbed increased with increasing a Cs concentration. These results show that all Sr was reversibly sorbed on smectite, and a fraction of Cs was irreversibly sorbed on smectite. Thus, smectite has reversible sorption sites for Sr and both reversible and irreversible sorption sites for Cs. The fractions of Sr desorbed were related to the products of an ionic radius and charge of a desorption reagent, and those of Cs were related to the hydration energy. These results suggest that sorbed Sr and Cs reversibly on smectite form hydrated and dehydrated ions, respectively. (orig.)

  5. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    International Nuclear Information System (INIS)

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd 2+ /NH 4 + sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH 4 + and Cd 2+ , with a maximum sorption of 13.35 and 125.8 mg g −1 , respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g −1 ) for Cd 2+ . Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd 2+ sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd 2+ . • NH 4 + and Cd 2+ sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  6. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoqiang [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Hao, Hulin [Ningbo Raw Water Resource Research Academy, Ningbo (China); Zhang, Changkuan [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945 (United States); Yang, Xiaoe, E-mail: xyang571@yahoo.com [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-01-01

    The objective of this study was to investigate the relationship between Cd{sup 2+}/NH{sub 4}{sup +} sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH{sub 4}{sup +} and Cd{sup 2+}, with a maximum sorption of 13.35 and 125.8 mg g{sup −1}, respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g{sup −1}) for Cd{sup 2+}. Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd{sup 2+} sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd{sup 2+}. • NH{sub 4}{sup +} and Cd{sup 2+} sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  7. Enhanced sorption of radiocobalt from water by Bi(III) modified montmorillonite: A novel adsorbent

    International Nuclear Information System (INIS)

    Guo Zhiqiang; Li Yuan; Zhang Shouwei; Niu Haihong; Chen Zhesheng; Xu Jinzhang

    2011-01-01

    Highlights: → Bi-Mt has higher surface area than Ca-Mt. → The sorption of Co(II) on Bi-Mt is dependent on ionic strength and pH. → The sorption of Co(II) on Bi-Mt is an spontaneous and endothermic process. → Bi-Mt has good practical application potential in wastewater disposal. - Abstract: In this study, Ca-montmorillonite (Ca-Mt) modified with Bi 3+ was used as a novel adsorbent for the sorption of Co(II) from aqueous solutions. The sorption of Co(II) on Bi-montmorillonite (Bi-Mt) was investigated as a function of contact time, pH, ionic strength, adsorbent content, Co(II) concentrations, fulvic acid (FA) and temperature. Compared to Ca-Mt, Bi-Mt showed a higher affinity to bind Co(II) ions. The sorption percentage of Co(II) on Bi-Mt increased with increasing pH at pH 3.0-8.5, and then maintained the high level at pH 8.5-12. The sorption of Co(II) on Bi-Mt was dependent on ionic strength at low pH, and independent of ionic strength at high pH. The presence of FA enhanced Co(II) sorption at low pH, but suppressed Co(II) sorption at high pH. The thermodynamic data derived from temperature dependent sorption isotherms suggested that the sorption of Co(II) on Bi-Mt was spontaneous and endothermic process. Outer-sphere surface complexation and/or ion exchange were the main mechanisms of Co(II) sorption on Bi-Mt at low pH, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that Bi-Mt is suitable for application of Co(II) removal from aqueous solutions.

  8. Study of sorption processes of strontium on the synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Rajec, P.

    2011-01-01

    The sorption of strontium on synthetic hydroxyapatite was investigated using batch method and radiotracer technique. The hydroxyapatite samples were prepared by a wet precipitation process followed by calcination of calcium phosphate that precipitated from aqueous solution. Also, commercial hydroxyapatites were used. The sorption of strontium on hydroxyapatite depended on the method of preparation and it was pH independent ranging from 4 to 9 as a result of buffering properties of hydroxyapatite. The distribution coefficient K d was significantly decreased with increasing concentration of Sr 2+ and Ca 2+ ions in solution with concentration above 1 x 10 -3 mol dm -3 . The percentage strontium sorption for commercial and by wet method prepared hydroxyapatite was in the range of 83-96%, while calcined hydroxyapatite was ranging from 10 to 30%. The experimental data for sorption of strontium have been interpreted in the term of Langmuir isotherm. The sorption of Sr 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite. Although calcined hydroxyapatite is successfully used as biomaterial for hard tissues repair, it is not used for the treatment of liquid wastes. (author)

  9. Effects of organic degradation products on the sorption of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH [proportional to] 11) and at the edge of the zone of migration of the alkaline plume (pH [proportional to] 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.).

  10. Effects of sorption hysteresis on radionuclide releases from waste packages

    International Nuclear Information System (INIS)

    Barney, G.S.; Reed, D.T.

    1985-01-01

    A one-dimensional, numerical transport model was used to calculate radionuclide releases from waste packages emplaced in a nuclear waste repository in basalt. The model incorporates both sorption and desorption isotherm parameters measured previously for sorption of key radionuclides on the packing material component of the waste package. Sorption hysteresis as described by these isotherms lowered releases of some radionuclides by as much as two orders of magnitude. Radionuclides that have low molar inventories (relative to uranium), high solubility, and strongly sorbed, are most affected by sorption hysteresis. In these cases, almost the entire radionuclide inventory is sorbed on the packing material. The model can be used to help optimize the thickness of the packing material layer by comparing release rate versus packing material thickness curves with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) release limits

  11. The albedo problem in the case of multiple synthetic scattering taking place in a plane-symmetric slab

    International Nuclear Information System (INIS)

    Shafiq, A.; Meyer, H.E. de; Grosjean, C.C.

    1985-01-01

    An approximate model based on an improved diffusion-type theory is established for treating multiple synthetic scattering in a homogeneous slab of finite thickness. As in the case of the exact treatment given in the preceding paper (Part I), it appears possible to transform the considered transport problem into an equivalent fictitious one involving multiple isotropic scattering, therefore permitting the application of an established corrected diffusion theory for treating isotropic scattering taking place in a convex homogeneous medium bounded by a vacuum in the presence of various types of sources. The approximate values of the reflection and transmission coefficients are compared with the rigorous values listed in Part I. In this way, the high accuracy of the approximation is clearly demonstrated. (author)

  12. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars

    2006-01-01

    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and....../or imply accounting for the entire history variations of every material point. This paper presents a sorption hysteresis model based on a state formulation and expressed in closed-form solutions, which makes it suitable for implementation into a numerical method....

  13. Performance of Cationic Surfactant Modified Sepiolite and Bentonite in Lead Sorption from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    H.R. Rafiei

    2014-12-01

    Full Text Available The remediation of soils and water contaminated with heavy metals generate a great need to develop efficient adsorbents for these pollutants. This study reports the sorption of lead (Pb by bentonite (Bent, and sepiolite (Sep, that were modified with cetyltrimethyl ammonium (CTMA+ organic cations. The natural and surfactant modified clays (organo-clays were characterized with some instrumental techniques including XRF, XRD, FTIR and SEM. Sorption studies were performed in a batch system, and the effects of various experimental parameters including contact time and initial Pb concentration were evaluated upon the Pb sorption onto sorbents. Maximum sorption of Pb was found to be, 83.26, 71.36, 56.25 and 37 mg g-1 for Sep, CTMA-Sep, Bent and CTMA-Bent adsorbents, respectively. The Pb sorption data were fitted to both the Langmuir and Freundlich models. The Freundlich model represented the sorption process better than the Langmuir model. Lead sorption rate was found to be considerably slower for organo-clays than that for unmodified clays. Sorption kinetics was evaluated by pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models. The sorption processes of organo-clays followed intraparticle diffusion kinetics. The results showed that the cationic surfactant modified bentonite and sepiolite sorbed less Pb than the unmodified clays.

  14. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  15. Laboratory tests on the impact of superabsorbent polymers on transformation and sorption of xenobiotics in soil taking 14C-imazalil as an example

    International Nuclear Information System (INIS)

    Achtenhagen, J.; Kreuzig, R.

    2011-01-01

    Due to water scarcity, the agricultural production in arid areas is dependent on a sustainable irrigation management. In order to optimize irrigation systems, the application of superabsorbent polymers (SAP) as soil amendments, frequently studied within the last years, may be an appropriate measure to enhance the water holding capacity and the plant-available water in poor arable soils. These persistent polymers are also able to reduce heavy metal and salt stress to crops by accumulating those inorganic compounds. However, the impact of SAP on fate and behavior of organic xenobiotics in soil is unknown. Therefore, transformation and sorption of the model substance 14 C-imazalil were monitored without and with SAP amendment in silty sand and sand soil under laboratory conditions. Within the 100-d incubation period, the transformation of 14 C-imazalil was not substantially affected by the SAP amendment even though the microbial activity increased considerably. In the silty sand soil, extractable residues dropped from 90% to 45% without and from 96% to 46% with SAP amendment. Non-extractable residues continuously increased up to 49% and 35% while mineralization reached 6% and 5%, respectively. In the sand soil, characterized by its lower microbial activity and lower organic carbon content, extractable residues merely dropped from 99% to 81% and from 100% to 85% while non-extractable residues increased from 2% to 14% and 1% to 10%, respectively. Mineralization was lower than 2%. The increased microbial activity, usually promoting transformation processes of xenobiotics, was compensated by the enhanced sorption in the amended soils revealed by the increase of soil/water distribution coefficients (K d ) of 26 to 42 L kg -1 for the silty sand and 6 to 25 L kg -1 for the sand, respectively. - Highlights: → Superabsorbent polymers (SAP) are applied as soil amendments to support irrigation measures. → The SAP effects on the fate of imazalil in soil were monitored under

  16. Molecular simulation of polycyclic aromatic hydrocarbon sorption to black carbon

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2009-01-01

    Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A

  17. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures

    International Nuclear Information System (INIS)

    Zhang Guixiang; Zhang Qing; Sun Ke; Liu Xitao; Zheng Wenjuan; Zhao Ye

    2011-01-01

    Simazine sorption to corn straw biochars prepared at various temperatures (100-600 deg. C) was examined to understand its sorption behavior as influenced by characteristics of biochars. Biochars were characterized via elemental analysis, BET-N 2 surface area (SA), FTIR and 13 C NMR. Freundlich and dual-mode models described sorption isotherms well. Positive correlation between log K oc values and aromatic C contents and negative correlation between log K oc values and (O + N)/C ratios indicate aromatic-rich biochars have high binding affinity to simazine (charge transfer (π-π*) interactions) and hydrophobic binding may overwhelm H-bonding, respectively. Dual-mode model results suggest adsorption contribution to total sorption increases with carbonization degree. Positive correlation between amounts of adsorption (Q ad ) and SA indicates pore-filling mechanism. Comparison between our results and those obtained with other sorbents indicates corn straw biochars produced at higher temperature can effectively retain simazine. These observations will be helpful for designing biochars as engineered sorbents to remove triazine herbicides. - Highlights: → Biochars were characterized via elemental analysis, BET-N 2 , FTIR and 13 C NMR. → Freundlich and dual-mode models described sorption isotherms well. → Biochar produced at higher temperature had larger sorption capacity for simazine. → Aromatic-rich biochars have high binding affinity to simazine. → Dual-mode model results suggest adsorption contribution to total sorption. - The corn straw biochar prepared at higher temperature with stronger hydrophobicity, more aromatic C and larger surface area had higher sorption capacity for simazine.

  18. Soil sorption complex influence on dynamics of 239,240Pu and 241Am mobile and fixed forms in different landscapes

    International Nuclear Information System (INIS)

    Leinova, S.L.; Sokolik, G.A.; Kilchitskaya, S.L.; Ivanova, T.G.; Zhukovich, N.V.; Kimlenko, I.M.

    1998-01-01

    The physico-chemical forms of 239,240 Pu and 241 Am in soil and radionuclide distribution between the main components of soil sorption complex were analyzed. The content of 'hot' particles in soils in Belarus is about 10-1.10 4 particles/m 2 . During the post accident period the 'hot' particles quantity decreased 40-200 times and 50-20000 times in mineral and organogenic soils, respectively. Their activity decreased 1.2-1.4 times per year in mineral soils and 1.3-1.5 times in organic soils. Their destruction velocity is determined by the soil media properties and the particle composition: the particles of 'condensed' nature are destroyed more quickly than those of fuel nature. The velocity of release of transuranium elements from the 'hot' particles increases with increasing soil acidity and humus content in soils. The radionuclides exhibiting different bond strength with soil sorption complex were determined by sequential selective extraction. The share of the most mobile exchange forms of 239,240 Pu is less than 10%. The quantity of potential mobile acid soluble forms of 239,240 Pu increases with time and changes in the sequence: peat soils 241 Am (85%) in comparison with 2 39,240 Pu (40%) was found. The content of 241 Am mobile forms increases with soil depth. It can be expected that in soils with high content of organic substances the accumulation of 239,240 Pu and 241 Am in surface soil layers will take place in future, but in mineral soils significant amounts of radionuclides will enter illuvial horizons as a result of vertical migration

  19. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines.

    Science.gov (United States)

    Oliver, Danielle P; Kookana, Rai S; Quintana, Belen

    2005-08-10

    The sorption behavior of diuron, imidacloprid, and thiacloprid was investigated using 22 soils collected in triplicate from temperate environments in Australia and tropical environments in Australia and the Philippines. Within the temperate environment in Australia, the soils were selected from a range of land uses. The average KOC values (L/kg) for imidacloprid were 326, 322, and 336; for thiacloprid, the values were 915, 743, and 842; and for diuron, the values were 579, 536, and 618 for the Ord (tropical), Mt. Lofty (temperate), and Philippines (tropical) soils, respectively. For all soils, the sorption coefficients decreased in the following order: thiacloprid > diuron > imidacloprid. There were no significant differences in sorption behavior between the tropical soils from the Philippines and the temperate soils from Australia. Sorption was also not significantly related with soil characteristics, namely, organic carbon (OC) content, clay content, and pH, for any of the three chemicals studied. When the data were sorted into separate land uses, the sorption of all three chemicals was highly correlated (P soils from the Philippines. Sorption coefficients for all three chemicals were highly correlated with OC in temperate, native soils only when one extreme value was removed. The relationships between sorption of all three chemicals and OC in temperate, pasture soils were best described by a polynomial. Sorption coefficients for imidacloprid and thiacloprid determined in the temperate pasture soils remained fairly consistent as the OC content increased from 3.3 to 5.3%, indicating that, although the total OC in the pasture soils was increasing, the component of OC involved with sorption of these two compounds may have been remaining constant. This study demonstrated that the origin of the soils (i.e., temperate vs tropical) had no significant effect on the sorption behavior, but in some cases, land use significantly affected the sorption behavior of the three

  20. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    Science.gov (United States)

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  1. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    International Nuclear Information System (INIS)

    Dion, H.M.; Hill, H.H.Jr.; Washington State Univ., Pullmann, WA; Harsh, J.B.; Washington State Univ., Pullmann, WA

    2001-01-01

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  2. A study of sorption of pertechnetate anion on chitosan

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Rajec, P.; Galambos, M.

    2015-01-01

    Chitosan is one of the natural materials of biological origin. The sorption of pertechnetate anions from aqueous solutions on chitosan was studied in a batch system. This work was aimed to study influence of the contact time, effect of pH and effect of different ions on sorption of pertechnetate anions on chitosan. This sorbent was characterized by BET-surface area and potentiometric titration. The point of zero charge (pH pzc ) was at pH=7.15. The highest percentage of technetium sorption on chitosan was near pH 3. The adsorption capacity of chitosan decreased with increase in pH value above 3. In the initial pH range of 4-10, final pHs are the same. The selectivity of chitosan for these cations with concentration above 1·10 -3 mol·dm -3 was in the order Na + > Ca 2+ > Fe 3+ > Fe 2+ . The competition effect of (SO 4 ) 2- towards TcO 4 - sorption was stronger than the competition effect (ClO 4 ) - of ions. (authors)

  3. Sorption of Cs, Eu and U(VI) onto rock samples from Nizhnekansky massive

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, V.; Vlasova, I.; Kalmykov, S. [Lomonosov Moscow State University (Russian Federation); Kuzmenkova, N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science (Russian Federation); Petrov, V.; Poluektov, V. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences - IGEM RAS (Russian Federation)

    2014-07-01

    The accepted in Russia concept for high level wastes (HLW) and spent nuclear fuel (SNF) disposal is based on their isolation into the deep underground crystalline rock formations. The 'Eniseysky' area (Nizhnekansky massive) is supposed as the most perspective location for the future HLW and SNF repository. Core materials from different areas of Nizhnekasnsky massive have been studied in terms of petrographic and mineralogical characterization; definition of filtration, elastic, petro-physical and strength properties; estimation of hydrothermal-metasomatic transformation of rocks. We used both undisturbed sliced cores and crushed material for the sorption experiments. Preliminary results of uranium sorption show some significant differences between used rock samples from different depth in sorption rate and pH-dependence. In all cases maximum sorption (more than 90%) is reached in 2-3 weeks. The pH-dependence of sorbed uranium fraction has typical hump-shape: increase of sorption percentage with increasing pH values to 6, plateau (90-98 % of uranium sorbed), decrease of sorption percentage with increasing pH values from 8 due to U(VI) hydrolysis. In the case of cesium the sorption maximum is reached within 10-12 days and in the case of europium - about 5 days. All radionuclides sorbed preferentially onto dark minerals. Local distribution and preferential sorption of cesium, europium and uranium (VI) onto different minerals within the sample were studied by radiography, SEM-EDX, etc. These data accompanying with rock sample composition will allow the development of quantitative model for Cs, Eu and U(VI) sorption onto investigated rocks. Document available in abstract form only. (authors)

  4. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  5. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    International Nuclear Information System (INIS)

    Zhou, Dandan; Chen, Bingfa; Wu, Min; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-01-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  6. Experimental study and modelling of selenite sorption onto illite and smectite clays.

    Science.gov (United States)

    Missana, T; Alonso, U; García-Gutiérrez, M

    2009-06-15

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.

  7. Sorption Energies for Atrazine onto Devolatalized Vitellaria paradoxa

    International Nuclear Information System (INIS)

    Itodo, A. U.; Abdulrahman, F. W.; Hassan, L. G.; Happiness, U. I.

    2012-01-01

    We utilize isotherm models in contributing to scholarly knowledge in simple terms, to measure the forces or energy defining certain adsorption phenomenon. Gas Chromatography coupled with Mass Spectrophotometer detector was utilized to measure equilibrium phase atrazine after adsorption onto Shea nut Shells acid derived activated carbon. Data were fitted into the D-R and Temkin isotherm relationships for energy data estimation of Sorption energy value (B D ), mean free energy (E D ) and heat of sorption (B). They were estimated as 0.7600mol 2 KJ -2 , 0.8111 kjmor -1 and 0.790Jmol -1 respectively. The parameter predicting the type of adsorption was evaluated B D , B D 2 = 0.979 proves a better choice in explaining sorption energies. Generally, shea nut shells can be used as alternative precursors for activated carbon production via the two steps and acid treatment method.

  8. Mathematical modelling of the sorption isotherms of quince

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelce

    2017-01-01

    Full Text Available The moisture adsorption isotherms of quince were determined at four temperatures 15, 30, 45, and 60°C over a range of water activity from 0.110 to 0.920 using the standard static gravimetric method. The experimental data were fitted with generated three parameter sorption isotherm models on Mitrevski et al., and the referent Anderson model known in the scientific and engineering literature as Guggenheim- Anderson-de Boer model. In order to find which models give the best results, large number of numerical experiments was performed. After that, several statistical criteria for estimation and selection of the best sorption isotherm model was used. The performed statistical analysis shows that the generated three parameter model M11 gave the best fit to the sorption data of quince than the referent three parameter Anderson model.

  9. Sorption interactions of heavy metals with biochar in soil remediation studies

    Science.gov (United States)

    Fristak, Vladimir; Friesl-Hanl, Wolfgang; Wawra, Anna; Soja, Gerhard

    2015-04-01

    The search for new materials in soil remediation applications has led to new conversion technologies such as carbonization and pyrolysis. Biochar represents the pyrolytic product of different biomass input materials processed at 350-1000°C and anoxic conditions. The pyrolysis temperature and feedstock have a considerable influence on the quality of the charred product and also its main physico-chemical properties. Biochar as porous material with large specific surface and C-stability is utilized in various environmental and agricultural technologies. Carbon sequestration, increase of soil water-holding capacity and pH as well as sorption of different xenobiotics present only a fraction of the multitude of biochar application possibilities. Heavy metals as potential sources of ecotoxicological risks are characterized by their non-degradability and the potential transfer into the food chain. Carbonaceous materials have been used for a long time as sorbents for heavy metals and organic contaminants in soil and water technologies. The similarity of biochar with activated carbon predetermines this material as remediation tool which plays an important role in heavy metal immobilization and retention with a parallel reduction in the risk of ground water and food crop contamination. In all this processes the element-specific sorption behaviour of biochar creates new conditions for pollutant binding. Sorption interaction and separation of contaminants from soil solution or waste effluent can be affected by wide-ranging parameters. In detail, our study was based on batch-sorption comparisons of two biochars produced from wood chips and green waste residues. We observed that sorption efficiency of biochar for model bivalent heavy metals (Cd, Zn, Cu) can be influenced by equilibrium parameters such as pH, contact time, initial concentration of metal in reaction solutions, presence of surfactants and chemical modification by acid hydrolysis, esterification and methylation. The

  10. Phosphorus sorption capacity of biochars varies with biochar type and salinity level.

    Science.gov (United States)

    Dugdug, Abdelhafid Ahmed; Chang, Scott X; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Anyia, Anthony

    2018-02-10

    Biochar is recognized as an effective material for recovering excess nutrients, including phosphorus (P), from aqueous solutions. Practically, that benefits the environment through reducing P losses from biochar-amended soils; however, how salinity influences P sorption by biochar is poorly understood and there has been no direct comparison on P sorption capacity between biochars derived from different feedstock types under non-saline and saline conditions. In this study, biochars derived from wheat straw, hardwood, and willow wood were used to compare P sorption at three levels of electrical conductivity (EC) (0, 4, and 8 dS m -1 ) to represent a wide range of salinity conditions. Phosphorus sorption by wheat straw and hardwood biochars increased as aqueous solution P concentration increased, with willow wood biochar exhibiting an opposite trend for P sorption. However, the pattern for P sorption became the same as the other biochars after the willow wood biochar was de-ashed with 1 M HCl and 0.05 M HF. Willow wood biochar had the highest P sorption (1.93 mg g -1 ) followed by hardwood (1.20 mg g -1 ) and wheat straw biochars (1.06 mg g -1 ) in a 25 mg L -1 P solution. Although the pH in the equilibrium solution was higher with willow wood biochar (~ 9.5) than with the other two biochars (~ 6.5), solution pH had no or minor effects on P sorption by willow wood biochar. The high sorption rate of P by willow wood biochar could be attributed to the higher concentrations of salt and other elements (i.e., Ca and Mg) in the biochar in comparison to that in wheat straw and hardwood biochars; the EC values were 2.27, 0.53, and 0.27 dS m -1 for willow wood, wheat straw, and hardwood biochars, respectively. A portion of P desorbed from the willow wood biochar; and that desorption increased with the decreasing P concentration in the aqueous solution. Salinity in the aqueous solution influenced P sorption by hardwood and willow wood but not by wheat straw

  11. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Science.gov (United States)

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [Surface Property and Sorption Characteristics of Phosphorus onto Surface Sediments in Sanggou Bay].

    Science.gov (United States)

    Zhu, Jia-mei; Cao, Xiao-yan; Liu, Su-mei; Wang, Li-sha; Yang, Gui-peng; Ge, Cheng-feng; Lu, Min

    2016-02-15

    Kinetic curves and isotherms were investigated to study the sorption mechanism of phosphorus onto the sediments of Sanggou Bay, together with the surface charge properties of sediments and the forms of phosphorus studied. The results showed that the sorption including a fast process and a slow one, and could be described by a two-compartment first order equation. The thermodynamic isotherms were well fitted with a modified Langmuir equation. The maximum adsorption capacity was larger in summer than in spring, and the smaller particle size was favorable to the sorption. The maximum adsorption capacities (Qm) were 0.0471-0.1230 mg x g(-1), and the zero equilibrium phosphorus concentration (EPC0) of the sediments ranged from 0.0596 mg x L(-1) to 0.1927 mg x L(-1), which indicated that the sediments from Sanggou Bay were sources of phosphorus. Inorganic phosphorus (IP) was the main form of total phosphorus (TP). The contents of exchangeable or loosely absorbed P and Fe-bound P increased significantly in the samples after sorption. The sorption process involved physical sorption and chemical sorption, with the former being the predominant.

  13. Effect of humic substances on P sorption capacity of three different soils

    Science.gov (United States)

    Delgado, Antonio

    2010-05-01

    Organic matter decreases P sorption by soils. It has been demonstrated the effect of low molecular weight compounds decreasing P adsorption on active surfaces and the effect of humic and fulvic acids inhibiting the precipitation of hydroxyapatite and favouring the formation of more soluble phosphates. This contributes to increase the recovery of applied P fertilizer. The objective of this work was to study the effect of 4 different humic substances (commercially available and provided by Tradecorp Internacional S.A.) on the sorption capacity of three soils differing widely in chemical properties (two calcareous from south Spain, pH 8 and 8.5, and other acidic from Brazil, pH 5.9 and 50 % of exchangeable basic cations). To this end, sorption isotherms were performed at a soil:0.01 M CaCl2 ratio of 1:10 at 6, 30 and 90 days. 2.5 mg of humic substances per g of soil were added to the solution. Data were fitted to the best model and linearized sorption curves for each humic substance were compared with the linearized sorption curve for the control without humic substances application (intersection point and slopes). Soil from Brazil showed a much higher sorption capacity (400 mg P kg-1 soil sorbed at 1 mg L-1 of P in the solution at 1 day) than the other two soils (50 and 100 mg P kg-1). Slow reactions significantly contributed to P sorption in the three soils, amounts sorbed at 90 days being twice than those sorbed at 1 day. Two of the products increased P sorption in the soil from Brazil at 1 day. At 90 days all the products increased P sorption significantly. This increased P sorption can be only explained by metal complexation by the substances applied, which may result in organo-metallic compounds with a high P sorption capacity. This effect was independent of the proportion of humic and fulvic acids in the applied products because the amounts of metal complexed by these compouds depend on the amount of functional groups to coordinate with metals. In the Spanish

  14. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  15. Sorption heat engines: simple inanimate negative entropy generators

    OpenAIRE

    Muller, Anthonie W. J.; Schulze-Makuch, Dirk

    2005-01-01

    The name 'sorption heat engines' is proposed for simple negative entropy generators that are driven by thermal cycling and work on alternating adsorption and desorption. These generators are in general not explicitly recognized as heat engines. Their mechanism is applicable to the fields of engineering, physics, chemistry, geology, and biology, in particular the origin of life. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in the adsorbent or ads...

  16. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing β-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Lee D. Wilson

    2011-08-01

    Full Text Available Urethane copolymer sorbent materials that incorporate β-cyclodextrin (CD have been prepared and their sorption properties with chlorinated aromatic compounds (i.e., pentachlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenoxy acetic acid have been evaluated. The sorption properties of granular activated carbon (GAC were similarly compared in aqueous solution at variable pH conditions. The sorbents displayed variable BET surface areas as follows: MDI-X copolymers (< 101 m2/g, CDI-X copolymers (< 101 m2/g, and granular activated carbon (GAC ~103 m2/g. The sorption capacities for the copolymers sorbents are listed in descending order, as follows: GAC > CDI-3 copolymer ≈ MDI-3 copolymer. The sorption capacity for the aromatic adsorbates with each sorbent are listed in descending order, as follows: 2,4-dichlorophenol > 2,4-dichlorophenoxy acetic acid > pentachlorophenol. In general, the differences in the sorption properties of the copolymer sorbents with the chlorinated organics were related to the following factors: (i surface area of the sorbent; (ii CD content and accessibility; and (iii and the chemical nature of the sorbent material.

  19. Migration behavior and sorption mechanisms of radionuclides in sedimentary sand stones

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Kamiyama, Hideo; Sriyotha, K.

    1993-05-01

    The influence of crushed particle size and weathering of sedimentary rock on migration behavior and sorption mechanisms of 60 Co, 85 Sr and 137 Cs has been investigated by using the fresh sand stones (classified into two particle size ranges of 1 ∼ 3 mm and 2 , KCl, NH 2 OH-HCl, K-oxalate and H 2 O 2 solutions were carried out, to elucidate their dominated sorption mechanisms. Distribution coefficient values of the all three radionuclides, Kds, for the sand stone of 1 ∼ 3 mm was smaller than that of 85 Sr, and the same irreversible sorptions as the selective sorption of Co onto manganese oxides and fixation of Cs by the layer silicate for 60 Co and 137 Cs, respectively. Larger sorbability of the weathered sand stone was explained to be related to an increase of amounts of the effective sorption site, such as cation exchangeable site, calcite, smectite and manganese oxides, which was possibly caused from metamorphism induced by weathering the fresh sand stone. (author)

  20. Sorption of lead onto two gram-negative marine bacteria in seawater

    Science.gov (United States)

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  1. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  2. Analysis of ideal sorption compressor cycles operating with gas mixtures

    NARCIS (Netherlands)

    Tzabar, N.; ter Brake, H.J.M.

    2018-01-01

    Sorption-based compressors are thermally driven and because of the absence of moving parts they are vibration free, and have the potential for long life. Sorption-based compressors have been reported to operate Joule–Thomson (JT) cryogenic coolers with pure working fluids. However, using mixed

  3. Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities

    International Nuclear Information System (INIS)

    Chiang, P.N.; Wang, M. K.; Huang, P.M.; Wang, J.J.; Chiu, C.Y.

    2010-01-01

    The dynamics of Cs and Sr sorption by soils, especially in the subtropics and tropics, as influenced by soil components are not fully understood. The rates and capacities of Cs and Sr sorption by selected subtropical and tropical soils in Taiwan were investigated to facilitate our understanding of the transformation and dynamics of Cs and Sr in soils developed under highly weathering intensity. The Langmuir isotherms and kinetic rates of Cs and Sr sorption on the Ap1 and Bt1 horizons of the Long-Tan (Lt) and the A and Bt1 horizons of the Kuan-Shan (Kt), Mao-Lin (Tml) and Chi-Lo (Cl) soils were selected for this study. Air-dried soil ( -5 to 1.88 x 10 -3 M of CsCl (pH 4.0) or 1.14 x 10 -4 to 2.85 x 10 -3 M of SrCl 2 (pH 4.0) solutions at 25 deg. C. The sorption maximum capacity (q m ) of Cs by the Ap1 and Bt1 horizons of the Lt soil (62.24 and 70.70 mmol Cs kg -1 soil) were significantly (p -1 soil in Kt soil and 34.83 and 29.96 mmol Cs kg -1 soil in Cl soil, respectively), however, the sorption maximum capacity values of the Lt and Tml soils did not show significant differences. The amounts of pyrophosphate extractable Fe (Fe p ) were correlated significantly with the Cs and Sr sorption capacities (for Cs sorption, r 2 = 0.97, p -4 ; for Sr sorption, r 2 = 0.82, p -3 ). The partition coefficient of radiocesium sorbed on soil showed the following order: Cl soil >> Kt soil > Tml soil > Lt soil. It was due to clay minerals. The second-order kinetic model was applied to the Cs and Sr sorption data. The rate constant of Cs or Sr sorption on the four soils was substantiality increased with increasing temperature. This is attributable to the availability of more energy for bond breaking and bond formation brought about by the higher temperatures. The rate constant of Cs sorption at 308 K was 1.39-2.09 times higher than that at 278 K in the four soils. The activation energy of Cs and Sr sorbed by the four soils ranged from 7.2 to 16.7 kJ mol -1 and from 15.2 to 22.4 kJ mol

  4. Periodic Sorption of Tungstate Ions on Anionite AV-17-8

    Directory of Open Access Journals (Sweden)

    D’yachenko Aleksandr

    2017-01-01

    Full Text Available The multiple sorption of sodium tungstate resulting from the autoclave-soda digestion of a tungsten-bearing concentrate was studied using anion-exchange resin AV-17-8. The choice of ion exchange resin was carried out under static conditions using highly basic anionites. The sorption and desorption plots for tungstate and carbonate ions were demonstrated under dynamic conditions. The total dynamic capacity of the resin was estimated for each species of the ions in three sorption cycles. The applicability of the AV-17-8 resin as a sorbent in the autoclave-soda process flowsheet was determined.

  5. Sorption of trace cesium on 21 Hanford Site sediment types

    International Nuclear Information System (INIS)

    Routson, R.C.; Barney, G.S.; Smith, R.M.; Delegard, C.A.

    1980-03-01

    Sorption of trace cesium (Cs) was measured on 21 Hanford Site sediment types. A Box-Behnken statistical design was used to develop empirical-statistical equations predicting 137 Cs sorption as a function of the equilibrium concentrations of macroions Na + , K + , and Ca +2 in solution over the concentration ranges of 3.0 to 0.001M, 0.2 to 0.002M, and 0.2 to 0.002M, respectively. These equations are required to estimate trace Cs transport from Hanford ground disposal sites. Average Cs sorption equations for the 21 sediments will be presented and discussed

  6. Comparative sorption and desorption behaviors of PFHxS and PFOS on sequentially extracted humic substances

    Institute of Scientific and Technical Information of China (English)

    Lixia Zhao; Yifeng Zhang; Shuhong Fang; Lingyan Zhu; Zhengtao Liu

    2014-01-01

    The sorption and desorption behaviors of two perfluoroalkane sulfonates (PFSAs),including perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) on two humic acids (HAs) and humin (HM),which were extracted from a peat soil,were investigated.The sorption kinetics and isotherms showed that the sorption of PFOS on the humic substances (HSs) was much higher than PFHxS.For the same PFSA compound,the sorption on HSs followed the order of HM > HA2 > HA1.These suggest that hydrophobic interaction plays a key role in the sorption of PFSAs on HSs.The sorption capacities of PFSAs on HSs were significantly related to their aliphaticity,but negatively correlated to aromatic carbons,indicating the importance of aliphatic groups in the sorption of PFSAs.Compared to PFOS,PFHxS displayed distinct desorption hysteresis,probably due to irreversible pore deformation after sorption of PFHxS.The sorption of the two PFSAs on HSs decreased with an increase in pH in the solution.This is ascribed to the electrostatic interaction and hydrogen bonding at lower pH.Hydrophobic interaction might also be stronger at lower pH due to the aggregation of HSs.

  7. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  8. Synthesis of manganese oxides and antimony silicates and their applications to take up Thorium-234

    International Nuclear Information System (INIS)

    Al-Attar, L.; Budeir, Y.

    2009-07-01

    Birnessite, a layered manganese oxide, antimonysilicate and their corresponding cation-exchange derivatives were tested for their ability to take up thorium using a batch-type method. Sorption experiments were performed in different concentrations of acid, and sodium, potassium and calcium nitrate solutions in order to evaluate the influence of cations likely to be present in waste effluents. The results were expressed in terms of distribution coefficients. Linear regressions of the logarithmic plots enabled the elucidation of exchange mechanisms. Variation in the magnitude and mechanism of thorium sorption on the exchangers was ascribed to structural differences and the exchange properties of the materials, as well as the aqueous chemistry of the actinide element. The work expanded to included investigation of thorium solution' pH in controlling the sorption process. In nitric acid solutions, H-antimonysilicate proved to be the best sorbent. The hydrated layer structure of birnessite allows for facile mobility of the interlayer cations with fast kinetics and little structural rearrangement, making it of great importance for intercalation and ion exchange uses in salt conditions. Potassium had the most, and calcium the least, effect on thorium selectivity by birnessites, when they are present as macro components. Conversely, calcium ions did greatly inhibit the sorption behaviour of the actinide on Ca-doped antimonysilicate. Studying the effect of thorium solution' pH reflected the microcrystal modifications of birnessites occurred during experiments. (authors)

  9. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  10. Sorption of copper, zinc and cobalt by oat and oat products.

    Science.gov (United States)

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  11. Phosphate Sorption Characteristics and External P Requirements of Selected South African Soils

    Directory of Open Access Journals (Sweden)

    E. M. Gichangi

    2008-10-01

    Full Text Available The Transkei is the largest consolidated area in South Africa where land is held by smallholder farmers but little is known about the extent of phosphate fixation in the region. This study was conducted to determine the phosphate sorption properties and external P requirements (EPR of selected soils from the Transkei region, South Africa and to relate derived sorption values to selected soil parameters. The P sorption maxima and EPR values varied widely ranging from 192.3 to 909.1 mg P kg−1 and from 2 to 123 mg P kg−1−1 soil, respectively. Citrate dithionite bicarbonate-extractable aluminum explained most of the observed variations in P sorption. About 43% of the soils were found to be moderate P fixers and may need management interventions to ensure adequate P availability to crops. The single point sorption index accurately predicted the EPR of the soils obviating the need to use multiple point sorption isotherms. The results suggested that the use of blanket phosphate fertilizer recommendations may not be a good strategy for the region as it may lead to under-application or over-application of P in some areas.

  12. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    Directory of Open Access Journals (Sweden)

    Yinghong Wu

    2014-01-01

    Full Text Available Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%, organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP, and humic acid (HA on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (Kdapp of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene Kdapp while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents.

  13. Effects of mineralogy on sorption of strontium and cesium onto Calico Hills Tuff

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Case, F.I.; O'Kelley, G.D.; Land, J.F.

    1990-04-01

    The sorption properties of tuff formations at the proposed site for the high-level nuclear waste repository at Yucca Mountain, Nevada, have been extensively studied. Sorption and desorption measurements were made of strontium and cesium onto clinoptilolite and Calico Hills Tuff. The object was to see whether there was a correlation between sorption of strontium and cesium onto Calico Hills Tuff and the sorption of strontium and cesium onto clinoptilolite based on the content of clinoptilolite in the Calico Hills Tuff. 13 refs., 10 figs., 6 tabs

  14. Improved understanding of tributyltin sorption on natural and biochar-amended sediments.

    Science.gov (United States)

    Xiao, Xiaoyu; Sheng, G Daniel; Qiu, Yuping

    2011-12-01

    A poor understanding of tributyltin (TBT) sorption on sediments has hindered an accurate evaluation of its environmental fate. The present study determined TBT sorption by a freshwater sediment (BH) and a coastal marine sediment (TZ) as influenced by pH, salinity, and biochar (BC) amendment into TZ. The isotherms were essentially linear, with K(OC) values in the range of 10(4) to 10(5) L/kg. Tributyltin sorption at pH 3.56 and 8.00 occurred mainly via partitioning. It reached maxima at pH equal to its pK(a) (=6.25) because of added ion exchange. A salinity increase from 5 to 35 practical salinity units enhanced TBT sorption at pH 3.56 and 8.00 on TZ by approximately 30% and on BH by approximately 80%, ascribed to the salting-out effect that reduced the solubilities of tributyltin hydroxide (TBTOH) and tributyltin chloride (TBTCl). At pH 6.25, the same salinity increase reduced TBT sorption on TZ by approximately 20% but enhanced TBT sorption on BH by approximately 35%. This was attributed to the enhancing role of salting out and the reducing role of metal competition for ion exchange. Tributyltin was two orders of magnitude more effectively sorbed by BC than by total organic carbon of TZ, mainly because of the high level of surface area of the BC. Although BC affinity for TBT may be significantly diminished when present in TZ, it was considered to be the primary contributor to TBT sorption from water. Biochar may thus be used to immobilize TBT in sediment for potential remediation. Copyright © 2011 SETAC.

  15. Sorption of radon-222 to natural sediments

    International Nuclear Information System (INIS)

    Wong, C.S.; Chin, Y.P.; Gschwend, P.M.

    1992-01-01

    The sorption of radon to sediments was investigated, since this may affect the use of porewater radon profiles for estimating bed irrigation rates. Batch experiments showed that radon has an organic-carbon-normalized sediment-water partition coefficient (K oc , L kg oc -1 ) of 21.1 ± 2.9 for a Boston Harbor sediment, 25.3 ± 2.1 for a Charles River sediment, and 22.4 ± 2.6 for a Buzzards Bay sediment. These values are in close agreement with predictions using radon's octanol-water partition coefficient (K ow ), which was measured to be 32.4 ± 1.5. Temperature and ionic strength effects on K oc were estimated to be small. Given rapid sorption kinetics, the authors suggest that slurry stripping techniques used by many investigators to measure 222 Rn in sediment samples collect both sorbed and dissolved radon. Sorption effects were included in a transport model to obtain revised estimates of irrigation rates from existing literature profiles. Irrigation rates had to be increased over previously reported values in proportion to the sediment organic matter content

  16. Evaluation of Compressive Strength and Sorption/Solubility of Four Luting Cements

    Directory of Open Access Journals (Sweden)

    Tavangar MS

    2017-06-01

    Full Text Available Abstract: Statement of Problem: Compressive strength (CS and sorption/solubility of the luting cements are two associated factors. Searching a correlation between sorption/solubility and compressive strength of various luting cements is required. Objectives: To measure the water sorption/solubility, and compressive strength of three resin-based and one conventional glass ionomer (CGI luting cement after 1 and 24 h of immersion in distilled water and to determine if there is any correlation between those properties found. Materials and Methods: Four luting cements were investigated. For each material, 10 disc shaped specimens were prepared for measuring the sorption/solubility. The specimens were cured according to the manufacturer’s instructions, and the sorption/solubility were measured in accordance with the ISO 4049’s. For testing the compression strength, for each material 16 cylindrical specimens were prepared by insertion of cements into a stainless steel split mould. The specimens were cured, divided into groups of 8, and then stored in distilled water at (37 ± 1°C for 1 and 24 h. The test was performed using the universal testing machine, the maximum load was recorded and CS was calculated. The data were analysed using SPSS software version 18. One-way ANOVA, post-hoc Tukey’s test and Pearson’s correlation coefficient were performed. Results: G-CEM had the highest mean CS (153.60± 25.15 and CGI luting had the lowest CS (21.36±5.37 (p 0.05. The lowest mean sorption/solubility value was for RelyXTM U200 and Panavia F, and the highest for CGI luting (all p < 0.001. Conclusions: The compressive strength of all cements did not necessarily increase after 24 h and varied depending on the materials. There was a strong reverse correlation between sorption and CS values after both 1 and 24 h immersion. It may be practical for clinician to use those cements with the less sorption / solubility and more stable compression strength over

  17. Solvent sorption measurements in polymeric membranes with ATR-IR spectroscopy

    NARCIS (Netherlands)

    Manito Pereira, A.M.; Lopes, M.C.; Timmer, J.M.K.; Keurentjes, J.T.F.

    2005-01-01

    Long-term stability and performance of polymeric membranes in solvent and mixed solvent media can be reduced due to sorption and swelling of the membrane matrix. For this reason quantification of sorption and swelling is of major importance for the development of future applications of membrane

  18. 137Cs sorption onto Fullers' Earth (calcium montmorillonite) -the influence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    West, J.M.; Haigh, D.G.; Hooker, P.J.; Rowe, E.J.

    1987-12-01

    The influences of Desulfovibrio desulfuricans on the sorption of 137 Cs onto Fullers' Earth (Calcium montmorillonite) has been studied using batch sorption methods. Results were expressed as distributions ratios (Rd) and as Freundlich and Dubinin-Radushkevich isotherms. They show that microbes present naturally in the Fullers' Earth did not influence sorption data, however the addition of microbes in the aqueous phase alters the sorption properties in a complex manner. (author)

  19. Sorption of antimony on human teeth

    International Nuclear Information System (INIS)

    Nofal, M.; Amin, H.; Alian, G.

    1997-01-01

    The study of the uptake of toxic elements on human teeth represents an interesting research area, as the fate of these elements when present in the human food is of health significance. Since antimony is one of the common toxic elements and since, the chemical behaviour of antimony is similar to that of arsenic, one of the most important toxic elements commonly encountered in cases of food poisoning, it has been decided to investigate its uptake on human teeth and on other restoration materials. The radioactive tracer technique was used to evaluate the concentration of antimony sorbed on teeth. This tracer was obtained by irradiation of antimony metal in the reactor, subsequent dissolution in concentrated sulphuric acid, evaporation to dryness and making the solution 6 M in Hydrochloric acid (1). Antimony prepared in this way is in the trivalent state (Sb III). Sorption was studied in water, tea, coffee, red tea and chicken soup. The highest sorption was achieved from water and chicken soup and least sorption was noticed in case of coffee. The results are presented in the form of the depletion of the radioactivity (A) of antimony with time in presence of a tooth in water and other drinks

  20. Sorption characteristics of technetium on crosslinked chitosan from aqueous solution

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2014-01-01

    Sorption of technetium on crosslinked chitosan was studied using batch techniques in static arrangement of experiment under aerobic conditions at laboratory temperature. The adsorption of technetium was rapid and the percentage of the technetium sorption was > 98 %. In the pH range of 3-11 adsorption of technetium on crosslinked chitosan was > 98 %. The competition effect of Fe 3+ towards TcO 4 - sorption on crosslinked chitosan was stronger than the competition effect of other observed cations. The selectivity of crosslinked chitosan for these cations in solution with the concentration above 1·10 -3 mol·dm -3 was in the order Fe 3+ > Ca 2+ > Na + > Fe 2+ . The competition effect of (ClO 4 ) - towards TcO 4 - sorption was stronger than the competition effect of (SO 4 ) 2 - ions. From these results it can be expected that crosslinked chitosan could be a suitable sorbent for the immobilization of technetium in the liquid radioactive waste. (authors)

  1. Sorption and pertechnetate by salts of molybdophosphoric acid

    International Nuclear Information System (INIS)

    Suess, M.; Pfrepper, G.

    1983-01-01

    The sorption of pertechnetate on salts of molybdophosphoric acid from nitric acid and in the presence of electrolytes was investigated. Distribution coefficients from 10 to 100 ml/g were found. The sorption of pertechnetate can be increased by the addition of K + , NH 4 + , Rb + and Cs + salts. A saturation capacity of proportional 0,19 mmol/g ammonium phosphomolybdate was found from the adsorption isotherms. The formation of alkali metal pertechnetate associates in the sorbent phase is supposed. (orig.)

  2. Radionuclide and metal sorption on cement and concrete

    CERN Document Server

    Ochs, Michael; Wang, Lian

    2016-01-01

    Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitativ...

  3. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite

    International Nuclear Information System (INIS)

    Huo, Hanxin; Lin, Hai; Dong, Yingbo; Cheng, Huang; Wang, Han; Cao, Lixia

    2012-01-01

    Highlights: ► The salt and thermally modified clinoptilolite can effectively sorb NH 3 -N and phosphates. ► The phosphorus and nitrogen removal was consistent with Langmuir isotherm model. ► The modified clinoptilolite possesses rapid adsorption and slow balance characteristics. ► The adsorption is more in line with the Elovich adsorption dynamics equation. ► The entropy effect plays the role of the main driving force in the adsorption. - Abstract: This paper presents the investigation of the ammonia-nitrogen and phosphates sorption from simulated reclaimed wastewater by modified clinoptilolite. The results showed that the modified clinoptilolite has a high sorption efficiency and removal performance. The ammonia-nitrogen and phosphates removal rate of the modified clinoptilolite reached to 98.46% and 99.80%, respectively. The surface of modified clinoptilolite became loose and some pores appeared, which enlarged the specific surface area; the contents of Na and Fe increased, and the contents of Ca and Mg decreased. The modified clinoptilolite possesses rapid sorption and slow balance characteristics and ammonia-nitrogen and phosphates sorption is more consistent with the Langmuir isotherm model. The adsorption kinetics of ammonia-nitrogen and phosphates follows the Elovich adsorption dynamics equation, which describes the sorption of ammonia-nitrogen and phosphates in aqueous solution as mainly a chemical sorption. Results from the thermodynamics experiment involving ammonia-nitrogen and phosphates sorption reveal that the process is a spontaneous and endothermic process, and is mainly driven by entropy effect.

  4. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  5. Plutonium-239 sorption and transport on/in unsaturated sediments. Comparison of batch and column experiments for determining sorption coefficients

    International Nuclear Information System (INIS)

    Jinchuan Xie; Jiachun Lu; Xiaohua Zhou; Xuhui Wang; Mei Li; Lili Du; Yueheng Liu; Guoqing Zhou

    2013-01-01

    Sorption (distribution) coefficients of plutonium were most often derived by static batch experiments. However, it is not clear how unsaturated flow conditions including moisture content and pore water velocity change the sorption coefficients. Transport experiments of plutonium through the unsaturated sediments packed into the columns were then performed in order to determine the sorption coefficients (column-K ds ). Static batch experiments were also conducted to obtain batch-K ds and then compare the differences between batch-K ds and column-K ds . The results show that unsaturated flow conditions had no significant effect on column-K ds , and the average column-K d value was 1.74 ± 0.02 m 3 /kg. By comparison, batch-K d values spanned several orders of magnitude, regardless of the specified liquid-solid conditions. Moreover, the batch-K d (22.7 m 3 /kg) at the standard L/S (4 mL/g) recommended by ASTM D 4319 was over an order of magnitude larger than the average column-K d . (author)

  6. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  7. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.

    Science.gov (United States)

    Yan, Wei; Hu, Shan; Jing, Chuanyong

    2012-04-15

    Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Cssorption, while humic acid had a negligible contribution to the interlayer intercalation. The results of this study provide new insight into the molecular mechanisms of ENR sorption on clay minerals. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Sorption of Uranium(VI and Thorium(IV by Jordanian Bentonite

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2013-01-01

    Full Text Available Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature, and column techniques at 25.0∘C and . The highest rate of metal ions uptake was observed after 18 h of shaking, and the uptake has increased with increasing pH and reached a maximum at . Bentonite has shown high metal ion uptake capacity toward uranium(VI than thorium(IV. Sorption data were evaluated according to the pseudo- second-order reaction kinetic. Sorption isotherms were studied at temperatures 25.0∘C, 35.0∘C, and 45.0∘C. The Langmuir, Freundlich, and Dubinin-Radushkevich (D-R sorption models equations were applied and the proper constants were derived. It was found that the sorption process is enthalpy driven for uranium(VI and thorium(IV. Recovery of uranium(VI and thorium(IV ions after sorption was carried out by treatment of the loaded bentonite with different concentrations of HNO3 1.0 M, 0.5 M, 0.1 M, and 0.01 M. The best percent recovery for uranium(VI and thorium(IV was obtained when 1.0 M HNO3 was used.

  9. Influence of the isomerism on the sorption of imazamethabenz-methyl by soil.

    Science.gov (United States)

    Pinna, Maria Vittoria; Pusino, Alba

    2013-04-01

    The sorption of meta and para isomers of the herbicide imazamethabenz-methyl, methyl 6-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-m- or p-toluate, by three soils and soil organic matter, was studied. Sorption isotherms conformed to the Freundlich equation. It was found that pH was the main factor influencing the adsorption in all of the systems. The highest level of sorption was measured on soils with low pH and high organic carbon content. Moreover, at low pH value, the soil rich in smectite clays, favoured the sorption of meta rather than para isomer. The higher affinity of clay surfaces for the meta isomer of the herbicide is due to the stabilization of the meta protonated form by resonance. At all pH values, the sorption on soil organic matter did not differ between two isomers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Sorption kinetics of diuron on volcanic ash derived soils.

    Science.gov (United States)

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  12. Equilibrium sorption of cobalt, cesium, and strontium on Bandelier Tuff: analysis of alternative mathematical modeling

    International Nuclear Information System (INIS)

    Polzer, W.L.; Fuentes, H.R.; Essington, E.H.; Roensch, F.R.

    1985-01-01

    Sorption isotherms are derived from batch equilibrium data for cobalt, cesium and strontium on Bandelier Tuff. Experiments were conducted at an average temperature of 23 0 C and equilibrium was defined at 48 hours. The solute concentrations ranged from 0 to 500 mg/L. The radioactive isotopes 60 Co, 137 Cs, and 85 Sr were used to trace the sorption of the stable solutes. The Linear, Langmuir, Freundlich and a Modified Freundlich isotherm equations are evaluated. The Modified Freundlich isotherm equation is validated as a preferred general mathematical tool for representing the sorption of the three solutes. The empirical constants derived from the Modified Freundlich isotherm equation indicate that under dynamic flow conditions strontium will move most rapidly and cobalt least rapidly. On the other hand, chemical dispersion will be greatest for cesium and least for strontium. Hill Plots of the sorption data suggest that in the region of low saturation sorption of all three solutes is impeded by interactions among sorption sites; cobalt exhibits the greatest effect of interactions and strontium shows only a minimal effect. In the saturation region of 50% or more, sorption of cobalt is enhanced slightly by interactions among sorption sites whereas sorption of cesium and strontium appears to be independent of site interactions. 9 references, 4 figures, 2 tables

  13. Investigation of solution chemistry effects on sorption behavior of radionuclide 64Cu(II) on illite

    International Nuclear Information System (INIS)

    Shitong Yang; Guodong Sheng; Zhiqiang Guo; Yubing Sun; Donglin Zhao

    2011-01-01

    In this work, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances and temperature on the sorption behavior of illite towards 64 Cu(II). The results indicated that 64 Cu(II) sorption on illite achieved equilibrium quickly. The pH- and ionic strength-dependent sorption suggested that 64 Cu(II) sorption on illite was dominated by ion exchange or outer-sphere surface complexation at pH 7. A positive effect of humic substances on 64 Cu(II) sorption was found at pH 6.5. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 64 Cu(II) at three different temperatures of 293, 313, and 333 K. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) of 64 Cu(II) sorption on illite were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption of 64 Cu(II) on illite was endothermic and spontaneous. From the experimental results, it is possible to conclude that illite has good potentialities for cost-effective treatments of 64 Cu(II)-contaminated wastewaters. (author)

  14. A suggested approach toward measuring sorption and applying sorption data to repository performance assessment

    International Nuclear Information System (INIS)

    Rundberg, R.S.

    1992-01-01

    The prediction of radionuclide migration for the purpose of assessing the safety of a nuclear waste repository will be based on a collective knowledge of hydrologic and geochemical properties of the surrounding rock and groundwater. This knowledge along with assumption about the interactions of radionuclides with groundwater and minerals form the scientific basis for a model capable of accurately predicting the repository's performance. Because the interaction of radionuclides in geochemical systems is known to be complicated, several fundamental and empirical approaches to measuring the interaction between radionuclides and the geologic barrier have been developed. The approaches applied to the measurement of sorption involve the use of pure minerals, intact, or crushed rock in dynamic and static experiments. Each approach has its advantages and disadvantages. There is no single best method for providing sorption data for performance assessment models which can be applied without invoking information derived from multiple experiments. 53 refs., 12 figs

  15. Sorption study of U{sup +6} in Brazilian soils

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Antonio P.; Wasserman, Maria A.V.; Mantovano, Jose L.; Carvalho, Leonel M., E-mail: apjunior@ien.gov.br, E-mail: mwasserman@ien.gov.br, E-mail: mantovan@ien.gov.br, E-mail: leonel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Perez, Daniel V., E-mail: daniel@cnps.embrapa.br [Empresa Brasileira de Pesquisas Agropecuarias (Embrapa Solos-CNPS), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The uranium mining is one of the main activities of the nuclear fuel cycle that can contribute to the increased exposure to radioactive materials and is one of the main routes of contamination of soil by natural radionuclides. This study investigated the sorption of uranium in brazilian soils, through sorption isotherms performed in batch. In this study, two types of soils were selected: Ferralsols Red and Nitosol. The adjustment of the experimental data to the kinetic models were evaluated by two approaches: the traditional, based on the coefficient of determination (R{sup 2}); and the theoretical and informative, based on Corrected Akaike Information Criteria (AIC{sub C}). The coefficient of determination (R{sup 2}), revealed that, although empirical, both the kinetic model, Freundlich and Langmuir, describes satisfactorily the experimental data, showing R{sup 2} values higher than 0.9, while the partition constant model was not suitable for describe these sorption data. The AICC model analysis showed that the Langmuir model fit the U sorption curve well for Ferralsols Red, while the Freundlich model fits better to Nitosol. This study has highlighted the role of organic matter on the sorption of uranium in highly weathered soils, rich in oxyhydroxides and low activity clays. The Kd values reported in this study differ from those recommended by the United States Environmental Protection Agency, therefore must be considered as reference values for highly weathered soils, since it refers to Brazilian pedoenvironmental conditions. The low Kd values obtained in this study allowed to evaluate the high vulnerability of highly weathered soils to uranium contamination. (author)

  16. Temperature and curing time affect composite sorption and solubility

    Directory of Open Access Journals (Sweden)

    Fabrício Luscino Alves de Castro

    2013-04-01

    Full Text Available Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8×2 mm were prepared using a commercial composite resin (ICE, SDI. Three temperatures (10°C, 25°C and 60°C and five curing times (5 s, 10 s, 20 s, 40 s and 60 s were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1; B: 7 days after storage (M2; C: 7 days after storage plus 1 day of drying (M3. The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%. Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p0.05. The 60°C composite temperature led to lower values of sorption for all curing times when compared with the 10°C temperature (p0.05. Solubility was similar at 40 s and 60 s for all temperatures (p>0.05, but was higher at 10°C than at 60°C for all curing times (p0.05. Conclusions: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times.

  17. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene

    International Nuclear Information System (INIS)

    Zhang Honghua; Lin Kunde; Wang Hailong; Gan, Jay

    2010-01-01

    Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 o C and 700 o C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 o C generally showed a greater ability at enhancing a soil's sorption ability than that prepared at 350 o C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar. - Pinus radiata derived biochars influence soil sorption and desorption of phenanthrene.

  18. Sorption study and contribution of ion exchange in the dynamics of 137Cs n highly weathered soils

    International Nuclear Information System (INIS)

    Nascimento Sobrinho, Guilherme Augusto

    2014-01-01

    The present study investigated the sorption kinetics and the reversibility of 137 Cs within highly weathered soils, by means of sorption isotherms and desorption with three concentrations of silver thiourea (AgTU). For this purpose, four soils were selected based on their mineralogy and pedogenetics and sampled from lysimeters placed within the experimental area of the Tropical Radioecology Laboratory of the Institute for Radioprotection and Dosimetry. Three of them were tropical soils, belonging to the Argissolo (ARG), Latossolo vermelho (LV) and Latossolo vermelho amarelo (LVA) classes, and one subtropical, belonging to the Nitossolo (NIT) class. The 'goodness-of-fit' of the constant partition, Langmuir and Freundlich isotherms to the experimental data were assessed by means of a 'traditional' approach, i.e. correlation (R) and determination (R 2 ) coefficients, and a 'theoretic-informative' one, based upon the Corrected Akaike Information Criteria (AICc). In this work became clear that even presenting high affinity for the soil surface, once the sorption equilibrium was reached within 24 h (66 to 97% of sorbed 137 Cs), quite a lot of this radionuclide remains easily mobile (40 to 73% of desorbed 137 Cs), by means of a single extraction with AgTU 0,05 mol.L-1, and that such reversibility relates in an inverse manner to the sorption capacity of the studied soils for 137 Cs. This work pointed also that the constant partition model, mostly known as Kdi, does not fit at all for the sorption data gathered for four highly weathered soils from four mineralogical groups, and for a very dilute solution of 137 Cs. The mathematical model that most adequately described the sorption data for the four studied soils was the Langmuir equation (R 2 > 0,95). The multi model analysis was not able to support generalizations for the four soils. The three models considered in this study provided good predictions of the sorbed 137 Cs for the ARG, LVA and NIT samples (ΔAICc AICc = 0

  19. Sorption characteristic of coal as regards of gas mixtures emitted in the process of the self-heating of coal

    Directory of Open Access Journals (Sweden)

    Wojtacha-Rychter Karolina

    2017-01-01

    Full Text Available One of the most challenging tasks in the coal mining sector is the detection of endogenous fire risks. Under field conditions, the distance between the points where samples for the analyses are collected and the actual place where coal self-heating takes place may be quite remote. Coal is a natural sorbent with a diverse character of pore structures which are surrounded by fractures and cleavage planes constituting ideal spaces for the flow and adsorption of gases. The gases (methane, ethane, ethylene, propane, propylene, acetylene, carbon dioxide, carbon monoxide, hydrogen released from the source of fire migrate through the seam and may be subject to adsorption, or they may cause the desorption of gases accumulated in coal. Therefore, the values of reference sample concentrations may be overstated or understated, respectively. The objective of this experimental study was to investigate the adsorption phenomena accompanying the flow of a multi-component gas mixture through a coal bed which may occur in situ. The research was conducted by means of a method based on a series of calorimetric/chromatographic measurements taken to determine the amount of gases released during coal heating at various temperatures under laboratory conditions. Based on the results obtained in the course of the experiments, it was concluded that the amount of gas adsorbed in the seam depends on the type of coal and the gas. Within the multi-component gas mixture, hydrocarbons demonstrated the largest sorption capacity, especially as concerns propylene.

  20. Further developments of the RES3T sorption database

    International Nuclear Information System (INIS)

    Brendler, V.

    2002-01-01

    RES 3 T - the Rossendorf expert system for surface and sorption thermodynamics currently under development has been expanded towards the provision of comprehensive sorption data sets suitable for complex natural systems of rocks and soils. Also a statistical evaluation of the available SCM (surface complexation model) data is now implemented. Finally, a normalization of SCM parameters to a standard site density has been incorporated. (orig.)

  1. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter.

    Science.gov (United States)

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-05-02

    Microplastics have a great potential to sorb organic pollutants from the adjacent environment. In this study, the sorption of tetracycline, a polar and ionizable antibiotic, on three types of microplastics (polyethylene (PE), polypropylene (PP) and polystyrene (PS)) were investigated in batch sorption experiments. The sorption isotherms were well fitted by the Langmuir model, indicating that not only hydrophobic interactions but also other interactions (e.g. electrostatic interactions) played important roles in the sorption process. PS had the maximum sorption capacity, following the order PS > PP > PE, which can be attributed to polar interactions and π-π interactions. The sorption of tetracycline on microplastics was significantly influenced by pH, with sorption capacity increasing gradually, peaking at pH 6.0 and then decreasing, likely due to the influence of tetracycline speciation with the change of pH. Fulvic acid was selected as representative dissolved organic matter (DOM) to examine the effect on sorption. The increasing concentration of fulvic acid inhibited the sorption of tetracycline on three microplastics, decreasing them by more than 90% at the fulvic acid concentration of 20 mg/L, which implied a greater affinity of tetracycline to fulvic acid than to microplastics. Increasing salinity from 0.05 to 3.5% had negligible effects on the sorption of tetracycline on the three microplastics. Our results highlight the importance of pH and DOM on the sorption of tetracycline on microplastics, and suggest the relatively minor role of microplastics in the fate and transport of tetracycline in the aquatic environment in the presence of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. SITE-94. Adaptation of mechanistic sorption models for performance assessment calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Sorption is considered in most predictive models of radionuclide transport in geologic systems. Most models simulate the effects of sorption in terms of empirical parameters, which however can be criticized because the data are only strictly valid under the experimental conditions at which they were measured. An alternative is to adopt a more mechanistic modeling framework based on recent advances in understanding the electrical properties of oxide mineral-water interfaces. It has recently been proposed that these 'surface-complexation' models may be directly applicable to natural systems. A possible approach for adapting mechanistic sorption models for use in performance assessments, using this 'surface-film' concept, is described in this report. Surface-acidity parameters in the Generalized Two-Layer surface complexation model are combined with surface-complexation constants for Np(V) sorption ob hydrous ferric oxide to derive an analytical model enabling direct calculation of corresponding intrinsic distribution coefficients as a function of pH, and Ca 2+ , Cl - , and HCO 3 - concentrations. The surface film concept is then used to calculate whole-rock distribution coefficients for Np(V) sorption by altered granitic rocks coexisting with a hypothetical, oxidized Aespoe groundwater. The calculated results suggest that the distribution coefficients for Np adsorption on these rocks could range from 10 to 100 ml/g. Independent estimates of K d for Np sorption in similar systems, based on an extensive review of experimental data, are consistent, though slightly conservative, with respect to the calculated values. 31 refs

  3. Characterization of the sorption of uranium(VI) on different complexing resins

    Energy Technology Data Exchange (ETDEWEB)

    Pesavento, Maria; Biesuz, Raffaela; Alberti, Giancarla; Sturini, Michela [Dipartimento di Chimica Generale dell' Universita degli Studi di Pavia, Via Taramelli 12, 27100, Pavia (Italy)

    2003-08-01

    The sorption of uranium(VI) on two cationic resins containing different complexing groups, the iminodiacetic resin Chelex 100 and the weak carboxylic resin Amberlite CG-50, was investigated. The Gibbs-Donnan model was used to describe and to predict the sorption through the determination of the intrinsic complexation constants. These quantities, even though non-thermodynamic, characterize the sorption as being independent of experimental conditions. The sorption mechanism of the metal on the complexing resins was also studied by adding a competitive soluble ligand that shifts the sorption curves to higher pH values. The ligand competes with the resin for the complexation with the metal ion. Uranium is also strongly sorbed on Chelex 100 at very acid pH, through formation of two complexes in the resin phase: ML with log{beta}{sub 110i}=-1.16, in more acidic solution, and ML{sub 2}with log {beta}{sub 120i}=-5.72. Only the presence of the competitive ligand in solution makes the determination of the second complex possible. Also on Amberlite CG-50 the sorption is strong and involves the formation of the complex ML {sub 2}, in more acidic solution, with log {beta}{sub 120i}=-3.16. In the presence of the ligand EDTA, the complex ML {sub 2}(OH) {sub 2}was characterized with log {beta}{sub 12-2i}=-5.15. In all the experiments the hydrolysis reaction in the aqueous phase was quantitatively considered. (orig.)

  4. Characterization of the sorption of uranium(VI) on different complexing resins

    International Nuclear Information System (INIS)

    Pesavento, Maria; Biesuz, Raffaela; Alberti, Giancarla; Sturini, Michela

    2003-01-01

    The sorption of uranium(VI) on two cationic resins containing different complexing groups, the iminodiacetic resin Chelex 100 and the weak carboxylic resin Amberlite CG-50, was investigated. The Gibbs-Donnan model was used to describe and to predict the sorption through the determination of the intrinsic complexation constants. These quantities, even though non-thermodynamic, characterize the sorption as being independent of experimental conditions. The sorption mechanism of the metal on the complexing resins was also studied by adding a competitive soluble ligand that shifts the sorption curves to higher pH values. The ligand competes with the resin for the complexation with the metal ion. Uranium is also strongly sorbed on Chelex 100 at very acid pH, through formation of two complexes in the resin phase: ML with logβ 110i =-1.16, in more acidic solution, and ML 2 with log β 120i =-5.72. Only the presence of the competitive ligand in solution makes the determination of the second complex possible. Also on Amberlite CG-50 the sorption is strong and involves the formation of the complex ML 2 , in more acidic solution, with log β 120i =-3.16. In the presence of the ligand EDTA, the complex ML 2 (OH) 2 was characterized with log β 12-2i =-5.15. In all the experiments the hydrolysis reaction in the aqueous phase was quantitatively considered. (orig.)

  5. Determination of 60Co sorption in natural clinoptilolite

    International Nuclear Information System (INIS)

    Hernandez B, E.; Granados C, F.

    1997-01-01

    It was studied the clinoptilolite behavior coming from a deposit in Taxco, Guerrero in hydration and stabilization conditions with sodium for determining its sorption properties. The ion exchange process was carried out through gamma spectrometry using a CoCl 2 solution marked with 60 Co at p H 6.5 in different contact times. It was observed a maximum sorption of 0.408 m eq Co +2 /g mineral, from 0.314 m eq Co +2 /g mineral correspond at ion exchange. (Author)

  6. Preliminary report on the statistical evaluation of sorption data: Sorption as a function of mineralogy, temperature, time, and particle size

    International Nuclear Information System (INIS)

    Beckman, R.; Thomas, K.; Crowe, B.

    1988-05-01

    This report studies the transport of radionuclides from a repository to the environment by dissolution of the stored solid-waste form and subsequent transport in water. The sorption process may retard this movement of radionuclides from the repository to the accessible environment. A measure of this retardation process is the sorption ratio, R/sub D/, where R/sub D/ = (activity in solid phase per unit mass of solid)(activity in solution per unit volume of solution). In this study, predictions of the R/sub D/ values for the elements barium, cerium, cesium, europium, and strontium are developed from linear regression techniques. An R/sub D/ value was obtained for numerous drill core samples. Additional data include the particle size of the rock, temperature condition during the experiment, concentration of the sorbing element, and length of the sorption experiment. Preliminary regression results based on these data show that the temperature and length of the experiment are the most significant factors influencing the R/sub D/ values. Particle size has a slight effect, and based on a small amount of data, it appears that concentration had no effect. The x-ray diffraction data are used to classify the samples by mineralogy, and regression techniques are used to develop estimates of the R/sub D/ values. Zeolite abundance of 10% or more with some addition of clay increases the sorption values significantly. 12 refs., 3 figs., 6 tabs

  7. Surface complexation modelling: Experiments on the sorption of nickel on quartz

    International Nuclear Information System (INIS)

    Puukko, E.; Hakanen, M.

    1995-10-01

    Assessing the safety of a final repository for nuclear wastes requires knowledge concerning the way in which the radionuclides released are retarded in the geosphere. The aim of the work is to aquire knowledge of empirical methods repeating the experiments on the sorption of nickel on quartz described in the reports published by the British Geological Survey (BGS). The experimental results were modelled with computer models at the Technical Research Centre of Finland (VTT Chemical Technology). The results showed that the experimental knowledge of the sorption of Ni on quartz have been acheved by repeating the experiments of BGS. Experiments made with the two quartz types, Min-U-Sil 5 (MUS) and Nilsiae, showed the difference in sorption of Ni in the low ionic strength solution (0.001 M NaNO 3 ). The sorption of Ni on MUS was higher than predicted by the Surface Complexation Model (SCM). The phenomenon was also observed by the BGS, and may be due to the different amounts of inpurities in the MUS and in the NLS. In other respects, the results of the sorption experiments fitted quite well with those predicted by the SCM model. (8 refs., 8 figs., 11 tabs.)

  8. Valorisation of post-sorption materials: Opportunities, strategies, and challenges.

    Science.gov (United States)

    Harikishore Kumar Reddy, D; Vijayaraghavan, K; Kim, Jeong Ae; Yun, Yeoung-Sang

    2017-04-01

    Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m 2 /g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical

  9. Ground rubber: Sorption media for ground water containing benzene and O-xylene

    International Nuclear Information System (INIS)

    Kershaw, D.S.; Pamukcu, S.

    1997-01-01

    The purpose of the current study is to examine the ability of ground rubber to sorb benzene and O-xylene from water contained with aromatic hydrocarbons. The study consisted of running both batch and packed bed column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground rubber under various contact times when exposed to water contaminated with various amounts of benzene or O-xylene. Initial batch test results indicate that ground rubber can attain equilibrium sorption capacities up to 1.3 or 8.2 mg of benzene or O-xylene, respectively, per gram of tire rubber at solution equilibrium concentrations of 10 mg/L. Packed bed column tests indicate that ground tire rubber has on the average a 40% utilization rate when a hydraulic residence time of 15 min is used. Possible future uses of round rubber as a sorption media could include, but are not limited to, the use of ground rubber as an aggregate in slurry cutoff walls that are in contact with petroleum products. Ground rubber could also be used as a sorption media in pump-and-treat methodologies or as a sorption media in in-situ reactive permeable barriers

  10. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  11. Comparative study about hydrogen sorption in sponge and powder titanium

    International Nuclear Information System (INIS)

    Vasut, Felicia; Preda, Anisoara; Zamfirache, Marius; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    Currently, hydrogen may be stored as a compressed gas or a cryogenic liquid. Neither method appears to be practical for many applications in which hydrogen use would otherwise be attractive. For example, gaseous storage of stationary fuel is not feasible because of the large volume or weight of the storage vessels. Liquid hydrogen could be use extensively but the liquefaction process is relatively expensive. The hydrogen can be stored for a long term with a high separation factor, as a solid metal hydride. Using hydride-forming metals and intermetallic compounds, for example, recovery, purification and storage of heavy isotopes in tritium containing system, can solve many problems arising in the nuclear-fuel cycle. The paper presents a comparative study about hydrogen sorption on two titanium structures: powder and sponge. Also, it is presented the characterization, by X-Ray diffraction, of two structures, before and after sorption process. From our results, one can conclude that sorption method is efficient for both samples. Kinetic curves indicates that sorption rate for titanium powder is lower than for sponge titanium. This is the effect of reaction surface, which is larger for powder titanium. Sorption capacity for hydrogen is lower in powder titanium for identical experimental conditions. The difference between storage capacities could be explained by activation temperature, which was lower for titanium powder than for sponge. (authors)

  12. Potential sources for nonlinear sorption of organic compounds to soils and natural solids

    Science.gov (United States)

    Chiou, C. T.

    2003-04-01

    The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water to the humic acid and humin fractions of a peat soil have been measured. The data were compared with those of the same solutes on whole peat from which the humic acid (HA) and humin (HM) fractions were derived and on which the sorption of solutes exhibited varying extents of nonlinear capacities at low relative concentrations (Ce/Sw). The HA fraction as prepared by a density-fractionated method is relatively pure and presumably free of high-surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumably enriched with HSACM, as manifested by the greatly higher BET-(N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.

  13. Sorption of actinides in granitic rock

    International Nuclear Information System (INIS)

    Allard, B

    1982-11-01

    The sorption of americium (III), neptunium(V) and plutonium on geologic media under oxic conditions has been measured by a batch technique. The aqueous phase was a synthetic groundwater or 4M NaCl solution. The solid phase was a pure mineral, representative of igneous rocks, or granite. Altogether 40 different minerals and rocks were used. The effects of pH and the ionic strength of the aqueous phase as well as of the cation exchange capacity and the surface/mass ratio of the solid sorbent are discussed. Empirical equations giving the distribution coefficient as a function of pH in the environmental pH-range 7-9 are suggested. Some observations and conclusions concerning sorption mechanisms are given. (author)

  14. Superplasticizer function and sorption in high performance cement based grouts

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, M.N.; Roe, L.H.

    1991-08-01

    This report describes laboratory studies undertaken to determine interactions between the main components of high-performance cement-based grout. These interactions were studied with the grouts in both their unset and hardened states with the specific intention of determining the following: the mechanistic function of superplasticizer; the phase of residence of the superplasticizer in hardened materials; and the permanence of the superplasticizer in hardened grouts. In unset pastes attempts were made to extract superplasticizer by mechanical processes. In hardened grout the superplasticizer was leached from the grouts. A microautoradiographic method was developed to investigate the phases of residence of superplasticizer in hardened grouts and confirm the inferences from the leaching studies. In hardened grout the superplasticizer was located on the hydrated phases formed during the early stages of cement hydration. These include tricalcium aluminate hydrates and tricalcium silicate phases. There is some tendency for the superplasticizer to sorb on ettringite. The presence of superplasticizer did not coincide with the locations of unreacted silica fume and high silica content phases such as C 2 S-H. The observations explain the findings of the studies of unset pastes which also showed that the sorption of superplasticizer is likely to be enhanced with increased mixing water content and, hence, distribution in and exposure to the hydration reaction surfaces in the grout. Superplasticizer can be leached in very small quantities from the hardened grouts. Rapid release takes place from the unsorbed superplasticizer contained in the accessible pore space. Subsequent release likely occurs with dissolution of the cement phases and the exposure of isolated pores to groundwater. (au) (37 refs.)

  15. From sense of place to visualization of place: examining people-place relationships for insight on developing geovisualizations.

    Science.gov (United States)

    Newell, Robert; Canessa, Rosaline

    2018-02-01

    Effective resource planning incorporates people-place relationships, allowing these efforts to be inclusive of the different local beliefs, interests, activities and needs. 'Geovisualizations' can serve as potentially powerful tools for facilitating 'place-conscious' resource planning, as they can be developed with high degrees of realism and accuracy, allowing people to recognize and relate to them as 'real places'. However, little research has been done on this potential, and the place-based applications of these visual tools are poorly understood. This study takes steps toward addressing this gap by exploring the relationship between sense of place and 'visualization of place'. Residents of the Capital Regional District of BC, Canada, were surveyed about their relationship with local coastal places, concerns for the coast, and how they mentally visualize these places. Factor analysis identified four sense of place dimensions - nature protection values, community and economic well-being values, place identity and place dependence, and four coastal concerns dimensions - ecological, private opportunities, public space and boating impacts. Visualization data were coded and treated as dependent variables in a series of logistic regressions that used sense of place and coastal concerns dimensions as predictors. Results indicated that different aspects of sense of place and (to a lesser degree) concerns for places influence the types of elements people include in their mental visualization of place. In addition, sense of place influenced the position and perspective people assume in these visualizations. These findings suggest that key visual elements and perspectives speak to different place relationships, which has implications for developing and using geovisualizations in terms of what elements should be included in tools and (if appropriate) depicted as affected by potential management or development scenarios.

  16. Sorption of malachite green (MG) by cassava stem biochar (CSB ...

    African Journals Online (AJOL)

    Cassava stem biochar (CSB) was produced by pyrolyzing CS at 500°C for 2 hours at nitrogen environment. Proximate and ultimate analyses were conducted on CS and CSB. Batch sorption experiment on synthetic MG wastewater was optimized for the sorbent dosage, MG solution pH and contact time. Sorption data was ...

  17. Evaluation of sorption capacity of modified wood biomass for arsenic five-valent oxyanions

    International Nuclear Information System (INIS)

    Littera, P.; Antoska, R.; Cernansky, S.; Sevc, J.; Kolencik, M.; Budzakova, M.

    2009-01-01

    In the present work is assessed bio-sorption of arsenic oxyanions, which represent one of two most common special arsenic occurring in contaminated waters. A wood biomass was used as sorbent, which was modified by amorphous oxohydroxides of iron to increase sorption capacity, to whom arsenic has high affinity. The work estimated sorption capacity of wood biomass adjusted by oxohydroxides of iron. The Langmuir model as well as the Freundlich model were suitable for evaluation of experimental results. Maximal sorption capacity of investigated sorbent was 9.259 mg/g, what is comparable with values published by other authors.

  18. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Directory of Open Access Journals (Sweden)

    Oskar Modin

    Full Text Available New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC per g volatile suspend solids (VSS for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  19. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems.

    Science.gov (United States)

    Luo, Jiwei; Li, Xue; Ge, Chengjun; Müller, Karin; Yu, Huamei; Huang, Peng; Li, Jiatong; Tsang, Daniel C W; Bolan, Nanthi S; Rinklebe, Jörg; Wang, Hailong

    2018-05-08

    Pollution of water by single antibiotics has been investigated in depth. However, in reality, a wide range of different contaminants is often mixed in the aquatic environment (contaminant cocktail). Here, single and competitive sorption dynamics of ionizable norfloxacin (NOR), sulfamerazine (SMR) and oxytetracycline (OTC) by both pristine and modified biochars were investigated. Sorption kinetics of the three antibiotics was faster in ternary-solute than single-solute system. Sorption efficiency was enhanced in the competitive system for NOR by the pristine biochar, and for OTC by both the pristine biochar and the modified biochar, while SMR sorption by the pristine biochar and the KOH-modified biochar was inhibited. Sorption was governed by electrostatic interactions, π-π EDA and H-bonds for antibiotics sorption by biochar. SMR and OTC sorption by biochar was influenced by cation bridging and surface complexation, respectively. This research finding will guide the development of treatment procedures for water polluted by multiple antibiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sorption of samarium in soils: influence of soil properties and Sm concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Salaberria, Aitor; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    Due to the fact that barriers of Deep Geological Repositories (DGR) may lose efficiency before the radioisotopes present in the High Level Radioactive Waste (HLRW) completely decay, it is possible that, in the long-term, radioactive leachates may escape from the DGR and reach the soil and water compartments in the biosphere. Therefore, it is required to examine the interaction and mobility of radionuclides present in the HLRW, or their chemical analogues, to predict the impact of their eventual incorporation in the biosphere and to assess the derived risk. Although relevant data have been recently obtained for a few radionuclides in soils, there are still some important gaps for some radionuclides, such us for samarium (Sm). Sm is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in HLRW in the form of the radioactive isotope {sup 151}Sm. The main objective of this work was to obtain sorption data (K{sub d}) of {sup 151}Sm gathered from a set of soil samples physicochemical fully-characterized (pH, texture, cationic exchange capacity, soil solution cationic composition, organic matter, carbonate and metallic oxides content, etc.). Additionally, as an alternative for testing sorption capacity of radionuclides in soils is the use of the corresponding stable isotope or a chemical analogue, the influence of Sm concentration was also checked. To evaluate {sup 151}Sm sorption, batch assays were carried out for each soil sample, which consisted in a pre-equilibration step of 2 g of each soil with 50 ml of double deionised water, and a subsequent equilibration step with the same solution, but labelled with {sup 151}Sm. The activity of {sup 151}Sm in initial and final solutions was measured by liquid scintillation and K{sub d} ({sup 151}Sm) data were calculated. The reversibly sorbed fraction was estimated by the application of a single extraction test, with double deionised water, to soil residues coming from the previous

  1. Sorption of per- and polyfluoroalkyl substances (PFASs) on filter media: implications for phase partitioning studies.

    Science.gov (United States)

    Chandramouli, Bharat; Benskin, Jonathan P; Hamilton, M Coreen; Cosgrove, John R

    2015-01-01

    Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are ubiquitous in the environment. Investigations into their fate and potential phase-partitioning behavior require separating solid from aqueous phases via filtration. However, sorption of aqueous-phase PFASs on filtration media may lead to underestimation of PFAS concentrations in the aqueous phase. The authors investigated the sorption of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids (PFPiAs), polyfluoroalkyl phosphate monoesters, polyfluoroalkyl phosphate diesters (diPAPs), fluorotelomer sulfonates, and perfluorooctane sulfonamide on filtration media. The effects of concentration (3 spiking levels), filter media (4 types), matrix (4 matrices), and compound structure on sorption are reported. Glass fiber filtration resulted in the least sorption, whereas polytetrafluoroethylene filters resulted in the most sorption (up to 98%). Analyte concentration had no significant effect. Sorption was generally consistent across matrix types except for samples affected by aqueous film forming foam deployment, which displayed high sorption of PFOS on nylon filters. Sorption usually increased with an increasing number of carbon or fluorine atoms and was most pronounced for PFPiAs and diPAPs (30–75% sorption). Overall, glass fiber filters are more recommended than nylon filters in environmental samples when phase separation is required. Use of filtration media for PFAS must be preceded by matrix-specific testing to account for unpredictable effects. (C)2014 SETAC

  2. Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite.

    Science.gov (United States)

    Oudou, H Chaaieri; Hansen, H C Bruun

    2002-12-01

    Sorption to mineral surfaces may be important for retention and degradation of hydrophobic pesticides in subsoils and aquifers poor in organic matter. In this work the title pyrethroids have been used to investigate selective interactions with the surfaces of four minerals. Sorption of the four pyrethroids was quantified in batch experiments with initial pyrethroid concentrations of 1-100 microg/l. Sorption to centrifuge tubes used in the batch experiments accounted for 25-60% of total sorption. Net sorption was obtained from total sorption after subtracting the amounts of pyrethroids sorbed to centrifuge tubes used. All isotherms could be fitted by the Freundlich equation with n ranging between 0.9 and 1.1. Bonding affinities per unit surface area decreased in the order: corundum > quartz > montmorillonite approximately equal kaolinite. A similar sequence as found for the total surface tension of the minerals. All minerals showed the same selectivity order with respect to sorption affinity of the four pyrethroids: lambda-cyhalothrin > deltamethrin > cypermethrin > fenvalerate, which shows that the most hydrophobic compound is sorbed most strongly. Stereochemical properties of the four pyrethroid formulations may also contribute to the selectivity pattern.

  3. U(VI) sorption on kaolinite. Effects of pH, U(VI) concentration and oxyanions

    International Nuclear Information System (INIS)

    Liang Gao; Ziqian Yang; Keliang Shi; Xuefeng Wang; Zhijun Guo; Wangsuo Wu

    2010-01-01

    U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pH PZNPC ) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite. (author)

  4. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  5. Uranium(VI) sorption on iron oxides in Hanford Site sediment: Application of a surface complexation model

    International Nuclear Information System (INIS)

    Um, Wooyong; Serne, R. Jeffrey; Brown, Christopher F.; Rod, Kenton A.

    2008-01-01

    Sorption of U(VI) on Hanford fine sand (HFS) with varying Fe-oxide (especially ferrihydrite) contents showed that U(VI) sorption increased with the incremental addition of synthetic ferrihydrite into HFS, consistent with ferrihydrite being one of the most reactive U(VI) sorbents present in natural sediments. Surface complexation model (SCM) calculations for U(VI) sorption, using only U(VI) surface-reaction constants obtained from U(VI) sorption data on freshly synthesized ferrihydrite at different pHs, were similar to the measured U(VI) sorption results on pure synthetic ferrihydrite and on HFS with high contents of ferrihydrite (5 wt%) added. However, the SCM prediction using only U(VI) sorption reactions and constants for synthetic ferrihydrite overestimated U(VI) sorption on the natural HFS or HFS with addition of low amounts of added ferrihydrite (1 wt% added). Over-predicted U(VI) sorption was attributed to reduced reactivity of natural ferrihydrite present in Hanford Site sediments, compared to freshly prepared synthetic ferrihydrite. Even though the SCM general composite (GC) approach is considered to be a semi-quantitative estimation technique for contaminant sorption, which requires systematic experimental data on the sorbent-sorbate system being studied to obtain credible SCM parameters, the general composite SCM model was still found to be a useful technique for describing U(VI) sorption on natural sediments. Based on U(VI) batch sorption results, two simple U(VI) monodentate surface species, SO U O 2 HCO 3 and SO U O 2 OH on ferrihydrite and phyllosillicate in HFS, respectively, can be successfully used to describe U(VI) sorption onto Hanford Site sediment contacting varying geochemical solutions

  6. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample.

    Science.gov (United States)

    Wang, Xilong; Guo, Xiaoying; Yang, Yu; Tao, Shu; Xing, Baoshan

    2011-03-15

    The sorption behavior of organic compounds (phenanthrene, lindane, and atrazine) to sequentially extracted humic acids and humin from a peat soil was examined. The elemental composition, XPS and (13)C NMR data of sorbents combined with sorption isotherm data of the tested compounds show that nonspecific interactions govern sorption of phenanthrene and lindane by humic substances. Their sorption is dependent on surface and bulk alkyl carbon contents of the sorbents, rather than aromatic carbon. Sorption of atrazine by these sorbents, however, is regulated by polar interactions (e.g., hydrogen bonding). Carboxylic and phenolic moieties are key components for H-bonding formation. Thermal analysis reveals that sorption of apolar (i.e., phenanthrene and lindane) and polar (i.e., atrazine) compounds by humic substances exhibit dissimilar relationships with condensation and thermal stability of sorption domains, emphasizing the major influence of domain spatial arrangement on sorption of organic compounds with distinct polarity. Results of pH-dependent sorption indicate that reduction in sorption of atrazine by the tested sorbents is more evident than phenanthrene with increasing pH, supporting the dependence of organic compound sorption on its polarity and structure. This study highlights the different interaction mechanisms of apolar and polar organic compounds with humic substances.

  7. Sorption isotherms: A review on physical bases, modeling and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France) and Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France)]. E-mail: guillaumelimousin@yahoo.fr; Gaudet, J.-P. [Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France); Charlet, L. [Laboratoire de Geophysique Interne et Techtonophysique - CNRS-IRD-LCPC-UJF-Universite de Savoie, BP 53, 38041 Grenoble Cedex (France); Szenknect, S. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Barthes, V. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Krimissa, M. [Electricite de France, Division Recherche et Developpement, Laboratoire National d' Hydraulique et d' Environnement - P78, 6 quai Watier, 78401 Chatou (France)

    2007-02-15

    The retention (or release) of a liquid compound on a solid controls the mobility of many substances in the environment and has been quantified in terms of the 'sorption isotherm'. This paper does not review the different sorption mechanisms. It presents the physical bases underlying the definition of a sorption isotherm, different empirical or mechanistic models, and details several experimental methods to acquire a sorption isotherm. For appropriate measurements and interpretations of isotherm data, this review emphasizes 4 main points: (i) the adsorption (or desorption) isotherm does not provide automatically any information about the reactions involved in the sorption phenomenon. So, mechanistic interpretations must be carefully verified. (ii) Among studies, the range of reaction times is extremely wide and this can lead to misinterpretations regarding the irreversibility of the reaction: a pseudo-hysteresis of the release compared with the retention is often observed. The comparison between the mean characteristic time of the reaction and the mean residence time of the mobile phase in the natural system allows knowing if the studied retention/release phenomenon should be considered as an instantaneous reversible, almost irreversible phenomenon, or if reaction kinetics must be taken into account. (iii) When the concentration of the retained substance is low enough, the composition of the bulk solution remains constant and a single-species isotherm is often sufficient, although it remains strongly dependent on the background medium. At higher concentrations, sorption may be driven by the competition between several species that affect the composition of the bulk solution. (iv) The measurement method has a great influence. Particularly, the background ionic medium, the solid/solution ratio and the use of flow-through or closed reactor are of major importance. The chosen method should balance easy-to-use features and representativity of the studied

  8. Characteristics of and sorption to biochars derived from waste material

    Science.gov (United States)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 waste material and exhibiting high mineral

  9. Sorption Properties of Steam Treated Wood and Plant Fibres

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Jensen, Signe Kamp; Jones, Dennis

    2003-01-01

    temperatures the behaviour was different for low/medium RH and high RH. For low/medium range RH (.... This behaviour corresponds to the reduction of the number of primary sorption sites on e.g. hemicellulose. For high range RH (> ca. 85 %) two additional mechanisms may have been active. One is the capillary sorption in micropores created as a result of the thermal degradation of cell wall matter. A second...

  10. Novel “open-sorption pipe” reactor for solar thermal energy storage

    International Nuclear Information System (INIS)

    Aydin, Devrim; Casey, Sean P.; Chen, Xiangjie; Riffat, Saffa

    2016-01-01

    Highlights: • A novel ‘open sorption pipe’ heat storage was experimentally investigated. • Effect of absolute moisture levels on heat storage performance was analyzed. • Hygrothermal-cyclic performances of Zeolite 13X and vermiculite–calcium chloride were compared. • Vermiculite–calcium chloride has more durable performance than Zeolite at 80 °C regeneration temperature. • Sorption pipe system using vermiculite–calcium chloride provides energy storage density of 290 kW h/m"3. - Abstract: In the last decade sorption heat storage systems are gaining attention due to their high energy storage density and long term heat storage potential. Sorption reactor development is vital for future progress of these systems however little has done on this topic. In this study, a novel sorption pipe reactor for solar thermal energy storage is developed and experimentally investigated to fulfill this gap. The modular heat storage system consists of sorption pipe units with an internal perforated diffuser pipe network and the sorption material filled in between. Vermiculite–calcium chloride composite material was employed as the sorbent in the reactor and its thermal performance was investigated under different inlet air humidity levels. It was found that, a fourfold increase of absolute humidity difference of air led to approximately 2.3 times boost in average power output from 313 W to 730 W and an 8.8 times boost of average exergy from 4.8 W to 42.3 W. According to the testing results, each of three sorption pipes can provide an average air temperature lift of 24.1 °C over 20 h corresponding to a system total energy storage capacity of 25.5 kW h and energy storage density of 290 kW h/m"3. Within the study, vermiculite–calcium chloride performance was also compared with the widely investigated Zeolite 13X. Vermiculite–calcium chloride showed a good cyclic ability at regeneration temperature of 80 °C with a steadier thermal performance than Zeolite

  11. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact

    International Nuclear Information System (INIS)

    Lusa, M.; Bomberg, M.; Aromaa, H.; Knuutinen, J.; Lehto, J.

    2015-01-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (K d ) values of iodide decreased as a function of sampling depth. The highest K d values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼4 and 5 and in the clay layer at pH 2. The K d values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I 2 /HIO before incorporation into the organic matter. Furthermore, the K d values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. - Highlights: • Sorption of iodide is highest on the surface Sphagnum layer of the bog. • Sterilization of peat decreases the sorption of iodide. • Anoxic conditions decrease

  12. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  13. Experimental methodology to study radionuclide sorption and migration in geological formations and engineered barriers of waste repositories; Metodologia experimental para estudios de sorcion y migracion de radionucleidos en formaciones geologicas y barreras de almacenamientos de residuos

    Energy Technology Data Exchange (ETDEWEB)

    Rojo Sanz, H.

    2010-07-01

    In Spain, the waste management options include either the possibility of a final storage in a deep geological repository (DGR) or the centralized temporal surface disposal (CTS). DGRs are based in a multi-barrier concept with the geological barrier and including the vitrified waste, the metal containers and engineered barriers such as compacted bentonite and cement-based materials. On the other hand, CTS mainly considers concrete and cement to confine the metal canisters containing the waste. Radionuclide migration will mainly take place by the existence of chemical concentration gradients being thus diffusion the main transport mechanism or by the existence of hydraulic gradients due to the existence of water-conductive fractures. Radionuclide sorption/retention on the materials composing the natural and engineered barriers is the fundamental process controlling contaminant migration. The evaluation of sorption parameters and the understanding of the different mechanisms leading to radionuclide retention are very important issues. The study of diffusion processes is very relevant as well. This paper describes the main experimental methodologies applied to analyse radionuclide transport in the different barriers of radioactive repositories. Particularly we focused on obtaining of retention parameters as distribution coefficients, kd, or retardation factors, Rf, and diffusion coefficients of radionuclides. (Author) 6 refs.

  14. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  15. Validation of water sorption-based clay prediction models for calcareous soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Moosavi, Ali

    2017-01-01

    on prediction accuracy. The soils had clay content ranging from 9 to 61% and CaCO3 from 24 to 97%. The three water sorption models considered showed a reasonably fair prediction of the clay content from water sorption at 28% relative humidity (RMSE and ME values ranging from 10.6 to 12.1 and −8.1 to −4......Soil particle size distribution (PSD), particularly the active clay fraction, mediates soil engineering, agronomic and environmental functions. The tedious and costly nature of traditional methods of determining PSD prompted the development of water sorption-based models for determining the clay...... fraction. The applicability of such models to semi-arid soils with significant amounts of calcium carbonate and/or gypsum is unknown. The objective of this study was to validate three water sorption-based clay prediction models for 30 calcareous soils from Iran and identify the effect of CaCO3...

  16. Influence of temperature on pentavalent Np Sorption and desorption onto Goethite, Montmorillonite

    International Nuclear Information System (INIS)

    Vial, M.A.; Sherman, C; Czerwinski, K.R.; Reed, D.

    2002-01-01

    Yucca Mountain Site has been selected by the United States Department of Energy as the repository for disposing the US HLW. The performance allocation analysis on a multi-barrier system for high-level radioactive waste disposal has pointed 237 Np as the dominant hazard at the inlet of the biosphere [1J. 2JNp is present in high-level radioactive wastes (HLW), although in smaller amounts in comparison to other radionuclides. Because of its long half-life of 2.14 million years and its mobile nature under aerobic conditions due to the high chemical stability of its pentavalent state, it is considered a possible long-term pollutant of the ecosystem. Understanding Np behavior is required in order to quantitatively describe its transport in surface groundwater systems. In the repository, many components are known to play an important role in Np and other actinides speciation through adsorption-, complexation-, dissolution-, precipitation- and, colloids or pseudocolloids generation reactions [1]. Inorganic Ligands (C0 3 - , OH - ), present in nearly all natural water at various degree, and organic ligands (humic acid) can react with Np and consequently affect its leachability through the formation of numerous compounds. The solubility limits of radionuclides may act as an initial barrier to radionuclide migration from the potential repository at Yucca Mountain for some radionuclides. However, once radionuclides have dissolved in water infiltrating the site, sorption of these radionuclides onto the surrounding mineral phases becomes a potentially important second barrier. The study of retardation of Np and other key actinides is of major importance in assessing the performance of the potential repository. Among the soil of interest montmorillonite and iron-based materials have generated lots of researches. Nagasaki et al. [2] recent researches on sorption equilibrium and kinetics of NpO 2 + on dispersed particles of Na-montmorillonite and Na-illite (batch experiments at p

  17. Effects of Citrate and Arginine on Sorption of Nickel to Yazd Sepiolite and Calcite

    Directory of Open Access Journals (Sweden)

    Ahmadreza Sheikhhosseini

    2017-03-01

    Full Text Available Introduction: Pollution of soil and water environment by release of heavy metals is of great concerns of the last decades. Sorption of heavy metals by low cost materials is considered as an inexpensive and efficient method used for removal of heavy metals from soil-water systems. The presence of different ligands with various complexing abilities can change the sorption properties of heavy metals and their fate in the environment as well. In order to assess the effect of citrate and arginine as natural organic ligands in soil environment, in a batch study we investigated the effects of these ligands on equilibrium sorption of nickel to sepiolite and calcite minerals and also kinetics of Ni sorption by these minerals. Materials and Methods: Minerals used in this study included sepiolite from Yazd (Iran and pure calcite (Analytical grade, Merck, Germany. Sepiolite was purified, saturated with Ca using 0.5 M CaCl2, powdered in a mortar and sieved by non-metal 230 mesh standard wire sieve. For equilibrium sorption study, in a 50-mL polyethylene centrifuge tube,0.3 g sample of each mineral was suspended in 30 mL of a 0.01 M CaCl2 solution containing 0, 5, 10, 20, 40, 60, 80 and 100 mg L-1 Ni (NiCl2 and containing zero (as control or 0.1mmol L-1 citrate or arginine ligands. The applied concentrationsfor each ligand can naturally occur in soils. Preparedtubes were shaken (180±2 rpm, 25±1oC for 24 h using an orbital shaker and centrifuged (4000×g for 10 min and the supernatants were analyzed for Ni concentration using an atomic absorption spectrophotometer (AAnalyst 200 Perkin-Elmer at a wavelength of 232 nm and a detection limit of 0.05 mg L-1. The quantity of Ni retained by each mineral at equilibrium was calculated using equation qe = (Ci - CeV/W where qe was the amount of nickel retained by mineral surface at equilibrium. Ci and Ce were the initial and the equilibrium concentrations (mg L-1 of Ni, respectively, V was the volume (L of the solution

  18. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils.

    Science.gov (United States)

    Baskaran, S; Kennedy, I R

    1999-11-01

    The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.

  19. Investigation of sorption of Hg(II) ions onto coconut husk from aqueous solution using radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Hasany, S.M.; Ahmad, R.; Chaudhary, M.H. [Nuclear Chemistry Div., Pakistan Inst. of Nuclear Science and Technology, Islamabad (Pakistan)

    2003-07-01

    The sorption of Hg(II) ions onto coconut (Cocos nucifera) husk has been studied using radiotracer technique. Maximum sorption (96%) of Hg(II) ions (7.39 x 10{sup -6} M) onto sorbent surface is achieved from 10{sup -3} M HNO{sub 3} solution in 30 min agitation time using 100 mg of coconut husk. The sorption data follow the Freundlich and Dubinin-Radushkevich (D-R) isotherms. Sorption capacity (6.84{+-}0.45 mmol g{sup -1}) and sorption energy (10.6{+-}0.13 kJ mol{sup -1}) have been evaluated using these isotherms. Among the ions tested to monitor their influence on the sorption, Ba(II), fluoride and tartarate increased the sorption, while thiosulfate, bromide and thiocyanate reduced (< 63 > 26%) the sorption. The cations K(I), Ce(III), Cr(III), Fe(III) and Zr(IV) partially suppressed the sorption. The variation of sorption with temperature yields thermodynamic parameters {delta}H = -37.4{+-}2 kJ mol{sup -1} {delta}S = -105{+-}7 J mol{sup -1} K{sup -1} and {delta}G = -2.58{+-}0.05 kJ mol{sup -1} at 298 K. The negative values of enthalpy and free energy reflect the spontaneous and exothermic nature of sorption, respectively. The selectivity studies of sorbent show that the coconut husk column can be used to separate Hg(II) ions from Se(IV), Zn(II), I(I) and Tc (VII). The sorbent has a potential in radiochemistry to separate gamma energies of {sup 203}Hg (279 keV) from {sup 75}Se (265 and 280 keV). (orig.)

  20. Investigation of sorption of Hg(II) ions onto coconut husk from aqueous solution using radiotracer technique

    International Nuclear Information System (INIS)

    Hasany, S.M.; Ahmad, R.; Chaudhary, M.H.

    2003-01-01

    The sorption of Hg(II) ions onto coconut (Cocos nucifera) husk has been studied using radiotracer technique. Maximum sorption (96%) of Hg(II) ions (7.39 x 10 -6 M) onto sorbent surface is achieved from 10 -3 M HNO 3 solution in 30 min agitation time using 100 mg of coconut husk. The sorption data follow the Freundlich and Dubinin-Radushkevich (D-R) isotherms. Sorption capacity (6.84±0.45 mmol g -1 ) and sorption energy (10.6±0.13 kJ mol -1 ) have been evaluated using these isotherms. Among the ions tested to monitor their influence on the sorption, Ba(II), fluoride and tartarate increased the sorption, while thiosulfate, bromide and thiocyanate reduced ( 26%) the sorption. The cations K(I), Ce(III), Cr(III), Fe(III) and Zr(IV) partially suppressed the sorption. The variation of sorption with temperature yields thermodynamic parameters ΔH = -37.4±2 kJ mol -1 ΔS = -105±7 J mol -1 K -1 and ΔG = -2.58±0.05 kJ mol -1 at 298 K. The negative values of enthalpy and free energy reflect the spontaneous and exothermic nature of sorption, respectively. The selectivity studies of sorbent show that the coconut husk column can be used to separate Hg(II) ions from Se(IV), Zn(II), I(I) and Tc (VII). The sorbent has a potential in radiochemistry to separate gamma energies of 203 Hg (279 keV) from 75 Se (265 and 280 keV). (orig.)

  1. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...... intermittently. For one of the materials, aerated concrete, the sorption curves are determined at three different temperatures....

  2. Surface complexation modelling: Experiments on sorption of nickel on quartz, goethite and kaolinite and preliminary tests on sorption of thorium on quartz

    Energy Technology Data Exchange (ETDEWEB)

    Puukko, E.; Hakanen, M. [Univ. of Helsinki (Finland). Dept. of Chemistry. Lab. of Radiochemistry

    1997-09-01

    The aim of the work was to study the sorption behaviour of Ni on quartz, goethite and kaolinite at different pH levels and in different electrolyte solutions of different strength. In addition preliminary experiments were made to study the sorption of thorium on quartz. The MUS quartz and Nilsiae quartz were analysed for MnO{sub 2} by neutron activation analysis (NAA) and the experimental results were modelled with the HYDRAQL computer model. 9 refs.

  3. Sorption of organic water pollutants on dead vegetable biomass; Sorption organischer Wasserschadstoffe an abgestorbene pflanzliche Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kraeuter, A.

    2001-03-01

    Hemp-derived biological sorption agents were produced, and their physical, chemical and sorptive characteristics were tested in batch and filter tests. The experiments were accompanied by model calculations. In the natural state, the sorption agents had a kation exchange capacity of 0.1-0.3 mmol/g, modified sorption agents had about 2 mmol/g. Kationized hemp had values of 0.34 mmol/g and thermally modified hemp absorption agents absorbed more than 1.2 mmol/g of dichlorophenol. In the case of a liquid effluent from a textile dyeing plant, only a discoloration effect was achieved. The absorption agents can be regenerated, combusted or composted after use. [German] Im Rahmen dieser Arbeit wurden naturbelassene und modifizierte Billig-Biosorbentien aus Hanfschaeben zur Entfernung organischer Schadstoffe aus Waessern hergestellt und ihre physikalischen, chemischen und sorptiven Eigenschaften in Batch- und Filterversuchen untersucht. Wegen der Komplexheit des Systems ''Biosorption organischer Wasserschadstoffe'' wurden die ermittelten Sorptionsisothermen mit den Ansaetzen nach Langmuir und Freundlich beschrieben. Die Sorptionskinetik und das Durchbruchsverhalten wurde ebenfalls mit einfachen Ansaetzen modelliert. Naturbelassene Hanfschaeben erreichten Kationenaustauschkapazitaeten von 0,1-0,3 mmol/g, entsprechend modifizierte Hanfschaeben ca. 2 mmol/g. Kationisierte Hanfschaeben dagegen erreichten Anionenaustauschkapazitaeten von 0,34 mmol/g und thermisch modifizierte Hanfschaeben sorbierten bis ueber 1,2 mmol/g Dichlorphenol. Bei der Behandlung eines Abwassers aus einer Textilfaerberei beschraenkte sich die Reinigungsleistung der hergestellten Biosorbentien auf eine Entfaerbung. Nach Schadstoffbeladung koennen die Hanfschaeben regeneriert, thermisch verwertet oder kompostiert werden. (orig.)

  4. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Review of the sorption of actinides on natural minerals

    International Nuclear Information System (INIS)

    Beall, G.W.

    1981-01-01

    Over the past few years, a large body of data concerning sorption of actinides on geologic media has been built in connection with high-level-waste disposal. The primary aim of the work has been to allow predictions of the migration behavior of these radionuclides in the case of a breach of the repository that allowed groundwater flow through the repository. As a result of this work, some new backfill materials specifically tailored for the actinides have also been designed. Several major mechanisms of sorption that appear to dominate the sorption of actinides have emerged from these studies. These mechanisms can be divided into solution reactions dominated by hydrolysis, chemisorption reactions, and oxidation-reduction reactions. Each of these mechanisms will be discussed in detail, with experimental examples. Surprisingly, one mechanism, cation exchange, does not play an important role; why it fails to operate in any significant way in the environmental pH region will be discussed. The implications of the sorption mechanisms for waste forms and backfill materials will be discussed in detail. These discussions will center primarily around the valence state of the actinide in various waste forms and the effect of various anions on leachability from waste forms and backfill materials

  6. INAA study of sorption U from technological solution by different microorganisms

    International Nuclear Information System (INIS)

    Mukhamedshina, N.M.; Mirsagatova, A.A.; Bekmukhamedova, N.K.; Khamidova, Kh.M.; Rakhimova, M.S.

    2004-01-01

    Full text: The capacity of microorganisms to accumulate metal ions can be used for the extraction of metals from technological solutions. The aim of this INAA study is to investigate the extraction U from technological solutions by different microorganisms- actinomycetes, Aspergillus niger and Acremonium sp10 cultures and to search more effective biosorbents of U among them. INAA is more available and cheap method for us also it has high enough sensitivity and allows to avoid exposing the bacteria to radioactive metals. Atomic absorptive analyzer is more suitable for the determination of impurities in solutions, but it is expensive and not available for us. Biomasses of microorganisms (1 g of each) were tested for their U sorption capacity from a technological solution of U-production, containing 71.1 mg/l ions U (initial solution diluted 10 times). The interaction between biomass and solutions lasted for 15 min. The flask with the solution was placed on a horizontal shaker (180 rpm) for 15 min and was then centrifuged. Then the amount U not sorted by the microorganisms was measured from the over-sedimentary solution (decantation). After sorption, 0.1 ml aliquots of the decantation were dropped on strips of ash free filter paper. The strips (samples) were dried, wrapped in the aluminum packets and placed in a container for irradiation in nuclear reactor. The U samples were irradiated for 5 at the fission neutron flux density of 5.3·10 13 cm -2 s -1 . The U content was calculated from the gamma-line (228.2 keV, 277.8 keV) intensities of radionuclide 239Np Uncertainty the U determining (relative standard deviation) was 2-3 %. Is shown, that the most effective sorbents of U from technological solutions are some strains of actinomycetes (98,0%) and microscopical fungus Acremonium sp10 (98, 3%).The optimal temperature solution was from of 23.5 o to 42.0 o and optimal pH was 8,3

  7. Sorption of tritium and tritiated water on construction materials

    International Nuclear Information System (INIS)

    Dickson, R.S.; Miller, J.M.

    1991-11-01

    Sorption and desorption of tritium (HT) and tritiated water (HTO) on materials to be used in the construction of fusion facilities were studied. In ∼ 24-hour exposures in argon or room air, metal samples sorbed 8-200 μCi/m 2 of tritium from atmospheres of 5-9 Ci/m 3 HT, and non-metallic samples sorbed 60-800 μCi/m 2 from atmospheres of 14 Ci/m 3 HT. Sorption of HTO varied much more widely than HT sorption for different samples, ranging from 4 μCi/m 2 for glass to 1,300,000 μCi/m 2 for concrete samples, in 24-hour exposures to 1 Ci/m 3 HTO in room air. Time dependence of desorption in dry air showed a rapid initial process and a slower secondary process. (Author) (10 refs., 4 figs., 2 tabs.)

  8. The sorption behavior of DDT onto sediment in the presence of surfactant cetyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Cao Xiaoyan; Han Huayu; Yang Guipeng; Gong Xiaofei; Jing Jianning

    2011-01-01

    Highlights: → The sorption behavior of a complex system consists of DDT and CTAB onto marine sediment was studied. → Batch experiments were carried out to investigate the kinetics and thermodynamics. → The presence of CTAB could remarkably accelerate and enhance the sorption of DDT. → The sorption of DDT had relatively more negative ΔG 0 and ΔH 0 in the presence of CTAB. - Abstract: The sorption behavior of p,p'- and o,p'-dichlorodiphenyltrichloroethane (DDT) in the presence of a cationic surfactant cetyltrimethylammonium bromide (CTAB) on sediment was studied. Batch experiments were carried out to investigate the kinetics and thermodynamics of the process. The kinetic behavior of these three chemicals on sediment was described by pseudo-second-order kinetic equations, and the isotherms followed the Freundlich model well. The presence of CTAB was able to remarkably accelerate and enhance the sorption of DDT, whereas DDT showed no effect on the sorption of CTAB in our considered concentration ranges. The thermodynamic parameters, such as standard enthalpy change (ΔH 0 ), standard entropy change (ΔS 0 ) and standard Gibbs free energy change (ΔG 0 ) showed that the sorption process of p,p'- and o,p'-DDT was physical, spontaneous and exothermic, and the randomness at the solid-liquid interface increased during the process. In the presence of CTAB, the sorption of DDT showed significantly negative ΔG 0 and ΔH 0 values.

  9. Neptunium(V) sorption on quartz and albite in aqueous suspension

    International Nuclear Information System (INIS)

    Kohler, M.; Leckie, J.O.

    1991-10-01

    The behavior of neptunium in the subsurface environment is of interest since neptunium isotopes are included in nuclear waste. Previous work investigated the sorption behavior of Np onto α-Fe 2 O 3 (hematite), an accessory mineral of the Yucca Mountain repository. The work reported herein involves the much more abundant silicate minerals quartz and albite, and is a logical continuation of the ongoing task. In previous work increased sorption was observed in systems containing hematite and EDTA, a ligand which acts as a surrogate for organic complexing agents. In addition, increased partial pressures of CO 2 are common in many ground waters and the effects of carbonate on sorption of radionuclides have to be studied as well. At concentration levels of 10 -7 M, Np(V) does not adsorb strongly on quartz and albite up to pH values of approximately 9 at solid/solution ratios of 30 to 40 g/l. Significant adsorption (> 20%) occurs on both minerals only at pH > 9. Pretreatment of albite affects the sorption behavior of this mineral at pH > 9, possibly due to the formation of secondary mineral phases at the albite surface. EDTA does not adsorb on quartz at concentrations of 10 -6 M. In the presence of 50 μM EDTA, Np(V) sorption seems to be restricted. EDTA at the 10 -6 M level adsorbs onto albite to an appreciable degree at pH values 3 - is the predominant solution species

  10. Solar-aided air conditioning through sorption. Final report. Phase 2; Solar unterstuetzte Klimatisierung ueber Sorption. Endbericht zur Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Laevemann, E; Kessling, W; Peltzer, M

    1996-09-24

    The present article reports on possibilities of using solar energy for cooling buildings. It contains the following chapters: Current state of research and development; room air conditioning; planning and results of the studies; theory; experimental studies on the sorption dehumidifier; development of exchange surfaces; development of solution distributors; cooling of exchange surfaces; construction of a sorption dehumidifier. (HW) [Deutsch] Die Arbeit berichtet ueber Moeglichkeiten der Anwendung von Solarenergie zur Kuehlung von Gebaeuden. Die Arbeit enthaelt folgende Kapitel: - Stand der Forschung und Entwicklung - Raumklimatisierung - Planung und Ergebnis der Untersuchungen - Theorie - Experimentelle Untersuchungen am Sorptionsentfeuchter - Entwicklung von Austauschflaechen - Entwicklung von Loesungsverteilern - Kuehlung von Austauschflaechen - Konstruktion eines Sorptionsentfeuchters. (HW)

  11. Sorption, Diffusion and Solubility Databases for Performance Assessment

    International Nuclear Information System (INIS)

    Garcia Gutierrez, M.

    2000-01-01

    This report presents a deterministic and probabilistic databases for application in Performance Assessment of a high-level radioactive waste disposal. This work includes a theoretical description of sorption, diffusion and solubility phenomena of radionuclides in geological media. The report presents and compares the databases of different nuclear wastes management agencies, describes the materials in the Spanish reference system, and the results of sorption diffusion and solubility in this system, with both the deterministic and probabilistic approximation. The probabilistic approximation is presented in the form of probability density functions (pdf). (Author) 52 refs

  12. Noble metal extraction and sorption concentrating

    International Nuclear Information System (INIS)

    Petrukhin, O.M.; Malofeeva, G.I.

    1985-01-01

    Works performed in the USSR Academy of Sciences GEOCHI laboratory of extraction methods and devoted to selectivity problems of extraction and sorption methods of platinum metal, cadmium and indium concentrating in analytical chemistry are discussed. On choosing complexino. reagent main attention is paid to the selectivity variation based on different stability of metal complexes. Platinum metals are extracted in the form of ion associates when usinq hard, mainly oxyqen-containing, extractants. Coordination-solvated metal complexes are extracted white usinq extractants containing sulfur, trivalent phosphorus and aromatic nitroqen as donor anions. Selectivity is maximum for sulfur- and nitroren-containinq extractants and sorbents. In case of the group extraction of platinum metals sorption is preferable and in case of selective extraction of individual metals, especially, in case of need of relative concentratinq extraction is preferable

  13. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    2015-12-15

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  14. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    International Nuclear Information System (INIS)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L.

    2015-01-01

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  15. Analysis of sorption into single ODS-silica gel microparticles in acetonitrile-water.

    Science.gov (United States)

    Nakatani, Kiyoharu; Kakizaki, Hiroshi

    2003-08-01

    Intraparticle mass transfer processes of Phenol Blue (PB) in single octadecylsilyl (ODS)-silica gel microparticles in acetonitrile-water were analyzed by microcapillary manipulation and microabsorption methods. An absorption maximum of PB, the sorption isotherm parameters, and the sorption rate in the microparticle system were highly dependent on the percentage of acetonitrile in solution. The results are discussed in terms of the microscopic polarity surrounding PB in the ODS phase and the relationship between the isotherm parameters and the sorption rate.

  16. Influence of the temperature in the uranium (Vi) sorption in zirconium diphosphate

    International Nuclear Information System (INIS)

    Garcia G, N.; Solis, D.; Ordonez R, E.

    2012-10-01

    In the present work was evaluated the uranium (Vi) sorption at 10, 20, 30, 40 and 60 C on the zirconium diphosphate (ZrP 2 O 7 ). They were carried out kinetic and isotherms using the method by lots, these will allow to fix the sorption time (kinetic) and to explain the behavior of this sorption in different ph conditions and temperature (isotherm). The quantity of retained uranium in the surface was quantified by means of the fluorescence technique. (Author)

  17. Sorption of uranyl ions on silica. Effects of contact time, pH, ionic strength, concentration and phosphate

    International Nuclear Information System (INIS)

    Zhang Hongxia; Tao Zuyi

    2002-01-01

    The sorption of UO 2 2+ and phosphate on silica were simultaneously studied. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the UO 2 2+ sorption in the absence and the presence of phosphate was investigated. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the phosphate sorption was investigated too. The isotherms of UO 2 2+ and phosphate sorption at different pH values were determined. It was found that as compared with the sorption in the absence of phosphate, the sorption of UO 2 2+ on silica in the presence of phosphate is increased at low pH and decreased at high pH; the abruptly increased with increasing pH in the pH range 3-6; the sorption is gradually decreased with increasing pH in the pH range 2-12; the sorption insensitive and the sorption of phosphate is sensitive to ionic strength. (author)

  18. Far Field Sorption Data Bases for Performance Assessment of a High-Level Radioactive Waste Repository in an Undisturbed Opalinus Clay Host Rock

    International Nuclear Information System (INIS)

    Bradburry, M.; Baeyens, B.

    2003-08-01

    An Opalinus Clay formation in the Zuercher Weinland is under consideration by Nagra as a potential location for a high-level and long-Iived intermediate-level radioactive waste repository. Performance assessment studies will be performed for this site and the purpose of this report is to describe the procedures used to develop sorption data bases appropriate for an undisturbed Opalinus Clay host rock which are required for such safety analysis calculations. In tight, low water content argillaceous rock formations such as Opalinus Clay, there is uncertainty concerning the in situ pH/P CO 2 . In order to take this intrinsic uncertainty into account porewater chemistries were calculated for a reference case, pH = 7.24, and for two other pH values, 6.3 and 7.8. Sorption data bases are given for the three cases. The basis for the sorption data bases is 'in-house' sorption measurements for Cs(I), Sr(II), Ni(II), Eu(III), Sn(IV), Se(IV), Th(IV) and I(-I) carried out on Opalinus Clay samples from Mont Terri (Canton Jura) since at the time the experiments were performed no core samples from the Benken borehole (Zuercher Weinland) were available. The Opalinus Clay at Mont Terri and Benken are part of the same geological formation . Despite having directly measured data for the above key radionuclides, some of the required distribution ratios (Rd) used to generate the sorption data bases still came from the open literature. An important part of this report is concerned with describing the procedures whereby these selected literature Rd values were modified so as to apply to the Benken Opalinus Clay mineralogy and groundwater chemistries calculated at the three pH values given above. The resulting Rd values were then further modified using so-called Lab→Field transfer factors to produce sorption values which were appropriate to the in situ bulk rock for the selected range of water chemistry conditions. Finally, it is important to have some appreciation of the uncertainties

  19. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  20. Kinetics and equilibrium modeling of uranium(VI) sorption by bituminous shale from aqueous solution

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2014-01-01

    Highlights: • Oil shales are sedimentary rocks containing a polymeric matter in a mineral matrix. • Sorption potential of bituminous shale (BS) for uranium recovery was investigated. • U(VI) sorption increased with decreasing pH and increasing temperature. • Kinetic data were analyzed based on single and two resistance diffusion models. • The results fit well to the McKay equation assuming film and intraparticle diffusion. - Abstract: Sorption of U(VI) onto a bituminous shale (BS) from a nuclear power plant project site in Black Sea region was investigated for potential risk assessment when it releases into the environment with contaminated ground and surface water. The sorption characteristics of the BS for U(VI) recovery were evaluated as a function of contact time, adsorbent dosage, initial concentration, pH and temperature. Kinetic results fit better with pseudo-second-order model rather than pseudo-first-order. The possibility of diffusion process was analyzed based on Weber–Morris intra-particle diffusion model. The McKay equation assuming film- and intraparticle diffusion better predicted the data than the Vermeulen approximation presuming surface diffusion. Equilibrium sorption data were modeled according to the Langmuir, Dubinin–Radushkevich (D–R) and Freundlich isotherm equations. Sorption capacity increased from 0.10 to 0.15 mmol g −1 in 298–318 K temperature range. FT-IR analysis and pH dependent sorption studies conducted in hydroxide and carbonate media revealed that U(VI) species were sorbed in uranyl and its hydroxo forms on the BS. Desorption studies showed that U(VI) leaching with Black Sea water was negligible from the loaded BS. The activation parameters (E a , ΔH ∗ and ΔG ∗ ) estimated from diffusion coefficients indicated the presence of an energy barrier in the sorption system. However, thermodynamic functions derived from sorption equilibrium constants showed that overall sorption process was spontaneous in nature