WorldWideScience

Sample records for sorption reaching equilibrium

  1. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  2. Sorption separation of Eu and As from single-component systems by Fe-modified biochar. Kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Fristak, Vladimir; Soja, Gerhard; Michalekova-Richveisova, Barbora; Pipiska, Martin; Viglasova, Eva; Galambos, Michal; Duriska, Libor; Moreno-Jimenez, Eduardo

    2017-01-01

    The utilization of carbonaceous materials in separation processes of radionuclides, heavy metals and metalloids represents a burning issue in environmental and waste management. The main objective of this study was to characterize the effect of chemical modification of corncob-derived biochar by Fe-impregnations on sorption efficiency of Eu and As as a model compounds of cationic lanthanides and anionic metalloids. The biochar sample produced in slow pyrolysis process at 500 C before (BC) and after (IBC) impregnation process was characterized by elemental, FTIR, SEM-EDX analysis to confirm the effectiveness of Fe-impregnation process. The basic physico-chemical properties showed differences in surface area and pH values of BC- and IBC-derived sorbents. Sorption processes of Eu and As by BC and IBC were characterized as a time- and initial concentration of sorbate-dependent processes. The sorption equilibrium was reached for both sorbates in 24 h of contact time. Batch equilibrium experiments revealed the increased maximum sorption capacities (Q max ) of IBC for As about more than 20 times (Q max BC 0.11 and Q max IBC 2.26 mg g -1 ). Our study confirmed negligible effect of Fe-impregnation on sorption capacity of biochar for Eu (Q max BC 0.89 and Q max IBC 0.98 mg g -1 ). The iron-impregnation of biochar-derived sorbents can be utilized as a valuable treatment method to produce stable and more effective sorption materials for various xenobiotics separation from liquid wastes and aqueous solutions.

  3. Sorption separation of Eu and As from single-component systems by Fe-modified biochar. Kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Fristak, Vladimir; Soja, Gerhard [Austrian Institute of Technology GmbH, Tulln (Austria). Energy Dept. Environmental Resources and Technologies; Michalekova-Richveisova, Barbora; Pipiska, Martin [Trnava Univ. (Slovakia). Dept. of Chemistry; Viglasova, Eva; Galambos, Michal [Comenius Univ., Bratislava (Slovakia). Dept. of Inorganic Chemistry; Duriska, Libor [Slovak Univ. of Technology in Bratislava, Trnava (Slovakia). Faculty of Materials Science and Technology; Moreno-Jimenez, Eduardo [Univ. Autonoma de Madrid (Spain). Dept. de Quimica Agricola y Bromatologia

    2017-03-15

    The utilization of carbonaceous materials in separation processes of radionuclides, heavy metals and metalloids represents a burning issue in environmental and waste management. The main objective of this study was to characterize the effect of chemical modification of corncob-derived biochar by Fe-impregnations on sorption efficiency of Eu and As as a model compounds of cationic lanthanides and anionic metalloids. The biochar sample produced in slow pyrolysis process at 500 C before (BC) and after (IBC) impregnation process was characterized by elemental, FTIR, SEM-EDX analysis to confirm the effectiveness of Fe-impregnation process. The basic physico-chemical properties showed differences in surface area and pH values of BC- and IBC-derived sorbents. Sorption processes of Eu and As by BC and IBC were characterized as a time- and initial concentration of sorbate-dependent processes. The sorption equilibrium was reached for both sorbates in 24 h of contact time. Batch equilibrium experiments revealed the increased maximum sorption capacities (Q{sub max}) of IBC for As about more than 20 times (Q{sub max} BC 0.11 and Q{sub max} IBC 2.26 mg g{sup -1}). Our study confirmed negligible effect of Fe-impregnation on sorption capacity of biochar for Eu (Q{sub max} BC 0.89 and Q{sub max} IBC 0.98 mg g{sup -1}). The iron-impregnation of biochar-derived sorbents can be utilized as a valuable treatment method to produce stable and more effective sorption materials for various xenobiotics separation from liquid wastes and aqueous solutions.

  4. Acceptability of inversely-modelled parameters for non-equilibrium sorption of pesticides in soil

    NARCIS (Netherlands)

    Horst, ter M.M.S.; Boesten, J.J.T.I.; Beinum, van W.; Beulke, S.

    2013-01-01

    Simulation of the increase of sorption in time is one of the options in higher tiers of pesticide regulatory leaching assessments to obtain more realistic leaching estimates. Therefore, accurate estimates of non-equilibrium sorption parameters are required as input for the pesticide leaching

  5. Kinetic and equilibrium study for the sorption of Pb(II) ions from ...

    African Journals Online (AJOL)

    Kinetic and equilibrium study for the sorption of Pb(II) ions from aqueous phase by water hyacinth ( Eichhornia crassipes ) ... Bulletin of the Chemical Society of Ethiopia ... Abstract. This paper reports the kinetic and equilibrium studies of Eichhornia crassipes root biomass as a biosorbent for Pb(II) ions from aqueous system.

  6. Equilibrium sorption of cobalt, cesium, and strontium on Bandelier Tuff: analysis of alternative mathematical modeling

    International Nuclear Information System (INIS)

    Polzer, W.L.; Fuentes, H.R.; Essington, E.H.; Roensch, F.R.

    1985-01-01

    Sorption isotherms are derived from batch equilibrium data for cobalt, cesium and strontium on Bandelier Tuff. Experiments were conducted at an average temperature of 23 0 C and equilibrium was defined at 48 hours. The solute concentrations ranged from 0 to 500 mg/L. The radioactive isotopes 60 Co, 137 Cs, and 85 Sr were used to trace the sorption of the stable solutes. The Linear, Langmuir, Freundlich and a Modified Freundlich isotherm equations are evaluated. The Modified Freundlich isotherm equation is validated as a preferred general mathematical tool for representing the sorption of the three solutes. The empirical constants derived from the Modified Freundlich isotherm equation indicate that under dynamic flow conditions strontium will move most rapidly and cobalt least rapidly. On the other hand, chemical dispersion will be greatest for cesium and least for strontium. Hill Plots of the sorption data suggest that in the region of low saturation sorption of all three solutes is impeded by interactions among sorption sites; cobalt exhibits the greatest effect of interactions and strontium shows only a minimal effect. In the saturation region of 50% or more, sorption of cobalt is enhanced slightly by interactions among sorption sites whereas sorption of cesium and strontium appears to be independent of site interactions. 9 references, 4 figures, 2 tables

  7. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    Science.gov (United States)

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  8. Equilibriums of sorption of impurities of 3 d - cations by inorganic sorbents from phosphate and arsenate solutions

    International Nuclear Information System (INIS)

    Filatova, L.N.; Kurdyumova, T.N.; Bagrov, V.M.; Blyum, G.Z.

    1986-01-01

    Present article is devoted to equilibriums of sorption of impurities of 3 d - cations by inorganic sorbents from phosphate and arsenate solutions. Equilibriums of sorption of microquantities of iron, scandium, zink, copper, cobalt and manganese by inorganic sorbents on the basis of titanium and aluminium oxides from phosphate and arsenate solutions are studied. The influence of structural and chemical properties of matrix on sorption properties of oxides in phosphate and arsenate solutions is studied as well. It is defined that in concentrated solutions the sorption value of trace contaminant depends on a character of cation of alkaline metal.

  9. Study of sorption properties of nickel on chitosan; Studium sorpcnych vlastnosti niklu na chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pivarciova, L; Rosskopfova, O; Galambos, M [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Sorption of nickel on the selected sorbent was studied by a batch method. The effect of contact time and pH to reach sorption equilibrium was studied. During sorption of Ni{sup 2+} ions there proceed predominantly ion-exchange reactions on its surface. Time to reach sorption equilibrium of nickel on chitosan was 14 hours. Sorption percentage after 14 hours reached a value of 84 %. Solutions with starting pH value between 3.9 and 8.1 were used for sorption of nickel. A sorption of nickel on chitosan was > 97% in monitored interval of pH after 24 hours of contact . At an initial pH from 3.9 to 6.4 was the final pH 6.6 due to protonisation of amino groups. A pH value was 6.4 after sorption of 7.1. Sorption of nickel is reduced by increasing of concentrations of Ni{sup 2+} ions in the solution. Langmuir isotherm was used for interpretation of nickel sorption on chitosan. A maximum sorption capacity for chitosan was 2,67 {center_dot} 10{sup -3} mol/g{sup -}1. (authors)

  10. Kinetic and equilibrium characteristics of sorption of saponin of Quillaja Saponaria Molina on chitosan

    Science.gov (United States)

    Mironenko, N. V.; Smuseva, S. O.; Brezhneva, T. A.; Selemenev, V. F.

    2016-12-01

    The equilibrium and kinetic curves of the sorption of saponin of Quillaja saponaria molina on chitosan were analyzed. The inner diffusion was found to be limiting, and its coefficients were calculated. It was found that the form of the curves of the sorption isotherms of saponin is determined by the competing processes of association in solution and absorption by chitosan.

  11. Sorption of benzothiazoles onto sandy aquifer material under equilibrium and nonequlibrium conditions

    Directory of Open Access Journals (Sweden)

    Kragulj Marijana M.

    2014-01-01

    Full Text Available In this study, the sorption behaviour of 1,3-benzothiazole (BT and 2-(methylthiobenzothiazole (MTBT was investigated on Danube geosorbent under equilibrium and nonequilibrium conditions. All sorption isotherms fitted well with the Freundlich model (R2=0.932-0.993. The results showed that organic matter of the Danube geosorbent has a higher sorption affinity for the more hydrophobic MTBT compared to BT. However, sorption-desorption experiments showed that MTBT was more easily desorbed than BT molecules, which indicates the importance of absorption relative to adsorption in the overall sorption mechanism of MTBT. In general, molecules of BT and MTBT were more easily desorbed in the lower concentration range, which resulted in an increase in the hysteresis indices with increasing concentrations. Column experiments revealed that retention of the investigated compounds on the aquifer material followed the compound’s hydrophobicity. BT showed a lower retention, in accordance with its lower sorption affinity obtained in the static experiments, while MTBT showed a greater sorption affinity, and thus had a longer retention time on the column. Thus during transport BT represent greater risk for groundwaters than MTBT. These results have increased our understanding of benzothiazoles sorption and desorption process which represent one of the most important factors which influence the behaviour of organic compounds in the environment.

  12. Kinetics and equilibrium modeling of uranium(VI) sorption by bituminous shale from aqueous solution

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2014-01-01

    Highlights: • Oil shales are sedimentary rocks containing a polymeric matter in a mineral matrix. • Sorption potential of bituminous shale (BS) for uranium recovery was investigated. • U(VI) sorption increased with decreasing pH and increasing temperature. • Kinetic data were analyzed based on single and two resistance diffusion models. • The results fit well to the McKay equation assuming film and intraparticle diffusion. - Abstract: Sorption of U(VI) onto a bituminous shale (BS) from a nuclear power plant project site in Black Sea region was investigated for potential risk assessment when it releases into the environment with contaminated ground and surface water. The sorption characteristics of the BS for U(VI) recovery were evaluated as a function of contact time, adsorbent dosage, initial concentration, pH and temperature. Kinetic results fit better with pseudo-second-order model rather than pseudo-first-order. The possibility of diffusion process was analyzed based on Weber–Morris intra-particle diffusion model. The McKay equation assuming film- and intraparticle diffusion better predicted the data than the Vermeulen approximation presuming surface diffusion. Equilibrium sorption data were modeled according to the Langmuir, Dubinin–Radushkevich (D–R) and Freundlich isotherm equations. Sorption capacity increased from 0.10 to 0.15 mmol g −1 in 298–318 K temperature range. FT-IR analysis and pH dependent sorption studies conducted in hydroxide and carbonate media revealed that U(VI) species were sorbed in uranyl and its hydroxo forms on the BS. Desorption studies showed that U(VI) leaching with Black Sea water was negligible from the loaded BS. The activation parameters (E a , ΔH ∗ and ΔG ∗ ) estimated from diffusion coefficients indicated the presence of an energy barrier in the sorption system. However, thermodynamic functions derived from sorption equilibrium constants showed that overall sorption process was spontaneous in nature

  13. Equilibrium modeling of mono and binary sorption of Cu(II and Zn(II onto chitosan gel beads

    Directory of Open Access Journals (Sweden)

    Nastaj Józef

    2016-12-01

    Full Text Available The objective of the work are in-depth experimental studies of Cu(II and Zn(II ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II and Zn(II ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II and Zn(II ions (1:1, 1:2, 2:1. Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.

  14. Kinetics and equilibrium studies for sorption of Cu (II) and Cr (VI) ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The sorption behavior of Cu (II) and Cr (VI) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, complexing agent concentration, resin weight and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu (II) and Cr (VI) onto polymeric composite resins. The equilibrium data could be fitted by the frendlich adsorption isotherm equation

  15. Equilibrium and kinetic studies of Pb(II, Cd(II and Zn(II sorption by Lagenaria vulgaris shell

    Directory of Open Access Journals (Sweden)

    Mitić-Stojanović Dragana-Linda

    2012-01-01

    Full Text Available The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II, Cd(II and Zn(II sorption equilibrium (when 98% of initial metal ions were sorbed was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil’s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II, cadmium(II and zinc(II ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99. Maximal sorption capacities of LVB for Pb(II, Cd(II and Zn(II at 25.0±0.5°C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.

  16. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Huelya [Forensic Medicine Foundation, Nasuhpasa Bath Street, No. 12, 16010 Heykel, Bursa (Turkey)]. E-mail: hkoyuncu@yyu.edu.tr; Kul, Ali Riza [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: alirizakul@yyu.edu.tr; Yildiz, Nuray [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: nyildiz@eng.ankara.edu.tr; Calimli, Ayla [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: calimli@eng.ankara.edu.tr; Ceylan, Hasan [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: hceylan@yyu.edu.tr

    2007-03-06

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy ({delta}G), the enthalpy ({delta}H) and the entropy change of sorption ({delta}S) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k {sub a} and k {sub d}) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K {sub geo} (k {sub a}/k {sub d}) from geometric approach.

  17. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    International Nuclear Information System (INIS)

    Koyuncu, Huelya; Kul, Ali Riza; Yildiz, Nuray; Calimli, Ayla; Ceylan, Hasan

    2007-01-01

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy (ΔG), the enthalpy (ΔH) and the entropy change of sorption (ΔS) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k a and k d ) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K geo (k a /k d ) from geometric approach

  18. Study of the radium sorption/desorption on goethite

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Mallet, C.; Lefebvre, C.; Ferreux, J.-M.

    2000-01-01

    The oxi-hydroxides, present at trace level in uranium mill tailings, are responsible of about 70% of the 226 radium sorption, half being fixed on crystallized forms. This radionuclide (half time=1622y), present at high level (50 to 100kBq.kg -1 ), can be released in groundwater, involving a possible contamination of the food chain (actual concentration limit=0.37Bq.1 -1 ). So, it is very important to point out the mechanisms of the radium sorption/desorption on crystallized oxi-hydroxides as a function of chemical conditions of the system. The radium sorption on synthetic goethite α-FeOOH has been studied as a function of contact time, initial radium activity, pH, sodium and calcium concentrations. The results show that, after one hour of contact time (necessary to reach equilibrium), the radium sorption increases widely in a pH range 6-7. The increase of Na + concentration is without influence on the radium sorption, indicating the low interactions between sodium and surface sites. At the opposite, the presence of calcium in solution decreases widely the radium sorption, that indicates a competition between calcium and radium for the same kind of sorption sites of the oxi-hydroxide surface. The percentage of radium desorbed increases widely with time, from 1 to 120h and becomes constant at a time higher than 120h. This long equilibrium time for desorption in comparison with sorption one can be explain by a local evolution of the sorption sites of the solid, which become less accessible for the solution in contact. (author)

  19. Study on sorption capacity of synthetic zeolite for simulated nuclide Cs+

    International Nuclear Information System (INIS)

    Wang Jinming; Yi Facheng

    2006-01-01

    For the sake of understanding the functionary order of simulated nuclide Cs + and Synthetic Zeolite (ZF), the sorption equilibrium time and sorption capacity of simulated nuclide Cs + on ZF are studied with the intermittence method. The difference of temperature, pH value, Cs + concentration and medium on sorption capacity and sorption ratio are investigated. The results show that the sorption complexion of simulated nuclide Cs + on ZF in the same concentration solution are sorption equilibrium quantity in range of 155-190 mg/g in different temperatures and that in range of 165-190 mg/g in different pH values and that in range of 120-210 mg/g in different media; and changing order of equilibrium adsorption ratio is the same to that of sorption equilibrium quantity, but their changing range are wider than that of sorption equilibrium quantity; equilibrium adsorption quantity in range of 180-380 mg/g in different concentration solutions, and changing order of equilibrium adsorption ratio is opposite to that of sorption equilibrium quantity, and more-over, their changing range are wider than that of the sorption equilibrium quantity. Sorption equilibrium time of simulated nuclide Cs + on ZF is about ten to fifteen days. So the changing range of sorption capacity of simulated nuclide Cs + on ZF with conditions effects is smaller and the sorption equilibrium time is also less and ZF preferably absorbs Cs in radiation wastes and thus consumedly reduces the effect of radwaste on the environment. (authors)

  20. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    Science.gov (United States)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged

  1. Ranking nano-enabled hybrid media for simultaneous removal of contaminants with different chemistries: Pseudo-equilibrium sorption tests versus column tests.

    Science.gov (United States)

    Custodio, Tomas; Garcia, Jose; Markovski, Jasmina; McKay Gifford, James; Hristovski, Kiril D; Olson, Larry W

    2017-12-15

    The underlying hypothesis of this study was that pseudo-equilibrium and column testing conditions would provide the same sorbent ranking trends although the values of sorbents' performance descriptors (e.g. sorption capacity) may vary because of different kinetics and competition effects induced by the two testing approaches. To address this hypothesis, nano-enabled hybrid media were fabricated and its removal performances were assessed for two model contaminants under multi-point batch pseudo-equilibrium and continuous-flow conditions. Calculation of simultaneous removal capacity indices (SRC) demonstrated that the more resource demanding continuous-flow tests are able to generate the same performance rankings as the ones obtained by conducing the simpler pseudo-equilibrium tests. Furthermore, continuous overlap between the 98% confidence boundaries for each SRC index trend, not only validated the hypothesis that both testing conditions provide the same ranking trends, but also pointed that SRC indices are statistically the same for each media, regardless of employed method. In scenarios where rapid screening of new media is required to obtain the best performing synthesis formulation, use of pseudo-equilibrium tests proved to be reliable. Considering that kinetics induced effects on sorption capacity must not be neglected, more resource demanding column test could be conducted only with the top performing media that exhibit the highest sorption capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sorption kinetics of Cs and Sr in sediments of a Savannah River Site reservoir

    International Nuclear Information System (INIS)

    Stephens, J.A.

    1997-07-01

    Laboratory measurements of the sorption and desorption of 134 Cs and 85 Sr to sediments were conducted. These sediments were sampled from the profundal zone of Par Pond at the Savannah River Site, Aiken, South Carolina. The isotopes 134 Cs and 85 Sr were used to trace the sorption properties of the main contaminants found in the reservoir which are 137 Cs and 90 Sr respectively. The sorption behavior of these two elements was studied using spiked sediment/water slurries of a known mass to volume ratio. The results reveal that Sr undergoes significant reversible sorption while a fraction of Cs irreversibly sorbs to the sediment. The calculated distribution coefficient Kd at equilibrium was (3 ± 0.6) x 10 3 for 134 Cs after 60 d and (1 ± 0.2) x 10 3 for 85 Sr after 7 d at pH ∼ 6 and slurry ratio of 1:1000 g/ml. The K d for 134 Cs ranged from 2 x 10 2 to 3 x 10 4 depending on pH and conductivity. The 85 Sr reached equilibrium in a few days, while 134 Cs reached an apparent equilibrium in 1--2 months. The K d for 134 Cs was a function of the slurry ratio, pH, conductivity, and contact time. These factors were interrelated since the sediments released ions to the slurry mixture which decreased the pH and increased the conductivity. A sorption isotherm measured for 134 Cs was linear at water concentrations from 60 mBq/ml to 20 Bq/ml. A kinetic model was proposed to describe the basic sorption of 134 Cs to Par Pond sediments under homogeneous laboratory conditions

  3. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  4. Influence of selected factors on strontium sorption on bentonites

    International Nuclear Information System (INIS)

    Galambos, M.; Kufcakova, J.; Rajec, P.

    2007-01-01

    Sorption on bentonite will play an important role in retarding the migration of radionuclides from a waste repository. Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level nuclear waste. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by sorption. Bentonite is characterized by low permeability, water swelling capability and excellent sorption potential for cationic radionuclides. To correctly assess the sorption potential of radionuclides on bentonite is essential for the development of predictive migration models. The sorption of strontium on bentonite from different Slovak deposits - Jelsovy potok, Kopernica and Lieskovec has been investigated under various experimental conditions, such as contact time, sorbate concentrations, presence of complementary cation. Sorption was studied using the batch technique. The uptake of Sr was rapid and equilibrium was reached almost instantaneously. The instantaneous uptake may be due to adsorption and/or exchange of the metal with some ions on the surface of the adsorbent. The best sorption characteristics distinguish bentonite Kopernica, sorption capacity for Sr of the fraction under 45 mm is 0,48 mmol·g -1 for Sr. The highest values of distribution coefficient were reached for the bentonite Jelsovy potok. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites, which can be explained by the increase of specific surface of the bentonite samples. The presence of complementary cations depresses the sorption of Sr on bentonite. Cations Ca 2+ exhibit higher effect on cesium sorption than the Na 2+ ions. Results indicate that the sorption of Sr 2+ on bentonite will be affected by the presence of high concentrations of various salts in the waste water

  5. Sorption of streptococcus faecium to glass

    International Nuclear Information System (INIS)

    Oerstavik, D.

    1977-01-01

    A method has been developed by which to study the sorption of Streptococcus faecium to soda-lime cover glasses. Conditions were chosen to minimize the influence on sorption of bacterial polymer production, passive sorption being studied rather than attachment mediated by metabolic activities. Sorption of S. faecium increased with increasing temperature (to 50degC), time, and cell concentration, but equilibrium apparently was not reached even after incubation for 8 hours or at a cell concentration of 3 x 10 10 per ml. Sorption increased with solute molarity up to 0.1 M concentration of NaCl and KCl, indicating an effect of the electrical double layers on the apposition of cells to the glass surface. Desorption of bacteria could be obtained after multiple washings of the glasses in buffer or by the action of Tween 80, but not if sorbed bacteria were left in distilled water, various salt solutions, urea, or in suspensions of unlabelled bacteria. It was concluded that sorption occurred as a result of chemical interactions between the glass and the cell surface. Tween 80 at a concentration of 1 per cent inhibited sorption to 26 per cent of buffer controls, 2 M urea was less effective, and 1 M NaCl was without effect. It is suggested that hydrophobic interactions may be of importance in the binding of S. faecium to glass. (author)

  6. Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method

    Directory of Open Access Journals (Sweden)

    El-Khamsa Guechi

    2016-09-01

    Full Text Available Potato peel (PP was used as a biosorbent to remove malachite green (MG from aqueous solution under various operating conditions. The effect of the experimental parameters such as initial dye concentration, biosorbent dose, initial pH, stirring speed, temperature, ionic strength and biosorbent particle size was investigated through a number of batch sorption experiments. The sorption kinetic uptake for MG by PP at various initial dye concentrations was analyzed by non-linear method using pseudo-first, pseudo-second and pseudo-nth order models. It was found that the pseudo-nth order kinetic model was the best applicable model to describe the sorption kinetic data and the order n of sorption reaction was calculated in the range from 0.71 to 2.71. Three sorption isotherms namely the Langmuir, Freundlich and Redlich–Peterson isotherms in their non-linear forms were applied to the biosorption equilibrium data. Both the Langmuir and Redlich–Peterson models were found to fit the sorption isotherm data well, but the Redlich–Peterson model was better. Thermodynamic parameters show that the sorption process of MG is endothermic and more effective process at high temperatures. The results revealed that PP is very effective for the biosorption of MG from aqueous solutions.

  7. Batch-Versuche zur Bestimmung der Sorption und Reaktionskinetik von fluoreszierenden Tracern

    Science.gov (United States)

    Vaitl, Tobias; Wohnlich, Stefan

    2018-06-01

    For many tracer experiments, prior determination of interaction between solid medium and used tracers is of major interest in order to achieve efficient, economic and successful field experiments. In the present study, three different types of batch experiments were performed with three fluorescent dyes (Na-Fluorescein, Amidorhodamin G and Tinopal CBS-X) and three different rock types (sandstone, claystone and limestone), to determine distribution coefficients and reaction kinetics. All three rock types were analysed for organic carbon content, specific surface area and mineralogical composition to identify the main sorption mechanisms. For all tracers, different sorption properties were found depending on the type of rock. The strongest sorption was observed for Tinopal CBS-X in contact with claystone. Only Na-Fluorescein showed sorption (albeit limited) in contact with the sandstones. The investigated limestones indicated a high sorption for the tracer Tinopal CBS-X. Regarding reaction kinetics, in most cases, thermodynamic equilibrium conditions were reached after two weeks.

  8. Determination of storage conditions for new biscuits using their sorption isotherms

    OpenAIRE

    G. Diukareva; A. Pak; A. Gasanova

    2015-01-01

    Introduction For the formation of biscuits quality natural carrier of iodine and sweetener from stevia leaves were used. Desorption of moisture is the dominant process, which will determine the guaranteed shelf life of biscuits. The conditions for the developed biscuits storage was determined by investigating of sorption isotherms and kinetics of reaching the equilibrium moisture content. Materials and Methods. The objects of stud...

  9. Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava Waste

    Directory of Open Access Journals (Sweden)

    Hui Deng

    2014-09-01

    Full Text Available Biochar (BC is a carbonaceous and porous product generated from the incomplete combustion of biomass and has been recognized as an efficient adsorbent. This study evaluated the ability of BC to sorb atrazine pesticide in tropical soil, and explored potential environmental values of BC on mitigating organic micro-pollutants. BC was produced from cassava waste via pyrolyzation under oxygen-limiting conditions at 350, 550, and 750 °C (MS350, MS550, and MS750, respectively. Three biochars were characterized and investigated as sorbents for the removal atrazine from tropical soil. BC pyrolyzed at higher temperatures more quickly reached equilibrium. The pseudo-second-order model perfectly simulated the sorption kinetics for atrazine with the coefficients R2 above 0.996, and the sorption amount at equilibrium (qe was 0.016 mg/g for MS350, 0.025 mg/g for MS550 and 0.050 mg/g for MS750. The isotherms of MS350 displayed relatively linear behavior, whereas the sorption of atrazine on MS550 and MS750 followed a nonlinear isotherm. The sorption data were well described by the Freundlich model with logKF of 0.476 for MS350, 0.771 for MS550, 1.865 for MS750. A thermodynamic study indicated that the sorption of atrazine in BC-added soil was a spontaneous and endothermic process and was primarily controlled by physisorption. In addition, lower pH was conducive to the sorption of atrazine in BC-added soil.

  10. Effect made by the colloids to the sorption behavior of strontium on granite fracture-fillings

    Science.gov (United States)

    Wang, L.; Zuo, R.

    2017-12-01

    The objective of this study was to investigate the effects made by the colloid to the sorption capacity of colloids in granite fracture-fillings in aqueous solutions. The granite fracture-fillings were collected from three different depth of the research mine in Gansu province. According to the composition of the local soil and groundwater, two colloids were chosen to investigate this sorption process. Batch tests had been investigated at 27° under the air atmosphere as a function of pH(3 11), initial uranium concentration(5 400 mg/L) and water-rock ratio on the sorption of Sr on granite fracture-fillings. The batch experimental results showed that the sorption capacity presented a positive relationship with pH value, which may be caused by the hydrolytic adsorption raised by the reaction between Sr(OH)+ and OH- groups on the surface on the adsorbent. Initial strontium concentration also showed a positive relationship with sorption capacity when the concentration was lower than 200mg/mL, when the concentration was higher than 200mg/ml sorption reached the equilibrium. Sorption percentage showed a positive relationship with water/solid ratios, when the ratio was lower than 1:100 the system got equilibrium. When other experiment parameters were fixed and only the solid-liquid ratio changed, the adsorption capacity increased with the increasing solid-water ratio. The reason was that the total amount of Sr in the adsorption system remained unchanged, the adsorption sites increased with the solid-liquid ratio, and the adsorption capacity increased gradually with the increasing adsorption sites. The experiments data were interpreted in terms of Freundlich and Langmuir isotherms and the data fitted the former better. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of colloid.

  11. The sorption of acids in cellular side of apple pressing

    International Nuclear Information System (INIS)

    Asoev, M.G.; Mukhiddinov, Z.K.

    1994-01-01

    Equilibrium swell of sample refuse after separation of water is use for study of sorption of hydrochloric acid. Quantity adsorb acids set a price to difference her concentration before and after equilibrium sorption

  12. Sorption of Lead (Pb from Aqueous Solutions by Sepiolite and Bentonite Modified with Chitosan Biopolymers: Isotherms and Kinetics

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rafiei

    2016-07-01

    Full Text Available In this study, sepiolite and bentonite clay minerals were modified with a natural chitosan biopolymer and the modified-clays were characterized using XRF, XRD, FTIR, SEM, and TOC analyses. The isothermal and kinetic parameters of lead (Pb sorption by both the minerals and the modified-minerals were determined in a batch mode under various conditions such as different contact times and initial concentrations of Pb. It was found that the Freundlich model described well the isotherm experimental data of Pb sorption by the sorbents. Modification with chitosan, however, decreased the Pb adsorption capacity of sepiolite from 83 to 27 mg g-1 and that of bentonite from 56 to 29 mg g-1. Kinetic results showed that more than 24 hours was required for Pb sorption by the natural clays to reach equilibrium, while the equilibrium time reduced to 16 and 4 hours for Pb sorption on chitosan-sepiolite and chitosan–bentonite, respectively. The pseudo-second-order model well described the time-dependent Pb sorption data by sepiolite, chitosan-sepiolite, and chitosan-bentonite, suggesting that chemical sorption is the rate-limiting step of Pb adsorption mechanism. The Pb sorption data by bentonite showed the best fit with Elovich model.

  13. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    International Nuclear Information System (INIS)

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-01-01

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  14. Evaluation of Lagergren Kinetics Equation by Using Novel Kinetics Expression of Sorption of Zn2+ onto Horse Dung Humic Acid (HD-HA

    Directory of Open Access Journals (Sweden)

    Bambang Rusdiarso

    2016-12-01

    Full Text Available Extraction and purification of humic acid from dry horse dung powder (HD-HA was performed successfully and the purified HD-HA was then applied as sorbent to adsorb Zn2+. Extraction and purification were performed based on procedure of Stevenson (1994 under atmospheric air. Parameters investigated in this work consist of effect of medium sorption acidity, sorption rate (ka and desorption rate constant (kd, Langmuir (monolayer and Freundlich (multilayer sorption capacities, and energy (E of sorption. The ka and kd were determined according to the kinetic model of second order sorption reaching equilibrium, monolayer sorption capacity (b and energy (E were determined according to Langmuir isotherm model, and multilayer sorption capacity (B was determined based on Freundlich isotherm model. Sorption of Zn2+ on purified HD-HA was maximum at pH 5.0. The novel kinetic expression resulted from proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the equation revealed that the intercept of Lagergren equation, ln qe was more complex function of initial concentration of Zn2+ (a, Langmuir sorption capacity (b, and sorbed Zn2+ at equilibrium (xe.

  15. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    Science.gov (United States)

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  16. Kinetics and reversibility of radionuclide sorption reactions with rocks. Progress report for fiscal year 1979

    International Nuclear Information System (INIS)

    Barney, G.S.; Brown, G.E.

    1979-01-01

    Sorption-desorption reactions of cesium, strontium, neptunium, americium, and plutonium on basalt, granite, and argillite were observed for 218 days. Equilibrium in batch experiments was not reached for most radionuclides even after this long time. Reactions of the crushed rock with ground waters (dissolution, hydrolysis, precipitation, etc.) also did not reach equilibrium after 150 days. The dissolution of basalt is accompanied by the formation of colloidal particles which contain Si, Fe, Ca, and Al. These colloids sorb Cs, Sr, Am, and Pu during equilibration. Some of the colloids pass through 0.3-μm flters, are not retained even on 0.01-μm filters and, therefore, cause calculated K/sub d/ values to be too low. Samples of crushed basalt, granite, and argillite were artificially weathered by continuous leaching with distilled water for 6 months both in air and in an oxygen-free stream of nitrogen gas. The weathered rock was then characterized for surface area, surface structure, cation exchange capacity, and composition of weathered surface on the rock. Comparisons were made of radionuclide sorption (after 14 days) on fresh rock, rock weathered in air, and rock weathered in N 2 . Sorption on rocks weathered in N 2 generally is less than on rock weathered in air. This is possibly due to the lack of an Fe(OH) 3 coating on the rock weathered in N 2 . The Fe(OH) 3 is known to scavenge cations and silica from solution. Sorption of Cs, Si, Am, and Pu is strongly affected by weathering basalt and argillite. However, the cation exchange capacity is changed very little, suggesting that ion exchange plays a minor role in sorption of these radionuclides

  17. Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark

    International Nuclear Information System (INIS)

    Ghodbane, Ilhem; Nouri, Loubna; Hamdaoui, Oualid; Chiha, Mahdi

    2008-01-01

    The efficiency of eucalyptus bark as a low cost sorbent for removing cadmium ions from aqueous solution has been investigated in batch mode. The equilibrium data could be well described by the Langmuir isotherm but a worse fit was obtained by the Freundlich model. The five linearized forms of the Langmuir equation as well as the non-linear curve fitting analysis method were discussed. Results show that the non-linear method may be a better way to obtain the Langmuir parameters. Maximum cadmium uptake obtained at a temperature of 20 deg. C was 14.53 mg g -1 . The influence of temperature on the sorption isotherms of cadmium has been also studied. The monolayer sorption capacity increased from 14.53 to 16.47 when the temperature was raised from 20 to 50 deg. C. The ΔG o values were negative, which indicates that the sorption was spontaneous in nature. The effect of experimental parameters such as contact time, cadmium initial concentration, sorbent dose, temperature, solution initial pH, agitation speed, and ionic strength on the sorption kinetics of cadmium was investigated. Pseudo-second-order model was evaluated using the six linear forms as well as the non-linear curve fitting analysis method. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model using the non-linear method. The pseudo-second-order model parameters were function of the initial concentration, the sorbent dose, the solution pH, the agitation speed, the temperature, and the ionic strength

  18. Sorption of phosphates and thiocyanates on isomorphic substituted Mg/Zn–Al-type hydrotalcites

    Directory of Open Access Journals (Sweden)

    RODICA PODE

    2008-08-01

    Full Text Available The sorption equilibriums of phosphate and thiocyanate anions on isomorphic substituted Mg/Zn–Al-type hydrotalcites were investigated in this study. Langmuir and Freundlich isotherms were used to interpret the equilibrium data for phosphate. The sorption equilibriums of phosphate on Mg3Al, Mg2ZnAl and Mg1.5Zn1.5Al hydrotalcites were well described by the Langmuir isotherm. The highest maximum sorption capacities for these adsorbents were as follows: 111, 101 and 95 mg g-1. The equilibrium constant and standard Gibbs energy changes were also calculated from the sorption data. Standard Gibbs energy changes of about –20 kJ mol-1 indicated that the process might be considered as physical adsorption. The sorption equilibriums of phosphate on isomorphic substituted samples of MgZn2Al and Zn3Al were well described by the Freundlich isotherm. Thiocyanate showed a relative low affinity for the studied materials, as indicated by both the “S”-shaped isotherms and low sorption capacities. The sorption of phosphate and thiocyanate on the investigated hydrotalcites showed a continuous decrease of the sorption capacity in the following order: Mg3Al > Mg2ZnAl > Mg1.5Zn1.5Al > MgZn2Al > Zn3Al.

  19. Kinetics and reversibility of micropollutant sorption in sludge.

    Science.gov (United States)

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  20. Sorption equilibrium of mercury onto ground-up tree fern.

    Science.gov (United States)

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  1. Sorption equilibrium of mercury onto ground-up tree fern

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Wang, C.-C.

    2008-01-01

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as ΔG o , ΔH o , and ΔS o , were calculated and compared with the sorption of mercury by other sorbents

  2. Sorption equilibrium of mercury onto ground-up tree fern

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Y.-S. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)], E-mail: ysho@isu.edu.tw; Wang, C.-C. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o}, were calculated and compared with the sorption of mercury by other sorbents.

  3. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  4. Sorption of cobalt in zeolites and natural clays of the clinoptilolite and kaolinite type

    International Nuclear Information System (INIS)

    Davila R, J.I.; Solache R, M.

    2006-01-01

    In this work the sorption of cobalt of aqueous solutions in two natural zeolites (clinoptilolite) and a clay (kaolinite) of origin in the center-north region of Mexico is evaluated. The effect of the pH and the time of contact in the process of sorption were evaluated. The cobalt retained in the aluminosilicates was determined by neutron activation analysis. The cobalt sorption in the materials in a range of pH from 4 to 7 does not present significant variations. The studies of reaction kinetics show a very fast sorption in the first 5 hours of contact, reaching the equilibrium in approximately 24 hours. The kinetics of sorption of the cobalt ions was represented better by the Ritchie reaction model modified of second order. The experimental data for the zeolites obtained at ambient temperature and varying the concentration were adjusted to the models of Freundlich, Langmuir and Freundlich-Langmuir isotherms and it was observed that the cobalt sorption it behaves according to the Freundlich isotherm model. (Author)

  5. Analysis of kinematically redundant reaching movements using the equilibrium-point hypothesis.

    Science.gov (United States)

    Cesari, P; Shiratori, T; Olivato, P; Duarte, M

    2001-03-01

    Six subjects performed a planar reaching arm movement to a target while unpredictable perturbations were applied to the endpoint; the perturbations consisted of pulling springs having different stiffness. Two conditions were applied; in the first, subjects had to reach for the target despite the perturbation, in the second condition, the subjects were asked to not correct the motion as a perturbation was applied. We analyzed the kinematics profiles of the three arm segments and, by means of inverse dynamics, calculated the joint torques. The framework of the equilibrium-point (EP) hypothesis, the lambda model, allowed the reconstruction of the control variables, the "equilibrium trajectories", in the "do not correct" condition for the wrist and the elbow joints as well as for the end point final position, while for the other condition, the reconstruction was less reliable. The findings support and extend to a multiple-joint planar movement, the paradigm of the EP hypothesis along with the "do not correct" instruction.

  6. MEASUREMENT AND MODELLING OF SORPTION EQUILIBRIUM CURVE OF WATER ON PA6, PP, HDPE AND PVC BY USING FLORY-HUGGINS MODEL

    Directory of Open Access Journals (Sweden)

    Suherman Suherman

    2012-02-01

    Full Text Available The sorption of water on granular polyamide-6 (PA6, granular polypropylene (PP, and powdery high density polyethylene (HDPE and powdery polyvinyl chloride (PVC were measured using a gravimetric method in a magnetic suspension balance (MSB. The Flory-Huggins model was successfully applied on the sorption equilibrium curve of all investigated polymers. The influence of temperature is low. The value of Flory-Huggins parameters(c of PA6, PVC, PP and HDPE were 1.8, 5.8, 6.3, and 8.1, respectively. The water in PA6 is mainly bound moisture, while in PP, HDPE and PVC it is mainly surface moisture.

  7. Sorption of natural uranium by algerian bentonite

    International Nuclear Information System (INIS)

    Megouda, N.; Kadi, H.; Hamla, M.S.; Brahimi, H.

    2004-01-01

    Full text.Batch sorption experiments have been used to assess the sorption behaviour of uranium onto natural and drilling bentonites. The operating parameters (pH, aolis-liquid ratio, particle size, time and initial uranium concentration) influenced the rate of adsorption. The distribution coefficient (Kd) range values at equilibrium time are 45.95-1079.26 ml/g and 32.81-463053 ml/g for the drilling and natural bentonites respectively. The equilibrium isotherms show that the data correlate with both Freundlich and Langmuir models

  8. Investigation of rare earths sorption from sulfuric- and hydrochloric media

    International Nuclear Information System (INIS)

    Nikonov, V.N.; Mikhlin, E.B.; Norina, T.M.; Afonina, T.A.

    1978-01-01

    A rate of equilibrium attainment has been studied during REE sorption from sulfuric and hydrochloric acid solutions and pulps. It has been shown that equilibrium upon sorption from hydrochloric acid solutions is attained faster than from sulfuric acid solutions. Equilibrium upon sorption from pulps is attained considerably slower than upon sorption from solutions. In all cases REM of cerium subgroup are sorbed better. An effect has been studied of the medium acidity on sorbability of REM and elements of iron and calcium impurities. It has been established that sorbability of these elements decreases with increasing acid concentration. Selectivity of REM sorption from sulfuric acid solutions decreases with a rise in H 2 SO 4 concentration in the solution. For hydrochloric acid solutions it remains constant in a wide range of HCl concentrations. Sorption leaching of REM from concentrates and cakes of sulfuric and hydrochloric acids in the presence of KU-2 leads to high technical and economic indexes: extraction with respect to the total amount of REM and yttrium into a commercial product is 76-86% for sulfuric acid solutions and 81-90% for hydrochloric solutions

  9. Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms

    International Nuclear Information System (INIS)

    Salvestrini, Stefano; Leone, Vincenzo; Iovino, Pasquale; Canzano, Silvana; Capasso, Sante

    2014-01-01

    Highlights: • Different methods to derive sorption thermodynamic parameters have been discussed. • ΔG° and, ΔS° values depend on the selected standard states. • Isosteric heat values help in evaluating the applicability of the sorption models. -- Abstract: This is a comparative analysis of popular methods currently in use to derive sorption thermodynamic parameters from temperature dependence of sorption isotherms. It is emphasized that the standard and isosteric thermodynamic parameters have sharply different meanings. Moreover, it is shown with examples how the sorption model adopted conditions the standard state and consequently the value of ΔG° and ΔS°. These trivial but often neglected aspects should carefully be considered when comparing thermodynamic parameters from different literature sources. An effort by the scientific community is needed to define criteria for the choice of the standard state in sorption processes

  10. Determination of storage conditions for new biscuits using their sorption isotherms

    Directory of Open Access Journals (Sweden)

    G. Diukareva

    2015-05-01

    Full Text Available Introduction For the formation of biscuits quality natural carrier of iodine and sweetener from stevia leaves were used. Desorption of moisture is the dominant process, which will determine the guaranteed shelf life of biscuits. The conditions for the developed biscuits storage was determined by investigating of sorption isotherms and kinetics of reaching the equilibrium moisture content. Materials and Methods. The objects of study arenewly developed biscuits: "Health" (rich in iodine and with the replacement of 50 % sugar by stevioside, "Light" (with the replacement of 75% of sugar by stevioside and enriched with wheat bran, "Fortified" (containselamine, which is a natural source of iodine. Control – the biscuit prepared according to traditional recipes. Tenzometric method was used to study the sorption equilibrium moisture content. Differential function of pore radius distribution was determined using sorption isotherms and then have been subjected to approximation. Results. New biscuits samples are in the area of polymolecular and monomolecular sorption in the range of the relative air humidity (RAH from 10 to 75 ... 80%. The control sample has less distinct plot of monomolecular sorption (10 to 20% and short- moisture range wich is corresponding with polymolecularsorption (from 20 to 65 ... 70%. There is a moisture absorbtion ofmicrocapillary and swelling of samples when RAHincreases to 75 ... 80% for all the samples. The ratio of average pore radius tothe most likely of the test samples are differentthat wasshown by the investigation of differential function of pore distribution. So this ratio for biscuit "Health" is 5.73, for biscuit "Light" − 2.98,forbiscuit "Fortified"− 4.91 and for the control − 3.88. Conclusions. There’s the sense to store developed biscuits in a cardboard packaging with polymeric covering, if RAH is not more than 75%, and vapor-proof if RAH is above that.

  11. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  12. Applicability of sorption data determined by laboratory experiments for evaluation of strontium-85 mobility in subsurface field

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Applicability of laboratory measurements to radionuclide transport in a natural environment was studied using the data from the field tests. The K d values obtained in the laboratory experiments were input into the instantaneous equilibrium sorption model, which simulates the migration of 85 Sr in the unsaturated loess. This simulation managed to reproduce results of the aforementioned field tests. To evaluate more accurately migration behavior of 85 Sr, based on the sorption data obtained by the laboratory experiments, the hybrid sorption model consisting of the equilibrium sorption process and the kinetic sorption process was proposed. When compared with predictions using the K d -based equilibrium sorption model, the results of the field migration tests of 85 Sr were more successfully reproduced by introducing the hybrid sorption model. (author)

  13. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads

    International Nuclear Information System (INIS)

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-01-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH 0 , ΔS 0 and ΔG 0 were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. -- Highlights: • Equilibrium, kinetics and thermodynamics of uranium sorption by CaAlg were studied. • Equilibrium studies show that Langmuir isotherm better fit with experimental data. • Pseudo-second-order kinetics model is found to be well depicting the kinetic data. • Thermodynamic study shows that the sorption process is endothermic and spontaneous

  14. Do intertidal flats ever reach equilibrium?

    NARCIS (Netherlands)

    Maan, D.C.; van Prooijen, B.C.; Wang, Z.B.; de Vriend, H.J.

    2015-01-01

    Various studies have identified a strong relation between the hydrodynamic forces and the equilibrium profile for intertidal flats. A thorough understanding of the interplay between the hydrodynamic forces and the morphology, however, concerns more than the equilibrium state alone. We study the

  15. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    International Nuclear Information System (INIS)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-01-01

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation ≥0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g -1 . The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  16. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.

    Science.gov (United States)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation > or = 0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g(-1). The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  17. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Asma, E-mail: asmadr@wol.net.pk [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Sharif, Mehwish [School of Biological Sciences, University of the Punjab, Lahore 54590 (Pakistan); Iqbal, Muhammad [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation {>=}0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g{sup -1}. The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  18. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    International Nuclear Information System (INIS)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-01-01

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of ''local equilibrium'' assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of

  19. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    Science.gov (United States)

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  20. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  1. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  2. Application of iron-rich natural clays in Camlica, Turkey for boron sorption from water and its determination by fluorimetric-azomethine-H method

    International Nuclear Information System (INIS)

    Seyhan, Serap; Seki, Yoldas; Yurdakoc, Mueruevvet; Merdivan, Melek

    2007-01-01

    In this study, iron-rich natural Camlica Bentonites, CB1 and CB2, were used for the sorption of boron in water samples. Boron was determined by newly progressed fluorimetric azomethine-H method. The optimum conditions found using factorial designs are pH 10, 45 deg. C, 0.250 g of clay and 20 mL of sample volume. It was found that 180 min is enough time for the equilibrium state to be reached in boron adsorption. At these conditions, boron sorption percentage was 80% for CB1 and 30% for CB2. The adsorption isotherms are well described by linear Freundlich model. Various geothermal waters in our country were also studied for boron sorption

  3. Thermodynamic characteristics of sorption of metal-ions by ion exchangers

    OpenAIRE

    ABBASOV ALIADDIN DAYYAN; JAFARLI MAHNUR MOYSUN; MEMMEDOVA FIZZA SADIKH; HEYDEROVA FARAH FARMAN

    2016-01-01

    Conditions of sorption equilibrium of copper, zinc, cadmium and lead-ions by chelatforming resins Diaion CR 11, Dowex M 4195 and Duolite C 467 depending on the degree of neutralization of their ionogenic groups, the acidity of the medium and concentration of solutions are studied; corresponding equations expressing the isotherms of sorption are offered. Kinetics of these processes is studied; on the basis of equilibrium and kinetic parameters are calculated thermodynamic quantities. It is sho...

  4. Sorption of metaldehyde using granular activated carbon

    Directory of Open Access Journals (Sweden)

    S. Salvestrini

    2017-09-01

    Full Text Available In this work, the ability of granular activated carbon (GAC to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

  5. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  6. Sorption of microamount of colloidal silver iodide on hydrated iron(III) oxide

    International Nuclear Information System (INIS)

    Kepak, F.; Nova, J.

    1975-01-01

    Sorption of a microamount of colloidal silver iodide labelled with 131 I on hydrated iron/III/ oxide suspension was studied. The sorption dependence upon pH, sorbent amount, and inert electrolyte concentration has revealed that sorption of silver iodide reaches no more than 63%. The sorption lasted one hour during which the maximum value was reached. Desorption time was one hour, as well. Except for measuring the sorption dependence on pH, the sorption pH was 7.0, temperature 24+-2 0 C. (F.G.)

  7. A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10

    Science.gov (United States)

    Bekçi, Zehra; Seki, Yoldaş; Kadir Yurdakoç, M.

    2007-02-01

    The sorption behavior of K10, a type of montmorillonite for trimethoprim (TMP) drug, was studied by using batch technique under different pH and temperature. The interaction between K10 and TMP was investigated using SEM, and FTIR. It was observed that adsorption was increased between pH 2.5 and 6.3. By performing kinetic experiments, the pseudo-second-order kinetic model provides the best fit for TMP adsorption onto K10 montmorillonite. The sorption of TMP reached the equilibrium state after 6 h sorption time and has been described by using Langmuir, Freundlich and Dubinin-Radushkevich equations to obtain adsorption capacity values. The results indicate that the relative adsorption capacity values ( Kf) are decreasing with the increase of temperature in the range of 298-318 K. The sorption energy values obtained from DR isotherm show that sorption of TMP onto K10 can be explained by ion exchange mechanism at 298, 308 and 318 K. The thermodynamic studies were conducted to find the thermodynamic parameters Δ H°, Δ S° and Δ G°. It was determined that adsorption process is spontaneous and exothermic in nature.

  8. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  9. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  10. Interim report on modeling sorption with EQ3/6

    International Nuclear Information System (INIS)

    Viani, B.

    1988-01-01

    Reversible, equilibrium models of sorption to be incorporated into the EQ3/6 geochemical modeling package are summarized. Empirical sorption models as formulated in linear, Langmuir, and Freundlich isotherms will be developed as options to EQ3/6. This work will be done at LLNL. Options for modeling sorption using surface- complexation constructs (diffuse, constant capacitance, and triple-layer models) will also be developed. Development of the surface-complexation options will require part of the work be done under contract. 27 refs., 1 fig

  11. Influence of sorption competition on sorption data for MX-80 bentonite used in performance assessment

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Marques Fernandes, M.

    2012-01-01

    sorption. The starting point for the calculations are the estimated maximum limit concentrations of the most important metal cations in the bentonite near field as given by Berner (2002). The metals have been divided into three broad groups according to their chemical similarity (valence, hydrolysis behaviour). Group 1: bivalent transition and heavy metals, Group 2: trivalent metals and Group 3: tetravalent metals. There is experimental evidence that competitive sorption occurs between the metals within each of these three groups but not between metals from different groups. In the calculations illustrating the influence of sorption competition at high concentrations, the 'maximum limit concentrations' are considered to be equilibrium values existing simultaneously in the bentonite pore water. For each of the three groups of nuclides the procedure was as follows. Firstly, calculations were made in the MX-80 bentonite pore water-mineral system to produce sorption values for each nuclide individually at trace concentration without considering competition effects. These sorption values approximate those derived for the MX-80 SDB. Secondly, for each group of nuclides, sorption values for each nuclide within the same group were calculated simultaneously with all of the others at the corresponding (equilibrium) concentrations in the MX-80 bentonite/pore water system. All of these calculations were carried out using the full 2SPNE SC/CE model and the parameters given in Bradbury and Baeyens (2005a). In terms of the calculation results obtained with the 2SPNE SC/CE sorption model, the overall effect of competitive sorption, especially for combinations of competing nuclides at high concentrations, is to reduce the sorption values. Nevertheless, the sorption of the metals in all three groups remains significant due to sorption on the weak sites of the montmorillonite which exhibit a high site capacity. (authors)

  12. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils.

    Science.gov (United States)

    Baskaran, S; Kennedy, I R

    1999-11-01

    The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.

  13. Pyridine sorption from aqueous solution by rice husk ash (RHA) and granular activated carbon (GAC): Parametric, kinetic, equilibrium and thermodynamic aspects

    International Nuclear Information System (INIS)

    Lataye, D.H.; Mishra, I.M.; Mall, I.D.

    2008-01-01

    The present study deals with the adsorption of pyridine (Py) from synthetic aqueous solutions by rice husk ash (RHA) and commercial grade granular activated carbon (GAC) and reports on the kinetic, equilibrium and thermodynamic aspects of Py sorption. Batch sorption studies were carried out to evaluate the effect of various parameters, such as adsorbent dose (m), initial pH (pH 0 ), contact time (t), initial concentration (C 0 ) and temperature (T) on the removal of Py. The maximum removal of Py is found to be ∼96% and ∼97% at lower concentrations ( -3 ) and ∼79.5% and ∼84% at higher concentrations (600 mg dm -3 ) using 50 kg m -3 and 30 kg m -3 of RHA and GAC dosage, respectively, at 30 ± 1 o C. Adsorption of Py is found to be endothermic in nature and the equilibrium data can be adequately represented by Toth and Redlich-Peterson isotherm equations. Py can be recovered from the spent adsorbents by using acidic water and 0.1 N H 2 SO 4 . The overall adsorption of Py on RHA and GAC is found to be in the order of GAC > RHA. Comparative assessment of adsorbents used by various investigators available in literature showed the effectiveness of BFA and RHA over other adsorbents. Spent RHA can simply be filtered, dried and used in the boiler furnaces/incinerators. Thus, its heating value can be recovered

  14. Sorption of graphites at high temperatures. Progress report, February 1, 1976--January 31, 1977

    International Nuclear Information System (INIS)

    Pyecha, T.D.; Zumwalt, L.R.

    1977-01-01

    Preliminary to mixed isotherm studies, one additional cesium isotherm was obtained with a finned-rod H-451 graphite sample at 1100 0 C. The results indicated that not only are long times required to reach saturation, but also there is a hysteresis effect at low vapor pressures and concentrations and that under these conditions sorption of cesium in graphite is not readily reversible. Several cesium isotherms (at 1000 0 C) were obtained of H-451 graphite which had been pre-impregnated with selected concentrations of Sr-85-tagged strontium. The runs were of long duration to attain equilibrium. The data obtained showed a substantial effect of the presence (concentration) of strontium on cesium sorption. End-of-run cesium and strontium concentration profiles were obtained. As yet the data on the mixed-sorption behavior, relative to possible models, has not been analyzed in depth. As a preliminary to the mixed-sorption studies, strontium impregnation in the absence of cesium was studied and a few experiments on the effect of concentration on strontium diffusion were carried out with interesting results. Finally a few experiments on sample characterization and on the microdistribution of cesium and strontium were conducted. It was found difficult to obtain distributions at the concentration levels characteristic of our experiments

  15. Sorption of Ochratoxin A from aqueous solutions using beta-cyclodextrin-polyurethane polymer

    Science.gov (United States)

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions, including wine, was examined by batch rebinding assays and equilibrium sorption isotherms. The results were fit to two parameter models. Freundlich analysis of the sorption isotherm indicates the polyme...

  16. Sorption properties of bentonite clays towards Pu(IV), U(VI), Np(V) and Cs: experimental and surface complexation study

    Energy Technology Data Exchange (ETDEWEB)

    Sabodina, M.N. [Institute of Physical Chemistry of Russian Academy of Science, Moscow 119192 (Russian Federation); Kalmykov, St.N.; Sapozhnikov, Yu.A. [Radiochemistry div., Chemistry dept., Lomonosov Moscow State University, Moscow 119992, (Russian Federation); Gupalo, T.A.; Beigul, V.P. [VNIPI Promtechnology, Moscow (Russian Federation)

    2005-07-01

    Full text of publication follows: Sorption of radionuclides, their diffusion in bentonite as well as its solubility are the major factors that define bentonite as a geochemical barrier. Sorption of cations by bentonite could be governed by two mechanisms including ion exchange with interlayer cations and formation of surface complexes with either silanol or aluminol groups. The aim of this work was to study mechanisms of {sup 137}Cs, Pu(IV), Np(V) and U(VI) sorption by bentonite and their solubility in bentonite pore waters. Bentonite (Khakassiya deposit) used in the experiments was taken in Na-form and characterized by powder X-ray diffraction, scanning electron microscopy, potentiometric titration. The cation exchange capacities of bentonite at pH=6 were measured by isotopic exchange with {sup 22}Na{sup +} and Cs{sup +} saturation. Sorption experiments were performed in N{sub 2} atmosphere in plastic vials. Bentonite samples were left in the working solutions to swell for few days before sorption experiments were performed. After the desired concentration of radionuclide ({sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 237}Np, {sup 239}Np, {sup 238}U) was added to the suspension, the required pH values are established and samples were left until the equilibrium was reached. Separation of solution after the sorption was performed using micro- and ultrafiltration techniques. The sorption of Pu(IV), U(VI) and Np(V) was highly pH dependent that indicates predominant surface complexation mechanism of sorption. For {sup 137}Cs the pH dependence of sorption was less pronounced and significant decrease of sorption occurs at pH<1.7 that indicate the ion exchange as the major mechanism. The equilibrium constant of Na{sup +}/Cs{sup +} exchange was calculated form sorption isotherms and pH dependence of sorption. It is established using micro- and ultra-filtrations, that sorption of radionuclides onto bentonite nano colloids is essential. Surface complexation modeling exercises

  17. Humidity sorption on natural building stone

    Science.gov (United States)

    Franzen, C.; Mirwald, P.

    2003-04-01

    processes, physical, chemical or biological, depend on the presence of water. Like most porous materials building stone respond on humidity by water uptake. The sorption isotherm represents the equilibrium moisture, specific for each material. The determination of the isotherm for stone of low and small porosity like marble is difficult. With the help of a newly developed water sorption analysis chamber [2], which allows the simultaneous measurement of 11 samples, good results on stone/rock samples have been obtained. Even at marble species with pore volumes lower than 0.4 % isotherms are measured. This analytical method offers new insights in the pore behaviour of low porosity materials. The advantages of this technique which supplements other techniques (e.g. BET, Hg-porosimetry) are: i) the testing agent is identical to the weathering agent, water; ii) the atmospheric parameters at the measurement reflect the natural conditions - thus no changes to the material properties have to be considered; iii) due to the small diameter of the water molecule (~0.28 nm), smaller pores are reached than e.g. with N2 (~0.31 nm). Sorption isotherms of sandstone (Baumberg, Obernkirchen, Groeden), granite (Brixen), and marble (Sterzing, Laas) are presented. Particular as to marbles the resolution is considerably higher. A previously observed negative hysteresis [3] seems an effect due to limited data resolution. [1] Snethlage, R. (1984) Steinkonservierung, Bayer. LA Denkmalpflege, Ah. 22, 203 S. [2] Griesser, U.J., Dillenz, J. (2002) Neuartiges, vollautomatisches Feuchtesorptionsprüfgerät mit hohem Probendurchsatz, Feuchtetag 2002, Weimar, 85-93. [3] Fimmel, R. (1996) Verwitterungsverhalten der alpinen Marmore von Laas und Sterzing, Diss. Univ. Ibk, 116 S.

  18. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  19. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  20. Study of thermodynamic water properties and moisture sorption hysteresis of mango skin

    Directory of Open Access Journals (Sweden)

    Silvio José Ferreira de Souza

    2015-03-01

    Full Text Available The equilibrium moisture content for adsorption and desorption isotherms of mango skin was determined using the static gravimetric method at temperatures of 20, 26, 33, 38 and 44 oC in the 0.056 to 0.873 water activity range. Both sorption curves show a decrease in equilibrium moisture content as the temperature increasing. The hysteresis effect was observed at constant water activity. The Guggenheim, Anderson, and de Boer (GAB model presented the best fitting accuracy among a group of models and was used to determine the thermodynamic properties of water sorption. Integral enthalpy and integral entropy areas showed inverted values for the adsorption and desorption isotherms over the wide range of water activity studied. These values confirm, in energetic terms, the difference between adsorption and desorption isotherms observed in the hysteresis phenomenon. Finally, the Gibbs free energy revealed that the sorption process was spontaneous for both sorption isotherms.

  1. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Ilaiyaraja, P.; Venkatraman, B., E-mail: chemila07@gmail.com [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Deb, A.K. Singha [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India); Ponraju, D. [Safety Engineering Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Ali, Sk. Musharaf [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    2017-04-15

    Highlights: • A new DGA-PAMAM-SDB chelating resin has been synthesized for actinide sorption. • Maximum sorption capacities of resin are 682 and 544.2 mg g{sup −1}for U(VI) and Th(IV). • DGA-PAMAM-SDB chelating resin could be regenerated and reused. • DFT calculation of actinides interaction with resin corroborates the experimental. • Resin is effective for sorption of actinides from both aqueous and HNO{sub 3} medium. - Abstract: A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH > 4) and nitric acid media (> 3 M). The sorption equilibrium could be reached within 60 min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG{sub 5}-SDB was estimated to be about 682 and 544.2 mg g{sup −1} respectively at 25 °C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings.

  2. Sorption of cobalt in zeolites and natural clays of the clinoptilolite and kaolinite type; Sorcion de cobalto en zeolitas y arcillas naturales del tipo clinoptilolita y caolinita

    Energy Technology Data Exchange (ETDEWEB)

    Davila R, J.I.; Solache R, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    In this work the sorption of cobalt of aqueous solutions in two natural zeolites (clinoptilolite) and a clay (kaolinite) of origin in the center-north region of Mexico is evaluated. The effect of the pH and the time of contact in the process of sorption were evaluated. The cobalt retained in the aluminosilicates was determined by neutron activation analysis. The cobalt sorption in the materials in a range of pH from 4 to 7 does not present significant variations. The studies of reaction kinetics show a very fast sorption in the first 5 hours of contact, reaching the equilibrium in approximately 24 hours. The kinetics of sorption of the cobalt ions was represented better by the Ritchie reaction model modified of second order. The experimental data for the zeolites obtained at ambient temperature and varying the concentration were adjusted to the models of Freundlich, Langmuir and Freundlich-Langmuir isotherms and it was observed that the cobalt sorption it behaves according to the Freundlich isotherm model. (Author)

  3. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars

    2006-01-01

    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and....../or imply accounting for the entire history variations of every material point. This paper presents a sorption hysteresis model based on a state formulation and expressed in closed-form solutions, which makes it suitable for implementation into a numerical method....

  4. Ground rubber: Sorption media for ground water containing benzene and O-xylene

    International Nuclear Information System (INIS)

    Kershaw, D.S.; Pamukcu, S.

    1997-01-01

    The purpose of the current study is to examine the ability of ground rubber to sorb benzene and O-xylene from water contained with aromatic hydrocarbons. The study consisted of running both batch and packed bed column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground rubber under various contact times when exposed to water contaminated with various amounts of benzene or O-xylene. Initial batch test results indicate that ground rubber can attain equilibrium sorption capacities up to 1.3 or 8.2 mg of benzene or O-xylene, respectively, per gram of tire rubber at solution equilibrium concentrations of 10 mg/L. Packed bed column tests indicate that ground tire rubber has on the average a 40% utilization rate when a hydraulic residence time of 15 min is used. Possible future uses of round rubber as a sorption media could include, but are not limited to, the use of ground rubber as an aggregate in slurry cutoff walls that are in contact with petroleum products. Ground rubber could also be used as a sorption media in pump-and-treat methodologies or as a sorption media in in-situ reactive permeable barriers

  5. Radionuclide sorption kinetics and column sorption studies with Columbia River basalts

    International Nuclear Information System (INIS)

    Barney, G.S.

    1983-09-01

    The kinetics of radionuclide sorption and desorption reactions in basalt-groundwater systems were evaluated at 60 degrees C using a batch equilibration method. It was found that many sorption reactions on surfaces of fresh (unaltered) basalt from the Umtanum and Cohassett flows are slow. Some reactions require more than 50 days to reach a steady state. Sorption of neptunium and uranium in oxidizing (air saturated) groundwater appears to be controlled by slow reduction of these elements by the basalt surfaces. The resulting lower oxidation states are more strongly sorbed. Technetium and selenium, which are anionic under oxidizing conditions, are not measurably sorbed on fresh basalt surfaces, but are slightly sorbed on the altered surfaces of flow top basalt. Under reducing conditions, where the groundwater contains dilute hydrazine, sorption is faster for neptunium, uranium, technetium, selenium, and lead. Plutonium sorption rates were not affected by the groundwater Eh. It was shown that radium was precipitated rather than sorbed under the conditions of these experiments. Umtanum flow top material sorbed radionuclides much faster than fresh basalt surfaces due to its greater surface area and cation exchange capacity. Desorption rates for plutonium, uranium, neptunium, technetium, and selenium were generally much less than sorption rates (especially for reducing conditions). These radionuclides are irreversibly sorbed on the basalts. 25 refs., 20 figs., 19 tabs

  6. Mathematical Modeling of Moisture Sorption Isotherms and Determination of Isosteric Heats of Sorption of Ziziphus Leaves

    Directory of Open Access Journals (Sweden)

    Amel Saad

    2014-01-01

    Full Text Available Desorption and adsorption equilibrium moisture isotherms of Ziziphus spina-christi leaves were determined using the gravimetric-static method at 30, 40, and 50°C for water activity (aw ranging from 0.057 to 0.898. At a given aw, the results show that the moisture content decreases with increasing temperature. A hysteresis effect was observed. The experimental data of sorption were fitted by eight models (GAB, BET, Henderson-Thompson, modified-Chung Pfost, Halsey, Oswin, Peleg, and Adam and Shove. After evaluating the models according to several criteria, the Peleg and Oswin models were found to be the most suitable for describing the sorption curves. The net isosteric heats of desorption and adsorption of Ziziphus spina-christi leaves were calculated by applying the Clausius-Clapeyron equation to the sorption isotherms and an expression for predicting these thermodynamic properties was given.

  7. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Feihong Liu

    2015-01-01

    Full Text Available Temperature and relative humidity (RH are two major external factors, which affect equilibrium moisture content (EMC of wood-plastic composites (WPCs. In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP-high density polyethylene (HDPE composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB. The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  8. Sorption of organic gases in a furnished room

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

    2003-11-30

    We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m{sup 3} room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten Hazardous Air Pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl-tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C{sub 8}-C{sub 10} aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5 to >6 h{sup -1} and partitioned 95 to >99% in the sorbed phase at equilibrium.

  9. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    Science.gov (United States)

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  10. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  11. Sorption Behavior of CO2 and CH4 of Glassy Polymeric Membranes and Analytical Discussion of Partial Immobilization Model

    Directory of Open Access Journals (Sweden)

    M. Mahdavian

    2007-06-01

    Full Text Available Among various reported membrane-based gas separation processes, the best explanation is generally achieved by the solution-diffusion model. The main factors in this model are the solubility and diffusivity of permeationcomponents through the membrane. The prediction of permeability and diffusivity in multicomponent gas permeation as well as the separation evaluation equilibrium and kinetic interactions requires a proper explanation of sorption and diffusion phenomena in the polymer matrix. Investigation made by various researchers in this area shows that the equilibrium interaction (sorption step plays the key role in determining diffusion and permeation in multicomponent system. Therefore, the proper description of sorption behaviour of gas mixture in the polymer is an essential task. The dual-mode sorption (Langmuir-Henry is usually used for the description of equilibrium isotherm of gases in glassy polymers based on this model; the diffusive behaviour of the system is subsequently analyzed by the partial immobilization model. In this study, the equilibrium sorption of CO2/CH4 mixture in various polymers was modelled using the experimental data available in the literature. The differences in the mechanism of adsorption for CO2 and CH4 were analyzed by considering variations in mode of sorption for each adsorbed component at different pressures. By introducing a new adsorption parameter, P50/50, (the pressure at which the portion of two modes in sorption are equal the contribution of each adsorbed component in occupying Langmuir sites was evaluated. The results indicate that the relative significance of sorption mode for each component is a function of pressure and it is different for various polymers.

  12. Radionuclide sorption studies on abyssal red clays

    International Nuclear Information System (INIS)

    Erickson, K.L.

    1979-01-01

    The radionuclide sorption properties of a widely distributed abyssal red clay are being experimentally investigated using batch equilibration techniques. This paper summarizes sorption equilibrium data obtained when 0.68 N NaCl solutions containing either Tc, U, Pu, Am or Cm were contacted with samples of the red clay and also summarizes some initial results from experiments designed to determine the relative selectivity of the clay for various nuclides. Under mildly oxidizing conditions, the sorption equilibrium distribution coefficients for technetium were essentially zero. At solution-phase nuclide concentrations on the order of 10 -6 M and less and at solution pH values of about 6.9, the distribution coefficients for plutonium were about 3 x 10 3 m1/gm and for uranium, americium, and curium were about 10 5 ml/gm or greater. However, at solution pH values of about 2.7, the distribution coefficients for each of the nuclides were greatly diminished. Initial experiments conducted in order to determine the relative selectivity of the clay for cesium, barium, and cerium, indicated that the silicate phases in the clay were selective for cesium over barium and cerium. These experiments also indicated that the hydrous oxide phases were selective for cerium over barium and for barium over cesium

  13. Sorption of trace cesium on 21 Hanford Site sediment types

    International Nuclear Information System (INIS)

    Routson, R.C.; Barney, G.S.; Smith, R.M.; Delegard, C.A.

    1980-03-01

    Sorption of trace cesium (Cs) was measured on 21 Hanford Site sediment types. A Box-Behnken statistical design was used to develop empirical-statistical equations predicting 137 Cs sorption as a function of the equilibrium concentrations of macroions Na + , K + , and Ca +2 in solution over the concentration ranges of 3.0 to 0.001M, 0.2 to 0.002M, and 0.2 to 0.002M, respectively. These equations are required to estimate trace Cs transport from Hanford ground disposal sites. Average Cs sorption equations for the 21 sediments will be presented and discussed

  14. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica)

    International Nuclear Information System (INIS)

    Lahsasni, S.; Kouhila, M.; Mahrouz, M.

    2004-01-01

    The equilibrium moisture contents were determined for prickly pear fruit using the gravimetric static method at t=30, 40 and 50 deg. C over a range of relative humidities from 0.05 to 0.9. The sorption curves of prickly pear fruit decreased with increase in temperature at constant relative humidity. The hysteresis effect was observed. The GAB, modified Halsey, modified Chung-Pfost, modified Oswin and modified Henderson models were tested to fit the experimental data. The GAB model was found to be the most suitable for describing the sorption curves. The monolayer moisture content values for the sorption at different temperatures are calculated using a modified BET equation. The isosteric heats of desorption and adsorption of water were determined from the equilibrium data at different temperatures

  15. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Kouhila, M. E-mail: kouhila@hotmail.com; Mahrouz, M

    2004-01-01

    The equilibrium moisture contents were determined for prickly pear fruit using the gravimetric static method at t=30, 40 and 50 deg. C over a range of relative humidities from 0.05 to 0.9. The sorption curves of prickly pear fruit decreased with increase in temperature at constant relative humidity. The hysteresis effect was observed. The GAB, modified Halsey, modified Chung-Pfost, modified Oswin and modified Henderson models were tested to fit the experimental data. The GAB model was found to be the most suitable for describing the sorption curves. The monolayer moisture content values for the sorption at different temperatures are calculated using a modified BET equation. The isosteric heats of desorption and adsorption of water were determined from the equilibrium data at different temperatures.

  16. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  17. The one-dimensional transport code CHET2, taking into account nonlinear, element-specific equilibrium sorption

    International Nuclear Information System (INIS)

    Luehrmann, L.; Noseck, U.

    1996-03-01

    While the verification report on CHET1 primarily focused on aspects such as the correctness of algorithms with respect to the modeling of advection, dispersion and diffusion, the report in hand is intended to primarily deal with nonlinear sorption and numerical sorption modeling. Another aspect discussed is the correct treatment of decay within established radioactive decay chains. First, the physical fundamentals are explained of the processes determining the radionuclide transport in the cap rock, and hence are the basis of the program discussed. The numeric algorithms the CHET2 code is based are explained, showing the details of realisation and the function of the various defaults and corrections. The iterative coupling of transport and sorption computation is illustrated by means of a program flowchart. Furthermore, the actvities for verification of the program are explained, as well as qualitative effects of computations assuming concentration-dependent sorption. The computation of the decay within decay chains is verified, and application programming using nonlinear sorption isotherms as well as the entire process of transport calculations with CHET2 are shown. (orig./DG) [de

  18. Development of JAEA sorption database (JAEA-SDB). Update of sorption/QA data in FY2015

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro

    2016-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in these barrier materials is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop databases compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in bentonites and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on improving and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting and mechanistic sorption model development. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on statistical data evaluation and grouping of data related to potential perturbations. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 11,206 K d data from 83 references were added, total number of K d values in the JAEA-SDB reached about 58,000. The QA/classified K d data reached about 60% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to

  19. Kinetics of Cd2+ and Cr3+ Sorption from Aqueous Solutions Using Mercaptoacetic Acid Modified and Unmodified Oil Palm Fruit Fibre(Elaeis guineensis) Adsorbents

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The kinetics of the sorption of Cd2+ and Cr3+ from aqueous solutions by mercaptoacetic acid modified and unmodified oil palm fruit fibre adsorbents were investigated. The results indicate that sorption equilibrium was reached within 60 min for both metals. Also, the removal efficiency of the three adsorbents was observed to increase for both metals with stronger treatments with mercaptoacetic acid. This may be attributed to the influence of the thiolation of the adsorbents. Furthermore, Cr3+ had higher removal percentages than Cd2+ for all the adsorbents. The sorption mechanism based on the intraparticle diffusion model shows that Cd2+ sorption is better described than Cr3+. The intraparticle diffusion rate constants, K1d, for Cd2+are 62.04 min-1 (untreated), 67.01 min-1 (treated with 0.5 mol/L mercaptoacetic acid), and 71.43 min-1(treated with 1.0 mol/L mercaptocacetic acid) while those for Cr3+ are 63.41 min-1 (untreated), 65.79 min-1(0.5 mol/L acid treated), and 66.25 min-1 (1.0 mol/L acid treated).

  20. Modeling approaches of competitive sorption and transport of trace metals and metalloids in soils: a review.

    Science.gov (United States)

    Selim, H M; Zhang, Hua

    2013-01-01

    Competition among various heavy metal species for available adsorption sites on soil matrix surfaces can enhance the mobility of contaminants in the soil environment. Accurate predictions of the fate and behavior of heavy metals in soils and geologic media requires the understanding of the underlying competitive-sorption and transport processes. In this review, we present equilibrium and kinetic models for competitive heavy metal sorption and transport in soils. Several examples are summarized to illustrate the impact of competing ions on the reactivities and mobility of heavy metals in the soil-water environment. We demonstrate that equilibrium Freundlich approaches can be extended to account for competitive sorption of cations and anions with the incorporation of competition coefficients associated with each reaction. Furthermore, retention models of the multiple-reaction type including the two-site nonlinear equilibrium-kinetic models and the concurrent- and consecutive-multireaction models were modified to describe commonly observed time-dependent behaviors of heavy metals in soils. We also show that equilibrium Langmuir and kinetic second-order models can be extended to simulate the competitive sorption and transport in soils, although the use of such models is limited due to their simplifying assumptions. A major drawback of the empirically based Freundlich and Langmuir approaches is that their associated parameters are specific for each soil. Alternatively, geochemical models that are based on ion-exchange and surface-complexation concepts are capable of quantifying the competitive behavior of several chemical species under a wide range of environmental conditions. Such geochemical models, however, are incapable of describing the time-dependent sorption behavior of heavy metal ions in competitive systems. Further research is needed to develop a general-purpose model based on physical and chemical mechanisms governing competitive sorption in soils. Copyright

  1. Lead sorption by waste biomass of hazelnut and almond shell.

    Science.gov (United States)

    Pehlivan, Erol; Altun, Türkan; Cetin, Serpil; Iqbal Bhanger, M

    2009-08-15

    The potential to remove Pb(2+) ion from aqueous solutions using the shells of hazelnut (HNS) (Corylus avellana) and almond (AS) (Prunus dulcis) through biosorption was investigated in batch experiments. The main parameters influencing Pb(2+) ion sorption on HNS and AS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Pb(2+) ion concentration (0.1-1.0mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been investigated. Equilibrium isotherms have been measured and modelled. Adsorption of Pb(2+) ions was in all cases pH-dependent showing a maximum at equilibrium pH values between 6.0 and 7.0, depending on the biomaterial, that corresponded to equilibrium pH values of 6.0 for HNS and 7.0 for AS. The equilibrium sorption capacities of HNS and AS were 28.18 and 8.08 mg/g for lead, respectively after equilibrium time of 2h. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that adsorption, chelation and ion exchange are major adsorption mechanisms for binding Pb(2+) ion to the sorbents.

  2. Suitability criterion for a refrigerant for use in solar operated sorption refrigerator

    International Nuclear Information System (INIS)

    Tabassum, S.A.; Mir, M.S.

    1996-01-01

    The thermodynamics of a sorption refrigeration cycle has been discussed representing the cycle on a clapeyron digram. The minimum generation temperature required has been determined using the 'd-a' equation which represents the sorption equilibrium of the pair, and Gibbs free energy relation. The mathematical relation developed provides a totally new basis for determination of suitability of a particular refrigerant. (author)

  3. Suitability criterion for a refrigerant for use in solar operated sorption refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, S A; Mir, M S [University of Engineering and Technology, Lahore (Pakistan). Dept. of Mechanical Engineering

    1996-06-01

    The thermodynamics of a sorption refrigeration cycle has been discussed representing the cycle on a clapeyron digram. The minimum generation temperature required has been determined using the `d-a` equation which represents the sorption equilibrium of the pair, and Gibbs free energy relation. The mathematical relation developed provides a totally new basis for determination of suitability of a particular refrigerant. (author).

  4. Effects of Citrate and Arginine on Sorption of Nickel to Yazd Sepiolite and Calcite

    Directory of Open Access Journals (Sweden)

    Ahmadreza Sheikhhosseini

    2017-03-01

    Full Text Available Introduction: Pollution of soil and water environment by release of heavy metals is of great concerns of the last decades. Sorption of heavy metals by low cost materials is considered as an inexpensive and efficient method used for removal of heavy metals from soil-water systems. The presence of different ligands with various complexing abilities can change the sorption properties of heavy metals and their fate in the environment as well. In order to assess the effect of citrate and arginine as natural organic ligands in soil environment, in a batch study we investigated the effects of these ligands on equilibrium sorption of nickel to sepiolite and calcite minerals and also kinetics of Ni sorption by these minerals. Materials and Methods: Minerals used in this study included sepiolite from Yazd (Iran and pure calcite (Analytical grade, Merck, Germany. Sepiolite was purified, saturated with Ca using 0.5 M CaCl2, powdered in a mortar and sieved by non-metal 230 mesh standard wire sieve. For equilibrium sorption study, in a 50-mL polyethylene centrifuge tube,0.3 g sample of each mineral was suspended in 30 mL of a 0.01 M CaCl2 solution containing 0, 5, 10, 20, 40, 60, 80 and 100 mg L-1 Ni (NiCl2 and containing zero (as control or 0.1mmol L-1 citrate or arginine ligands. The applied concentrationsfor each ligand can naturally occur in soils. Preparedtubes were shaken (180±2 rpm, 25±1oC for 24 h using an orbital shaker and centrifuged (4000×g for 10 min and the supernatants were analyzed for Ni concentration using an atomic absorption spectrophotometer (AAnalyst 200 Perkin-Elmer at a wavelength of 232 nm and a detection limit of 0.05 mg L-1. The quantity of Ni retained by each mineral at equilibrium was calculated using equation qe = (Ci - CeV/W where qe was the amount of nickel retained by mineral surface at equilibrium. Ci and Ce were the initial and the equilibrium concentrations (mg L-1 of Ni, respectively, V was the volume (L of the solution

  5. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  6. Understanding the sorption behavior of Pu{sup 4+} on poly(amidoamine) dendrimer functionalized carbon nanotube. Sorption equilibrium, mechanism, kinetics, radiolytic stability, and back-extraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Parveen [Indian Institute of Technology, Himachal Pradesh (India); Sengupta, Arijit [Bahbha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Deb, Ashish Kumar Singha; Ali, S. Musharaf [Bahbha Atomic Research Centre, Mumbai (India). Chemical Engineering Div.; Homi Bhabha National Institute, Mumbai (India); Dasgupta, Kinshuk [Bhabha National Institute, Mumbai (India). Mechanical Metallurgy Div.

    2017-07-01

    Poly(amidoamine) dendrimer functionalized carbon nanotube was demonstrated as highly efficient sorbent of the Pu{sup 4+} from radioactive waste solution. The second generation dendrimer was found to have more efficiency as compared to the 1{sup st} generation might be due to the availability of more functionality for coordinating to the Pu{sup 4+} ion. Analysis of different isotherm models revealed that, Langmuir isotherm was predominantly operating through chemi-sorption (with the sorption energy 10.07 and 16.95 kJ mol{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer) with the sorption capacity 89.22 mg g{sup -1} and 92.48 mg g{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer, respectively. Analysis of different sorption kinetics model revealed that the sorption proceeded via pseudo 2{sup nd} order reaction. The 2{sup nd} generation dendrimer was found to be radiolytically more stable while oxalic acid was found to be suitable for quantitative back extraction of Pu{sup 4+}.

  7. Studies on the sorption behaviours of Th(IV) and U(VI) from aqueous sulphate solutions using impregnated resin

    International Nuclear Information System (INIS)

    Khatab, A.F.; Sheta, M.E.; Mahfouz, M.G.; Tolba, A.A.

    2007-01-01

    The sorption behaviours of thorium (IV) and uranium (VI) from aqueous sulphate solutions have been studied using n-dodecylamine and tri-n-octylamine (TOA) dissolved in benzene and impregnated onto amberlite XAD-4 (styrene-divinyl benzene copolymer). The sorption behaviours were evaluated as a function of free acidity, salting out effect, ph value, equilibrium time, V/m ratio, initial metal ion concentration, loaded amine concentration and sorption temperature. The equilibrium time for Th(IV) and U(VI) sorption from aqueous sulphate solution was found to be 90 and 60 minutes, respectively. The sorption of Th(IV) was quantitatively at ph range 3.7-4.3 and at 4.3-5.2 for U(VI). The sorption capacity of the impregnated resin was determined by batch method and it was found to be 0.031 and 0.033 mmol/g for Th(IV) and U(VI), respectively. Elution of Th(IV) from thorium-loaded impregnated resin was quantitatively achieved by using 2 mol/l HNO 3 and by using 0.1 mol/l HCl for U(VI)

  8. Kinetics and thermodynamic for sorption of arsenate by Lanthanum-exchanged zeolite

    International Nuclear Information System (INIS)

    Mohd Jelas Haron; Saiful Adli Masdan; Mohd Zobir Hussein; Zulkarnain Zainal; Anuar Kassim

    2007-01-01

    Zeolites are crystalline, hydrated aluminosilicate containing exchangeable alkaline and alkaline earth cations in their structural frameworks. Since zeolites have permanent negative charges on their surfaces, they have no affinity for anions. However recent studies have shown that modification of zeolites with certain surfactants or metal cations yield sorbents with a strong affinity for many anions. In this paper, modification of zeolites (zeolite A, X and ZSM5) were performed by exchange of naturally occurring cations with lanthanum ion that forms low solubility arsenate salt. The exchanged zeolites were used to sorb arsenate from aqueous solution. Among parameters investigated were effect of pH, arsenate initial concentrations, contact time and temperature. The maximum exchanged capacity of La (III) ion was obtained when using solution with initial pH of 4. Zeolite X gives the highest La (III) exchanged capacity compared to other zeolites. The results showed that As (V) sorption by La-zeolites occurred at about pH 6.5 and increased as pH increased and reaching maximum at equilibrium pH about 7.8. On the other hand, almost no arsenate sorption occurred on un exchanged zeolites. This indicates that La (III) ion on the exchanged zeolites is taking part on the As(V) sorption via surface precipitation. The results also showed that the sorption capacities increased with increasing initial As (V) concentrations. The sorption followed Langmuir model with maximum sorption capacities of 0.41, 0.21 and 0.19 mmol/g at 25 degree Celsius for La exchanged zeolite X (La-ZX), La exchanged zeolite ZSM5 (La-ZSM) and La exchanged zeolite A (La-ZA), respectively. The amounts of sorption of As (V) by La exchanged zeolite increased as temperature increased from 25 to 70 degree Celsius indicating that the process is endothermic. The free energy changes ( ΔG degree) for the sorption at 25 degree Celsius were -10.25, -9.65 and -8.49 kJ/ mol for La-ZX, La-ZSM and La-ZA, respectively. The

  9. Sorption of hydrophobic organic compounds to plastics in marine environments: Equilibrium

    NARCIS (Netherlands)

    Endo, S.; Koelmans, A.A.

    2016-01-01

    Marine plastics have shown to contain various environmental chemicals. For evaluating the potential of plastics to influence regional and global dynamics of these chemicals and to serve as a vector to marine biota, understanding of sorption and desorption of chemicals by plastics is important. In

  10. Characterization of phosphorus sorption on the sediments of Yangtze River Estuary and its adjacent areas

    International Nuclear Information System (INIS)

    Cao, Xiaoyan; Liu, Xiaoyue; Zhu, Jiamei; Wang, Lisha; Liu, Sumei; Yang, Guipeng

    2017-01-01

    This paper studied the kinetics, isotherm and thermodynamics of phosphorus sorption onto the sediments of the Yangtze River estuary and its adjacent waters, as well as the sediments' compositions and physicochemical properties. The process could be described well by a two-compartment first order equation. The sorbed phosphorus mainly consisted of Ex-P and Fe-P, with Ex-P being the dominant. The equilibrium isotherms could be fitted well with a modified Langmuir equation. The calculations of the thermodynamic parameters indicated that the process was spontaneous and exothermic. The CEC and the fractions of clay, calcite and organic matter were correlated with the sorption parameters, while the surface proton charge of the sediments was significantly negatively correlated with them. Considering the kinetics and phosphorus forms changes during the process, the sorption in our study could be considered that the physical process plays an important role. - Highlights: • The kinetic curves and phosphorus fractions changes during sorption were studied. • The sorbed phosphorus mainly consisted of Ex − P and Fe-P, with Ex − P being dominant. • The equilibrium isotherms and thermodynamic parameters were investigated. • Sediment composition and surface characteristics influenced phosphorus sorption parameters.

  11. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter,Fabiano André; Ferreira,Tamara Santos; Sinhorin,Adilson Paulo; Lima,Larissa Borges de; Morais,Leidimar Alves de; Pacheco,Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorpti...

  12. Effects of Network Characteristics on Reaching the Payoff-Dominant Equilibrium in Coordination Games: A Simulation study.

    Science.gov (United States)

    Buskens, Vincent; Snijders, Chris

    2016-01-01

    We study how payoffs and network structure affect reaching the payoff-dominant equilibrium in a [Formula: see text] coordination game that actors play with their neighbors in a network. Using an extensive simulation analysis of over 100,000 networks with 2-25 actors, we show that the importance of network characteristics is restricted to a limited part of the payoff space. In this part, we conclude that the payoff-dominant equilibrium is chosen more often if network density is larger, the network is more centralized, and segmentation of the network is smaller. Moreover, it is more likely that heterogeneity in behavior persists if the network is more segmented and less centralized. Persistence of heterogeneous behavior is not related to network density.

  13. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    International Nuclear Information System (INIS)

    Stumpe, Britta; Marschner, Bernd

    2010-01-01

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with 14 C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  14. Dissolved organic carbon from sewage sludge and manure can affect estrogen sorption and mineralization in soils

    Energy Technology Data Exchange (ETDEWEB)

    Stumpe, Britta, E-mail: britta.stumpe@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany); Marschner, Bernd, E-mail: bernd.marschner@rub.d [Ruhr-University Bochum, Institute of Geography, Department Soil Science/Soil Ecology, Universitaetsstr. 150, 44780 Bochum (Germany)

    2010-01-15

    In this study, effects of sewage sludge and manure borne dissolved organic carbon (DOC) on 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) sorption and mineralization processes were investigated in three agricultural soils. Batch equilibrium techniques and equilibrium dialysis methods were used to determine sorption mechanisms between DOC, estrogens and the soil solid phase. It was found that that the presence of organic waste borne DOC decreased estrogen sorption in soils which seems to be controlled by DOC/estrogen complexes in solution and by exchange processes between organic waste derived and soil borne DOC. Incubation studies performed with {sup 14}C-estrogens showed that DOC addition decreased estrogen mineralization, probably due to reduced bioavailability of estrogens associated with DOC. This increased persistence combined with higher mobility could increase the risk of estrogen transport to ground and surface waters. - The effect of DOC on estrogen sorption and mineralization is influenced by exchange processes between organic waste borne and soil derived DOC.

  15. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  16. Sorption Energies for Atrazine onto Devolatalized Vitellaria paradoxa

    International Nuclear Information System (INIS)

    Itodo, A. U.; Abdulrahman, F. W.; Hassan, L. G.; Happiness, U. I.

    2012-01-01

    We utilize isotherm models in contributing to scholarly knowledge in simple terms, to measure the forces or energy defining certain adsorption phenomenon. Gas Chromatography coupled with Mass Spectrophotometer detector was utilized to measure equilibrium phase atrazine after adsorption onto Shea nut Shells acid derived activated carbon. Data were fitted into the D-R and Temkin isotherm relationships for energy data estimation of Sorption energy value (B D ), mean free energy (E D ) and heat of sorption (B). They were estimated as 0.7600mol 2 KJ -2 , 0.8111 kjmor -1 and 0.790Jmol -1 respectively. The parameter predicting the type of adsorption was evaluated B D , B D 2 = 0.979 proves a better choice in explaining sorption energies. Generally, shea nut shells can be used as alternative precursors for activated carbon production via the two steps and acid treatment method.

  17. Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins.

    Science.gov (United States)

    Bi, Erping; Haderlein, Stefan B; Schmidt, Torsten C

    2005-10-01

    Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.

  18. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li Kun [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States); Xing Baoshan [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States) and Northeast Institute of Geography and Agro-ecology, CAS, Harbin 150040 (China)]. E-mail: bx@pssci.umass.edu; Torello, William A. [Department of Plant, Soil, and Insect Sciences, Stockbridge Hall, University of Massachusetts, Amherst, MA 01003 (United States)

    2005-03-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf.

  19. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching

    International Nuclear Information System (INIS)

    Li Kun; Xing Baoshan; Torello, William A.

    2005-01-01

    Incorporation of organic fertilizers/amendments has been, and continues to be, a popular strategy for golf course turfgrass management. Dissolved organic matter (DOM) derived from these organic materials may, however, facilitate organic chemical movement through soils. A batch equilibrium technique was used to evaluate the effects of organic fertilizer-derived DOM on sorption of three organic chemicals (2,4-D, naphthalene and chlorpyrifos) in USGA (United States Golf Association) sand, a mixed soil (70% USGA sand and 30% native soil) and a silt loam soil (Typic Fragiochrept). DOM was extracted from two commercial organic fertilizers. Column leaching experiments were also performed using USGA sand. Sorption experiments showed that sorption capacity was significantly reduced with increasing DOM concentration in solution for all three chemicals. Column experimental results were consistent with batch equilibrium data. These results suggest that organic fertilizer-derived DOM might lead to enhanced transport of applied chemicals in turf soils. - Dissolved organic matter could result in enhanced transport of chemicals applied to turf

  20. Moisture transport and equilibrium in organic coatings

    NARCIS (Netherlands)

    Wel, van der G.K.; Adan, O.C.G.

    2000-01-01

    Improving coating performance in regard of protection of substrates and structures against moisturerelated degradation requires detailed knowledge of underlying transport mechanisms. In this paper a review is given on transport and equilibrium sorption of moisture in polymer films and organic

  1. Equilibrium Sorption studies of Fe, Cu and Co ions in aqueous ...

    African Journals Online (AJOL)

    Recinius Communis Linn a commonly found herbal plant was used to prepare activated carbon by physicochemical activation method. The sorption capacity of this bio-resource material to remove Fe(III), Cu(II) and Co(II) from aqueous solutions was determined by batch tests. The influences of important parameters such as ...

  2. Sorption of uranyl ions on hydrous silicon dioxide

    International Nuclear Information System (INIS)

    Lieser, K.H.; Quandt-Klenk, S.; Thybusch, B.

    1992-01-01

    Sorption of uranyl ions on SiO 2 .χH 2 O (silica gel) is investigated in absence and in presence of carbonate as function of pH. The curves obtained are very similar to those observed for sorption of uranyl ion on TiO 2 .χH 2 O, indicating the dominating influence of the uranium species in solution. Between pH 2 and 5 the sorption ratio R s increases with hydrolysis of uranyl ions (formation of UO 2 OH + ), around pH 7 it is nearly independent of pH, and at higher pH it decreases again. The equilibrium constants are calculated for these ranges. In presence of carbonate R s decreases drastically above pH 6, due to the formation of carbonato complexes in solution. Sorption of uranyl ions on SiO 2 .χH 2 O, on TiO 2 .χH 2 O, and on cryst. SiO 2 and Al 2 O 3 is compared. The problems of 'surface complexation' modelling are discussed. (orig.)

  3. Experimental determination of sorption in fractured flow systems

    Science.gov (United States)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  4. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    Science.gov (United States)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  5. Quantifying the effect of sorption and bioavailability of hydrophobic organic contaminants

    International Nuclear Information System (INIS)

    Zhang, W.; Bouwer, E.; Cunningham, A.

    1994-01-01

    In-situ bioremediation has been applied successfully at a few sites. Several restrictions presently exist which could greatly limit the effectiveness of this promising technology. Hydrophobic organic contaminants tend to sorb onto soil. However, microorganisms are most effective in utilizing substrates from the aqueous phase. Sorption tends to separate the direct contact between microorganisms and contaminants necessary for biodegradation to occur. A series of experiments, which represented scenarios with fast sorption/desorption, slow sorption/desorption, mass transfer across boundary layer and mass transfer within attached microorganisms (biofilm), was conducted to demonstrate the concentration effect and the mass transfer effect. A method has been developed to quantify bioavailability of organic contaminants in aquatic environments. Bioavailability Factor (B f ), a dimensionless parameter derived from mathematical models and verified by experimental results, has been formulated to describe the impact of equilibrium sorption, nonequilibrium sorption, and mass transfer processes on the rate and extent of biodegradation of petroleum hydrocarbons

  6. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  7. The sorption of silver by poorly crystallized manganese oxides

    Science.gov (United States)

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  8. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    Science.gov (United States)

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components ( i.e. , smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (Δ G *), activation enthalpy (Δ H *), and activation entropy (Δ S *) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10 -2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals

  9. Effects of sorption behaviour on contaminant migration

    International Nuclear Information System (INIS)

    Melnyk, T.W.

    1985-11-01

    The effects of sorption behaviour on contaminant migration in groundwater systems are varied. Retardation of migration and dispersive effects can vary widely and contaminant concentration profiles can take a number of different shapes. This report examines the nature of some of these effects, especially those due to sorption behaviours that are dependent on the concentration of the contaminant in the groundwater. The effects are calculated using, in most cases, analytical solutions to the chemical equations imbedded in a simple reaction-cell or box-model transport algorithm. The hydrogeological parameters are held constant, and radioactive decay and hydrodynamic dispersion are excluded. A general discussion of the role of sorption equations in transport modelling is followed by presentation of migration results for a number of models of sorption behaviour varying from linear isotherms, Langmuir, Freundlich and ion-exchange isotherms, to precipitation reactions and multiple-site sorption reactions. The results are compared and general conclusions are drawn about the various migration behaviours calculated. The conclusions are that equilibrium sorption of trace contaminants can be modelled with linear isotherms (constant distribution coefficients or constant retardation factors) but the evaluation and extrapolation of the distribution coefficient are not easy. Nonlinear isotherms lead to unsymmetrical migration fronts. A comparison of Freundlich and linear isotherms is made. Sorption/desorption kinetic factors can be significant on the time scale of laboratory experiments and can cause large dispersive effects. Slow but important reactions can be missed altogether. Precipitation or mineralization behaviour cannot be modelled with constant distribution coefficients. Also, mineralization reactions can be kinetically slow even on the geological time scale. 89 refs

  10. A gel probe equilibrium sampler for measuring arsenic porewater profiles and sorption gradients in sediments: II. Field application to Haiwee reservoir sediment

    Science.gov (United States)

    Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.

    2008-01-01

    Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.

  11. Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption

    International Nuclear Information System (INIS)

    Benamer, S.; Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M.; Lounici, H.; Mameri, N.

    2011-01-01

    Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose. The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads. - Highlights: → Pb and Cd ions are removed from aqueous solution by adsorption on chitosan beads. → Crosslinking process improves chemical stability of chitosan beads. → Radiation grafting of acrylic acid onto chitosan improves its metal adsorption capacity. → Increase in grafting degree enhances the adsorption capacity of the material. → Gamma radiation is a powerful tool for an accurate control of the grafting yield.

  12. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    Science.gov (United States)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  13. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  14. An Exact Solution for the Assessment of Nonequilibrium Sorption of Radionuclides in the Vadose Zone

    International Nuclear Information System (INIS)

    Drake, R. L.; Chen, J-S.

    2002-01-01

    In a report on model evaluation, the authors ran the HYDRUS Code, among other transport codes, to evaluate the impacts of nonequilibrium sorption sites on the time-evolution of 99Tc and 90Sr through the vadose zone. Since our evaluation was based on a rather low, annual recharge rate, many of the numerical results derived from HYDRUS indicated that the nonequilibrium sorption sites, in essence, acted as equilibrium sorption sites. To help explain these results, we considered a ''stripped-down'' version of the HYDRUS system. This ''stripped-down'' version possesses two dependent variables, one for the radionuclides in solution and the other for the radionuclides adsorbed to the nonequilibrium sites; and it possesses constant physical parameters. The resultant governing equation for the radionuclides in solution is a linear, advection-dispersion-reaction (i.e., radioactive decay) partial differential equation containing a history integral term accounting for the nonequilibrium sorption sites. It is this ''stripped-down'' version, which is the subject of this paper. We found an exact solution to this new version of the model. The exact solution is given in terms of a single definite integral of terms involving elementary functions of the independent variables and the system parameters. This integral possesses adequate convergence properties and is easy to evaluate, both in a quantitative matter and in a qualitative manner. The parameters that are considered in the system are as follows: the radionuclide's equilibrium partition coefficient between water and soil, the bulk density of the soil, the fractions of equilibrium/nonequilibrium sorption sites, the volumetric water content, the first order equilibrium adsorption rate constant, the first order radioactive decay rate constant, the liquid water soil tortuosity factor, the molecular diffusion coefficient in water, the longitudinal dispersivity factor, and the Darcian fluid flux density. In addition, the system

  15. Sorption characteristics of methylene blue onto Nypa fruiticans lignin ...

    African Journals Online (AJOL)

    The sorption characteristics of soda lignin extracted from Nypa fruiticans for the removal of methylene blue dye from aqueous solution was investigated in this study, as an ethically sound way of utilizing this unexploited abundant natural resource. Equilibrium data were fitted to the Langmuir and Freundlich isotherm ...

  16. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  17. Sorption and Microbial Uptake of Alanine, Glucose and Acetate in Soil

    Science.gov (United States)

    Fischer, H.; Ingwersen, J.; Kuzyakov, Y.

    2009-04-01

    Low molecular weight organic substances (LMWOS), e. g. amino acids, sugars, and carboxylic acids, are C compounds that are most rapidly turned-over in the C cycle of soil. Despite of their importance it is still unknown how sorption to the soil matrix affects their turnover in soil solution. The goals of this study were (1) to describe the dynamics of the fluxes of LMWOS (10 µmol l-1) in various pools (dissolved, adsorbed, decomposed to CO2, incorporated into microbial biomass) and (2) to assess the LMWOS distribution in these pools in dependence of very wide range of concentration (0.01 to 1000 µmol l-1). Representatives of each LMWOS group (glucose for sugars, alanine for amino acids, Na-acetate for carboxylic acids) uniformly labeled with 14C were added to sterilized or non-sterilized soil and analyzed in dif-ferent compartments between 1 min and 5.6 hours after addition. LMWOS were almost completely taken up by microorganisms within the first 30 min. Microbial uptake was much faster than the physicochemical sorption (estimated in sterilized soil), which needed to reach quasi-equilibrium 60 min for alanine and about 400 min for glucose. Only sorption of acetate was instantaneous (>1 min). While for acetate the maximum sorption capacity was reached at 100 µmol l-1 no such maximum was found for glucose and alanine in the studied concentra-tion range. At the concentration of 100 µmol l-1, microbial decomposition after 4.5 h hours was higher for alanine (76.7±1.1%) than acetate (55.2±0.9%) and glucose (28.5±1.5%). On the contrary, incorporation into microbial biomass was higher for glucose (59.8±1.2%) than for acetate (23.4±5.9%) and alanine (5.2±2.8%). Within 10 to 500 µmol l-1 the pathways of the three LMWOS transformation changed: at 500 µmol l-1 alanine and acetate were less mineralized and more incorporated into microbial biomass than at 10 µmol l-1, while glucose incorporation decreased. Consequently, the concentrations of alanine, glucose, and

  18. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  19. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2011-01-01

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al 2 (SO 4 ) 3 solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pH eq between 2.3 and 6.2. Sorption capacities of fluoride ions as a function of dose of

  20. Re-evaluation of the sorption behaviour of Bromide and Sulfamethazine under field conditions using leaching data and modelling methods

    Science.gov (United States)

    Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus

    2016-04-01

    The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima

  1. COSOLVENT EFFECTS ON SORPTION AND MOBILITY OF ORGANIC CONTAMINANTS IN SOILS

    Science.gov (United States)

    Batch equilibrium and column miscible displacement techniques were used to investigate the influence of an organic cosolvent (methanol) on the sorption and transport of three hydrophobic organic chemicals (HOCs) — naphthalene, phenanthrene, and diuron herbicide — in a sandy surfa...

  2. Sorption mechanisms and sorption models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.; Duc, M.; Neskovic, C.; Milonjic, S.

    2004-01-01

    Sorption at the solid-liquid interfaces play a major role in many phenomena and technologies: chemical separations, catalysis, biological processes, transport of toxic and radioactive species in surface and underground waters. The long term safety of radioactive waste repositories is based on artificial and natural barriers, intended to sorb radionuclides after the moment when the storage matrixes and containers will be corroded. Predictions on the efficiency of sorption for more than 10 6 years have to be done in order to demonstrate the safety of such depositories, what is a goal never encountered in the history of sciences and technology. For all these purposes, and, especially for the long term prediction, acquiring of sorption data constitutes only a first step of studies. Modeling based on a very good knowledge of sorption mechanisms is needed. In this review, we shall examine the main approaches and models used to quantify sorption processes, including results taken from the literature and from our own studies. We shall compare sorption models and examine their adequacy with sorption mechanisms. The cited references are only a few examples of the numerous articles published in that field. (orig.)

  3. Thermodynamic parameters of U (VI) sorption onto soils in aquatic systems.

    Science.gov (United States)

    Kumar, Ajay; Rout, Sabyasachi; Ghosh, Malay; Singhal, Rakesh Kumar; Ravi, Pazhayath Mana

    2013-01-01

    The thermodynamic parameters viz. the standard free energy (∆Gº), Standard enthalpy change (∆Hº) and standard entropy change (∆Sº) were determined using the obtained values of distribution coefficient (kd) of U (VI) in two different types of soils (agricultural and undisturbed) by conducting a batch equilibrium experiment with aqueous media (groundwater and deionised water) at two different temperatures 25°C and 50°C. The obtained distribution coefficients (kd) values of U for undisturbed soil in groundwater showed about 75% higher than in agricultural soil at 25°C while in deionised water, these values were highly insignificant for both soils indicating that groundwater was observed to be more favorable for high surface sorption. At 50°C, the increased kd values in both soils revealed that solubility of U decreased with increasing temperature. Batch adsorption results indicated that U sorption onto soils was promoted at higher temperature and an endothermic and spontaneous interfacial process. The high positive values of ∆Sº for agricultural soil suggested a decrease in sorption capacity of U in that soil due to increased randomness at solid-solution interface. The low sorption onto agricultural soil may be due to presence of high amount of coarse particles in the form of sand (56%). Geochemical modeling predicted that mixed hydroxo-carbonato complexes of uranium were the most stable and abundant complexes in equilibrium solution during experimental.

  4. Sorption and Transport of Diphenhydramine in Natural Soils

    Science.gov (United States)

    Rutherford, C. J.; Vulava, V. M.

    2013-12-01

    Pharmaceutical and related chemicals have been detected in streams and ground water sources throughout the world, as a result of sewage overflows, runoff, or sewage treatment facilities unequipped to remove trace levels of pharmaceuticals. Diphenhydramine- an antihistamine that is used to treat allergy and common cold symptoms, induce sleep, suppress cough, and treat motion sickness- is prominent among them. Diphenhydramine has a complex, highly polar organic structure including two benzene rings and an amine functional group. It has a solubility of 3.06 g/L and a pKa of 8.98. Recent studies have shown that diphenhydramine in streams disrupts the ecology by affecting the algal and bacterial biofilms present on the streambed. In streams, photosynthesis has been found to decrease by up to 99% and plant respiration has been inhibited. Diphenhydramine has also altered the types and numbers of bacteria found in streams. Its presence in contaminated stream bodies can result in contact with soils and sediment in the stream floodplain. The objective of this study is to measure sorption and transport behavior of diphenhydramine in natural soils and determine reactivity of soil components. These studies were conducted in the laboratory using natural soil collected from the Francis Marion National Forrest. Soil samples from A and B horizons of several soil series were characterized for physical and chemical properties: organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 3.7-4.9. The B-horizon soils contain a higher amount of clay than the organic-rich A-horizon soils. Equilibrium sorption isotherms and reaction kinetic rates were measured using batch reactor experiments and chromatographic column experiments were conducted to measure transport behavior. Kinetic experiments showed that diphenhydramine sorbed more strongly to the clay-rich soils and reached equilibrium after seven days, compared to ten days in organic-rich soils. The

  5. Effects of aged sorption on pesticide leaching to groundwater simulated with PEARL.

    Science.gov (United States)

    Boesten, Jos J T I

    2017-01-15

    Leaching to groundwater is an important element of the regulatory risk assessment of pesticides in western countries. Including aged sorption in this assessment is relevant because there is ample evidence of this process and because it leads to a decrease in simulated leaching. This work assesses the likely magnitude of this decrease for four groundwater scenarios used for regulatory purpose in the EU (from the UK, Portugal, Austria and Greece) and for ranges of aged-sorption parameters and substance properties using the PEARL model. Three aged-sorption parameters sets were derived from literature, representing approximately 5th, 50th and 95th percentile cases for the magnitude of the effect of aged sorption on leaching concentrations (called S, M and L, respectively). The selection of these percentile cases was based only on the f NE parameter (i.e. the ratio of the aged sorption and the equilibrium sorption coefficients) because leaching was much more affected by the uncertainty in this parameter than by the uncertainty in the desorption rate coefficient of these sites (k d ). For the UK scenario, the annual flux concentration of pesticide leaching at 1m depth decreased by typically a factor of 5, 30 and >1000 for the S, M and L parameter sets, respectively. This decrease by a factor of 30 for the M parameter set appeared to be approximately valid also for the other three scenarios. Decreasing the Freundlich exponent N from 0.9 into 0.7 for the M parameter set, increased this factor of 30 into a factor of typically 1000, considering all four scenarios. The aged-sorption sites were close to their equilibrium conditions during the leaching simulations for two of the four scenarios (for all substances considered and the M parameter set), but this was not the case for the other two scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sorption of Th(IV) onto ZnO nanoparticles and diatomite-supported ZnO nanocomposite. Kinetics, mechanism and activation parameters

    Energy Technology Data Exchange (ETDEWEB)

    Yusan, Sabriye; Aslani, Mahmut A.A.; Aytas, Sule [Ege Univ., Izmir (Turkey). Inst. of Nuclear Sciences; Bampaiti, Anastasia; Noli, Fotini [Aristotle University of Thessaloniki (Greece). Dept. of Chemistry; Erenturk, Sema [Istanbul Technical Univ., Ayazaga Campus, Maslak-Istanbul (Turkey). Energy Inst.

    2016-11-01

    In this study, for the first time ZnO nanoparticles and diatomite-supported ZnO nanocomposite have been utilized as adsorbent for the removal of Th(IV) ions from aqueous solutions under different experimental conditions. The Langmuir, Freundlich, Temkin and Dubinin- Radushkevich (D-R) isotherms were used to analyze the equilibrium data. The sorption equilibrium data were fitted well to the Langmuir isotherm with maximum sorption capacities values was found to be 1.105 mmol/g and 0.320 mmol/g for ZnO nanoparticles and diatomite supported ZnO nanocomposite, respectively. Pseudo-first and pseudo-second order equations, Intraparticle diffusion and Bangham's models were considered to evaluate the rate parameters and sorption mechanism. Sorption kinetics were better reproduced by the pseudo-second order model (R{sup 2} > 0.999), with an activation energy (E{sub a}) of +99.74 kJ/mol and +62.95 kJ/mol for ZnO nanoparticles and diatomite-supported ZnO nanocomposite, respectively. In order to specify the type of sorption reaction, thermodynamic parameters were also determined. The evaluated ΔG* and ΔH* indicate the non-spontaneous and endothermic nature of the reactions. The results of this work suggest that both of the used materials are fast and effective adsorbents for removing Th(IV) from aqueous solutions and chemical sorption plays a role in controlling the sorption rate.

  7. Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou

    1997-01-01

    The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)

  8. Studies Regarding As(V Adsorption from Underground Water by Fe-XAD8-DEHPA Impregnated Resin. Equilibrium Sorption and Fixed-Bed Column Tests

    Directory of Open Access Journals (Sweden)

    Mihaela Ciopec

    2014-10-01

    Full Text Available The characteristics of arsenic adsorption onto Fe-XAD8-DEHPA resin were studied on the laboratory scale using aqueous solutions and natural underground waters. Amberlite XAD8 resin was impregnated with di(2-ethylhexyl phosphoric acid (DEHPA via the dry method of impregnation. Fe(III ions were loaded onto the impregnated resin by exploiting the high affinity of arsenic towards iron. The studies were conducted by both in contact and continuous modes. Kinetics data revealed that the removal of arsenic by Fe-XAD8-DEHPA resin is a pseudo-second-order reaction. The equilibrium data were modelled with Freundlich Langmuir and Dubinin Radushkevich (D-R isotherms and it was found that the Freundlich model give the poorest correlation coefficient. The maximum adsorption capacity obtained from the Langmuir isotherm is 22.6 µg As(V/g of Fe-XAD8-DEHPA resin. The mean free energy of adsorption was found in this study to be 7.2 kJ/mol and the ΔG° value negative (−9.2 kJ/mol. This indicates that the sorption process is exothermal, spontaneous and physical in nature. The studied Fe-XAD8-DEHPA resin showed excellent arsenic removal performance by sorption, both from synthetic solution and the natural water sample, and could be regenerated simply by using aqueous NaOH or HCl solutions.

  9. [Surface Property and Sorption Characteristics of Phosphorus onto Surface Sediments in Sanggou Bay].

    Science.gov (United States)

    Zhu, Jia-mei; Cao, Xiao-yan; Liu, Su-mei; Wang, Li-sha; Yang, Gui-peng; Ge, Cheng-feng; Lu, Min

    2016-02-15

    Kinetic curves and isotherms were investigated to study the sorption mechanism of phosphorus onto the sediments of Sanggou Bay, together with the surface charge properties of sediments and the forms of phosphorus studied. The results showed that the sorption including a fast process and a slow one, and could be described by a two-compartment first order equation. The thermodynamic isotherms were well fitted with a modified Langmuir equation. The maximum adsorption capacity was larger in summer than in spring, and the smaller particle size was favorable to the sorption. The maximum adsorption capacities (Qm) were 0.0471-0.1230 mg x g(-1), and the zero equilibrium phosphorus concentration (EPC0) of the sediments ranged from 0.0596 mg x L(-1) to 0.1927 mg x L(-1), which indicated that the sediments from Sanggou Bay were sources of phosphorus. Inorganic phosphorus (IP) was the main form of total phosphorus (TP). The contents of exchangeable or loosely absorbed P and Fe-bound P increased significantly in the samples after sorption. The sorption process involved physical sorption and chemical sorption, with the former being the predominant.

  10. Sorption of thiabendazole in sub-tropical Brazilian soils.

    Science.gov (United States)

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  11. Sorption of Pb(II) from aqueous solution by konjac glucomannan beads

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Konjac glucomannan beads have been investigated as metal biosorbent for Pb(II) from aqueous solu-tions. The effect of contact time, solution pH, initial metal concentration, and desorption were studied in batch experiments at 20℃±2℃. Maximum mental sorption was found to occur at initial pH 4.0―5.5. Kinetic studies revealed that the initial uptake was rapid and equilibrium was established in 3 h and that the data followed the prseudo-second order reaction. The equilibrium sorption data at initial pH 4.0 were described by the Langmuir and Freundlich isotherm models; however, Langmuir isotherm model has been found to provide the best correlation. The highest value of Langmuir maximum uptake (qmax) was found to be 105.71 mg·g-1. Similar Freundlich empirical constant (KF) was obtained to be 1.98 for lead. Adsorption-complexation may be involved in the sorption process of lead. Desorption experi- ments showed evidence that after two contacts neither HCl nor EDTA solutions were able to desorb lead from the konjac glucomannan beads, but the desorbtion efficacy of HCl solution was higher than EDTA solution. The results obtained show that konjac glucomannan beads may be used for the treat-ment of wastewater contaminated with lead.

  12. Recent progress in sorption mechanisms and models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.

    2005-01-01

    Full text of publication follows: Sorption-desorption phenomena play an important role in the migration of radioactive species in surface and underground waters. In order to predict the transport of these species, we need a good knowledge of sorption processes and data, together with reliable models able to be included in transport calculation. Traditional approaches based on experimentally determined distribution coefficients (Kd) and sorption isotherms have a limited predictive capability, since they are very sensitive to the numerous parameters characterizing the solution and the solid. Models based on thermodynamic equilibria were developed to account for the influence these parameters: the ion exchange model and the surface complexation models (2-pK mono-site, 1-pK multi-site, with several different electrostatic models: CCM, DLM, BSM, TLM,...). Although these models are very useful, studies performed in recent years showed that they have important theoretical and experimental limitations, which result in the fact that we must be very careful when we use them for extrapolating sorption data to long term and to large natural systems. Among all problems which can be found are: the possibility to fit a set of experimental data with different models, sometimes bad adequacy with the real sorption processes, some theoretical limitations such as a rigorous definition of reference and standard states in surface equilibria, slow kinetics which prevent from equilibrium achievement, irreversibility, solubility and evolution of solid phases... Through the increase of the number of sensitive spectroscopic methods, we are now able to know more about sorption processes at the atomic scale. Models such as the 1-pK CD-MUSIC model can account for the influence of orientation of the faces of the solid. More and more examples of the influence of this orientation on the sorption properties are known. Calculations performed by 'ab initio' modeling is also useful to predict the

  13. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Science.gov (United States)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  14. Neptunium(V) sorption onto kaolinite in the absence and presence of CO2

    International Nuclear Information System (INIS)

    Amayri, S.; Reich, Ta.; Reich, T.

    2005-01-01

    Full text of publication follows: The adsorption of heavy metals on clay minerals such as kaolinite is an important process that affects the migration and retardation of neptunium and other actinides in the geosphere. The sorption of Np(V) onto the reference clay mineral kaolinite KGa-1b was investigated both by batch experiments and EXAFS measurements. The aim of our study was to combine macroscopic studies (batch experiments) with microscopic techniques (EXAFS) to study the Np(V) speciation at the kaolinite surface. The batch experiments were done under relevant environmental conditions with Np(V) concentrations of 10 -11 and 10 -12 mol/L. Sorption samples were prepared in 0.1 mol/L NaClO 4 , 4 g/L kaolinite, pH 6.0 to 10.5, presence and absence of ambient CO 2 , and 60-h equilibration. The sorption curves for 10 -11 and 10 -12 mol/L Np(V) obtained in the presence and absence of CO 2 , respectively, show that the adsorption edge occurs at pH 8.5. The uptake of Np(V) by kaolinite strongly increased above pH 7.0 and reached its sorption maximum (70 %) at pH 9.0. Above pH 9.0, the amount of Np(V) sorbed onto kaolinite decreased and reached ca. 30 % at pH 10.5 due to the formation of Np(V) carbonato species in the aqueous solution. In the CO 2 -free system, the sorption of Np(V) increased continuously with pH until the sorption maximum of 100 % was reached at pH 10.5. The same sorption behavior was found in batch experiments in the CO 2 equilibrated system with Np concentrations ranging from 1 μmol/L to 10 μmol/L. EXAFS experiments on some of these batch samples indicated the formation of Np(V) carbonato species at the kaolinite surface at pH 9.0 where the uptake of Np(V) by kaolinite reaches its maximum [1]. [1] T. Reich, S. Amayri, Ta. Reich, J. Drebert, A. Jermolajev, P. Thoerle, N. Trautmann, C. Hennig, S. Sachs, Feasibility of EXAFS experiments at the Np L-edge to investigate neptunium sorption on kaolinite, Institut fuer Kernchemie, Universitaet Mainz, Annual

  15. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2012-01-01

    Highlights: ► Organic pollutants are present as complex mixtures in the marine environment. ► The competitive sorption of phenanthrene and DDT in a bi-solute system was investigated onto PVC and PE. ► DDT outcompeted phenanthrene for sorption onto plastic. ► DDT also appeared to have a negative effect on the sorption of phenanthrene onto plastic when added at high concentration. - Abstract: Plastics are known to sorb persistent organic pollutants from seawater. However, studies to quantify sorption rates have only considered the affinity of chemicals in isolation, unlike the conditions in the environment where contaminants are present as complex mixtures. Here we examine whether phenanthrene and 4,4′-DDT, in a mixture, compete for sorption sites onto PVC with no added additives (unplasticised PVC or uPVC) and Ultra-High Molecular Weight polyethylene. Interactions were investigated by exposing particles of uPVC and UHMW PE to mixtures of 3H and 14C radiolabelled Phe and DDT. Changes in sorption capacity were modelled by applying a Freundlich binding sorption isotherms. An Extended Langmuir Model and an Interaction Factor Model were also applied to predict equilibrium concentrations of pollutants onto plastic. This study showed that in a bi-solute system, DDT exhibited no significantly different sorption behaviour than in single solute systems. However, DDT did appear to interfere with the sorption of Phe onto plastic, indicating an antagonistic effect.

  16. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  17. Sorption of Cs, Eu and U(VI) onto rock samples from Nizhnekansky massive

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, V.; Vlasova, I.; Kalmykov, S. [Lomonosov Moscow State University (Russian Federation); Kuzmenkova, N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science (Russian Federation); Petrov, V.; Poluektov, V. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences - IGEM RAS (Russian Federation)

    2014-07-01

    The accepted in Russia concept for high level wastes (HLW) and spent nuclear fuel (SNF) disposal is based on their isolation into the deep underground crystalline rock formations. The 'Eniseysky' area (Nizhnekansky massive) is supposed as the most perspective location for the future HLW and SNF repository. Core materials from different areas of Nizhnekasnsky massive have been studied in terms of petrographic and mineralogical characterization; definition of filtration, elastic, petro-physical and strength properties; estimation of hydrothermal-metasomatic transformation of rocks. We used both undisturbed sliced cores and crushed material for the sorption experiments. Preliminary results of uranium sorption show some significant differences between used rock samples from different depth in sorption rate and pH-dependence. In all cases maximum sorption (more than 90%) is reached in 2-3 weeks. The pH-dependence of sorbed uranium fraction has typical hump-shape: increase of sorption percentage with increasing pH values to 6, plateau (90-98 % of uranium sorbed), decrease of sorption percentage with increasing pH values from 8 due to U(VI) hydrolysis. In the case of cesium the sorption maximum is reached within 10-12 days and in the case of europium - about 5 days. All radionuclides sorbed preferentially onto dark minerals. Local distribution and preferential sorption of cesium, europium and uranium (VI) onto different minerals within the sample were studied by radiography, SEM-EDX, etc. These data accompanying with rock sample composition will allow the development of quantitative model for Cs, Eu and U(VI) sorption onto investigated rocks. Document available in abstract form only. (authors)

  18. Transport and sorption of volatile organic compounds and water vapor in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tsair-Fuh [Univ. of California, Berkeley, CA (United States)

    1995-07-01

    To gain insight on the controlling mechanisms for VOC transport in porous media, the relations among sorbent properties, sorption equilibrium and intraparticle diffusion processes were studied at the level of individual sorbent particles and laboratory columns for soil and activated carbon systems. Transport and sorption of VOCs and water vapor were first elucidated within individual dry soil mineral grains. Soil properties, sorption capacity, and sorption rates were measured for 3 test soils; results suggest that the soil grains are porous, while the sorption isotherms are nonlinear and adsorption-desorption rates are slow and asymmetric. An intragranular pore diffusion model coupled with the nonlinear Freundlich isotherm was developed to describe the sorption kinetic curves. Transport of benzene and water vapor within peat was studied; partitioning and sorption kinetics were determined with an electrobalance. A dual diffusion model was developed. Transport of benzene in dry and moist soil columns was studied, followed by gaseous transport and sorption in activated carbon. The pore diffusion model provides good fits to sorption kinetics for VOCs to soil and VOC to granular activated carbon and activated carbon fibers. Results of this research indicate that: Intraparticle diffusion along with a nonlinea sorption isotherm are responsible for the slow, asymmetric sorption-desorption. Diffusion models are able to describe results for soil and activated carbon systems; when combined with mass transfer equations, they predict column breakthrough curves for several systems. Although the conditions are simplified, the mechanisms should provide insight on complex systems involving transport and sorption of vapors in porous media.

  19. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  20. Experimental studies of Cs, Sr, Ni, and Eu sorption on Na-illite and the modelling of Cs sorption

    International Nuclear Information System (INIS)

    Poinssot, C.; Baeyens, B.; Bradbury, M.H.

    1999-08-01

    A natural illite (illite du Puy) was purified and converted to the homo-ionic Na-form. The conditioned Na-illite was characterised in terms of its mineralogy, chemical inventory and physico-chemical properties. The structural formula was determined from energy dispersive spectroscopic analyses (SEM/TEM-EDS) and bulk chemistry measurements. A cation exchange capacity of 127 meq kg -1 was determined by the 22 Na isotope dilution method at neutral pH. The Na-CEC was also measured as a function of pH. The stability of Na-illite as a function of pH in the range between 3 and 6 was investigated. At low pH values partial dissolution of the illite occurs releasing the structural elements Al, Si, Mg, and K into solution. The presence of Ca and Sr in solution was interpreted as being due to desorption from cation exchange sites. All of these elements are also present at neutral pH but at considerably lower levels. Such effects cannot be avoided and must be considered in the interpretation of the sorption measurements. The main focus of the experimental work presented here is on the sorption behaviour of Cs, Sr, Ni and Eu on conditioned Na-illite as a function of NaClO 4 background electrolyte concentration (0.1 and 0.01 M), nuclide concentration and pH in the range between 3 and 11. Sorption edge data (R d versus pH) and sorption isotherms (quantity of nuclide sorbed versus equilibrium nuclide concentration) are presented for these four elements. Prior to beginning these experiments, sorption kinetics were measured. The broad based pool of sorption measurements generated from this work will provide the source data sets for subsequent modelling. So far only the Cs sorption measurements have been modelled. A two site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two site types were termed 'frayed edge sites' (FES, high affinity/low capacity) and 'type II sites' (low affinity/high capacity). Selectivity

  1. Moisture sorption isotherms of dehydrated whey proteins

    OpenAIRE

    Suzana Rimac Brnčić; Vesna Lelas; Zoran Herceg; Marija Badanjak

    2010-01-01

    Moisture sorption isotherms describe the relation between the moisture content of the dry material (food) and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as...

  2. Sorption studies of caesium by complex hexacyanoferrates

    International Nuclear Information System (INIS)

    Jacobi, D.

    1992-01-01

    A comprehensive literature review was carried out on the preparation of complex hexacyanoferrates in a granular form suitable for use in a packed column. The preparation of sodium nickel hexacyanoferrate using a freeze-thaw method was studied in detail and a method developed to produce a consistent and reproducible granular product. The equilibrium and sorption kinetics were studied using batch and column tests, and the process modelled to predict performance under various conditions. (author)

  3. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    International Nuclear Information System (INIS)

    Maksin, Danijela D.; Nastasović, Aleksandra B.; Milutinović-Nikolić, Aleksandra D.; Suručić, Ljiljana T.; Sandić, Zvjezdana P.; Hercigonja, Radmila V.; Onjia, Antonije E.

    2012-01-01

    Highlights: ► Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. ► Chemisorption and pore diffusion are characteristics of this sorption system. ► Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g −1 . ► Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. ► A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25–70 °C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q max , at pH 1.8 and 25 °C was 143 mg g −1 for PGME2-deta (sample with the highest amino group concentration) while at 70 °C Q max reached the high value of 198 mg g −1 . Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  4. Analysing chemical equilibrium conditions when studying butyl acetate synthesis

    OpenAIRE

    Álvaro Orjuela Londoño; Fernando Leiva Lenis; Luis Alejandro Boyacá Mendivelso; Gerardo Rodríguez Niño; Luis María Carballo Suárez

    2010-01-01

    This work studied the liquid phase of acetic acid and butyl alcohol esterification reaction (P atm = 560 mmHg),using an ion exchange resin (Lewatit K-2431) as catalyst. A set of assays were carried out for determining the effect of catalyst load, temperature and molar ratio (acid/alcohol) on chemical equilibrium constant. Components’ selective sorption on the resin matrix was noticed; its effect on equilibrium conditions was verified, by using different acid/alcohol starting ratios. A non-ide...

  5. Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Santschi, P.H.

    2010-01-01

    New equilibrium and kinetic models have been developed to describe rate-limited sorption and desorption of Pu onto and off of mineral oxide surfaces using a generic approach to estimate sorption constants that require minimal laboratory calibrations. Equilibrium, reactions describing a total of six surface species were derived from a combination of empirical relationships previously described in the literature and generated as part of this work. These sorption reactions and corresponding equilibrium constants onto goethite (and silica) are: triple bond SOH + Pu 3+ triple bond SOPu 2+ + H + , log K = -2.1(-10) (1) triple bond SOH + Pu 4+ triple bond SOPu 3+ + H + , log K = 15.3(7.2) (2) triple bond SOH + PuO 2 + triple bond SOPuO 2 + H + , log K = -8.5(-16.5) (3) triple bond SOH + PuO 2 2+ triple bond SOPuO 2 + + H + , log K = 1.2(-6.5) (4) triple bond SOH + Pu 4- + 3H 2 O triple bond SOPu(OH) 3 + 4H + , log K = 12.5(4.6) (5) triple bond SOH + Pu 4+ + 4H 2 O triple bond SOPu(OH) 4 - + 5H + , log K = 5.0(-2.3) (6) The kinetic model decouples reduced (III, IV) and oxidized (V, VI) forms of Pu via a single rate-limiting, but reversible, surface mediated reaction: triple bond SOPuO 2 + H 2 O + 1/2H 2(g) ↔ k 1 k 2 triple bond SOPu(OH) 2 log k 1 = -5.3 (7) Where the reaction rate is equal to: (d[ triple bond SOPu 2 ])/(d t ) = k 1 [Pu OX ] - k 2 [Pu red ] (8) and [Pu OX ] and [Pu red ] are the sums of the oxidized (V and VI) and reduced (III and IV) surface species, respectively. Predictions using the equilibrium and kinetic models were validated against previously published experimental results, which give credence to the validity of the proposed mechanisms controlling the sorption of Pu onto mineral oxide surfaces. Of importance, a reversible, rate-limited, reaction successfully predicted time dependent behavior associated with Pu sorption onto goethite. Previously, researchers have suggested desorption of Pu to these surfaces is extremely slow or even irreversible

  6. Electrolyte influence on sorption behaviours of Direct Blue 71 dye on ramie fibre

    Directory of Open Access Journals (Sweden)

    Yuan Chi

    2017-01-01

    Full Text Available Ramie loose fibre was dyed using Direct Blue 71 dye at 70, 80, 90 and 100°C without and with NaCl electrolyte in order to investigate the distinction of dye sorption behaviours. The results show that the dye exhaustion increases with addition of NaCl and shortens the equilibrium dyeing time. The dye adsorption process of dyeing without and with NaCl followed pseudo second-order kinetics, but the rate constant of sorption is larger for the latter compared to the former.

  7. A study of sorption of cadmium by goethite in aqueous solution

    Directory of Open Access Journals (Sweden)

    N. Salami

    2002-06-01

    Full Text Available Investigation has been carried out on the potential of a locally sourced goethite for the removal of cadmium ion from aqueous solutions using batch equilibration technique. The maximum uptake of cadmium is 6.4  10-2 mg/g-goethite. The sorption kinetics appears to be rapid as equilibrium was attained within a period of 1 hour. The highest sorption capacity was obtained for particle size with diameter (Φ 0.09 mm. Both infrared spectrophotometric and X-ray diffraction (XRD techniques have also provided evidence for cadmium fixation on to the surface of the goethite. The sorption mechanism appears to follow Langmuir adsorption isotherm model. The Langmuir constants K and Xm (mass of Cd2+ required to form monolayer on the entire surface of the goethite were 0.096 mg/g-goethite and 0.075 mg/g-goethite, respectively.

  8. Investigation of solution chemistry effects on sorption behavior of radionuclide 64Cu(II) on illite

    International Nuclear Information System (INIS)

    Shitong Yang; Guodong Sheng; Zhiqiang Guo; Yubing Sun; Donglin Zhao

    2011-01-01

    In this work, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances and temperature on the sorption behavior of illite towards 64 Cu(II). The results indicated that 64 Cu(II) sorption on illite achieved equilibrium quickly. The pH- and ionic strength-dependent sorption suggested that 64 Cu(II) sorption on illite was dominated by ion exchange or outer-sphere surface complexation at pH 7. A positive effect of humic substances on 64 Cu(II) sorption was found at pH 6.5. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 64 Cu(II) at three different temperatures of 293, 313, and 333 K. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) of 64 Cu(II) sorption on illite were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption of 64 Cu(II) on illite was endothermic and spontaneous. From the experimental results, it is possible to conclude that illite has good potentialities for cost-effective treatments of 64 Cu(II)-contaminated wastewaters. (author)

  9. A study of sorption mechanism onto cement hydrates by isotherm measurements

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2003-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cement material, which controls the aqueous concentrations of elements in the porewater, is a very important parameter when considering the release of radionuclides from the near field of a repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium and thorium onto Ordinary Portland Cement (OPC) and Calcium Silicate Hydrate (C-S-H gel), to justify and support this assumption. In addition, the effect of competitive sorption between thorium and uranium and other groundwater ions is studied by examining sorption using a range of sodium chloride concentrations to simulate different groundwater ionic strengths. Based on the experimental results, we have showed that: Caesium and strontium sorb by substitution for Ca in C-S-H phases and the presence of some calcium sites with different ion-exchange log K values is suggested; Thorium would be fixed in a surface co-precipitation to form a solubility-limiting phase. The results of sorption experiments are reasonably well modelled by the ion-exchange model for caesium and strontium and the surface co-precipitation model for thorium, respectively. (author)

  10. Equilibrium and kinetics studies of metal ion adsorption on dyed ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... Initial concentration of Cu(II) ions = 20 mg/l, adsorbent dose = 1.0 g. Table 2 Experiment Data of ... diffusivity of the metal ion would be independent of the extent of sorption .... exchange and adsorption. Equilibrium parameter.

  11. EXTRACTION AND SORPTION BENZOIC ACID FROM AQUEOUS SOLUTIONS OF POLYMERS BASED ON N-VINYLAMIDES

    Directory of Open Access Journals (Sweden)

    A. G. Savvina

    2015-01-01

    Full Text Available The widespread use of aromatic acids (benzoic acid, salicylic as preservatives necessitates their qualitative and quantitative determination in food. Effective and common way to separation and concentration of aromatic acids liquid extraction. Biphasic system of water-soluble polymers based on (poly-N-vinyl pyrrolidone, and poly-N-vinylcaprolactam satisfy the requirements of the extraction system. When sorption concentration improved definition of the metrological characteristics, comply with the requirements for sensitivity and selectivity definition appears possible, use of inexpensive and readily available analytical equipment. When studying the adsorption of benzoic acid used as a sorbent crosslinked polymer based on N-vinyl pyrrolidone, obtained by radical polymerisation of a functional monomer and crosslinker. In the extraction of benzoic acid to maximize the allocation of water and the organic phase of the polymer used salt solutions with concentrations close to saturation. Regardless of the nature of the anion salt is used as salting-out agent, aromatic acids sorption increases with the size of the cations. In the experiment the maximum recovery rate (80% benzoic acid obtained in the PVP (0.2 weight%. Ammonium sulphate. The dependence stepepni benzoic acid extraction from time sorption sorbent mass and the pH of the aqueous phase. To establish equilibrium in the system, for 20 minutes. The dependence of the degree of extraction of the acid pH indicates that the acid is extracted into the molecular form. The maximum adsorption is reached at pH 3,5, with its efficiency decreases symbatically reduce the amount of undissociated acid molecules in solution.

  12. Sorption rate of uranyl ions by hyphan cellulose exchangers and by hydrated titanium dioxide

    International Nuclear Information System (INIS)

    Ambe, F.; Burba, P.; Lieser, K.H.

    1979-01-01

    Sorption of uranyl ions by the cellulose exchanger Hyphan proceeds rather fast. Two steps are observed with half-times of the order of 10 s and 2 min. The majority of the uranyl ions is bound in 1 min. Sorption of uranyl ions by titanium dioxide is a very slow process. For particle sizes between 0,1 and 0,5 mm the half-time is about 3 h and equilibrium is attained in about 1 day. The effect of stirring suspensions of inorganic sorbents like titanium dioxide in solution is investigated in detail. Sorption of uranyl ions by titanium dioxide and change in pH in solution are measured simultaneously as a function of time. (orig.) [de

  13. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [College of Environmental Science and Engineering, Anhui Normal University, South Jiuhua Road, 189, 241002 Wuhu (China); Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Fiol, Núria [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Villaescusa, Isabel, E-mail: Isabel.Villaescusa@udg.edu [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Poch, Jordi [Applied Mathematics Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain)

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data.

  14. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    International Nuclear Information System (INIS)

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-01

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data

  15. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.

    Science.gov (United States)

    Hossain, G S M; McLaughlan, R G

    2012-09-01

    Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.

  16. Fast sorption measurements of volatile organic compounds on building materials: Part 1 – Methodology developed for field applications

    Directory of Open Access Journals (Sweden)

    M. Rizk

    2016-03-01

    Full Text Available A Proton Transfer Reaction-Mass Spectrometer (PTR-MS has been coupled to the outlet of a Field and Laboratory Emission Cell (FLEC, to measure volatile organic compounds (VOC concentration during a sorption experiments (Rizk et al., this issue [1]. The limits of detection of the PTR-MS for three VOCs are presented for different time resolution (2, 10 and 20 s. The mass transfer coefficient was calculated in the FLEC cavity for the different flow rates. The concentration profile obtained from a sorption experiment performed on a gypsum board and a vinyl flooring are also presented in comparison with the profile obtained for a Pyrex glass used as a material that do not present any sorption behavior (no sink. Finally, the correlation between the concentration of VOCs adsorbed on the surface of the gypsum board at equilibrium (Cse and the concentration of VOCs Ce measured in the gas phase at equilibrium is presented for benzene, C8 aromatics and toluene.

  17. Base Catalytic Approach: A Promising Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu(II Ions in Single Solute System

    Directory of Open Access Journals (Sweden)

    Sharifah Bee Abdul Hamid

    2014-04-01

    Full Text Available This study examines the feasibility of catalytically pretreated biochar derived from the dried exocarp or fruit peel of mangostene with Group I alkali metal hydroxide (KOH. The pretreated char was activated in the presence of carbon dioxide gas flow at high temperature to upgrade its physiochemical properties for the removal of copper, Cu(II cations in single solute system. The effect of three independent variables, including temperature, agitation time and concentration, on sorption performance were carried out. Reaction kinetics parameters were determined by using linear regression analysis of the pseudo first, pseudo second, Elovich and intra-particle diffusion models. The regression co-efficient, R2 values were best for the pseudo second order kinetic model for all the concentration ranges under investigation. This implied that Cu(II cations were adsorbed mainly by chemical interactions with the surface active sites of the activated biochar. Langmuir, Freundlich and Temkin isotherm models were used to interpret the equilibrium data at different temperature. Thermodynamic studies revealed that the sorption process was spontaneous and endothermic. The surface area of the activated sample was 367.10 m2/g, whereas before base activation, it was only 1.22 m2/g. The results elucidated that the base pretreatment was efficient enough to yield porous carbon with an enlarged surface area, which can successfully eliminate Cu(II cations from waste water.

  18. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    Science.gov (United States)

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Sorption of curium by silica colloids: Effect of humic acid

    International Nuclear Information System (INIS)

    Kar, Aishwarya Soumitra; Kumar, Sumit; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Sorption of curium by silica colloids has been studied as a function of pH and ionic strength using 244 Cm as a tracer. The sorption was found to increase with increasing pH and reach a saturation value of ∼95% at pH beyond 5.3. The effect of humic acid on the sorption of 244 Cm onto silica was studied by changing the order of addition of the metal ion and humic acid. In general, in the presence of humic acid (2 mg/L), the sorption increased at lower pH (<5) while it decreased in the pH range 6.5-8 and above pH 8, the sorption was found to increase again. As curium forms strong complex with humic acid, its presence results in the enhancement of curium sorption at lower pH. At higher pH the humic acid present in the solution competes with the surface sites for curium thus decreasing the sorption. The decrease in the Cm sorption in presence of humic acid was found to be less when humic acid was added after the addition of curium. Linear additive model qualitatively reproduced the profile of the Cm(III) sorption by silica in presence of humic acid at least in the lower pH region, however it failed to yield quantitative agreement with the experimental results. The results of the present study evidenced the incorporation of Cm into the silica matrix.

  20. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride.

    Science.gov (United States)

    Krajišnik, Danina; Daković, Aleksandra; Milojević, Maja; Malenović, Anđelija; Kragović, Milan; Bogdanović, Danica Bajuk; Dondur, Vera; Milić, Jela

    2011-03-01

    In this study an investigation of a model drug sorption onto cationic surfactant-modified natural zeolites as a drug formulation excipient was performed. Natural zeolite was modified with cetylpyridinium chloride in amounts equivalent to 100, 200 and 300% of its external cation-exchange capacity. The starting material and obtained organozeolites were characterized by Fourier transform infrared spectroscopy, zeta potential measurements and thermal analysis. In vitro sorption of diclofenac sodium as a model drug was studied for all surfactant/zeolite composites by means of sorption isotherm measurements in aqueous solutions (pH 7.4). The modified zeolites with three levels of surfactant coverage within the short activation time were prepared. Zeta potential measurements and thermal analysis showed that when the surfactant loading level was equal to external cation-exchange value, almost monolayer of organic phase were present at the zeolitic surface while higher amounts of surfactant produced less extended bilayers, ordered bilayers or admicelles at the zeolitic surface. Modified zeolites, obtained in this manner, were effective in diclofenac sodium sorption and the organic phase derived from adsorbed cetylpyridinium chloride was the primary sorption phase for the model drug. The Langmuir isotherm was found to describe the equilibrium sorption data well over the entire concentration range. The separate contributions of the adsorption and partition to the total sorption of DS were analyzed mathematically. Results revealed that that adsorption and partitioning of the model drug take place simultaneously. 2010 Elsevier B.V. All rights reserved.

  1. Sorption of Np(V) by synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Moore, R.C.; Holt, K.; Zhao, H.; Hasan, A.; Awwad, N.; Gasser, M.; Sanchez, C.

    2003-01-01

    The sorption of Np(V) to synthetic hydroxyapatite was determined in batch experiments in a 0.1 M NaClO 4 solution. The hydroxyapatite used was of high purity as determined by SEM, EDS, XRD, FT-IR and ICP-MS analysis. Results from kinetic experiments with an initial Np(V) concentration of 1 x 10 -7 to 1 x 10 -6 M indicate the sorption process is relatively fast with more than 90% of the Np(V) being sorbed in approximately 3 hours. Equilibrium experiments performed over the pH range of 6 to 11 indicated sorption is strongly pH dependent with distribution coefficients, K d values (mL/g), increasing from 123 L/mole at pH 6 to 69 200 L/mole at pH 8.5. K d values are observed to decrease as pH further increases. Data points over a range of Np(V) concentrations were collected at pH 8 and fitted to the Langmuir isotherm model for simple adsorption. The Langmuir equation gave an excellent representation of the data. Langmuir parameters were determined to be C a = 0.032 mole/mole and K = 1.22 x 10 6 L/mole, indicating the high affinity of hydroxyapatite for Np(V) adsorption. (orig.)

  2. Modeling volatile organic compounds sorption on dry building materials using double-exponential model

    International Nuclear Information System (INIS)

    Deng, Baoqing; Ge, Di; Li, Jiajia; Guo, Yuan; Kim, Chang Nyung

    2013-01-01

    A double-exponential surface sink model for VOCs sorption on building materials is presented. Here, the diffusion of VOCs in the material is neglected and the material is viewed as a surface sink. The VOCs concentration in the air adjacent to the material surface is introduced and assumed to always maintain equilibrium with the material-phase concentration. It is assumed that the sorption can be described by mass transfer between the room air and the air adjacent to the material surface. The mass transfer coefficient is evaluated from the empirical correlation, and the equilibrium constant can be obtained by linear fitting to the experimental data. The present model is validated through experiments in small and large test chambers. The predicted results accord well with the experimental data in both the adsorption stage and desorption stage. The model avoids the ambiguity of model constants found in other surface sink models and is easy to scale up

  3. Sorption isotherms modeling approach of rice-based instant soup mix stored under controlled temperature and humidity

    Directory of Open Access Journals (Sweden)

    Yogender Singh

    2015-12-01

    Full Text Available Moisture sorption isotherms of rice-based instant soup mix at temperature range 15–45°C and relative humidity from 0.11 to 0.86 were determined using the standard gravimetric static method. The experimental sorption curves were fitted by five equations: Chung-Pfost, GAB, Henderson, Kuhn, and Oswin. The sorption isotherms of soup mix decreased with increasing temperature, exhibited type II behavior according to BET classification. The GAB, Henderson, Kuhn, and Oswin models were found to be the most suitable for describing the sorption curves. The isosteric heat of sorption of water was determined from the equilibrium data at different temperatures. It decreased as moisture content increased and was found to be a polynomial function of moisture content. The study has provided information and data useful in large-scale commercial production of soup and have great importance to combat the problem of protein-energy malnutrition in underdeveloped and developing countries.

  4. Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon

    Science.gov (United States)

    Fona, Z.; Habibah, U.

    2018-04-01

    Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.

  5. Chemical factors controlling actinide sorption in the environment

    International Nuclear Information System (INIS)

    Beall, G.W.; Allard, B.

    1979-01-01

    The solid geologic media and the aqueous phase are of equal importance for the retention of actinides in the environment. The composition of the water is largely determined by the mineralogical composition of the rock that it is in equilibrium with. The chemical form of the actinides and their sorption, are highly dependent on the composition of the water with respect to pH, redox potential, and concentration of anions like carbonate, phosphate, fluoride, and organic acids

  6. The effect of organics on the sorption of cobalt by glacial sand in laboratory batch experiments

    International Nuclear Information System (INIS)

    Haigh, D.G.; Williams, G.M.; Hooker, P.J.; Ross, C.A.M.; Allen, M.R.; Warwick, P.

    1989-01-01

    Acetate, EDTA and organic compounds naturally present in groundwater at the Drigg in situ radionuclide migration experimental site, have been studied to assess their effect on the sorption of cobalt by glacial sand in a series of batch experiments. Removing 56% of the natural organic material from the grounwater with DEAE cellulose increased the distribution ratio (R d ) of cobalt by a factor of about two. EDTA had a dramatic effect on the sorption of Co even at low concentrations, reducing the R d by up to two orders of magnitude. At EDTA concentrations greater than 5 mg/l, there was no further reduction in sorption. EDTA was not itself sorbed, but formed a mobile complex with Co. Differences in distribution ratios were observed depending on whether the cobalt was added before or after EDTA. Within the same period of equilibrium, the R d values were higher when cobalt was allowed to equilibrate with the sand before adding EDTA. The desorption of cobalt from the mineral surface may be a rate-limiting step such that equilibrium was not achieved within the 14-day period of these experiments. Acetate had no effect on cobalt sorption in any of the experiments undertaken. This work is part of the Commission Mirage project, Phase 2, research area Geochemistry of actinides and fission products in natural aquifer systems

  7. Local Nash equilibrium in social networks.

    Science.gov (United States)

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  8. Sorption of vanillin on highly basic anion exchanger under static conditions

    Science.gov (United States)

    Sholokhova, A. Yu.; Eliseeva, T. V.; Voronyuk, I. V.

    2017-11-01

    The kinetics of the sorption of vanillin by a granulated anion exchanger is studied under static conditions. A comparison of the kinetic curves of the uptake of hydroxybenzaldehyde by gel and macroporous anion exchanger shows that macroporous sorbent has better kinetic characteristics. The effect temperature has on the capacity of an anion exchanger and the time needed to establish sorption equilibrium is found, and the activation energy of vanillin uptake is determined. Studying the effect experimental factors have on the rate of sorption and using the formal kinetics approach, it is established that in the investigated range of concentrations, the limiting stage of the uptake of vanillin by an anion exchanger with the functional groups of a quaternary ammonium base is that of external diffusion. Vanillin sorption by a highly basic anion exchanger in hydroxyl form is characterized by polymolecular uptake best described by a BET isotherm; at the same time, the uptake of sorbate by a chloride form is of a monomolecular character and can be described by a Freindlich isotherm. Structural changes in the anion exchanger sorbed hydroxybenzaldehyde are identified via FTIR spectroscopy.

  9. Standardization of 125 Sb in equilibrium non-equilibrium situations with 125m Te

    International Nuclear Information System (INIS)

    Rodriguez Barquero, L.; Jimenez de Mingo, A.; Grau Carles, A.

    1997-10-01

    We study the stability of ''125 Sb in the following scintillators: HiSafeIII''TM, Insta- Gel reg s ign Plus and '' Ultima-Gold'' TM. Since ''125 m Te requires more than one year to reach the secular equilibrium with ''125 Sb, we cannot be sure, for a given sample, whether equilibrium is reached or not. In this report we present a new procedure that permits one calibrate mixtures of ''125 Sb+''125 m Te out of the equilibrium. The steps required for the radiochemical separation of the components are indicated. Finally, we study the evolution of counting rate when column yields are less than 100%. (Author)

  10. Sorption mechanism of U(VI) on to natural soil system: a study using intra-particle diffusion model

    International Nuclear Information System (INIS)

    Rout, S.; Kumar, A.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The rate of U(VI) adsorption onto natural soils from different parent materials has been studied experimentally using the batch adsorption method at five different initial U(VI) concentrations. The utility of Weber and Morris Interparticle diffusion model for describing the mechanism and kinetics of sorption is discussed. The study reveals that the mechanism of U(VI) sorption involves three steps such as: external surface adsorption, gradual adsorption stage which is the rate determining step and the last portion refers to the final equilibrium stage. The steps involved in sorption of U(VI) on to soil is same irrespective of soil types and initial U(VI) concentration. (author)

  11. Sepiolite functionalized with N-[3-(trimethoxysilylpropyl]-ethylenediamine triacetic acid trisodium salt. Part II: Sorption of Ni2+ from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Lazarević Slavica S.

    2016-01-01

    Full Text Available sorption of Ni2+ on the sepiolite functionalized by covalent grafting of N-[3-(trimethoxysilylpropyl]ethylenediamine triacetic acid trisodium salt, MSEAS, was studied in batch experiments as a function of the initial metal concentration, the equilibration time, pH value, and temperature. The modification of sepiolite resulted in an enhanced Ni2+ retention with a capacity of 0.261 mmol/g at 298 K. The retention of Ni2+ ions occurred dominantly by specific sorption and exchange of Mg2+ ions from the sepiolite structure. The sorption process followed pseudo-second-order kinetics. The sorption equilibrium results were best described by the non-linear form of the Langmuir Sorption Equation. The values of the thermodynamic parameters (enthalpy, free energy and entropy were calculated from temperature dependent sorption isotherms and these values showed that the sorption of Ni2+ onto modified sepiolite was endothermic. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 i FP7 NANOTECH FTM No. 245916

  12. Effect of the modification of a natural mexican zeolite in the sorption of cadmium and 4-chloro phenol

    International Nuclear Information System (INIS)

    Cortes M, R.

    2007-01-01

    Clinoptilolite type zeolite is a material of relative abundance in Mexico, which possess ion exchange properties and it can be used in the removal of metal ions from polluted waters. The external surface of zeolites can be modified with cationic surfactants. This modification could have a negative effect on the removal of metal ions and provides to the material the capacity to adsorb phenolic compounds. For this reason, it is important to know the capability of the modified material on the sorption of metal ions and phenolic compounds, simultaneously. The aim of this work was to evaluate the effect of the external surface modification with surfactant of a Mexican zeolite over its sorption capacity of cadmium and 4-chloro phenol, in batch and column systems. To accomplish that, a clinoptilolite type zeolitic rock from a deposit located in the state of Sonora, Mexico, was used. It was ground, sieved and characterized with different techniques; and its external surface area was modified with hexadecyltrimethylammonium bromide (HDTMA-Br). A grain size fraction was selected to carry out sorption kinetics and equilibrium experiments, as well as packed column tests with zeolitic material and solutions of cadmium and 4-chloro phenol. There are different models proposed in literature that are used to describe sorption kinetics and equilibrium. In this work, the sorption experimental results were adjusted to some of these models to identify controlling mechanisms on the kinetics and equilibrium of the studied systems. The results showed that the cadmium adsorption on natural and modified zeolite was similar in batch systems. For the case of 4-chloro phenol sorption, it was observed that natural zeolite does not retain this compound, while in modified zeolite the sorption is better than other comparable materials. The results also showed that for the case of cadmium sorption, the mechanism involved was ion exchange; while for sorption of 4-chloro phenol, a partition mechanism

  13. A Numerical Approach for Non-Linear Moisture Flow in Porous Materials with Account to Sorption Hysteresis

    DEFF Research Database (Denmark)

    Johannesson, Björn; Nyman, U.

    2010-01-01

    . History-dependent sorption behaviour is introduced by considering scanning curves between the bounding desorption and absorption curves. The method, therefore, makes it possible to calculate equilibrium water contents for arbitrary relative humidity variations at every material point considered...

  14. Sorption of 60 Co in natural zeolite (clinoptilolite)

    International Nuclear Information System (INIS)

    Hernandez B, E.

    1996-01-01

    A Mexican zeolite (clinoptilolite) from Taxco, Guerrero, was partially stabilized with sodium cations. Radioactive Cobalt ( 60 Co) was used to study the Co 2+ sorption in the stabilized zeolite (Na + ). It was found that sorption in general does not favour the diffusion of cobalt between framework, it explains because of it is a natural zeolite and its composition heterogeneous decrease its exchange capacity by the generated competence to the existence other type of exchange ions. The cobalt retention reached the highest level, around 0.408 m eq Co 2+ /g in the Na-Clinoptilolite. The crystallinity of the aluminosilicates was maintained during experiments, it was verified by XRD patterns. (Author)

  15. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  16. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris.

    Science.gov (United States)

    Rochman, Chelsea M; Hoh, Eunha; Hentschel, Brian T; Kaye, Shawn

    2013-02-05

    Concerns regarding marine plastic pollution and its affinity for chemical pollutants led us to quantify relationships between different types of mass-produced plastic and organic contaminants in an urban bay. At five locations in San Diego Bay, CA, we measured sorption of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) throughout a 12-month period to the five most common types of mass-produced plastic: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). During this long-term field experiment, sorption rates and concentrations of PCBs and PAHs varied significantly among plastic types and among locations. Our data suggest that for PAHs and PCBs, PET and PVC reach equilibrium in the marine environment much faster than HDPE, LDPE, and PP. Most importantly, concentrations of PAHs and PCBs sorbed to HDPE, LDPE, and PP were consistently much greater than concentrations sorbed to PET and PVC. These data imply that products made from HDPE, LDPE, and PP pose a greater risk than products made from PET and PVC of concentrating these hazardous chemicals onto fragmented plastic debris ingested by marine animals.

  17. The effect of organics on the sorption of cobalt by glacial sand in laboratory experiments

    International Nuclear Information System (INIS)

    Haigh, G.; Williams, G.M.; Hooker, P.J.; Ross, C.A.M.; Allen, M.R.

    1989-02-01

    The effect of acetate, EDTA and natural organic compounds in groundwater at Drigg test site, on the sorption of cobalt by glacial sand has been studied in a series of batch experiments. Removing 50% of the organic material from the groundwater with DEAE cellulose increased the distribution ratio (R d ) of cobalt by a factor of about two. The addition of both EDTA and acetate to the sand/water system led to the removal of Ca, Mg, Sr and Ba from solution. Both organic compounds had the effect of reducing the pH and bicarbonated concentrations. EDTA also removed iron from the solution. EDTA reduced the R d for Co by up to 2 orders of magnitude. At EDTA concentrations greater than 5mg/1, there was no further reduction in sorption. EDTA was not itself sorbed, but formed a mobile complex with Co. Within the same period of equilibrium, the R d values were lower when EDTA was allowed to equilibrate with the sand before adding cobalt. The desorption of cobalt from the minerals surface may be a rate limiting step such that equilibrium was not achieved within the 14 day period of these experiments. Acetate had no effect of cobalt sorption. (author)

  18. Synthesis and sorption properties of new synthesized rare-earth-doped sodium titanate

    International Nuclear Information System (INIS)

    Ali, I.M.

    2010-01-01

    A series of rare-earth-doped sodium titanates with the chemical formula R x H y Na 4-(x+y) TiO 4 ·nH 2 O (where R = Ce 3+ , Nd 3+ and Sm 3+ ) were grown employing solid-state fusion reaction technique. The physico-chemical investigations indicated that the new materials were self engineered into large particles enough to be used in sorption process and having crystalline structures containing localized Na + ions. Equilibrium studies revealed that an enhancement in sorption efficiency of sodium titanate after rare-earth doping. The neodymium-rich sodium titanate exhibited a better exchange affinity for Cs + compared to the other studied series. Data on the kinetics of cesium exchange fit well to pseudo-second order and intra-particle diffusion models. In a separate experiment, it was reported that the R-HNaTi series showed responsible sorption affinity toward Ce, Nd and Sm ions in their solution mixture with insignificant selectivity trend which reflects the high stability of titanate matrices. (author)

  19. Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085 (China); Parker, Jack C. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brooks, Scott C.; Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6038 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States); Gu, Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6038 (United States)

    2010-06-15

    This study investigates uranium and technetium sorption onto aluminum and iron hydroxides during titration of acidic groundwater. The contaminated groundwater exhibits oxic conditions with high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U, Tc, and various metal cations. More than 90% of U and Tc was removed from the aqueous phase as Al and Fe precipitated above pH 5.5, but was partially resolublized at higher pH values. An equilibrium hydrolysis and precipitation reaction model adequately described variations in aqueous concentrations of metal cations. An anion exchange reaction model was incorporated to simulate sulfate, U and Tc sorption onto variably charged (pH-dependent) Al and Fe hydroxides. Modeling results indicate that competitive sorption/desorption on mixed mineral phases needs to be considered to adequately predict U and Tc mobility. The model could be useful for future studies of the speciation of U, Tc and co-existing ions during pre- and post-groundwater treatment practices.

  20. Effects of sorption and temperature on solute transport in unsaturated steady flow

    International Nuclear Information System (INIS)

    Fuentes, H.R.; Polzer, W.L.; Essington, E.H.

    1986-01-01

    It is known that temperature affects physical and chemical processes and that these processes may alter the transport of solutes in the environment. Laboratory column studies were performed in unsaturated flow conditions with a composite pulse containing iodide, cobalt, cesium and strontium each at 10 -3 M. The experiments were performed with Bandelier Tuff and produced breakthrough curves that indicate significant changes in transport due to a temperature change from 25 0 C to 5 0 C for nonconservative solutes. Also, the interpretation of the temperature and sorption data suggest that the differences in transport between 5 0 C and 25 0 C for nonconservative solutes may be predicted in a qualitative manner from batch equilibrium and nonequilibrium sorption data and the theory of sorption used in deriving the modified Freundlich isotherm equation. These effects should be of concern in modeling and management of spills and waste disposal within this range of environmental temperatures

  1. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  2. Sorption of neptunium(V) on opalinus clay under aerobic/anaerobic conditions

    International Nuclear Information System (INIS)

    Froehlich, D.R.; Amayri, S.; Drebert, J.; Reich, T.

    2011-01-01

    The interaction between neptunium(V) and a natural argillaceous rock (Opalinus Clay (OPA), Mont Terri, Switzerland) has been investigated in batch sorption experiments by varying pH (6-10), Np(V) concentration (10 -12 -10 -4 M), solid-to-liquid ratio (2-20 g/L), and partial pressure of CO 2 (10 -3.5 and 10 -2.3 atm) under aerobic/anaerobic conditions in saturated calcite solution. All batch experiments were carried out using well characterized aerobic and anaerobic dry powders of OPA. The results show a great influence of pH on Np(V) sorption. Under aerobic conditions sorption increases with increasing pH until maximum sorption is reached between pH 8-9. At pH > 9 sorption decreases due to the formation of negatively charged Np(V)-carbonate complexes. By increasing p CO 2 from 10 -3.5 to 10 -2.3 atm, the sorption edge is shifted ∼ 0.5 units to lower pH values. Under anaerobic conditions stronger sorption of 8 x 10 -6 M Np(V) was found, possibly due to partial reduction of Np(V) to Np(IV). The sorption of 8 x 10 -6 M Np(V) under aerobic conditions at pH 8.2 in saturated calcite solution increases continuously with increasing solid-to-liquid ratio of OPA in the range of 2-20 g/L with a constant K d value of 126 ± 13 L/kg. The sorption isotherm was measured over seven orders of magnitude in Np(V) concentration using 239 Np as tracer. The sorption isotherm could be divided in a part of linear sorption behaviour between 10 -13 -10 -9 M Np(V) and non-linear behaviour in the range of 10 -9 -10 -4 M Np(V). (orig.)

  3. Sorption studies of Sn(II) and Zr(IV) on pistachio shell from different aqueous media

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.A.; EI-Khouly, S.H.

    2007-01-01

    Sorption of Sn(lI) and Zr(IV) on pistachio shell as a solid sorbent material of particle sizes (0.5-1 mm) has been investigated from HNO 3 , H CI, HBr, NaNO 3 , Na CI, KBr and KI aqueous solutions. Before use, this substance was subjected to characterization tools including surface area, thermogravimetric analysis, infrared spectroscopy and X-R diffraction. The effect of contact time, weight of the resin, acid and salt concentrations and equilibrium ph on K d values have been studied. Sorption of both elements was found to verify Freundlich adsorption isotherm. The effect of temperature on thc sorption processes have been investigated and the thermodynamic functions δG, δH and δS have been determined. Adsorption processes have been discussed in the light of the obtained results

  4. Gas sorption properties of zwitterion-functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Surapathi, Anil; Chen, Hang-yan; Marand, Eva; Karl Johnson, J.; Sedlakova, Zdenka

    2013-02-01

    We have functionalized carbon nanotubes with carboxylic acid and zwitterion groups. We have evaluated the effect of functionalization by measuring the sorption of CO{sub 2}, CH{sub 4}, and N{sub 2} at 35°C for pressures up to 10 bar. Zwitterion functionalized nanotubes were found to be highly hygroscopic. Thermal gravimetric analysis indicates that water can be desorbed at about 200°C. The adsorption of gases in zwitterion functionalized nanotubes is dramatically reduced compared with nanotubes functionalized with carboxylic acid groups. The presence of water on the zwitterion functionalized nanotube reduces the sorption even further. Molecular simulations show that three or more zwitterion groups per tube entrance are required to significantly reduce the flux of CO{sub 2} into the tubes. Simulations also show that gas phase water is rapidly sorbed into the zwitterion functionalized nanotubes, both increasing the free energy barrier to CO{sub 2} entering the tube and also lowering the equilibrium adsorption through competitive adsorption.

  5. Assessment of metal sorption mechanisms by aquatic macrophytes using PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Módenes, A.N., E-mail: anmodenes@yahoo.com.br [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Espinoza-Quiñones, F.R.; Santos, G.H.F.; Borba, C.E. [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Rizzutto, M.A. [Physics Institute, University of São Paulo, Rua do Matão s/n, Travessa R 187, 05508-900 São Paulo, SP (Brazil)

    2013-10-15

    Highlights: • Divalent metal ion removals by Egeria densa biosorbent. • Multielements concentrations in biosorbent samples by PIXE analysis. • Elements mass balance in liquid and solid phase before and after metal removals. • Assessment of the mechanisms involved in Cd{sup 2+} and Zn{sup 2+} removal by biosorbent. • Confirmation of the signature of ion exchange process in metal removal. -- Abstract: In this work, a study of the metal sorption mechanism by dead biomass has been performed. All batch metal biosorption experiments were performed using the aquatic macrophyte Egeria densa as biosorbent. Divalent cadmium and zinc solutions were used to assess the sorption mechanisms involved. Using a suitable equilibrium time of 2 h and a mixture of 300 mg biosorbent and 50 mL metal solution at pH 5, monocomponent sorption experiments were performed. In order to determine the residual amounts of metals in the aqueous solutions and the concentrations of removed metals in the dry biomass, Particle Induced X-ray Emission (PIXE) measurements in thin and thick target samples were carried out. Based on the strong experimental evidence from the mass balance among the major elements participating in the sorption processes, an ion exchange process was identified as the mechanism responsible for metal removal by the dry biomass.

  6. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Science.gov (United States)

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil.

    Science.gov (United States)

    Foolad, Mahsa; Hu, Jiangyong; Tran, Ngoc Han; Ong, Say Leong

    2016-01-01

    In the present study, the sorption and biodegradation characteristics of five pharmaceutical and personal care products (PPCPs), including acetaminophen (ACT), carbamazepine (CBZ), crotamiton (CTMT), diethyltoluamide (DEET) and salicylic acid (SA), were studied in laboratory-batch experiments. Sorption kinetics experimental data showed that sorption systems under this study were more appropriately described by the pseudo second-order kinetics with a correlation coefficient (R2)>0.98. Sorption equilibrium data of almost all target compounds onto soil could be better described by the Freundlich sorption isotherm model. The adsorption results showed higher soil affinity for SA, following by ACT. Results also indicated a slight effect of pH on PPCP adsorption with lower pH causing lower adsorption of compounds onto the soil except for SA at pH 12. Moreover, adsorption of PPCPs onto the soil was influenced by natural organic matter (NOM) since the higher amount of NOM caused lower adsorption to the soil. Biodegradation studies of selected PPCPs by indigenous microbial community present in soil appeared that the removal rates of ACT, SA and DEET increased with time while no effect had been observed for the rest. This study suggests that the CBZ and CTMT can be considered as suitable chemical sewage indicators based on their low sorption affinity and high resistance to biodegradation.

  8. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    Science.gov (United States)

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  9. Thermodynamic Properties, Sorption Isotherms and Glass Transition Temperature of Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Jessica López

    2014-01-01

    Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.

  10. Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses

    DEFF Research Database (Denmark)

    Torresi, Elena; Polesel, Fabio; Bester, Kai

    2017-01-01

    , propranolol, citalopram, venlafaxine, erythromycin, clarithromycin and roxithromycin), revealing the importance of electrostatic interactions with solids. Sorption equilibria were likely not reached within the duration of batch experiments (4 h), particularly for the thickest biofilm, requiring...

  11. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies

    International Nuclear Information System (INIS)

    Ghodbane, Ilhem; Hamdaoui, Oualid

    2008-01-01

    In this study, eucalyptus camaldulensis bark, a forest solid waste, is proposed as a novel material for the removal of mercury(II) from aqueous phase. The operating variables studied were sorbent dosage, ionic strength, stirring speed, temperature, solution pH, contact time, and initial metal concentration. Sorption experiments indicated that the sorption capacity was dependent on operating variables and the process was strongly pH-dependent. Kinetic measurements showed that the process was uniform and rapid. In order to investigate the mechanism of sorption, kinetic data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations, and intraparticle diffusion model. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The Langmuir model yields a much better fit than the Freundlich model. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy, and entropy of sorption. The maximum sorption capacity was 33.11 mg g -1 at 20 deg. C and the negative value of free energy change indicated the spontaneous nature of sorption. These results demonstrate that eucalyptus bark is very effective in the removal of Hg(II) from aqueous solutions

  12. "Sorpvej" for Sorption Curves - A Windows Program for collecting Weighing Data and determining Equilibrium State

    DEFF Research Database (Denmark)

    Strømdahl, Kenneth; Hansen, Kurt Kielsgaard

    1998-01-01

    The Windows program SORPVEJ collects weighing data from the balance and plots points on the sorption curve. The features of the program are: All data are transmitted automatically from the balance to the computer. Each point on the curve (upper right inset)is an original measurement and every time...

  13. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk

    International Nuclear Information System (INIS)

    El-Shafey, E.I.

    2010-01-01

    A carbonaceous sorbent was prepared from rice husk via sulfuric acid treatment. Sorption of Zn(II) and Hg(II) from aqueous solution was studied varying time, pH, metal concentration, temperature and sorbent status (wet and dry). Zn(II) sorption was found fast reaching equilibrium within ∼2 h while Hg(II) sorption was slow reaching equilibrium within ∼120 h with better performance for the wet sorbent than for the dry. Kinetics data for both metals were found to follow pseudo-second order model. Sorption rate of both metals was enhanced with temperature rise. Activation energy, E a , for Zn(II) sorption, was ∼13.0 kJ/mol indicating a diffusion-controlled process ion exchange process, however, for Hg(II) sorption, E a was ∼54 kJ/mol indicating a chemically controlled process. Sorption of both metals was low at low pH and increased with pH increase. Sorption was much higher for Hg(II) than for Zn(II) with higher uptake for both metals by rising the temperature. Hg(II) was reduced to Hg(I) on the sorbent surface. This was confirmed from the identification of Hg 2 Cl 2 deposits on the sorbent surface by scanning electron microscopy and X-ray diffraction. However, no redox processes were observed in Zn(II) sorption. Sorption mechanism is discussed.

  14. Sorption studies of Sn(II) and Zr(IV) on pistachio shell from different aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, A A [Nuclear Chemistry Dept., Atomic Energy Authority, Cairo (Egypt); EI-Khouly, S H [Radioisotopes and Generators Dept., Radioisotopes Prod. Division, Hot Lahoratories Center, Atomic Energy Authority, Cairo (Egypt)

    2007-07-01

    Sorption of Sn(lI) and Zr(IV) on pistachio shell as a solid sorbent material of particle sizes (0.5-1 mm) has been investigated from HNO{sub 3}, H CI, HBr, NaNO{sub 3}, Na CI, KBr and KI aqueous solutions. Before use, this substance was subjected to characterization tools including surface area, thermogravimetric analysis, infrared spectroscopy and X-R diffraction. The effect of contact time, weight of the resin, acid and salt concentrations and equilibrium ph on K{sub d} values have been studied. Sorption of both elements was found to verify Freundlich adsorption isotherm. The effect of temperature on thc sorption processes have been investigated and the thermodynamic functions {delta}G, {delta}H and {delta}S have been determined. Adsorption processes have been discussed in the light of the obtained results.

  15. Sorption interactions of heavy metals with biochar in soil remediation studies

    Science.gov (United States)

    Fristak, Vladimir; Friesl-Hanl, Wolfgang; Wawra, Anna; Soja, Gerhard

    2015-04-01

    The search for new materials in soil remediation applications has led to new conversion technologies such as carbonization and pyrolysis. Biochar represents the pyrolytic product of different biomass input materials processed at 350-1000°C and anoxic conditions. The pyrolysis temperature and feedstock have a considerable influence on the quality of the charred product and also its main physico-chemical properties. Biochar as porous material with large specific surface and C-stability is utilized in various environmental and agricultural technologies. Carbon sequestration, increase of soil water-holding capacity and pH as well as sorption of different xenobiotics present only a fraction of the multitude of biochar application possibilities. Heavy metals as potential sources of ecotoxicological risks are characterized by their non-degradability and the potential transfer into the food chain. Carbonaceous materials have been used for a long time as sorbents for heavy metals and organic contaminants in soil and water technologies. The similarity of biochar with activated carbon predetermines this material as remediation tool which plays an important role in heavy metal immobilization and retention with a parallel reduction in the risk of ground water and food crop contamination. In all this processes the element-specific sorption behaviour of biochar creates new conditions for pollutant binding. Sorption interaction and separation of contaminants from soil solution or waste effluent can be affected by wide-ranging parameters. In detail, our study was based on batch-sorption comparisons of two biochars produced from wood chips and green waste residues. We observed that sorption efficiency of biochar for model bivalent heavy metals (Cd, Zn, Cu) can be influenced by equilibrium parameters such as pH, contact time, initial concentration of metal in reaction solutions, presence of surfactants and chemical modification by acid hydrolysis, esterification and methylation. The

  16. U(VI) sorption on kaolinite. Effects of pH, U(VI) concentration and oxyanions

    International Nuclear Information System (INIS)

    Liang Gao; Ziqian Yang; Keliang Shi; Xuefeng Wang; Zhijun Guo; Wangsuo Wu

    2010-01-01

    U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pH PZNPC ) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite. (author)

  17. Surface complexation modeling of zinc sorption onto ferrihydrite.

    Science.gov (United States)

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  18. Effect of citric acid modification of aspen wood on sorption of copper ion

    Science.gov (United States)

    James D. McSweeny; Roger M. Rowell; Soo Hong Min

    2006-01-01

    Milled aspen wood was thermochemically modified with citric acid for the purpose of improving the copper (Cu2+) ion sorption capacity of the wood when tested in 24-hour equilibrium batch tests. The wood-citric acid adducts provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ ion uptake of the modified wood compared with that...

  19. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Periodate and hypobromite modification of Southern pine wood to improve sorption of copper ion

    Science.gov (United States)

    James D. McSweeny; Roger M. Rowell; George C. Chen; Thomas L. Eberhardt; Min Soo-Hong

    2008-01-01

    Milled southern pine wood was modified with sequential treatments of sodium periodate and sodium hypobromite for the purpose of improving copper ion (Cu2+) sorption capacity of the wood when tested in 24-h equilibrium batch tests. The modified wood provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ uptake over that of...

  1. Antimony sorption properties of chitosan - nano TiO2 composite beads

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2015-01-01

    Routine decontamination campaigns of nuclear reactors are generally effective in removing various radionuclides such as cobalt, caesium, etc., and bring down the radiation field. However, during some of the decontamination campaigns, the radiation field at some surfaces was seen to have actually gone up. This was found to be due to lack of removal of antimony isotopes by the regular ion exchange resins used, which subsequently deposited over out of core surfaces leading to increased radiation field on those surfaces. Thus there exists a need for efficient antimony removal system. We have synthesised nano titania impregnated - epichlorohydrin crosslinked chitosan beads, which were found to have high sorption capacity for antimony. The beads, which were synthesised in formats suitable for large scale (column mode) applications, were shown to be effective sorbent of antimony in both +3 and +5 oxidation states. The sorbent exhibited complete removal of antimony from its aqueous solutions of concentration ranging from 150 ppb to 120 ppm. In order to understand the sorption mechanism and to fine tune the bead composition, the effect of crosslinker concentration used during the synthesis on the swelling and sorption properties of the beads was investigated in detail. The variation effected significant changes in physical parameters such as bead diameter, swelling ratio, equilibrium water content and true wet density. Sorption capacity, unlike with regular resins, was found to increase with increase in crosslinker amount. The antimony sorption capacity of the crosslinked beads prepared by crosslinking 0.3 g uncrosslinked beads with 6.4 mmol epichlorohydrin (crosslinker) was 493 μmol/g. Non-crosslinked beads showed a capacity of 75 μmol/g, while the crosslinked beads made with the least amount of crosslinker (0.64 mmol per 0.3 g beads) showed a capacity of 133 μmol/g. These results indicate the possible involvement of the crosslinker in the sorption. (author)

  2. Para-equilibrium phase diagrams

    International Nuclear Information System (INIS)

    Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar

    2014-01-01

    Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase

  3. Sorption study and contribution of ion exchange in the dynamics of 137Cs n highly weathered soils

    International Nuclear Information System (INIS)

    Nascimento Sobrinho, Guilherme Augusto

    2014-01-01

    The present study investigated the sorption kinetics and the reversibility of 137 Cs within highly weathered soils, by means of sorption isotherms and desorption with three concentrations of silver thiourea (AgTU). For this purpose, four soils were selected based on their mineralogy and pedogenetics and sampled from lysimeters placed within the experimental area of the Tropical Radioecology Laboratory of the Institute for Radioprotection and Dosimetry. Three of them were tropical soils, belonging to the Argissolo (ARG), Latossolo vermelho (LV) and Latossolo vermelho amarelo (LVA) classes, and one subtropical, belonging to the Nitossolo (NIT) class. The 'goodness-of-fit' of the constant partition, Langmuir and Freundlich isotherms to the experimental data were assessed by means of a 'traditional' approach, i.e. correlation (R) and determination (R 2 ) coefficients, and a 'theoretic-informative' one, based upon the Corrected Akaike Information Criteria (AICc). In this work became clear that even presenting high affinity for the soil surface, once the sorption equilibrium was reached within 24 h (66 to 97% of sorbed 137 Cs), quite a lot of this radionuclide remains easily mobile (40 to 73% of desorbed 137 Cs), by means of a single extraction with AgTU 0,05 mol.L-1, and that such reversibility relates in an inverse manner to the sorption capacity of the studied soils for 137 Cs. This work pointed also that the constant partition model, mostly known as Kdi, does not fit at all for the sorption data gathered for four highly weathered soils from four mineralogical groups, and for a very dilute solution of 137 Cs. The mathematical model that most adequately described the sorption data for the four studied soils was the Langmuir equation (R 2 > 0,95). The multi model analysis was not able to support generalizations for the four soils. The three models considered in this study provided good predictions of the sorbed 137 Cs for the ARG, LVA and NIT samples (ΔAICc AICc = 0

  4. Phosphorus sorption capacity of biochars varies with biochar type and salinity level.

    Science.gov (United States)

    Dugdug, Abdelhafid Ahmed; Chang, Scott X; Ok, Yong Sik; Rajapaksha, Anushka Upamali; Anyia, Anthony

    2018-02-10

    Biochar is recognized as an effective material for recovering excess nutrients, including phosphorus (P), from aqueous solutions. Practically, that benefits the environment through reducing P losses from biochar-amended soils; however, how salinity influences P sorption by biochar is poorly understood and there has been no direct comparison on P sorption capacity between biochars derived from different feedstock types under non-saline and saline conditions. In this study, biochars derived from wheat straw, hardwood, and willow wood were used to compare P sorption at three levels of electrical conductivity (EC) (0, 4, and 8 dS m -1 ) to represent a wide range of salinity conditions. Phosphorus sorption by wheat straw and hardwood biochars increased as aqueous solution P concentration increased, with willow wood biochar exhibiting an opposite trend for P sorption. However, the pattern for P sorption became the same as the other biochars after the willow wood biochar was de-ashed with 1 M HCl and 0.05 M HF. Willow wood biochar had the highest P sorption (1.93 mg g -1 ) followed by hardwood (1.20 mg g -1 ) and wheat straw biochars (1.06 mg g -1 ) in a 25 mg L -1 P solution. Although the pH in the equilibrium solution was higher with willow wood biochar (~ 9.5) than with the other two biochars (~ 6.5), solution pH had no or minor effects on P sorption by willow wood biochar. The high sorption rate of P by willow wood biochar could be attributed to the higher concentrations of salt and other elements (i.e., Ca and Mg) in the biochar in comparison to that in wheat straw and hardwood biochars; the EC values were 2.27, 0.53, and 0.27 dS m -1 for willow wood, wheat straw, and hardwood biochars, respectively. A portion of P desorbed from the willow wood biochar; and that desorption increased with the decreasing P concentration in the aqueous solution. Salinity in the aqueous solution influenced P sorption by hardwood and willow wood but not by wheat straw

  5. A three-compartment model for micropollutants sorption in sludge: methodological approach and insights.

    Science.gov (United States)

    Barret, Maialen; Patureau, Dominique; Latrille, Eric; Carrère, Hélène

    2010-01-01

    In sludge resulting from wastewater treatment, organic micropollutants sorb to particles and to dissolved/colloidal matter (DCM). Both interactions may influence their physical and biological fate throughout the wastewater treatment processes. To our knowledge, sludge has never been considered as a three-compartment matrix, in which micropollutants coexist in three states: freely dissolved, sorbed-to-particles and sorbed-to-DCM. A methodology is proposed to concomitantly determine equilibrium constants of sorption to particles (K(part)) and to DCM (K(DCM)). Polycyclic Aromatic Hydrocarbons (PAHs) were chosen as model compounds for the experiments. The logarithm of estimated equilibrium constants ranged from 3.1 to 4.3 and their usual correlation to PAH hydrophobicity was verified. Moreover, PAH affinities for particles and for DCM could be compared. Affinity for particles was found to be stronger, probably due to their physical and chemical characteristics. This work provided a useful tool to assess the freely dissolved, sorbed-to-particles and sorbed-to-DCM concentrations of contaminants, which are necessary to accurately predict their fate. Besides, guidelines to investigate the link between sorption and the fundamental concept of bioavailability were proposed. (c) 2009 Elsevier Ltd. All rights reserved.

  6. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    Science.gov (United States)

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  7. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  8. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite

    International Nuclear Information System (INIS)

    Huo, Hanxin; Lin, Hai; Dong, Yingbo; Cheng, Huang; Wang, Han; Cao, Lixia

    2012-01-01

    Highlights: ► The salt and thermally modified clinoptilolite can effectively sorb NH 3 -N and phosphates. ► The phosphorus and nitrogen removal was consistent with Langmuir isotherm model. ► The modified clinoptilolite possesses rapid adsorption and slow balance characteristics. ► The adsorption is more in line with the Elovich adsorption dynamics equation. ► The entropy effect plays the role of the main driving force in the adsorption. - Abstract: This paper presents the investigation of the ammonia-nitrogen and phosphates sorption from simulated reclaimed wastewater by modified clinoptilolite. The results showed that the modified clinoptilolite has a high sorption efficiency and removal performance. The ammonia-nitrogen and phosphates removal rate of the modified clinoptilolite reached to 98.46% and 99.80%, respectively. The surface of modified clinoptilolite became loose and some pores appeared, which enlarged the specific surface area; the contents of Na and Fe increased, and the contents of Ca and Mg decreased. The modified clinoptilolite possesses rapid sorption and slow balance characteristics and ammonia-nitrogen and phosphates sorption is more consistent with the Langmuir isotherm model. The adsorption kinetics of ammonia-nitrogen and phosphates follows the Elovich adsorption dynamics equation, which describes the sorption of ammonia-nitrogen and phosphates in aqueous solution as mainly a chemical sorption. Results from the thermodynamics experiment involving ammonia-nitrogen and phosphates sorption reveal that the process is a spontaneous and endothermic process, and is mainly driven by entropy effect.

  9. Synthesis of zeolite-like crystals by means of sorption of bases on polysilicic acids

    Energy Technology Data Exchange (ETDEWEB)

    Belyakova, L A; Il' in, V G; Peresun' ko, T F; Kryuchkova, I I; Neymark, I E [AN Ukrainskoj SSR, Kiev. Inst. Fizicheskoj Khimii

    1974-11-21

    Investigation into the sorption of bases on crystalline polysilicic acids is of particular interest from the viewpoint of synthesis of new types of porous zeolite-like materials. A synthesis of polysilicate acids was carried out by treating respective sodium polysilicates with mineral acid solutions. The sorption of alkali metal hydroxides in the neutral and alkaline pH region was studied by the method of potentiometric titration of individual weighed quantities. A marked sorption of alkali metal hydroxides on polysilicic acids starts in the weakly acid and neutral regions and reaches saturation at pH=10.5. The process of ion exchange is accompanied by a change in the crystal structure of polysilicic acids. The sorption of bases on polysilicic acids may be used as a method of synthesis of zeolite-like porous crystals in different cationic forms.

  10. Synthesis of zeolite-like crystals by means of sorption of bases on polysilicic acids

    International Nuclear Information System (INIS)

    Belyakova, L.A.; Il'in, V.G.; Peresun'ko, T.F.; Kryuchkova, I.I.; Nejmark, I.E.

    1974-01-01

    Investigation into the sorption of bases on crystalline polysilicic acids is of particular interest from the viewpoint of synthesis of new types of porous zeolite-like materials. A synthesis of polysilicate acids was carried out by treating respective sodium polysilicates with mineral acid solutions. The sorption of alkali metal hydroxides in the neutral and alkaline pH region was studied by the method of potentiometric titration of individual weighed quantities. A marked sorption of alkali metal hydroxides on polysilicic acids starts in the weakly acid and neutral regions and reaches saturation at pHapproximately10.5. The process of ion exchange is accompanied by a change in the crystal structure of polysilicic acids. The sorption of bases on polysilicic acids may be used as a method of synthesis of zeolite-like porous crystals in different cationic forms

  11. Mechanistic role of citric acid in the sorption of Eu(III) at titania - water interface

    International Nuclear Information System (INIS)

    Kumar, Sumit; Kasar, Sharayu; Tomar, B.S.

    2014-01-01

    In view of the deep underground disposal strategy of nuclear high level waste, environmental behavior of long lived radionuclides, such as, trivalent actinides Am(III) and Cm(III), attract significant scientific attention. Interaction of trivalent actinides with anatase (TiO 2 ) in presence of citric acid has been investigated in the present work using Eu(III) batch sorption studies and the role of citric acid in influencing sorption of Eu(III) on anatase was delineated using surface speciation of Eu(III) and citric acid on anatase surface. Results from ATR-FTIR spectroscopic study have been invoked to determine the binding of citric acid on anatase surface. Eu(III) sorption on anatase increases sharply to quantitative value over pH 3- 6 and remains at 100% upto pH 10. In presence of citric acid, there is no change in Eu(III) sorption in the pH range 2-5 whereas significant lowering in Eu(III) sorption percentage was obtained in the pH range 5-8. Above pH 8 the sorption percentage reached quantitative value

  12. Sorption data bases and mechanistic sorption studies

    International Nuclear Information System (INIS)

    Bradbury, M.H.

    2000-01-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  13. Sorption of fluoride using chemically modified Moringa oleifera leaves

    Science.gov (United States)

    Dan, Shabnam; Chattree, Amit

    2018-05-01

    Contamination of drinking water due to fluoride is a severe health hazard problem. Excess of fluoride (> 1.5 mg/L) in drinking water is harmful to human health. Various treatment technologies for removing fluoride from groundwater have been investigated. The present study showed that the leaves of Moringa oleifera, a herbal plant is an effective adsorbent for the removal of fluoride from aqueous solution. Acid treated Moringa oleifera leaves powder showed good adsorption capacity than alkali treated Moringa oleifera leaves powder. Batch sorptive defluoridation was conducted under the variable experimental condition such as pH, contact time, adsorbent dose and initial fluoride ion concentration. Maximum defluoridation was achieved at pH 1. The percentage of fluoride removal increases with adsorbent dose. The equilibrium sorption data were fitted into Langmuir, Freundlich and Temkin isotherms. Of the three adsorption isotherms, the R 2 value of Langmuir isotherm model was the highest. The maximum monolayer coverage ( Q max) from Langmuir isotherm model was determined to be 1.1441 mg/g, the separation factor indicating a favorable sorption experiment is 0.035. It was also discovered that the adsorption did not conform to the Freundlich adsorption isotherm. The heat of sorption process was estimated from Temkin Isotherm model to be - 0.042 J/mol which vividly proved that the adsorption experiment followed a physical process.

  14. Sorption of Pb2+ from Aqueous Solution unto Modified Rice Husk: Isotherms Studies

    Directory of Open Access Journals (Sweden)

    A. O. Dada

    2013-01-01

    Full Text Available Investigation of the sorption potential of rice husk, an agricultural waste, as an adsorbent was carried out. The rice husk was modified with orthophosphoric acid and was used for adsorption of lead (II ions (Pb2+ from aqueous solution. Physicochemical properties of the modified rice husk were determined. Equilibrium sorption data were confirmed with Langmuir, Freundlich and Temkin adsorption isotherms. On the basis of adsorption isotherm graphs, R2 values were determined to be 0.995, 0.916, and 0.797 for Langmuir, Temkin, and Freundlich isotherms, respectively, indicating that the data fitted well into the adsorption isotherms, but Langmuir isotherm is a better model. The maximum monolayer coverage from Langmuir studies, Qmax=138.89 mg/g, Langmuir isotherm constant, KL=0.699 L/mg, and the separation factor, RL=1.41×10−2 at 100 mg/L of lead(II ions indicating that the sorption process, was favourable. The suitability of modified rice husk as an adsorbent for the removal of lead ions from aqueous solution and its potential for pollution control is established.

  15. Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae.

    Science.gov (United States)

    Schwab, Fabienne; Camenzuli, Louise; Knauer, Katja; Nowack, Bernd; Magrez, Arnaud; Sigg, Laura; Bucheli, Thomas D

    2014-09-01

    Carbon nanotubes (CNT) are strong sorbents for organic micropollutants, but changing environmental conditions may alter the distribution and bioavailability of the sorbed substances. Therefore, we investigated the effect of green algae (Chlorella vulgaris) on sorption of a model pollutant (diuron, synonyms: 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, DCMU) to CNT (multi-walled purified, industrial grade, pristine, and oxidized; reference material: Diesel soot). In absence of algae, diuron sorption to CNT was fast, strong, and nonlinear (Freundlich coefficients: 10(5.79)-10(6.24) μg/kgCNT·(μg/L)(-n) and 0.62-0.70 for KF and n, respectively). Adding algae to equilibrated diuron-CNT mixtures led to 15-20% (median) diuron re-dissolution. The relatively high amorphous carbon content slowed down ad-/desorption to/from the high energy sorption sites for both industrial grade CNT and soot. The results suggest that diuron binds readily, but - particularly in presence of algae - partially reversibly to CNT, which is of relevance for environmental exposure and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Imidacloprid sorption and transport in cropland, grass buffer and riparian buffer soils

    Science.gov (United States)

    Satkowski, Laura E.; Goyne, Keith W.; Anderson, Stephen H.; Lerch, Robert N.; Allen, Craig R.; Snow, Daniel D.

    2018-01-01

    An understanding of neonicotinoid sorption and transport in soil is critical for determining and mitigating environmental risk associated with the most widely used class of insecticides. The objective of this study was to evaluate mobility and transport of the neonicotinoid imidacloprid (ICD) in soils collected from cropland, grass vegetative buffer strip (VBS), and riparian VBS soils. Soils were collected at six randomly chosen sites within grids that encompassed all three land uses. Single-point equilibrium batch sorption experiments were conducted using radio-labeled (14C) ICD to determine solid–solution partition coefficients (Kd). Column experiments were conducted using soils collected from the three vegetation treatments at one site by packing soil into glass columns. Water flow was characterized by applying Br− as a nonreactive tracer. A single pulse of 14C-ICD was then applied, and ICD leaching was monitored for up to 45 d. Bromide and ICD breakthrough curves for each column were simulated using CXTFIT and HYDRUS-1D models. Sorption results indicated that ICD sorbs more strongly to riparian VBS (Kd = 22.6 L kg−1) than crop (Kd = 11.3 L kg−1) soils. Soil organic C was the strongest predictor of ICD sorption (p < 0.0001). The column transport study found mean peak concentrations of ICD at 5.83, 10.84, and 23.8 pore volumes for crop, grass VBS, and riparian VBS soils, respectively. HYDRUS-1D results indicated that the two-site, one-rate linear reversible model best described results of the breakthrough curves, indicating the complexity of ICD sorption and demonstrating its mobility in soil. Greater sorption and longer retention by the grass and riparian VBS soils than the cropland soil suggests that VBS may be a viable means to mitigate ICD loss from agroecosystems, thereby preventing ICD transport into surface water, groundwater, or drinking water resources.

  17. Sorption and Transport of Ranitidine in Natural Soils

    Science.gov (United States)

    Gaynor, A. J.; Vulava, V. M.

    2013-12-01

    Increasing levels of pharmaceuticals and their degradants are being discovered in natural water systems all over the world. These chemicals are reported to be discharged from wastewater treatment plants, sewage overflow, and leaking septic tanks. Ranitidine is an example of one such pharmaceutical chemical found in municipal drinking water, streams, and streambed sediments. It is a histamine H2-receptor antagonist, which inhibits the production of stomach acid and is commonly used to treat peptic ulcers and gastro esophageal reflux disease. Ranitidine is a complex organic compound; it is acidic, highly polar, and has two pKa values of approximately 8.2 and 2.7 because of the amine functional groups. When administered orally 25 - 30% of unchanged ranitidine has been shown to expel through urine. The objective of this research is to establish sorption and transport patterns of ranitidine in natural soils and to determine which soil properties influence these patterns the most. Laboratory experiments were preformed on A-horizon and B-horizon soil samples collected from the relatively undisturbed Francis Marion National Forest, a managed forest near Charleston, SC. The soils were characterized for chemical and physical properties: ranges of clay content = 6-20%, total organic content = 1-8%, and pH = 3.6-4.9. Kinetic reaction rates and equilibrium sorption isotherms were measured using batch experiments, whereas column experiments were used to quantify transport behavior. The reaction rates were -0.22/day and -0.33/day for organic-rich and clay-rich soils, respectively. The kinetic reaction rates were used to determine equilibration times for further equilibrium batch reactor experiments, which have soil solutions spiked with concentrations of ranitidine ranging from 0.1 mg/L to 100 mg/L. The concentration remaining in solution (C, mg/L) was plotted against the concentration in the soil (q, mg/kg) to create sorption isotherms. Ranitidine was more strongly sorbed to B

  18. Iodine sorption of bentonite - radiometric and polarographic study

    International Nuclear Information System (INIS)

    Konirova, R.; Vinsova, H.; Koudelkova, M.; Ernestova, M.; Jedinakova-Krizova, V.

    2003-01-01

    The experiments focused on kinetics of iodine retardation on bentonite, influence of aqueous phase pH, buffering properties of bentonite, etc. were carried out by batch method. Distribution coefficient KD was the criterion applied for evaluation of iodine interaction with solid phase. High sorption potential of bentonite to cationic forms of various radionuclides, resulting from relatively high cation exchange capacity, is generally known. On the other hand the inorganic anions are not adsorbed strongly to mineral surface of clays thus uptake of iodine (occurring mainly at iodide (I - ) or iodate (IO 3 - ) form under oxoic conditions) is limited. The distribution coefficients of iodine anions' sorption on bentonite R reach order of magnitude 10 -1 mL/g. In order to increase the sorption capacity of the solid phase, several additives were added to bentonite. Most of them didn't provide satisfactory results except of the addition of activated carbon, which has high surface area. Electromigration and polarographic methods were used for investigation of the redox state of iodine in aqueous phase and determination of KD values as well. Acquired results were compared with data obtained by radiometric measurements. (authors)

  19. A Numerical Comparison of Ionic Multi-Species Diffusion with and without Sorption Hysteresis for Cement-Based Materials

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2015-01-01

    . The model is an extended version of the Poisson–Nernst–Planck (PNP) system of equations. The PNP extension includes a two-phase vapor and liquid model coupled by a sorption hysteresis function and a chemical equilibrium term. The strong and weak solutions for the equation system are shown, and a finite...

  20. Improved understanding of tributyltin sorption on natural and biochar-amended sediments.

    Science.gov (United States)

    Xiao, Xiaoyu; Sheng, G Daniel; Qiu, Yuping

    2011-12-01

    A poor understanding of tributyltin (TBT) sorption on sediments has hindered an accurate evaluation of its environmental fate. The present study determined TBT sorption by a freshwater sediment (BH) and a coastal marine sediment (TZ) as influenced by pH, salinity, and biochar (BC) amendment into TZ. The isotherms were essentially linear, with K(OC) values in the range of 10(4) to 10(5) L/kg. Tributyltin sorption at pH 3.56 and 8.00 occurred mainly via partitioning. It reached maxima at pH equal to its pK(a) (=6.25) because of added ion exchange. A salinity increase from 5 to 35 practical salinity units enhanced TBT sorption at pH 3.56 and 8.00 on TZ by approximately 30% and on BH by approximately 80%, ascribed to the salting-out effect that reduced the solubilities of tributyltin hydroxide (TBTOH) and tributyltin chloride (TBTCl). At pH 6.25, the same salinity increase reduced TBT sorption on TZ by approximately 20% but enhanced TBT sorption on BH by approximately 35%. This was attributed to the enhancing role of salting out and the reducing role of metal competition for ion exchange. Tributyltin was two orders of magnitude more effectively sorbed by BC than by total organic carbon of TZ, mainly because of the high level of surface area of the BC. Although BC affinity for TBT may be significantly diminished when present in TZ, it was considered to be the primary contributor to TBT sorption from water. Biochar may thus be used to immobilize TBT in sediment for potential remediation. Copyright © 2011 SETAC.

  1. Equilibrium sorptive enrichment on poly(dimethylsiloxane) particles for trace analysis of volatile compounds in gaseous samples

    NARCIS (Netherlands)

    Baltussen, H.A.; David, F.; Sandra, P.J.F.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1999-01-01

    A novel approach for sample enrichment, namely, equilibrium sorptive enrichment (ESE), is presented. A packed bed of sorption (or partitioning) material is used to enrich volatiles from gaseous samples. Normally, air sampling is stopped before breakthrough occurs, but this approach is not very

  2. Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo, Marcos

    2016-01-01

    Abstract Despite a contemporary interest in biochar application to agricultural fields to improve soil quality and long-term carbon sequestration, a number of potential side effects of biochar incorporation in field soils remain poorly understood, e.g., in relation to interactions...... with agrochemicals such as pesticides. In a fieldbased study at two experimental sites in Denmark (sandy loam soils at Risoe and Kalundborg), we investigated the influence of birch wood biochar with respect to application rate, aging (7–19 months), and physico- chemical soil properties on the sorption coefficient......, Kd (L kg−1), of the herbicide glyphosate. We measured Kd in equilibrium batch sorption experiments with triplicate soil samples from 20 field plots that received biochar at different application rates (0 to 100 Mg ha−1). The results showed that pure biochar had a lower glyphosate Kd value as compared...

  3. Thermodynamics of imidacloprid sorption in Croatian soils

    Science.gov (United States)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  4. Sorption characteristics of pectin isolated from Jerusalem Artichoke tubers (Helianthus tuberosus L.

    Directory of Open Access Journals (Sweden)

    N. Toshkov

    2015-05-01

    Full Text Available Introduction. The aim of the present study is the isolation of pectin from Jerusalem artichoke tubers (Helianthus tuberosus L. and the analysis of its sorption characteristics Materials and methods. Research was carried out on the pectin content of the tubers of Jerusalem artichoke plants cultivated in Bulgaria. The polyuronide content (PUC was determined via the МсCready method. The static gravimetric method was used for analysis of the sorption characteristics of pectins. Results and discussion. The polysaccharide was extracted. The isolated pectins were analyzed in physical terms: the equilibrium sorption isotherms, belonging to type II in Brunauer’s classification, were obtained experimentally. The entire isotherm length demonstrated statistically significant hysteresis. The Henderson and Chung-Pfost models provided adequate isotherm description. The pectin content of the three Jerusalem artichoke samples is 14.8, 9.2 and 11.9 % a.d.m., respectively. The monomolecular moisture content of pectin was within the 7.42 – 7.92% dry basis range, its corresponding water activity value –within the 0.14 –0.16 range. Conclusion. The resultsof research are advisablefor use indevelop of functional food ingredient which is used pectin as a gelling agent and a stabilizer.

  5. Soil sorption of two nitramines derived from amine-based CO2 capture.

    Science.gov (United States)

    Gundersen, Cathrine Brecke; Breedveld, Gijs D; Foseid, Lena; Vogt, Rolf D

    2017-06-21

    Nitramines are potentially carcinogens that form from the amines used in post-combustion CO 2 capture (PCCC). The soil sorption characteristics of monoethanol (MEA)- and dimethyl (DMA)-nitramines have been assessed using a batch experimental setup, and defined indirectly by measuring loss of nitramine (LC-MS/MS) from the aqueous phase (0.01 M CaCl 2 and 0.1% NaN 3 ) after equilibrium had been established with the soil (24 h). Nitramine soil sorption was found to be strongly dependent on the content of organic matter in the soil (r 2 = 0.72 and 0.95, p Soil sorption of MEA-nitramine was further influenced by the quality of the organic matter (Abs 254 nm , r 2 = 0.93, p soil organic matter. Estimated organic carbon normalized soil-water distribution coefficients (K OC ) are relatively low, and within the same range as for simple amines. Nevertheless, considering the high content of organic matter commonly found in the top layer of a forest soil, this is where most of the nitramines will be retained. Presented data can be used to estimate final concentrations of nitramines in the environment following emissions from amine-based PCCC plants.

  6. Sorption data bases and mechanistic sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H

    2000-07-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  7. Sorption of Uranium(VI and Thorium(IV by Jordanian Bentonite

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2013-01-01

    Full Text Available Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature, and column techniques at 25.0∘C and . The highest rate of metal ions uptake was observed after 18 h of shaking, and the uptake has increased with increasing pH and reached a maximum at . Bentonite has shown high metal ion uptake capacity toward uranium(VI than thorium(IV. Sorption data were evaluated according to the pseudo- second-order reaction kinetic. Sorption isotherms were studied at temperatures 25.0∘C, 35.0∘C, and 45.0∘C. The Langmuir, Freundlich, and Dubinin-Radushkevich (D-R sorption models equations were applied and the proper constants were derived. It was found that the sorption process is enthalpy driven for uranium(VI and thorium(IV. Recovery of uranium(VI and thorium(IV ions after sorption was carried out by treatment of the loaded bentonite with different concentrations of HNO3 1.0 M, 0.5 M, 0.1 M, and 0.01 M. The best percent recovery for uranium(VI and thorium(IV was obtained when 1.0 M HNO3 was used.

  8. Sorption of zinc on synthetic hydroxyapatite from aqueous solution

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2014-01-01

    The sorption of Zn 2+ on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. This work was aimed to study influence of the contact time, effect of pH and different concentration of Zn 2+ ions in the solution. The percentage of zinc adsorption on HA1 and HA2 was more than 96 % during 1 h for initial Zn 2+ concentration of 1·10 -4 .5·10 -4 and 1·10 -3 mol·dm -3 . The equilibrium time of 2 h was chosen for further experiments. The sorption of zinc on hydroxyapatite was pH independent ranging from 4.5 to 6.5 as a result of buffering properties of hydroxyapatite. The experimental data for adsorption of zinc have been interpreted in the term of Langmuir isotherm and the value of maximum adsorption capacity of zinc on a commercial hydroxyapatite and hydroxyapatite prepared by wet precipitation process was calculated to be 0.437 mmol·g -1 and 0.605 mmol·g -1 , respectively. (authors)

  9. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    Science.gov (United States)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  10. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2013-01-01

    Based on the sorption distribution coefficients (K d ) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K d values of Cs onto Mizunami granite carried out by JAEA with the K d values predicted by the model, the effect of the ionic strength on the K d values of Cs onto granite was evaluated. It was found that K d values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10 -2 to 5 x 10 -1 mol/dm 3 . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  11. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field

    NARCIS (Netherlands)

    Rakowska, M.I.; Kupryianchyk, D.; Koelmans, A.A.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of

  12. Kinetic Modelling of the Removal of Multiple Heavy Metallic Ions from Mine Waste by Natural Zeolite Sorption

    Directory of Open Access Journals (Sweden)

    Amanda L. Ciosek

    2017-07-01

    Full Text Available This study investigates the sorption of heavy metallic ions (HMIs, specifically lead (Pb2+, copper (Cu2+, iron (Fe3+, nickel (Ni2+ and zinc (Zn2+, by natural zeolite (clinoptilolite. These HMIs are combined in single-, dual-, triple-, and multi-component systems. The batch mode experiments consist of a total initial concentration of 10 meq/L normality for all systems, acidified to a pH of 2 by concentrated nitric (HNO3 acid. A zeolite dosage of 4 g per 100 mL of synthetic nitrate salt aqueous solution is applied, for a contact period of 5 to 180 min. Existing kinetic models on HMIs sorption are limited for multi-component system combinations. Therefore, this study conducts kinetic analysis by both reaction and diffusion models, to quantify the sorption process. The study concludes that the process correlates best with the pseudo-second-order (PSO kinetic model. In the multi-component system combining all five HMIs, the initial sorption rate and theoretical equilibrium capacity are determined as 0.0033 meq/g·min and 0.1159 meq/g, respectively. This provides significant insight into the mechanisms associated with the sorption process, as well as contributing to the assessment of natural zeolite as a sorbent material in its application in industrial wastewater treatment.

  13. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings

    Science.gov (United States)

    Smalling, Kelly; Hladik, Michelle; Sanders, Corey; Kuivila, Kathryn

    2018-01-01

    Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms.

  14. Radionuclide sorption behavior in particulate matter in near coastal marine environments

    International Nuclear Information System (INIS)

    Hansen, A.M.; Ortega-Lara, V.; Leckie, J.O.

    1997-01-01

    Full text: In order to evaluate the migration behavior of radioactive cesium and strontium while transported from continental aquatic systems to marine environments, the sorption behaviors for these metals were evaluated in several different environments. Laboratory experiments using radioactive tracers, and equilibrium as well as time dependent modeling were used to evaluate and quantify the distribution of the two elements as a function of element chemistry, solid substrate characteristics and solution composition. The experimental conditions reflected salinities ranging from those found in rivers and lakes through estuaries to the ocean. Adsorption constants were obtained for strontium in natural sediments from these aquatic environments. The strontium specification was evaluated in solution as well as in the adsorbed state. Sorption of strontium occurred mainly as outer sphere complexes. Major cations, ligands (soluble and particulate), ionic strength, and pH were among parameters that affected the distribution of cesium and strontium between adsorbed and dissolved forms. Time-dependent sorption behaviors were observed under study dissolved salt and suspended sediment conditions. Desorption occurred to some degree for all sediment types. Cesium was exchanged with potassium and sodium in clay minerals and was therefore less desorbed than would be expected. The results allowed the description of migration behaviors of two important pollutants from the atomic energy industry

  15. Sorption behavior of neptunium on bentonite -- Effect of calcium ion on the sorption

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Muraoka, Susumu

    1995-01-01

    The sorption behavior of neptunium on bentonite was studied with batch type sorption and desorption experiments over a pH range of 2 to 8. A series of parallel studies using Na-smectite, Ca-smectite and admixtures of Na-smectite and calcite quantified the capacity of Ca 2+ (which occurs in bentonite as an exchangeable cation of smectite and as a component of calcite) to inhibit the sorption of neptunium. The distribution coefficient (K d ) of neptunium for bentonite was constant from pH 2 to 7, while for pure Na-smectite K d increased below pH 5 due to specific sorption of neptunium on Na-smectite. Specific sorption was defined as occurring when neptunium could be desorbed by a strong acid (1 M HCl) but was stable in the presence of 1 M KCl. It was found that the quantity of neptunium sorbed on Na-smectite was inversely proportional to the concentration of Ca 2+ in solution, an effect most pronounced at pH 2+ limits the specific sorption capacity of Na-smectite for neptunium. Similarly, in the mixture of Na-smectite and calcite, sufficient Ca 2+ was solubilized to depress neptunium sorption. This investigation demonstrates that Ca 2+ contained in bentonite as exchangeable cation and released from calcite reduces the specific sorption of neptunium

  16. Dynamic of sorption and biodegradation in an alluvial soil of the VI region of Chile using isotopic techniques

    International Nuclear Information System (INIS)

    Potenza Munoz, Dennisse Irene

    2005-01-01

    When a pesticide is applied, only one part of it produces the effect of control the plague problem, whereas an important rest circulates in different matrices (air, soil, water), generating an important environmental risk. One of these pesticides widely used in the fruit production is chlorpyrifos (CLP), whose greater percentage of use is in the VI Region of Chile. The objective of this investigation was to quantify and to know the chlorpyrifos sorption and biodegradation tendency in a soil of the VI region (Fluventic Haplorexoll), using a compound labelled with 14 Carbon ( 14 C). The sorption of the pesticide was determined by the 'batch' technique. The time of equilibrium was obtained at six hours of sharking. Whit this value, the sorption isotherm was determined with Freundlich equation, obtaining a K∫ of 63.038 mL g -1 , and an n value of 0.9811. In addition, the value of the distribution coefficient K d (67.25 mL g -1 ) and the standardized value according with the organic carbon of the soil K oc (2,690) were calculated. In agreement with these results it was evident that the CLP has tendency to be adsorbed by the soil. The biodegradation of CLP was measured through the incubation of soil samples during 57 days, measuring the 14 CO 2 emitted by the microorganisms, every three days. The results demonstrate that 50 % of the biodegradation was reached to 24 days of incubation, and that the end of the experiment, 61.3 % of the pesticide had been biodegraded. The Groundwater Ubiquity Score (GU.S) indicator was calculated using the 50 % of the biodegradation as the half life of the product, giving a value of 0.79. This result would indicate CLP as a non leachable product and with a low risk of contaminating the underground waters (au)

  17. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S., E-mail: nagasas@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2013-07-01

    Based on the sorption distribution coefficients (K{sub d}) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K{sub d} values of Cs onto Mizunami granite carried out by JAEA with the K{sub d} values predicted by the model, the effect of the ionic strength on the K{sub d} values of Cs onto granite was evaluated. It was found that K{sub d} values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10{sup -2} to 5 x 10{sup -1} mol/dm{sup 3} . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  18. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils.

    Science.gov (United States)

    Müller, K; Duwig, C; Prado, B; Siebe, C; Hidalgo, C; Etchevers, J

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.

  19. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies.

    Science.gov (United States)

    Zhao, Yufeng; Wang, Dongfang; Xie, Hezhen; Won, Sung Wook; Cui, Longzhe; Wu, Guiping

    2015-01-01

    One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag(0) nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

  20. The sorption characteristics of mercury as affected by organic matter content and/or soil properties

    Science.gov (United States)

    Šípková, Adéla; Šillerová, Hana; Száková, Jiřina

    2014-05-01

    The determination and description of the mercury sorption extend on soil is significant for potential environmental toxic effects. The aim of this study was to assess the effectiveness of mercury sorption at different soil samples and vermicomposts. Mercury interactions with soil organic matter were studied using three soils with different physical-chemical properties - fluvisol, cambisol, and chernozem. Moreover, three different vermicomposts based on various bio-waste materials with high organic matter content were prepared in special fermentors. First was a digestate, second was represented by a mixture of bio-waste from housing estate and woodchips, and third was a garden bio-waste. In the case of vermicompost, the fractionation of organic matter was executed primarily using the resin SuperliteTM DAX-8. Therefore, the representation of individual fractions (humic acid, fulvic acid, hydrophilic compounds, and hydrophobic neutral organic matter) was known. The kinetics of mercury sorption onto materials of interest was studied by static sorption experiments. Samples were exposed to the solution with known Hg concentration of 12 mg kg-1 for the time from 10 minutes to 24 hours. Mercury content in the solutions was measured by the inductively coupled plasma mass spectrometry (ICP-MS). Based on this data, the optimum conditions for following sorption experiments were chosen. Subsequently, the batch sorption tests for all soil types and vermicomposts were performed in solution containing variable mercury concentrations between 1 and 12 mg kg-1. Equilibrium concentration values measured in the solution after sorption and calculated mercury content per kilogram of the soil or the vermi-compost were plotted. Two basic models of sorption isotherm - Langmuir and Freundlich, were used for the evaluation of the mercury sorption properties. The results showed that the best sorption properties from studied soil were identified in chernozem with highest cation exchange

  1. Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-05-01

    Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.

  2. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    Science.gov (United States)

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  3. Influence of temperature on pentavalent Np Sorption and desorption onto Goethite, Montmorillonite

    International Nuclear Information System (INIS)

    Vial, M.A.; Sherman, C; Czerwinski, K.R.; Reed, D.

    2002-01-01

    Yucca Mountain Site has been selected by the United States Department of Energy as the repository for disposing the US HLW. The performance allocation analysis on a multi-barrier system for high-level radioactive waste disposal has pointed 237 Np as the dominant hazard at the inlet of the biosphere [1J. 2JNp is present in high-level radioactive wastes (HLW), although in smaller amounts in comparison to other radionuclides. Because of its long half-life of 2.14 million years and its mobile nature under aerobic conditions due to the high chemical stability of its pentavalent state, it is considered a possible long-term pollutant of the ecosystem. Understanding Np behavior is required in order to quantitatively describe its transport in surface groundwater systems. In the repository, many components are known to play an important role in Np and other actinides speciation through adsorption-, complexation-, dissolution-, precipitation- and, colloids or pseudocolloids generation reactions [1]. Inorganic Ligands (C0 3 - , OH - ), present in nearly all natural water at various degree, and organic ligands (humic acid) can react with Np and consequently affect its leachability through the formation of numerous compounds. The solubility limits of radionuclides may act as an initial barrier to radionuclide migration from the potential repository at Yucca Mountain for some radionuclides. However, once radionuclides have dissolved in water infiltrating the site, sorption of these radionuclides onto the surrounding mineral phases becomes a potentially important second barrier. The study of retardation of Np and other key actinides is of major importance in assessing the performance of the potential repository. Among the soil of interest montmorillonite and iron-based materials have generated lots of researches. Nagasaki et al. [2] recent researches on sorption equilibrium and kinetics of NpO 2 + on dispersed particles of Na-montmorillonite and Na-illite (batch experiments at p

  4. Mathematical models and equilibrium in irreversible microeconomics

    Directory of Open Access Journals (Sweden)

    Anatoly M. Tsirlin

    2010-07-01

    Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.

  5. Sorption and desorption of glyphosate, MCPA and tetracycline and their mixtures in soil as influenced by phosphate.

    Science.gov (United States)

    Munira, Sirajum; Farenhorst, Annemieke

    2017-12-02

    Phosphate fertilizers and herbicides such as glyphosate and MCPA are commonly applied to agricultural land, and antibiotics such as tetracycline have been detected in soils following the application of livestock manures and biosolids to agricultural land. Utilizing a range of batch equilibrium experiments, this research examined the competitive sorption interactions of these chemicals in soil. Soil samples (0-15 cm) collected from long-term experimental plots contained Olsen P concentrations in the typical (13 to 20 mg kg -1 ) and elevated (81 to 99 mg kg -1 ) range of build-up phosphate in agricultural soils. The elevated Olsen P concentrations in field soils significantly reduced glyphosate sorption up to 50%, but had no significant impact on MCPA and tetracycline sorption. Fresh phosphate additions in the laboratory, introduced to soil prior to, or at the same time with the other chemical applications, had a greater impact on reducing glyphosate sorption (up to 45%) than on reducing tetracycline (up to 13%) and MCPA (up to 8%) sorption. The impact of fresh phosphate additions on the desorption of these three chemicals was also statistically significant, but numerically very small namely glyphosate and tetracycline and 3% for MCPA. The presence of MCPA significantly reduced sorption and increased desorption of glyphosate, but only when MCPA was present at concentrations much greater than environmentally relevant and there was no phosphate added to the MCPA solution. Tetracycline addition had no significant effect on glyphosate sorption and desorption in soil. For the four chemicals studied, we conclude that when mixtures of phosphate, herbicides and antibiotics are present in soil, the greatest influence of their competitive interactions is phosphate decreasing glyphosate sorption and the presence of phosphate in solution lessens the potential impact of MCPA on glyphosate sorption. The presence of chemical mixtures in soil solution has an overall greater impact

  6. Aminosilane-Functionalized Cellulosic Polymer for Increased Carbon Dioxide Sorption

    KAUST Repository

    Pacheco, Diana M.; Johnson, J.R.; Koros, William J.

    2012-01-01

    Improvement in the efficiency of CO 2 separation from flue gases is a high-priority research area to reduce the total energy cost of carbon capture and sequestration technologies in coal-fired power plants. Efficient CO 2 removal from flue gases by adsorption systems requires the design of novel sorbents capable of capturing, concentrating, and recovering CO 2 on a cost-effective basis. This paper describes the preparation of an aminosilane-functionalized cellulosic polymer sorbent with enhanced CO 2 sorption capacity and promising performance for use in postcombustion carbon capture via rapid temperature-swing adsorption systems. The introduction of aminosilane functionalities onto the backbone of cellulose acetate was achieved by the anhydrous grafting of N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane. The dry sorption capacity of the modified cellulosic polymer reached 27 cc (STP) CO 2/cc sorbent (1.01 mmol/g sorbent) at 1 atm and 39 cc (STP) CO 2/cc sorbent (1.46 mmol/g sorbent) at 5 atm and 308 K. The amine loading achieved was 5.18 mmol amine(nitrogen)/g sorbent. Exposure to water vapor after the first dry sorption cycle increased the dry sorption capacity of the sorbent by 12% at 1 atm, suggesting its potential for rapid cyclic adsorption processes under humid feed conditions. The CO 2 sorbent was characterized in terms of chemical composition, density changes, molecular structure, thermal stability, and surface morphology. © 2011 American Chemical Society.

  7. Aminosilane-Functionalized Cellulosic Polymer for Increased Carbon Dioxide Sorption

    KAUST Repository

    Pacheco, Diana M.

    2012-01-11

    Improvement in the efficiency of CO 2 separation from flue gases is a high-priority research area to reduce the total energy cost of carbon capture and sequestration technologies in coal-fired power plants. Efficient CO 2 removal from flue gases by adsorption systems requires the design of novel sorbents capable of capturing, concentrating, and recovering CO 2 on a cost-effective basis. This paper describes the preparation of an aminosilane-functionalized cellulosic polymer sorbent with enhanced CO 2 sorption capacity and promising performance for use in postcombustion carbon capture via rapid temperature-swing adsorption systems. The introduction of aminosilane functionalities onto the backbone of cellulose acetate was achieved by the anhydrous grafting of N-(2-aminoethyl)-3- aminoisobutyldimethylmethoxysilane. The dry sorption capacity of the modified cellulosic polymer reached 27 cc (STP) CO 2/cc sorbent (1.01 mmol/g sorbent) at 1 atm and 39 cc (STP) CO 2/cc sorbent (1.46 mmol/g sorbent) at 5 atm and 308 K. The amine loading achieved was 5.18 mmol amine(nitrogen)/g sorbent. Exposure to water vapor after the first dry sorption cycle increased the dry sorption capacity of the sorbent by 12% at 1 atm, suggesting its potential for rapid cyclic adsorption processes under humid feed conditions. The CO 2 sorbent was characterized in terms of chemical composition, density changes, molecular structure, thermal stability, and surface morphology. © 2011 American Chemical Society.

  8. Water sorption kinetics of damaged beans: GAB model

    Directory of Open Access Journals (Sweden)

    Fernanda M. Baptestini

    Full Text Available ABSTRACT The objective of this study was to model the water sorption kinetics of damaged beans. Grains with initial moisture content of 53.85%, dry basis (d.b., were used. One portion of the grains was used to obtain desorption isotherms, while the other was subjected to drying until the moisture content of 5.26% (d.b., so that it was subjected to the adsorption. For the induction of damage, a Stein Breakage Tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber at 20, 30, 40 and 50 ± 1 °C combined with relative humidity of 30, 40, 50, 70 and 90 ± 3%. The GAB model fitted well to the equilibrium moisture experimental data of damaged grains and control. With increasing temperature, the monolayer moisture contents decreased in adsorption and desorption processes, ranging from 9.84 to 5.10% d.b. The lower moisture content in the monolayer in damaged grains indicates that lower moisture content is necessary to ensure their conservation.

  9. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    Science.gov (United States)

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.

  10. Multiscale measures of equilibrium on finite dynamic systems

    International Nuclear Information System (INIS)

    Bigerelle, M.; Iost, A.

    2004-01-01

    This article presents a new method for the study of the evolution of dynamic systems based on the notion of quantity of information. The system is divided into elementary cells and the quantity of information is studied with respect to the cell size. We have introduced an analogy between quantity of information and entropy, and defined the intrinsic entropy as the entropy of the whole system independent of the size of the cells. It is shown that the intrinsic entropy follows a Gaussian probability density function (PDF) and thereafter, the time needed by the system to reach equilibrium is a random variable. For a finite system, statistical analyses show that this entropy converges to a state of equilibrium and an algorithmic method is proposed to quantify the time needed to reach equilibrium for a given confidence interval level. A Monte-Carlo simulation of diffusion of A* atoms in A is then provided to illustrate the proposed simulation. It follows that the time to reach equilibrium for a constant error probability, t e , depends on the number, n, of elementary cells as: t e ∝n 2.22 ±0.06 . For an infinite system size (n infinite), the intrinsic entropy obtained by statistical modelling is a pertinent characteristic number of the system at the equilibrium

  11. Computer codes for three dimensional mass transport with non-linear sorption

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-03-01

    The report describes the mathematical background and data input to finite element programs for three dimensional mass transport in a porous medium. The transport equations are developed and sorption processes are included in a general way so that non-linear equilibrium relations can be introduced. The programs are described and a guide given to the construction of the required input data sets. Concluding remarks indicate that the calculations require substantial computer resources and suggest that comprehensive preliminary analysis with lower dimensional codes would be important in the assessment of field data. (author)

  12. Valorisation of post-sorption materials: Opportunities, strategies, and challenges.

    Science.gov (United States)

    Harikishore Kumar Reddy, D; Vijayaraghavan, K; Kim, Jeong Ae; Yun, Yeoung-Sang

    2017-04-01

    Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m 2 /g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical

  13. Influence of mineral characteristics on the retention of low molecular weight organic compounds: a batch sorption-desorption and ATR-FTIR study.

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Kookana, Rai S; Farrell, Mark; Sparks, Donald L; Johnston, Cliff T

    2014-10-15

    Batch experiments were conducted to evaluate the sorption-desorption behaviour of (14)C-labelled carboxylic acids (citric and oxalic) and amino acids (glutamic, alanine, phenylalanine and lysine) on pure minerals (kaolinite, illite, montmorillonite, ferrihydrite and goethite). The sorption experiments were complemented by ATR-FTIR spectroscopy to gain possible mechanistic insight into the organic acids-mineral interactions. In terms of charge, the organic solutes ranged from strongly negative (i.e., citric) to positively charged solutes (i.e., lysine); similarly the mineral phases also ranged from positively to negatively charged surfaces. In general, sorption of anionic carboxylic and glutamic acids was higher compared to the other compounds (except lysine). Cationic lysine showed a stronger affinity to permanently charged phyllosilicates than Fe oxides. The sorption of alanine and phenylalanine was consistently low for all minerals, with relatively higher sorption and lower desorption of phenylalanine than alanine. Overall, the role of carboxylic functional groups for the sorption and retention of these carboxylic and amino acids on Fe oxides (and kaolinite) and of amino group on 2:1 phyllosilicates was noticeable. Mineral properties (surface chemistry, specific surface area), chemistry of the organic compounds (pKa value, functional groups) and the equilibrium pH of the system together controlled the differences in sorption-desorption patterns. The results of this study aid to understand the effects of mineralogical and chemical factors that affect naturally occurring low molecular weight organic compounds sorption under field conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. High accuracy calibration of a dynamic vapor sorption instrument and determination of the equilibrium humidities using single salts

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Svensson, Staffan

    2016-01-01

    We present a procedure for accurately calibrating a dynamic vapor sorption (DVS) instrument using single salts. The procedure accounts for and tailors distinct calibration tests according to the fundamental properties of each salt. Especially relevant properties influencing the calibration are th...

  15. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  16. Geochemical studies of sorption and transport of radionuclides in rock media

    International Nuclear Information System (INIS)

    Coles, D.G.; Weed, H.C.; Tewhey, J.D.

    1980-01-01

    Four studies, which supported the goals of the WISAP Program at Battelle PNL, were undertaken by the Lawrence Livermore Laboratory during FY 1979. These were: (1) Batch K/sub d/ experiments, (2) Dynamic sorption experiments on rock cores, (3) Feasibility study for an in situ tracer test at the Climax Stock, NTS, and (4) Geochemical equilibrium code development. Only the equilibrium code development was not funded by the WISAP during FY 1979. The emphasis for the batch K/sub d/ studies was on various (15) sandstones in brine using 75 Se, 85 Sr, 125 Sb, 137 Cs, 141 Ce, and 237 Pu tracers. These sandstone samples were well-characterized for their physical and mineralogical nature. Complex K/sub d/ behavior was observed for the radionuclides studied but 85 Sr showed K/sub d/ values near zero for all samples. Both 141 Ce and 239 Pu K/sub d/ values ranged from 20 to upper limits of greater than or equal to 17,000. Dynamic sorption studies were done on NTS tuff and St. Peter sandstone core using 3 H, 85 Sr, and /sup 95m/Tc. These radionuclides were injected as a short pulse into the rock-equilibrated water that was flowing through the core. Tracer-free water was then continually flowed through the core until elution curves for the mobile radionuclides were established. Tritium and /sup 95m/Tc both traveled through the cores at the same rate, indicating no sorption for the mobile fraction of /sup 95m/Tc ( 95 TcO 4 - ). Strontium-85 did not exit the tuff cores but did exit the sandstone core although the elution curves showed definite retardation relative to the movement of 3 H and /sup 95m/Tc. Post-elution sectioning of the cores indicated that a fraction of the /sup 95m/Tc remained in the cores and was evenly distributed through the tuff cores. Strontium-85 showed a generally decreasing distribution from the inlet side to the outlet side of the tuff cores

  17. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  18. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    Science.gov (United States)

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Binary Component Sorption of Cadmium, and Copper Ions onto Yangtze River Sediments with Different Particle Sizes

    Directory of Open Access Journals (Sweden)

    Jianxin Fan

    2017-11-01

    Full Text Available Sorption is a crucial process that influences immobilization and migration of heavy metals in an aqueous environment. Sediments represent one of the ultimate sinks for heavy metals discharged into water body. Moreover, the particle size of sediments plays an extremely important role in the immobilization of heavy metals. In this study, the sorption and desorption of cadmium (Cd and copper (Cu onto sediments with different particle sizes were investigated to predict the rate and capacity of sorption, to understand their environmental behaviors in an aqueous environment. Batch sorption and kinetic experiments were conducted to obtain the retained amount and rate of Cd and Cu in a binary system. Experimental data were simulated using sorption models to ascertain the sorption capacity and the kinetic rate. Results of European Communities Bureau of Reference (BCR sequential extraction showed the highest concentration of Cd (0.344 mg kg−1, and its distribution varied with sediment particle size and site. Furthermore, most of Cu (approximately 57% to 84% existed as a residual fraction. The sorption of Cu onto six sediments followed a pseudo-first order reaction, whereas that of Cd followed a pseudo-second order reaction. Additionally, the competitive Langmuir model fitted the batch sorption experimental data extremely well. The highest sorption capacities of Cd and Cu reach 0.641 mmol kg−1 and 62.3 mmol kg−1, respectively, on the smallest submerged sediment particles. The amounts of Cu and Cd desorbed (mmol kg−1 increased linearly with the initial concentration increasing. Thus, sediment texture is an important factor that influences the sorption of heavy metal onto sediments.

  20. Sorption of actinides onto nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Shiryaev, Andrei [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry; Kalmykov, Stepan [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Vernadsky Institute of Geochemistry and Analytical Chemistry

    2015-06-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  1. Sorption of actinides onto nanodiamonds

    International Nuclear Information System (INIS)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna; Shiryaev, Andrei; Russian Academy of Sciences, Moscow; Kalmykov, Stepan; Russian Academy of Sciences, Moscow; Russian Academy of Sciences, Moscow

    2015-01-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  2. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    International Nuclear Information System (INIS)

    Choi, Hyeok; Al-Abed, Souhail R.

    2009-01-01

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K F (L kg -1 ) spanned several orders of magnitude, ranging from log K F of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  3. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K{sub F} (L kg{sup -1}) spanned several orders of magnitude, ranging from log K{sub F} of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  4. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  5. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  6. Sorption of diuron, atrazine, and copper ion on chars with long-term natural oxidation in soils

    Science.gov (United States)

    Cheng, C.; Lin, T.; Lai, C.

    2011-12-01

    Biochar has been proposed as a measure to sequestrate carbon (C) and to increase soil fertility in sustainable agriculture. However, its sorption characteristics to herbicides, such as lowing herbicides efficacy, may constrain its agricultural application. This assertion may be arguable because most studies so far were conducted with the newly produced char and barely considered the "ageing effect" of old char since it could be oxidized over long time. In this study, historical char samples were collected and compared with the newly produced char. Batch sorption studies of diuron, atrazine, and copper ion onto chars was performed. Greater sorption of Cu was observed on the historical char samples and reached a saturated sorption at 30 mg g-1 for Cu, much higher adsorption value than newly produced char at 4 mg g-1. In contrast, sorption of diuron and atrazine on newly produced char had the highest sorption capacity than the historical char samples. The historical chars also had much higher negative charge than the newly produced char, but its surface area were lower than the new char. The results indicated that change in surface functional groups through natural oxidation rather than the change of surface area may have more pronounced influences on sorption characteristics, in which the negative charge on the historical chars' surface could hinder the adsorption of diuron and atrazine while enhance the sorption to copper ion. Biological assay to test the toxicity of diuron and copper ion for both historical and new chars on rye seed were conducted and will be presented in our poster.

  7. Sorption-desorption characteristics of benzimidazole based fungicide 2-(4-fluorophenyl)-1h-benzimidazole on physicochemical properties of selected pakistani soils

    International Nuclear Information System (INIS)

    Ahmad, K.S.

    2014-01-01

    A batch equilibrium method has been utilized to investigate the sorption-desorption behavior of a versatile cost-effective fungicide2-(4-fluorophenyl)-1H-benzimidazole) FBNZ on four Pakistani soils geographically distant, from hilly to desert areas. FBNZ is a newly synthesized fungicide prepared in the laboratory and is cost effective than the commercially available fungicides. The adsorption and desorption data were fitted to the Freundlich equation, with values of na = 1, which points to a C-type isotherm. Sorption increases with soil organic carbon content, with greater degree of adsorption for hilly soil and least adsorption on sandy soil of Multan, Punjab. Desorption studies reveal that the adsorbed fungicide are firmly retained by soil particles and present a certain degree of irreversibility. The results indicate that the soil organic matters followed by clay content are the most important soil properties governing the fungicide sorption capacity. (author)

  8. Silicone passive equilibrium samplers as ‘chemometers’ in eels and sediments of a Swedish lake

    DEFF Research Database (Denmark)

    Jahnke, Annika; Mayer, Philipp; McLachlan, Michael S.

    2014-01-01

    Passive equilibrium samplers deployed in two or more media of a system and allowed to come to equilibrium can be viewed as ‘chemometers’ that reflect the difference in chemical activities of contaminants between the media. We applied silicone-based equilibrium samplers to measure relative chemica...... diagenesis and sorption to phytoplankton. The ‘chemometer’ approach has the potential to become a powerful tool to study the thermodynamic controls on persistent organic chemicals in the environment and should be extended to other environmental compartments.......Passive equilibrium samplers deployed in two or more media of a system and allowed to come to equilibrium can be viewed as ‘chemometers’ that reflect the difference in chemical activities of contaminants between the media. We applied silicone-based equilibrium samplers to measure relative chemical...... activities of seven ‘indicator’ polychlorinated biphenyls (PCBs) and hexachlorobenzene in eels and sediments from a Swedish lake. Chemical concentrations in eels and sediments were also measured using exhaustive extraction methods. Lipid-normalized concentrations in eels were higher than organic carbon...

  9. Web-based sorption database (KAERI-SDB)

    International Nuclear Information System (INIS)

    Lee, Jae Kwang; Baik, Min Hoon

    2010-10-01

    Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the accessibility to the nuclide sorption database is limited. The web-based sorption database (KAERI-SDB) was developed to provide sorption data in a convenient way. The development of the KAERI-SDB was achieved by improving the performance of pre-existing sorption DB programme (SDB-21C) and incorporating the user requirement. The KAERI-SDB was designed that users can access it by using a web browser. Main functions of the KAERI-SDB include (1) log-in/join, (2) search and store of sorption data and (3) scatter plot chart and index chart. It is expected that the KAERI-SDB is widely applied to the safety assessment of radioactive waste disposal by enhancing the accessibility to experts and practitioner related the nuclear industry and governmental administration. It is also expected that reliabilities for the radioactive waste disposal increased by opening the web-based sorption DB to public

  10. Isotherms and isosteric heat of sorption of two varieties of Peruvian quinoa

    Directory of Open Access Journals (Sweden)

    Augusto Pumacahua-Ramos

    2016-01-01

    Full Text Available The isosteric heats of sorption of two varieties of quinoa (Chenopodium quinoaWilld. grain were determined by the static gravimetric method at four temperatures (40, 50, 60 and 70 °C andin relative humidity environments provided by six saturated salt solutions. Six mathematical equations were used to model the experimental data: GAB, Oswin, Henderson, Peleg, Smith and Halsey. The isosteric heat of sorption was determined using the parameters of the GAB model. All the equations were shown to be appropriate by the coefficients of determination (R2 and the mean absolute error (MA%E. The influence of temperature was observed because the adsorption of water by the grains was lower at highertemperatures. The equilibrium moisture contents for security of storage, for long periods of time at water activity lower than 0.65, were 12 -13%. The effect of temperature on the parameters of the GAB model was analysed using the exponential Arrhenius equation. The isosteric heats of sorption were determined by applying the Clausius-Clapeyron equation as a function of humidity. The isosteric heat at 5% moisture for grains of the Blanca de Juli variety was 3663 kJ/kg and for the Pasankalla variety it was 3393 kJ/kg. The experimental data for isosteric heat as a function of humidity were satisfactorily modelled using three mathematical equations.

  11. Sorption and desorption of arsenic to ferrihydrite in a sand filter.

    Science.gov (United States)

    Jessen, Soren; Larsen, Flemming; Koch, Christian Bender; Arvin, Erik

    2005-10-15

    Elevated arsenic concentrations in drinking water occur in many places around the world. Arsenic is deleterious to humans, and consequently, As water treatment techniques are sought. To optimize arsenic removal, sorption and desorption processes were studied at a drinking water treatment plant with aeration and sand filtration of ferrous iron rich groundwater at Elmevej Water Works, Fensmark, Denmark. Filter sand and pore water were sampled along depth profiles in the filters. The sand was coated with a 100-300 microm thick layer of porous Si-Ca-As-contaning iron oxide (As/Fe = 0.17) with locally some manganese oxide. The iron oxide was identified as a Si-stabilized abiotically formed two-line ferrihydrite with a magnetic hyperfine field of 45.8 T at 5 K. The raw water has an As concentration of 25 microg/L, predominantly as As(II). As the water passes through the filters, As(III) is oxidized to As(V) and the total concentrations drop asymptotically to a approximately 15 microg/L equilibrium concentration. Mn is released to the pore water, indicating the existence of reactive manganese oxides within the oxide coating, which probably play a role for the rapid As(III) oxidation. The As removal in the sand filters appears controlled by sorption equilibrium onto the ferrihydrite. By addition of ferrous chloride (3.65 mg of Fe(II)/L) to the water stream between two serially connected filters, a 3 microg/L As concentration is created in the water that infiltrates into the second sand filter. However, as water flow is reestablished through the second filter, As desorbs from the ferrihydrite and increases until the 15 microg/L equilibrium concentration. Sequential chemical extractions and geometrical estimates of the fraction of surface-associated As suggest that up to 40% of the total As can be remobilized in response to changes in the water chemistry in the sand filter.

  12. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    Science.gov (United States)

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.

  13. Study of CaCl2 as an agent that modifies the surface of activated carbon used in sorption/treatment cycles for nitrate removal

    Directory of Open Access Journals (Sweden)

    O. Zanella

    2014-03-01

    Full Text Available The efficiency of the application of a chemically-modified activated carbon surface was investigated. The purpose of this study was to examine the effect of treatment with CaCl2 solution at a concentration of 2000 mg.L-1 on the sorption of nitrate ions from aqueous solutions in successive sorption/t reatment cycles. The sorbent was initially subjected to chemical treatment with CaCl2 and subsequently to the sorption process. Nine sorption cycles were performed. The concentrations of nitrate ions in the solution were measured by UV-Vis spectrophotometry before and after sorption. The results show that treatment with CaCl2 caused a significant increase in the percentage removal for each treatment step, reaching a removal rate of 80% of nitrate in the solution after nine cycles.

  14. Studies on sorption of cadmium (II) ions onto Haro river sand from aqueous media using radiotracer and voltammetric techniques

    International Nuclear Information System (INIS)

    Ahmed, R.; Hasany, S.M.; Yamin, T.; Ansari, M.S.

    2006-01-01

    Sorption of Cd(II) ions on Haro river sand has been studied using radiotracer technique. The effects of pH and acid concentrations on the sorption were studied. The sorption increases with pH. reaches a maximum at pH 7 and decreases at higher pH values. With acids, it was found that sorption decreases with increasing acid concentration, and for more oxidizing acids sorption was less. Kinetic studies indicate that mostly intra particle diffusion occurs with first order rate constant of 18.45 x 10 -2 min -1 . The sorption data follow the Freundlich and Dubinin-Radushkevich (D-R) isotherms. In addition to the radiotracer method, voltammetric technique was applied and the results by the two techniques are in good agreement. The sorption free energy value indicates that adsorption process is chemisorption. The effect of temperature was studied and values of ΔH, ΔS and ΔG for Cd(II) have been calculated which are 20.15 kJ mol -1 , 74.04 J mol -1 K -1 and -1.754 kJ mol -1 . Adsorption of Cd(II) on Haro river sand is endothermic, spontaneous and entropy driven. The effect of different anions and cations at different concentrations was studied. Levels of cadmium have been monitored in water and sediments. (orig.)

  15. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  16. Equilibrium ignition for ICF capsules

    International Nuclear Information System (INIS)

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-01-01

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative

  17. Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Nzihou, Ange; Sharrock, Patrick

    2015-12-01

    The synthesis, characterization and the reactivity of apatitic calcium phosphates (Ca-HA, chemical formula Ca10(PO4)6(OH)2) is reported. Calcium carbonate (CaCO3) and potassium dihydrogen orthophosphate (KH2PO4) were selected as economical starting materials for the synthesis of Ca-HA under atmospheric conditions. Monocalcium phosphate monohydrate (MCPM), dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate pentahydrate (OCP) were identified as the main intermediates of the synthesis reaction. The product obtained after 48 h of reaction contains mainly low-crystalline Ca-HA and small amounts of other calcium phosphates such as octacalcium phosphate (OCP), B-type carbonate apatite (CAP), as well as unreacted calcium carbonate. This Ca-HA was found to be active for the removal of Zn2+ from an aqueous solution. Its sorption capacity reached up to 120 mg of Zn2+ per g of Ca-HA powder after 24 h of reaction. The monitoring of soluble Zn, Ca and P during the sorption experiment allowed characterizing the mechanism of Zn uptake. Dissolution-precipitation, ionic exchange and surface complexation are the three main mechanisms involved in the sorption processes. The contribution of these mechanisms is discussed in detail.

  18. THE SORPTION OF OFLOXACIN BY HYDRATED ALUMINA AND SILICON

    Directory of Open Access Journals (Sweden)

    A. N. Chebotarev

    2016-11-01

    Full Text Available The sorption of ofloxacin (OFL – the antibiotic from class of fluoroquinolones has been studied on alumina (γ-Al2O3 different acid-base modifications – acidic Al2O3(acidic, neutral Al2O3 (Neutral and the basic Al2O3 (core and amorphous silica – silica gel (SG L 5/40 and aerosil A-300. Determination of ofloxacin in solutions has been carried out by spectrophotometry on spectrophotometer SF-46 at λ = 291 nm and acidity 7. To clarify the nature of the sorption surfaces of OFL hydrated on aluminum and silicon oxides were studied according to the degree of extraction (S% from pH, contact time of the phases (min. sample from the sorbent mass (g; sorption isotherms were built and antibiotic desorption was studied. The OFL significant recovery (~ 60% is observed at the pH range of 4 ÷ 8, and reaches its maximum (80-85% at pH 7. The maximum degree of extraction of the antibiotic on aerosil A-300 and L 5/40 silica realized at pH 6 and it was ~ 80%. Comparative analysis of the forms constructed isotherms (L – type indicates a significant affinity investigated hydrated oxides to sorbate. The value of the static exchange capacity and concentration ratios can proof that. Differences in the quantitative characteristics of sorption of aluminum and silicon oxides are associated with nature and the acid-base properties of adsorption sites. In the study of the OFL concentrates desorption in static mode dilute NaOH and HNO3 solutions it was found that growth desorption degree occured with increasing concentration. Desorption was 2-3 times better in the case of aluminum oxide than silicon oxide when there were the same concentrations of acid and alkali. This is another confirmation of the participation in various sorption interactions forces of physical and chemical nature.

  19. Behavior of Samarium III during the sorption process

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia G, N.; Garcia R, G.

    2004-01-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  20. Assessment of the possibility of using data mining methods to predict sorption isotherms of selected organic compounds on activated carbon

    Directory of Open Access Journals (Sweden)

    Dąbek Lidia

    2017-01-01

    Full Text Available The paper analyses the use of four data mining methods (Support Vector Machines. Cascade Neural Networks. Random Forests and Boosted Trees to predict sorption on activated carbons. The input data for statistical models included the activated carbon parameters, organic substances and equilibrium concentrations in the solution. The assessment of the predictive abilities of the developed models was made with the use of mean absolute error (MAE, mean absolute percentage error (MAPE, and root mean squared error (RMSE. The computations proved that methods of data mining considered in the study can be applied to predict sorption of selected organic compounds 011 activated carbon. The lowest values of sorption prediction errors were obtained with the Cascade Neural Networks method (MAE = 1.23 g/g; MAPE = 7.90% and RMSE = 1.81 g/g, while the highest error values were produced by the Boosted Trees method (MAE=14.31 g/g; MAPE = 39.43% and RMSE = 27.76 g/g.

  1. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  2. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  3. Sorption mechanisms of perfluorinated compounds on carbon nanotubes

    International Nuclear Information System (INIS)

    Deng Shubo; Zhang Qiaoying; Nie Yao; Wei Haoran; Wang Bin; Huang Jun; Yu Gang; Xing Baoshan

    2012-01-01

    Sorption of perfluorinated compounds (PFCs) on carbon nanotubes (CNTs) is critical for understanding their subsequent transport and fate in aqueous environments, but the sorption mechanisms remain largely unknown. In this study, the sorption of six PFCs on CNTs increased with increasing C-F chain length when they had a same functional group, and the CNTs with hydroxyl and carboxyl groups had much lower adsorbed amount than the pristine CNTs, indicating that hydrophobic interaction dominated the sorption of PFCs on the CNTs. Electrostatic repulsion suppressed the sorption of PFCs on the CNTs, resulting in the lower sorption with increasing pH. Hydrogen bonding interaction was negligible. The hydrophobic C-F chains can be closely adsorbed on the CNTs surface in parallel to the axis or along the curvature, making it impossible to form micelles on the CNT surface, leading to the lower sorption than other adsorbents. Highlights: ► Sorption capacities of PFOA on different CNTs are less than that on activated carbon and resins. ► Hydrophobic interaction is principally involved in the sorption of PFCs on CNTs. ► Electrostatic repulsion suppresses the sorption of PFCs on CNTs. - Hydrophobic interaction dominated the sorption of perfluorinated compounds on carbon nanotubes, while electrostatic repulsion suppressed their sorption.

  4. Sorption behaviour of uranium and thorium on hydrous tin oxide from aqueous and mixed-solvent HNO3 media

    International Nuclear Information System (INIS)

    Misak, N.Z.; Salama, H.N.; El-Naggar, I.M.

    1983-01-01

    In aqueous nitric acid, uranyl and thorium ions seem to be sorbed on hydrous tin oxide mainly by a cation exchange mechanism. In 10 - 3 M aqueous solutions, the hydrous oxide prefers thorium to uranium at the relative low pH values, while the reverse is true at the higher pH values. The exchange of uranium is particle diffusion controlled while that of thorium is chemically controlled, and the isotherms point to the presence of different-energy sites in the hydrous oxide. Except for the solutions containing 80% of methanol, ethanol, or acetone, cation exchange is probably still the main mechanism of sorption of uranium. Anionic sorption of thorium seems to occur in all the mixed-solvent solutions and is perhaps the main mechanism in 80% ethanol. The equilibrium distribution coefficient K sub (d) increases almost in all cases with organic solvent content, probably due to dehydration of sorbed ions and to increasing superposition on anionic sorption. Unlike the aqueous medium, large U/Th separation factors are achieved in many of the mixed-solvent solutions and separation schemes are suggested. (Authors)

  5. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  6. Metal sorption on kaolinite

    International Nuclear Information System (INIS)

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-01-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs + , Sr 2+ , and Ba 2+ ) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba 2+ to Sr 2+ to Cs + , with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs + also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs + is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals

  7. Effects of plasticizers on sorption and optical properties of gum cordia based edible film.

    Science.gov (United States)

    Haq, Muhammad Abdul; Jafri, Feroz Alam; Hasnain, Abid

    2016-06-01

    The present study aimed to characterize a biodegradable film produced from the polysaccharide of an indigenous plant Cordia myxa. Effect of plasticizer type (Glycerol, Sorbitol, PEG200 and PEG 400) and concentration (0-30 %) was studied on sorption and optical properties of the casted film. Increase in plasticizer concentration resulted in increase in equilibrium moisture content of the film and was supported by GAB model of sorption indicating that isotherms were of Type II. The monolayer value increased with the increase in plasticizer concentration with a peak of 0.93 g.g-1 for glycerol. Addition of plasticizers improved the total color (ΔE) with glycerol showing the highest effects. All films showed resistance to UV light in the range of 280-200 nm. The polysaccharide of the fruit of C.myxa can be used to prepare an edible film with improved properties as compared to other available edible coatings.

  8. Application of biowaste materials for the sorption of heavy metals in contaminated aqueous medium

    International Nuclear Information System (INIS)

    Saeed, A.; Iqbal, M.; Akhtar, M.W.

    2002-01-01

    Biowaste materials were evaluated as metal ion adsorbents in aqueous medium. The biowaste used were black gram husk, wheat bran, sheesham (dalbergia sissoo) sawdust pea pod, rice husk and cotton and mustard seed cakes. All these biosorbents, except pea pod and rice husk, exhibited good adsorption potential for Cd, Pb, Cu, Zn and Ni. Black gram husk (bgh) was found to have the highest sorption capacity with 100, 99.4, 95.7, 98.2 and 93.1% removal of Cd, Pb, Cu, Zn and Ni, respectively. The metal ions adsorbed by bgh desorbed with 0.1 M HCl and the regenerated biosorbent was reused successfully for sorption of metal ions in the next cycle. Concentration of the tested metals achieved at equilibrium in the contaminated aqueous medium was well below the maximum limits recommended by UNEP for sewage discharge. The study indicates the potential of bgh as a new, inexpensive and efficient biosorbent for the treatment of water contaminated with heavy metals. (author)

  9. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide; Sorcion de iones fluoruro del agua utilizando hematita natural y hematita acondicionada con hidroxido de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Teutli S, E. A.

    2011-07-01

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al{sub 2}(SO{sub 4}){sub 3} solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pH{sub eq} between 2.3 and 6.2. Sorption capacities of fluoride ions as a

  10. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  11. Neptunium(V) sorption on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Amayri, S.; Jermolajev, A.; Reich, T. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2011-07-01

    The sorption behavior of neptunium(V) onto the clay mineral kaolinite was studied in batch experiments under different experimental conditions: [Np(V)] = 7 x 10{sup -12}-8 x 10{sup -6} M, solid-to-liquid ratio 2-20 g L{sup -1}, I = 0.1 and 0.01 M NaClO{sub 4}, pH = 6-10, ambient air and Ar atmosphere. The short-lived isotope {sup 239}Np (T{sub 1/2} = 2.36 d) was used instead of {sup 237}Np (T{sub 1/2} = 2.14 x 10{sup 6} a) to study the sorption behavior of Np(V) at environmentally-relevant concentrations, i.e., 7 x 10{sup -12} M Np. In addition, {sup 239}Np(V) served as tracer to measure sorption isotherms over six orders of magnitude in Np concentration (4.8 x 10{sup -12}-1.0 x 10{sup -4} M). The results show that Np(V) sorption on kaolinite is strongly influenced by pH, CO{sub 2}, and ionic strength. The sorption of 8 x 10{sup -6} M Np(V) at pH 9.0, and ionic strength of 0.1 M NaClO{sub 4} was proportional to the solid-to-liquid ratio of kaolinite in the range of 2-10 g L{sup -1}. In the absence of CO{sub 2}, the Np(V) uptake increased continuously with increasing pH value up to 97% at pH 10. Under ambient CO{sub 2}, the sorption of Np decreased above pH 8 up to zero at pH 10. An increase of Np(V) concentration from 7 x 10{sup -12} to 8 x 10{sup -6} M resulted in a shift of the sorption pH edge by up to one pH unit to higher pH values. The ionic strength influenced the Np(V) sorption onto kaolinite only in the presence of ambient CO{sub 2}. Under Ar atmosphere the sorption of Np(V) was independent from ionic strength, indicating the formation of inner-sphere complexes of Np(V) with kaolinite. Time-dependent batch experiments at pH 9.0 under ambient CO{sub 2} showed that the sorption of Np(V) on kaolinite is fast and fully reversible over six orders in Np(V) concentration. (orig.)

  12. Sorption properties of wool

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Strict ecological legislation, especially in highly developed countries, imposed requirements for the purification of industrial effluents and the need for efficient oil clean up after sea and inland water spills. Although numerous processes have been developed, the application of sorbents is still one of the most efficient methods to remove heavy metal ions, dyes and crude oil from water. Recently, special attention was paid to sorbents based on natural fibres. A review of studies concerning the sorption properties of wool is presented in this paper. The presence of various functional groups on the wool fibre surface contributes to the efficient sorption of heavy metal ions and dyes. A hydrophobic, scaly surface and fibre crimp strongly influence the high sorption capacity of wool for oil. Wool has great sorption potential even as a recycled material. Accordingly, it can be used as a viable substitute to commercially available synthetic sorbents that show poor biodegradab ility.

  13. Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Klamer, Morten; Venås, Thomas Mark

    2010-01-01

    The complex wood-water relationship has been the topic of numerous studies. Sorption isotherms – in particular – have been derived for hundreds of wood species, their sap- and heartwood sections as well as for decayed, engineered and modified wood materials. However, the traditional methods...... for obtaining sorption isotherms are very time consuming. With new dynamic vapour sorption (DVS) instrumentation, the acquisition of data for constructing sorption isotherms is suddenly dramatically lowered. Where the traditional methods often required months, data can now be obtained in a matter of days...... depending on the number of data points required. The fast data acquisition makes DVS a useful tool in studying the sorption properties of wood, and especially in studying the effect of different modification treatments on these properties. This study includes an investigation of the sorption properties...

  14. Approach to chemical equilibrium in thermal models

    International Nuclear Information System (INIS)

    Boal, D.H.

    1984-01-01

    The experimentally measured (μ - , charged particle)/(μ - ,n) and (p,n/p,p') ratios for the emission of energetic nucleons are used to estimate the time evolution of a system of secondary nucleons produced in a direct interaction of a projectile or captured muon. The values of these ratios indicate that chemical equilibrium is not achieved among the secondary nucleons in noncomposite induced reactions, and this restricts the time scale for the emission of energetic nucleons to be about 0.7 x 10 -23 sec. It is shown that the reason why thermal equilibrium can be reached so rapidly for a particular nucleon species is that the sum of the particle spectra produced in multiple direct reactions looks surprisingly thermal. The rate equations used to estimate the reaction times for muon and nucleon induced reactions are then applied to heavy ion collisions, and it is shown that chemical equilibrium can be reached more rapidly, as one would expect

  15. Sorption of selenium on Mg-Al and Mg-Al-Eu layered double hydroxides

    International Nuclear Information System (INIS)

    Curtius, H.; Paparigas, Z.; Kaiser, G.

    2008-01-01

    Salt domes represent deep geological formations which are under consideration as final repositories for irradiated research reactor fuel elements. For long-term safety aspects the mobilisation of the radionuclides due to a water ingress is intensively investigated. At the Institute of Energy Research (IEF-6), leaching experiments were performed in a hot cell facility with UAl x -Al and U 3 Si 2 -Al dispersed research reactor fuel elements in repository-relevant MgCl 2 -rich salt brines under anaerobic conditions. The fuel plates corroded completely within one year and a Mg-Al-layered double hydroxide (LDH) with chloride as interlayer anion was identified as one crystalline phase component of the corrosion products (secondary phases). This Mg-Al-LDH was synthesized, characterized, and the ability to retard europium by an incorporation process was investigated. Europium, as a representative for lanthanides, was identified to be one of the radionuclides which were found in the corrosion products. We could show that europium was incorporated in the lattice structure. LDHs have high anion exchange capacities that enhance their potential to remove anionic contaminants from aqueous systems. In this work the sorption behaviour of selenium in the chemical form as selenite (SeO 3 2- ) on Mg-Al-LDH and on Mg-Al-Eu-LDH was investigated. Especially the influence of the larger europium-III ion was of interest. It represents in the Mg-Al-Eu-LDH about 10% of the molar aluminium amount. The sorption has been experimentally studied in a wide range of pH, ionic strength, radionuclide and sorbent concentration. Both LDHs with chloride as interlayer anion were synthesized by a coprecipitation method under controlled conditions, and their main physico-chemical properties were analyzed prior to the sorption experiments. The sorption kinetics of selenite on the LDHs in water and in MgCl 2 -rich brine were rapid using a LDH concentration of 10 g/L. Equilibrium, indicated by stable p

  16. Prediction of metal sorption in soils

    International Nuclear Information System (INIS)

    Westrich, Henry R.; Anderson, Harold L. Jr.; Arthur, Sara E.; Brady, Patrick V.; Cygan, Randall T.; Liang, Jianjie; Zhang, Pengchu; Yee, N.

    2000-01-01

    Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K D approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K D 's), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs + , Sr 2+ and Ba 2+ (analogue for Ra 2+ ) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba 2+ and Sr 2+ onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr 2+ sorbs weakly onto geothite and quartz, and is pH-dependent. Sr 2+ sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba 2+ is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba 2+ and the mineral substrate. This suggests that Ba 2+ adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed

  17. Reversible Second Order Kinetics of Sorption-Desorption of Cr(VI Ion on Activated Carbon from Palm Empty Fruit Bunches

    Directory of Open Access Journals (Sweden)

    Iip Izul Falah

    2015-11-01

    Full Text Available Activated carbon (AC from palm empty fruit bunches has been prepared, and this material was then used to adsorb Cr(VI from a solution. Characterization of the AC was conducted by detection of its functional groups, determination of total volatile compounds (VC content and its iodine number. Study on sorption-desorption kinetics was conducted by comparing results of evaluations of several models with proposed reversible second order model using the data produced in this work. Results of the works showed that the AC had similar characters compared with the AC produced by previous researchers. Application of the kinetics models on sorption Cr(VI onto the AC showed that nearly all of the models gave a good linearity. However, only the proposed model had a good relation with Langmuir isotherm, with respectively sorption (ks and desorption (kd constants were 5.75 x 10-4 L.mg‑1.min-1 and 2.20 x 10-3 min-1; maximum sorption capacity, qm = 20.00 mg.g-1; and equilibrium constant, K from kinetics experiment (0.261 L.mg-1 was comparable with the result from the isotherm experiment (0.269 L.mg-1. Hence, using this model, kinetics and Langmuir parameters can probably be determined from a single kinetics data experiment.

  18. Radionuclides sorption in clay soils

    International Nuclear Information System (INIS)

    Siraky, G.; Lewis, C.; Hamlat, S.; Nollmann, C.E.

    1987-01-01

    The sorption behaviour of clay soils is examined through a parametric study of the distribution coefficient (Kd) for the radionuclides of interest, Cs and Sr. This work is a preliminary stage of the migration studies of these nuclides in a porous medium (ground of Ezeiza, Argentina) and the evaluation of radiologic impact of the removal of low and intermediate activity wastes in shallow trenches. The determination of Kd is performed by a static technique or batch. The phases are separated by centrifugation at 20000 g during 1 hour. The activity of supernatant solution of Cs-137 and Sr-85 is measured in a detecting system of I Na(Tl) well-type. Two types of parameters were changed: a) those related to the determination method: phase separation (centrifugation vs. centrifugation plus filtration); equilibrium period, ratio solid/liquid; b) those related to the geochemical system: pH of contact solution, carrier concentration, competitive ions, ionic strength, desorption. It was observed that the modification of parameters in the Kd-measurement does not change the order of magnitude of results. (Author)

  19. Sorption of samarium in soils: influence of soil properties and Sm concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Guinart, Oriol; Salaberria, Aitor; Rigol, Anna; Vidal, Miquel [Analytical Chemistry department, Faculty of Chemistry, University of Barcelona, Marti i Franques 1-11, 08028, Barcelona (Spain)

    2014-07-01

    Due to the fact that barriers of Deep Geological Repositories (DGR) may lose efficiency before the radioisotopes present in the High Level Radioactive Waste (HLRW) completely decay, it is possible that, in the long-term, radioactive leachates may escape from the DGR and reach the soil and water compartments in the biosphere. Therefore, it is required to examine the interaction and mobility of radionuclides present in the HLRW, or their chemical analogues, to predict the impact of their eventual incorporation in the biosphere and to assess the derived risk. Although relevant data have been recently obtained for a few radionuclides in soils, there are still some important gaps for some radionuclides, such us for samarium (Sm). Sm is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in HLRW in the form of the radioactive isotope {sup 151}Sm. The main objective of this work was to obtain sorption data (K{sub d}) of {sup 151}Sm gathered from a set of soil samples physicochemical fully-characterized (pH, texture, cationic exchange capacity, soil solution cationic composition, organic matter, carbonate and metallic oxides content, etc.). Additionally, as an alternative for testing sorption capacity of radionuclides in soils is the use of the corresponding stable isotope or a chemical analogue, the influence of Sm concentration was also checked. To evaluate {sup 151}Sm sorption, batch assays were carried out for each soil sample, which consisted in a pre-equilibration step of 2 g of each soil with 50 ml of double deionised water, and a subsequent equilibration step with the same solution, but labelled with {sup 151}Sm. The activity of {sup 151}Sm in initial and final solutions was measured by liquid scintillation and K{sub d} ({sup 151}Sm) data were calculated. The reversibly sorbed fraction was estimated by the application of a single extraction test, with double deionised water, to soil residues coming from the previous

  20. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.

    Science.gov (United States)

    Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S

    2015-08-01

    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  1. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  2. The role of equilibrium leach testing in understanding the behaviour of nuclear wastes under disposal conditions

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.

    1988-01-01

    Results from the equilibrium leach testing of a range of intermediate level nuclear wastes have been modelled using sorption and solubility data obtained in experiments with individual radionuclides. The wastes involved were AGR hulls, Magnox cladding wastes, combustible plutonium-contaminated materials and ferric/aluminium hydroxide flocs. The test has an important role in validating near-field models, and helps to build confidence in disposal assessments. (author)

  3. The role equilibrium leach testing in understanding the behaviour of nuclear wastes under disposal conditions

    International Nuclear Information System (INIS)

    Biddle, P.; Rees, J.H.

    1988-01-01

    Results from the equilibrium leach testing of a range of intermediate level nuclear wastes have been modelled successfully using sorption and solubility data obtained in experiments with individual radionuclides. The wastes involved included fuel cladding (after removal of irradiated fuel for reprocessing), combustible plutonium-contaminated materials and ferric/aluminium hydroxide flocs. The test has an important role in validating nearfield models, and helps to build confidence in disposal assessments. (orig.)

  4. Sorption properties of carbon nanostructures

    International Nuclear Information System (INIS)

    Eletskii, Aleksandr V

    2004-01-01

    The current status of research in sorption properties of carbon nanotubes (CNTs) is reviewed. The structural peculiarities of CNTs, determining their sorption characteristics, are considered. The mechanisms of sorption of gaseous and condensed substances by such structures are analyzed. Special attention is paid to the problem of using CNTs for storing hydrogen and other gaseous substances. Methods for filling CNTs with liquid materials, based on capillary phenomena and wetting the graphite surface of the CNT with liquids of various nature, are considered. Properties of 'peapods' formed as a result of filling single-walled CNTs with fullerene molecules are reviewed. Also considered are perspectives on the applied usage of the sorption properties of CNTs in electrochemical and fuel cells, and material storage devices, as well as for producing superminiature metallic conductors. (reviews of topical problems)

  5. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria.

    Science.gov (United States)

    Safa, Messaouda; Larouci, Mohammed; Meddah, Boumediene; Valemens, Pierre

    2012-01-01

    The adsorption of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were 0.319, 0.311, 0.18 and 0.096 mmol g(-1), respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.

  6. Application of simplified desorption method to sorption study. (2) Sorption of neptunium (V) on montmorillonite-based mixtures

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko

    2013-01-01

    To elucidate the sorption behaviors of radionuclides in multi-mineral systems and the mutual effects of minerals on the sorption, this paper carried out the sorption and desorption experiments of neptunium(V) on montmorillonite-based two-mineral mixtures. The Np sorbed on montmorillonite at pH from 4 to 8 was desorbed with 1M KCl solutions, indicating that the sorption was cation exchange. The Np sorbed on apatite and calcite was nondesorbable with 1M KCl solutions, which is in harmony with the knowledge that Np forms strong complexes with the phosphate groups of apatite and the carbonate groups of calcite. This study utilized these clear distinguishes of the desorption behaviors for examining the two-mineral systems. In montmorillonite-apatite mixtures, the sorption on the montmorillonite was decreased and Np was accumulated on the apatite. In montmorillonite-calcite mixtures, the sorption on the montmorillonite was decreased due to the interference by the calcium and carbonate ions dissolved from calcite while no accumulation of Np to calcite was observed. (author)

  7. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2006-01-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  8. Effect of the modification of a natural mexican zeolite in the sorption of cadmium and 4-chloro phenol; Efecto de la modificacion de una zeolita natural mexicana en la sorcion de cadmio y 4-clorofenol

    Energy Technology Data Exchange (ETDEWEB)

    Cortes M, R [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    Clinoptilolite type zeolite is a material of relative abundance in Mexico, which possess ion exchange properties and it can be used in the removal of metal ions from polluted waters. The external surface of zeolites can be modified with cationic surfactants. This modification could have a negative effect on the removal of metal ions and provides to the material the capacity to adsorb phenolic compounds. For this reason, it is important to know the capability of the modified material on the sorption of metal ions and phenolic compounds, simultaneously. The aim of this work was to evaluate the effect of the external surface modification with surfactant of a Mexican zeolite over its sorption capacity of cadmium and 4-chloro phenol, in batch and column systems. To accomplish that, a clinoptilolite type zeolitic rock from a deposit located in the state of Sonora, Mexico, was used. It was ground, sieved and characterized with different techniques; and its external surface area was modified with hexadecyltrimethylammonium bromide (HDTMA-Br). A grain size fraction was selected to carry out sorption kinetics and equilibrium experiments, as well as packed column tests with zeolitic material and solutions of cadmium and 4-chloro phenol. There are different models proposed in literature that are used to describe sorption kinetics and equilibrium. In this work, the sorption experimental results were adjusted to some of these models to identify controlling mechanisms on the kinetics and equilibrium of the studied systems. The results showed that the cadmium adsorption on natural and modified zeolite was similar in batch systems. For the case of 4-chloro phenol sorption, it was observed that natural zeolite does not retain this compound, while in modified zeolite the sorption is better than other comparable materials. The results also showed that for the case of cadmium sorption, the mechanism involved was ion exchange; while for sorption of 4-chloro phenol, a partition mechanism

  9. Adsorptive removal of Auramine-O: Kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Mall, Indra Deo; Srivastava, Vimal Chandra; Agarwal, Nitin Kumar

    2007-01-01

    Present study deals with the adsorption of Auramine-O (AO) dye by bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH 0 ), contact time, adsorbent dose and initial concentration (C 0 ) for the removal of AO. Optimum conditions for AO removal were found to be pH 0 ∼ 7.0 and equilibrium time ∼30 min for BFA and ∼120 min for activated carbons. Optimum BFA, ACC and ACL dosages were found to be 1, 20 and 2 g/l, respectively. Adsorption of AO followed pseudo-second order kinetics with the initial sorption rate for adsorption on BFA being the highest followed by those on ACL and ACC. The sorption process was found to be controlled by both film and pore diffusion with film diffusion at the earlier stages followed by pore diffusion at the later stages. Equilibrium isotherms for the adsorption of AO on BFA, ACC and ACL were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, and Temkin isotherm equations using linear correlation coefficient. Langmuir isotherm gave the best correlation of adsorption for all the adsorbents studied. Thermodynamic study showed that adsorption of AO on ACC (with a more negative Gibbs free energy value) is more favoured. BFA which was used without any pretreatment showed high surface area, pore volume and pore size exhibiting its potential to be used as an adsorbent for the removal of AO

  10. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  11. Sorption of U(VI) species on hydroxyapatite

    International Nuclear Information System (INIS)

    Thakur, P.; Moore, R.C.; Choppin, G.R.

    2005-01-01

    The sorption of uranyl (UO 2 2+ ) cations to hydroxyapatite was studied as a function of the amount of sorbent, ionic strength, U(VI) concentration, pH and temperature. The rate of uranyl sorption on hydroxyapatite decreased with increased uranyl concentrations. The amount sorbed decreased with increased ionic strength and increased with pH to a maximum at 7-8. The sorption data for UO 2 2+ were fitted well by the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The anions Cl - , NO 3 - , SO 4 2- and CH 3 COO - decreased the sorption of uranium on hydroxyapatite while S 2 O 3 2- slightly increased it. The sorbed uranium was desorbed by 0.10 M and 1.00 M solutions of HCl and HNO 3 . The thermodynamic parameters for the sorption of UO 2 2+ were measured at temperatures of 298, 313, 323 and 333 K. The temperature dependence confirmed an endothermic heat of sorption. The activation energy for the sorption process was calculated to be +2.75±0.02 kJ/mol. (orig.)

  12. Application of TIO2 as A sorbent for radioactive waste

    International Nuclear Information System (INIS)

    Zamroni, H.; Las, T.; Kamarz, H.

    1997-01-01

    The sorption properties of the neodymium has been studied by using TiO 2 sorbent. The experiment was carried out by batch methods to investigate the kinetic sorption, effect of pH and effect of NaNO 3 concentration in the solution. Neodymium uses for a model of trivalent actinide treated by TiO 2 which was known as materials having high thermal and radiation stabilities as well as potentially used for immobilization of waste with cement or vitrification. the results show that the optimum of kinetic sorption was obtained after one day experiment to reach the equilibrium in sorption on pH 4, and the increasing of NaNO 3 concentrations will increase the sorption of neodymium in solution (author)

  13. Effective Uranium (VI) Sorption from Alkaline Solutions Using Bi-Functionalized Silica-Coated Magnetic Nanoparticles

    International Nuclear Information System (INIS)

    Chen, X.; He, L.; Liu, B.; Tang, Y.

    2015-01-01

    High temperature gas reactor is one of generation IV reactors that can adapt the future energy market, of which the preparation of fuel elements will produce a large amount of radioactive wastewater with uranium and high-level ammonia. Sorption treatment is one of the most important method to recover uranium from wastewater. However, there are few report on uranium sorbent that can directly be applied in wastewater with ammonia. Therefore, the development of a sorbent that can recover uranium in basic environment will greatly decrease the cost of fuel element production and the risk of radioactive pollution. In this work, ammonium-phosphonate-bifunctionalized silica-coated magnetic nanoparticles has been developed for effective sorption of uranium from alkaline media, which are not only advantaged in the uranium separation from liquid phase, but also with satisfactory adsorption rate, amount and reusability. The as-prepared sorbent is found to show a maximum uranium sorption capacity of 70.7 mg/g and a fast equilibrium time of 2 h at pH 9.5 under room temperature. Compared with the mono-functionalized (phosphonate alone and ammonium alone) particles, the combination of the bi-functionalized groups gives rise to an excellent ability to remove uranium from basic environment. The sorbent can be used as a promising solid phase candidate for highly-efficient removal of uranium from basic solution. (author)

  14. SORPTION OF Au(III BY Saccharomyces cerevisiae BIOMASS

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2010-07-01

    Full Text Available Au(III sorption by S. cerevisiae biomass extracted from beer waste industry was investigated. Experimentally, the sorption was conducted in batch method. This research involved five steps: 1 identification the functional groups present in the S. cerevisiae biomass by infrared spectroscopic technique, 2 determination of optimum pH, 3 determination of the sorption capacity and energy, 4 determination of the sorption type by conducting desorption of sorbed Au(III using specific eluents having different desorption capacity such as H2O (van der Waals, KNO3 (ion exchange, HNO3 (hydrogen bond, and tiourea (coordination bond, 5 determination of effective eluents in Au(III desorption by partial desorption of sorbed Au(III using thiourea, NaCN and KI. The remaining Au(III concentrations in filtrate were analyzed using Atomic Absorption Spectrophotometer. The results showed that: 1 Functional groups of S. cerevisiae biomass that involved in the sorption processes were hydroxyl (-OH, carboxylate (-COO- and amine (-NH2, 2 maximum sorption was occurred at pH 4, equal to 98.19% of total sorption, 3 The sorption capacity of biomass was 133.33 mg/g (6.7682E-04 mol/g and was involved sorption energy 23.03 kJ mol-1, 4 Sorption type was dominated by coordination bond, 5 NaCN was effective eluent to strip Au(III close to 100%.   Keywords: sorption, desorption, S. cerevisiae biomass, Au(III

  15. Sorption of 60Co and 137Cs in sediments at Piraquara de Fora, Angra dos Reis, RJ, Brazil

    International Nuclear Information System (INIS)

    Carvalho, Franciane M.; Martins, Nadia S.F.; Lauria, Dejanira D.; Ferreira, Ingryd M.; Azevedo, Izabella M.A.P.

    2013-01-01

    In this study, sediment of Piraquara de Fora, located near the launch area of the effluents of the Central Nuclear Almirante Alvaro Alberto - CNAAA Nuclear Power Plants, were collected. It were determined the parameters particle size and cationic exchange capacity (CTC). From the sorption curves of 60 Co and 137 Cs, obtained experimentally in the laboratory, were estimated preliminary values of Kd at equilibrium, for these radionuclides in order of magnitude of 10 2

  16. PENGARUH ISOTERM SORPSI AIR TERHADAP STABILITAS BERAS UBI [Effect of Moisture Sorption Isotherm to Stability of “Sweet Potato Rice”

    Directory of Open Access Journals (Sweden)

    Sri Widowati1*

    2010-12-01

    Full Text Available “Sweet Potato Rice” stability as a dry food product was determined by water activity (aw and equilibrium moisture content (Me. This relationship is known as moisture sorption isotherm. This research were aimed 1 to study moisture sorption isotherm of “Sweet Potato Rice” from sweet potato flour (Cangkuang variety and native/heat moisture treatment (HMT starch which was stored at the range of aw:0.06 - 0.96 and 28oC; 2 to determine an appropriate model for describing product moisture sorption isotherm and 3 to predict “Sweet Potato Rice” shelf of life. Experimental design used was a random complete design with two factor, namely: 1 sweet potato starch: native and HMT, and 2 packaging material: polyethylene (PE and polypropylene (PP.The result showed that the moisture sorption isotherm profiles were sigmoid. Smith equation was the best model which described moisture sorption isotherm with R2= 0,991-0,993 for adsorption and R2= 0,964-0,971 for desorption. Shelf life test showed that “Sweet Potato Rice” from Cangkuang flour and modified starch had longer shelf life (5.67 months when packed in PP bag and 2.3 months when packed in PE bag; while shelf life artificial sweet potato made from Cangkuang flour and native starch was 4.24 months when packed in PP bag and 1.72 months when packed in PE bag.

  17. Kinetics of phosphorus sorption in soils in the state of Paraíba¹

    Directory of Open Access Journals (Sweden)

    Hemmannuella Costa Santos

    2011-08-01

    Full Text Available The soil P sorption capacity has been studied for many years, but little attention has been paid to the rate of this process, which is relevant in the planning of phosphate fertilization. The purpose of this experiment was to assess kinetics of P sorption in 12 representative soil profiles of the State of Paraíba (Brazil, select the best data fitting among four equations and relate these coefficients to the soil properties. Samples of 12 soils with wide diversity of physical, chemical and mineralogical properties were agitated in a horizontal shaker, with 10 mmo L-1 CaCl2 solution containing 6 and 60 mg L-1 P, for periods of 5, 15, 30, 45, 60, 90, 120, 420, 720, 1,020, and 1,440 min. After each shaking period, the P concentration in the equilibrium solution was measured and three equations were fitted based on the Freundlich equation and one based on the Elovich equation, to determine which soil had the highest sorption rate (kinetics and which soil properties correlated to this rate. The kinetics of P sorption in soils with high maximum P adsorption capacity (MPAC was fast for 30 min at the lower initial P concentration (6 mg L-1. No difference was observed between soils at the higher initial P concentration (60 mg L-1. The P adsorption kinetics were positively correlated with clay content, MPAC and the amount of Al extracted with dithionite-citrate-bicarbonate. The data fitted well to Freundlich-based equations equation, whose coefficients can be used to predict P adsorption rates in soils.

  18. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  19. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C

    2018-01-16

    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  20. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. The equilibrium of neural firing: A mathematical theory

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Sizhong, E-mail: lsz@fuyunresearch.org [Fuyun Research, Beijing, 100055 (China)

    2014-12-15

    Inspired by statistical thermodynamics, we presume that neuron system has equilibrium condition with respect to neural firing. We show that, even with dynamically changeable neural connections, it is inevitable for neural firing to evolve to equilibrium. To study the dynamics between neural firing and neural connections, we propose an extended communication system where noisy channel has the tendency towards fixed point, implying that neural connections are always attracted into fixed points such that equilibrium can be reached. The extended communication system and its mathematics could be useful back in thermodynamics.

  2. Removal of cobalt from lubricant oil by the use of bentonite: equilibrium, kinetic and adsorption preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Cuccia, Valeria; Seles, Sandro R.N.; Ladeira, Ana Cláudia Queiroz, E-mail: vc@cdtn.br, E-mail: seless@cdtn.br, E-mail: acql@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Radionuclides may contaminate lubricant oils in nuclear power plants. In Brazil, this kind of waste has been stored in the generator's facilities, awaiting treatment alternatives. This work intends to investigate a process to treat it for final deposition, using bentonite as sorbent material. This process will result in decontaminated oil, free from radiological control, and radioactive loaded sorbent, with considerable volume reduction of the radioactive waste. The study focuses in cobalt removal from a simulated oil waste (non-active). The production of the simulated waste is described. Bentonite was used for equilibrium time determination, kinetic and adsorption studies. Cobalt adsorption equilibrium was rapidly attained after 30 minutes. The data was used for modelling the system's kinetic, applying the pseudo first and pseudo second order equation models. Experimental data fitted to pseudo second order model, supporting the assumption that the adsorption is due to chemisorption. Batch sorption tests were conducted and the results fitted to Langmuir and Freundlich sorption models. Both isotherm models chosen for this work did not fit to the experimental data. Thus, these are preliminary results and the studies must be repeated to evaluate data variability and better statistical inference. Other isotherm models must be evaluated to choose the best fitted one and describe the sorption of cobalt on bentonite in oil matrix. Even though, bentonite has considerable potential as sorbent for the removal of cobalt from lubricant oil. Finally, the results might be extended to other kinds of radioactive oils and radioactive organic wastes. (author)

  3. SiO2, TiO2 and Al2O3 colloid characterization and their cesium and iodine sorption part

    International Nuclear Information System (INIS)

    Hakem, N.

    1995-03-01

    Recent studies have shown the important role played by colloids in the transport behaviour of radionuclides. In the present study, we have investigated the sorption, at tracer level, to two radionuclides 131 I and 137 Cs on some mineral oxide colloids (100 to 500 nm in size) chosen as ''models'' owing to their very distinct isoelectric points; SiO 2 , TiO 2 and A1 2 O 3 (i.e.p. = 2, 6,25, 9,5 respectively). These colloids have first been characterized, under various pH and ionic strength conditions, by potentiometric and electro kinetic measurements. We have then measured the sorption ratios R, resulting from the partition, at equilibrium, of each radionuclide between the colloidal and aqueous phases in the contact. In a second step, we have attempted to describe the sorption mechanisms of iodine and cesium on the three oxide colloids under investigation, using following models: ion-exchange reaction, physical adsorption, Langmuir and Freundlich isotherms and surface complexation theories. (author). 53 refs., 13 tabs., 43 figs., 4 appendixes

  4. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    Science.gov (United States)

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  6. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2

    Science.gov (United States)

    Chaban, M. O.; Rozhdestvenska, L. M.; Palchyk, O. V.; Dzyazko, Y. S.; Dzyazko, O. G.

    2018-04-01

    A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.

  7. M4FT-15LL0806062-LLNL Thermodynamic and Sorption Data FY15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolery, T. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-31

    This progress report (Milestone Number M4FT-15LL0806062) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within Work Package Number FT-15LL080606. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physicochemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.

  8. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  9. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  10. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Susen [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany); Iwasaki, Masahide; Ogawa, Naoto [Shizuoka University, Faculty of Agriculture, Department of Biological and Environmental Science, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Kreuzig, Robert, E-mail: r.kreuzig@tu-bs.de [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany)

    2013-01-15

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K{sub d} and K{sub OC} values were 15 and 298 L kg{sup −1} for the Japanese tea field soil as well as 16 and 1610 L kg{sup −1} for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L{sup −1}. In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT{sub 50} > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are

  11. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    International Nuclear Information System (INIS)

    Hartung, Susen; Iwasaki, Masahide; Ogawa, Naoto; Kreuzig, Robert

    2013-01-01

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K d and K OC values were 15 and 298 L kg −1 for the Japanese tea field soil as well as 16 and 1610 L kg −1 for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L −1 . In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT 50 > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are necessary to elucidate fate and

  12. The influence of Fe(II) competition on the sorption and migration of Ni(II) in MX-80 bentonite

    International Nuclear Information System (INIS)

    Pfingsten, Wilfried; Bradbury, Mike; Baeyens, Bart

    2011-01-01

    Highlights: → We model the diffusion of Ni(II) through bentonite using different sorption models. → We examine sorption competition of Fe(II) and Ni(II) at different concentrations. → Ni(II) breakthrough is 15 times earlier with Fe(II) sorption competition. → Ni(II) sorption is non-linear and depends on the Fe(II) concentration levels. → Sorption competition is important and has to be modelled by reactive transport codes. - Abstract: The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 x 10 -5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II) EQBM ) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II) EQBM level of 10 -7 M without Fe(II) competition, the reactive transport calculations using a constant K d approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II) EQBM (10 -5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant K d approach. When sorption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the

  13. Development of alginate gel beads with a potential use in the treatment against acute lead poisoning.

    Science.gov (United States)

    Tahtat, Djamel; Bouaicha, Malika Nawel; Benamer, Samah; Nacer-Khodja, Assia; Mahlous, Mohamed

    2017-12-01

    The objective was to develop alginate beads that could adsorb lead ions in gastric pH, in view to preconize their use in gastric lavage following lead poisoning. The swelling measurements of both, dry and hydrated beads, were carried out in simulated gastric fluid (SGF). The sorption kinetics was examined at lead concentrations ranging from 50 to 200mg/l. Calcium released during the sorption process was investigated. The swelling rate of the dry beads increased considerably with time increase and reached the equilibrium at 736% after 240min; concerning the hydrated beads, the equilibrium swelling reached 139% after 180min. The adsorption of Pb (II) in SGF by dry beads increased with the increase of time and initial lead concentration. The adsorption kinetics of Pb ions by hydrated alginate beads indicated a rapid binding of Pb ions to the sorbent during the first 15min for all the concentrations, followed by a slow increase until the equilibrium was reached after 90min. The adsorption capacity of Pb ions increased with the increase of the storage time in water at 4°C and with the weight. The amount of Ca 2+ released by the beads increased with the increase of Pb ions a rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Integrated sorption and diffusion model for bentonite. Part 1. Clay-water interaction and sorption modeling in dispersed systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael

    2014-01-01

    To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)

  15. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  16. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  17. Sorption of fission nuclides on model milk components. II. Sorption of radiostrontium on hydroxyapatite in milk and whey

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.

    1999-01-01

    In this work the whey was chosen as a model solution of liquid phase for sorption study of strontium on hydroxyapatite. The whey was obtained using two methods - ultracentrifugation and precipitation of casein. The sorption was studied at a different pH and at a different concentration of calcium. The sorption of strontium on hydroxyapatite from milk was studied, too. (authors)

  18. Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption.

    Science.gov (United States)

    Parolo, María Eugenia; Savini, Mónica Claudia; Loewy, Ruth Miriam

    2017-07-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (K OC ) assuming that the main factor that influences the amount sorbed is the organic carbon content (OC) of the soil. However, K OC can vary across a range of soils. The influence of certain soil characteristics on the chlorpyrifos K OC values variation for 12 representative soils of the Northpatagonian Argentinian region with different physicochemical properties was investigated for this study. The chlorpyrifos sorption coefficients normalized by the OC content were experimentally obtained using the batch equilibrium method; the K OC values ranged between 9000-20,000 L kg -1 . The soil characteristics assessed were pH, clay content and spectral data indicative of soil organic matter (SOM) quality measured by FT-IR on the whole soil. The bands considered in the spectroscopic analyses were those corresponding to the aliphatic components, 2947-2858 cm -1 (band A) and the hydrophilic components, 1647-1633 cm -1 (band B). A significant relationship was found (R 2  = 0.66) between chlorpyrifos sorption (K OC ) and the variables pH and A/B height band ratio. The correlation between the values predicted by the derived model and the experimental data was significant (r = 0.89 p chlorpyrifos sorption coefficient through the use of a simple, rapid, and environmentally-friendly measurement. K OC analysis in relation to soil properties represents a valuable contribution to the understanding of the attenuation phenomena of the organic contaminants off-site migration in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption.

    Science.gov (United States)

    An, Byungryul; Lee, Healim; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-11-15

    To investigate the competitive sorption of divalent metal ions such as Ca(2+), Cu(2+), Ni(2+), and Pb(2+) on alginate hydrogel beads, batch and column tests were conducted. The concentration of carboxyl group was found to be limited in the preparation of spherical hydrogel beads. From kinetic test results, 80% of sorption was observed within 4h, and equilibrium was attained in 48 h. According to the comparison of the total uptake and release, divalent metal ions were found to stoichiometrically interact with the carboxyl group in the alginate polymer chain. From the Langmuir equation, the maximum capacities of Pb(2+), Cu(2+), and Ni(2+) were calculated to be 1.1, 0.48, and 0.13 mmol/g, respectively. The separation factor (α) values for αPb/Cu, αPb/Ni, and αCu/Ni were 14.0, 98.9, and 7.1, respectively. The sorption capacity of Pb(2+) was not affected by the solution pH; however, the sorption capacities of Cu(2+) and Ni(2+) decreased with increasing solution pH, caused by competition with hydrogen. According to the result from the fixed column test, Pb(2+) exhibited the highest affinity, followed by Cu(2+) and Ni(2+), which is in exact agreement with those of kinetic and isotherm tests. The sorbent could be regenerated using 4% HCl, and the regenerated sorbent exhibited 90% capacity upto 9 cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bio sorption of strontium from aqueous solution by the new strain of bacillus sp. strain GT-83

    International Nuclear Information System (INIS)

    Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Mazaheri, M.

    2009-01-01

    An attempt was made to isolate bacterial strains capable of removing strontium biologically. In this study ten different water samples collected from Neydasht spring in the north of Iran and then the bacterial species were isolated from the water samples. The initial screening of a total of 50 bacterial isolates resulted in selection of one strain.The isolated strain showed a maximum adsorption capacity with 55 milligrams strontium/g dry wt. It was tentatively identified as Bacillus sp. According to the morphological and biochemical properties, and called strain GT-83. Our studies indicated that Bacillus sp. GT-83 is able to grow aerobically in the presence of 50 mM SrCl 2 , but its growth was inhibited at high levels of strontium concentrations. The bio sorption capacity of Bacillus sp. GT-83 depends strongly on the p H solution. Hence the maximum strontium sorption capacity of Bacillus sp. GT-83 was obtained at pah 10, independent of absence or presence of MgCl 2 of different concentrations. Strontium-salt bio sorption studies were also performed at this p H values. The equilibrium bio sorption of strontium was elevated by increasing the strontium concentration, up to 250 milligrams/l for Bacillus sp. GT-83. The maximum bio sorption of strontium was obtained at temperatures in the range of 30-35 d eg C . The Bacillus sp. GT-83 bio sorbed 97 milligrams strontium/g dry wt at 100 milligrams/l initial strontium concentration without MgCl 2 . When MgCl 2 concentration increased to 15%(w/v), these values dropped to 23.6 milligrams strontium/g dry wt at the same conditions. Uptake of strontium within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter

  1. Iodine sorption by microwave irradiated hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, S.P. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico); Instituto Politecnico Nacional, ESIQIE, C.P. 07738, Mexico, D.F. (Mexico); Fetter, G. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico)]. E-mail: geolarfetter@yahoo.com.mx; Bosch, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, C.P. 04510, Mexico, D.F. (Mexico); Bulbulian, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801, Mexico, D.F. (Mexico)

    2006-12-15

    Mg-Al hydrotalcite-like compounds (HT) were prepared by the microwave method on the one hand with ethoxide-acetylacetonate and on the other with acetylacetonate as precursors. They presented a maximum sorption capacity of 2.179 and 1.517 meq of {sup 131}I{sup -}/g of hydrotalcite respectively. When the hydrotalcites were calcined and rehydrated in a {sup 131}I{sup -} solution, iodine sorption decreased in both samples to 1.515 and 1.446, respectively. The corresponding value for nitrated hydrotalcite which was prepared by the conventional method for comparison purposes, was 0.570. The radionuclide content in hydrotalcites was determined by {gamma}-spectrometry. {sup 131}I{sup -} sorption is dependent on two main parameters: one is the type of the interlayer organic material and the second the surface area. It was found that hydrotalcites prepared with ethoxide-acetylacetonate were better sorbents for {sup 131}I{sup -} than those with acetylacetonate. Still, if the specific surface area increased, {sup 131}I{sup -}sorption increased as well; nitrated HT resulted in low specific surface area and a low sorption capacity. It is, therefore, concluded that organic residues present in the samples prepared by the microwave method favor the sorption of radioactive anions, in particular {sup 131}I{sup -} if compared with nitrated and/or carbonate interlayered hydrotalcites.

  2. Cadmium removal by bioclastic granules (Lithothamnium calcareum): batch and fixed-bed column systems sorption studies.

    Science.gov (United States)

    Veneu, Diego Macedo; Schneider, Claudio Luiz; de Mello Monte, Marisa Bezerra; Cunha, Osvaldo Galvão Caldas; Yokoyama, Lídia

    2017-06-19

    The potential of Bioclastic Granules - BG (calcium-carbonate-based material) using the algae Lithothamnium calcareum as sorbent for the removal of Cd(II) from aqueous solutions by sorption was evaluated through batch and continuous systems tests using a fixed-bed column. Sorption process variables, in particular pH (2-7), particle size (<38-300 μm), initial BG concentration (0.1-1.0 g L -1 ), initial Cd(II) concentrations (5-400 mg L -1 ) and contact time (5-240 min), were evaluated. Adsorption isotherm profiles of Cd(II) per BG were similar to an L-type, or Langmuir type, with the adsorption forming a monolayer of approximately 0.61 μm, with a q max of 188.74 mg g -1 and k L of 0.710 L mg -1 . Thomas's model considers that sorption is not limited to a chemical reaction but is controlled by mass transfer at the interface. In the present study, the obtained value of k Th was 0.895 mL h -1  mg -1 , reaching a sorption capacity q o of 124.4 mg g -1 . For the Yoon-Nelson model, it was possible to obtain two important parameters to describe the behavior of the column, the rate constant (k YN ), obtaining a value of 0.09 h -1 and an τ of 82.12 h corresponding to the time required for sorption to occur of 50% of the solute in the rupture curve. X-ray diffraction and scanning electron microscopy analyses coupled to the X-ray dispersive energy system (SEM/EDS) of the BG after the Cd(II) ion sorption tests evidenced the formation of crystals with the prevalence of a new mineral phase (otavite).

  3. Applicability of microautoradiography to sorption studies

    International Nuclear Information System (INIS)

    Thompson, J.L.; Wolfsberg, K.

    1979-01-01

    The technique of microautoradiography was applied to the study of the sorption of uranium and americium on five rock types which exist at the Nevada Test Site. It was found that autoradiograms could be prepared in a few days which would allow the specific minerals responsible for sorption to be identified. Furthermore, the state of aggregation of the sorbed species was clearly indicated. It was concluded that microautoradiography was a useful adjunct to currently used methods for studying sorption of certain radionuclides

  4. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.

    Science.gov (United States)

    Vejsada, J; Jelínek, E; Randa, Z; Hradil, D; Prikryl, R

    2005-01-01

    Sorption is an important process for the transport of radionuclides through backfill materials in a radioactive waste underground repository. Within this study, sorption of Cs on selected Czech clay materials and their mixtures with sand was investigated by batch tests. The experiments were performed under oxic conditions at 25 degrees C. Synthetic groundwater as a liquid phase and unconditioned clays (as they were provided by their producer) were used to reach the natural conditions as close as possible. Distribution ratios (Rds) of Cs for all selected clays rise with increase of the clay fraction in clay/sand mixtures in agreement with previous works studying sorption behaviour of such mixtures. The rise of Rds is from 10(2) cm3 g(-1) for mixtures with 80% of sand to 10(3) cm3 g(-1) for pure clays. There are significant differences between natural and technologically modified clays.

  5. Development of Web-based Software for Sorption Database

    International Nuclear Information System (INIS)

    Han, Byoung Sub; Lee, Jae Min; Seo, Min Seok; Kim, Dong Keon

    2009-08-01

    Sorption studies of radionuclides are important parts of research on radioactive waste disposal which is commonly faced in most countries where nuclear programs (power production, a variety of peaceful applications, and research) are implemented. The Sorption Database (DB) plays a very important role in the safety assessment of the radioactive waste disposal. The Sorption DB which is opened externally can be used as reference material of establishing a national policy by improving and changing the pre-developed Sorption program to be web-based. From the industrial point of view, if the Sorption DB is opened to the outside, the safety-related confidence can be achieved for nuclear industry. As the information of Sorption DB is opened, not only credibility can be provided to the administration, local governments and nearby residents, but also input of the collected information can be achieved by online. In addition, the reference material and external awareness/reliability about the domestic level of the Sorption DB management system and the current state can be achieved internationally. In order to provide the information of Sorption DB to users in more efficient way, the analysis and complement of management and search capability for the existing Sorption DB program have been performed and web-based management system has been built to provide services to users. In addition, by applying statistical techniques, it has been designed and implemented to display the accuracy and error of the information

  6. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  7. Artificial Weathering of Biotite and Uranium Sorption Characteristics

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon; Lee, Jae Kwang

    2009-01-01

    An experiment for uranium sorption onto fresh and weathered biotites was performed. After centrifugation, concentrations of uranium in the supernatants were analyzed using ICP-MS, and biotite samples were investigated using XRD and SEM. With powdered biotites (<3 mm in size), we have conducted uranium sorption experiments about fresh and weathered biotites to obtain uranium sorption amounts in various pH conditions. The uranium sorption was not high at a low pH (e.g., pH 3), but increased with increasing pH. There were lower uranium sorption by the weathered biotites than by the fresh ones, and the difference was much larger at higher pH (e.g., pH 11). The lower sorption values of uranium by the weathered biotites may be caused by a change of mineral surfaces and a chemical behavior of surrounding dissolved elements. It seems that the uranium-mineral interaction has been diminished, especially, in the weathered biotite by a destruction and dissolution of preferential sorption sites on the mineral surfaces and by the colloidal formation from dissolved elements.

  8. Geochemical modelling of the sorption of tetravalent radioelements

    International Nuclear Information System (INIS)

    Bond, K.A.; Tweed, C.J.

    1991-05-01

    The results of an experimental study of the sorption of a range of tetravalent radioelements, plutonium (IV), tin (IV), thorium(IV) and uranium(IV), onto clay at pH8 and pH11 have been successfully simulated using a triple layer sorption model. The model has been incorporated into HARPHRQ, a geochemical program based on PHREEQE. The model has been parameterised using data for sorption onto ferric oxyhydroxide and goethite. The effects of hydroxycarboxylic acids on the sorption process have also been investigated experimentally. It was generally observed that in the presence of 2x10 -3 M gluconate, sorption was reduced by up two orders of magnitude. The model has satisfactorily simulated these lower sorptivities, through assuming competing sorption and complexation reactions. This work, therefore, further confirms the need to take account of such organic materials in safety assessment modelling. (author)

  9. Effect of Sediment Availability in Bedload-Dominated Rivers on Fluvial Geomorphic Equilibrium

    Science.gov (United States)

    Marti, M.

    2016-12-01

    Channels are known to compensate for changes in sediment supply via covariate changes in channel properties, yet the timescale for adjustment remains poorly constrained. We propose that reductions in sediment flux inhibit equilibrium re-establishment and thus impact the timescale of system adjustment. Using run-of-river dams as natural experiments, this study quantifies the geomorphic response of channels to sediment supply reduction. Channel traits that facilitate increased sediment trapping behind the dam, such as large reservoir storage capacity relative to annual inflow and low slope, were expected to inhibit a channel's ability to re-establish equilibrium following impoundment, lengthening the equilibrium establishment timescale to tens or hundreds of years. Reaches associated with increased trapping were therefore anticipated to exhibit non-equilibrium forms. Channel equilibrium was evaluated downstream of 8 ROR dams in New England with varying degrees of sediment trapping. Sites cover a range of watershed sizes (3-155 km2), channel slopes (.05-5%), 2-year discharges (1.5-60 m3/s) and storage capacity volumes. Because equilibrium channel form is just sufficient to mobilize grains under bankfull conditions in bedload-dominated rivers, the Shields parameter was used to assess equilibrium form. Unregulated, upstream Shields values and regulated, downstream values were calculated at 14 total cross-sections extending 300-450 m upstream and downstream of each dam. Sediment trapping was estimated using Brune's curve (1953). On the Charles Brown Brook (VT), a marginally significant (p=0.08) increase in Shields values from a mean of 0.14 upstream to 0.41 downstream of a 100+ year old dam was observed. In contrast, reaches downstream of the 100+ year old Pelham dam (MA) exhibit significantly lower Shields values. This suggests that trapping behind the dam inhibits the downstream channel from reaching an equilibrium state, but not always in the same way. Better

  10. Radionuclide sorption on crushed and intact granitic rock

    International Nuclear Information System (INIS)

    Eriksen, Tryggve E.; Locklund, Birgitta

    1989-05-01

    The specific surface areas and distribution ratios for sorption of 85 Sr, 137 Cs and 152 Eu were measured for crushed and intact granite rock. The experimental data can be accommodated by a sorption model encompassing sorption on outer and inner surface. It is clearly demonstrated that the time required to obtain reliable Kd-values for the sorption of strongly sorbing radionuclides like 152 Eu is very long due to solution depletion and slow diffusion into the rock. A combination of surface area measurements and batch sorption with small particles may therefore be preferable when studying strongly sorbing nuclides. (authors) (17 figs., 6 tabs.)

  11. Sorption of uranyl ions on hydrous oxides

    International Nuclear Information System (INIS)

    Gupta, A.R.; Venkataramani, B.

    1988-01-01

    Sorption of uranyl ions on hydrous titanium oxide (HTiO), magnetite (MAG), and hydrous thorium oxide (HThO) has been studied as a function of pH. Hydrous oxides have been characterized by their pH-titration curves, intrinsic dissociation constants (pK ai * ) and point of zero charge (pH pzc ). The fraction of protonated surface hydroxyl groups as well as the surface pH (pH surf ) as a function of solution pH have been computed. The distribution of various hydrolyzed species of uranyl ions with solution pH have been compared with uranyl sorption isotherm on these oxides. Sorption edge in all the cases occurs when free hydroxyl groups are available on the surface and pH surf is sufficiently high to favor the formation of dimer-like species on the surface. A new model for the sorption process, called surface hydrolysis model, which explains these and other features of uranyl sorption on hydrous oxides has been proposed. The model visualizes the sorption process as linking of uranyl ions with two adjacent free surface hydroxyl groups without deprotonation (provided the surface pH is high for the hydrolysis of uranyl ions) and formation of dimer-like structures on the surface. The new model has been successfully applied to the present and other available data on uranyl ion sorption on hydrous oxides. (author)

  12. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils

    International Nuclear Information System (INIS)

    Sastre, J.; Rauret, G.; Vidal, M.

    2006-01-01

    We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K d ) were determined in 0.02 eq l -1 CaCl 2 and in a solution that simulated the soil solution cationic composition. The K d values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K d values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K d versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl 2 medium in soils with a markedly different soil solution composition. - Sorption solution composition modifies metal sorption-desorption pattern in soils

  13. Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Gregorio, M.R.; Garcia-Falcon, M.S.; Martinez-Carballo, E. [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain); Simal-Gandara, J., E-mail: jsimal@uvigo.es [Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense (Spain)

    2010-06-15

    Polycyclic aromatic hydrocarbons (PAHs) can be formed during the refinery processes of crude petroleum. Their removal is of great importance. The same happens with other organic solvents used for the extraction of PAHs (hexane, acetonitrile...), which can be polluted with PAHs. Kinetic and equilibrium batch sorption tests were used to investigate the effect of wood ashes wastes as compared to activated carbon on the sorption of three representative PAHs from n-hexane and acetonitrile. Mussel shell ashes were discarded for batch sorption experiments because they were the only ashes containing PAHs. The equilibrium time was reached at 16 h. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the PAHs removal process. Our investigation revealed that wood ashes obtained at lower temperature (300 deg. C) did not show any PAHs sorption, while ashes obtained at higher temperature (>500 deg. C) have adsorbent sites readily available for the PAH molecules. An increase in the molecular weight of PAHs has a strong effect on sorption wood ashes wastes. As low the wood ashes particle size as high the sorption of PAHs, as a result of differences in adsorbent sites. The performance of wood ash wastes vs. activated carbon to remove 10 PAHs from organic solvents is competitive in price, and a good way for waste disposal.

  14. Equilibrium moisture content of waste mixtures from post-consumer carton packaging.

    Science.gov (United States)

    Bacelos, M S; Freire, J T

    2012-01-01

    The manufacturing of boards and roof tiles is one of the routes to reuse waste from the recycled-carton-packaging process. Such a process requires knowledge of the hygroscopic behaviour of these carton-packaging waste mixtures in order to guarantee the quality of the final product (e.g. boards and roof tiles). Thus, with four carton-packaging waste mixtures of selected compositions (A, B, C and D), the sorption isotherms were obtained at air temperature of 20, 40 and 60 degrees C by using the static method. This permits one to investigate which model can relate the equilibrium moisture content of the mixture with that of a pure component through the mass fraction of each component in the mixtures. The results show that the experimental data can be well described by the weighted harmonic mean model. This suggests that the mean equilibrium moisture content of the carton-packaging mixture presents a non-linear relationship with each single, pure compound.

  15. Sorption of humic acid to functionalized multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Fei; Yao, Jun; Chen, Huilun; Yi, Zhengji; Xing, Baoshan

    2013-01-01

    The environmental behavior of carbon nanotubes (CNTs) and humic acid (HA) is a prominent concern, but effect of functionalities on their sorption is not clear yet. Functionalized multi-walled CNTs (MCNT15) and HA were used to study their sorption behavior. Sorption rate of HA to MCNTs was dominantly controlled by its diffusion from liquid-MCNT boundary to MCNT surfaces. The sorption is in the sequence of MCNT15 > MCNT15-NH 2 > MCNT15-OH > MCNT15-COOH > MCNT15-Ni, which was dependent on their surface area and meso- and macro-pore volume. The functionalities of MCNTs regulated the sorption by affecting their interaction mechanisms (i.e., H-bonding, π–π, and hydrophobic interaction). Additionally, the amount of these functionalities on the MCNT surface reduced indirectly the sorption sites due to the steric hindrance. Electrostatic repulsion deceased the sorption of HA by MCNTs with increasing pH. This study demonstrated the importance of functionalities on the MCNTs for the sorption of HA. -- Highlights: •HA sorption kinetics was well fitted using Lagergren pseudo second-order model. •Sorption rate of HA was controlled by diffusion from liquid-MCNT boundary to MCNT surfaces. •Sorption was dependent on their surface area and meso- and macro-pore volume. •Functionalities of MCNTs regulated the sorption by affecting interaction mechanisms. -- The functionalities of MCNTs regulated the sorption behavior between MCNTs and HA

  16. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-11-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 m g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great as those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  17. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-07-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 ml g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great at those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland Cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  18. Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution

    Directory of Open Access Journals (Sweden)

    Bus Agnieszka

    2017-09-01

    Full Text Available Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution. Polonite® is an effective reactive material (manufactured from opoka rock for removing phosphorus from aqueous solutions. In conducted experiments, Polonite® of grain size of 2–5 mm was used as a potential reactive material which can be used as a filter fulfillment to reduce phosphorus diffuse pollution from agriculture areas. Kinetic and equilibrium studies (performed as a batch experiment were carried out as a function of time to evaluate the sorption properties of the material. The obtained results show that Polonite® effectively removes such contamination. All tested concentrations (0.998, 5.213, 10.965 mg P-PO4·L−1 are characterized by a better fit to pseudo-second kinetic order. The Langmuir isotherm the best reflects the mechanism of adsorption process in case of Polonite® and based on the isotherm, calculated maximum adsorption capacity equals 96.58 mg P-PO4·g−1.

  19. Sorption Characteristics of 137Cs and 90Sr into Rembang and Sumedang Soils

    Directory of Open Access Journals (Sweden)

    Budi Setiawan

    2016-12-01

    Full Text Available In order to understand the sorption behavior of 137Cs and 90Sr into soil sample from Rembang and Subang, it is important to estimate the effect of contact time, ionic strength and concentration of metal ion in the solution. For this reason, the interaction of 137Cs and 90Sr with soil sample has been examined. The study performed at trace concentration (~10-8 M of CsCl and SrCl2, and batch method was used. NaCl has been selected as a representative of the ionic strength with 0.1; 0.5 and 1.0 M concentrations. Concentration of 10-8~10-4 M CsCl and SrCl2 were used for study the effect of Cs and Sr concentrations in solution. Apparent distribution coefficient was used to predict the sorption behavior. The sorption equilibrium of 137Cs and 90Sr into soil was attained after 5 days contacted with Kd value around 3300-4200 mL/g, where Kd was defined as the ratio of number of radionuclide activity absorbed in solid phase per-unit mass to the number of radionuclide activity remains is solution per-unit volume. Presence of NaCl as background salt in the solution affected Kd values due to competition among metal ions into soil samples. Increase of Cs or Sr concentration in solution made Kd value decreased drastically. This information is expected could provide an important input for the planning and design of radioactive waste disposal system in Java Island in the future.

  20. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  1. Sorption of cesium and uranium to Feldspar

    International Nuclear Information System (INIS)

    Wijland, G.C.; Pennders, R.M.J.

    1990-07-01

    Within safety assessment studies, for nuclear waste disposal in deep geologic formations, calculation for the migration of radionuclides through the geosphere are often carried out with models taking sorption into account. In the past 8 years the insight grew that other physico-chemical processes, besides sorption, could affect migration behaviour. While the currently used transport models were being improved taking either linear or non-linear sorption into account, the coupling of geochemical and transport models came into scope. In spite of these developments models which are still based on the sorption theory are frequently applied in studying migration behaviour of radionuclides. This is caused by the necessity of making preliminary pronouncements, while coupled models are still in stage of development and thermodynamic data are very limited available. Therefore one has to obtain insight in the reliability of the models based on the sorption theory. within the sorption database there is a lack of knowledge about mineralogy, composition of the fluid and the experimental conditions underlying the data. Therefore the Expert Group on geochemical Modelling supported by the Finnish proposal in order to obtain insight in the possible deviation of the sorption coefficients that can be estimated from experiments performed with standard samples, fluid composition and experimental conditions. Nine laboratories from OECD membership countries took part in this intercalibration study. In the framework of the Dutch safety assessment studies the Dutch National Institute of Public health and Environmental protection (RIVM) has decided to participate in this exercise. In this report the results are presented of sorption experiments for cesium and natural Uranium to Feldspar. (H.W.). 4 refs.; 1 fig.; 7 tabs

  2. Strontium sorption on Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1984-12-01

    A laboratory study of strontium-85 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that strontium sorption is most strongly a function of pH. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence strontium sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect. Ferrous ion, added to groundwater to simulate the conditions of water at the bottom of waste trenches, did not account for low strontium sorption observed with some trench waters

  3. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    Science.gov (United States)

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-valuesoil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Physico-chemical characterisation and sorption measurements of Cs, Sr, Ni, Eu, Th, Sn and Se on Opalinus clay from Mont Terri

    International Nuclear Information System (INIS)

    Lauber, Matthias; Baeyens, Bart; Bradbury, Michael H.

    2000-12-01

    dependent uptake of Cs was modeled. The important role of background elements in the sorption experiments is discussed, particularly, in the case of Cs and Ni the lowest equilibrium concentrations were entirely determined by the natural background concentrations. The results from the investigations presented in this work provided important data sets for the development of a sorption database required for performance assessment studies of a potential repository in Opalinus Clay. The broad based pool of sorption data generated from this work will provide key data sets for subsequent mechanistic modelling. (author)

  5. Equilibrium 𝛽-limits in classical stellarators

    Science.gov (United States)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  6. M4FT-16LL080302052-Update to Thermodynamic Database Development and Sorption Database Integration

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.. Physical and Life Sciences; Wolery, T. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Akima Infrastructure Services, LLC; Atkins-Duffin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Global Security

    2016-08-16

    This progress report (Level 4 Milestone Number M4FT-16LL080302052) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Argillite Disposal R&D Work Package Number FT-16LL08030205. The focus of this research is the thermodynamic modeling of Engineered Barrier System (EBS) materials and properties and development of thermodynamic databases and models to evaluate the stability of EBS materials and their interactions with fluids at various physico-chemical conditions relevant to subsurface repository environments. The development and implementation of equilibrium thermodynamic models are intended to describe chemical and physical processes such as solubility, sorption, and diffusion.

  7. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  8. Sorption isolation of strontium from seawater

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Zheleznov, V.V.; Kaplun, E.V.; Sokol'nitskaya, T.A.; Yukhkam, A.A.

    2001-01-01

    Sorption isolation of strontium from seawater is considered and prospects of use of selective adsorbents for purification of seawater or liquid radioactive wastes mixed with seawater from 90 Sr are discussed. Comparative analysis of sorptive properties of adsorbents of different nature is done. It is shown that sorption-reagent materials developed by authors can to afford effective separation of 90 Sr from seawater. Possible mechanism of strontium sorption by these adsorbents is considered. The prospect of their use for purification of liquid radioactive wastes from strontium is shown [ru

  9. Sorção e dessorção do ametryn em Latossolos brasileiros Sorption and desorption of ametryn in Brazilian Latosols

    Directory of Open Access Journals (Sweden)

    L.O.C. Silva

    2012-09-01

    Full Text Available O conhecimento dos processos de retenção de herbicidas em solo é fundamental para se prever o potencial de lixiviação e degradação e a eficiência no controle das plantas daninhas. Objetivou-se com este trabalho avaliar os processos de sorção e dessorção do ametryn em quatro solos brasileiros: Latossolo Vermelho-Amarelo (LVA, Latossolo Vermelho-Amarelo húmico (LVAh, Latossolo Vermelho (LV e Latossolo Amarelo (LA, com diferentes valores de pH. Para isso, utilizou-se o método Batch Equilibrium em condições controladas de laboratório e análise por cromatografia líquida de alta eficiência, com detector UV-Vis a 245 nm. Considerando os valores da constante de Freundlich modificada (K'f, verificou-se, entre os solos estudados, a ordem crescente de sorção do ametryn: LV pH 6,06 Knowledge of herbicide retention processes in soil is fundamental to predict leaching potential, degradation, and weed control efficiency. The objective of this study was to evaluate the processes of sorption and desorption of ametryn in four Brazilian soils: Red-Yellow Latosol (LVA, Red-Yellow humic Latosol (LVAh, Red Latosol (LV, and Yellow Latosol (LA, with different pH values. Thus, the method "Batch Equilibrium" was applied under controlled laboratory conditions, and analysis by high performance liquid chromatography using UV-Vis detector at 245 nm. Considering the values of the modified Freundlich constant (K'f, the following increasing sorption order of ametryn was verified: LV pH 6.06 <5.00 LV pH <6.30 LA pH <6.11 pH LVA sorption and desorption, and that soils with higher organic matter content showed the highest rates of sorption, besides smaller percentages of desorption, indicating the occurrence of hysteresis.

  10. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  11. Sorption of strontium on bentonites from Slovak deposits

    International Nuclear Information System (INIS)

    Kufcakova, J.; Galambos, M.; Rajc, P.

    2005-01-01

    Sorption on bentonite from different Slovak deposits / Jelsovy potok, Kopernica and Lieskove has been investigated under various experimental conditions, such as contact time, pH, sorbate concentrations, presence of complementary cation. The sorption of strontium from aqueous solutions was investigated using a radiometric determination of distribution coefficient, Kd. The individual solutions were labelled with radiotracer. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites /tab.l/ , which can be explained by the increase of specific surface and change of solubility of the irradiated samples of bentonite. The presence of complementary cations, Na + , K + , NH 4 + , Ca 2+ , Mg 2+ and Ba 2+ depresses the sorption of Sr on bentonite. In the case of bentonite Kopernica the effectiveness in reducing the sorption of strontium by cations followed the order K + 4 + + 2+ 2+ 2+ . Results indicate that the sorption of Sr + on bentonite will be affected by the presence of high concentrations of various salts in the waste water effluents. (author)

  12. The removal of heavy metals in urban runoff by sorption on mulch

    International Nuclear Information System (INIS)

    Jang, Am; Seo, Youngwoo; Bishop, Paul L.

    2005-01-01

    A series of adsorption experiments was conducted in order to assess the ability of three mulches to remove several of the heavy metal ions typically encountered in urban runoff. Three types of mulch, cypress bark (C), hardwood bark (H), and pine bark nugget (P), were selected as potential sorbents to capture heavy metals in urban runoff. The hardwood bark (H) mulch had the best physicochemical properties for adsorption of heavy metal ions. In addition, because of its fast removal rate and acceptably high capacity for all the heavy metal ions, it was concluded that the H mulch is the best of the three adsorbents for treatment of urban runoff containing trace amounts of heavy metals. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. The sorption of these metals on H mulch conformed to the linear form of the Langmuir adsorption equation. At pH 5 and 6, the Langmuir constants (S m ) for each metal were found to be 0.324 and 0.359 mmol/g (Cu); 0.306 and 0.350 mmol/g (Pb); and 0.185 and 0.187 mmol/g (Zn) at 25 deg. C. - Capsule: Hardwood bark had the best physicochemical properties for adsorption of metal ions

  13. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  14. Moisture sorption of Thai red curry powder

    Directory of Open Access Journals (Sweden)

    Sudathip Inchuen

    2009-12-01

    Full Text Available Moisture sorption study was conducted on Thai red curry powder prepared by two different drying methods, viz. microwave and hot-air drying. Moisture sorption isotherms of the red curry powder at 30 C and water activity in the range of 0.113-0.970 were determined by a static gravimetric method. The isotherms exhibited Type III behaviour. The moisture sorption data were fitted to several sorption models and a non-linear regression analysis method was used to evaluate the constants of the sorption equations. The fit was evaluated using the coefficient of determination (R2, the reduced chi-square (2 and the root mean square error (RMSE. The GAB model followed by the Lewiski-3 model gave the best fit to the experimental data. The monolayer moisture content, taken as the safe minimum moisture level in the red curry powder, was determined using the BET equation and was found to range between 0.080 - 0.085 gram water per gram dry matter.

  15. Sorption isotherms for oat flakes (Avena sativa L.

    Directory of Open Access Journals (Sweden)

    José Edgar Zapata M.

    2014-04-01

    Full Text Available Moisture sorption isotherms of oat flakes were determined at temperatures of 5, 25 and 37°C, using a gravimetric technique in an a w range of between 0.107 and 0.855. These curves were modeled using six equations commonly applied in food. The quality of the fit was assessed with the regression coefficient (r² and the mean relative percentage error (MRPE. The best fit were obtained with the Caurie model with r² of 0.996, 0.901 and 0.870, and MRPE of 7.190, 17.878 and 16.206, at 5, 25 and 37°C, respectively. The equilibrium moisture presented a dependence on temperature in the studied a w range, as did the security moisture (X S. These results suggest that the recommended storage conditions of oat flakes include: a relative air humidity of 50% between 5 and 25°C and of 38% up to 37°C.

  16. Techniques to measure sorption and migration between small molecules and packaging. A critical review.

    Science.gov (United States)

    Kadam, Ashish A; Karbowiak, Thomas; Voilley, Andrée; Debeaufort, Frédéric

    2015-05-01

    The mass transfer parameters diffusion and sorption in food and packaging or between them are the key parameters for assessing a food product's shelf-life in reference to consumer safety. This has become of paramount importance owing to the legislations set by the regulated markets. The technical capabilities that can be exploited for analyzing product-package interactions have been growing rapidly. Different techniques categorized according to the state of the diffusant (gas or liquid) in contact with the packaging material are emphasized in this review. Depending on the diffusant and on the analytical question under review, the different ways to study sorption and/or migration are presented and compared. Some examples have been suggested to reach the best possible choice, consisting of a single technique or a combination of different approaches. © 2014 Society of Chemical Industry.

  17. Carbon dioxide sorption on EDTA modified halloysite

    Directory of Open Access Journals (Sweden)

    Waszczuk Patrycja

    2016-01-01

    Full Text Available In this paper the sorption study of CO2 on EDTA surface modified halloysite was conducted. In the paper chemical modification of halloysite from the Dunino deposit (Poland and its influence on sorption of CO2 are presented. A halloysite samples were washed with water-EDTA 1% solution, centrifuged to separate liquid and impurities and dried. The samples were tested for the sorption capacity using a manometric method with pressure up to 3 MPa. A Langmuir adsorption model was fitted to the data. The results showed that EDTA had a limited effect on the increase of sorption potential at low pressure and the samples exhibited similar results to that ones treated solely with the water solution.

  18. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1994-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study

  19. Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran

    Science.gov (United States)

    Jalali, Mohsen

    2007-10-01

    Phosphorus (P) application in excess of plant requirement may result in contamination of drinking water and eutrophication of surface water bodies. The phosphorous buffer capacity (PBC) of soil is important in plant nutrition and is an important soil property in the determination of the P release potential of soils. Phosphorus sorption greatly affects both plant nutrition and environmental pollution. For better and accurate P fertilizer recommendations, it is necessary to quantify P sorption. This study was conducted to investigate available P and P sorption by calcareous soils in a semi-arid region of Hamadan, western Iran. The soil samples were mainly from cultivated land. Olsen’s biocarbonate extractable P (Olsen P) varied among soils and ranged from 10 to 80 mg kg-1 with a mean of 36 mg kg-1. Half of the soils had an Olsen P > 40 mg kg-1 and >70% of them had a concentration >20 mg kg-1, whereas the critical concentration for most crops is potato (44 kg kg-1) fields than in dry-land wheat farming (24 mg kg-1), pasture (30 mg kg-1), and wheat (24 mg P kg-1) fields. A marked increase in fertilizer P rates applied to agricultural soils has caused P to be accumulated in the surface soil. Phosphate sorption curves were well fitted to the Freundlich equation. The standard P requirement (SPR) of soils, defined as the amount of P sorbed at an equilibrium concentration of 0.2 mg l-1 ranged from 4 to 102 mg kg-1. Phosphorus buffer capacity was relatively high and varied from 16 to 123 l kg-1 with an average of 58 l kg-1. In areas of intensive crop production, continual P applications as P fertilizer and farmyard manure have been used at levels exceeding crop requirements. Surface soil accumulations of P are high enough that loss of P in surface runoff and a high risk for P transfer into groundwater have become priority management concerns.

  20. Lead (II) biosorption equilibrium and characterization through FT-IR and SEM-EDAX crosslinked pectin from orange peels

    International Nuclear Information System (INIS)

    Garcia Villegas, Victor R.; Ale Borja, Neptali; Guzman Lezama, Enrique G.; Maldonado Garcia, Holger J.; Yipmantin Ojeda, Andrea G.

    2013-01-01

    Pectic material extracted from orange peels was previously cross-linked to diminish hydration and swelling capacity when pectin is found in aqueous solution medium. Degree of metoxilation (DM), galacturonic acid anhydrous (% AGA) and pKa determination allowed characterizing biosorbent. Maximum sorption capacity was obtained at pH between 4.5 and 5.5. For data processing and statistical treatment informatics Orign 6.0 version program was used. Data from biosorption equilibrium had a better fit on Langmuir sorption equation model, obtaining q max = 186 mg/g as a maximum adsorption capacity. Fourier transform infrared spectroscopy analysis (FT-IR) allowed recognizing characteristic functional groups presents as well as biomass modifications. Biosorbent surface morphologic was studied by scanning electron microscope (SEM) and elemental composition biomass before biosorption process was obtained through Energy-dispersive X-ray spectroscopy (EDAX). (author)

  1. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Rathinam, Aravindhan; Zou, Linda

    2010-01-01

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH o and the negative value of ΔG o show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS o shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  2. Technetium sorption by stibnite from natural water

    International Nuclear Information System (INIS)

    Peretroukhine, V.; Sergeant, C.; Deves, G.; Poulain, S.; Vesvres, M.H.; Thomas, B.; Simonoff, M.

    2006-01-01

    The sorption of technetium by powdered and polished mineral stibnite Sb 2 S 3 has been investigated in simulated and natural underground waters from the Meuse/Haute-Marne region (France). The sorption by powdered stibnite has been found to be complete under both aerobic and anaerobic conditions in batch experiments. The sorption rate is higher in the absence of oxygen than under aerobic condition. Increasing the temperature from 30 C to 60 C results in a rise of the sorption rate by 9.1 and 27 times under anaerobic and aerobic conditions, respectively. The observed differences in sorption kinetics in the presence and in absence of oxygen are explained by the interaction of oxygen with sulfide ion in aerobic conditions and by the reduction of technetium(VII) by iron(II) and by other impurities present in natural water and in the mineral, and by the subsequent sorption of Tc(IV) on stibnite under anaerobic conditions. The sorption on a polished mineral surface resulted in the formation of a technetium film, probably Tc 2 S 7 , with a thickness of 1-3 μg Tc/cm 2 pH 3-6 and 4-12 μg Tc/cm 2 at 9-12. The simultaneous formation of stibnite colloids with adsorbed technetium occurs at pH 9-12. The study of the technetium film on the mineral by proton induced X-ray emission analysis showed it to be at least one order of magnitude thinner on the SiO 2 impurities than on the main Sb 2 S 3 component and the iron impurities. (orig.)

  3. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  4. Sorption of fission nuclides on model milk components. I. Sorption of radiostrontium on hydroxyapatite in aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.; Kristin, J.

    1999-01-01

    Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 is a mineral widely spread in nature as a main constituent of phosphate rocks, and also as the major inorganic component of bones and teeth. It was found that sorption process occurs by an ion exchange reaction mechanism between strontium ions in solution and calcium ions in apatite. Ca 2+ → Sr 2+ substitution in hydroxyapatite is important since it explains the mechanism of incorporation of beta-active Sr-90 of atomic debris into the human skeletal system. The strontium uptake at 100 grad C is done by adsorption and diffusion while at 25 grad C it is done by the process of adsorption only. The hydroxyapatite was prepared from aqueous solutions and characterized by standard analytical methods. Some samples of hydroxyapatite were modified by heating after its precipitation from aqueous solution. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. Also, commercial hydroxy-apatites were used. Sorption of strontium ions on synthetic hydroxyapatite was examined using batch method and sorption depends on the method of preparation of hydroxyapatite. In generally, sorption of strontium decreases with the increase in the particle size of hydroxyapatite and decreases with the increase in the pH ( hydroxyapatite surface is amphoteric and acts as a buffer in a wide pH range). The sorption of strontium increases with the increase in [Sr 2+ ] or [Ca 2+ ] in solution to ∼ 10 -5 mol · dm -3 for the hydroxyapatite prepared by heating. The experimental data for sorption of strontium has been fitted with Langmuir-adsorption isotherm. (authors)

  5. 3.3. Sorption activity of cross-linked polymers of ethynyl-piperidol

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption activity of cross-linked polymers of ethynyl-piperidol was studied. The bilirubin sorption was studied as well. The kinetic of bilirubin sorption and human serum albumin at their joint presence in hydrogel solutions was defined. Bilirubin sorption and change of albumin composition was considered. The sorption of middle molecular peptides was considered as well. The sorption of endogenous toxin by means of ethynyl-piperidol polymers was done.

  6. Toxic metals biosorption by Jatropha curcas deoiled cake: equilibrium and kinetic studies.

    Science.gov (United States)

    Rawat, Anand P; Rawat, Monica; Rai, J P N

    2013-08-01

    The equilibrium sorption of Cr(VI) and Cu(II) from aqueous solution using Jatropha curcas deoiled cake, has been studied with respect to adsorbent dosage, contact time, pH, and initial metal concentration in batch mode experiments. Removal of Cu(II) by deoiled cake was greater than that of Cr(VI). The adsorbent chemical characteristics, studied by Fourier transform-infrared analysis, suggested that the presence of Cr(VI) and Cu(II) in the biomass influenced the bands corresponding to hydroxyl and carboxyl groups. Desorption studies revealed that maximum metals recovery was achieved by HNO3 followed by CH3COOH and HCl. The Freundlich isotherm model showed good fit to the equilibrium adsorption data. The adsorption kinetics followed the pseudo-second-order model, which provided the best correlation for the biosorption process, and suggested that J. curcas deoiled cake can be used as an efficient biosorbent over other commonly used sorbents for decontamination of Cr(VI)- and Cu(II)-containing wastewater.

  7. Sorption of Metal Ions on Clay Minerals.

    Science.gov (United States)

    Schlegel; Manceau; Chateigner; Charlet

    1999-07-01

    The local structural environment of Co sorbed on hectorite (a magnesian smectite) has been investigated by polarized EXAFS (P-EXAFS) spectroscopy on a self-supporting film of Co-sorbed hectorite. This sorption sample was prepared by contacting Co and hectorite at pH 6.5 and at high ionic strength (0.3 M NaNO3) to favor pH-dependent sorption reaction over cation exchange. A self-supporting film was elaborated after 120 h of reacting time, when apparent quasi-equilibrium conditions were attained. The half-width at half maximum of the orientation distribution of c* axis of individual clay platelets off the film normal was determined by quantitative texture analysis, and found to be equal to 18.9 degrees. Co K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 0 degrees, 35 degrees, 50 degrees, and 60 degrees; the 90 degrees spectrum was obtained by extrapolation. Spectral analysis led to the identification of the two nearest cationic subshells containing 1.6 +/- 0.4 Mg at 3.03 Å and 2.2 +/- 0.5 Si at 3.27 Å. These distances are respectively characteristic of edge-sharing linkages between Mg and Co octahedra and of corner-sharing linkages between Co octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Co-Mg and Co-Si contributions indicates that Co-Mg pairs are oriented parallel to the film plane, whereas Co-Si pairs are not. These results are interpreted by the formation of Co inner-sphere mononuclear surface complexes located at the edges of hectorite platelets, in the continuity of the (Mg, Li) octahedral sheet. Copyright 1999 Academic Press.

  8. Radionuclide sorption on granitic drill core material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Locklund, B.

    1987-11-01

    Distribution ratios were determined for Sr-85, Cs-134 and Eu-152 on crushed granite and fissure coating/filling material from Stripa mines. Measurements were also carried out on intact fissure surfaces. The experimental data for Sr-85, Cs-134 on crushed material can be accomodated by a sorption model based on the assumption that the crushed material consists of porous spheres with outer and inner surfaces available for sorption. In the case of Eu-152 only sorption on the outer surfaces of the crushed material was observed. The absence of sorption on inner surfaces is most probably due to high depletion of the more strongly sorbed Eu-152 in the water phase and very low diffusivity of Eu-152 in the sorbed state. (orig./HP)

  9. Study of sorption of technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen Dong; Fan Xianhua; Su Xiguang; Zeng Jishu

    2001-01-01

    The sorption behaviors of technetium on pyrrhotine are studied with batch experiment and dilute sulfuric acid is used to dissolve the technetium adsorbed on pyrrhotine. Sorption and desorption experiment are performed under aerobic and anaerobic conditions (inert gas box). The results show that a significant sorption of technetium on pyrrhotine is found under aerobic and anaerobic conditions, and the sorption on the mineral is supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 ·nH 2 O. Desorption process of the sorbed technetium into dilute sulfuric acid is found to be different under aerobic and anaerobic conditions. On addition of H 2 O 2 to the leach solution a sudden increase of the technetium concentration is observed

  10. Modelling of a diffusion-sorption experiment on sandstone

    International Nuclear Information System (INIS)

    Smith, P.A.

    1989-11-01

    The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs

  11. Radionuclide sorption from the safety evaluation perspective

    International Nuclear Information System (INIS)

    1992-01-01

    Research and development directed towards the assessment of the long-term performance of radioactive waste disposal systems has been recognised as a priority area with a strong need for international co-operation and co-ordination. The ultimate aims is to promote the quality and credibility of safety assessment techniques for radioactive waste disposal. Sorption in the geosphere is one of the key processes for retarding the transport of radionuclide from the underground disposal facility to the biosphere. In many cases, sorption in the near field and in the biosphere is also important. A workshop, organised to favor discussion around a small number of invited papers, was held in October 1991: - to evaluate critically the way sorption processes are incorporated in performance assessment models; - to identify open issues of high priority, and; - to propose future activities to resolve these issues. These proceedings reproduce the invited papers and the conclusions and recommendations adopted by the workshop. Eight papers are in the INIS SCOPE. The main subjects studied are: sorption database comparison, sorption database development and three case studies, experimental techniques, adsorption models

  12. Sorption and diffusion of Cs and I in concrete

    International Nuclear Information System (INIS)

    Andersson, K.; Torstenfelt, B.; Allard, B.

    1983-01-01

    Concrete has been suggested as a possible encapsulation material for long-term storage of low and medium level radioactive waste. At an underground storage of concrete encapsulated waste, a slow release of radioactive elements into the groundwater by diffusion through the concrete must be considered in the safety analysis. The diffusion may be delayed by sorption reactions on the solid. A wide range of long-lived radionuclides may be present in the low and medium level radioactive waste. Here, the sorption and diffusion of iodide and cesium on slag cement paste and concrete has been studied. The influence of four different water phases (pore water, groundwater, Baltic Sea water and sea water) as well as the influence of some added species (carbonate, sulphate and magnesium) has been investigated. A significant sorption of iodide on cement paste in contact with pore water was observed, indicating that the diffusion may be expected to be retarded in this medium. For cesium the highest sorption was found for concrete and groundwater. This means that the sorption increases as the concrete is weathered. Low or insignificant sorption was found for the cement paste, indicating that the ballast is responsible for the Cs-sorption. Carbonatization enhances the Cs-sorption by about a factor of 3. The diffusivity of Cs in concrete and cement paste was determined to between 2x10 - 14 and 8x10 - 14 m 2 /s in pore water (where an insignificant sorption was observed). The choice of ballast as well as addition of suitable getters with high sorption of the long-lived radionuclides might decrease the mass transfer rate through the cement. (Authors)

  13. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  14. Study of sorption processes of copper on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Ometakova, J.; Rajec, P.; Caplovicova, M.

    2012-01-01

    The sorption of copper on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite sample prepared by a wet precipitation process was of high crystallinity with Ca/P ratio of 1.688. The sorption of copper on hydroxyapatite was pH independent ranging from 4 to 6 as a result of buffering properties of hydroxyapatite. The adsorption of copper was rapid and the percentage of Cu sorption was >98% during the first 15-30 min of the contact time. The experimental data for sorption of copper have been interpreted in the term of Langmuir isotherm. The sorption of Cu 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Zn 2+ , Fe 2+ and Pb 2+ towards Cu 2+ sorption was stronger than that of Co 2+ , Ni 2+ and Ca 2+ ions. The ability of the bivalent cations to depress the sorption of copper on hydroxyapatite was in the following order Pb 2+ > Fe 2+ > Zn 2+ > Co 2+ ∼ Ni 2+ . (author)

  15. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  16. Biosorption of Zn(II) by chemically modified biomass of corncob

    International Nuclear Information System (INIS)

    Zafar, H.; Nadeem, R.; Iqbal, T.; Ansari, T.M.

    2011-01-01

    In conducted research corncob powder was pretreated with inorganic acids and bases. The consequence of different parameters such as initial metal concentration, pH and contact time on Zn(II) bio sorption from aqueous solution was deliberated. The order of maximum Zn(II) uptake q/sub max/ (mgg/sup -1/) for different pretreated and raw corncob powder was Ba(OH)/sub 2/ (128.9)> H/sub 3/PO/sub 4/ (124.07)> NaOH (118.737)> H/sub 2/SO/sub 4/ (114.8)> HCl (93.41)> Al(OH)/sup 3/ (87.9)> Native (86.74). The percentage of Zn(II) removed on corncob biomass increased with increase in pH reaching a maximum at pH 5.5. Kinetics of Zn(II) bio sorption described that Zn(II) sorption rate was high in first 15-30 minutes and equilibrium was established after 120 minutes. The maximum adsorption data of native and pretreated biomass was investigated using Langmuir, Freundlich equilibrium and Pseudo first and second order kinetic models. It was accomplished that structural modifications onto corncob powder lead to the formation of novel bio masses with increased sorption efficiency and environmental stability for the abatement of Zn(II). Thus, optimization of bio sorption parameters, chemical pretreatments of bio sorbents and study of mechanisms are the main keys to transfer the bio sorption process from Lab to Industry. (author)

  17. Treatment of radioactive liquid waste (Co-60) by sorption on Zeolite Na-A prepared from Iraqi kaolin

    International Nuclear Information System (INIS)

    Mustafa, Yasmen A.; Zaiter, Maysoon J.

    2011-01-01

    Highlights: ► Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. ► The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). ► The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. ► The experimental results show that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. ► Higher column performance was obtained at higher bed depth. - Abstract: Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample .The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g zeolite . The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and

  18. Yucca Mountain Project far-field sorption studies and data needs

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-09-01

    Batch sorption experiments in which radionuclides dissolved in groundwaters from Yucca Mountain were sorbed onto samples of crushed tuff have resulted in a substantial database of sorption coefficients for radionuclides of interest to the repository program. Although this database has been useful in preliminary evaluations of Yucca Mountain as a potential site for a nuclear waste repository, the database has limitations that must be addressed before it can be used for performance assessment calculations in support of a license application for a waste repository. The purpose of this paper is to: review the applicability of simple (constant) sorption coefficients in transport calculations; review and evaluate alternative methods for the derivation of sorption coefficients; summarize and evaluate the present YMP sorption database to identify areas of data sufficiency and significant data gaps; summarize our current understanding of pertinent sorption mechanisms and associated kinetic parameters; evaluate the significance to the YMP of potential problems in the experimental determination and field application of sorption coefficients as enumerated by the NRC (Nuclear Regulatory Commission, 1987) in its technical position paper on sorption; formulate and evaluate strategies for the resolution of NRC concerns regarding experimental problems; and formulate a position on the sorption coefficient database and the level of understanding of sorption mechanisms likely to be required in the licensing application. 75 refs., 1 fig., 2 tabs

  19. Sorption of radionuclides on inorganic sorbents

    International Nuclear Information System (INIS)

    Rajec, P.; Matel, L.

    1995-01-01

    The sorption of cesium, strontium, plutonium and americium from water solution on natural zeolite, clay minerals, synthetic zeolites and ferrocyanides in silica gel matrix was studied. The same experiments but with synthetic zeolites irradiated by the dose 100 kGy proved no change in sorption properties. 1 tab., 4 refs

  20. Thermodynamic, Kinetic, and Equilibrium Parameters for the Removal of Lead and Cadmium from Aqueous Solutions with Calcium Alginate Beads

    Directory of Open Access Journals (Sweden)

    Ruth Alfaro-Cuevas-Villanueva

    2014-01-01

    Full Text Available The sorption of cadmium (Cd and lead (Pb by calcium alginate beads (CAB from aqueous solutions in batch systems was investigated. The kinetic and thermodynamic parameters, as well as the sorption capacities of CAB in each system at different temperatures, were evaluated. The rate of sorption for both metals was rapid in the first 10 minutes and reached a maximum in 50 minutes. Sorption kinetic data were fitted to Lagergren, pseudo-second-order and Elovich models and it was found that the second-order kinetic model describes these data for the two metals; comparing kinetic parameters for Cd and Pb sorption a higher kinetic rate (K2 for Pb was observed, indicating that the interaction between lead cations and alginate beads was faster than for cadmium. Similarly, isotherm data were fitted to different models reported in literature and it was found that the Langmuir-Freundlich (L-F and Dubinin-Radushkevich (D-R models describe the isotherms in all cases. CAB sorption capacity for cadmium was 27.4 mg/g and 150.4 mg/g for lead, at 25°C. Sorption capacities of Cd and Pb increase as temperature rises. According to the thermodynamic parameters, the cadmium and lead adsorption process was spontaneous and endothermic. It was also found that pH has an important effect on the adsorption of these metals by CAB, as more were removed at pH values between 6 and 7.

  1. Sorption and diffusion of FE(II) in bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Tournassat, C.; Hadi, J.; Greneche, J.-M.

    2014-02-01

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ( 55 Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  2. Sorption and diffusion of FE(II) in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Tournassat, C.; Hadi, J. [BRGM, Orleans (France); Greneche, J.-M. [LPCE, Le Mans (France)

    2014-02-15

    The iron in the engineering barrier system of a nuclear waste repository interacts via the corrosion process with the swelling clay intended as the buffer material. This interaction may affect the sealing properties of the clay. In the case of iron-bentonite interaction, redox reactions, dissolution/precipitation, the diffusion and sorption are coupled together. In a combined study different processes are difficult to distinguish from each other, and more specific studies are needed for the separate processes. In particular, there is a need for well-controlled diffusion and sorption experiments where iron is kept as Fe(II). In this project, sorption and diffusion of Fe(II) in bentonite have been studied. The experiments were carried out under low-oxygen conditions in an anaerobic glove-box. The radioactive isotope ({sup 55}Fe) was used as a tracer in the experiments. The sorption experiments were carried out with two batches of purified MX-80 bentonite. One was purified at Bureau de Recherches Geologiques et Minieres, French Geological Survey (BRGM) and the other one at VTT Technical Research Centre of Finland (VTT). Experiments were also carried out with synthetic smectite, which did not include iron, which was prepared at LMPC (ENSC, F 68093 Mulhouse, France). The sorption experiments were carried out in 0.3 M and 0.05 M NaCl solutions as a function of pH, and in 0.3 M NaCl solution buffered at pH 5 as a function of added Fe(II) concentration. The separation of bentonite and solution at the end of the sorption experiment was carried out in the early phase by centrifuging only. In the later phase, ultrafiltering was added in order to improve the separation. The diffusion experiments were carried out in compacted samples prepared from MX-80 purified at VTT and saturated with 0.3 M NaCl at pH 8 and 5. A non-steady-state diffusion experiment method, where the tracer was introduced as an impulse source between two bentonite plugs was used in the measurements

  3. Associating Physical and Chemical Properties to Evaluate Buffer Materials by Th and U Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Lin; Chen, Tzu-Yun; Cheng, Hwai-Ping; Hsu, Chun-Nan; Tseng, Chia-Liang; Wei,Yuan-Yaw; Yang, Jen-Yan; Ke, Cheng-Hsiung; Chuang, Jui-Tang; Teng, Shi-Ping

    2003-02-27

    The physical and chemical properties of buffer materials to be used for a radwaste disposal repository should be evaluated prior to use. In a conventional approach, independent studies of physical and/or chemical characteristics are conducted. This study investigated the relationship between the plastic index (PI) and distribution ratio (Rd) of buffer materials composed of varying ratios of quartz sand and bentonite. Thorium (Th) and Uranium (U) were the nuclides of interest, and both synthetic groundwater and seawater were used as the liquid phases to simulate conditions representative of deep geological disposal within an island. Atterberg tests were used to determine PI values, and batch sorption experiments were employed to measure Rd values. The results show that Th reached maximum sorption behavior when the bentonite content exceeded 30 % of the mixture. Contrariwise, the sorption of U increased linearly with bentonite content, up to bentonite contents of 100%, and this correlation was present regardless of the liquid phase used. A further result is that U has a better additivity with respect to Rd than Th in both synthetic groundwater and synthetic seawater. These results will allow a determination of more effective buffer material composition, and improved estimates of the overall Rd of the buffer material mixture from the Rd of each mineral component.

  4. The NEA sorption data base (SDB)

    International Nuclear Information System (INIS)

    Ruegger, B.; Ticknor, K.

    1992-01-01

    The current NEA Sorption Data Base is developed to replace the former International Sorption Information Retrieval System (ISIRS) initiated at Pacific Northwest Laboratory and contains about 11,000 distribution coefficients with corresponding experimental condition parameters describing sorption of key nuclides for a large variety of solid and liquid phases. The SDB is designed to run on a micro-computer using the commercially available database software dBASE III Plus. For each recorded sorption experiment, the SDB provides a bibliographical reference, the most complete characterization of the solid and liquid phases available, a description of the experimental conditions and the distribution coefficient or retardation factor for each element studied. When available, parameters such as temperature, initial radionuclide concentration, pH, Eh, contact time, solid to solution ratio, sample origin, oxidation state and type of solution are included. The SDB provides information for a wide variety of rocks or geological materials, buffer backfill candidates, concretes/cements, elements (Am, Cs, Co, I, Np, Pu, Ra, Sr, Se, Tc, U and, to a lesser extent, Ag, Ba, C, Ce, Eu, Fe, Mn, Mo, Na, Nb, Ni, Pd, Pm, Ru, Sb, Sn, Y, Zn, and Zr), or radioisotopes. A compilation of sorption data like SDB provide a readily available source of data for radioactive waste repository performance assessments when site specific data are not available or essential, for example, during a site selection phase. 2 appendices

  5. Sorption of uranium and cesium by Hanford basalts and associated secondary smectite

    International Nuclear Information System (INIS)

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.; Salter, P.F.

    1982-01-01

    Three characterized basalts and an associated secondary smectite were used in comparative uranium and cesium sorption studies. Experiments utilizing two synthetic characteristic basalt groundwaters at 23 and 60 0 C allowed comparison of increased temperature and carbonate concentration effects on Cs and U sorption. The sorption data were fitted to the Dubinin-Radushkevich (D-R) isotherm, and loading maxima and energetics derived. An increase in temperature caused a decrease in Cs sorption maxima on all solids from all groundwaters studied and an increase in U sorption maxima, especially from the higher-carbonate-content groundwater. Sorption energies were characteristic of ion exchange for both Cs and U sorption processes. Basalt U sorption maxima were relatively insignificant, but smectite U sorption maxima surpassed Cs sorption maxima in both groundwaters at 60 0 C. The uranyl carbonate complexes thus may be relatively temperature-sensitive. Upon removal of excess Fe-oxides from the secondary smectite, U sorption decreased and the D-R isotherm reverted to a normal Freundlich sorption isotherm. Removal of excess Fe-oxides from the basalts and secondary smectite would probably result in Freundlich sorption isotherms for both Cs and U. (Auth.)

  6. The sorption behaviour of 99Tc on activated carbon

    International Nuclear Information System (INIS)

    Xia Deying; Zeng Jishu

    2004-01-01

    The sorption behaviour of 99 Tc on apricot-pit activated carbon with batch experiment is studied. The influence of such factors as sorbent particle size, temperature, pH value on sorption ratio, and the Freundlich sorption isotherms are reported in this paper. (author)

  7. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  8. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    International Nuclear Information System (INIS)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian; Jin, Yongdong

    2014-01-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g −1 under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed

  9. Effects of natural organic matter on PCB-activated carbon sorption kinetics: implications for sediment capping applications.

    Science.gov (United States)

    Fairey, Julian L; Wahman, David G; Lowry, Gregory V

    2010-01-01

    In situ capping of polychlorinated biphenyl (PCB)-contaminated sediments with a layer of activated carbon has been proposed, but several questions remain regarding the long-term effectiveness of this remediation strategy. Here, we assess the degree to which kinetic limitations, size exclusion effects, and electrostatic repulsions impaired PCB sorption to activated carbon. Sorption of 11 PCB congeners with activated carbon was studied in fixed bed reactors with organic-free water (OFW) and Suwannee River natural organic matter (SR-NOM), made by reconstituting freeze-dried SR-NOM at a concentration of 10 mg L(-1) as carbon. In the OFW test, no PCBs were detected in the column effluent over the 390-d study, indicating that PCB-activated carbon equilibrium sorption capacities may be achieved before breakthrough even at the relatively high hydraulic loading rate (HLR) of 3.1 m h(-1). However, in the SR-NOM fixed-bed test, partial PCB breakthrough occurred over the entire 320-d test (HLRs of 3.1-, 1.5-, and 0.8 m h(-1)). Simulations from a modified pore and surface diffusion model indicated that external (film diffusion) mass transfer was the dominant rate-limiting step but that internal (pore diffusion) mass transfer limitations were also present. The external mass transfer limitation was likely caused by formation of PCB-NOM complexes that reduced PCB sorption through a combination of (i) increased film diffusion resistance; (ii) size exclusion effects; and (iii) electrostatic repulsive forces between the PCBs and the NOM-coated activated carbon. However, the seepage velocities in the SR-NOM fixed bed test were about 1000 times higher than would be expected in a sediment cap. Therefore, additional studies are needed to assess whether the mass transfer limitations described here would be likely to manifest themselves at the lower seepage velocities observed in practice.

  10. β-Zeolite modified by ethylenediamine for sorption of Th(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Wu, Hanyu; Yuan, Ni; Yin, Zhuoxin; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Lab.; Ministry of Education, Lanzhou (China). Key Lab. of Special Function Materials and Structure Design

    2017-08-01

    β-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5-4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.

  11. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Vivian; Bosco, Giulianna E. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André CEP 09210-170, SP (Brazil); Fadini, Pedro S.; Mozeto, Antonio A. [Laboratório de Biogeoquímica Ambiental, Núcleo de Estudos, Diagnósticos e Intervenções Ambientais, Departamento de Química, Universidade Federal de São Carlos, Cx. Postal 676, São Carlos CEP 13565-905, SP (Brazil); Cestari, Antonio R. [Department of Chemistry/CCET, Universidade Federal de Sergipe, São Cristóvão CEP 49100-000, SE (Brazil); Carvalho, Wagner A., E-mail: wagner.carvalho@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André CEP 09210-170, SP (Brazil)

    2014-06-01

    Highlights: • A phosphate adsorbent was prepared from unpurified natural bentonite. • Physisorption was found to the main phosphate interaction mechanism. • The retention has reached 95% of the phosphate present in solution at room temperature. • The rate sorption was about 4 times faster than commercial phosphate adsorbents. - Abstract: A bentonite from the Northeast Brazilian region was modified with lanthanum (NT-25La) using an ion exchange process. Lanthanum incorporation in the natural clay, as well as the properties of the clay materials, were confirmed by X-ray diffraction, X-ray fluorescence, specific surface area and scanning electron microscopy (SEM/EDX). Phosphate adsorption equilibrium and kinetic tests were performed at different temperatures. The adsorption data have shown that NT-25La reaches equilibrium between modified clay and phosphate solution within 60 min of contact. The phosphate retention at room temperature reached 95%, when initial phosphate concentration in solution was 5 mg L{sup −1}. A kinetic-order variable model provided satisfactory fitting of the kinetic data. Adsorption of phosphate was best described by a Langmuir isotherm, with maximum phosphate sorption capacity of 14.0 mg g{sup −1}. Two distinct adsorption mechanisms were observed that may influence the adsorption processes. The investigation pointed out that the phosphate adsorption occurs via physisorption processes and that the use of NT-25La provides a maximum phosphate sorption capacity higher than many commercial adsorbents.

  12. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  13. Compilation of radionuclide sorption coefficients for performance assessment

    International Nuclear Information System (INIS)

    Carbol, P.; Engkvist, I.

    1997-09-01

    The report presents four possible site-specific conditions in Sweden. The different sorption mechanisms applicable to the studied elements together with the K d concept are shortly summarised. The influence of organic substances present in the groundwater on the element's sorption and mobility is also discussed. Criteria for selection of K d values are presented together with sensitivity of the values to pH, E h and salinity. Sorption coefficients are recommended for elements in the repository with half-life above 5.3 years. The elements reviewed are: Cs, Sr, Ra, Ln, Ac, Th, Pa, U, Np, Pu, Am, Cm, Co, Ni, Cd, Zr, Nb, Tc, Pd, Ag, Sn, C, I, Cl, Se and Kr. For every element there is a recommendation of a realistic K d value with an uncertainty limit. The selection is based on experimental investigations or chemical analogues. In some cases few or no K d data were found, and it is recommended that sorption studies be performed on elements such as Cd, Pa, Cm, Zr, Nb, Pd, Ag and Sn. The recommended K d values for the different element's sorption on granitic rock, serve as a guidance of the sorption performance

  14. Competitive sorption of heavy metals by water hyacinth roots.

    Science.gov (United States)

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Equilibrium concentration of radionuclides in cement/groundwater/carbon steel system

    International Nuclear Information System (INIS)

    Keum, D. K.; Cho, W. J.; Hahn, P. S.

    1997-01-01

    Equilibrium concentration of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment, while it almost entirely exists as the precipitate of Fe(OH) 3 (s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amounts of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements - cesium, strontium, cobalt, nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system. (author)

  16. Application of the complex equilibrium code QUIL to cesium-impurity equilibria in the primary coolant of high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Feber, R.D.; Lunsford, J.L.; Stark, W.A. Jr.

    1976-05-01

    An equilibrium analysis has been made of the fission-product cesium in the primary coolant loop of the high-temperature gas-cooled reactor (HTGR). The species distributions that result at equilibrium have been calculated for various conditions of reactor operation. The cesium species considered were the monomer, dimer, oxides, hydroxides, and the hydride. The effect of cesium sorption isotherms on graphite also was included in the analysis. During normal reactor operations, the abundant species of cesium were calculated to be elemental cesium, Cs, and the monomeric hydroxide, CsOH. Under most conditions of steam ingress, the abundant species was calculated to be CsOH. Cesium adsorbed onto graphite was stable under all steam-ingress conditions considered. Thermal transients above 1500 0 K were required for equilibrium transport of cesium from the core to the coolant. The analysis was carried out using the complex equilibrium code QUIL, designed and written with special emphasis on features that make it applicable to the fission-product problem

  17. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  18. Computer simulation of molecular sorption in zeolites

    International Nuclear Information System (INIS)

    Calmiano, Mark Daniel

    2001-01-01

    The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computational studies where we show our work to be in good agreement. In Chapter 5 we present a systematic study of the sorption of oxygen and nitrogen in five lithium substituted zeolites using a transferable interatomic potential that we have developed from ab initio calculations. We show increased loading of nitrogen compared to oxygen in all five zeolites studied as expected and simulate adsorption isotherms, which we compare to experimental and simulated data in the literature. In Chapter 6 we present work on the sorption of ferrocene in the zeolite NaY. We show that a simulated, low energy sorption site for ferrocene is correctly located by comparing to X-ray powder diffraction results for this same system. The thesis concludes with some overall conclusions and discussion of opportunities for future work. (author)

  19. Emerging investigator series: development and application of polymeric electrospun nanofiber mats as equilibrium-passive sampler media for organic compounds.

    Science.gov (United States)

    Qian, Jiajie; Jennings, Brandon; Cwiertny, David M; Martinez, Andres

    2017-11-15

    We fabricated a suite of polymeric electrospun nanofiber mats (ENMs) and investigated their performance as next-generation passive sampler media for environmental monitoring of organic compounds. Electrospinning of common polymers [e.g., polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and polystyrene (PS), among others] yielded ENMs with reproducible control of nanofiber diameters (from 50 to 340 nm). The ENM performance was investigated initially with model hydrophilic (aniline and nitrobenzene) and hydrophobic (selected PCB congeners and dioxin) compounds, generally revealing fast chemical uptake into all of these ENMs, which was well described by a one compartment, first-order kinetic model. Typical times to reach 90% equilibrium (t 90% ) were ≤7 days under mixing conditions for all the ENMs and equilibrium timescales suggest that ENMs may be used in the field as an equilibrium-passive sampler, at least for our model compounds. Equilibrium partitioning coefficients (K ENM-W , L kg -1 ) averaged 2 and 4.7 log units for the hydrophilic and hydrophobic analytes, respectively. PAN, PMMA and PS were prioritized for additional studies because they exhibited not only the greatest capacity for simultaneous uptake of the entire model suite (log K ENM-W ∼1.5-6.2), but also fast uptake. For these optimized ENMs, the rates of uptake into PAN and PMMA were limited by aqueous phase diffusion to the nanofiber surface, and the rate-determining step for PS was analyte specific. Sorption isotherms also revealed that the environmental application of these optimized ENMs would occur within the linear uptake regime. We examined the ENM performance for the measurement of pore water concentrations from spiked soil and freshwater sediments. Soil and sediment studies not only yielded reproducible pore water concentrations and comparable values to other passive sampler materials, but also provided practical insights into ENM stability and fouling in such systems

  20. Migration and sorption phenomena in packaged foods.

    Science.gov (United States)

    Gnanasekharan, V; Floros, J D

    1997-10-01

    Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.

  1. Sorption behaviour of well-defined oxidation states

    International Nuclear Information System (INIS)

    Allard, B.; Olofsson, U.; Torstenfelt, B.; Kipatsi, H.

    1983-05-01

    The sorption of the actinides Am(III), Th(IV), Np(V), Pa(V), U(VI) and Pu has been studied as a function of pH (2-12) for two nuclide concentrations (10 -7 -10 -9 M) (only one for Pa and U) in the systems Al 2 0 3 - 0.01 M NaCl0 4 and Si0 2 - 0.01 M NaCl0 4 . Distribution coefficients have been determined by a batch technique after various contact times (6h - 6w) at constant temperature (25degreeC) in systems equilibrated with air. The observed sorption behaviour indicates a predominantly physical adsorption mechanism, where pH of the aqueous phase is the principal chemical parameter of influence. The sorption is highly related to the degree of hydrolysis, with a maximum in the pH-region where neutral species dominate and with a reduction of the sorption under conditions when anionic species (hydroxides or carbonates) would exist in solution. This is particularly the case for U(VI) at pH above 7-8 when anionic carbonate complexes would be formed. Plutonium is predominantly tetravalent under the present conditions, as indicated by the sorption behaviour. (authors)

  2. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Rathinam, Aravindhan [Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600020 (India); Zou, Linda, E-mail: linda.zou@unisa.edu.au [SA Water Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia)

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of {Delta}H{sup o} and the negative value of {Delta}G{sup o} show that the sorption process is endothermic and spontaneous. The positive value of change in entropy {Delta}S{sup o} shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  3. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Rathinam, Aravindhan; Zou, Linda

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH° and the negative value of ΔG° show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS° shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. A study of selenium and tin sorption on granite and geothite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, [TDS], natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was, low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in [DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (orig.)

  5. Experimental measurements and integrated modelling studies of actinide sorption onto cement

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Baston, G.M.N.

    2003-01-01

    An Integrated Cement Sorption Model (ICSM) for actinides onto Ordinary Portland Cement (OPC) is developed. The experimental measurements using the batch sorption technique for actinides onto cement and constituent minerals, which were considered in the modelling calculations, are also described. The actinide elements studied (thorium, uranium, neptunium, plutonium and americium) were strongly sorbed onto OPC. An initial comparison of the experimental data relating the sorption values of actinides onto cement-component phases with those onto OPC is carried out. The results suggest that the Calcium Silicate Hydrate (C-S-H) phases were found to be the most likely candidates to be the dominant-sorbing phases in order to describe the sorption of a actinides onto OPC. An approach to develop the integrated cement sorption model, based on a thermodynamic surface complexation model, is described with discussions on the possible mineralogy and phase distribution of OPC. Another approach than sorption, assuming that co-precipitation on the surface of the cement phase dominates 'sorption', is proposed and discussed. A scoring system is introduced to assess the applicability of the proposed ICSMs. It is suggested that the thermodynamic sorption model is recommended for the sorption of ionic species and the surface co-precipitation model is recommended for the sorption of neutral species though the sorption model is still recommended to be used to model OPC-based systems. (author)

  6. A study of selenium and tin sorption on granite and goethite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, (TDS), natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in (DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (author)

  7. Thermal equilibrium control by frequent bang-bang modulation.

    Science.gov (United States)

    Yang, Cheng-Xi; Wang, Xiang-Bin

    2010-05-01

    In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.

  8. Determination of drying kinetics and sorption isotherm of black pepper (Piper Nigrum)

    Science.gov (United States)

    De Vera, Flordeliza C.; Atienza, Vanessa Bernadette B.; Capili, Jomicah B.; Sauli, Zaliman

    2017-11-01

    In the present study of food products, determination of the drying characteristics of black pepper using an oven is not yet completely established. This study aimed to determine the drying kinetics and sorption isotherm of black pepper using a convective oven at 30°C, 40°C and 50°C. The data gathered in this study were used to fit in selected mathematical models for drying kinetics and sorption isotherm. Among these models, the Midilli model (MR=0.5338exp(0.7273t-0.0551)+-0.0005t for 30°C, MR=0.5814exp(0.6293t-0.0764)+ -0.0008t for 40°C and MR=0.3187exp(1.1777t-0.0466)+ -0.0011t for 50°C) was the best fit to explain the moisture transfer in black pepper, while the GAB Model (m/0.1302=((0.1906)(0.7811)aw)/(1-(0.7811)aw)[1-(0.7811)aw+(0.1906)(0.7811)aw])) was for the equilibrium moisture content and water activity relationship. After evaluating the data, the drying characteristics of black pepper at 40°C yielded better results than 30°C and 50°C. XLSTAT and ANOVA Add-in of Microsoft Excel was the software used to compute for the necessary values in the assessment of the mathematical models for this study.

  9. Fate of sulfonamide antibiotics in contact with activated sludge--sorption and biodegradation.

    Science.gov (United States)

    Yang, Sheng-Fu; Lin, Cheng-Fang; Wu, Chien-Ju; Ng, Kok-Kwang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2012-03-15

    The sorption and biodegradation of three sulfonamide antibiotics, namely sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), in an activated sludge system were investigated. Experiments were carried out by contacting 100 μg/L of each sulfonamide compound individually with 2.56 g/L of MLSS at 25±0.5 °C, pH 7.0, and dissolved oxygen of 3.0±0.1 mg/L in a batch reactor over different periods of 2 d and 14 d. All sulfonamides were removed completely over 11-13 d. Sorptive equilibrium was established well within the first few hours, followed by a lag period of 1-3 days before biodegradation was to deplete the antibiotic compounds linearly in the ensuing 10 days. Apparent zeroth-order rate constants were obtained by regression analysis of measured aqueous concentration vs. time profiles to a kinetic model accounting for sorption and biodegradation; they were 8.1, 7.9, and 7.7 μg/L/d for SDM, SMX, and SMM, respectively, at activated sludge concentration of 2.56 g/L. The measured kinetics implied that with typical hydraulic retention time (e.g. 6 h) provided by WWTP the removal of sulfonamide compounds from the wastewater during the activated sludge process would approximate 2 μg/L. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils.

    Science.gov (United States)

    Leal, Rafael Marques Pereira; Alleoni, Luis Reynaldo Ferracciú; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges

    2013-08-01

    Animal production is a leading economic activity in Brazil and antibiotics are widely used. However, the occurrence, behavior, and impacts of antibiotics in Brazilian soils are still poorly known. We evaluated the sorption behavior of four fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) and five sulfonamides (sulfadiazine, sulfachloropyridazine, sulfamethoxazole, sulfadimidine, and sulfathiazole) in 13 Brazilian soils with contrasting physical, chemical, and mineralogical properties. Fluoroquinolone sorption was very high (Kd≥544 L kg(-1)) whereas sulfonamide sorption ranged from low to high (Kd=0.7-70.1 L kg(-1)), consistent with previous reports in the literature. Soil texture and cation exchange capacity were the soil attributes that most affected sorption. Cation exchange was the most important sorption mechanism for the fluoroquinolones in highly weathered tropical soils, although cation bridging and ion pairing could not be ruled out. Hydrophobic partition played an important role in the sorption of the sulfonamides, but sorption was also affected by non-hydrophobic interactions with organic and/or mineral surfaces. Sorption for both compound classes tended to be higher in soils with high Al and Fe oxihydroxide contents, but they were not correlated with Kd values. No direct effect of soil pH was seen. The fluoroquinolones are not expected to leach even in worst-case scenarios (soils rich in sand and poor in organic carbon), whereas soil attributes dictate leaching potential for the sulfonamides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Development of JAEA sorption database (JAEA-SDB). Update of data evaluation functions and sorption/QA data

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael; Ganter, Charlotte

    2011-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop database compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in buffer materials (bentonite) and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on developing and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on multi-parameter dependence, operating method, PA-related applications of the web-based JAEA-SDB. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 4,250 K d data from 32 references are added, total K d values in the JAEA-SDB are about 28,540. The QA/classified K d data are about 39% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to have suitable access to the respective data

  12. Phosphorus removal from aquaculture effluents at the Northeast Fishery Center in Lamar, Pennsylvania using iron oxide sorption media

    Science.gov (United States)

    Sibrell, Philip; Kehler, Thomas

    2016-01-01

    Three different iron oxide-based sorption media samples were tested for removal of phosphorus (P) from fish hatchery effluents using fixed bed processing. Two of the media samples were derived from residuals produced by the treatment of acid mine drainage, which were then compared to granular ferric hydroxide (GFH), a commercially available sorption medium. All of the media types removed from 50 to 70% of the P from the incoming aquaculture wastewater over 70–175 days of operation without regeneration. In some of the sorption trials, the GFH media showed superior adsorption in the earlier stages of the trial, but the GFH appeared to reach saturation more quickly, so that media performance was similar – at about 60% removal of P – over a longer time period of 175 days. Media regeneration tests were also conducted for both the commercial and mine drainage media, and demonstrated longer term performance, with overall P removal of 50–55%, over 223 days of total operation, with the advantages of phosphorus recycle and media reuse.

  13. Compilation of radionuclide sorption coefficients for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P.; Engkvist, I. [PI Chemical Consulting HB, Landvetter (Sweden)

    1997-09-01

    The report presents four possible site-specific conditions in Sweden. The different sorption mechanisms applicable to the studied elements together with the K{sub d} concept are shortly summarised. The influence of organic substances present in the groundwater on the element`s sorption and mobility is also discussed. Criteria for selection of K{sub d} values are presented together with sensitivity of the values to pH, E{sub h} and salinity. Sorption coefficients are recommended for elements in the repository with half-life above 5.3 years. The elements reviewed are: Cs, Sr, Ra, Ln, Ac, Th, Pa, U, Np, Pu, Am, Cm, Co, Ni, Cd, Zr, Nb, Tc, Pd, Ag, Sn, C, I, Cl, Se and Kr. For every element there is a recommendation of a realistic K{sub d} value with an uncertainty limit. The selection is based on experimental investigations or chemical analogues. In some cases few or no K{sub d} data were found, and it is recommended that sorption studies be performed on elements such as Cd, Pa, Cm, Zr, Nb, Pd, Ag and Sn. The recommended K{sub d} values for the different element`s sorption on granitic rock, serve as a guidance of the sorption performance 87 refs, 18 tabs

  14. Sorption isotherms, GAB parameters and isosteric heat of sorption

    NARCIS (Netherlands)

    Quirijns, E.J.; Boxtel, van A.J.B.; Loon, van W.K.P.; Straten, van G.

    2005-01-01

    The diffusion-sorption drying model has been developed as a physics-based way to model the decreasing drying rate at low moisture contents. This new model is founded on the existence of different classes of water: free and bound water. The transition between these classes and the corresponding

  15. Memory loss process and non-Gibbsian equilibrium solutions of master equations

    International Nuclear Information System (INIS)

    Cataldo, H.M.; Hernandez, E.S.

    1988-01-01

    The phonon dynamics of a harmonic oscillator coupled to a steady reservoir is studied. In the Markovian limit, the equilibrium is reached through a progressive loss of memory process which involves the moments of the initial distribution. The relationship to the non-Markovian equations of motion and its resolvent poles is settled. As a particular model of the coupling mechanism is adopted, the possibility of non-Gibbsian equilibrium distribution arises, which is analyzed focusing upon the dependence of various parameters of the system on an effective equilibrium temperature

  16. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    Full text: Use of selective sorbents in liquid radioactive waste (LRW) management is widely spread in the field of nuclear power objects liquid waste decontamination, since the main objective there is to remove long-lived radionuclides of the nuclear cycle. The latter include, first of all, cesium-137, strontium-90, cobalt-60 and a number of α-irradiators. In this case LRW composition for most of the nuclear power objects is rather simple, except acidic deactivation solutions. At the same time, liquid radioactive wastes of different research centers have a variable chemical and radiochemical composition depending on objectives and tasks of a given center research activities. As a result, application of sorption technologies in such waste decontamination determines special requirements to these sorbents selectivity: a wide spectrum of radionuclides that can be removed and fairly high selectivity enabling to remove radionuclides from solutions of complex chemical composition (containing surfactants, complexing agents etc.). This paper is concerned with studying properties of new materials selective to different radionuclides. These materials are capable to interact with solution components whether already contained in the waste or deliberately added into resulting solution. Such sorption-reagent materials combine universal character of co-precipitation methods with simplicity of sorption methods. In this work we studied sorption-reagent inorganic ion-exchange materials interacting with sulfate-, carbonate-, oxalate-, sulfide-, and permanganate-ions. Insoluble compounds formed as a result of this interaction increase tens- and hundreds-fold the sorption selectivity of different radionuclides - strontium, cobalt, mercury, iron, and manganese as compared to conventional ion-exchange system. By means of X-ray phase analysis, IR-spectroscopy, chemical and radiochemical analysis, we have studied the mechanism of radionuclide sorption on different sorption

  17. Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI, Cu(II and Zn(II—Hydrazide Derivative of Glycine-Grafted Chitosan

    Directory of Open Access Journals (Sweden)

    Mohammed F. Hamza

    2017-05-01

    Full Text Available A new magnetic functionalized derivative of chitosan is synthesized and characterized for the sorption of metal ions (environmental applications and metal valorization. The chemical modification of the glycine derivative of chitosan consists of: activation of the magnetic support with epichlorohydrin, followed by reaction with either glycine to produce the reference material (i.e., Gly sorbent or glycine ester hydrochloride, followed by hydrazinolysis to synthesize the hydrazide functionalized sorbent (i.e., HGly sorbent. The materials are characterized by titration, elemental analysis, FTIR analysis (Fourrier-transform infrared spectrometry, TGA analysis (thermogravimetric analysis and with SEM-EDX (scanning electron microscopy coupled to energy dispersive X-ray analysis. The sorption performances for U(VI, Cu(II, and Zn(II are tested in batch systems. The sorption performances are compared for Gly and HGly taking into account the effect of pH, the uptake kinetics (fitted by the pseudo-second order rate equation, and the sorption isotherms (described by the Langmuir and the Sips equations. The sorption capacities of the modified sorbent reach up to 1.14 mmol U g−1, 1.69 mmol Cu g−1, and 0.85 mmol Zn g−1. In multi-metal solutions of equimolar concentration, the chemical modification changes the preferences for given metal ions. Metal ions are desorbed using 0.2 M HCl solutions and the sorbents are re-used for five cycles of sorption/desorption without significant loss in performances.

  18. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  19. Adsorption of Pb(II) ions from aqueous solution by native and activated bentonite: Kinetic, equilibrium and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Kul, Ali Riza [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey); Koyuncu, Huelya, E-mail: hkoyuncu@yyu.edu.tr [Forensic Medicine Foundation, Felek Street No. 45, 06300 Kecioren, Ankara (Turkey)

    2010-07-15

    In this study, the adsorption kinetics, equilibrium and thermodynamics of Pb(II) ions on native (NB) and acid activated (AAB) bentonites were examined. The specific surface areas, pore size and pore-size distributions of the samples were fully characterized. The adsorption efficiency of Pb(II) onto the NB and AAB was increased with increasing temperature. The kinetics of adsorption of Pb(II) ions was discussed using three kinetic models, the pseudo-first-order, the pseudo-second-order and the intra-particle diffusion model. The experimental data fitted very well the pseudo-second-order kinetic model. The initial sorption rate and the activation energy were also calculated. The activation energy of the sorption was calculated as 16.51 and 13.66 kJ mol{sup -1} for NB and AAB, respectively. Experimental results were also analysed by the Langmuir, Freundlich and Dubinin-Redushkevich (D-R) isotherm equations at different temperatures. R{sub L} separation factor for Langmuir and the n value for Freundlich isotherm show that Pb(II) ions are favorably adsorbed by NB and AAB. Thermodynamic quantities such as Gibbs free energy ({Delta}G), the enthalpy ({Delta}H) and the entropy change of sorption ({Delta}S) were determined as about -5.06, 10.29 and 0.017 kJ mol{sup -1} K{sup -1}, respectively for AAB. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously.

  20. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  1. Sorption of radioactive technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen, D.; Fan, X.H.; Su, X.G.; Zeng, J.S.; Dong, Y.

    2002-01-01

    The sorption behavior of technetium on pyrrhotine was studied with batch experiments and diluted sulfuric acid (less than 2.88 mol/l) was used to dissolve the technetium adsorbed on pyrrhotine. A significant sorption of technetium on pyrrhotine was observed under aerobic and anaerobic conditions, and the sorption on the mineral was supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 x nH 2 O. Sorbed technetium on the mineral could be desorbed by diluted sulfuric acid. The maximum desorption ratio under aerobic conditions was much higher than that of under anaerobic conditions, meanwhile, the desorption rates under anaerobic conditions were higher than that of under aerobic conditions in the initial stage of the experiments. (author)

  2. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Suitability of Moshi Pumice for Phosphorus Sorption in Constructed ...

    African Journals Online (AJOL)

    The study of Moshi Pumice's phosphorus sorption behaviours and properties was carried out in laboratory scale where by 1-2 mm, 2-4 mm and 4-8 mm grains were tested using batch experiments. The results show that Moshi Pumice has high phosphorus sorption capacity. The sorption capacity for the Moshi Pumice was ...

  4. The effect of anionic sorption on the metakaolinite

    International Nuclear Information System (INIS)

    Campos, Valquiria; Morais, Leandro C.; Rosa, Andre H.; Fraceto, Leonardo F.; Buchler, Pedro M.

    2009-01-01

    This paper reports an investigation on the effect of thermal activation of kaolinite. It is well known that during calcination (400-650 deg C), kaolinite loses the OH lattice water and is transformed into metakaolinite or amorphous material. Arsenic is trace element that is toxic to animals including humans. The adsorption of arsenic on kaolinite was investigated at varying pH and thermal pretreatment. Calcination of sample is carried out at 650 deg C for 3 h. The decomposition of kaolinite is recorded using methods of thermal analysis. The resultant product is identified by XRD. Laboratory experiments were conducted examining the effect of arsenic by thermally modified kaolinite. The Langmuir isotherm was used to describe arsenite and arsenate sorption by the calcined kaolinite. The equilibrium parameters used were based on experimental data obtained for the dynamic adsorption process of arsenic. Removal of arsenate using natural kaolinite was satisfactory, whereas arsenic was not removed by adsorption with thermally modified kaolinite. Moreover, the adsorption of arsenic by kaolinite and metakaolinite decreases with increasing pH. (author)

  5. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    Factors that influence the sorption of Cr(VI) and Cr(III) on aluminium hydroxide were investigated. The sorption of chromates decreases as the pH of the suspension increases. The mechanism of CrOsub(4)sup(2-) sorption was interpreted in terms of reactions between chromates and -OH and/or Hsub(2)O groups at the hydroxide/liquid interface. It was shown that chromates are more tightly sorbed on aluminium hydroxide compared to other anions, e.g. chlorides. On the other hand, specifically absorbed anions, such as molybdates, compete strongly with chromates for the sorption sites. The sorption of chromium(III) increases with the pH of the suspension. Also, the sorption of chromium(III) is suppressed in the presence of citrate ions. The best conditions for the fixation of Cr(VI) and Cr(III) by aluminium hydroxide are presented. (author)

  6. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  7. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  8. Experimental study of strontium sorption on fissure filling material

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, T E; Cui, Daqing [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemistry

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs.

  9. Experimental study of strontium sorption on fissure filling material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Cui, Daqing

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs

  10. Radionuclide sorption database for Swiss safety assessment

    International Nuclear Information System (INIS)

    McKinley, I.G.; Hadermann, J.

    1984-10-01

    Recommended sorption data for use in transport models for a Swiss High-Level Waste repository are presented. The models used in 'Project Gewaehr 1985' assume linear sorption isotherms and require elemental partition coefficient (Kd) data. On the basis of a literature search 'realistic' Kd data for 22 elements have been selected for weathered crystalline rock and sediments in contact with a reducing groundwater and also sediments with a less reducing groundwater. In an appendix sorption data for 28 elements on bentonite backfill are given. These data are supplemented with 'conservative' estimates taken to represent minimum reasonable values. Available data are discussed for each element clearly exhibiting (i) the large gaps in knowledge, (ii) their unbalanced distribution between different elements and, hence, (iii) the need for further experiments in the laboratory, the field and analogue studies. An overview of the theoretical concepts of sorption, experimental methodology and data interpretation is given in order to put the values into context. General problem areas are identified. (Auth.)

  11. INFLUENCES OF SOIL PROPERTIES ON CHROMIUM (III SORPTION

    Directory of Open Access Journals (Sweden)

    R. Salmasi, F. Salmasi

    2007-07-01

    Full Text Available Soil adsorbing properties reduce sorption ability of the metal, which in turn may influence decision for remediation at contaminated sites. The objective of this study is presentation of a model based on soil properties to estimate the sorption of Cr(III in chromium contaminated soils. Twenty uncontaminated soil samples, with properties similar to the contaminated soils were selected from around of city of Tabriz and treated with Cr as CrCl3. A multiple regression analysis with statgraph software was used to drive an expression that related Cr sorption to common soil properties. The results showed that four soil properties were important in determining the amount of Cr adsorbed by the soils including pH, cation exchange capacity, total inorganic carbon and clay content with nearly 80% variability in Cr sorption and a reasonable level of confidence by this model. The obtained model suggested that Cr(III sorption was enhanced by higher soil pH, more total inorganic carbon, more clay, and higher cation exchange capacity.

  12. Influence of light-weight organic matters on strontium sorption to bentonite

    International Nuclear Information System (INIS)

    Wang, Tsing-Hai; Wu, Ding-Chiang; Teng, Shi-Ping

    2010-01-01

    Document available in extended abstract form only. Light-weight organic matters were frequently observed in groundwater. Their existence had significant influence on the transport of radionuclides. In this study, light-weight organic acid species including oxalic (MW 90), succinic (MW 118), adipic (MW 146), azelaic (MW 188), eicosanedioic (MW 306), benzoic (MW 122), salicylic (MW 138), and gallic (MW 170) were selected as the surrogate of natural organic matters. Their effects on strontium sorption to bentonite were evaluated by using a surface complexation model MINEQL+. Under this framework, three sorption mechanisms were considered: 1. structure sorption sites, 2. edge sorption sites, 3. further hydration of adsorbed Sr 2+ . The presence of organic species had no influence on Sr cation sorption to structure sorption sites. However, Sr cation sorption to edge sorption was affected by the organics to certain extent. For example, sorption capability of edge sites toward Sr was increased by the gallic species. Furthermore, hydration of adsorbed Sr was significantly affected by the presence of organic species. This might relate to that adsorbed Sr would become the bridge associating organic species on bentonite surfaces, but this argument required more solid spectral evidences to support. Some preliminary observations on Sr sorption to bentonite were obtained in this work; however, further experiments are still required by conducting experiments with more variety of organic species. By doing a comprehensive study, it would be much beneficial to make a more accurate evaluation of the influence of organic matters on Sr sorption

  13. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures

    International Nuclear Information System (INIS)

    Zheng, Hao; Wang, Zhenyu; Zhao, Jian; Herbert, Stephen; Xing, Baoshan

    2013-01-01

    Sorption of sulfonamides on biochars is poorly understood, thus sulfamethoxazole (SMX) sorption on biochars produced at 300–600 °C was determined as a function of pH and SMX concentration, as well as the inorganic fractions in the biochars. Neutral SMX molecules (SMX 0 ) were dominant for sorption at pH 1.0–6.0. Above pH 7.0, although biochars surfaces were negatively-charged, anionic SMX species sorption increased with pH and is regulated via charge-assisted H-bonds. SMX 0 sorption at pH 5.0 was nonlinear and adsorption-dominant for all the biochars via hydrophobic interaction, π–π electron donor–acceptor interaction and pore-filling. The removal of inorganic fraction reduced SMX sorption by low-temperature biochars (e.g., 300 °C), but enhanced the sorption by high-temperature biochars (e.g., 600 °C) due to the temperature-dependent inorganic fractions in the biochars. These observations are useful for producing designer biochars as engineered sorbents to reduce the bioavailability of antibiotics and/or predict the fate of sulfonamides in biochar-amended soils. -- Highlights: •Sulfamethoxazole (SMX) sorption on biochars at pH 5.0 was adsorption-dominant. •Removal of inorganic fractions in low-temperature biochars reduced SMX sorption. •Removal of inorganic fractions in high-temperature biochars enhanced SMX sorption. •Anionic SMX was adsorbed on negatively charged biochar via charge-assisted H-bond. -- Solution pH and biochar property control the sorption amount and mechanisms of antibiotic sulfamethoxazole

  14. Correlational study between sorption and goo apparent organoclays

    International Nuclear Information System (INIS)

    Silva, D.L.; Silva, M.R.O.; Ferreira, H.S.; Brasileiro, C.T.

    2016-01-01

    The sorption of surfactants in bentonite clay can occur through the mechanism of adsorption and absorption, this being a very supple phenomenon according clay and surfactant utilized. Thus the more surfactant sorbed at the organoclay it becomes, and can be used in various applications, including in oil drilling fluid. This study aimed to correlate the sorption of surfactants with the rheological properties of non-aqueous fluids (oil base). In organophilization process was used Bentongel clay which had its concentration varied from 3.16 to 7.16% by weight of clay. It was used to organophilization an ionic surfactant Praepagem WB with 75% of active matter, where its concentration ranged from 127-181 mEq. After organophilizated the clays were filtered, dried in an oven for 48 hours and passed in ABNT sieve No. 200, to be so characterized. Sorption was calculated from mathematical equations. Non-aqueous fluids were prepared according to standard Petrobras (EP-1EP-00023A) for rheological testing. Correlating the sorption of surfactant, and the rheological properties of non-aqueous fluid, obtained satisfactory results where observed through the scatter plots there is a strong correlation between the variables sorption and apparent viscosity, it should also be noted that the viscosity is a variable which increases with an increase in sorption, confirming that the surfactant concentration influences the viscosity. (author)

  15. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    Science.gov (United States)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  16. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids

    NARCIS (Netherlands)

    Koelmans, A.A.; Meulman, B.; Meijer, T.; Jonker, M.T.O.

    2009-01-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to

  17. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  18. On the derivation of a sorption database

    International Nuclear Information System (INIS)

    Ewart, F.T.; Haworth, A.; Wisbey, S.J.

    1992-01-01

    The safety arguments in support of many radioactive waste repository concepts are heavily dependent on the existence of a sorption reaction. Such a reaction will, in the near field, reduce the magnitude of the release of a number of hazardous radionuclides so that their release to the geosphere is dispersed in time. In the geosphere, the sorption reactions provide a mechanism whereby the migration of the elements released from the repository is retarded and the radioisotopes then subsequently decay. The processes involved in sorption cannot in many cases be satisfactorily represented in thermodynamic terms such as are employed in the description of dissolution and precipitation. Experiments that investigate these reactions are not easy to perform. The sorption parameters that are obtained experimentally for the near field relate, in the UK case, to sorption on to a cementitious surface. These surfaces, since they consist substantially of calcium hydroxide or calcium silicate hydrates, control the aqueous chemistry, do not permit pH changes to be made and limit the range of concentrations of sorbate that may be used. In the far field, on the other hand, the surfaces are not in general so active with respect to the solution chemistry and data can be obtained across a wide spectrum of aqueous chemistries. These data, although they may be useful in testing and parameterizing models, may not have validity under field conditions since the minerals will, inevitably, react to the changes in water chemistry, over geological timescales. The uncertainties in the experimental data are, for many elements and solids, balanced by a reasonable agreement between workers in the values of the parameters used to describe sorption. 22 refs., 1 fig., 1 tab

  19. Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium

    Science.gov (United States)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-10-01

    A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ, and the vector potential, ϕ , supports both spatially varying perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when ϕ -> 0 and A becomes constant in time, which, in turn, gives ∇ . (J|| +J⊥) = 0 and the associated magnetic islands. Examples in simple cylindrical geometry will be given. The present work is partially supported by US DoE Grant DE-AC02-09CH11466.

  20. Comparison of neptunium sorption results using batch and column techniques

    International Nuclear Information System (INIS)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases

  1. Sorption data bases for generic Swiss argillaceous rock systems

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.; Thoenen, T.

    2010-09-01

    In Switzerland the site selection procedure for both high level waste (HLW) and low and intermediate level waste (L/ILW) repositories is specified by the Swiss Federal Office of Energy in the Sectoral Plan for Deep Geological Repositories. In the forthcoming stage 2 of this plan, potential sites will be identified within regions previously selected based on the presence of suitable host rocks, namely Opalinus Clay, 'Brauner Dogger', Effingen Member and Helvetic Marl. Preliminary safety analyses are an integral part of this procedure, and require, amongst other information, the radionuclide sorption properties of the host rock. This report describes a methodology to develop a Generic Rock Sorption Data Base (GR-SDB) for argillaceous rocks. The method will be used to compile specific SDBs for the above mentioned host rocks. Arguments are presented that the main factor influencing sorption on argillaceous rocks is the phyllosilicate mineral content. These minerals are particularly effective at binding metals to their surfaces by cation exchange and surface complexation. Generally, the magnitude of sorption is directly correlated with the phyllosilicate content (2:1 type clays: illite/smectite/illitesmectite mixed layers), and this parameter best reflects the sorption potential of a given mineral assembly. Consequently, sorption measurements on illite were preferably used as source data for the GR-SDB. The second component influencing radionuclide sorption is the porewater chemistry. In the present report, generic water compositions were extracted from the analytical ranges of deep ground waters in various sedimentary formations in Switzerland. In order to cover the range of ionic strength (I) and pH values of Swiss ground waters in argillaceous rocks, five types of generic water compositions were defined, combining low, intermediate and high values of ionic strength and pH. The GR-SDB for in situ conditions was derived using conversion factors (CF). As the name

  2. Effect of humic acid (HA) on sulfonamide sorption by biochars

    International Nuclear Information System (INIS)

    Lian, Fei; Sun, Binbin; Chen, Xi; Zhu, Lingyan; Liu, Zhongqi; Xing, Baoshan

    2015-01-01

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. - Highlights: • Effect of quantity and fractionation of coated HA on sorption of sulfonamides by BC was studied. • Fractionation of coated HA is tailored by surface properties of BC. • Roles of HA in BC sorption depend on interaction between HA adlayer and sorbate. • Roles of HA in sulfonamide sorption by BC also depend on HA aqueous concentration. - The quantity and fractionation of adsorbed HA play a major role in sulfonamide sorption by biochars

  3. Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy

    International Nuclear Information System (INIS)

    Zhao, Y.J.; Wang, R.Z.; Li, T.X.; Nomura, Y.

    2016-01-01

    Heating and domestic hot water for family houses represents a notable share of energy consumption. However, sufficient space for the installation of thermal energy storage (TES) components may not be available in family houses or urban areas, where space may be restricted and expensive. Sorption TES devices seem to be a promising means of replacing conventional TES devices and reducing the occupied space for its high energy density. In this paper, a 10 kWh short-term sorption TES device was developed and investigated. The employed composite sorbent was formed from lithium chloride (LiCl) with the addition of expanded graphite (EG). The principle of sorption TES for the LiCl/water working pair is first illustrated. This prototype was tested under conditions representative of transition or winter seasons. Under the conditions used (charging temperature T_c_h_a at 85 °C, discharging temperature T_d_i_s at 40 °C, condensing temperature T_c at 18 °C, and evaporating temperature T_e at 30 °C), the heat storage capacity can reach 10.25 kWh, of which sorption heat accounts for approximately 60%. The heat storage density obtained was 873 Wh per kg of composite sorbent or 65.29 kWh/m"3, while the heat storage density of hot water tank was about 33.02 kWh/m"3. - Highlights: • A 10 kWh short-term sorption thermal energy device was developed. • The device was tested under conditions of transition and winter seasons. • The performance of the device was improved by recovering waste heat. • The sorption thermal energy device was compared with a 300-L hot water tank.

  4. Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay

    International Nuclear Information System (INIS)

    Prince, J.R.

    1979-01-01

    Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium

  5. SORPTION OF Cu2+ IONS ONTO DIATOMITE CONSTITUENTS

    Directory of Open Access Journals (Sweden)

    Vasile Rusu

    2009-06-01

    Full Text Available Studies of the sorption capacity towards Cu2+ ions of diatomite from the Ghidirim location of RM, as well as of the extracted clay phase are presented. Separated clay fraction from diatomic material is clean enough, and especially is rich in montmorillonite. Maximum sorption capacity for studied clay fraction is achieved by rising the temperature of calcination treatment up to 200oC. At higher temperatures the lattice of montmorillonite is contracted and its sorption capacity towards Cu2+ ions decreases strongly.

  6. Copper Ferrocyanide Functionalized Core-Shell Magnetic Silica Composites for the Selective Removal of Cesium Ions from Radioactive Liquid Waste.

    Science.gov (United States)

    Lee, Hyun Kyu; Yang, Da Som; Oh, Wonzin; Choi, Sang-June

    2016-06-01

    The copper ferrocyanide functionalized core-shell magnetic silica composite (mag@silica-CuFC) was prepared and was found to be easily separated from aqueous solutions by using magnetic field. The synthesized mag@silica-CuFC composite has a high sorption ability of Cs owing to its strong affinity for Cs as well as the high surface area of the supports. Cs sorption on the mag@silica-CuFC composite quickly reached the sorption equilibrium after 2 h of contact time. The effect of the presence of salts with a high concentration of up to 3.5 wt% on the efficiency of Cs sorption onto the composites was also studied. The maximum sorption ability was found to be maintained in the presence of up to 3.5 wt% of NaCl in the solution. Considering these results, the mag@silica-CuFC composite has great potential for use as an effective sorbent for the selective removal of radioactive Cs ions.

  7. Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents

    International Nuclear Information System (INIS)

    Todd, T.A.; Mann, N.R.; Tranter, T.J.; Sebesta, F.; John, J.; Motl, A.

    2002-01-01

    Ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) composite sorbents have been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) concentrated acidic tank waste. Batch contacts were performed to qualitatively evaluate the effects of increased nitric acid, sodium and potassium. An equilibrium isotherm was generated with simulated concentrated tank waste solutions and fit to the Langmuir equation. Additional batch contact experiments were performed to determine if mercury, plutonium and americium would sorb onto AMP-PAN. Dynamic sorption was evaluated in column tests employing 1.5 cm 3 columns operating at 5, 10 and 20 bed volumes of flow per hour. Results indicate, as expected, that dynamic cesium sorption capacity is reduced as the flowrate is increased. Calculated dynamic capacities for cesium were 22.5, 19.8 and 19.6 mg Cs/g sorbent, for 5, 10 and 20 bed volume per hour flows, respectively. The thermal stability of loaded AMP-PAN was evaluated by performing thermogravimetric analysis (TGA) on samples of AMP, PAN (polymer), and AMP-PAN. Results indicate that AMP-PAN is stable to 400 deg C, with less than a 10% loss of weight, which is at least partially due to loss of water of hydration. The evaluation of AMP-PAN indicates that it will effectively remove cesium from concentrated acidic tank waste solutions. (author)

  8. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol

    Directory of Open Access Journals (Sweden)

    Ding Feng Jin

    2016-10-01

    Full Text Available Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC, mesoporous carbon (MPC, bamboo biochar (BBC and oak wood biochar (OBC were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the π–π electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively, compared to MPC (73.00 mg/g and AC, indicating an ineffective potential for phenol removal from water.

  9. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  10. Sorption of radionickel to goethite: Effect of water quality parameters and temperature

    International Nuclear Information System (INIS)

    Baowei Hu; ShaoXing University, ShaoXing; Wen Cheng; Hui Zhang; Guodong Sheng; Chinese Academy of Sciences, Hefei

    2010-01-01

    In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na + /H + on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. (author)

  11. Study of 137Cs e 60Co sorption in sediments from Saco de Piraquara de Fora, Angra dos Reis and its application for environmental monitoring

    International Nuclear Information System (INIS)

    Ferreira, Ingryd Marques

    2016-01-01

    Both the suspended solid particles and the bed sediments sorb radionuclides, released in water systems. Sorption is usually represented mathematically by the distribution coefficient that is based in equilibrium between phases. Here the adsorption/desorption kinetics of 60 Co and 137 Cs in sea water were simulated by batch equilibrium experiments with sediments in two points (PT - 01, PT - 02) from Saco de Piraquara de Fora inlet (SPF). For both radionuclides, partition coefficient values (Kd) for the sampling point PT - 02 (509 and 385 L/kg for 60 Co and 137 Cs, respectively) were higher than the values determined for PT - 01 one (426 and 182 L/kg for 137 Cs and 60 Co, respectively). The higher values of Kd of PT-02 reflects the higher CEC (71,4 cmolc.dm 3 ) and content of mud < 63 μm (87%) when compared to PT-01 (CEC of 39,5 cmol c .dm 3 ) and mud (55%). In comparison with the values reported in the literature, the found Kd values are low, which may be related to the predominance of kaolinite, which is a clay of low sorption capacity. The Kd values with an increase in temperature of 23 deg C to 27 deg C were similar ( 60 Co in PT-02 and 137 Cs in both sediment) or 27 ° C values were higher ( 60 Co the PT-01). With increasing temperature to 31 °C Kd values for the two radionuclides showed a decrease. However, increasing temperature increases the desorption of the two radionuclides for both sediments The sorption process is spontaneous and favorable for both sediments and the model of sorption can be fitted by both Freundlich and Langmuir sorption isotherms. The maximum amount of 60 Co that can be sorbed on sediments were 1,64 10 -5 moles/g (4,12 10 10 Bq/g) and 2,79 10 -5 moles/g (7,03 10 10 Bq/g) to PT-01 and PT-02, respectively, and of 137 Cs 1,99 10 -6 moles/g (9,70 10 8 Bq/g) and 6,60 10 -6 mol/g (2,87 10 9 Bq/g ) to PT-01 and PT-02. Two areas in SPF can potentially accumulate 137 Cs: sediments located near the effluent discharge and the area located north

  12. Remoção de chumbo(II em sistemas descontínuos por carvões ativados com ácido fosfórico e com vapor Lead(II removal in discontinous systems by carbon activated by phosphoric acid and vapor

    Directory of Open Access Journals (Sweden)

    Cristiane Imenes de Campos Bueno

    2007-01-01

    Full Text Available Adsorption of heavy metal cations by activated carbon is dependent on the capacity of the material in promoting adsorption and the time needed to reach equilibrium. Carbon samples were previously activated either by phosphoric acid treatment at 400 ºC or by steam at 800 ºC. The results of Pb(II adsorption by these activated carbons have shown that equilibrium was typically reached within the first 5 min of contact between carbon and metal solution, with a maximum adsorption capacity higher than 69 mg g-1 for the vapor-activated sample. Temperature influences the sorption capacity, which corresponds to an endothermic process. Lead(II retention is more pronounced at high temperature and low pH.

  13. A mechanistic approach to the generation of sorption databases

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1992-01-01

    Sorption of radionuclides in the near and far fields of an underground nuclear waste repository is one of the most important processes retarding their release to the environment. In the vast majority of cases sorption data have been presented in terms of empirical parameters such as distribution coefficients and isotherm equations. A consequence of this empirical methodology is that the sorption data are only strictly valid under the experimental conditions at which they were measured. Implicit in this approach is the need to generate large amounts of data and fitting parameters necessary for an empirical description of sorption under all realistically conceivable conditions which may arise in space and time along the migration pathway to Man. An alternative approach to the problem is to try to understand, and develop model descriptions of, underlying retention mechanisms and to identify those systems parameters which essentially determine the extent of sorption. The aim of this work is to see to what extent currently existing mechanistic models, together with their associated data, can be applied to predict sorption data from laboratory experiments on natural systems. This paper describes the current status of this work which is very much in an early stage of development. An example is given whereby model predictions are compared with laboratory results for the sorption of Np at trace concentrations under oxidizing conditions on a series of minerals relevant to granite formations. 31 refs., 11 figs., 5 tabs

  14. Sericitization of illite decreases sorption capabilities for cesium

    Science.gov (United States)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction

  15. Ageing in the trap model as a relaxation further away from equilibrium

    International Nuclear Information System (INIS)

    Bertin, Eric

    2013-01-01

    The ageing regime of the trap model, observed for a temperature T below the glass transition temperature T g , is a prototypical example of non-stationary out-of-equilibrium state. We characterize this state by evaluating its ‘distance to equilibrium’, defined as the Shannon entropy difference ΔS (in absolute value) between the non-equilibrium state and the equilibrium state with the same energy. We consider the time evolution of ΔS and show that, rather unexpectedly, ΔS(t) continuously increases in the ageing regime, if the number of traps is infinite, meaning that the ‘distance to equilibrium’ increases instead of decreasing in the relaxation process. For a finite number N of traps, ΔS(t) exhibits a maximum value before eventually converging to zero when equilibrium is reached. The time t* at which the maximum is reached however scales in a non-standard way as t * ∼N T g /2T , while the equilibration time scales as τ eq ∼N T g /T . In addition, the curves ΔS(t) for different N are found to rescale as ln t/ln t*, instead of the more familiar scaling t/t*. (paper)

  16. Sorption and desorption of insecticides in Brazilian soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Lord, K.A.; Ruegg, E.F.

    1980-01-01

    The sorption from aqueous solution of ten Brazilian soil types of four organochlorine, two organophosphorus and one carbamate insecticide was determined in the laboratory using gas chromatographic and radiometric techniques. Measurements showed that soils richest in organic matter, sorbed all substances except aldrin more strongly than the other soils. DDT was the most and aldrin the least sorbed organochlorine pesticide, being dieldrin sorbed two to four times more strongly than aldrin. Sorption of lindane varied in different soils. The organophosphate insecticides malathion and parathion were strongly sorbed in the soils richest in organic matter and weakly sorbed in the poorest soils heing moderately sorbed by the other soils. Sorption of carbaryl by all soils is small. Lindane was desorbed from the soil richest in organic matter and the extent of desorption was dependent on the sorption time. (Author) [pt

  17. Long Term Sorption Diffusion Experiment (LTDE-SD). Performance of main in situ experiment and results from water phase measurements

    International Nuclear Information System (INIS)

    Widestrand, Henrik; Byegaard, Johan; Nilsson, Kersti; Hoeglund, Susanne; Gustafsson, Erik; Kronberg, Magnus

    2010-12-01

    The LTDE-SD experiment, (Long Term Sorption Diffusion Experiment) aimed at increasing the scientific knowledge of sorption and diffusion under in situ conditions and to provide data for performance and safety assessment calculations. Performance and results of the in situ experiment phase are presented in the report. In total, 21 radionuclide trace elements and one stable trace element were injected, circulated and sampled for ∼6.5 months in a closed borehole section. The trace elements represented non-sorbing tracers and sorbing tracers for which the sorption was dominated by a cation exchange mechanism, a surface complexation mechanism, or dependent on an electrochemical reduction in order to reach the tetravalent state (oxidation state IV) considered very strongly sorbing. The borehole section in contact with the tracer labelled groundwater consisted in part of a natural fracture surface and a borehole section in the unaltered matrix rock, devoid of natural fractures. Water samples were regularly extracted and analysed for trace element concentration and a few ion exchange speciation and filtered samplings were also conducted. Independent colloid filtering and chemical speciation calculations were performed in support the evaluation. Sorption was demonstrated for a series of elements present in the experiment. The amounts lost of the different respective tracers from the aqueous phase follow very well the general understanding of the relative sorption strength of the tracers, as inferred from e.g. batch sorption experiments and dynamic in situ tracer experiments. The chemical speciation calculations of the different tracers were in line with the results of the ion exchange speciation performed during the experiment. With the exception of UO 2 2+ carbonate complexes formed, no strong indications were obtained that aqueous complexation prevents adsorption under the chemical conditions of the experiment. The 20 nm filtered sampling indicated that radionuclide

  18. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Guo Xueyan; Luo Lei; Ma Yibing; Zhang Shuzhen

    2010-01-01

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13 C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  19. Sorption of perfluoroalkyl substances to two types of minerals.

    Science.gov (United States)

    Hellsing, Maja S; Josefsson, Sarah; Hughes, Arwel V; Ahrens, Lutz

    2016-09-01

    The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sorption of Co2+ on modified inorganic materials

    International Nuclear Information System (INIS)

    Hanzel, R.; Rajec, P.

    1999-01-01

    The aim of this study was preparation and characterization of sorbents on the base a silica-gel matrix with immobilized functional group (imidazole or crown-ether). Sorption of cobalt from aqueous solutions on prepared sorbents in static conditions (by 'batch' method) in the dependence of concentration, pH value,, as well as kinetics of sorption were studied. The influence of heavy or toxic metals [Hg(II), Cd(II), Mn(II), Zn(II), Cu(II), Fe(III), Cr(III), Al(III), Na and K] on sorption of cobalt was studied, too