WorldWideScience

Sample records for sorption conceptual models

  1. GEOQUIMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling versus K[D])

    International Nuclear Information System (INIS)

    Hammond, Glenn E.; Cygan, Randall Timothy

    2007-01-01

    Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K D approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K D and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given

  2. Sorption mechanisms and sorption models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.; Duc, M.; Neskovic, C.; Milonjic, S.

    2004-01-01

    Sorption at the solid-liquid interfaces play a major role in many phenomena and technologies: chemical separations, catalysis, biological processes, transport of toxic and radioactive species in surface and underground waters. The long term safety of radioactive waste repositories is based on artificial and natural barriers, intended to sorb radionuclides after the moment when the storage matrixes and containers will be corroded. Predictions on the efficiency of sorption for more than 10 6 years have to be done in order to demonstrate the safety of such depositories, what is a goal never encountered in the history of sciences and technology. For all these purposes, and, especially for the long term prediction, acquiring of sorption data constitutes only a first step of studies. Modeling based on a very good knowledge of sorption mechanisms is needed. In this review, we shall examine the main approaches and models used to quantify sorption processes, including results taken from the literature and from our own studies. We shall compare sorption models and examine their adequacy with sorption mechanisms. The cited references are only a few examples of the numerous articles published in that field. (orig.)

  3. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  4. Integrated sorption and diffusion model for bentonite. Part 1. Clay-water interaction and sorption modeling in dispersed systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael

    2014-01-01

    To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)

  5. Re-evaluation of the sorption behaviour of Bromide and Sulfamethazine under field conditions using leaching data and modelling methods

    Science.gov (United States)

    Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus

    2016-04-01

    The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima

  6. Geochemical modelling of the sorption of tetravalent radioelements

    International Nuclear Information System (INIS)

    Bond, K.A.; Tweed, C.J.

    1991-05-01

    The results of an experimental study of the sorption of a range of tetravalent radioelements, plutonium (IV), tin (IV), thorium(IV) and uranium(IV), onto clay at pH8 and pH11 have been successfully simulated using a triple layer sorption model. The model has been incorporated into HARPHRQ, a geochemical program based on PHREEQE. The model has been parameterised using data for sorption onto ferric oxyhydroxide and goethite. The effects of hydroxycarboxylic acids on the sorption process have also been investigated experimentally. It was generally observed that in the presence of 2x10 -3 M gluconate, sorption was reduced by up two orders of magnitude. The model has satisfactorily simulated these lower sorptivities, through assuming competing sorption and complexation reactions. This work, therefore, further confirms the need to take account of such organic materials in safety assessment modelling. (author)

  7. Recent progress in sorption mechanisms and models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.

    2005-01-01

    Full text of publication follows: Sorption-desorption phenomena play an important role in the migration of radioactive species in surface and underground waters. In order to predict the transport of these species, we need a good knowledge of sorption processes and data, together with reliable models able to be included in transport calculation. Traditional approaches based on experimentally determined distribution coefficients (Kd) and sorption isotherms have a limited predictive capability, since they are very sensitive to the numerous parameters characterizing the solution and the solid. Models based on thermodynamic equilibria were developed to account for the influence these parameters: the ion exchange model and the surface complexation models (2-pK mono-site, 1-pK multi-site, with several different electrostatic models: CCM, DLM, BSM, TLM,...). Although these models are very useful, studies performed in recent years showed that they have important theoretical and experimental limitations, which result in the fact that we must be very careful when we use them for extrapolating sorption data to long term and to large natural systems. Among all problems which can be found are: the possibility to fit a set of experimental data with different models, sometimes bad adequacy with the real sorption processes, some theoretical limitations such as a rigorous definition of reference and standard states in surface equilibria, slow kinetics which prevent from equilibrium achievement, irreversibility, solubility and evolution of solid phases... Through the increase of the number of sensitive spectroscopic methods, we are now able to know more about sorption processes at the atomic scale. Models such as the 1-pK CD-MUSIC model can account for the influence of orientation of the faces of the solid. More and more examples of the influence of this orientation on the sorption properties are known. Calculations performed by 'ab initio' modeling is also useful to predict the

  8. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  9. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2013-01-01

    Based on the sorption distribution coefficients (K d ) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K d values of Cs onto Mizunami granite carried out by JAEA with the K d values predicted by the model, the effect of the ionic strength on the K d values of Cs onto granite was evaluated. It was found that K d values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10 -2 to 5 x 10 -1 mol/dm 3 . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  10. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S., E-mail: nagasas@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2013-07-01

    Based on the sorption distribution coefficients (K{sub d}) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K{sub d} values of Cs onto Mizunami granite carried out by JAEA with the K{sub d} values predicted by the model, the effect of the ionic strength on the K{sub d} values of Cs onto granite was evaluated. It was found that K{sub d} values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10{sup -2} to 5 x 10{sup -1} mol/dm{sup 3} . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  11. Modelling of a diffusion-sorption experiment on sandstone

    International Nuclear Information System (INIS)

    Smith, P.A.

    1989-11-01

    The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs

  12. Experimental measurements and integrated modelling studies of actinide sorption onto cement

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Baston, G.M.N.

    2003-01-01

    An Integrated Cement Sorption Model (ICSM) for actinides onto Ordinary Portland Cement (OPC) is developed. The experimental measurements using the batch sorption technique for actinides onto cement and constituent minerals, which were considered in the modelling calculations, are also described. The actinide elements studied (thorium, uranium, neptunium, plutonium and americium) were strongly sorbed onto OPC. An initial comparison of the experimental data relating the sorption values of actinides onto cement-component phases with those onto OPC is carried out. The results suggest that the Calcium Silicate Hydrate (C-S-H) phases were found to be the most likely candidates to be the dominant-sorbing phases in order to describe the sorption of a actinides onto OPC. An approach to develop the integrated cement sorption model, based on a thermodynamic surface complexation model, is described with discussions on the possible mineralogy and phase distribution of OPC. Another approach than sorption, assuming that co-precipitation on the surface of the cement phase dominates 'sorption', is proposed and discussed. A scoring system is introduced to assess the applicability of the proposed ICSMs. It is suggested that the thermodynamic sorption model is recommended for the sorption of ionic species and the surface co-precipitation model is recommended for the sorption of neutral species though the sorption model is still recommended to be used to model OPC-based systems. (author)

  13. Interim report on modeling sorption with EQ3/6

    International Nuclear Information System (INIS)

    Viani, B.

    1988-01-01

    Reversible, equilibrium models of sorption to be incorporated into the EQ3/6 geochemical modeling package are summarized. Empirical sorption models as formulated in linear, Langmuir, and Freundlich isotherms will be developed as options to EQ3/6. This work will be done at LLNL. Options for modeling sorption using surface- complexation constructs (diffuse, constant capacitance, and triple-layer models) will also be developed. Development of the surface-complexation options will require part of the work be done under contract. 27 refs., 1 fig

  14. Prediction of metal sorption in soils

    International Nuclear Information System (INIS)

    Westrich, Henry R.; Anderson, Harold L. Jr.; Arthur, Sara E.; Brady, Patrick V.; Cygan, Randall T.; Liang, Jianjie; Zhang, Pengchu; Yee, N.

    2000-01-01

    Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K D approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K D 's), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs + , Sr 2+ and Ba 2+ (analogue for Ra 2+ ) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba 2+ and Sr 2+ onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr 2+ sorbs weakly onto geothite and quartz, and is pH-dependent. Sr 2+ sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba 2+ is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba 2+ and the mineral substrate. This suggests that Ba 2+ adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed

  15. Mathematical modelling of the sorption isotherms of quince

    Directory of Open Access Journals (Sweden)

    Mitrevski Vangelce

    2017-01-01

    Full Text Available The moisture adsorption isotherms of quince were determined at four temperatures 15, 30, 45, and 60°C over a range of water activity from 0.110 to 0.920 using the standard static gravimetric method. The experimental data were fitted with generated three parameter sorption isotherm models on Mitrevski et al., and the referent Anderson model known in the scientific and engineering literature as Guggenheim- Anderson-de Boer model. In order to find which models give the best results, large number of numerical experiments was performed. After that, several statistical criteria for estimation and selection of the best sorption isotherm model was used. The performed statistical analysis shows that the generated three parameter model M11 gave the best fit to the sorption data of quince than the referent three parameter Anderson model.

  16. Review of sorption models, and their suitability for use in performance assessments

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-02-01

    The sorption of radionuclides on mineral surfaces is an important mechanism for retarding the movement of radionuclides from a geological nuclear fuel disposal vault, through the geosphere, to the biosphere. Sorption processes are known to increase the travel times for some radionuclides by 103 to 106 times relative to the groundwater flow, and this delay can provide the opportunity for radioactive decay before the radionuclide enters the biosphere. Sorption models are, or can be, used as a means of including the effects of sorption in the transport equations which describe the movement of radionuclides through the geosphere. Sorption models are, or could be, based on sorption isotherms, such as the Langmuir and Freundlich isotherms, ion-exchange models, surface-complexation models, or parametric models that are, essentially, interpolated databases. All national nuclear fuel waste disposal programs currently assume the linear adsorption isotherm, which states that the degree of sorption on a surface is a linear function of the concentration of sorbing ion in solution. The sorption models that are, or could be, applied to the movement of radionuclides in the geosphere are reviewed. It is concluded that, at the present state of knowledge, no single model has been demonstrated to provide an adequate description of radionuclide sorption. Reasons for this inadequacy vary, ranging from lack of data, through restricted ability to describe sorption under a variety of conditions, to current levels of development of the models. It is concluded that a parametric model, associated with a linear sorption isotherm, is currently the most practical choice that can be made. Following the completion of an earlier draft of this report, a new approach to surface complexation modelling, the 'discrete-log-K-spectrum' model, was published. This model appears to have the potential to achieve a synthesis of many of the concepts used in sorption modelling. For this reason, a description of

  17. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  18. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  19. A Sorption Hysteresis Model For Cellulosic Materials

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Damkilde, Lars

    2006-01-01

    The equilibrium concentration of adsorbed water in cellulosic materials is dependent on the history of the variations of vapor pressure in the ambient air, i.e. sorption hysteresis. Existing models to describe this phenomenon such as the independent domain theory have numerical drawbacks and....../or imply accounting for the entire history variations of every material point. This paper presents a sorption hysteresis model based on a state formulation and expressed in closed-form solutions, which makes it suitable for implementation into a numerical method....

  20. Sorption of fission nuclides on model milk components. II. Sorption of radiostrontium on hydroxyapatite in milk and whey

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.

    1999-01-01

    In this work the whey was chosen as a model solution of liquid phase for sorption study of strontium on hydroxyapatite. The whey was obtained using two methods - ultracentrifugation and precipitation of casein. The sorption was studied at a different pH and at a different concentration of calcium. The sorption of strontium on hydroxyapatite from milk was studied, too. (authors)

  1. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  2. Modeling coupled sorption and transformation of 17β-estradiol–17-sulfate in soil–water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng

    2014-11-01

    Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17 beta-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved Using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R-adj(2) = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.

  3. Mathematical Modeling of Moisture Sorption Isotherms and Determination of Isosteric Heats of Sorption of Ziziphus Leaves

    Directory of Open Access Journals (Sweden)

    Amel Saad

    2014-01-01

    Full Text Available Desorption and adsorption equilibrium moisture isotherms of Ziziphus spina-christi leaves were determined using the gravimetric-static method at 30, 40, and 50°C for water activity (aw ranging from 0.057 to 0.898. At a given aw, the results show that the moisture content decreases with increasing temperature. A hysteresis effect was observed. The experimental data of sorption were fitted by eight models (GAB, BET, Henderson-Thompson, modified-Chung Pfost, Halsey, Oswin, Peleg, and Adam and Shove. After evaluating the models according to several criteria, the Peleg and Oswin models were found to be the most suitable for describing the sorption curves. The net isosteric heats of desorption and adsorption of Ziziphus spina-christi leaves were calculated by applying the Clausius-Clapeyron equation to the sorption isotherms and an expression for predicting these thermodynamic properties was given.

  4. Experimental study and modelling of selenite sorption onto illite and smectite clays.

    Science.gov (United States)

    Missana, T; Alonso, U; García-Gutiérrez, M

    2009-06-15

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.

  5. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    International Nuclear Information System (INIS)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-01-01

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of ''local equilibrium'' assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of

  6. SITE-94. Adaptation of mechanistic sorption models for performance assessment calculations

    International Nuclear Information System (INIS)

    Arthur, R.C.

    1996-10-01

    Sorption is considered in most predictive models of radionuclide transport in geologic systems. Most models simulate the effects of sorption in terms of empirical parameters, which however can be criticized because the data are only strictly valid under the experimental conditions at which they were measured. An alternative is to adopt a more mechanistic modeling framework based on recent advances in understanding the electrical properties of oxide mineral-water interfaces. It has recently been proposed that these 'surface-complexation' models may be directly applicable to natural systems. A possible approach for adapting mechanistic sorption models for use in performance assessments, using this 'surface-film' concept, is described in this report. Surface-acidity parameters in the Generalized Two-Layer surface complexation model are combined with surface-complexation constants for Np(V) sorption ob hydrous ferric oxide to derive an analytical model enabling direct calculation of corresponding intrinsic distribution coefficients as a function of pH, and Ca 2+ , Cl - , and HCO 3 - concentrations. The surface film concept is then used to calculate whole-rock distribution coefficients for Np(V) sorption by altered granitic rocks coexisting with a hypothetical, oxidized Aespoe groundwater. The calculated results suggest that the distribution coefficients for Np adsorption on these rocks could range from 10 to 100 ml/g. Independent estimates of K d for Np sorption in similar systems, based on an extensive review of experimental data, are consistent, though slightly conservative, with respect to the calculated values. 31 refs

  7. Surface complexation modeling of zinc sorption onto ferrihydrite.

    Science.gov (United States)

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  8. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [College of Environmental Science and Engineering, Anhui Normal University, South Jiuhua Road, 189, 241002 Wuhu (China); Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Fiol, Núria [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Villaescusa, Isabel, E-mail: Isabel.Villaescusa@udg.edu [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Poch, Jordi [Applied Mathematics Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain)

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the modelModel validation by checking it against independent sets of data.

  9. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    International Nuclear Information System (INIS)

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-01

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the modelModel validation by checking it against independent sets of data

  10. Validation of water sorption-based clay prediction models for calcareous soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Razzaghi, Fatemeh; Moosavi, Ali

    2017-01-01

    on prediction accuracy. The soils had clay content ranging from 9 to 61% and CaCO3 from 24 to 97%. The three water sorption models considered showed a reasonably fair prediction of the clay content from water sorption at 28% relative humidity (RMSE and ME values ranging from 10.6 to 12.1 and −8.1 to −4......Soil particle size distribution (PSD), particularly the active clay fraction, mediates soil engineering, agronomic and environmental functions. The tedious and costly nature of traditional methods of determining PSD prompted the development of water sorption-based models for determining the clay...... fraction. The applicability of such models to semi-arid soils with significant amounts of calcium carbonate and/or gypsum is unknown. The objective of this study was to validate three water sorption-based clay prediction models for 30 calcareous soils from Iran and identify the effect of CaCO3...

  11. Surface complexation modelling: Experiments on the sorption of nickel on quartz

    International Nuclear Information System (INIS)

    Puukko, E.; Hakanen, M.

    1995-10-01

    Assessing the safety of a final repository for nuclear wastes requires knowledge concerning the way in which the radionuclides released are retarded in the geosphere. The aim of the work is to aquire knowledge of empirical methods repeating the experiments on the sorption of nickel on quartz described in the reports published by the British Geological Survey (BGS). The experimental results were modelled with computer models at the Technical Research Centre of Finland (VTT Chemical Technology). The results showed that the experimental knowledge of the sorption of Ni on quartz have been acheved by repeating the experiments of BGS. Experiments made with the two quartz types, Min-U-Sil 5 (MUS) and Nilsiae, showed the difference in sorption of Ni in the low ionic strength solution (0.001 M NaNO 3 ). The sorption of Ni on MUS was higher than predicted by the Surface Complexation Model (SCM). The phenomenon was also observed by the BGS, and may be due to the different amounts of inpurities in the MUS and in the NLS. In other respects, the results of the sorption experiments fitted quite well with those predicted by the SCM model. (8 refs., 8 figs., 11 tabs.)

  12. Conceptual and Numerical Modeling of Radionuclide Transport and Retention in Near-Surface Systems

    International Nuclear Information System (INIS)

    Pique, Angels; Arcos, David; Grandia, Fidel; Molinero, Jorge; Duro, Lara; Berglund, Sten

    2013-01-01

    Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases

  13. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  14. Experimental studies of Cs, Sr, Ni, and Eu sorption on Na-illite and the modelling of Cs sorption

    International Nuclear Information System (INIS)

    Poinssot, C.; Baeyens, B.; Bradbury, M.H.

    1999-08-01

    A natural illite (illite du Puy) was purified and converted to the homo-ionic Na-form. The conditioned Na-illite was characterised in terms of its mineralogy, chemical inventory and physico-chemical properties. The structural formula was determined from energy dispersive spectroscopic analyses (SEM/TEM-EDS) and bulk chemistry measurements. A cation exchange capacity of 127 meq kg -1 was determined by the 22 Na isotope dilution method at neutral pH. The Na-CEC was also measured as a function of pH. The stability of Na-illite as a function of pH in the range between 3 and 6 was investigated. At low pH values partial dissolution of the illite occurs releasing the structural elements Al, Si, Mg, and K into solution. The presence of Ca and Sr in solution was interpreted as being due to desorption from cation exchange sites. All of these elements are also present at neutral pH but at considerably lower levels. Such effects cannot be avoided and must be considered in the interpretation of the sorption measurements. The main focus of the experimental work presented here is on the sorption behaviour of Cs, Sr, Ni and Eu on conditioned Na-illite as a function of NaClO 4 background electrolyte concentration (0.1 and 0.01 M), nuclide concentration and pH in the range between 3 and 11. Sorption edge data (R d versus pH) and sorption isotherms (quantity of nuclide sorbed versus equilibrium nuclide concentration) are presented for these four elements. Prior to beginning these experiments, sorption kinetics were measured. The broad based pool of sorption measurements generated from this work will provide the source data sets for subsequent modelling. So far only the Cs sorption measurements have been modelled. A two site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two site types were termed 'frayed edge sites' (FES, high affinity/low capacity) and 'type II sites' (low affinity/high capacity). Selectivity

  15. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  16. Performance of chromatographic systems to model soil-water sorption.

    Science.gov (United States)

    Hidalgo-Rodríguez, Marta; Fuguet, Elisabet; Ràfols, Clara; Rosés, Martí

    2012-08-24

    A systematic approach for evaluating the goodness of chromatographic systems to model the sorption of neutral organic compounds by soil from water is presented in this work. It is based on the examination of the three sources of error that determine the overall variance obtained when soil-water partition coefficients are correlated against chromatographic retention factors: the variance of the soil-water sorption data, the variance of the chromatographic data, and the variance attributed to the dissimilarity between the two systems. These contributions of variance are easily predicted through the characterization of the systems by the solvation parameter model. According to this method, several chromatographic systems besides the reference octanol-water partition system have been selected to test their performance in the emulation of soil-water sorption. The results from the experimental correlations agree with the predicted variances. The high-performance liquid chromatography system based on an immobilized artificial membrane and the micellar electrokinetic chromatography systems of sodium dodecylsulfate and sodium taurocholate provide the most precise correlation models. They have shown to predict well soil-water sorption coefficients of several tested herbicides. Octanol-water partitions and high-performance liquid chromatography measurements using C18 columns are less suited for the estimation of soil-water partition coefficients. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Modelling Ni diffusion in bentonite using different sorption models

    International Nuclear Information System (INIS)

    Pfingsten, W.; Baeyens, B.; Bradbury, M.

    2010-01-01

    Document available in extended abstract form only. An important component of the multi barrier disposal concept for a radioactive waste repository is the bentonite backfill surrounding the canisters containing vitrified high-level waste and spent fuel located in the tunnels deep within the chosen host rock. The effectiveness of the compacted bentonite barrier is such that calculations have indicated that many radionuclides have decayed to insignificant levels before having diffused through the thickness of bentonite. These calculations are performed using the simple Kd sorption concept in which the values are taken from batch type experiments performed on dispersed systems performed for a single metal at a time, usually at trace concentrations. However, in such complex systems many radionuclides, inactive metal contaminants/ground water components may be simultaneously present in the aqueous phase at a range of concentrations varying with time during the temporal evolution of the repository system. An important aspect influencing the sorption of any radioactive metal under a set of given geochemical conditions is its competition with other metals present, and how this may vary as a function of concentration. Competitive sorption effects are not currently included in safety assessments and are thus an issue which needs to be addressed. Here we provide some first estimates of the potential influence of competitive sorption effects on the migration of radioactive metals through compacted bentonite as a function of their concentration and the concentration of competing metals. Ni(II) and Fe(II) were chosen as possible competing cations since their concentration levels are expected to have values greater than trace levels and effects might be maximal and canister corrosion represents a permanent Fe source at the bentonite interface which could influence bivalent radionuclide diffusion. The modelling of the Ni(II) diffusion/sorption has been carried out using three

  18. The selection and use of a sorption database for the geosphere model in the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Vandergraaf, T.T.; Ticknor, K.V.; Melnyk, T.W.

    1992-01-01

    An extensively characterized intrusive granitic formation, the Lac du Bonnet batholith, is being used as a test case for environmental and safety assessment calculations of the impact of a hypothetical disposal vault. The conceptual vault has dimensions of 2 x 2 km and is located at a depth of 500 m, near the Whiteshell Nuclear Research Establishment (WNRE) (CANADA). Hydraulic investigations of the batholith have shown that the bulk of the groundwater flow will be limited to the existing network of water-bearing fractures. Groundwater flow and contaminant transport modelling is based on a porous-medium concept for both the fracture systems and the rock matrix. Geochemical investigations have identified a number of alteration minerals in these fracture systems. The geochemistry encountered along the flow field is too complex to allow the interaction of radionuclides with the geological material to be represented by a single sorption coefficient for each radionuclide on a single rock type. However, the level of understanding of radionuclide interaction with geological materials is not sufficiently well developed to calculate radionuclide transport using models based on chemical thermodynamics or on advanced sorption models based on surface complexation or mass action. Instead, a parametric model has been developed using the total dissolved solids and radionuclide concentrations as independent variables. The mineralogical complexity of the flow field is addressed by selecting sorption data on the nine most commonly occurring fracture infilling minerals in this batholith, four common rock-forming minerals, and on altered and unaltered granite. This approach produces two polynomial equations for each radionuclide/mineral combination, one under oxic and one under anoxic conditions. Where insufficient information is available, these polynomial expressions are reduced to an equation with one variable or to a single sorption coefficient. 48 refs., 6 figs., 4 tabs

  19. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    International Nuclear Information System (INIS)

    Powell, Brian; Schlautman, Mark; Rao, Linfeng; Nitsche, Heino; Gregorich, Kenneth

    2016-01-01

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gaps still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in

  20. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Schlautman, Mark [Clemson Univ., SC (United States); Rao, Linfeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nitsche, Heino [Univ. of California, Berkeley, CA (United States); Gregorich, Kenneth [Univ. of California, Berkeley, CA (United States)

    2016-02-02

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gaps still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in

  1. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    Science.gov (United States)

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modelling Zn(II) sorption onto clayey sediments using a multi-site ion-exchange model

    International Nuclear Information System (INIS)

    Tertre, E.; Beaucaire, C.; Coreau, N.; Juery, A.

    2009-01-01

    In environmental studies, it is necessary to be able to predict the behaviour of contaminants in more or less complex physico-chemical contexts. The improvement of this prediction partly depends on establishing thermodynamic models that can describe the behaviour of these contaminants and, in particular, the sorption reactions on mineral surfaces. In this way, based on the mass action law, it is possible to use surface complexation models and ion exchange models. Therefore, the aim of this study is (i) to develop an ion-exchange model able to describe the sorption of transition metal onto pure clay minerals and (ii) to test the ability of this approach to predict the sorption of these elements onto natural materials containing clay minerals (i.e. soils/sediments) under various chemical conditions. This study is focused on the behaviour of Zn(II) in the presence of clayey sediments. Considering that clay minerals are cation exchangers containing multiple sorption sites, it is possible to interpret the sorption of Zn(II), as well as competitor cations, by ion-exchange equilibria with the clay minerals. This approach is applied with success to interpret the experimental data obtained previously in the Zn(II)-H + -Na + -montmorillonite system. The authors' research team has already studied the behaviour of Na + , K + , Ca 2+ and Mg 2+ versus pH in terms of ion exchange onto pure montmorillonite, leading to the development of a thermodynamic database including the exchange site concentrations associated with montmorillonite and the selectivity coefficients of Na + , K + , Ca 2+ , Mg 2+ , and Zn 2+ versus H + . In the present study, experimental isotherms of Zn(II) on two different sediments in batch reactors at different pH and ionic strengths, using NaCl and CaSO 4 as electrolytes are reported. Assuming clay minerals are the main ion-exchanging phases, it is possible to predict Zn(II) sorption onto sediments under different experimental conditions, using the previously

  3. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-10-12

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs.

  4. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    International Nuclear Information System (INIS)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-01-01

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs

  5. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    International Nuclear Information System (INIS)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model

  6. Surface complexation modelling applied to the sorption of nickel on silica

    International Nuclear Information System (INIS)

    Olin, M.

    1995-10-01

    The modelling based on a mechanistic approach, of a sorption experiment is presented in the report. The system chosen for experiments (nickel + silica) is modelled by using literature values for some parameters, the remainder being fitted by existing experimental results. All calculations are performed by HYDRAQL, a model planned especially for surface complexation modelling. Allmost all the calculations are made by using the Triple-Layer Model (TLM) approach, which appeared to be sufficiently flexible for the silica system. The report includes a short description of mechanistic sorption models, input data, experimental results and modelling results (mostly graphical presentations). (13 refs., 40 figs., 4 tabs.)

  7. Kinetics and equilibrium modeling of uranium(VI) sorption by bituminous shale from aqueous solution

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2014-01-01

    Highlights: • Oil shales are sedimentary rocks containing a polymeric matter in a mineral matrix. • Sorption potential of bituminous shale (BS) for uranium recovery was investigated. • U(VI) sorption increased with decreasing pH and increasing temperature. • Kinetic data were analyzed based on single and two resistance diffusion models. • The results fit well to the McKay equation assuming film and intraparticle diffusion. - Abstract: Sorption of U(VI) onto a bituminous shale (BS) from a nuclear power plant project site in Black Sea region was investigated for potential risk assessment when it releases into the environment with contaminated ground and surface water. The sorption characteristics of the BS for U(VI) recovery were evaluated as a function of contact time, adsorbent dosage, initial concentration, pH and temperature. Kinetic results fit better with pseudo-second-order model rather than pseudo-first-order. The possibility of diffusion process was analyzed based on Weber–Morris intra-particle diffusion model. The McKay equation assuming film- and intraparticle diffusion better predicted the data than the Vermeulen approximation presuming surface diffusion. Equilibrium sorption data were modeled according to the Langmuir, Dubinin–Radushkevich (D–R) and Freundlich isotherm equations. Sorption capacity increased from 0.10 to 0.15 mmol g −1 in 298–318 K temperature range. FT-IR analysis and pH dependent sorption studies conducted in hydroxide and carbonate media revealed that U(VI) species were sorbed in uranyl and its hydroxo forms on the BS. Desorption studies showed that U(VI) leaching with Black Sea water was negligible from the loaded BS. The activation parameters (E a , ΔH ∗ and ΔG ∗ ) estimated from diffusion coefficients indicated the presence of an energy barrier in the sorption system. However, thermodynamic functions derived from sorption equilibrium constants showed that overall sorption process was spontaneous in nature

  8. A new safety assessment model for shallow land burial of LLW based on multicomponent sorption theory

    International Nuclear Information System (INIS)

    Katoh, N.; Asano, T.; Tasaka, H.

    1984-01-01

    A new model on the radionuclide migration in underground environment is developed based on ''multicomponent sorption theory''. The model is capable of predicting the behaviors of the coexisting materials in soil-ground water system as ''multicomponent sorption phenomena'' and also predicting the radinuclide migration affected by the changes of concentrations of coexisting materials. The model is not a ''statistical model'' but a ''chemical model'' based on the ''ion exchange theory'' and ''adsorption theory''. Additionally, the model is a ''kinetic model'' capable of estimating the effect of ''rate of sorption'' on the radionuclide migration. The validity of the model was checked by the results of column experiments for sorption. Finally, sample calculations on the radionuclide migration in reference shallow land burial site were carried out for demonstration

  9. Retention/sorption and geochemical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Grandia, F.; Domenech, C. [Enviros Spain, S.L., Barcelona (Spain); SCK-CEN, Mol (Belgium); Sellin, P. [SKB - Swedish Nuclear Fuel and Waste Management, SE, Stockholm (Sweden); Hunter, F.M.I.; Bate, F.; Heath, T.G.; Hoch, A. [Serco Assurance, Oxfordshire (United Kingdom); Werme, L.O. [SKB - Svensk Karnbranslehantering AB, Stockholm (Sweden); Bruggeman, C.; Maes, I.A.; Breynaert, E.; Vancluysen, J. [Leuven Katholieke Univ., Lab. for Colloid Chemistry (Belgium); Montavon, G.; Guo, Z. [Ecole des Mines, 44 - Nantes (France); Riebe, B.; Bunnenberg, C.; Meleshyn, A. [Leibniz Univ. Hannover, Zentrum fur Strahlenschutz und Radiookologie, Hannover (Germany); Dultz, S. [Leibniz Univ. Hannover, Institut fur Bodenkunde, Hannover (Germany)

    2007-07-01

    This session gathers 4 articles dealing with: the long-term geochemical evolution of the near field of a KBS-3 HLNW repository: insights from reactive transport modelling (D. Arcos, F. Grandia, C. Domenech, P. Sellin); the investigation of iron transport into bentonite from anaerobically corroding steel: a geochemical modelling study (F.M.I. Hunter, F. Bate, T.G. Heath, A. Hoch, L.O. Werme); SeO{sub 3}{sup 2-} adsorption on conditioned Na-illite: XAS spectroscopy, kinetics, surface complexation model and influence of compaction (C. Bruggeman, A. Maes, G. Montavon, E. Breynaert, Z. Guo, J. Vancluysen); the influence of temperature and gamma-irradiation on the anion sorption capacity of modified bentonites (B. Riebe, C. Bunnenberg, A. Meleshyn, S. Dultz)

  10. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  11. Surface complexation modelling: Experiments on sorption of nickel on quartz, goethite and kaolinite and preliminary tests on sorption of thorium on quartz

    Energy Technology Data Exchange (ETDEWEB)

    Puukko, E.; Hakanen, M. [Univ. of Helsinki (Finland). Dept. of Chemistry. Lab. of Radiochemistry

    1997-09-01

    The aim of the work was to study the sorption behaviour of Ni on quartz, goethite and kaolinite at different pH levels and in different electrolyte solutions of different strength. In addition preliminary experiments were made to study the sorption of thorium on quartz. The MUS quartz and Nilsiae quartz were analysed for MnO{sub 2} by neutron activation analysis (NAA) and the experimental results were modelled with the HYDRAQL computer model. 9 refs.

  12. Europium sorption on zirconia at elevated temperatures: experimental study and modeling

    International Nuclear Information System (INIS)

    Eglizaud, N.; Catalette, H.

    2005-01-01

    Full text of publication follows: Direct disposal of spent nuclear fuel in deep underground repository is being considered by several countries. The waste package maintains an elevated temperature for thousands of years. As sorption is one of the main phenomenon limiting the dispersion of radionuclides in the environment, it has to be studied at elevated temperatures. Zirconia is an oxide produced by cladding oxidation which is suspected in the near field of a nuclear repository. It then could possibly be in contact with waste elements as Europium (III), the sorption of which is therefore studied on zirconia. Experiments were performed by the batch method at a solid/liquid ratio of 10 g.L-1. The sorption edges were recorded in the pH-range from 2 to 10 at 2.10 -5 mol.L -1 Eu(NO 3 ) 3 (I = 0.1 mol.L -1 KNO 3 ). An over-pressure device in an autoclave with an incorporated filtering system allowed the experiments, carbonate free, at 25 deg. C, 50 deg. C, 80 deg. C, 120 deg. C and 150 deg. C and in situ pH measurements. Filtrates were analyzed by the ICP-AES method. Sorption isotherms show an increase in the sorption phenomenon when the temperature raises. The half sorption pH decreases from 7 at 25 deg. C to 3,6 at 150 deg. C. The distribution coefficients that were obtained at elevated temperatures enriched the databases of integrated performance assessment codes. Raw data were modeled with the surface complexation theory using the double layer model (DLM). Several possible surface complexes were examined and discussed, taking into account aqueous hydrolyzed and precipitated species of Europium. A good agreement between experimental values and modeled isotherms was found at all studied temperatures. Results were consistent with a bidentate complex formed by Europium (III) on the zirconia surface. Associated formation constants were then determined with the geochemical computer code CHESS. (authors)

  13. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    Science.gov (United States)

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  14. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  15. Gallium sorption on montmorillonite and illite colloids: Experimental study and modelling by ionic exchange and surface complexation

    International Nuclear Information System (INIS)

    Benedicto, Ana; Degueldre, Claude; Missana, Tiziana

    2014-01-01

    Highlights: • Ga sorption onto illite and montmorillonite was studied and modelled for the first time. • The developed sorption model was able to well explain Ga sorption in both clays. • Number of free parameters was reduced applying the linear free energy relationship. • Cationic exchange dominate sorption at pH < 4.5; surface complexation at higher pH. - Abstract: The migration of metals as gallium (Ga) in the environment is highly influenced by their sorption on clay minerals, as montmorillonite and illite. Given the increased usage of gallium in the industry and the medicine, the Ga-associated waste may result in environmental problems. Ga sorption experiments were carried out on montmorillonite and illite colloids in a wide range of pH, ionic strength and Ga concentration. A Ga sorption model was developed combining ionic exchange and surface complexation on the edge sites (silanol and aluminol-like) of the clay sheets. The complexation constants were estimated as far as possible from the Ga hydrolysis constants applying the linear free energy relationship (LFER), which allowed to reduce the number of free parameters in the model. The Ga sorption behaviour was very similar on illite and montmorillonite: decreasing tendency with pH and dependency on ionic strength at very acidic conditions. The experimental data modelling suggests that the Ga sorption reactions avoid the Ga precipitation, which is predicted in absence of clay colloids between pH 3.5 and 5.5. Assuming this hypothesis, clay colloids would affect Ga aqueous speciation, preventing precipitation in favour of sorption. Ga sorption on montmorillonite and illite can be explained on the basis of three main reactions: Ga 3+ exchange at very acidic conditions (pH < ∼3.8); Ga(OH) 4 - complexation on protonated weak sites in acidic-neutral conditions (between pH ∼5.2 and pH ∼7.9); and Ga(OH) 3 complexation on strong sites at basic conditions (pH > ∼7.9)

  16. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    Science.gov (United States)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  17. Modeling volatile organic compounds sorption on dry building materials using double-exponential model

    International Nuclear Information System (INIS)

    Deng, Baoqing; Ge, Di; Li, Jiajia; Guo, Yuan; Kim, Chang Nyung

    2013-01-01

    A double-exponential surface sink model for VOCs sorption on building materials is presented. Here, the diffusion of VOCs in the material is neglected and the material is viewed as a surface sink. The VOCs concentration in the air adjacent to the material surface is introduced and assumed to always maintain equilibrium with the material-phase concentration. It is assumed that the sorption can be described by mass transfer between the room air and the air adjacent to the material surface. The mass transfer coefficient is evaluated from the empirical correlation, and the equilibrium constant can be obtained by linear fitting to the experimental data. The present model is validated through experiments in small and large test chambers. The predicted results accord well with the experimental data in both the adsorption stage and desorption stage. The model avoids the ambiguity of model constants found in other surface sink models and is easy to scale up

  18. Uranium(VI) sorption on iron oxides in Hanford Site sediment: Application of a surface complexation model

    International Nuclear Information System (INIS)

    Um, Wooyong; Serne, R. Jeffrey; Brown, Christopher F.; Rod, Kenton A.

    2008-01-01

    Sorption of U(VI) on Hanford fine sand (HFS) with varying Fe-oxide (especially ferrihydrite) contents showed that U(VI) sorption increased with the incremental addition of synthetic ferrihydrite into HFS, consistent with ferrihydrite being one of the most reactive U(VI) sorbents present in natural sediments. Surface complexation model (SCM) calculations for U(VI) sorption, using only U(VI) surface-reaction constants obtained from U(VI) sorption data on freshly synthesized ferrihydrite at different pHs, were similar to the measured U(VI) sorption results on pure synthetic ferrihydrite and on HFS with high contents of ferrihydrite (5 wt%) added. However, the SCM prediction using only U(VI) sorption reactions and constants for synthetic ferrihydrite overestimated U(VI) sorption on the natural HFS or HFS with addition of low amounts of added ferrihydrite (1 wt% added). Over-predicted U(VI) sorption was attributed to reduced reactivity of natural ferrihydrite present in Hanford Site sediments, compared to freshly prepared synthetic ferrihydrite. Even though the SCM general composite (GC) approach is considered to be a semi-quantitative estimation technique for contaminant sorption, which requires systematic experimental data on the sorbent-sorbate system being studied to obtain credible SCM parameters, the general composite SCM model was still found to be a useful technique for describing U(VI) sorption on natural sediments. Based on U(VI) batch sorption results, two simple U(VI) monodentate surface species, SO U O 2 HCO 3 and SO U O 2 OH on ferrihydrite and phyllosillicate in HFS, respectively, can be successfully used to describe U(VI) sorption onto Hanford Site sediment contacting varying geochemical solutions

  19. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2009-01-01

    The purpose of the paper is to obtain insight into and provide practical advice for event-based conceptual modeling. We analyze a set of event concepts and use the results to formulate a conceptual event model that is used to identify guidelines for creation of dynamic process models and static...... information models. We characterize events as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms of information structures. The conceptual event model is used to characterize a variety of event concepts and it is used to illustrate how events can...... be used to integrate dynamic modeling of processes and static modeling of information structures. The results are unique in the sense that no other general event concept has been used to unify a similar broad variety of seemingly incompatible event concepts. The general event concept can be used...

  20. A kinetic approach to model sorption dynamics of radionuclides in soils: from desire to operational application?

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Garin, A.; Garcia-Sanchez, L.; Coppin, F. [Institut de Radioprotection et de Surete Nucleaire (France); Krimissa, M. [Electricite de France (France)

    2014-07-01

    The understanding of radionuclides (RN) behaviour and subsequent fluxes in the soil/solution/plant system is still a challenging question for realistic short, medium or long term risk assessments. Several years of researches have been devoted to improve the modeling of radionuclides migration in soils and their transfer to other compartments of the biosphere (eg. plants), as well as to constitute databases of model parameters (eg. distribution coefficient (K{sub d})). These works contributed to define, and then to extend, the domain of applicability of radioecological models, but they also helped to identify gaps and ways to improve them. However, these improvements have not been fully taken into account. Within this framework, the evolution of RN chemical speciation in time (often described as aging) was specifically addressed, as it control RN retention properties and bioavailability. Regarding soluble and RN solid speciation in soils, such processes generally lead to a shift from low to high K{sub d} values. Common explanations consist in the transfer of sorbed RN to non-(or less) exchangeable solid species, or in the lixiviation of the most available radionuclide fraction, both decreasing the reversibly sorbed RN fraction. Kinetics studies have examined such changes in K{sub d} value with time and various models have been proposed to fit the different evolutions. Among them, an empirical three-box model is often used to describe the kinetics of RN sorption when RN mostly occurs in the soil solution as a free ion (eg. Cs and Sr). This model assumes that the radionuclide may be sorbed either as a labile fraction, defining an exchangeable K{sub d}-like liquid/solid distribution, or sorbed as a less or non-exchangeable fraction. The last is estimated through its corresponding sorption and desorption rate constants, which describes a pseudo-first order reaction. Modeling of sorption dynamic is a way to link K{sub d} values derived from field-contaminated soils to

  1. Sorption isotherms: A review on physical bases, modeling and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Limousin, G. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France) and Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France)]. E-mail: guillaumelimousin@yahoo.fr; Gaudet, J.-P. [Laboratoire d' etude des Transferts en Hydrologie et Environnement (CNRS-INPG-IRD-UJF), BP 53, 38041 Grenoble Cedex (France); Charlet, L. [Laboratoire de Geophysique Interne et Techtonophysique - CNRS-IRD-LCPC-UJF-Universite de Savoie, BP 53, 38041 Grenoble Cedex (France); Szenknect, S. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Barthes, V. [Atomic Energy Commission, Tracers Technology Laboratory, 38054 Grenoble Cedex (France); Krimissa, M. [Electricite de France, Division Recherche et Developpement, Laboratoire National d' Hydraulique et d' Environnement - P78, 6 quai Watier, 78401 Chatou (France)

    2007-02-15

    The retention (or release) of a liquid compound on a solid controls the mobility of many substances in the environment and has been quantified in terms of the 'sorption isotherm'. This paper does not review the different sorption mechanisms. It presents the physical bases underlying the definition of a sorption isotherm, different empirical or mechanistic models, and details several experimental methods to acquire a sorption isotherm. For appropriate measurements and interpretations of isotherm data, this review emphasizes 4 main points: (i) the adsorption (or desorption) isotherm does not provide automatically any information about the reactions involved in the sorption phenomenon. So, mechanistic interpretations must be carefully verified. (ii) Among studies, the range of reaction times is extremely wide and this can lead to misinterpretations regarding the irreversibility of the reaction: a pseudo-hysteresis of the release compared with the retention is often observed. The comparison between the mean characteristic time of the reaction and the mean residence time of the mobile phase in the natural system allows knowing if the studied retention/release phenomenon should be considered as an instantaneous reversible, almost irreversible phenomenon, or if reaction kinetics must be taken into account. (iii) When the concentration of the retained substance is low enough, the composition of the bulk solution remains constant and a single-species isotherm is often sufficient, although it remains strongly dependent on the background medium. At higher concentrations, sorption may be driven by the competition between several species that affect the composition of the bulk solution. (iv) The measurement method has a great influence. Particularly, the background ionic medium, the solid/solution ratio and the use of flow-through or closed reactor are of major importance. The chosen method should balance easy-to-use features and representativity of the studied

  2. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite

    International Nuclear Information System (INIS)

    Marques Fernandes, Maria; Vér, Nóra; Baeyens, Bart

    2015-01-01

    Highlights: • Contaminant retention in argillaceous rocks controlled by sorption on clay minerals. • Cs, Ni, Co, Eu, Th and UO 2 sorption isotherm measurements on Boda and Opalinus Clay. • Boda and Opalinus Clay exhibit different mineralogies and porewater compositions. • Blind predictions using quasi-mechanistic sorption models developed for illite. • Good agreement between measurements and blind predictions. - Abstract: Reliable predictions of radiocontaminant migration are a requirement for the establishment of radioactive waste repositories. Parametrization of the necessary sorption models seems to be, however, extremely challenging given the multi-mineralic composition of the lithosphere. In this study it is shown for two argillaceous rocks – Boda and Opalinus Clay relevant for the Hungarian and Swiss repository concepts, respectively – that this task can be substantially simplified by taking into account only the most sorptive mineral fraction, namely the 2:1 clay minerals illite and illite/smectite mixed layers. Two different models were required to blind predict the sorption isotherms of Cs, Co, Ni, Eu, Th and UO 2 measured on the two clay rock samples in a synthetic porewater. Cs sorption was modelled with the generalised Cs (GCs) sorption model and the sorption of the other cations with the 2site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model. The 2SPNE SC/CE model for illite was extended with surface complexation reactions on weak sites for Co, Ni, Eu, UO 2 and on strong sites for Eu-carbonato complexes. Complementary to the sorption measurements and modelling, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the retention mechanism of Ni on illite, Boda and Opalinus Clay at higher loadings. The reliable blind predictions of the selected metal cations, which are representative for monovalent alkaline metals, divalent transition metals, lanthanides, and trivalent

  4. Influence of sorption competition on sorption data for MX-80 bentonite used in performance assessment

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Marques Fernandes, M.

    2012-01-01

    Document available in extended abstract form only. In order to obtain a (quasi) mechanistic understanding of radionuclide uptake on clay minerals and argillaceous rocks, the majority of sorption experiments have been carried out on purified clay minerals such as montmorillonite and illite at trace concentrations (sorption edges), or as a function of concentration (sorption isotherms), with a single radionuclide under well-defined conditions in simple background electrolytes. As a result of such studies the 2 site proto-lysis non electrostatic surface complexation cation exchange (2SPNE SC/CE) sorption model, was developed and has been successfully applied to quantitatively describe the uptake of numerous radionuclides of differing valences as a function of pH and concentration on montmorillonite. In a deep geological repository for high level waste, stable impurities arise from many sources: they are present in the pore waters, in the tunnel back fill materials and host rock formations, they arise from the corrosion of the carbon steel canister and finally they are dissolved from the spent fuel and vitrified high level waste simultaneously with the radionuclides. These impurities, which are an integral part of a realistic repository system, can potentially compete with radionuclides for the sorption sites on the backfill materials and host rock and thus reduce their uptake on them. The influence of competitive sorption is not intrinsically included (or only partly so) in the sorption model. It is clearly an inherently important issue to quantify the influence of sorption competition on the transport of released radionuclides through the multi-barrier system in a deep repository. In this study an extreme case of a competitive sorption scenario in the near field of a HLW repository is presented. Two factors are considered: one associated with the high concentrations and the other with competitive sorption effects. The tendency in both cases is to cause a reduction in

  5. Uranium(VI) sorption onto magnetite. Increasing confidence in surface complexation models using chemically evident surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    Surface complexation models have made great efforts in describing the sorption of various radionuclides on naturally occurring mineral phases. Unfortunately, many of the published sorption parameter sets are built upon unrealistic or even wrong surface chemistry. This work describes the benefit of combining spectroscopic and batch sorption experimental data to create a reliable and consistent surface complexation parameter set.

  6. Modeling approaches of competitive sorption and transport of trace metals and metalloids in soils: a review.

    Science.gov (United States)

    Selim, H M; Zhang, Hua

    2013-01-01

    Competition among various heavy metal species for available adsorption sites on soil matrix surfaces can enhance the mobility of contaminants in the soil environment. Accurate predictions of the fate and behavior of heavy metals in soils and geologic media requires the understanding of the underlying competitive-sorption and transport processes. In this review, we present equilibrium and kinetic models for competitive heavy metal sorption and transport in soils. Several examples are summarized to illustrate the impact of competing ions on the reactivities and mobility of heavy metals in the soil-water environment. We demonstrate that equilibrium Freundlich approaches can be extended to account for competitive sorption of cations and anions with the incorporation of competition coefficients associated with each reaction. Furthermore, retention models of the multiple-reaction type including the two-site nonlinear equilibrium-kinetic models and the concurrent- and consecutive-multireaction models were modified to describe commonly observed time-dependent behaviors of heavy metals in soils. We also show that equilibrium Langmuir and kinetic second-order models can be extended to simulate the competitive sorption and transport in soils, although the use of such models is limited due to their simplifying assumptions. A major drawback of the empirically based Freundlich and Langmuir approaches is that their associated parameters are specific for each soil. Alternatively, geochemical models that are based on ion-exchange and surface-complexation concepts are capable of quantifying the competitive behavior of several chemical species under a wide range of environmental conditions. Such geochemical models, however, are incapable of describing the time-dependent sorption behavior of heavy metal ions in competitive systems. Further research is needed to develop a general-purpose model based on physical and chemical mechanisms governing competitive sorption in soils. Copyright

  7. The ternary sorption system U(VI)-phosphate-silica explained by spectroscopy and thermodynamic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Stockmann, Madlen; Heim, Karsten; Mueller, Katharina; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Comarmond, M.J.; Payne, T.E. [Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia); Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    Spectroscopic data of sorption processes potentially provide direct impact on Surface Complexation Modelling (SCM) approaches. Based on spectroscopic data of the ternary sorption system U(VI)/phosphate/silica strongly suggesting the formation of a precipitate as the predominant surface process, SCM calculations accurately reproduced results from classical batch experiments.

  8. The ternary sorption system U(VI)-phosphate-silica explained by spectroscopy and thermodynamic modelling

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Stockmann, Madlen; Heim, Karsten; Mueller, Katharina; Brendler, Vinzenz; Steudtner, Robin

    2017-01-01

    Spectroscopic data of sorption processes potentially provide direct impact on Surface Complexation Modelling (SCM) approaches. Based on spectroscopic data of the ternary sorption system U(VI)/phosphate/silica strongly suggesting the formation of a precipitate as the predominant surface process, SCM calculations accurately reproduced results from classical batch experiments.

  9. Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method

    Directory of Open Access Journals (Sweden)

    El-Khamsa Guechi

    2016-09-01

    Full Text Available Potato peel (PP was used as a biosorbent to remove malachite green (MG from aqueous solution under various operating conditions. The effect of the experimental parameters such as initial dye concentration, biosorbent dose, initial pH, stirring speed, temperature, ionic strength and biosorbent particle size was investigated through a number of batch sorption experiments. The sorption kinetic uptake for MG by PP at various initial dye concentrations was analyzed by non-linear method using pseudo-first, pseudo-second and pseudo-nth order models. It was found that the pseudo-nth order kinetic model was the best applicable model to describe the sorption kinetic data and the order n of sorption reaction was calculated in the range from 0.71 to 2.71. Three sorption isotherms namely the Langmuir, Freundlich and Redlich–Peterson isotherms in their non-linear forms were applied to the biosorption equilibrium data. Both the Langmuir and Redlich–Peterson models were found to fit the sorption isotherm data well, but the Redlich–Peterson model was better. Thermodynamic parameters show that the sorption process of MG is endothermic and more effective process at high temperatures. The results revealed that PP is very effective for the biosorption of MG from aqueous solutions.

  10. Sorption of cesium and uranium to Feldspar

    International Nuclear Information System (INIS)

    Wijland, G.C.; Pennders, R.M.J.

    1990-07-01

    Within safety assessment studies, for nuclear waste disposal in deep geologic formations, calculation for the migration of radionuclides through the geosphere are often carried out with models taking sorption into account. In the past 8 years the insight grew that other physico-chemical processes, besides sorption, could affect migration behaviour. While the currently used transport models were being improved taking either linear or non-linear sorption into account, the coupling of geochemical and transport models came into scope. In spite of these developments models which are still based on the sorption theory are frequently applied in studying migration behaviour of radionuclides. This is caused by the necessity of making preliminary pronouncements, while coupled models are still in stage of development and thermodynamic data are very limited available. Therefore one has to obtain insight in the reliability of the models based on the sorption theory. within the sorption database there is a lack of knowledge about mineralogy, composition of the fluid and the experimental conditions underlying the data. Therefore the Expert Group on geochemical Modelling supported by the Finnish proposal in order to obtain insight in the possible deviation of the sorption coefficients that can be estimated from experiments performed with standard samples, fluid composition and experimental conditions. Nine laboratories from OECD membership countries took part in this intercalibration study. In the framework of the Dutch safety assessment studies the Dutch National Institute of Public health and Environmental protection (RIVM) has decided to participate in this exercise. In this report the results are presented of sorption experiments for cesium and natural Uranium to Feldspar. (H.W.). 4 refs.; 1 fig.; 7 tabs

  11. The conceptualization model problem—surprise

    Science.gov (United States)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  12. Modelling of niobium sorption on clay minerals in sodium and calcium perchlorate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ervanne, Heini; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Laboratory of Radiochemistry

    2014-11-01

    The sorption behaviour of niobium on kaolinite and illite minerals in sodium and calcium perchlorate solutions was evaluated with use of the mass distribution coefficient, Rd, obtained in batch sorption experiments. Very high distribution coefficient values, about 100 m{sup 3}/kg, were obtained for both minerals in the neutral pH range between 6 and 8. Values were somewhat lower at pH 5. In NaClO{sub 4} solution, the sorption of niobium starts to decrease at pH higher than 8. This is in agreement with the increase, with pH, in the proportion of anionic niobate species, which are presumed to be low or non-sorbing. A similar decrease was not observed in Ca(ClO{sub 4}){sub 2} solution, probably owing to the influence of Ca on niobium solution speciation and surface species. The surface complexation model was applied to model the Rd values. The model fitted well for the NaClO{sub 4} solution but only at pH below 9 for the Ca(ClO{sub 4}){sub 2} solution. The discrepancy between the strong sorption of niobium in calcium-bearing solution at high pH and the calculated speciation is due in part to the non-inclusion of calcium niobate solution species and Ca-Nb compounds in the present NEA and other similar thermodynamic databases.

  13. Diffusion and sorption on hardened cement pastes - experiments and modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A.; Sarott, F.-A.; Spieler, P.

    1999-08-01

    Large parts of repositories for low and intermediate level radioactive waste consist of cementitious materials. Radionuclides are transported by diffusion in the cement matrix or, in case of fractured or highly permeable cement, by advection and dispersion. In this work we aim at a mechanistic understanding of diffusion processes of some reactive tracers. On the laboratory scale, ten through-diffusion experiments were performed to study these processes for Cl{sup -}, I{sup -}, Cs{sup +} and Ni{sup 2+} ions in a Sulphate Resisting Portland Cement (SRPC) equilibrated with an artificial pore water. Some of the experiments continued up to nearly three years with daily measurements. In all the experiments, a cement disk initially saturated with an artificial pore water was exposed on one side to a highly diluted solution containing the species of interest. On the second side, a near-zero concentration boundary was maintained to drive through-diffusion of the tracer. The changes of concentrations on both sides of the samples were monitored, allowing careful mass balances. From these data, values of the diffusive flux and the mass of tracer taken up by the cementitious material were determined as a function of time. In the subsequent modelling, the time histories of these tracer breakthroughs were fitted using five different models. The simplest model neglects all retarding mechanisms except pure diffusion. More complex models either account for instantaneous equilibrium sorption in form of linear or non-linear (Freundlich) sorption or for first-order sorption kinetics where the forward reaction may be linear or non-linear according to the Freundlich isotherm, while the back-reaction is linear. Hence, the analysis allows the extraction of the diffusion coefficient and parameter values for the sorption isotherm or rate-constants for sorption and desorption. The fits to the experimental data were carried out by an automated Marquardt-Levenberg procedure yielding error

  14. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-montmorillonite. Part III: modelling

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1995-07-01

    Titration and sorption measurements, carried out under a wide variety of conditions on Na-montmorillonite, were examined in terms of cation exchange and surface complexation mechanisms. A computer code called MINSORB was developed and used throughout this work. This code allowed the uptake of radionuclides by both mechanisms to be calculated simultaneously; also taking into account competitive reactions from other cations present. A stepwise iterative fitting/modelling procedure is described. For the case of Na-montmorillonite it is demonstrated that an electrostatic term in the surface complexation model is not required. A basic data set comprising of site capacities and protonation/deprotonation constants was defined, which was valid for all surface complexation sorption reactions. The main study was carried out with Ni, but impurity cations present in the system, particularly Zn, had to be examined in addition due to their competitive effects on Ni sorption. The surface complexation behaviour of Ni and Zn was investigated in detail to give intrinsic surface complexation constants on two of the =SOH type sites included in the model. The sorption of Mg, Ca and Mn is also considered, though in less detail, and estimated surface complexation constants for these nuclides are presented. Cation exchange was included in all of the calculations. Measured selectivity coefficients for Ni-Na, Zn-Na and Ca-Na exchange reactions are given. The model, with the derived parameters, allowed all the data from titration measurements through sorption edges to sorption isotherms to be calculated. (author) 31 figs., 9 tabs., refs

  15. A quantitative mechanistic description of Ni, Zn and Ca sorption on Na-Montmorillonite. Part III: Modelling

    International Nuclear Information System (INIS)

    Baeyens, B.; Bradbury, M.H.

    1995-07-01

    Titration and sorption measurements, carried out under a wide variety of conditions on Na-montmorillonite, were examined in terms of cation exchange and surface complexation mechanisms. A computer code called MINSORB was developed and used throughout this work. This code allowed the uptake of radionuclides by both mechanisms to be calculated simultaneously; also taking into account competitive reactions from other cations present. A stepwise iterative fitting/modelling procedure is described. For the case of Na-montmorillonite it is demonstrated that an electrostatic term in the surface complexation model is not required. A basic data set comprising of site capacities and protonation/deprotonation constants was defined, which was valid for all surface complexation sorption reactions. The main study was carried out with Ni, but impurity cations present in the system, particularly Zn, had to be examined in addition due to their competitive effects on Ni sorption. The surface complexation behaviour of Ni and Zn was investigated in detail to give intrinsic surface complexation constants on two of the ≡SOH type sites included in the model. The sorption of Mg, Ca and Mn is also considered, though in less detail, and estimated surface complexation constants for these nuclides are presented. Cation exchange was included in all of the calculations. Measured selectivity coefficients for Ni-Na, Zn-Na and Ca-Na exchange reactions are given. The model, with the derived parameters, allowed all the data from titration measurements through sorption edges to sorption isotherms to be calculated. (author) 31 figs., 9 tabs., refs

  16. Modelling decreased food chain accumulation of HOCs due to strong sorption to carbonaceous materials and metabolic transformation

    NARCIS (Netherlands)

    Moermond, C.T.A.; Traas, T.P.; Roessink, I.; Veltman, K.; Hendriks, A.J.; Koelmans, A.A.

    2007-01-01

    The predictive power of bioaccumulation models may be limited when they do not account for strong sorption of organic contaminants to carbonaceous materials (CM) such as black carbon, and when they do not include metabolic transformation. We tested a food web accumulation model, including sorption

  17. Metal sorption on kaolinite

    International Nuclear Information System (INIS)

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-01-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs + , Sr 2+ , and Ba 2+ ) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba 2+ to Sr 2+ to Cs + , with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs + also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs + is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals

  18. Sorption of uranyl ions on hydrous oxides

    International Nuclear Information System (INIS)

    Gupta, A.R.; Venkataramani, B.

    1988-01-01

    Sorption of uranyl ions on hydrous titanium oxide (HTiO), magnetite (MAG), and hydrous thorium oxide (HThO) has been studied as a function of pH. Hydrous oxides have been characterized by their pH-titration curves, intrinsic dissociation constants (pK ai * ) and point of zero charge (pH pzc ). The fraction of protonated surface hydroxyl groups as well as the surface pH (pH surf ) as a function of solution pH have been computed. The distribution of various hydrolyzed species of uranyl ions with solution pH have been compared with uranyl sorption isotherm on these oxides. Sorption edge in all the cases occurs when free hydroxyl groups are available on the surface and pH surf is sufficiently high to favor the formation of dimer-like species on the surface. A new model for the sorption process, called surface hydrolysis model, which explains these and other features of uranyl sorption on hydrous oxides has been proposed. The model visualizes the sorption process as linking of uranyl ions with two adjacent free surface hydroxyl groups without deprotonation (provided the surface pH is high for the hydrolysis of uranyl ions) and formation of dimer-like structures on the surface. The new model has been successfully applied to the present and other available data on uranyl ion sorption on hydrous oxides. (author)

  19. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  20. Sorption Behavior of CO2 and CH4 of Glassy Polymeric Membranes and Analytical Discussion of Partial Immobilization Model

    Directory of Open Access Journals (Sweden)

    M. Mahdavian

    2007-06-01

    Full Text Available Among various reported membrane-based gas separation processes, the best explanation is generally achieved by the solution-diffusion model. The main factors in this model are the solubility and diffusivity of permeationcomponents through the membrane. The prediction of permeability and diffusivity in multicomponent gas permeation as well as the separation evaluation equilibrium and kinetic interactions requires a proper explanation of sorption and diffusion phenomena in the polymer matrix. Investigation made by various researchers in this area shows that the equilibrium interaction (sorption step plays the key role in determining diffusion and permeation in multicomponent system. Therefore, the proper description of sorption behaviour of gas mixture in the polymer is an essential task. The dual-mode sorption (Langmuir-Henry is usually used for the description of equilibrium isotherm of gases in glassy polymers based on this model; the diffusive behaviour of the system is subsequently analyzed by the partial immobilization model. In this study, the equilibrium sorption of CO2/CH4 mixture in various polymers was modelled using the experimental data available in the literature. The differences in the mechanism of adsorption for CO2 and CH4 were analyzed by considering variations in mode of sorption for each adsorbed component at different pressures. By introducing a new adsorption parameter, P50/50, (the pressure at which the portion of two modes in sorption are equal the contribution of each adsorbed component in occupying Langmuir sites was evaluated. The results indicate that the relative significance of sorption mode for each component is a function of pressure and it is different for various polymers.

  1. Conceptual models of information processing

    Science.gov (United States)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  2. Sorption isotherms, GAB parameters and isosteric heat of sorption

    NARCIS (Netherlands)

    Quirijns, E.J.; Boxtel, van A.J.B.; Loon, van W.K.P.; Straten, van G.

    2005-01-01

    The diffusion-sorption drying model has been developed as a physics-based way to model the decreasing drying rate at low moisture contents. This new model is founded on the existence of different classes of water: free and bound water. The transition between these classes and the corresponding

  3. Moisture sorption of Thai red curry powder

    Directory of Open Access Journals (Sweden)

    Sudathip Inchuen

    2009-12-01

    Full Text Available Moisture sorption study was conducted on Thai red curry powder prepared by two different drying methods, viz. microwave and hot-air drying. Moisture sorption isotherms of the red curry powder at 30 C and water activity in the range of 0.113-0.970 were determined by a static gravimetric method. The isotherms exhibited Type III behaviour. The moisture sorption data were fitted to several sorption models and a non-linear regression analysis method was used to evaluate the constants of the sorption equations. The fit was evaluated using the coefficient of determination (R2, the reduced chi-square (2 and the root mean square error (RMSE. The GAB model followed by the Lewiski-3 model gave the best fit to the experimental data. The monolayer moisture content, taken as the safe minimum moisture level in the red curry powder, was determined using the BET equation and was found to range between 0.080 - 0.085 gram water per gram dry matter.

  4. Sorption and desorption of 17α-ethinylestradiol onto sediments affected by rhamnolipidic biosurfactants.

    Science.gov (United States)

    Guo, Yan-Ping; Hu, Yong-You; Lin, Hui; Ou, Xue-Lian

    2018-02-15

    Many studies have addressed the desorption and mobilization performances of sorbed contaminants affected by different rhamnolipidic biosurfactants. Study results have been mixed and complicated. Rhamnolipids are always microbial produced with variable homologues. In this study, two representative rhamnolipidic fractions (i.e., RL-F1 and RL-F2, which are mono- and di-rhamnolipids, respectively) were investigated and compared to determine their influence on 17α-ethynylestradiol (EE2) distribution within sediment-water sorption and desorption systems. In general, the coexistence of RL-F1 and EE2 enhanced EE2 sorption in a wider monorhamnolipidic dosage range when freshly treated sorbate was used. The sorbed EE2 concentration decreased as the RL-F1 dosage increased in the aged sorbate desorption systems. However, RL-F2 facilitated EE2 mobilization in both sorption and desorption processes. Experimental data were estimated using a conceptual model that considered the sorbed rhamnolipids and aqueous micelles for organic partitioning. The model results indicated that the rhamnolipid type is an important factor influencing organic distribution, in addition to sorbate aging process and sediment characteristics. The use of a rhamnolipidic mixture containing both mono- and di-rhamnosyl components may not achieve the desired effect when the biosurfactant-enhanced mobilization or immobilization approach is selected. These results are significant for selecting and applying rhamnolipids to remediate contaminants. Copyright © 2017. Published by Elsevier B.V.

  5. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  6. Summary report on the evaluation of a 1977--1985 edited sorption data base for isotherm modeling

    International Nuclear Information System (INIS)

    Polzer, W.L.; Beckman, R.J.; Fuentes, H.R.; Yong, C.; Chan, P.; Rao, M.G.

    1993-01-01

    Sorption data bases collected by Los Alamos National Laboratory (LANL) from 1977 to 1985 for the Yucca Mountain Project.(YMP) have been inventoried and fitted with isotherm expressions. Effects of variables (e.g., particle size) on the isotherm were also evaluated. The sorption data are from laboratory batch measurements which were not designed specifically for isotherm modeling. However a limited number of data sets permitted such modeling. The analysis of those isotherm data can aid in the design of future sorption experiments and can provide expressions to be used in radionuclide transport modeling. Over 1200 experimental observations were inventoried for their adequacy to be modeled b isotherms and to evaluate the effects of variables on isotherms. About 15% of the observations provided suitable data sets for modeling. The data sets were obtained under conditions that include ambient temperature and two atmospheres, air and CO 2

  7. Sorption of fission nuclides on model milk components. I. Sorption of radiostrontium on hydroxyapatite in aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.; Kristin, J.

    1999-01-01

    Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 is a mineral widely spread in nature as a main constituent of phosphate rocks, and also as the major inorganic component of bones and teeth. It was found that sorption process occurs by an ion exchange reaction mechanism between strontium ions in solution and calcium ions in apatite. Ca 2+ → Sr 2+ substitution in hydroxyapatite is important since it explains the mechanism of incorporation of beta-active Sr-90 of atomic debris into the human skeletal system. The strontium uptake at 100 grad C is done by adsorption and diffusion while at 25 grad C it is done by the process of adsorption only. The hydroxyapatite was prepared from aqueous solutions and characterized by standard analytical methods. Some samples of hydroxyapatite were modified by heating after its precipitation from aqueous solution. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. Also, commercial hydroxy-apatites were used. Sorption of strontium ions on synthetic hydroxyapatite was examined using batch method and sorption depends on the method of preparation of hydroxyapatite. In generally, sorption of strontium decreases with the increase in the particle size of hydroxyapatite and decreases with the increase in the pH ( hydroxyapatite surface is amphoteric and acts as a buffer in a wide pH range). The sorption of strontium increases with the increase in [Sr 2+ ] or [Ca 2+ ] in solution to ∼ 10 -5 mol · dm -3 for the hydroxyapatite prepared by heating. The experimental data for sorption of strontium has been fitted with Langmuir-adsorption isotherm. (authors)

  8. Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor

    International Nuclear Information System (INIS)

    Escudero, Carlos; Fiol, Nuria; Poch, Jordi; Villaescusa, Isabel

    2009-01-01

    Recently, Cr(VI) removal by grape stalks has been postulated to follow two mechanisms, adsorption and reduction to trivalent chromium. Nevertheless, the rate at which both processes take place and the possible simultaneity of both processes has not been investigated. In this work, kinetics of Cr(VI) sorption onto grape stalk waste has been studied. Experiments were carried out at different temperatures but at a constant pH (3 ± 0.1) in a stirred batch reactor. Results showed that three steps take place in the process of Cr(VI) sorption onto grape stalk waste: Cr(VI) sorption, Cr(VI) reduction to Cr(III) and the adsorption of the formed Cr(III). Taking into account the evidences above mentioned, a model has been developed to predict Cr(VI) sorption on grape stalks on the basis of (i) irreversible reduction of Cr(VI) to Cr(III) reaction, whose reaction rate is assumed to be proportional to the Cr(VI) concentration in solution and (ii) adsorption and desorption of Cr(VI) and formed Cr(III) assuming that all the processes follow Langmuir type kinetics. The proposed model fits successfully the kinetic data obtained at different temperatures and describes the kinetics profile of total, hexavalent and trivalent chromium. The proposed model would be helpful for researchers in the field of Cr(VI) biosorption to design and predict the performance of sorption processes.

  9. Effects of sorption behaviour on contaminant migration

    International Nuclear Information System (INIS)

    Melnyk, T.W.

    1985-11-01

    The effects of sorption behaviour on contaminant migration in groundwater systems are varied. Retardation of migration and dispersive effects can vary widely and contaminant concentration profiles can take a number of different shapes. This report examines the nature of some of these effects, especially those due to sorption behaviours that are dependent on the concentration of the contaminant in the groundwater. The effects are calculated using, in most cases, analytical solutions to the chemical equations imbedded in a simple reaction-cell or box-model transport algorithm. The hydrogeological parameters are held constant, and radioactive decay and hydrodynamic dispersion are excluded. A general discussion of the role of sorption equations in transport modelling is followed by presentation of migration results for a number of models of sorption behaviour varying from linear isotherms, Langmuir, Freundlich and ion-exchange isotherms, to precipitation reactions and multiple-site sorption reactions. The results are compared and general conclusions are drawn about the various migration behaviours calculated. The conclusions are that equilibrium sorption of trace contaminants can be modelled with linear isotherms (constant distribution coefficients or constant retardation factors) but the evaluation and extrapolation of the distribution coefficient are not easy. Nonlinear isotherms lead to unsymmetrical migration fronts. A comparison of Freundlich and linear isotherms is made. Sorption/desorption kinetic factors can be significant on the time scale of laboratory experiments and can cause large dispersive effects. Slow but important reactions can be missed altogether. Precipitation or mineralization behaviour cannot be modelled with constant distribution coefficients. Also, mineralization reactions can be kinetically slow even on the geological time scale. 89 refs

  10. Extended sorption partitioning models for pesticide leaching risk assessments: Can we improve upon the k{sub oc} concept?

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Nicholas, E-mail: nicholas.jarvis@slu.se

    2016-01-01

    Models used to assess leaching of pesticides to groundwater still rely on the sorption k{sub oc} value, even though its limitations have been known for several decades, especially for soils of low organic carbon content (i.e. subsoils). This is mainly because the general applicability of any improved model approach that is also simple enough to use for regulatory purposes has not been demonstrated. The objective of this study was to test and compare alternative models of sorption that could be useful in pesticide risk assessment and management. To this end, a database containing the results of batch sorption experiments for pesticides was compiled from published studies in the literature, which placed at least as much emphasis on measurements in subsoil horizons as in topsoil. The database includes 785 data entries from 34 different published studies and for 21 different active substances. Overall, the apparent k{sub oc} value, k{sub oc(app)}, roughly doubled as the soil organic carbon content decreased by a factor of ten. Nevertheless, in nearly half of the individual datasets, a constant k{sub oc} value proved to be an adequate model. Further analysis showed that significant increases in k{sub oc(app)} in subsoil were found primarily for the more weakly adsorbing compounds (k{sub oc} values < ca. 100–200 L kg{sup −1}) and that sorption to clay in loamy and clayey-textured subsoil horizons was the main cause. Tests with the MACRO model demonstrated that sorption to clay minerals may significantly affect the outcome of regulatory exposure and risk assessments for leaching to groundwater. The k{sub oc} concept currently used in leaching models should therefore be replaced by an alternative approach that gives a more realistic representation of pesticide sorption in subsoil. The two alternative models tested in this study appear to have widespread applicability and are also simple enough to parameterize for this purpose. - Highlights: • A database was collated

  11. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    International Nuclear Information System (INIS)

    Choi, Hyeok; Al-Abed, Souhail R.

    2009-01-01

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K F (L kg -1 ) spanned several orders of magnitude, ranging from log K F of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  12. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K{sub F} (L kg{sup -1}) spanned several orders of magnitude, ranging from log K{sub F} of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  13. Sorption of metaldehyde using granular activated carbon

    Directory of Open Access Journals (Sweden)

    S. Salvestrini

    2017-09-01

    Full Text Available In this work, the ability of granular activated carbon (GAC to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

  14. Kinetic Modelling of the Removal of Multiple Heavy Metallic Ions from Mine Waste by Natural Zeolite Sorption

    Directory of Open Access Journals (Sweden)

    Amanda L. Ciosek

    2017-07-01

    Full Text Available This study investigates the sorption of heavy metallic ions (HMIs, specifically lead (Pb2+, copper (Cu2+, iron (Fe3+, nickel (Ni2+ and zinc (Zn2+, by natural zeolite (clinoptilolite. These HMIs are combined in single-, dual-, triple-, and multi-component systems. The batch mode experiments consist of a total initial concentration of 10 meq/L normality for all systems, acidified to a pH of 2 by concentrated nitric (HNO3 acid. A zeolite dosage of 4 g per 100 mL of synthetic nitrate salt aqueous solution is applied, for a contact period of 5 to 180 min. Existing kinetic models on HMIs sorption are limited for multi-component system combinations. Therefore, this study conducts kinetic analysis by both reaction and diffusion models, to quantify the sorption process. The study concludes that the process correlates best with the pseudo-second-order (PSO kinetic model. In the multi-component system combining all five HMIs, the initial sorption rate and theoretical equilibrium capacity are determined as 0.0033 meq/g·min and 0.1159 meq/g, respectively. This provides significant insight into the mechanisms associated with the sorption process, as well as contributing to the assessment of natural zeolite as a sorbent material in its application in industrial wastewater treatment.

  15. Conceptual Models Core to Good Design

    CERN Document Server

    Johnson, Jeff

    2011-01-01

    People make use of software applications in their activities, applying them as tools in carrying out tasks. That this use should be good for people--easy, effective, efficient, and enjoyable--is a principal goal of design. In this book, we present the notion of Conceptual Models, and argue that Conceptual Models are core to achieving good design. From years of helping companies create software applications, we have come to believe that building applications without Conceptual Models is just asking for designs that will be confusing and difficult to learn, remember, and use. We show how Concept

  16. Colloid chemistry: available sorption models and the question of colloid adhesion

    International Nuclear Information System (INIS)

    Grauer, R.

    1990-05-01

    A safety analysis of a radioactive waste repository should consider the possibility of nuclide transport by colloids. This would involve describing the sorption properties of the colloids and their transport in porous and fissured media. This report deals with a few selected aspects of the chemistry of this complex subject. Because the mechanisms of ion adsorption onto surfaces are material-specific, increased attention should be paid to identifying the material constitution of aquatic colloids. Suitable models already exist for describing reversible adsorption; these models describe sorption using mass action equations. The surface coordination model, developed for hydrous oxide surfaces, allows a uniform approach to be adopted for different classes of materials. This model is also predictive and has been applied successfully to natural systems. From the point of view of nuclide transport by colloids, irreversible sorption represents the most unfavourable situation. There is virtually no information available on the extent of reversibility and on the desorption kinetics of important nuclide/colloid combinations. Experimental investigations are therefore necessary in this respect. The only question considered in connection with colloid transport and its modelling is that of colloid sticking. Natural colloids, and the surfaces of the rock on which they may be collected, generally have negative surface charges so that colloid sticking will be difficult. The DLVO theory contains an approach for calculating the sticking factor from the surface potentials of the solid phases and the ionic strength of the water. However, it has been shown that this theory is inapplicable because of inherent shortcomings which lead to completely unrealistic predictions. The sticking probability of colloids should therefore be determined experimentally for systems which correspond as closely as possible to reality. (author) 66 figs., 12 tabs., 204 refs

  17. Development of JAEA sorption database (JAEA-SDB). Update of sorption/QA data in FY2015

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro

    2016-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in these barrier materials is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop databases compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in bentonites and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on improving and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting and mechanistic sorption model development. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on statistical data evaluation and grouping of data related to potential perturbations. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 11,206 K d data from 83 references were added, total number of K d values in the JAEA-SDB reached about 58,000. The QA/classified K d data reached about 60% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to

  18. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  19. Sorption isotherms modeling approach of rice-based instant soup mix stored under controlled temperature and humidity

    Directory of Open Access Journals (Sweden)

    Yogender Singh

    2015-12-01

    Full Text Available Moisture sorption isotherms of rice-based instant soup mix at temperature range 15–45°C and relative humidity from 0.11 to 0.86 were determined using the standard gravimetric static method. The experimental sorption curves were fitted by five equations: Chung-Pfost, GAB, Henderson, Kuhn, and Oswin. The sorption isotherms of soup mix decreased with increasing temperature, exhibited type II behavior according to BET classification. The GAB, Henderson, Kuhn, and Oswin models were found to be the most suitable for describing the sorption curves. The isosteric heat of sorption of water was determined from the equilibrium data at different temperatures. It decreased as moisture content increased and was found to be a polynomial function of moisture content. The study has provided information and data useful in large-scale commercial production of soup and have great importance to combat the problem of protein-energy malnutrition in underdeveloped and developing countries.

  20. Applicability of the Linear Sorption Isotherm Model to Represent Contaminant Transport Processes in Site Wide Performance Assessments

    International Nuclear Information System (INIS)

    FOGWELL, T.W.; LAST, G.V.

    2003-01-01

    The estimation of flux of contaminants through the vadose zone to the groundwater under varying geologic, hydrologic, and chemical conditions is key to making technically credible and sound decisions regarding soil site characterization and remediation, single-shell tank retrieval, and waste site closures (DOE 2000). One of the principal needs identified in the science and technology roadmap (DOE 2000) is the need to improve the conceptual and numerical models that describe the location of contaminants today, and to provide the basis for forecasting future movement of contaminants on both site-specific and site-wide scales. The State of Knowledge (DOE 1999) and Preliminary Concepts documents describe the importance of geochemical processes on the transport of contaminants through the Vadose Zone. These processes have been identified in the international list of Features, Events, and Processes (FEPs) (NEA 2000) and included in the list of FEPS currently being developed for Hanford Site assessments (Soler et al. 2001). The current vision for Hanford site-wide cumulative risk assessments as performed using the System Assessment Capability (SAC) is to represent contaminant adsorption using the linear isotherm (empirical distribution coefficient, K d ) sorption model. Integration Project Expert Panel (PEP) comments indicate that work is required to adequately justify the applicability of the linear sorption model, and to identify and defend the range of K d values that are adopted for assessments. The work plans developed for the Science and Technology (S and T) efforts, SAC, and the Core Projects must answer directly the question of ''Is there a scientific basis for the application of the linear sorption isotherm model to the complex wastes of the Hanford Site?'' This paper is intended to address these issues. The reason that well documented justification is required for using the linear sorption (K d ) model is that this approach is strictly empirical and is often

  1. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1994-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study

  2. Modeling of Cd(II) sorption on mixed oxide

    International Nuclear Information System (INIS)

    Waseem, M.; Mustafa, S.; Naeem, A.; Shah, K.H.; Hussain, S.Y.; Safdar, M.

    2011-01-01

    Mixed oxide of iron and silicon (0.75 M Fe(OH)3:0.25 M SiO/sub 2/) was synthesized and characterized by various techniques like surface area analysis, point of zero charge (PZC), energy dispersive X-rays (EDX) spectroscopy, Thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR) and X-rays diffraction (XRD) analysis. The uptake of Cd/sup 2+/ ions on mixed oxide increased with pH, temperature and metal ion concentration. Sorption data have been interpreted in terms of both Langmuir and Freundlich models. The Xm values at pH 7 are found to be almost twice as compared to pH 5. The values of both DH and DS were found to be positive indicating that the sorption process was endothermic and accompanied by the dehydration of Cd/sup 2+/. Further, the negative value of DG confirms the spontaneity of the reaction. The ion exchange mechanism was suggested to take place for each Cd/sup 2+/ ions at pH 5, whereas ion exchange was found coupled with non specific adsorption of metal cations at pH 7. (author)

  3. Conceptual IT model

    Science.gov (United States)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  4. Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2011-01-01

    The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite was stud......The adsorption of phosphate onto calcite was studied in a series of batch experiments. To avoid the precipitation of phosphate-containing minerals the experiments were conducted using a short reaction time (3h) and low concentrations of phosphate (⩽50μM). Sorption of phosphate on calcite...... of a high degree of super-saturation with respect to hydroxyapatite (SIHAP⩽7.83). The amount of phosphate adsorbed varied with the solution composition, in particular, adsorption increases as the CO32- activity decreases (at constant pH) and as pH increases (at constant CO32- activity). The primary effect...... of ionic strength on phosphate sorption onto calcite is its influence on the activity of the different aqueous phosphate species. The experimental results were modeled satisfactorily using the constant capacitance model with >CaPO4Ca0 and either >CaHPO4Ca+ or >CaHPO4- as the adsorbed surface species...

  5. [Study on moisture sorption process model and application traditional Chinese medicine extract powder].

    Science.gov (United States)

    Lin, Tingting; He, Yan; Xiao, Xiong; Yuan, Liang; Rao, Xiaoyong; Luo, Xiaojian

    2010-04-01

    Study on the moisture sorption process characteristics of traditional Chinese medicine extract powder, to establish a mathematical model, provide a new method for in-depth study for moisture sorption behavior of traditional Chinese medicine extract powder and a reference for determine the production cycle, and predict product stability. Analyzed moisture absorption process of traditional Chinese medicine extract powder by utilized the law of conservation of mass and Fick's first law to establish the double exponential absorption model, fitted the moisture absorption data and compared with other commonly used five kinds of model to estimate the double-exponential absorption model. The statistical analysis showed that the coefficient of determination (R2) of double exponential model, Weibull distribution model and first order kinetics model were large, but the residues sum of squares (RSS) and AIC values were small. Synthesized the practical application meaning, we consided that the double exponential model was more suitable for simulating the process of Chinese medicine extract powder moisture absorption. The double exponential is suitable for characterization the process of traditional Chinese medicine extract moisture absorption.

  6. Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.

    Science.gov (United States)

    Nagel, Daniel A; Penner, Jamie L

    2016-03-01

    Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.

  7. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  8. INFLUENCES OF SOIL PROPERTIES ON CHROMIUM (III SORPTION

    Directory of Open Access Journals (Sweden)

    R. Salmasi, F. Salmasi

    2007-07-01

    Full Text Available Soil adsorbing properties reduce sorption ability of the metal, which in turn may influence decision for remediation at contaminated sites. The objective of this study is presentation of a model based on soil properties to estimate the sorption of Cr(III in chromium contaminated soils. Twenty uncontaminated soil samples, with properties similar to the contaminated soils were selected from around of city of Tabriz and treated with Cr as CrCl3. A multiple regression analysis with statgraph software was used to drive an expression that related Cr sorption to common soil properties. The results showed that four soil properties were important in determining the amount of Cr adsorbed by the soils including pH, cation exchange capacity, total inorganic carbon and clay content with nearly 80% variability in Cr sorption and a reasonable level of confidence by this model. The obtained model suggested that Cr(III sorption was enhanced by higher soil pH, more total inorganic carbon, more clay, and higher cation exchange capacity.

  9. Conceptual modelling of human resource evaluation process

    Directory of Open Access Journals (Sweden)

    Negoiţă Doina Olivia

    2017-01-01

    Full Text Available Taking into account the highly diverse tasks which employees have to fulfil due to complex requirements of nowadays consumers, the human resource within an enterprise has become a strategic element for developing and exploiting products which meet the market expectations. Therefore, organizations encounter difficulties when approaching the human resource evaluation process. Hence, the aim of the current paper is to design a conceptual model of the aforementioned process, which allows the enterprises to develop a specific methodology. In order to design the conceptual model, Business Process Modelling instruments were employed - Adonis Community Edition Business Process Management Toolkit using the ADONIS BPMS Notation. The conceptual model was developed based on an in-depth secondary research regarding the human resource evaluation process. The proposed conceptual model represents a generic workflow (sequential and/ or simultaneously activities, which can be extended considering the enterprise’s needs regarding their requirements when conducting a human resource evaluation process. Enterprises can benefit from using software instruments for business process modelling as they enable process analysis and evaluation (predefined / specific queries and also model optimization (simulations.

  10. Radionuclide sorption from the safety evaluation perspective

    International Nuclear Information System (INIS)

    1992-01-01

    Research and development directed towards the assessment of the long-term performance of radioactive waste disposal systems has been recognised as a priority area with a strong need for international co-operation and co-ordination. The ultimate aims is to promote the quality and credibility of safety assessment techniques for radioactive waste disposal. Sorption in the geosphere is one of the key processes for retarding the transport of radionuclide from the underground disposal facility to the biosphere. In many cases, sorption in the near field and in the biosphere is also important. A workshop, organised to favor discussion around a small number of invited papers, was held in October 1991: - to evaluate critically the way sorption processes are incorporated in performance assessment models; - to identify open issues of high priority, and; - to propose future activities to resolve these issues. These proceedings reproduce the invited papers and the conclusions and recommendations adopted by the workshop. Eight papers are in the INIS SCOPE. The main subjects studied are: sorption database comparison, sorption database development and three case studies, experimental techniques, adsorption models

  11. Migration and sorption phenomena in packaged foods.

    Science.gov (United States)

    Gnanasekharan, V; Floros, J D

    1997-10-01

    Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.

  12. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Science.gov (United States)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  13. Removal of cobalt and strontium from groundwater by sorption onto fishbone

    International Nuclear Information System (INIS)

    Younjin Park; Won Sik Shin; Sang-June Choi

    2013-01-01

    Fishbone as a main backfill material of permeable reactive barrier to remediate groundwater contaminated with Co and Sr was investigated through single- and bi-solute competitive sorptions. The single-solute sorption data were fitted by Freundlich, Langmuir and Dubinin-Radushkevich models. The coefficients of determination (R 2 > 0.91) indicated that all models fitted well. Maximum sorption capacities (q mL ) of Co and Sr predicted by the Langmuir model were 0.55 mmol/g and 0.50 mmol/g, respectively. The bi-solute competitive sorption of the metals was analyzed by the Langmuir, competitive Langmuir, Sheindorf-Rebhun-Sheintuch (SRS) and P-factor models. The sorbed amount of one solute in bi-solute system decreased due to competition with the other solute. Langmuir model parameters for single- (q mL and b L ) and bi-solute (q mL * and b L * ) competitive sorptions were compared to analyze the effect of competition between the metals. The competitive Langmuir, SRS and P-factor models predicted the bi-solute competitive sorption data well (R 2 > 0.93). (author)

  14. Radionuclide sorption on crushed and intact granitic rock

    International Nuclear Information System (INIS)

    Eriksen, Tryggve E.; Locklund, Birgitta

    1989-05-01

    The specific surface areas and distribution ratios for sorption of 85 Sr, 137 Cs and 152 Eu were measured for crushed and intact granite rock. The experimental data can be accommodated by a sorption model encompassing sorption on outer and inner surface. It is clearly demonstrated that the time required to obtain reliable Kd-values for the sorption of strongly sorbing radionuclides like 152 Eu is very long due to solution depletion and slow diffusion into the rock. A combination of surface area measurements and batch sorption with small particles may therefore be preferable when studying strongly sorbing nuclides. (authors) (17 figs., 6 tabs.)

  15. β-Zeolite modified by ethylenediamine for sorption of Th(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Wu, Hanyu; Yuan, Ni; Yin, Zhuoxin; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Lab.; Ministry of Education, Lanzhou (China). Key Lab. of Special Function Materials and Structure Design

    2017-08-01

    β-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5-4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.

  16. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  17. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2016-01-01

    sorption isotherms of building materials, food, and other industrial products, knowledge about the 24 applicability of these functions for soils is noticeably lacking. We present validation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0...

  18. The sorption of polonium, actinium and protactinium onto geological materials

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-01-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results

  19. The sorption of polonium, actinium and protactinium onto geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-07-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results.

  20. National Identity: Conceptual models, discourses and political change

    DEFF Research Database (Denmark)

    Harder, Peter

    2014-01-01

    of conceptual models or discourses. This is especially important in cases that involve conflictive political issues such as national and ethnic identity. The article reports on a historical project with a linguistic dimension in my department (PI Stuart Ward, cf. Ward 2004), which aims to throw light......Cognitive Linguistics has demonstrated the applicability of a conceptual approach to the understanding of political issues, cf. Lakoff (2008) and many others. From a different perspective, critical discourse analysis has approached political concepts with a focus on issues involving potentially...... divisive features such as race, class, gender and ethnic identity. Although discourses are not identical to conceptual models, conceptual models are typically manifested in discourse, and discourses are typically reflections of conceptualizations, a theme explored e.g. in Hart and Lukes (2007). As argued...

  1. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  2. Sensitivity of Deep Soil Organic Carbon Age to Sorption, Transport and Microbial Interactions - Insights from a Calibrated Process Model

    Science.gov (United States)

    Ahrens, B.; Schrumpf, M.; Reichstein, M.

    2013-12-01

    Subsoil soil organic carbon (SOC) is characterized by conventional radiocarbon ages on the order of centuries to millennia. Most vertically explicit SOC turnover models represent this persistence of deep SOC by one pool that has millennial turnover times. This approach lumps different stabilizing mechanisms such as chemical recalcitrance, sorptive stabilization and energy limitation into a single rate constant. As an alternative, we present a continuous, vertically explicit SOC decomposition model that allows for stabilization via sorption and microbial interactions (COMISSION model). We compare the COMISSION model with the SOC profile of a Haplic Podzol under a Norway spruce forest. In the COMISSION model two pools receive aboveground litter input and vertically distributed root litter input. The readily leachable and soluble fraction of litter input enters a dissolved organic carbon pool (DOC), while the rest enters the residue pool which represents polymeric, non-soluble SOC. The residue pool is depolymerized with extracellular enzymes produced by a microbial pool to enter the DOC pool which represents SOC potentially available for assimilation by microbes. The adsorption/desorption of DOC from/to mineral surfaces controls the availability of carbon in the DOC pool for assimilatory uptake by microbes. The sorption of DOC is modeled with dynamic Langmuir equations. The desorbed part of the DOC pool not only constitutes the substrate for the microbial pool, but is also transported via advection. Interactions of microbes with the residue and DOC pool are modeled with Michaelis-Menten kinetics - this not only allows representing ';priming', but also the retardation of decomposition via energy limitation in the deep soil where substrate is scarce. Further, soil organic matter is recycled within the soil profile through microbial processing - dead microbes either enter the DOC or the residue pool, and thereby also contribute to longer residence times with soil depth

  3. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  4. Surface complexation modeling of U(VI) sorption on GMZ bentonite in the presence of fulvic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Lanzhou Univ. (China). Radiochemistry Laboratory; Ministry of Industry and Information Technology, Guangzhou (China). The 5th Electronics Research Inst.; Luo, Daojun [Ministry of Industry and Information Technology, Guangzhou (China). The 5th Electronics Research Inst.; Qiao, Yahua; Wang, Liang; Zhang, Chunming [Ministry of Environmental Protection, Beijing (China). Nuclear and Radiation Safety Center; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Laboratory; Ye, Yuanlv [Ministry of Environmental Protection, Beijing (China). Nuclear and Radiation Safety Center; Lanzhou Univ. (China). Radiochemistry Laboratory

    2017-03-01

    In this work, experiments and modeling for the interactions between uranyl ion and GMZ bentonite in the presence of fulvic acid are presented. The results demonstrated that FA is strongly bound to GMZ bentonite, and these molecules have a very large effect on the U(VI) sorption. The results also demonstrated that U(VI) sorption to GMZ bentonite in the presence and absence of sorbed FA can be well predicted by combining SHM and DLM. According to the model calculations, the nature of the interactions between FA with U(VI) at GMZ bentonite surface is mainly surface complex. The first attempt to simulate clay interaction with humus by the SHM model.

  5. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  6. OWL references in ORM conceptual modelling

    Science.gov (United States)

    Matula, Jiri; Belunek, Roman; Hunka, Frantisek

    2017-07-01

    Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.

  7. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  8. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C

    2018-01-16

    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  9. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    Science.gov (United States)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged

  10. Evolution of sorption properties in large-scale concrete structures accounting for long-term physical-chemical concrete degradation - 59297

    International Nuclear Information System (INIS)

    Perko, Janez; Jacques, Diederik; Mallants, Dirk; Seetharam, Suresh

    2012-01-01

    , Belgium: (i) The procedure begins by the selection of sorption and solubility values pertinent to the type of concrete used for the Dessel near-surface facility. The selection procedure is transparently documented and published in two NIRAS/ONDRAF reports . These reports define sorption values for four distinct chemical degradation states of concrete used in the safety assessments. Most of the selected data is based on experimental sorption data at laboratory scale with benchmark cements. (ii) Cement, however, occupies only a fraction of the total volume of concrete and rescaling of cement sorption values to concrete is an important issue. Though very obvious, this rescaling could be a source of wrong interpretation and, to authors' knowledge, has never been addressed in long-term safety assessments. (iii) Long term evolution of concrete is modelled by the use of a geochemical model supported by a state-of-the-art thermodynamic database. The long-term evolution of the cementitious near field SSCs at the Dessel facility is based on leaching of the reactive phases from the concrete. Evolution of sorption parameters follows the evolution of these cement phases. Distinct sorption values for specific chemical degradation states are linked to the evolution of the calcium silicate hydrates (C-S-H phases) in the cement because they were judged to offer the most robust and unique behaviour applicable to all radionuclides. (iv) Final use of sorption values in safety assessment depends on the conceptual model and purpose of the model. Few examples are discussed in this paper. (authors)

  11. Radionuclide sorption database for Swiss safety assessment

    International Nuclear Information System (INIS)

    McKinley, I.G.; Hadermann, J.

    1984-10-01

    Recommended sorption data for use in transport models for a Swiss High-Level Waste repository are presented. The models used in 'Project Gewaehr 1985' assume linear sorption isotherms and require elemental partition coefficient (Kd) data. On the basis of a literature search 'realistic' Kd data for 22 elements have been selected for weathered crystalline rock and sediments in contact with a reducing groundwater and also sediments with a less reducing groundwater. In an appendix sorption data for 28 elements on bentonite backfill are given. These data are supplemented with 'conservative' estimates taken to represent minimum reasonable values. Available data are discussed for each element clearly exhibiting (i) the large gaps in knowledge, (ii) their unbalanced distribution between different elements and, hence, (iii) the need for further experiments in the laboratory, the field and analogue studies. An overview of the theoretical concepts of sorption, experimental methodology and data interpretation is given in order to put the values into context. General problem areas are identified. (Auth.)

  12. Carbon dioxide sorption on EDTA modified halloysite

    Directory of Open Access Journals (Sweden)

    Waszczuk Patrycja

    2016-01-01

    Full Text Available In this paper the sorption study of CO2 on EDTA surface modified halloysite was conducted. In the paper chemical modification of halloysite from the Dunino deposit (Poland and its influence on sorption of CO2 are presented. A halloysite samples were washed with water-EDTA 1% solution, centrifuged to separate liquid and impurities and dried. The samples were tested for the sorption capacity using a manometric method with pressure up to 3 MPa. A Langmuir adsorption model was fitted to the data. The results showed that EDTA had a limited effect on the increase of sorption potential at low pressure and the samples exhibited similar results to that ones treated solely with the water solution.

  13. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    Science.gov (United States)

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2

  14. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    Science.gov (United States)

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  15. A mechanistic approach to the generation of sorption databases

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1992-01-01

    Sorption of radionuclides in the near and far fields of an underground nuclear waste repository is one of the most important processes retarding their release to the environment. In the vast majority of cases sorption data have been presented in terms of empirical parameters such as distribution coefficients and isotherm equations. A consequence of this empirical methodology is that the sorption data are only strictly valid under the experimental conditions at which they were measured. Implicit in this approach is the need to generate large amounts of data and fitting parameters necessary for an empirical description of sorption under all realistically conceivable conditions which may arise in space and time along the migration pathway to Man. An alternative approach to the problem is to try to understand, and develop model descriptions of, underlying retention mechanisms and to identify those systems parameters which essentially determine the extent of sorption. The aim of this work is to see to what extent currently existing mechanistic models, together with their associated data, can be applied to predict sorption data from laboratory experiments on natural systems. This paper describes the current status of this work which is very much in an early stage of development. An example is given whereby model predictions are compared with laboratory results for the sorption of Np at trace concentrations under oxidizing conditions on a series of minerals relevant to granite formations. 31 refs., 11 figs., 5 tabs

  16. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  17. Sorption mechanism of U(VI) on to natural soil system: a study using intra-particle diffusion model

    International Nuclear Information System (INIS)

    Rout, S.; Kumar, A.; Ravi, P.M.; Tripathi, R.M.

    2015-01-01

    The rate of U(VI) adsorption onto natural soils from different parent materials has been studied experimentally using the batch adsorption method at five different initial U(VI) concentrations. The utility of Weber and Morris Interparticle diffusion model for describing the mechanism and kinetics of sorption is discussed. The study reveals that the mechanism of U(VI) sorption involves three steps such as: external surface adsorption, gradual adsorption stage which is the rate determining step and the last portion refers to the final equilibrium stage. The steps involved in sorption of U(VI) on to soil is same irrespective of soil types and initial U(VI) concentration. (author)

  18. Implementation of sorption hysteresis in multi-Fickian moisture transport

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Svensson, Staffan

    2007-01-01

    In the cellular structure of wood, bound-water diffusion and water-vapor diffusion interact via sorption in a complex moisture-transportation system. At low relative humidities, moisture transport may be modeled by a Fickian diffusion equation with a good approximation. At higher relative......-35% in moisture content. Hence, for a precise moisture content computation, sorption hysteresis must be taken into account. The present paper explains the relation between sorption hysteresis and multi-Fickian moisture transport, and clarifies how models for the two phenomena are coupled. To illustrate...

  19. Behaviour of selenate in soils: experimental approach and modeling of hysteresis of sorption/desorption

    International Nuclear Information System (INIS)

    Loffredo, N.

    2010-01-01

    In the context of future storage of nuclear material in deep geological layers, the transfer of selenium-79 from groundwater to biosphere through irrigation is one of the scenarios considered by the ANDRA (National Agency for Radioactive Waste Management). So, the soil would act as an interface between the geosphere and biosphere. Actually the model adopted to evaluate the element mobility in soil is based on a simple representation of its distribution between the quantity adsorbed on the soil and the amount remaining in the solution (KD model). Such distribution is considered as instantaneous, reversible and linear with the concentration of contamination. This model has some inadequacies with respect to selenium because this latter can be present in different redox states that control its mobility and whose transformation kinetics among states are poorly known (Se(-II), Se(0), Se(IV) and Se(VI)). In order to improve predictions on the mobility of selenium in soil, selenate (Se(VI)) - which is the most mobile form - has been used to study its interactions with respect to two different soils (soil B and soil R). A kinetic model, alternative to the K d model, has been developed to describe the evolution of stocks of Se(VI) in solution. This model considers that a fraction of selenium is associated with soil in a reversibly way (potentially mobile) and a portion of it is stabilized in soil (pseudo-irreversibly fixed). This model integrates on one hand, in the soil, kinetics of biotic and abiotic stabilization and on the other hand, in solution, a reduction kinetic. With the goal of acquiring the parameters of the models, various experiments using dialysis bags have been effectuated, both in batch and with open-flow reactors. The parameter acquisition has allowed kinetic and K d models to be compared in different realistic scenarios of contamination (chronic or sequential) of a surface soil with 79 Se(VI). In addition, the sorption mechanisms of Se(VI) have been

  20. Transport and sorption of volatile organic compounds and water vapor in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tsair-Fuh [Univ. of California, Berkeley, CA (United States)

    1995-07-01

    To gain insight on the controlling mechanisms for VOC transport in porous media, the relations among sorbent properties, sorption equilibrium and intraparticle diffusion processes were studied at the level of individual sorbent particles and laboratory columns for soil and activated carbon systems. Transport and sorption of VOCs and water vapor were first elucidated within individual dry soil mineral grains. Soil properties, sorption capacity, and sorption rates were measured for 3 test soils; results suggest that the soil grains are porous, while the sorption isotherms are nonlinear and adsorption-desorption rates are slow and asymmetric. An intragranular pore diffusion model coupled with the nonlinear Freundlich isotherm was developed to describe the sorption kinetic curves. Transport of benzene and water vapor within peat was studied; partitioning and sorption kinetics were determined with an electrobalance. A dual diffusion model was developed. Transport of benzene in dry and moist soil columns was studied, followed by gaseous transport and sorption in activated carbon. The pore diffusion model provides good fits to sorption kinetics for VOCs to soil and VOC to granular activated carbon and activated carbon fibers. Results of this research indicate that: Intraparticle diffusion along with a nonlinea sorption isotherm are responsible for the slow, asymmetric sorption-desorption. Diffusion models are able to describe results for soil and activated carbon systems; when combined with mass transfer equations, they predict column breakthrough curves for several systems. Although the conditions are simplified, the mechanisms should provide insight on complex systems involving transport and sorption of vapors in porous media.

  1. A Structural Equation Model of Conceptual Change in Physics

    Science.gov (United States)

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  2. Equilibrium modeling of mono and binary sorption of Cu(II and Zn(II onto chitosan gel beads

    Directory of Open Access Journals (Sweden)

    Nastaj Józef

    2016-12-01

    Full Text Available The objective of the work are in-depth experimental studies of Cu(II and Zn(II ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II and Zn(II ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II and Zn(II ions (1:1, 1:2, 2:1. Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.

  3. Factors influencing sorption of ciprofloxacin onto activated sludge: Experimental assessment and modelling implications

    DEFF Research Database (Denmark)

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang

    2015-01-01

    was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used...

  4. Sorption study of U+6 in Brazilian soils

    International Nuclear Information System (INIS)

    Junior, Antonio P.; Wasserman, Maria A.V.; Mantovano, Jose L.; Carvalho, Leonel M.; Perez, Daniel V.

    2015-01-01

    The uranium mining is one of the main activities of the nuclear fuel cycle that can contribute to the increased exposure to radioactive materials and is one of the main routes of contamination of soil by natural radionuclides. This study investigated the sorption of uranium in brazilian soils, through sorption isotherms performed in batch. In this study, two types of soils were selected: Ferralsols Red and Nitosol. The adjustment of the experimental data to the kinetic models were evaluated by two approaches: the traditional, based on the coefficient of determination (R 2 ); and the theoretical and informative, based on Corrected Akaike Information Criteria (AIC C ). The coefficient of determination (R 2 ), revealed that, although empirical, both the kinetic model, Freundlich and Langmuir, describes satisfactorily the experimental data, showing R 2 values higher than 0.9, while the partition constant model was not suitable for describe these sorption data. The AICC model analysis showed that the Langmuir model fit the U sorption curve well for Ferralsols Red, while the Freundlich model fits better to Nitosol. This study has highlighted the role of organic matter on the sorption of uranium in highly weathered soils, rich in oxyhydroxides and low activity clays. The Kd values reported in this study differ from those recommended by the United States Environmental Protection Agency, therefore must be considered as reference values for highly weathered soils, since it refers to Brazilian pedoenvironmental conditions. The low Kd values obtained in this study allowed to evaluate the high vulnerability of highly weathered soils to uranium contamination. (author)

  5. Radionuclide sorption on granitic drill core material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Locklund, B.

    1987-11-01

    Distribution ratios were determined for Sr-85, Cs-134 and Eu-152 on crushed granite and fissure coating/filling material from Stripa mines. Measurements were also carried out on intact fissure surfaces. The experimental data for Sr-85, Cs-134 on crushed material can be accomodated by a sorption model based on the assumption that the crushed material consists of porous spheres with outer and inner surfaces available for sorption. In the case of Eu-152 only sorption on the outer surfaces of the crushed material was observed. The absence of sorption on inner surfaces is most probably due to high depletion of the more strongly sorbed Eu-152 in the water phase and very low diffusivity of Eu-152 in the sorbed state. (orig./HP)

  6. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kyle, Jennifer E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tfaily, Malak M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martijn L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carroll, Matthew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chu, Rosalie K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Hope [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaplan, Daniel I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garcia, Whitney L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Odeta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowden, Mark E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toyoda, Jason G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Plymale, Andrew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, or (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.

  7. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol

    Directory of Open Access Journals (Sweden)

    Ding Feng Jin

    2016-10-01

    Full Text Available Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC, mesoporous carbon (MPC, bamboo biochar (BBC and oak wood biochar (OBC were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the π–π electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively, compared to MPC (73.00 mg/g and AC, indicating an ineffective potential for phenol removal from water.

  8. Sorption behaviour of caesium on a bentonite sample

    International Nuclear Information System (INIS)

    Hurel, C.; Marmier, N.; Fromage, F.; Seby, F.; Bourg, A.C.M.; Giffaut, E.

    2002-01-01

    Sorption of elements like Cs on clay is one of the principal processes delaying their release from deep repositories of nuclear wastes into the environment. The sorption processes taking place between non-purified natural clay material (bentonite) and synthetic groundwater (containing Ca, Mg, Na, K and carbonates) were therefore studied experimentally and modelled for Cs to determine whether thermodynamic computer codes capable of predicting the behaviour of this element in natural systems might be developed. The model used, based on the properties of a pure montmorillonite phase, incorporates the surface reactions for natural major ions and sorbing cations but does not have any adjustable parameters. The weight of each parameters used in the model is assessed. Surface reactions are classified as either major or minor, and a simplified model of Cs sorption that considers only the major processes is proposed. This simplified model might correspond to the less sophisticated thermodynamic model included in coupled geochemistry-transport models. (orig.)

  9. Numerical Modeling for the Solute Uptake from Groundwater by Plants-Plant Uptake Package

    OpenAIRE

    El-Sayed, Amr A.

    2006-01-01

    A numerical model is presented to describe solute transport in groundwater coupled to sorption by plant roots, translocation into plant stems, and finally evapotranspiration. The conceptual model takes into account both Root Concentration Factor, RCF, and Transpiration Stream Concentration Factor, TSCF for chemicals which are a function of Kow. A similar technique used to simulate the solute transport in groundwater to simulate sorption and plant uptake is used. The mathematical equation is s...

  10. Sorption kinetics of diuron on volcanic ash derived soils.

    Science.gov (United States)

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Sorption and diffusion of FE(II) in bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Tournassat, C.; Hadi, J.; Greneche, J.-M.

    2014-02-01

    . Qualitatively, the sorption of the radioactive 55 Fe on all the clays shows the same type of behaviour, i.e. sorption increases with increasing pH. In the measurements with the bentonite purified at VTT, the sorption occurs at a higher pH than in the measurements carried out with bentonite purified at BRGM. The sorption experiments in the acetate buffer of pH 5 show decreasing sorption of 55 Fe as a function of the increasing concentration of the added Fe(II). A general model for the investigated clays is proposed where Fe sorption is due to adsorption on exchange sites, strong and weak complexation sites and electron transfer with the structural Fe. All mechanisms identified apply to all clay samples but with variations in CEC values, structural Fe redox potential and strong and weak sites' surface density. The measured diffusivities show rather low values (10 -15 - 10 -16 m 2 /s) at pH 8 and 5. At pH 8, the diffusion curve calculated with a reactive transport model on the basis of the sorption matches fairly well the experimental results. At pH 5, the model predicts a much longer diffusion distance than found in the experiment. The reason for this discrepancy is not yet understood. A possible explanation could be a slow redox/sorption process which does not appear in the short batch sorption measurements. (orig.)

  12. Sorption and diffusion of FE(II) in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Tournassat, C.; Hadi, J. [BRGM, Orleans (France); Greneche, J.-M. [LPCE, Le Mans (France)

    2014-02-15

    . Qualitatively, the sorption of the radioactive {sup 55}Fe on all the clays shows the same type of behaviour, i.e. sorption increases with increasing pH. In the measurements with the bentonite purified at VTT, the sorption occurs at a higher pH than in the measurements carried out with bentonite purified at BRGM. The sorption experiments in the acetate buffer of pH 5 show decreasing sorption of {sup 55}Fe as a function of the increasing concentration of the added Fe(II). A general model for the investigated clays is proposed where Fe sorption is due to adsorption on exchange sites, strong and weak complexation sites and electron transfer with the structural Fe. All mechanisms identified apply to all clay samples but with variations in CEC values, structural Fe redox potential and strong and weak sites' surface density. The measured diffusivities show rather low values (10{sup -15} - 10{sup -16} m{sup 2}/s) at pH 8 and 5. At pH 8, the diffusion curve calculated with a reactive transport model on the basis of the sorption matches fairly well the experimental results. At pH 5, the model predicts a much longer diffusion distance than found in the experiment. The reason for this discrepancy is not yet understood. A possible explanation could be a slow redox/sorption process which does not appear in the short batch sorption measurements. (orig.)

  13. Sorption data bases and mechanistic sorption studies

    International Nuclear Information System (INIS)

    Bradbury, M.H.

    2000-01-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  14. Technetium Sorption By Cementitious Materials Under Reducing Conditions

    International Nuclear Information System (INIS)

    Kaplan, Daniel I.; Estes, Shanna L.; Arai, Yuji; Powell, Brian A.

    2013-01-01

    The objective of this study was to measure Tc sorption to cementitious materials under reducing conditions to simulate Saltstone Disposal Facility conditions. Earlier studies were conducted and the experimental conditions were found not to simulate those of the facility. Through a five month subcontract with Clemson University, sorption of 99 Tc to four cementitious materials was examined within an anaerobic glovebag targeting a 0.1% H 2 (g)/ 99.9% N 2 (g) atmosphere. Early experiments based on Tc sorption and Eh indicated that 0.1% H 2 (g) (a reductant) was necessary to preclude experimental impacts from O 2 (g) diffusion into the glovebag. Preliminary data to date (up to 56 days) indicates that sorption of 99 Tc to cementitious materials increased with increasing slag content for simulated saltstone samples. This is consistent with the conceptual model that redox active sulfide groups within the reducing slag facilitate reduction of Tc(VII) to Tc(IV). These experiments differ from previous experiments where a 2% H 2 (g) atmosphere was maintained (Kaplan et al., 2011 (SRNL-STI-2010-00668)). The impact of the 2% H 2 (g) reducing atmosphere on this data was examined and determined to cause the reduction of Tc in experimental samples without slag. In the present ongoing study, after 56 days, Tc sorption by the 50-year old cement samples (no slag) was undetectable, whereas Tc sorption in the cementitious materials containing slag continues to increase with contact time (measured after 1, 4, 8, 19 and 56 days). Sorption was not consistent with spike concentrations and steady state has not been demonstrated after 56 days. The average conditional K d value for the Vault 2 cementitious material was 873 mL/g (17% slag), for the TR547 Saltstone (45% slag) the conditional K d was 168 mL/g, and for TR545 (90% slag) the conditional K d was 1,619 mL/g. It is anticipated that additional samples will be collected until steady state conditions are established to permit measuring

  15. Role of conceptual models in nuclear power plant operation

    International Nuclear Information System (INIS)

    Williams, M.D.; Moran, T.P.; Brown, J.S.

    1982-01-01

    A crucial objective in plant operation (and perhaps licensing) ought to be to explicitly train operators to develop, perhaps with computer aids, robust conceptual models of the plants they control. The question is whether we are actually able to develop robust conceptual models and validate their robustness. Cognitive science is just beginning to come to grips with this problem. This paper describes some of the evolving technology for building conceptual models of physical mechanisms and some of the implications of such models in the context of nuclear power plant operation

  16. A compilation and evaluation of sorption coefficients used in the geosphere model of SYVAC for the 1990 assessment of the Whiteshell Research Area

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T T; Ticknor, K V

    1994-09-01

    We describe the development of a parametric model that expresses sorption of trace amounts of radioactive and chemically toxic elements from groundwater on geological material as a function of two independent variables: the concentration of the trace element, and the total dissolved solids used to provide sorption coefficients for a contaminant transport model used in performance assessment calculations for a case study of a hypothetical nuclear fuel waste disposal concept in an extensively characterized intrusive rock formation, the Lac du Bonnet batholith. The sorption database in this report is based on laboratory results, literature surveys, and chemical homologs. The arguments used to apply sorption data obtained on unconsolidated material to contaminant transport through intact rock are described. Data are presented for the sorption of 39 elements on three rock types and on 13 primary and secondary minerals, under oxic and anoxic conditions. 166 refs., 12 figs., 4 tabs.

  17. Experimental study of strontium sorption on fissure filling material

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, T E; Cui, Daqing [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemistry

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs.

  18. Experimental study of strontium sorption on fissure filling material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Cui, Daqing

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs

  19. Effects of sorption hysteresis on radionuclide releases from waste packages

    International Nuclear Information System (INIS)

    Barney, G.S.; Reed, D.T.

    1985-01-01

    A one-dimensional, numerical transport model was used to calculate radionuclide releases from waste packages emplaced in a nuclear waste repository in basalt. The model incorporates both sorption and desorption isotherm parameters measured previously for sorption of key radionuclides on the packing material component of the waste package. Sorption hysteresis as described by these isotherms lowered releases of some radionuclides by as much as two orders of magnitude. Radionuclides that have low molar inventories (relative to uranium), high solubility, and strongly sorbed, are most affected by sorption hysteresis. In these cases, almost the entire radionuclide inventory is sorbed on the packing material. The model can be used to help optimize the thickness of the packing material layer by comparing release rate versus packing material thickness curves with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) release limits

  20. COSMO: a conceptual framework for service modelling and refinement

    NARCIS (Netherlands)

    Quartel, Dick; Steen, Maarten W.A.; Pokraev, S.; van Sinderen, Marten J.

    This paper presents a conceptual framework for service modelling and refinement, called the COSMO (COnceptual Service MOdelling) framework. This framework provides concepts to model and reason about services, and to support operations, such as composition and discovery, which are performed on them

  1. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    Science.gov (United States)

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  2. Performance of Cationic Surfactant Modified Sepiolite and Bentonite in Lead Sorption from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    H.R. Rafiei

    2014-12-01

    Full Text Available The remediation of soils and water contaminated with heavy metals generate a great need to develop efficient adsorbents for these pollutants. This study reports the sorption of lead (Pb by bentonite (Bent, and sepiolite (Sep, that were modified with cetyltrimethyl ammonium (CTMA+ organic cations. The natural and surfactant modified clays (organo-clays were characterized with some instrumental techniques including XRF, XRD, FTIR and SEM. Sorption studies were performed in a batch system, and the effects of various experimental parameters including contact time and initial Pb concentration were evaluated upon the Pb sorption onto sorbents. Maximum sorption of Pb was found to be, 83.26, 71.36, 56.25 and 37 mg g-1 for Sep, CTMA-Sep, Bent and CTMA-Bent adsorbents, respectively. The Pb sorption data were fitted to both the Langmuir and Freundlich models. The Freundlich model represented the sorption process better than the Langmuir model. Lead sorption rate was found to be considerably slower for organo-clays than that for unmodified clays. Sorption kinetics was evaluated by pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models. The sorption processes of organo-clays followed intraparticle diffusion kinetics. The results showed that the cationic surfactant modified bentonite and sepiolite sorbed less Pb than the unmodified clays.

  3. The sorption of uranium and technetium on bentonite, tuff and granodiorite

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Cowper, M.M.; Heath, T.G.; Tweed, C.J.

    1995-01-01

    A combined experimental and modeling study of the sorption of uranium and technetium on geological materials has been carried out as part of the PNC program to increase confidence in the performance assessment for a high-level radioactive waste (HLW) repository in Japan. Batch sorption experiments have been performed in order to study the sorption of uranium and technetium onto bentonite, tuff and granodiorite from both equilibrated seawater and de-ionized water under strongly-reducing and non-reducing conditions. A preliminary study of the sorption of uranium on mineral surfaces in granodiorite has also been undertaken using a nuclear microprobe. Mathematical modeling using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database has been carried out in order to interpret the results of the sorption experiments

  4. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Educational game models: conceptualization and evaluation ...

    African Journals Online (AJOL)

    Educational game models: conceptualization and evaluation. ... The Game Object Model (GOM), that marries educational theory and game design, forms the basis for the development of the Persona Outlining ... AJOL African Journals Online.

  6. Sorption of humic acid to functionalized multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Fei; Yao, Jun; Chen, Huilun; Yi, Zhengji; Xing, Baoshan

    2013-01-01

    The environmental behavior of carbon nanotubes (CNTs) and humic acid (HA) is a prominent concern, but effect of functionalities on their sorption is not clear yet. Functionalized multi-walled CNTs (MCNT15) and HA were used to study their sorption behavior. Sorption rate of HA to MCNTs was dominantly controlled by its diffusion from liquid-MCNT boundary to MCNT surfaces. The sorption is in the sequence of MCNT15 > MCNT15-NH 2 > MCNT15-OH > MCNT15-COOH > MCNT15-Ni, which was dependent on their surface area and meso- and macro-pore volume. The functionalities of MCNTs regulated the sorption by affecting their interaction mechanisms (i.e., H-bonding, π–π, and hydrophobic interaction). Additionally, the amount of these functionalities on the MCNT surface reduced indirectly the sorption sites due to the steric hindrance. Electrostatic repulsion deceased the sorption of HA by MCNTs with increasing pH. This study demonstrated the importance of functionalities on the MCNTs for the sorption of HA. -- Highlights: •HA sorption kinetics was well fitted using Lagergren pseudo second-order model. •Sorption rate of HA was controlled by diffusion from liquid-MCNT boundary to MCNT surfaces. •Sorption was dependent on their surface area and meso- and macro-pore volume. •Functionalities of MCNTs regulated the sorption by affecting interaction mechanisms. -- The functionalities of MCNTs regulated the sorption behavior between MCNTs and HA

  7. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    Science.gov (United States)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional

  8. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    Science.gov (United States)

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  9. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2012-01-01

    Highlights: ► Organic pollutants are present as complex mixtures in the marine environment. ► The competitive sorption of phenanthrene and DDT in a bi-solute system was investigated onto PVC and PE. ► DDT outcompeted phenanthrene for sorption onto plastic. ► DDT also appeared to have a negative effect on the sorption of phenanthrene onto plastic when added at high concentration. - Abstract: Plastics are known to sorb persistent organic pollutants from seawater. However, studies to quantify sorption rates have only considered the affinity of chemicals in isolation, unlike the conditions in the environment where contaminants are present as complex mixtures. Here we examine whether phenanthrene and 4,4′-DDT, in a mixture, compete for sorption sites onto PVC with no added additives (unplasticised PVC or uPVC) and Ultra-High Molecular Weight polyethylene. Interactions were investigated by exposing particles of uPVC and UHMW PE to mixtures of 3H and 14C radiolabelled Phe and DDT. Changes in sorption capacity were modelled by applying a Freundlich binding sorption isotherms. An Extended Langmuir Model and an Interaction Factor Model were also applied to predict equilibrium concentrations of pollutants onto plastic. This study showed that in a bi-solute system, DDT exhibited no significantly different sorption behaviour than in single solute systems. However, DDT did appear to interfere with the sorption of Phe onto plastic, indicating an antagonistic effect.

  10. Development of JAEA sorption database (JAEA-SDB). Update of data evaluation functions and sorption/QA data

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael; Ganter, Charlotte

    2011-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop database compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in buffer materials (bentonite) and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on developing and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on multi-parameter dependence, operating method, PA-related applications of the web-based JAEA-SDB. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 4,250 K d data from 32 references are added, total K d values in the JAEA-SDB are about 28,540. The QA/classified K d data are about 39% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to have suitable access to the respective data

  11. Sorption of organic gases in a furnished room

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

    2003-11-30

    We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m{sup 3} room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten Hazardous Air Pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl-tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C{sub 8}-C{sub 10} aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5 to >6 h{sup -1} and partitioned 95 to >99% in the sorbed phase at equilibrium.

  12. Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms

    International Nuclear Information System (INIS)

    Salvestrini, Stefano; Leone, Vincenzo; Iovino, Pasquale; Canzano, Silvana; Capasso, Sante

    2014-01-01

    Highlights: • Different methods to derive sorption thermodynamic parameters have been discussed. • ΔG° and, ΔS° values depend on the selected standard states. • Isosteric heat values help in evaluating the applicability of the sorption models. -- Abstract: This is a comparative analysis of popular methods currently in use to derive sorption thermodynamic parameters from temperature dependence of sorption isotherms. It is emphasized that the standard and isosteric thermodynamic parameters have sharply different meanings. Moreover, it is shown with examples how the sorption model adopted conditions the standard state and consequently the value of ΔG° and ΔS°. These trivial but often neglected aspects should carefully be considered when comparing thermodynamic parameters from different literature sources. An effort by the scientific community is needed to define criteria for the choice of the standard state in sorption processes

  13. Equilibrium sorption of cobalt, cesium, and strontium on Bandelier Tuff: analysis of alternative mathematical modeling

    International Nuclear Information System (INIS)

    Polzer, W.L.; Fuentes, H.R.; Essington, E.H.; Roensch, F.R.

    1985-01-01

    Sorption isotherms are derived from batch equilibrium data for cobalt, cesium and strontium on Bandelier Tuff. Experiments were conducted at an average temperature of 23 0 C and equilibrium was defined at 48 hours. The solute concentrations ranged from 0 to 500 mg/L. The radioactive isotopes 60 Co, 137 Cs, and 85 Sr were used to trace the sorption of the stable solutes. The Linear, Langmuir, Freundlich and a Modified Freundlich isotherm equations are evaluated. The Modified Freundlich isotherm equation is validated as a preferred general mathematical tool for representing the sorption of the three solutes. The empirical constants derived from the Modified Freundlich isotherm equation indicate that under dynamic flow conditions strontium will move most rapidly and cobalt least rapidly. On the other hand, chemical dispersion will be greatest for cesium and least for strontium. Hill Plots of the sorption data suggest that in the region of low saturation sorption of all three solutes is impeded by interactions among sorption sites; cobalt exhibits the greatest effect of interactions and strontium shows only a minimal effect. In the saturation region of 50% or more, sorption of cobalt is enhanced slightly by interactions among sorption sites whereas sorption of cesium and strontium appears to be independent of site interactions. 9 references, 4 figures, 2 tables

  14. Status report on SIRS: sorption information retrieval system

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Serne, R.J.; Baldwin, A.J.; Petrie, G.M.

    1980-11-01

    Two major uses were identified for the Sorption Information Retrieval System: (1) to aid geochemists in the elucidation of sorption mechanisms; and (2) to aid safety assessment modelers in selection of Kds for any given scenerio. Other benefits such as providing an auditable vehicle for the Kd selection were also discussed

  15. Modeling PCN-61 and PCN-66: Isostructural rht -Metal–Organic Frameworks with Distinct CO 2 Sorption Mechanisms

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; McDonald, Kyle; Space, Brian

    2014-01-01

    © 2014 American Chemical Society. Simulations of CO2 sorption were performed in two members of the highly tunable rht-metal-organic framework (MOF) platform: PCN-61 and PCN-66. These MOFs differ only in the triisophthalate ligand used to synthesize the respective MOFs. In PCN-61, the center of the ligand contains a benzene ring; this ring is substituted with a triphenylamine group in PCN-66. There are two chemically distinct Cu2+ ions that comprise the copper paddlewheels, [Cu2(O2CR)4], in all rht-MOFs. One type of Cu2+ ion, denoted Cu1, projects into the truncated tetrahedral (T-Td) and truncated octahedral (T-Oh) cages, while the other Cu2+ ion, denoted Cu2, projects into the cuboctahedral (cub-Oh) cages. Electronic structure calculations revealed that, in PCN-61, the Cu2 ions have a significantly higher partial positive charge than the Cu1 ions, whereas the opposite was observed in PCN-66. The simulations revealed that the CO2 molecules sorb initially onto the Cu2+ ions that have the higher partial positive charge, i.e., the Cu2 ions in PCN-61 and the Cu1 ions in PCN-66. This was demonstrated by examining the radial distribution function, g(r), about both Cu2+ ions and the modeled structure at low loading for both MOFs. This study provided insights into how differences in the charge distributions about the copper paddlewheels between two isostructural MOFs, arising from the choice of functionality on the ligand, can lead to different CO2 binding sites at low loading and suggests a more general conceptual framework for controlling sorption through the tuning of MOF electronics.

  16. Modeling PCN-61 and PCN-66: Isostructural rht -Metal–Organic Frameworks with Distinct CO 2 Sorption Mechanisms

    KAUST Repository

    Pham, Tony

    2014-11-05

    © 2014 American Chemical Society. Simulations of CO2 sorption were performed in two members of the highly tunable rht-metal-organic framework (MOF) platform: PCN-61 and PCN-66. These MOFs differ only in the triisophthalate ligand used to synthesize the respective MOFs. In PCN-61, the center of the ligand contains a benzene ring; this ring is substituted with a triphenylamine group in PCN-66. There are two chemically distinct Cu2+ ions that comprise the copper paddlewheels, [Cu2(O2CR)4], in all rht-MOFs. One type of Cu2+ ion, denoted Cu1, projects into the truncated tetrahedral (T-Td) and truncated octahedral (T-Oh) cages, while the other Cu2+ ion, denoted Cu2, projects into the cuboctahedral (cub-Oh) cages. Electronic structure calculations revealed that, in PCN-61, the Cu2 ions have a significantly higher partial positive charge than the Cu1 ions, whereas the opposite was observed in PCN-66. The simulations revealed that the CO2 molecules sorb initially onto the Cu2+ ions that have the higher partial positive charge, i.e., the Cu2 ions in PCN-61 and the Cu1 ions in PCN-66. This was demonstrated by examining the radial distribution function, g(r), about both Cu2+ ions and the modeled structure at low loading for both MOFs. This study provided insights into how differences in the charge distributions about the copper paddlewheels between two isostructural MOFs, arising from the choice of functionality on the ligand, can lead to different CO2 binding sites at low loading and suggests a more general conceptual framework for controlling sorption through the tuning of MOF electronics.

  17. Sorption study of U{sup +6} in Brazilian soils

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Antonio P.; Wasserman, Maria A.V.; Mantovano, Jose L.; Carvalho, Leonel M., E-mail: apjunior@ien.gov.br, E-mail: mwasserman@ien.gov.br, E-mail: mantovan@ien.gov.br, E-mail: leonel@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Perez, Daniel V., E-mail: daniel@cnps.embrapa.br [Empresa Brasileira de Pesquisas Agropecuarias (Embrapa Solos-CNPS), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The uranium mining is one of the main activities of the nuclear fuel cycle that can contribute to the increased exposure to radioactive materials and is one of the main routes of contamination of soil by natural radionuclides. This study investigated the sorption of uranium in brazilian soils, through sorption isotherms performed in batch. In this study, two types of soils were selected: Ferralsols Red and Nitosol. The adjustment of the experimental data to the kinetic models were evaluated by two approaches: the traditional, based on the coefficient of determination (R{sup 2}); and the theoretical and informative, based on Corrected Akaike Information Criteria (AIC{sub C}). The coefficient of determination (R{sup 2}), revealed that, although empirical, both the kinetic model, Freundlich and Langmuir, describes satisfactorily the experimental data, showing R{sup 2} values higher than 0.9, while the partition constant model was not suitable for describe these sorption data. The AICC model analysis showed that the Langmuir model fit the U sorption curve well for Ferralsols Red, while the Freundlich model fits better to Nitosol. This study has highlighted the role of organic matter on the sorption of uranium in highly weathered soils, rich in oxyhydroxides and low activity clays. The Kd values reported in this study differ from those recommended by the United States Environmental Protection Agency, therefore must be considered as reference values for highly weathered soils, since it refers to Brazilian pedoenvironmental conditions. The low Kd values obtained in this study allowed to evaluate the high vulnerability of highly weathered soils to uranium contamination. (author)

  18. Experimental And Modelling Investigations on Na-Illite: Acid-Base Behaviour And the Sorption Of Strontium, Nickel, Europium And Uranyl

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    2005-06-01

    In an extensive study the physico-chemical, protolysis and sorption characteristics of Sr(II), Ni(II), Eu(III) and U(VI) have been measured on illite and modeled over a wide range of pH, sorbate and NaCI0 4 concentrations. SampIes of Illite du Puy, collected in the region of Le Puy-en- Velay, France, were carefully conditioned to the Na-form and physico-chemically characterised. Potentiometric titrations on suspensions of the Na-illite were carried out using a batch back titration technique in 0.01, 0.1 and 0.5 M NaCI0 4 background electrolytes from pH 2 to 12 in an inert atmosphere glove box. The supernatant solutions from each titration experiment in each series were analysed for K, Mg, Ca, Sr, Si, Al, Fe and Mn. The titration data were modeled in terms of the protolysis of two amphoteric edge sites (=S W1 0H and =S W2 0H) without an electrostatic term. The protonation/deprotonation constants and site capacities obtained from the titration measurements were then fixed. The sorption edge and isotherm data were modeled with strong (=S S OH) and weak (=S W1 0H) surface complexation sites, assumed to have the same protolysis constants, again without electrostatic terms. Uptake by cation exchange was included in all of the calculations. This sorption model, the 2 site protolysis non electrostatic surface complexation and cation exchange model, had been developed previously for montmorillonite and was successful in describing the sorption characteristics of Sr, Ni, Eu and U on Na-illite over a wide range of conditions. Cation exchange capacity, strong and weak site capacities and protolysis constants for Na-illite are given, together with surface complexation constants and selectivity coefficients for Sr, Ni, Eu and U. At 0.01 M NaCI0 4 and pH below 8 the sorption of Sr, Ni, Eu and U was dominated by a cation exchange mechanism. The strong dependency of sorption on pH observed under these conditions arose from the competitive effects of Ca and Al on the uptake of the

  19. Conceptual models in the field of library catalogues

    Directory of Open Access Journals (Sweden)

    Marija Petek

    2000-01-01

    Full Text Available The publishing world is changing quickly and so must also bibliographic control. It is tirne to re-examine cataloguing rules and MARC formats. This can be done by the method of conceptual modelling. Some conceptual models are presented; an IFLA study on the functional requirements for bibliographic records is described in detail.

  20. Sorption data bases and mechanistic sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H

    2000-07-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  1. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  2. Template for Conceptual Model Construction: Model Review and Corps Applications

    National Research Council Canada - National Science Library

    Henderson, Jim E; O'Neil, L. J

    2007-01-01

    .... The template will expedite conceptual model construction by providing users with model parameters and potential model components, building on a study team's knowledge and experience, and promoting...

  3. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures

    International Nuclear Information System (INIS)

    Zhang Guixiang; Zhang Qing; Sun Ke; Liu Xitao; Zheng Wenjuan; Zhao Ye

    2011-01-01

    Simazine sorption to corn straw biochars prepared at various temperatures (100-600 deg. C) was examined to understand its sorption behavior as influenced by characteristics of biochars. Biochars were characterized via elemental analysis, BET-N 2 surface area (SA), FTIR and 13 C NMR. Freundlich and dual-mode models described sorption isotherms well. Positive correlation between log K oc values and aromatic C contents and negative correlation between log K oc values and (O + N)/C ratios indicate aromatic-rich biochars have high binding affinity to simazine (charge transfer (π-π*) interactions) and hydrophobic binding may overwhelm H-bonding, respectively. Dual-mode model results suggest adsorption contribution to total sorption increases with carbonization degree. Positive correlation between amounts of adsorption (Q ad ) and SA indicates pore-filling mechanism. Comparison between our results and those obtained with other sorbents indicates corn straw biochars produced at higher temperature can effectively retain simazine. These observations will be helpful for designing biochars as engineered sorbents to remove triazine herbicides. - Highlights: → Biochars were characterized via elemental analysis, BET-N 2 , FTIR and 13 C NMR. → Freundlich and dual-mode models described sorption isotherms well. → Biochar produced at higher temperature had larger sorption capacity for simazine. → Aromatic-rich biochars have high binding affinity to simazine. → Dual-mode model results suggest adsorption contribution to total sorption. - The corn straw biochar prepared at higher temperature with stronger hydrophobicity, more aromatic C and larger surface area had higher sorption capacity for simazine.

  4. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    Science.gov (United States)

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  5. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    International Nuclear Information System (INIS)

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd 2+ /NH 4 + sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH 4 + and Cd 2+ , with a maximum sorption of 13.35 and 125.8 mg g −1 , respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g −1 ) for Cd 2+ . Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd 2+ sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd 2+ . • NH 4 + and Cd 2+ sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  6. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaoqiang [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Hao, Hulin [Ningbo Raw Water Resource Research Academy, Ningbo (China); Zhang, Changkuan [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945 (United States); Yang, Xiaoe, E-mail: xyang571@yahoo.com [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-01-01

    The objective of this study was to investigate the relationship between Cd{sup 2+}/NH{sub 4}{sup +} sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500 °C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH{sub 4}{sup +} and Cd{sup 2+}, with a maximum sorption of 13.35 and 125.8 mg g{sup −1}, respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3 mg g{sup −1}) for Cd{sup 2+}. Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd{sup 2+} sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. - Highlights: • Biochars varied in physicochemical properties and adsorption capacity. • Canna indica derived biochar has a high sorption capacity for Cd{sup 2+}. • NH{sub 4}{sup +} and Cd{sup 2+} sorption on biochars fits a pseudo second order and Langmuir model. • Sorption mechanism is related to complexation, cation exchange and precipitation.

  7. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  8. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  9. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    Science.gov (United States)

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.

  10. Influence of selected factors on strontium sorption on bentonites

    International Nuclear Information System (INIS)

    Galambos, M.; Kufcakova, J.; Rajec, P.

    2007-01-01

    Sorption on bentonite will play an important role in retarding the migration of radionuclides from a waste repository. Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level nuclear waste. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by sorption. Bentonite is characterized by low permeability, water swelling capability and excellent sorption potential for cationic radionuclides. To correctly assess the sorption potential of radionuclides on bentonite is essential for the development of predictive migration models. The sorption of strontium on bentonite from different Slovak deposits - Jelsovy potok, Kopernica and Lieskovec has been investigated under various experimental conditions, such as contact time, sorbate concentrations, presence of complementary cation. Sorption was studied using the batch technique. The uptake of Sr was rapid and equilibrium was reached almost instantaneously. The instantaneous uptake may be due to adsorption and/or exchange of the metal with some ions on the surface of the adsorbent. The best sorption characteristics distinguish bentonite Kopernica, sorption capacity for Sr of the fraction under 45 mm is 0,48 mmol·g -1 for Sr. The highest values of distribution coefficient were reached for the bentonite Jelsovy potok. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites, which can be explained by the increase of specific surface of the bentonite samples. The presence of complementary cations depresses the sorption of Sr on bentonite. Cations Ca 2+ exhibit higher effect on cesium sorption than the Na 2+ ions. Results indicate that the sorption of Sr 2+ on bentonite will be affected by the presence of high concentrations of various salts in the waste water

  11. Thermodynamic parameters and sorption of U(VI) on ACSD

    International Nuclear Information System (INIS)

    Donat, R.; Cilgi, G.K.; Cetisli, H.; Aytas, S.

    2009-01-01

    This paper discusses the sorption properties for U(VI) by alginate coated CaSO 4 x 2H 2 O sepiolite and calcined diatomite earth (Kieselguhr) (ACSD). The removal of U(VI) from aqueous solution by sorption onto ACSF in a single component system with various contact times, pH, temperatures, and initial concentrations of U(VI) was investigated. The sorption patterns of uranium on the composite adsorbent followed the Langmuir, Freundlich and Dubinin-Radushkhevic (D-R) isotherms. The Freundlich, Langmuir, and D-R models have been applied and the data correlated well with Freundlich model and that the sorption was physical in nature (sorption energy, E a = 17.05 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK 0 vs. 1/T plots. Thermodynamic parameters (ΔH ads = 31.83 kJ/mol, ΔS ads = 167 J/mol x K, ΔGdeg ads (293.15 K) = -17.94 kJ/mol) showed the endothermic heat of sorption and the feasibility of the process. The thermodynamics of U(VI) ion/ACSD system indicates the spontaneous and endothermic nature of the process. It was noted that an increase in temperature resulted in a higher uranium loading per unit weight of the adsorbent. (author)

  12. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    complex function of silicate bulk chemistry and solution chemistry, i.e. of pH and aqueous Si concentrations. Simple conceptual models of the surface chemistry of the Al- and Fe-silicates are developed here, based on the wealth of experimental data of silicate surface charges. The surface complexation models predict reasonably the effect of solution chemistry on the sorption of neptunyl ions on poorly ordered silicates of various compositions, and can thus be useful in extrapolating neptunyl mobility in many geochemical systems. (authors)

  13. Vertical small scale variations of sorption and mineralization of three herbicides in subsurface limestone and sandy aquifer

    Science.gov (United States)

    Janniche, G. S.; Mouvet, C.; Albrechtsen, H.-J.

    2011-04-01

    Vertical variation in sorption and mineralization potential of mecoprop (MCPP), isoproturon and acetochlor were investigated at low concentrations (μg-range) at the cm-scale in unsaturated sub-surface limestone samples and saturated sandy aquifer samples from an agricultural catchment in Brévilles, France. From two intact core drills, four heterogenic limestone sections were collected from 4.50 to 26.40 m below surface (mbs) and divided into 12 sub-samples of 8-25 cm length, and one sandy aquifer section from 19.20 to 19.53 m depth divided into 7 sub-samples of 4-5 cm length. In the sandy aquifer section acetochlor and isoproturon sorption increased substantially with depth; in average 78% (acetochlor) and 61% (isoproturon) per 5 cm. Also the number of acetochlor and isoproturon degraders (most-probable-number) was higher in the bottom half of the aquifer section (93-> 16 000/g) than in the upper half (4-71/g). One 50 cm long limestone section with a distinct shift in color showed a clear shift in mineralization, number of degraders and sorption: In the two brown, uppermost samples, up to 31% mecoprop and up to 9% isoproturon was mineralized during 231 days, the numbers of mecoprop and isoproturon degraders were 1300 to > 16 000/g, and the sorption of both isoproturon and acetochlor was more than three times higher, compared to the two deeper, grayish samples just below where mineralization (≤ 4%) and numbers of degraders (1-520/g) were low for all three herbicides. In both unsaturated limestone and sandy aquifer, variations and even distinct shifts in both mineralization, number of specific degraders and sorption were seen within just 4-15 cm of vertical distance. A simple conceptual model of herbicides leaching to groundwater through a 10 m unsaturated limestone was established, and calculations showed that a 30 cm active layer with the measured sorption and mineralization values hardly impacted the fate of the investigated herbicides, whereas a total

  14. Sorption behavior of neptunium on bentonite -- Effect of calcium ion on the sorption

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Muraoka, Susumu

    1995-01-01

    The sorption behavior of neptunium on bentonite was studied with batch type sorption and desorption experiments over a pH range of 2 to 8. A series of parallel studies using Na-smectite, Ca-smectite and admixtures of Na-smectite and calcite quantified the capacity of Ca 2+ (which occurs in bentonite as an exchangeable cation of smectite and as a component of calcite) to inhibit the sorption of neptunium. The distribution coefficient (K d ) of neptunium for bentonite was constant from pH 2 to 7, while for pure Na-smectite K d increased below pH 5 due to specific sorption of neptunium on Na-smectite. Specific sorption was defined as occurring when neptunium could be desorbed by a strong acid (1 M HCl) but was stable in the presence of 1 M KCl. It was found that the quantity of neptunium sorbed on Na-smectite was inversely proportional to the concentration of Ca 2+ in solution, an effect most pronounced at pH 2+ limits the specific sorption capacity of Na-smectite for neptunium. Similarly, in the mixture of Na-smectite and calcite, sufficient Ca 2+ was solubilized to depress neptunium sorption. This investigation demonstrates that Ca 2+ contained in bentonite as exchangeable cation and released from calcite reduces the specific sorption of neptunium

  15. A study of sorption mechanism onto cement hydrates by isotherm measurements

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2003-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cement material, which controls the aqueous concentrations of elements in the porewater, is a very important parameter when considering the release of radionuclides from the near field of a repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium and thorium onto Ordinary Portland Cement (OPC) and Calcium Silicate Hydrate (C-S-H gel), to justify and support this assumption. In addition, the effect of competitive sorption between thorium and uranium and other groundwater ions is studied by examining sorption using a range of sodium chloride concentrations to simulate different groundwater ionic strengths. Based on the experimental results, we have showed that: Caesium and strontium sorb by substitution for Ca in C-S-H phases and the presence of some calcium sites with different ion-exchange log K values is suggested; Thorium would be fixed in a surface co-precipitation to form a solubility-limiting phase. The results of sorption experiments are reasonably well modelled by the ion-exchange model for caesium and strontium and the surface co-precipitation model for thorium, respectively. (author)

  16. Sorption behavior of thorium onto montmorillonite and illite

    International Nuclear Information System (INIS)

    Iida, Yoshihisa; Barr, Logan; Yamaguchi, Tetsuji; Hemmi, Ko

    2016-01-01

    Thorium (Th)-229 is one of the important radionuclides for the performance assessment calculations for high-level radioactive waste repositories. The sorption behavior of Th onto montmorillonite and illite were investigated by batch sorption experiments. Experiments were carried out under variable pH and carbonate concentrations. The sorbability of montmorillonite was higher than that of illite. Distribution coefficients, K d (m 3 kg -1 ), decreased with increased carbonate concentrations and showed the minimal value at around pH 10. The sorption behaviors of Th were analyzed by the non-electrostatic surface complex model with PHREEQC computer program. The model calculations were able to explain the experimental results reasonably well. The decreases of K d was likely due to the stabilization of aqueous species by hydroxo-carbonate complexations in the solutions. (author) [ja

  17. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride.

    Science.gov (United States)

    Krajišnik, Danina; Daković, Aleksandra; Milojević, Maja; Malenović, Anđelija; Kragović, Milan; Bogdanović, Danica Bajuk; Dondur, Vera; Milić, Jela

    2011-03-01

    In this study an investigation of a model drug sorption onto cationic surfactant-modified natural zeolites as a drug formulation excipient was performed. Natural zeolite was modified with cetylpyridinium chloride in amounts equivalent to 100, 200 and 300% of its external cation-exchange capacity. The starting material and obtained organozeolites were characterized by Fourier transform infrared spectroscopy, zeta potential measurements and thermal analysis. In vitro sorption of diclofenac sodium as a model drug was studied for all surfactant/zeolite composites by means of sorption isotherm measurements in aqueous solutions (pH 7.4). The modified zeolites with three levels of surfactant coverage within the short activation time were prepared. Zeta potential measurements and thermal analysis showed that when the surfactant loading level was equal to external cation-exchange value, almost monolayer of organic phase were present at the zeolitic surface while higher amounts of surfactant produced less extended bilayers, ordered bilayers or admicelles at the zeolitic surface. Modified zeolites, obtained in this manner, were effective in diclofenac sodium sorption and the organic phase derived from adsorbed cetylpyridinium chloride was the primary sorption phase for the model drug. The Langmuir isotherm was found to describe the equilibrium sorption data well over the entire concentration range. The separate contributions of the adsorption and partition to the total sorption of DS were analyzed mathematically. Results revealed that that adsorption and partitioning of the model drug take place simultaneously. 2010 Elsevier B.V. All rights reserved.

  18. Applicability of sorption data determined by laboratory experiments for evaluation of strontium-85 mobility in subsurface field

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Applicability of laboratory measurements to radionuclide transport in a natural environment was studied using the data from the field tests. The K d values obtained in the laboratory experiments were input into the instantaneous equilibrium sorption model, which simulates the migration of 85 Sr in the unsaturated loess. This simulation managed to reproduce results of the aforementioned field tests. To evaluate more accurately migration behavior of 85 Sr, based on the sorption data obtained by the laboratory experiments, the hybrid sorption model consisting of the equilibrium sorption process and the kinetic sorption process was proposed. When compared with predictions using the K d -based equilibrium sorption model, the results of the field migration tests of 85 Sr were more successfully reproduced by introducing the hybrid sorption model. (author)

  19. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  20. Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    NARCIS (Netherlands)

    Scapino, L.; Zondag, H.A.; Van Bael, J.; Diriken, J.; Rindt, C.C.M.

    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat

  1. Achievements and Problems of Conceptual Modelling

    Science.gov (United States)

    Thalheim, Bernhard

    Database and information systems technology has substantially changed. Nowadays, content management systems, (information-intensive) web services, collaborating systems, internet databases, OLAP databases etc. have become buzzwords. At the same time, object-relational technology has gained the maturity for being widely applied. Conceptual modelling has not (yet) covered all these novel topics. It has been concentrated for more than two decades around specification of structures. Meanwhile, functionality, interactivity and distribution must be included into conceptual modelling of information systems. Also, some of the open problems that have been already discussed in 1987 [15, 16] still remain to be open. At the same time, novel models such as object-relational models or XML-based models have been developed. They did not overcome all the problems but have been sharpening and extending the variety of open problems. The open problem presented are given for classical areas of database research, i.e., structuring and functionality. The entire are of distribution and interaction is currently an area of very intensive research.

  2. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  3. Guide for developing conceptual models for ecological risk assessments

    International Nuclear Information System (INIS)

    Suter, G.W., II.

    1996-05-01

    Ecological conceptual models are the result of the problem formulation phase of an ecological risk assessment, which is an important component of the Remedial Investigation process. They present hypotheses of how the site contaminants might affect the site ecology. The contaminant sources, routes, media, routes, and endpoint receptors are presented in the form of a flow chart. This guide is for preparing the conceptual models; use of this guide will standardize the models so that they will be of high quality, useful to the assessment process, and sufficiently consistent so that connections between sources of exposure and receptors can be extended across operable units (OU). Generic conceptual models are presented for source, aquatic integrator, groundwater integrator, and terrestrial OUs

  4. Mathematical model of the sorption phenomenon of methanol in activated coal

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Farid B.; Chejne, Farid; Mejia, Juan M.; Londono, Carlos A. [Grupo de Termodinamica Aplicada y Energias Alternativas - Instituto de Energia, Facultad de Minas, Universidad Nacional de Colombia, sede Medellin (Colombia)

    2009-05-15

    A transient model of a sorption refrigerator using activated carbon/methanol pair is presented. It is a non-uniform pressure model conformed by the mass, energy and momentum balance equations in cylindrical coordinates, for the activated coal bed contained in the adsorber. The results obtained from the simulation were suitably validated by the experimental information obtained from field test data and from data reported in the literature, presenting errors below 1.6% for each cycle step. The model allows to get data of temperature, pressure, density and gas velocity profiles in radial direction, as well as the solid temperature and the quantity of adsorbed methanol in the activated carbon bed in adsorption/evaporation and desorption/condensation steps. (author)

  5. Mathematical model of the sorption phenomenon of methanol in activated coal

    International Nuclear Information System (INIS)

    Cortes, Farid B.; Chejne, Farid; Mejia, Juan M.; Londono, Carlos A.

    2009-01-01

    A transient model of a sorption refrigerator using activated carbon/methanol pair is presented. It is a non-uniform pressure model conformed by the mass, energy and momentum balance equations in cylindrical coordinates, for the activated coal bed contained in the adsorber. The results obtained from the simulation were suitably validated by the experimental information obtained from field test data and from data reported in the literature, presenting errors below 1.6% for each cycle step. The model allows to get data of temperature, pressure, density and gas velocity profiles in radial direction, as well as the solid temperature and the quantity of adsorbed methanol in the activated carbon bed in adsorption/evaporation and desorption/condensation steps.

  6. Radionuclide sorption kinetics and column sorption studies with Columbia River basalts

    International Nuclear Information System (INIS)

    Barney, G.S.

    1983-09-01

    The kinetics of radionuclide sorption and desorption reactions in basalt-groundwater systems were evaluated at 60 degrees C using a batch equilibration method. It was found that many sorption reactions on surfaces of fresh (unaltered) basalt from the Umtanum and Cohassett flows are slow. Some reactions require more than 50 days to reach a steady state. Sorption of neptunium and uranium in oxidizing (air saturated) groundwater appears to be controlled by slow reduction of these elements by the basalt surfaces. The resulting lower oxidation states are more strongly sorbed. Technetium and selenium, which are anionic under oxidizing conditions, are not measurably sorbed on fresh basalt surfaces, but are slightly sorbed on the altered surfaces of flow top basalt. Under reducing conditions, where the groundwater contains dilute hydrazine, sorption is faster for neptunium, uranium, technetium, selenium, and lead. Plutonium sorption rates were not affected by the groundwater Eh. It was shown that radium was precipitated rather than sorbed under the conditions of these experiments. Umtanum flow top material sorbed radionuclides much faster than fresh basalt surfaces due to its greater surface area and cation exchange capacity. Desorption rates for plutonium, uranium, neptunium, technetium, and selenium were generally much less than sorption rates (especially for reducing conditions). These radionuclides are irreversibly sorbed on the basalts. 25 refs., 20 figs., 19 tabs

  7. Understanding the sorption behavior of Pu{sup 4+} on poly(amidoamine) dendrimer functionalized carbon nanotube. Sorption equilibrium, mechanism, kinetics, radiolytic stability, and back-extraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Parveen [Indian Institute of Technology, Himachal Pradesh (India); Sengupta, Arijit [Bahbha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Deb, Ashish Kumar Singha; Ali, S. Musharaf [Bahbha Atomic Research Centre, Mumbai (India). Chemical Engineering Div.; Homi Bhabha National Institute, Mumbai (India); Dasgupta, Kinshuk [Bhabha National Institute, Mumbai (India). Mechanical Metallurgy Div.

    2017-07-01

    Poly(amidoamine) dendrimer functionalized carbon nanotube was demonstrated as highly efficient sorbent of the Pu{sup 4+} from radioactive waste solution. The second generation dendrimer was found to have more efficiency as compared to the 1{sup st} generation might be due to the availability of more functionality for coordinating to the Pu{sup 4+} ion. Analysis of different isotherm models revealed that, Langmuir isotherm was predominantly operating through chemi-sorption (with the sorption energy 10.07 and 16.95 kJ mol{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer) with the sorption capacity 89.22 mg g{sup -1} and 92.48 mg g{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer, respectively. Analysis of different sorption kinetics model revealed that the sorption proceeded via pseudo 2{sup nd} order reaction. The 2{sup nd} generation dendrimer was found to be radiolytically more stable while oxalic acid was found to be suitable for quantitative back extraction of Pu{sup 4+}.

  8. Experimental And Modelling Investigations on Na-Illite: Acid-Base Behaviour And the Sorption Of Strontium, Nickel, Europium And Uranyl

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H.; Baeyens, B

    2005-06-01

    In an extensive study the physico-chemical, protolysis and sorption characteristics of Sr(II), Ni(II), Eu(III) and U(VI) have been measured on illite and modeled over a wide range of pH, sorbate and NaCI0{sub 4} concentrations. SampIes of Illite du Puy, collected in the region of Le Puy-en- Velay, France, were carefully conditioned to the Na-form and physico-chemically characterised. Potentiometric titrations on suspensions of the Na-illite were carried out using a batch back titration technique in 0.01, 0.1 and 0.5 M NaCI0{sub 4} background electrolytes from pH 2 to 12 in an inert atmosphere glove box. The supernatant solutions from each titration experiment in each series were analysed for K, Mg, Ca, Sr, Si, Al, Fe and Mn. The titration data were modeled in terms of the protolysis of two amphoteric edge sites (=S{sup W1}0H and =S{sup W2}0H) without an electrostatic term. The protonation/deprotonation constants and site capacities obtained from the titration measurements were then fixed. The sorption edge and isotherm data were modeled with strong (=S{sup S}OH) and weak (=S{sup W1}0H) surface complexation sites, assumed to have the same protolysis constants, again without electrostatic terms. Uptake by cation exchange was included in all of the calculations. This sorption model, the 2 site protolysis non electrostatic surface complexation and cation exchange model, had been developed previously for montmorillonite and was successful in describing the sorption characteristics of Sr, Ni, Eu and U on Na-illite over a wide range of conditions. Cation exchange capacity, strong and weak site capacities and protolysis constants for Na-illite are given, together with surface complexation constants and selectivity coefficients for Sr, Ni, Eu and U. At 0.01 M NaCI0{sub 4} and pH below 8 the sorption of Sr, Ni, Eu and U was dominated by a cation exchange mechanism. The strong dependency of sorption on pH observed under these conditions arose from the competitive effects of

  9. Sorption of phenanthrene on agricultural soils

    DEFF Research Database (Denmark)

    Soares, Antonio; Møldrup, Per; Minh, Luong Nhat

    2013-01-01

    Polyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively......, 0.25–1-m depth) by the single-point adsorption method. The organic carbon partition coefficient, KOC (liter per kilogram) for topsoils was found generally to fall between the KOC values estimated by the two most frequently used models for PAH partitioning, the Abdul et al. (Hazardous Waste...... & Hazardous Materials 4(3):211–222, 1987) model and Karickhoff et al. (Water Research 13:241–248, 1979) model. A less-recognized model by Karickhoff (Chemosphere 10:833–846, 1981), yielding a KOC of 14,918 L kg−1, closely corresponded to the average measured KOC value for the topsoils, and this model...

  10. Conceptual Model and Numerical Approaches for Unsaturated Zone Flow and Transport

    International Nuclear Information System (INIS)

    H.H. Liu

    2004-01-01

    The purpose of this model report is to document the conceptual and numerical models used for modeling unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This work was planned in ''Technical Work Plan for: Unsaturated Zone Flow Model and Analysis Report Integration'' (BSC 2004 [DIRS 169654], Sections 1.2.5, 2.1.1, 2.1.2 and 2.2.1). The conceptual and numerical modeling approaches described in this report are mainly used for models of UZ flow and transport in fractured, unsaturated rock under ambient conditions. Developments of these models are documented in the following model reports: (1) UZ Flow Model and Submodels; (2) Radionuclide Transport Models under Ambient Conditions. Conceptual models for flow and transport in unsaturated, fractured media are discussed in terms of their applicability to the UZ at Yucca Mountain. The rationale for selecting the conceptual models used for modeling of UZ flow and transport is documented. Numerical approaches for incorporating these conceptual models are evaluated in terms of their representation of the selected conceptual models and computational efficiency; and the rationales for selecting the numerical approaches used for modeling of UZ flow and transport are discussed. This report also documents activities to validate the active fracture model (AFM) based on experimental observations and theoretical developments. The AFM is a conceptual model that describes the fracture-matrix interaction in the UZ of Yucca Mountain. These validation activities are documented in Section 7 of this report regarding use of an independent line of evidence to provide additional confidence in the use of the AFM in the UZ models. The AFM has been used in UZ flow and transport models under both ambient and thermally disturbed conditions. Developments of these models are documented

  11. Assessing alternative conceptual models of fracture flow

    International Nuclear Information System (INIS)

    Ho, C.K.

    1995-01-01

    The numerical code TOUGH2 was used to assess alternative conceptual models of fracture flow. The models that were considered included the equivalent continuum model (ECM) and the dual permeability (DK) model. A one-dimensional, layered, unsaturated domain was studied with a saturated bottom boundary and a constant infiltration at the top boundary. Two different infiltration rates were used in the studies. In addition, the connection areas between the fracture and matrix elements in the dual permeability model were varied. Results showed that the two conceptual models of fracture flow produced different saturation and velocity profiles-even under steady-state conditions. The magnitudes of the discrepancies were sensitive to two parameters that affected the flux between the fractures and matrix in the dual permeability model: (1) the fracture-matrix connection areas and (2) the capillary pressure gradients between the fracture and matrix elements

  12. ADOxx Modelling Method Conceptualization Environment

    Directory of Open Access Journals (Sweden)

    Nesat Efendioglu

    2017-04-01

    Full Text Available The importance of Modelling Methods Engineering is equally rising with the importance of domain specific languages (DSL and individual modelling approaches. In order to capture the relevant semantic primitives for a particular domain, it is necessary to involve both, (a domain experts, who identify relevant concepts as well as (b method engineers who compose a valid and applicable modelling approach. This process consists of a conceptual design of formal or semi-formal of modelling method as well as a reliable, migratable, maintainable and user friendly software development of the resulting modelling tool. Modelling Method Engineering cycle is often under-estimated as both the conceptual architecture requires formal verification and the tool implementation requires practical usability, hence we propose a guideline and corresponding tools to support actors with different background along this complex engineering process. Based on practical experience in business, more than twenty research projects within the EU frame programmes and a number of bilateral research initiatives, this paper introduces the phases, corresponding a toolbox and lessons learned with the aim to support the engineering of a modelling method. ”The proposed approach is illustrated and validated within use cases from three different EU-funded research projects in the fields of (1 Industry 4.0, (2 e-learning and (3 cloud computing. The paper discusses the approach, the evaluation results and derived outlooks.

  13. The structure of conceptual models with application to the Aespoe HRL project

    International Nuclear Information System (INIS)

    Olsson, Olle; Baeckblom, G.; Wikberg, P.; Gustafson, G.; Stanfors, R.

    1994-05-01

    In performance assessment a sequence of models is used to describe the function of the geological barrier. This report proposes a general structure and terminology for description of these models. A model description consists of the following components: A conceptual model which defines the geometric framework in which the problem is solved, the dimensions of the modelled volume, descriptions of the processes included in the model, and the boundary conditions; Data which are introduced into the conceptual model, and a mathematical or numerical tool used to produce output data. Contradictory to common practice in geohydrologic modelling it is proposed that the term conceptual model is restricted to define in what way the model is constructed, and that this is separated from any specific application of the conceptual model. Hence, the conceptual model should not include any specific data. 5 refs, 2 figs, 4 tabs

  14. Evaluation of sorption capacity of modified wood biomass for arsenic five-valent oxyanions

    International Nuclear Information System (INIS)

    Littera, P.; Antoska, R.; Cernansky, S.; Sevc, J.; Kolencik, M.; Budzakova, M.

    2009-01-01

    In the present work is assessed bio-sorption of arsenic oxyanions, which represent one of two most common special arsenic occurring in contaminated waters. A wood biomass was used as sorbent, which was modified by amorphous oxohydroxides of iron to increase sorption capacity, to whom arsenic has high affinity. The work estimated sorption capacity of wood biomass adjusted by oxohydroxides of iron. The Langmuir model as well as the Freundlich model were suitable for evaluation of experimental results. Maximal sorption capacity of investigated sorbent was 9.259 mg/g, what is comparable with values published by other authors.

  15. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  16. Conceptual geohydrological model of the separations area

    International Nuclear Information System (INIS)

    Root, R.W.; Marine, I.W.

    1977-01-01

    Subsurface drilling in and around the Separations Areas (F-Area and H-Area of the Savannah River Plant) is providing detailed information for a conceptual model of the geology and hydrology underlying these areas. This conceptual model will provide the framework needed for a mathematical model of groundwater movement beneath these areas. Existing information substantiates the presence of two areally extensive clay layers and several discontinuous clay and sandy-clay layers. These layers occur in and between beds of clayey and silty sand that make up most of the subsurface material. Within these sand beds are geologic units of differing hydraulic conductivity. For the present scale of the model, the subsurface information is considered adequate in H-Area, but additional drilling is planned in F-Area

  17. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    Directory of Open Access Journals (Sweden)

    Mark R. Lafave

    2015-01-01

    Full Text Available Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete’s return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT. The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1 heading descriptors; (2 the order of the model; (3 the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline.

  18. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.

    Science.gov (United States)

    Marson, Daniel

    2016-09-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Manley-Harris, Merilyn

    2013-01-01

    We investigated the effect of soil pH, organic carbon, ionic strength and steroid hormones on the sorption of sulfamethoxazole (SMO) and sulfachloropyridazine (SCP) in three pastoral soils of New Zealand. A model linking sorbate speciation with species-specific sorption coefficients describing the pH dependence of the apparent sorption coefficients was used to derive the fraction of each species of SMO. All soils displayed a decrease in sorption when pH was increased, with SMO exhibiting the highest sorption at pH 2. The cationic form of SMO appeared to sorb more close to pH ≥ pK a1 and, when pH ≥ pK a2 (6.5, 7.5 and 8.5) the anionic species seems to dominate, however, its sorption affinity to all soils was low. SMO sorption was affected by ionic strengths and organic carbon content, while the presence of hormones showed only a subtle decrease in SCP sorption in a selected model pasture soil. -- Highlights: •The effect of OC content on sulfamethoxazole sorption is nullified by the pH effect. •Steroid hormone has a subtle influence on the sulfachloropyridazine sorption in pastoral soil. •Increased hormone concentrations decrease sulfachloropyridazine sorption in soils. -- Sorption affinity of SMO and SCP are strongly governed by multitude of factors, and variations in these factors can be significant when manure and fertilisers are added to soil

  20. Sorption of perfluoroalkyl substances to two types of minerals.

    Science.gov (United States)

    Hellsing, Maja S; Josefsson, Sarah; Hughes, Arwel V; Ahrens, Lutz

    2016-09-01

    The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sorption of radionickel to goethite: Effect of water quality parameters and temperature

    International Nuclear Information System (INIS)

    Baowei Hu; ShaoXing University, ShaoXing; Wen Cheng; Hui Zhang; Guodong Sheng; Chinese Academy of Sciences, Hefei

    2010-01-01

    In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na + /H + on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. (author)

  2. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    -reagent materials and it was shown that a dramatic increase of the sorption selectivity results from radionuclide co-precipitation on micro- particles of insoluble precipitates inside the pores of inorganic matrices and from selective ion exchange on the matrix. The most interesting features of the sorption-reagent method of LRW decontamination are observed in the process dynamics. We have studied the sorption dynamics in sulfate, sulfide and permanganate sorption-reagent systems and it has been shown that the radionuclide sorption dynamics in such systems is substantially different from sorption and ion-exchange dynamics. We have developed a mathematical model of simultaneous reagent front motions, ion exchange and radionuclide co-precipitation. The radionuclide sorption dynamics was simulated and the model was found to explain main features of the sorption- reagent radionuclide decontamination. The efficiency of decontamination of LRW of complex chemical composition from cesium, strontium and cobalt radionuclides by the sorption- reagent method was shown. While conventional selective sorbents (zeolites, titanates, silicotitanates, different forms of manganese dioxide) are not capable to remove selectively strontium and cobalt radionuclides from solutions with high complexing agent content, the sorption-reagent materials enable to achieve the extent of LRW decontamination meeting the radiation safety normative documents. The pilot-plant scale sorption-reagent installation for LRW management has been tested at different nuclear industry objects and waste decontamination facilities of the A.A. Bochvar Research Center VNIINM (Moscow, Russia). (author)

  3. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    Science.gov (United States)

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  4. Tumor heterogeneity and progression: conceptual foundations for modeling.

    Science.gov (United States)

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  5. Acceptability of inversely-modelled parameters for non-equilibrium sorption of pesticides in soil

    NARCIS (Netherlands)

    Horst, ter M.M.S.; Boesten, J.J.T.I.; Beinum, van W.; Beulke, S.

    2013-01-01

    Simulation of the increase of sorption in time is one of the options in higher tiers of pesticide regulatory leaching assessments to obtain more realistic leaching estimates. Therefore, accurate estimates of non-equilibrium sorption parameters are required as input for the pesticide leaching

  6. MEASUREMENT AND MODELLING OF SORPTION EQUILIBRIUM CURVE OF WATER ON PA6, PP, HDPE AND PVC BY USING FLORY-HUGGINS MODEL

    Directory of Open Access Journals (Sweden)

    Suherman Suherman

    2012-02-01

    Full Text Available The sorption of water on granular polyamide-6 (PA6, granular polypropylene (PP, and powdery high density polyethylene (HDPE and powdery polyvinyl chloride (PVC were measured using a gravimetric method in a magnetic suspension balance (MSB. The Flory-Huggins model was successfully applied on the sorption equilibrium curve of all investigated polymers. The influence of temperature is low. The value of Flory-Huggins parameters(c of PA6, PVC, PP and HDPE were 1.8, 5.8, 6.3, and 8.1, respectively. The water in PA6 is mainly bound moisture, while in PP, HDPE and PVC it is mainly surface moisture.

  7. Realistic integration of sorption processes in transport codes for long-term safety assessments

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Fluegge, Judith; Britz, Susan; Schneider, Anke [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Brendler, Vinzenz; Stockmann, Madlen; Schikora, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Lampe, Michael [Frankfurt Univ. (Germany). Goethe Center for Scientific Computing

    2012-09-15

    One important aspect in long-term safety assessment is related to radionuclide transport in geologic formations. In order to assess its consequences over assessment periods of one million years numerical models describing flow and transport are applied. Sorption on mineral surfaces is the most relevant process retarding radionuclide transport. On the one hand an increased transport time might cause a decrease in radionuclide concentration by radioactive decay. On the other hand it might increase concentrations of dose-relevant daughter nuclides in decay chains. In order to treat the radionuclide sorption processes in natural systems close to reality the so-called smart K{sub d}-concept is implemented into the transport program r{sup 3}t, which is applied to large model areas and very long time scales in long-term safety assessment. In the first stage this approach is developed for a typical sedimentary system covering rock salt and clay formations in Northern Germany. The smart K{sub d}-values are based on mechanistic surface complexation models (SCM), varying in time and space and de-pending on the actual geochemical conditions, which might change in the future e. g. due to the impact of climate changes. The concept developed and introduced here is based on a feasible treatment of the most relevant geochemical parameters in the transport code as well as on a matrix of smart K{sub d}-values calculated in dependence on these parameters. The implementation of the concept comprises the selection of relevant elements and minerals to be considered, an experimental program to fill data gaps of the thermody-namic sorption database, an uncertainty and sensitivity analysis to identify the most important environmental parameters influencing sorption of long-term relevant radionu-clides, the creation of a matrix with K{sub d}-values dependent on the selected environmental parameters, and the development and realisation of the conceptual model for treatment of temporal and

  8. P-EXAFS investigations of Zn uptake by montmorillonite. The strong and weak sites concept in the 2SPNE SC/CE sorption model

    International Nuclear Information System (INIS)

    Daehn, R.; Baeyens, B.; Bradbury, M.H.

    2012-01-01

    Document available in extended abstract form only. The sorption of radioactive elements on the immobile components in the near- and far-fields of a deep geological radioactive waste repository is a significant process in retarding their aqueous phase transport and an important component in safety assessment studies. The development of robust and well-founded mechanistic sorption models to predict the uptake of radionuclides under different geochemical conditions would enhance the justification and defensibility of the sorption values used in safety studies and thereby represent a considerable contribution to the scientific basis for radioactive waste disposal. The 2 site proto-lysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) sorption model has been used over the past decade or so to quantitatively describe the uptake of metals with oxidation states from II to VI on 2:1 clay minerals; montmorillonite and illite (Bradbury and Baeyens, 1997). One of the main features in this model is that there are two broad categories of amphoteric edge sorption sites; the so called strong (≡SSOH) and weak (≡SW1OH) sites. Because of their different sorption characteristics, it was expected that the coordination environments of the surface complexes on the two site types would be different. Although the 2SPNE SC/CE model uses different mechanistic uptake processes to describe sorption, it can only be described as a 'quasi mechanistic' model because the exact nature of the surface binding sites and surface complexes is not known. In order to check the 'strong site / weak site' sorption sites hypothesis in the 2SPNE SC/CE sorption model, it was essential to perform polarised extended X-ray absorption fine structure (P-EXAFS) measurements on an uptake system, in which it was possible to obtain good spectra particularly at the low metal loadings (∼2 mmol kg-1 or less) corresponding to occupancies dominated by strong sites. The Zn-montmorillonite system

  9. Conceptual Model of Dynamic Geographic Environment

    Directory of Open Access Journals (Sweden)

    Martínez-Rosales Miguel Alejandro

    2014-04-01

    Full Text Available In geographic environments, there are many and different types of geographic entities such as automobiles, trees, persons, buildings, storms, hurricanes, etc. These entities can be classified into two groups: geographic objects and geographic phenomena. By its nature, a geographic environment is dynamic, thus, it’s static modeling is not sufficient. Considering the dynamics of geographic environment, a new type of geographic entity called event is introduced. The primary target is a modeling of geographic environment as an event sequence, because in this case the semantic relations are much richer than in the case of static modeling. In this work, the conceptualization of this model is proposed. It is based on the idea to process each entity apart instead of processing the environment as a whole. After that, the so called history of each entity and its spatial relations to other entities are defined to describe the whole environment. The main goal is to model systems at a conceptual level that make use of spatial and temporal information, so that later it can serve as the semantic engine for such systems.

  10. Driver Performance Model: 1. Conceptual Framework

    National Research Council Canada - National Science Library

    Heimerl, Joseph

    2001-01-01

    ...'. At the present time, no such comprehensive model exists. This report discusses a conceptual framework designed to encompass the relationships, conditions, and constraints related to direct, indirect, and remote modes of driving and thus provides a guide or 'road map' for the construction and creation of a comprehensive driver performance model.

  11. Dynamic Simulation of a Periodic 10 K Sorption Cryocooler

    Science.gov (United States)

    Bhandari, P.; Rodriguez, J.; Bard, S.; Wade, L.

    1994-01-01

    A transient thermal simulation model has been developed to simulate the dynamic performance of a multiple-stage 10 K sorption cryocooler for spacecraft sensor cooling applications that require periodic quick-cooldown (under 2 minutes) , negligible vibration, low power consumption, and long life (5 to 10 years). The model was specifically designed to represent the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), but it can be adapted to represent other sorption cryocooler systems as well. The model simulates the heat transfer, mass transfer, and thermodynamic processes in the cryostat and the sorbent beds for the entire refrigeration cycle, and includes the transient effects of variable hydrogen supply pressures due to expansion and overflow of hydrogen during the cooldown operation. The paper describes model limitations and simplifying assumptions, with estimates of errors induced by them, and presents comparisons of performance predictions with ground experiments. An important benefit of the model is its ability to predict performance sensitivities to variations of key design and operational parameters. The insights thus obtained are expected to lead to higher efficiencies and lower weights for future designs.

  12. Sorption of curium by silica colloids: Effect of humic acid

    International Nuclear Information System (INIS)

    Kar, Aishwarya Soumitra; Kumar, Sumit; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Sorption of curium by silica colloids has been studied as a function of pH and ionic strength using 244 Cm as a tracer. The sorption was found to increase with increasing pH and reach a saturation value of ∼95% at pH beyond 5.3. The effect of humic acid on the sorption of 244 Cm onto silica was studied by changing the order of addition of the metal ion and humic acid. In general, in the presence of humic acid (2 mg/L), the sorption increased at lower pH (<5) while it decreased in the pH range 6.5-8 and above pH 8, the sorption was found to increase again. As curium forms strong complex with humic acid, its presence results in the enhancement of curium sorption at lower pH. At higher pH the humic acid present in the solution competes with the surface sites for curium thus decreasing the sorption. The decrease in the Cm sorption in presence of humic acid was found to be less when humic acid was added after the addition of curium. Linear additive model qualitatively reproduced the profile of the Cm(III) sorption by silica in presence of humic acid at least in the lower pH region, however it failed to yield quantitative agreement with the experimental results. The results of the present study evidenced the incorporation of Cm into the silica matrix.

  13. The ACTIVE conceptual framework as a structural equation model

    Science.gov (United States)

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be

  14. The ACTIVE conceptual framework as a structural equation model.

    Science.gov (United States)

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from

  15. Sorption of natural uranium by algerian bentonite

    International Nuclear Information System (INIS)

    Megouda, N.; Kadi, H.; Hamla, M.S.; Brahimi, H.

    2004-01-01

    Full text.Batch sorption experiments have been used to assess the sorption behaviour of uranium onto natural and drilling bentonites. The operating parameters (pH, aolis-liquid ratio, particle size, time and initial uranium concentration) influenced the rate of adsorption. The distribution coefficient (Kd) range values at equilibrium time are 45.95-1079.26 ml/g and 32.81-463053 ml/g for the drilling and natural bentonites respectively. The equilibrium isotherms show that the data correlate with both Freundlich and Langmuir models

  16. Applicability of surface complexation modelling in TVO's studies on sorption of radionuclides

    International Nuclear Information System (INIS)

    Carlsson, T.

    1994-03-01

    The report focuses on the possibility of applying surface complexation theories to the conditions at a potential repository site in Finland and of doing proper experimental work in order to determine necessary constants for the models. The report provides background information on: (1) what type experiments should be carried out in order to produce data for surface complexation modelling of sorption phenomena under potential Finnish repository conditions, and (2) how to design and perform properly such experiments, in order to gather data, develop models or both. The report does not describe in detail how proper surface complexation experiments or modelling should be carried out. The work contains several examples of information that may be valuable in both modelling and experimental work. (51 refs., 6 figs., 4 tabs.)

  17. Conceptual Models as Tools for Communication Across Disciplines

    Directory of Open Access Journals (Sweden)

    Marieke Heemskerk

    2003-12-01

    Full Text Available To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.

  18. Sorption of cobalt in zeolites and natural clays of the clinoptilolite and kaolinite type

    International Nuclear Information System (INIS)

    Davila R, J.I.; Solache R, M.

    2006-01-01

    In this work the sorption of cobalt of aqueous solutions in two natural zeolites (clinoptilolite) and a clay (kaolinite) of origin in the center-north region of Mexico is evaluated. The effect of the pH and the time of contact in the process of sorption were evaluated. The cobalt retained in the aluminosilicates was determined by neutron activation analysis. The cobalt sorption in the materials in a range of pH from 4 to 7 does not present significant variations. The studies of reaction kinetics show a very fast sorption in the first 5 hours of contact, reaching the equilibrium in approximately 24 hours. The kinetics of sorption of the cobalt ions was represented better by the Ritchie reaction model modified of second order. The experimental data for the zeolites obtained at ambient temperature and varying the concentration were adjusted to the models of Freundlich, Langmuir and Freundlich-Langmuir isotherms and it was observed that the cobalt sorption it behaves according to the Freundlich isotherm model. (Author)

  19. Sorption Modeling and Verification for Off-Gas Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, Lawrence [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View Texas A& M; DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-20

    processes. These models were built on a numerical framework for solving conservation law problems in one-dimensional geometries such as spheres, cylinders, and lines. Coupled with the framework are specific models for adsorption in commercial adsorbents, such as zeolites and mordenites. Utilizing this modeling approach, the authors were able to accurately describe and predict adsorption kinetic data obtained from experiments at a variety of different temperatures and gas phase concentrations. A demonstration of how these models, and framework, can be used to simulate adsorption in fixed- bed columns is provided. The CO2 absorption work involved modeling with supportive experimental information. A dynamic model was developed to simulate CO2 absorption using high alkaline content water solutions. The model is based upon transient mass and energy balances for chemical species commonly present in CO2 absorption. A computer code was developed to implement CO2 absorption with a chemical reaction model. Experiments were conducted in a laboratory scale column to determine the model parameters. The influence of geometric parameters and operating variables on CO2 absorption was studied over a wide range of conditions. Continuing work could employ the model to control column operation and predict the absorption behavior under various input conditions and other prescribed experimental perturbations. The value of the validated models and numerical frameworks developed in this project is that they can be used to predict the sorption behavior of off-gas evolved during the reprocessing of nuclear waste and thus reduce the cost of the experiments. They can also be used to design sorption processes based on concentration limits and flow-rates determined at the plant level.

  20. Can Bayesian Belief Networks help tackling conceptual model uncertainties in contaminated site risk assessment?

    DEFF Research Database (Denmark)

    Troldborg, Mads; Thomsen, Nanna Isbak; McKnight, Ursula S.

    different conceptual models may describe the same contaminated site equally well. In many cases, conceptual model uncertainty has been shown to be one of the dominant sources for uncertainty and is therefore essential to account for when quantifying uncertainties in risk assessments. We present here......A key component in risk assessment of contaminated sites is the formulation of a conceptual site model. The conceptual model is a simplified representation of reality and forms the basis for the mathematical modelling of contaminant fate and transport at the site. A conceptual model should...... a Bayesian Belief Network (BBN) approach for evaluating the uncertainty in risk assessment of groundwater contamination from contaminated sites. The approach accounts for conceptual model uncertainty by considering multiple conceptual models, each of which represents an alternative interpretation of the site...

  1. Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hualin, E-mail: hlwang@hfut.edu.cn [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Peng; Ma, Xingkong; Jiang, Suwei; Huang, Yan; Zhai, Linfeng [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Jiang, Shaotong [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2014-01-30

    Highlights: • PVA/HA nanofibers could change into meso-HA nanofibers by calcination process. • Sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. • Sorption kinetic data were well fitted by the pseudo-second-order rate equation. • Sorption isotherms could be well described by the Langmuir model. • Sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic. -- Abstract: In this work, mesoporous hydroxylapatite (meso-HA) nanofibers were prepared via calcination process with polyvinyl alcohol/HA (PVA/HA) hybrid nanofibers fabricated by electrospinning technique as precursors, and the removal efficiency of meso-HA nanofibers toward Co(II) was evaluated via sorption kinetics and sorption isotherms. Furthermore, the sorption behaviors of Co(II) on meso-HA nanofibers were explored as a function of pH, ionic strength, and thermodynamic parameters. There existed hydrogen bonds between HA and PVA matrix in precursor nanofibers which could change into meso-HA nanofibers with main pore diameter at 27 nm and specific surface area at 114.26 m{sup 2}/g by calcination process. The sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. Outer-sphere surface complexation or ion exchange was the main mechanisms of Co(II) adsorption on meso-HA at low pH, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. The sorption kinetic data were well fitted by the pseudo-second-order rate equation. The sorption isotherms could be well described by the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms suggested that the sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic.

  2. Determination of Sorption Coefficient of Phosphorus Applied for Sugarcane Production in Southwestern Florida.

    Science.gov (United States)

    Muwamba, A; Nkedi-Kizza, P; Morgan, K T

    2016-09-01

    Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Process generalization in conceptual models

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    In conceptual modeling, the universe of discourse (UoD) is divided into classes which have a taxonomic structure. The classes are usually defined in terms of attributes (all objects in a class share attribute names) and possibly of events. For enmple, the class of employees is the set of objects to

  4. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Science.gov (United States)

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Water sorption kinetics of damaged beans: GAB model

    Directory of Open Access Journals (Sweden)

    Fernanda M. Baptestini

    Full Text Available ABSTRACT The objective of this study was to model the water sorption kinetics of damaged beans. Grains with initial moisture content of 53.85%, dry basis (d.b., were used. One portion of the grains was used to obtain desorption isotherms, while the other was subjected to drying until the moisture content of 5.26% (d.b., so that it was subjected to the adsorption. For the induction of damage, a Stein Breakage Tester was used. To obtain the equilibrium moisture content, grains were placed in a climatic chamber at 20, 30, 40 and 50 ± 1 °C combined with relative humidity of 30, 40, 50, 70 and 90 ± 3%. The GAB model fitted well to the equilibrium moisture experimental data of damaged grains and control. With increasing temperature, the monolayer moisture contents decreased in adsorption and desorption processes, ranging from 9.84 to 5.10% d.b. The lower moisture content in the monolayer in damaged grains indicates that lower moisture content is necessary to ensure their conservation.

  6. Sorption of actinides onto nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Shiryaev, Andrei [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry; Kalmykov, Stepan [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Vernadsky Institute of Geochemistry and Analytical Chemistry

    2015-06-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  7. Sorption of actinides onto nanodiamonds

    International Nuclear Information System (INIS)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna; Shiryaev, Andrei; Russian Academy of Sciences, Moscow; Kalmykov, Stepan; Russian Academy of Sciences, Moscow; Russian Academy of Sciences, Moscow

    2015-01-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  8. A suggested approach toward measuring sorption and applying sorption data to repository performance assessment

    International Nuclear Information System (INIS)

    Rundberg, R.S.

    1992-01-01

    The prediction of radionuclide migration for the purpose of assessing the safety of a nuclear waste repository will be based on a collective knowledge of hydrologic and geochemical properties of the surrounding rock and groundwater. This knowledge along with assumption about the interactions of radionuclides with groundwater and minerals form the scientific basis for a model capable of accurately predicting the repository's performance. Because the interaction of radionuclides in geochemical systems is known to be complicated, several fundamental and empirical approaches to measuring the interaction between radionuclides and the geologic barrier have been developed. The approaches applied to the measurement of sorption involve the use of pure minerals, intact, or crushed rock in dynamic and static experiments. Each approach has its advantages and disadvantages. There is no single best method for providing sorption data for performance assessment models which can be applied without invoking information derived from multiple experiments. 53 refs., 12 figs

  9. Influence of light-weight organic matters on strontium sorption to bentonite

    International Nuclear Information System (INIS)

    Wang, Tsing-Hai; Wu, Ding-Chiang; Teng, Shi-Ping

    2010-01-01

    Document available in extended abstract form only. Light-weight organic matters were frequently observed in groundwater. Their existence had significant influence on the transport of radionuclides. In this study, light-weight organic acid species including oxalic (MW 90), succinic (MW 118), adipic (MW 146), azelaic (MW 188), eicosanedioic (MW 306), benzoic (MW 122), salicylic (MW 138), and gallic (MW 170) were selected as the surrogate of natural organic matters. Their effects on strontium sorption to bentonite were evaluated by using a surface complexation model MINEQL+. Under this framework, three sorption mechanisms were considered: 1. structure sorption sites, 2. edge sorption sites, 3. further hydration of adsorbed Sr 2+ . The presence of organic species had no influence on Sr cation sorption to structure sorption sites. However, Sr cation sorption to edge sorption was affected by the organics to certain extent. For example, sorption capability of edge sites toward Sr was increased by the gallic species. Furthermore, hydration of adsorbed Sr was significantly affected by the presence of organic species. This might relate to that adsorbed Sr would become the bridge associating organic species on bentonite surfaces, but this argument required more solid spectral evidences to support. Some preliminary observations on Sr sorption to bentonite were obtained in this work; however, further experiments are still required by conducting experiments with more variety of organic species. By doing a comprehensive study, it would be much beneficial to make a more accurate evaluation of the influence of organic matters on Sr sorption

  10. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Feihong Liu

    2015-01-01

    Full Text Available Temperature and relative humidity (RH are two major external factors, which affect equilibrium moisture content (EMC of wood-plastic composites (WPCs. In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP-high density polyethylene (HDPE composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB. The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  11. A Proposed Conceptual Model of Military Medical Readiness

    National Research Council Canada - National Science Library

    Van Hall, Brian M

    2007-01-01

    .... The basis for the proposed conceptual model builds on common and accepted latent variable and theoretical modeling techniques proposed by healthcare scholars, organizational theorists, mathematical...

  12. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  13. Pollution and pollution tolerance as regards the sorption of organic chemicals in urban soils; Sorption organischer Chemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Wu Qinglan; Strehl, M. [Kiel Univ. (Germany). Inst. fuer Pflanzenernaehrung und Bodenkunde; Abend, S. [Kiel Univ. (Germany). Inst. fuer Anorganische Chemie; Rexilius, L. [Pflanzenschutzamt des Landes Schleswig-Holstein, Kiel (Germany); Schleuss, U. [Kiel Univ. (Germany). Oekologie-Zentrum]|[Zentrum fuer Agrarlandschafts- und Landnutzungsforschung Muencheberg (Germany)

    1997-12-31

    The behaviour of pollutants in soils concerning, for example, their immobilisation, transport, biodegradation, or uptake by useful plants is to large degree determined by the sorption properties of the soil in question. The degree of sorption is an all-important parameter in any model description of the behaviour of pollutants in soils. The aim of the present part-project was to estimate by means of simple field methods the binding capacity of anthropogenic urban soils for environmentally consequential organic chemicals and to assess the results with regard to soil and water protection. [Deutsch] Das Verhalten von Schadstoffen in Boeden, wie z.B. Immobilisierung, Transport, biologischer Abbau, Aufnahme durch Kulturpflanzen, wird von den Sorptionseigenschaften im Boden wesentlich beeinflusst. Bei allen Modellbeschreibungen ueber das Verhalten von Schadstoffen in Boeden ist die Staerke der Sorption ein unersetzbarer Parameter. Ziel dieses Teilprojektes war es, das Bindungsvermoegen der anthropogenen Stadtboeden fuer umweltrelevante organische Chemikalien mittels einfacher Feldmethoden abzuschaetzen und im Hinblick auf Boden- und Gewaesserschutz zu bewerten. (orig./SR)

  14. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  15. Numerical analysis of coupled water transport in wood with a focus on the coupling parameter sorption

    DEFF Research Database (Denmark)

    Hozjan, T.; Turk, G.; Rodman, U.

    2011-01-01

    This paper presents a study of sorption rate function in a so-called multi-Fickian or multi-phase model. This model describes the complex moisture transport system in wood, which consists of separate water-vapour and bound-water diffusion interacting through sorption. In the numerical example inf...... influence of the sorption rate function on water transport is presented. It can be seen that the sorption rate function has a noticeable influence on coupled water transport in wood....

  16. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork.

    Science.gov (United States)

    Gallardo-Chacón, Joan-Josep; Karbowiak, Thomas

    2015-08-15

    Cork shows an active role in the sorption of volatile phenols from wine. The sorption properties of 4-ethylphenol and 4-ethylguaiacol phenols in hydro-alcoholic medium placed in contact with suberin extracted from cork were especially investigated. To that purpose, suberin was immersed in model wine solutions containing several concentrations of each phenol and the amount of the compound remaining in the liquid phase was determined by SPME-GC-MS. Sorption isotherms of 4-ethylguaiacol and 4-ethylphenol by suberin followed the Henry's model. The solid/liquid partition coefficients (KSL) between the suberin and the model wine were also determined for several other volatile phenols. Suberin displayed rather high sorption capacity, which was positively correlated to the hydrophobicity of the volatile. Finally, the capacity of suberin to decrease the concentration of 4-ethylphenol and 4-ethylguaiacol was also tested in real wines affected by a Brettanomyces character. It also lead to a significant reduction of their concentration in wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.

    Science.gov (United States)

    Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J

    2017-05-01

    Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth

  18. Sorption of short-lived radionuclides in a layer of sorbent with spherical granules

    International Nuclear Information System (INIS)

    Karlin, Yu.V.

    1993-01-01

    Sorption methods have found wide application in the purification of liquid radioactive wastes. The working element in sorption methods for this purpose is usually a sorption column with a fixed layer of sorbent. Continuous-action equipment with a moving layer of sorbent is very seldom used. When a fixed layer of sorbent is used its wear and prolonged mixing in the sorption column are reduced to a minimum, and maximum purification is achieved due to the advantages of the dynamic method of sorption over the static method. The time of protective action of the sorbent layer is determined by the time taken for the radionuclide to pass through the sorption column, and for the majority of radionuclides is determined by numerous parameters, including the type of sorbent and radionuclide, the rate of flow through the sorbent, the size of the sorbent granules, etc. The physical and chemical aspects of this process have been investigated in detail, and numerous methods for modeling it mathematically have been developed and have been used to develop methods of designing sorption column apparatus. The specific nature of the radionuclides as unstable materials enables the hypothetical case of a open-quotes perpetualclose quotes sorption filter to be represented. In fact, to achieve this it is only necessary to assume that the half-life of the radionuclide is so small that the rate of decay of the radionuclide in the sorption column (both in the sorbed state and in the aqueous phase of the sorption layer) is equal to the rate that it is fed into the column in the flow of liquid radioactive waste. In this case the sorption front of the radionuclide in the column wall remains fixed after a certain initial period. In this paper, a mathematical model of such a hypothetical filter for the case of spherical sorbent granules is considered

  19. Influence of iron redox transformations on plutonium sorption to sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hixon, A.E.; Powell, B.A. [Environmental Engineering and Earth Sciences, Clemson Univ., Clemson, SC (United States); Hu, Y.J.; Nitsche, H. [Dept. of Chemistry, Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab., Berkeley, CA (United States); Kaplan, D.I. [Savannah River National Lab., Aiken, SC (United States); Kukkadapu, R.K.; Qafoku, O. [Pacific Northwest National Lab., Richland, WA (United States)

    2010-07-01

    (IV). Similar to the sorption kinetics, the reduction rate appears to be correlated with sediment Fe(II) concentration. The correlation between Fe(II) concentrations and Pu(V) reduction demonstrates the potential impact of changing iron mineralogy on plutonium subsurface transport through redox transition areas. These findings should influence the conceptual models of long-term stewardship of Pu contaminated sites that have fluctuating redox conditions, such as vadose zones or riparian zones. (orig.)

  20. On the derivation of a sorption database

    International Nuclear Information System (INIS)

    Ewart, F.T.; Haworth, A.; Wisbey, S.J.

    1992-01-01

    The safety arguments in support of many radioactive waste repository concepts are heavily dependent on the existence of a sorption reaction. Such a reaction will, in the near field, reduce the magnitude of the release of a number of hazardous radionuclides so that their release to the geosphere is dispersed in time. In the geosphere, the sorption reactions provide a mechanism whereby the migration of the elements released from the repository is retarded and the radioisotopes then subsequently decay. The processes involved in sorption cannot in many cases be satisfactorily represented in thermodynamic terms such as are employed in the description of dissolution and precipitation. Experiments that investigate these reactions are not easy to perform. The sorption parameters that are obtained experimentally for the near field relate, in the UK case, to sorption on to a cementitious surface. These surfaces, since they consist substantially of calcium hydroxide or calcium silicate hydrates, control the aqueous chemistry, do not permit pH changes to be made and limit the range of concentrations of sorbate that may be used. In the far field, on the other hand, the surfaces are not in general so active with respect to the solution chemistry and data can be obtained across a wide spectrum of aqueous chemistries. These data, although they may be useful in testing and parameterizing models, may not have validity under field conditions since the minerals will, inevitably, react to the changes in water chemistry, over geological timescales. The uncertainties in the experimental data are, for many elements and solids, balanced by a reasonable agreement between workers in the values of the parameters used to describe sorption. 22 refs., 1 fig., 1 tab

  1. Web-based sorption database (KAERI-SDB)

    International Nuclear Information System (INIS)

    Lee, Jae Kwang; Baik, Min Hoon

    2010-10-01

    Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the accessibility to the nuclide sorption database is limited. The web-based sorption database (KAERI-SDB) was developed to provide sorption data in a convenient way. The development of the KAERI-SDB was achieved by improving the performance of pre-existing sorption DB programme (SDB-21C) and incorporating the user requirement. The KAERI-SDB was designed that users can access it by using a web browser. Main functions of the KAERI-SDB include (1) log-in/join, (2) search and store of sorption data and (3) scatter plot chart and index chart. It is expected that the KAERI-SDB is widely applied to the safety assessment of radioactive waste disposal by enhancing the accessibility to experts and practitioner related the nuclear industry and governmental administration. It is also expected that reliabilities for the radioactive waste disposal increased by opening the web-based sorption DB to public

  2. Analysis of Subjective Conceptualizations Towards Collective Conceptual Modelling

    DEFF Research Database (Denmark)

    Glückstad, Fumiko Kano; Herlau, Tue; Schmidt, Mikkel Nørgaard

    2013-01-01

    This work is conducted as a preliminary study for a project where individuals' conceptualizations of domain knowledge will thoroughly be analyzed across 150 subjects from 6 countries. The project aims at investigating how humans' conceptualizations differ according to different types of mother la...

  3. Kinetic study in the sorption of cesium on some egyptian soils

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, A S; Hegazi, W S [University College for Girls, Ain Shams University, Cairo (Egypt); Abdel-Malik, W E.W.; Kamel, N H.M. [Radiation protection Department, Nuclear Research Center, Atomic Energy, Authority, Cairo (Egypt)

    1997-12-31

    Soil samples were Collected from different locations of the egyptian desert and were subjected to physical, chemical, mineralogical and sorption studies. Kinetic analysis were made on the sorption of radiocesium by these soil samples. Two models of analysis were treated namely; the one step first order model (the integer model), and the sum of the exponential components (the compartmental model). Statistical treatment of the results obtained showed that. For the one step first order model, samples having the lowest rate constant showed the longest reaction half life t{sup 1} /2 (771 to 121 minutes), while the samples having higher rate constant the reaction half life decreased markedly ranging from 56 to 14 minutes. The compartmental model of analysis showed that the sorption of cesium of the soil samples involved two or three steps represented by two or three exponential equations. The equation of each step was calculated. 4 figs., 3 tabs.

  4. Further developments of the RES3T sorption database

    International Nuclear Information System (INIS)

    Brendler, V.

    2002-01-01

    RES 3 T - the Rossendorf expert system for surface and sorption thermodynamics currently under development has been expanded towards the provision of comprehensive sorption data sets suitable for complex natural systems of rocks and soils. Also a statistical evaluation of the available SCM (surface complexation model) data is now implemented. Finally, a normalization of SCM parameters to a standard site density has been incorporated. (orig.)

  5. Sorption of Arsenic from Desalination Concentrate onto Drinking Water Treatment Solids: Operating Conditions and Kinetics

    Directory of Open Access Journals (Sweden)

    Xuesong Xu

    2018-01-01

    Full Text Available Selective removal of arsenic from aqueous solutions with high salinity is required for safe disposal of the concentrate and protection of the environment. The use of drinking water treatment solids (DWTS to remove arsenic from reverse osmosis (RO concentrate was studied by batch sorption experiments. The impacts of solution chemistry, contact time, sorbent dosage, and arsenic concentration on sorption were investigated, and arsenic sorption kinetics and isotherms were modeled. The results indicated that DWTS were effective in removing arsenic from RO concentrate. The arsenic sorption process followed a pseudo-second-order kinetic model. Multilayer adsorption was simulated by Freundlich equation. The maximum sorption capacities were calculated to be 170 mg arsenic per gram of DWTS. Arsenic sorption was enhanced by surface precipitation onto the DWTS due to the high amount of calcium in the RO concentrate and the formation of ternary complexes between arsenic and natural organic matter (NOM bound by the polyvalent cations in DWTS. The interactions between arsenic and NOM in the solid phase and aqueous phase exhibited two-sided effects on arsenic sorption onto DWTS. NOM in aqueous solution hindered the arsenic sorption onto DWTS, while the high organic matter content in solid DWTS phase enhanced arsenic sorption.

  6. Developing rural palliative care: validating a conceptual model.

    Science.gov (United States)

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  7. U(VI) sorption on kaolinite. Effects of pH, U(VI) concentration and oxyanions

    International Nuclear Information System (INIS)

    Liang Gao; Ziqian Yang; Keliang Shi; Xuefeng Wang; Zhijun Guo; Wangsuo Wu

    2010-01-01

    U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pH PZNPC ) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite. (author)

  8. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    Science.gov (United States)

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  9. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  10. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  11. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  12. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  13. Sorption of uranyl ions on hydrous silicon dioxide

    International Nuclear Information System (INIS)

    Lieser, K.H.; Quandt-Klenk, S.; Thybusch, B.

    1992-01-01

    Sorption of uranyl ions on SiO 2 .χH 2 O (silica gel) is investigated in absence and in presence of carbonate as function of pH. The curves obtained are very similar to those observed for sorption of uranyl ion on TiO 2 .χH 2 O, indicating the dominating influence of the uranium species in solution. Between pH 2 and 5 the sorption ratio R s increases with hydrolysis of uranyl ions (formation of UO 2 OH + ), around pH 7 it is nearly independent of pH, and at higher pH it decreases again. The equilibrium constants are calculated for these ranges. In presence of carbonate R s decreases drastically above pH 6, due to the formation of carbonato complexes in solution. Sorption of uranyl ions on SiO 2 .χH 2 O, on TiO 2 .χH 2 O, and on cryst. SiO 2 and Al 2 O 3 is compared. The problems of 'surface complexation' modelling are discussed. (orig.)

  14. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite

    International Nuclear Information System (INIS)

    Huo, Hanxin; Lin, Hai; Dong, Yingbo; Cheng, Huang; Wang, Han; Cao, Lixia

    2012-01-01

    Highlights: ► The salt and thermally modified clinoptilolite can effectively sorb NH 3 -N and phosphates. ► The phosphorus and nitrogen removal was consistent with Langmuir isotherm model. ► The modified clinoptilolite possesses rapid adsorption and slow balance characteristics. ► The adsorption is more in line with the Elovich adsorption dynamics equation. ► The entropy effect plays the role of the main driving force in the adsorption. - Abstract: This paper presents the investigation of the ammonia-nitrogen and phosphates sorption from simulated reclaimed wastewater by modified clinoptilolite. The results showed that the modified clinoptilolite has a high sorption efficiency and removal performance. The ammonia-nitrogen and phosphates removal rate of the modified clinoptilolite reached to 98.46% and 99.80%, respectively. The surface of modified clinoptilolite became loose and some pores appeared, which enlarged the specific surface area; the contents of Na and Fe increased, and the contents of Ca and Mg decreased. The modified clinoptilolite possesses rapid sorption and slow balance characteristics and ammonia-nitrogen and phosphates sorption is more consistent with the Langmuir isotherm model. The adsorption kinetics of ammonia-nitrogen and phosphates follows the Elovich adsorption dynamics equation, which describes the sorption of ammonia-nitrogen and phosphates in aqueous solution as mainly a chemical sorption. Results from the thermodynamics experiment involving ammonia-nitrogen and phosphates sorption reveal that the process is a spontaneous and endothermic process, and is mainly driven by entropy effect.

  15. Non-monotonic reasoning in conceptual modeling and ontology design: A proposal

    CSIR Research Space (South Africa)

    Casini, G

    2013-06-01

    Full Text Available -1 2nd International Workshop on Ontologies and Conceptual Modeling (Onto.Com 2013), Valencia, Spain, 17-21 June 2013 Non-monotonic reasoning in conceptual modeling and ontology design: A proposal Giovanni Casini1 and Alessandro Mosca2 1...

  16. Conceptual language models for domain-specific retrieval

    NARCIS (Netherlands)

    Meij, E.; Trieschnigg, D.; de Rijke, M.; Kraaij, W.

    2010-01-01

    Over the years, various meta-languages have been used to manually enrich documents with conceptual knowledge of some kind. Examples include keyword assignment to citations or, more recently, tags to websites. In this paper we propose generative concept models as an extension to query modeling within

  17. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  18. Toolkit for Conceptual Modeling (TCM): User's Guide and Reference

    NARCIS (Netherlands)

    Dehne, F.; Wieringa, Roelf J.

    1997-01-01

    The Toolkit for Conceptual Modeling (TCM) is a suite of graphical editors for a number of graphical notation systems that are used in software specification methods. The notations can be used to represent the conceptual structure of the software - hence the name of the suite. This manual describes

  19. Sorption behavior of nonylphenol (NP) on sewage-irrigated soil: Kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Liao, Xiaoping; Zhang, Caixiang; Yao, Linlin; Li, Jiale; Liu, Min; Xu, Liang; Evalde, Mulindankaka

    2014-01-01

    The reuse of wastewater for irrigation of agricultural land is a well established resources management practice but has the disadvantage of inputting various forms of contaminants into the terrestrial environment including nonylphenol (NP), a well known endocrine disrupting substance. To elucidate the environmental fate and transport of NP, the sorption behavior on sewage-irrigated soil was studied by batch experiment. It was found that sorption processes of NP on different sorbents (soil, humic acid (HA) and silica) could be expressed well using two compartment pseudo first-order model, where both surface and intra-particle diffusion were probable rate-controlling processes. Linear model could better express the sorption of NP on soil, black carbon (BC) and mineral (e.g., SiO 2 ) except HA than Freundlich model. The large value of distribution coefficients of normalized organic carbon (K oc ) on soils indicated that NP was limited to migrate to deep soil. The higher desorption partition coefficient of NP on soil showed enhanced hysteresis. According to the experimental data, the calculated thermodynamic parameters implied that the sorption reaction on sewage-irrigation was spontaneous, exothermic and entropy decreasing process. The amount of soil organic matter (SOM) dominated the sorption capacity, whereas the sorption behavior of NP on soil showed no significant correlation with ionic strength. - Highlights: • Both surface and intra-particle diffusion were rate-controlling processes. • Soil composition influences the partition activity of NP. • Soil organic matter has dominated the sorption capacity of NP on soil. • NP molecule was limited to migrate to deep soil in sewage-irrigated area

  20. A Conceptual Model of Military Recruitment

    Science.gov (United States)

    2009-10-01

    Hiring Expectancies – Expectancy (VIE) Theory ( Vroom , 1996) states individuals choose among a set of employment alternatives on the basis of the...A Conceptual Model of Military Recruitment Presented at NATO Technical Course HFM 180 – Strategies to Address Recruiting and Retention Issues in...the Military Fariya Syed October, 2009 Based on A Proposed Model Of Military Recruitment (Schreurs & Syed, 2007) Report Documentation Page

  1. Influence of organic matter type and medium composition on the sorption affinity of C12-benzalkonium cation

    International Nuclear Information System (INIS)

    Chen, Yi; Hermens, Joop L.M.; Droge, Steven T.J.

    2013-01-01

    We used the 7-μm polyacrylate ion-exchange SPME fibers to investigate C12-benzalkonium sorption to 10 mg/L natural organic matter at concentrations well below the cation-exchange capacity. C12-BAC sorption at constant medium conditions differed within 0.4 log units for two humic acids (Aldrich, Leonardite) and peat (Sphagnum, Pahokee), with similar nonlinear sorption isotherms (K F ∼ 0.8). Sorption to the SPME fibers and Aldrich humic acid (AHA) was reduced at both low pH and high electrolyte concentration, and reduced more strongly by Ca 2+ compared with Na + at similar concentrations. Sorption isotherms for AHA (5–50–500 mM Na + , pH 6) was modeled successfully by the NICA-Donnan approach, resulting in an intrinsic sorption coefficient of 5.35 (C aq = 1 nM). The NICA-Donnan model further explained the stronger specific binding of Ca 2+ compared to Na + by differences in Boltzmann factors. This study provides relevant information to interpret bioavailability of quaternary ammonium compounds, and possibly for other organic cations. -- Highlights: •The ion-exchange SPME was used to investigate C12-benzalkonium sorption behavior. •Sorption to different organic matter differed within 0.4 log units (5 mM Ca 2+ , pH6). •Sorption to AHA was reduced at both low pH and high electrolyte concentration. •The NICA-Donnan approach lead to an intrinsic log D OC,IE of 5.35 (C aq = 1 nM). •The Boltzmann factors in NICA-Donnan model explained the specific binding of Ca 2+ . -- C12-BAC sorption to the four organic matter samples were investigated by the ion-exchange SPME and the NICA-Donnan model explained the different sorption affinities caused by Na + and Ca 2+

  2. Sorption equilibrium of mercury onto ground-up tree fern.

    Science.gov (United States)

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  3. Sorption equilibrium of mercury onto ground-up tree fern

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Wang, C.-C.

    2008-01-01

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as ΔG o , ΔH o , and ΔS o , were calculated and compared with the sorption of mercury by other sorbents

  4. Sorption equilibrium of mercury onto ground-up tree fern

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Y.-S. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)], E-mail: ysho@isu.edu.tw; Wang, C.-C. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o}, were calculated and compared with the sorption of mercury by other sorbents.

  5. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    International Nuclear Information System (INIS)

    Dion, H.M.; Hill, H.H.Jr.; Washington State Univ., Pullmann, WA; Harsh, J.B.; Washington State Univ., Pullmann, WA

    2001-01-01

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32 P-labeled phosphate and 14 C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  6. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  7. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  8. Alligator Rivers Analogue project. Uranium sorption. Final Report - Volume 13

    International Nuclear Information System (INIS)

    Waite, T.D.; Payne, T.E.; Davis, J.A.; Sekine, K.

    1992-01-01

    In this volume, the results of studies of uranium sorption (adsorption and desorption) to both single, well-defined mineral phases, and to selected natural (Koongarra) substrates are reported. The single phases included the amorphous iron oxide ferrihydrite, crystalline silica and two naturally occurring kaolinites, KGa-1 and Nichika. The surface properties of these materials were rigorously defined, and adsorption studies were conducted over a range of solution pH, ionic strength, carbonate content, adsorbent and adsorbate concentrations, and in the presence of uranium complexants and (potentially) competing adsorbates (such as phosphate and fluoride). The results of these studies were modelled using the 'surface complexation' approach, with a diffuse layer description of the electrical double layer. The impacts of mineral phase transformations (specifically the aging of amorphous ferrihydrite to more crystalline forms) on the uptake and desorption of uranium are also reported. The amount of data obtained in this study, with a number of experimental parameters being varied over a wide range, has enabled more confidence to be placed in the modelling results. The derived model for ferrihydrite adequately accounts for the effect on U sorption of a number of parameters, most notably pH, pCO 2 and total U present. Few (if any) of the models previously proposed are adequate in this respect. While the modelling of the data for the natural substrates is not as advanced, the U sorption data on the natural substrates show similar features to the U sorption on the model substrates. This suggests that the insights obtained in the modelling of the data for ferrihydrite will be valuable in deriving a model for the more complex natural substrates

  9. Sorption of Ochratoxin A from aqueous solutions using beta-cyclodextrin-polyurethane polymer

    Science.gov (United States)

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions, including wine, was examined by batch rebinding assays and equilibrium sorption isotherms. The results were fit to two parameter models. Freundlich analysis of the sorption isotherm indicates the polyme...

  10. Sorption mechanisms of perfluorinated compounds on carbon nanotubes

    International Nuclear Information System (INIS)

    Deng Shubo; Zhang Qiaoying; Nie Yao; Wei Haoran; Wang Bin; Huang Jun; Yu Gang; Xing Baoshan

    2012-01-01

    Sorption of perfluorinated compounds (PFCs) on carbon nanotubes (CNTs) is critical for understanding their subsequent transport and fate in aqueous environments, but the sorption mechanisms remain largely unknown. In this study, the sorption of six PFCs on CNTs increased with increasing C-F chain length when they had a same functional group, and the CNTs with hydroxyl and carboxyl groups had much lower adsorbed amount than the pristine CNTs, indicating that hydrophobic interaction dominated the sorption of PFCs on the CNTs. Electrostatic repulsion suppressed the sorption of PFCs on the CNTs, resulting in the lower sorption with increasing pH. Hydrogen bonding interaction was negligible. The hydrophobic C-F chains can be closely adsorbed on the CNTs surface in parallel to the axis or along the curvature, making it impossible to form micelles on the CNT surface, leading to the lower sorption than other adsorbents. Highlights: ► Sorption capacities of PFOA on different CNTs are less than that on activated carbon and resins. ► Hydrophobic interaction is principally involved in the sorption of PFCs on CNTs. ► Electrostatic repulsion suppresses the sorption of PFCs on CNTs. - Hydrophobic interaction dominated the sorption of perfluorinated compounds on carbon nanotubes, while electrostatic repulsion suppressed their sorption.

  11. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    Science.gov (United States)

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site

  12. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  13. Towards a Model of Technology Adoption: A Conceptual Model Proposition

    Science.gov (United States)

    Costello, Pat; Moreton, Rob

    A conceptual model for Information Communication Technology (ICT) adoption by Small Medium Enterprises (SMEs) is proposed. The research uses several ICT adoption models as its basis with theoretical underpinning provided by the Diffusion of Innovation theory and the Technology Acceptance Model (TAM). Taking an exploratory research approach the model was investigated amongst 200 SMEs whose core business is ICT. Evidence from this study demonstrates that these SMEs face the same issues as all other industry sectors. This work points out weaknesses in SMEs environments regarding ICT adoption and suggests what they may need to do to increase the success rate of any proposed adoption. The methodology for development of the framework is described and recommendations made for improved Government-led ICT adoption initiatives. Application of the general methodology has resulted in new opportunities to embed the ethos and culture surrounding the issues into the framework of new projects developed as a result of Government intervention. A conceptual model is proposed that may lead to a deeper understanding of the issues under consideration.

  14. Quantifying the effect of sorption and bioavailability of hydrophobic organic contaminants

    International Nuclear Information System (INIS)

    Zhang, W.; Bouwer, E.; Cunningham, A.

    1994-01-01

    In-situ bioremediation has been applied successfully at a few sites. Several restrictions presently exist which could greatly limit the effectiveness of this promising technology. Hydrophobic organic contaminants tend to sorb onto soil. However, microorganisms are most effective in utilizing substrates from the aqueous phase. Sorption tends to separate the direct contact between microorganisms and contaminants necessary for biodegradation to occur. A series of experiments, which represented scenarios with fast sorption/desorption, slow sorption/desorption, mass transfer across boundary layer and mass transfer within attached microorganisms (biofilm), was conducted to demonstrate the concentration effect and the mass transfer effect. A method has been developed to quantify bioavailability of organic contaminants in aquatic environments. Bioavailability Factor (B f ), a dimensionless parameter derived from mathematical models and verified by experimental results, has been formulated to describe the impact of equilibrium sorption, nonequilibrium sorption, and mass transfer processes on the rate and extent of biodegradation of petroleum hydrocarbons

  15. Sorption behaviour of perfluoroalkyl substances in soils.

    Science.gov (United States)

    Milinovic, Jelena; Lacorte, Silvia; Vidal, Miquel; Rigol, Anna

    2015-04-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonic acid (PFBS), was studied in six soils with contrasting characteristics, especially in the organic carbon content. Sorption isotherms were obtained by equilibrating the soil samples with 0.01 mol L(-1) CaCl2 solutions spiked with increasing concentrations of the target PFAS. The sorption reversibility of PFASs was also tested for some of the samples. Liquid chromatography coupled to tandem mass spectrometry was used to quantify the target PFASs in the solutions. Both the Freundlich and linear models were appropriate to describe the sorption behaviour of PFASs in soils, and enabled us to derive solid-liquid distribution coefficients (Kd) for each compound in each soil. Kd values increased from 19 to 295 mL g(-1) for PFOS, from 2.2 to 38 mL g(-1) for PFOA and from 0.4 to 6.8 mL g(-1) for PFBS, and were positively correlated with the organic carbon content of the soil. KOC values obtained from the correlations were 710, 96 and 17 mL g(-1) for PFOS, PFOA and PFBS, respectively. Whereas Kd values decreased in the sequence PFOS>PFOA>PFBS, desorption yields were lower than 13% for PFOS, from 24 to 58% for PFOA, and from 32 to 60% for PFBS. This shows that the physicochemical characteristics of PFASs, basically their hydrophobicity, controlled their sorption behaviour in soils, with PFOS being the most irreversibly sorbed PFAS. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Application of surface complexation modelling: Nickel sorption on quartz, manganese oxide, kaolinite and goethite, and thorium on silica

    International Nuclear Information System (INIS)

    Olin, M.; Lehikoinen, J.

    1997-12-01

    The study is a follow-up to a previous modelling task on mechanistic sorption. The experimental work has been carried out at the Laboratory of Radiochemistry, University of Helsinki (HYRL), and the sorption modelling was performed using the HYDRAQL code. Parameters taken from the open literature were employed in the modelling phase. The thermodynamic data for aqueous solutions were extracted from the EQ3/6 database and subsequently modified for HYDRAQL where necessary. The experimental data were obtained from five different experiments, four of which concerned the adsorption of nickel. The first experimental system was a mixture of Nilsiae quartz and manganese dioxide. In the second experiment, quartz was equilibrated with a fresh and saline groundwater simulant instead of an electrolyte solution. The third and fourth experiments dealt with nickel adsorption from an electrolyte solution onto goethite and kaolinite surfaces respectively. In the fifth experiment, adsorption of thorium onto a quartz surface was investigated

  17. Neptunium(V) sorption on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Amayri, S.; Jermolajev, A.; Reich, T. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2011-07-01

    The sorption behavior of neptunium(V) onto the clay mineral kaolinite was studied in batch experiments under different experimental conditions: [Np(V)] = 7 x 10{sup -12}-8 x 10{sup -6} M, solid-to-liquid ratio 2-20 g L{sup -1}, I = 0.1 and 0.01 M NaClO{sub 4}, pH = 6-10, ambient air and Ar atmosphere. The short-lived isotope {sup 239}Np (T{sub 1/2} = 2.36 d) was used instead of {sup 237}Np (T{sub 1/2} = 2.14 x 10{sup 6} a) to study the sorption behavior of Np(V) at environmentally-relevant concentrations, i.e., 7 x 10{sup -12} M Np. In addition, {sup 239}Np(V) served as tracer to measure sorption isotherms over six orders of magnitude in Np concentration (4.8 x 10{sup -12}-1.0 x 10{sup -4} M). The results show that Np(V) sorption on kaolinite is strongly influenced by pH, CO{sub 2}, and ionic strength. The sorption of 8 x 10{sup -6} M Np(V) at pH 9.0, and ionic strength of 0.1 M NaClO{sub 4} was proportional to the solid-to-liquid ratio of kaolinite in the range of 2-10 g L{sup -1}. In the absence of CO{sub 2}, the Np(V) uptake increased continuously with increasing pH value up to 97% at pH 10. Under ambient CO{sub 2}, the sorption of Np decreased above pH 8 up to zero at pH 10. An increase of Np(V) concentration from 7 x 10{sup -12} to 8 x 10{sup -6} M resulted in a shift of the sorption pH edge by up to one pH unit to higher pH values. The ionic strength influenced the Np(V) sorption onto kaolinite only in the presence of ambient CO{sub 2}. Under Ar atmosphere the sorption of Np(V) was independent from ionic strength, indicating the formation of inner-sphere complexes of Np(V) with kaolinite. Time-dependent batch experiments at pH 9.0 under ambient CO{sub 2} showed that the sorption of Np(V) on kaolinite is fast and fully reversible over six orders in Np(V) concentration. (orig.)

  18. Sorption properties of wool

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Strict ecological legislation, especially in highly developed countries, imposed requirements for the purification of industrial effluents and the need for efficient oil clean up after sea and inland water spills. Although numerous processes have been developed, the application of sorbents is still one of the most efficient methods to remove heavy metal ions, dyes and crude oil from water. Recently, special attention was paid to sorbents based on natural fibres. A review of studies concerning the sorption properties of wool is presented in this paper. The presence of various functional groups on the wool fibre surface contributes to the efficient sorption of heavy metal ions and dyes. A hydrophobic, scaly surface and fibre crimp strongly influence the high sorption capacity of wool for oil. Wool has great sorption potential even as a recycled material. Accordingly, it can be used as a viable substitute to commercially available synthetic sorbents that show poor biodegradab ility.

  19. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    Science.gov (United States)

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  20. Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Klamer, Morten; Venås, Thomas Mark

    2010-01-01

    The complex wood-water relationship has been the topic of numerous studies. Sorption isotherms – in particular – have been derived for hundreds of wood species, their sap- and heartwood sections as well as for decayed, engineered and modified wood materials. However, the traditional methods...... for obtaining sorption isotherms are very time consuming. With new dynamic vapour sorption (DVS) instrumentation, the acquisition of data for constructing sorption isotherms is suddenly dramatically lowered. Where the traditional methods often required months, data can now be obtained in a matter of days...... depending on the number of data points required. The fast data acquisition makes DVS a useful tool in studying the sorption properties of wood, and especially in studying the effect of different modification treatments on these properties. This study includes an investigation of the sorption properties...

  1. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    Science.gov (United States)

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  2. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak; Troldborg, Mads; McKnight, Ursula S.

    2012-01-01

    site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level...... the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We...... propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same...

  3. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  4. Conceptual Model of Quantities, Units, Dimensions, and Values

    Science.gov (United States)

    Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar

    2011-01-01

    JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.

  5. Sorption Energies for Atrazine onto Devolatalized Vitellaria paradoxa

    International Nuclear Information System (INIS)

    Itodo, A. U.; Abdulrahman, F. W.; Hassan, L. G.; Happiness, U. I.

    2012-01-01

    We utilize isotherm models in contributing to scholarly knowledge in simple terms, to measure the forces or energy defining certain adsorption phenomenon. Gas Chromatography coupled with Mass Spectrophotometer detector was utilized to measure equilibrium phase atrazine after adsorption onto Shea nut Shells acid derived activated carbon. Data were fitted into the D-R and Temkin isotherm relationships for energy data estimation of Sorption energy value (B D ), mean free energy (E D ) and heat of sorption (B). They were estimated as 0.7600mol 2 KJ -2 , 0.8111 kjmor -1 and 0.790Jmol -1 respectively. The parameter predicting the type of adsorption was evaluated B D , B D 2 = 0.979 proves a better choice in explaining sorption energies. Generally, shea nut shells can be used as alternative precursors for activated carbon production via the two steps and acid treatment method.

  6. Sorption Isotherm Modelling Of Fermented Cassava Flour by Red Yeast Rice

    Science.gov (United States)

    Cahyanti, M. N.; Alfiah, M. N.; Hartini, S.

    2018-04-01

    The objective of the study is to determine the characteristic of moisture sorption isotherm from fermented cassava flour by red yeast rice using various modeling. This research used seven salt solutions and storage temperature of 298K, 303K, and 308K. The models used were Brunauer-Emmet-Teller (BET), Guggenheim-Anderson-de Boer (GAB) and Caurie model. The monolayer moisture content was around 4.51 – 5.99% db. Constant related to absorption heat in the multilayer area of [GAB model was around 0.86-0,91. Constant related to absorption heat in the monolayer area of GAB model was around 4.67-5.97. Constant related to absorption heat in the monolayer area of BET model was around 4.83-7.04. Caurie constant was around 1.25-1.59. The equilibrium and monolayer moisture content on fermented cassava flour by red yeast rice was decreasing as increasing temperature. GAB constant value indicated that the process of moisture absorption on the fermented cassava flour by red yeast rice categorized in type II.

  7. Modelling the fate of ciprofloxacin in activated sludge systems - The relevance of the sorption process

    DEFF Research Database (Denmark)

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang

    The sorption process can impact the removal of specific pharmaceuticals in municipal wastewater treatment plants (WWTPs). Ionic interactions (e.g., pH-driven equilibria and complexation), rather than hydrophobic interactions, are known to affect the sorption of zwitterionic pharmaceuticals...

  8. Experimental Results and Model Calculations of a Hybrid Adsorption-Compression Heat Pump Based on a Roots Compressor and Silica Gel-Water Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.

    2013-10-15

    Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.

  9. Time-dependent sorption of two novel fungicides in soils within a regulatory framework.

    Science.gov (United States)

    Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas; Kasteel, Roy

    2016-12-01

    Convincing experimental evidence suggests increased sorption of pesticides on soil over time, which, so far, has not been considered in the regulatory assessment of leaching to groundwater. Recently, Beulke and van Beinum (2012) proposed a guidance on how to conduct, analyse and use time-dependent sorption studies in pesticide registration. The applicability of the recommended experimental set-up and fitting procedure was examined for two fungicides, penflufen and fluxapyroxad, in four soils during a 170 day incubation experiment. The apparent distribution coefficient increased by a factor of 2.5-4.5 for penflufen and by a factor of 2.5-2.8 for fluxapyroxad. The recommended two-site, one-rate sorption model adequately described measurements of total mass and liquid phase concentration in the calcium chloride suspension and the calculated apparent distribution coefficient, passing all prescribed quality criteria for model fit and parameter reliability. The guidance is technically mature regarding the experimental set-up and parameterisation of the sorption model for the two moderately mobile and relatively persistent fungicides under investigation. These parameters can be used for transport modelling in soil, thereby recognising the existence of the experimentally observed, but in the regulatory leaching assessment of pesticides not yet routinely considered phenomenon of time-dependent sorption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons

    Directory of Open Access Journals (Sweden)

    Pietrzyk Andżelika

    2017-01-01

    Full Text Available The article rated removal efficiency of organic matter in the processes of sorption and sono-sorption of underground water grasped for municipal purposes. The studies were conducted in laboratory scale and verified in pilot scale at the Water Treatment Plant Tarnobrzeg-Jeziórko. In the research used granular activated carbons, ie. WD-Extra, WG-12, Norit Row 0.8 and Filtrasorb 300. The processes efficiency was evaluated on the basis of changes in the following parameters, ie.: total organic carbon (TOC, permanganate index, UV absorbance, turbidity and colour. The ultrasounds were generated by means of disintegrator Sonics&Materials VCX 130, using the sonication time of 1 and 5 minutes. The results obtained for the batch tests allowed to observe a beneficial effect of ultrasound on the efficiency of the removal of organic material in the sorption process. The combination of sonication and sorption on activated carbon increased the efficiency of the removal of organic matter by 6–37% for TOC, and 18.6–27.9% for permanganate index, depending on the sorbent used. The positive laboratory results were not confirmed in a pilot scale. In the flow conditions the sonication process did not affect the efficiency of removal of organic matter on the filter model with a bed of activated carbon.

  11. Study of thermodynamic water properties and moisture sorption hysteresis of mango skin

    Directory of Open Access Journals (Sweden)

    Silvio José Ferreira de Souza

    2015-03-01

    Full Text Available The equilibrium moisture content for adsorption and desorption isotherms of mango skin was determined using the static gravimetric method at temperatures of 20, 26, 33, 38 and 44 oC in the 0.056 to 0.873 water activity range. Both sorption curves show a decrease in equilibrium moisture content as the temperature increasing. The hysteresis effect was observed at constant water activity. The Guggenheim, Anderson, and de Boer (GAB model presented the best fitting accuracy among a group of models and was used to determine the thermodynamic properties of water sorption. Integral enthalpy and integral entropy areas showed inverted values for the adsorption and desorption isotherms over the wide range of water activity studied. These values confirm, in energetic terms, the difference between adsorption and desorption isotherms observed in the hysteresis phenomenon. Finally, the Gibbs free energy revealed that the sorption process was spontaneous for both sorption isotherms.

  12. Thermodynamic Properties, Sorption Isotherms and Glass Transition Temperature of Cape Gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Jessica López

    2014-01-01

    Full Text Available Adsorption and desorption isotherms of fresh and dried Cape gooseberry (Physalis peruviana L. were determined at three temperatures (20, 40 and 60 °C using a gravimetric technique. The data obtained were fitted to several models including Guggenheim-Anderson- De Boer (GAB, Brunauer-Emmett-Teller (BET, Henderson, Caurie, Smith, Oswin, Halsey and Iglesias-Chirife. A non-linear least square regression analysis was used to evaluate the models. The Iglesias-Chirife model fitted best the experimental data. Isosteric heat of sorption was also determined from the equilibrium sorption data using the Clausius-Clapeyron equation and was found to decrease exponentially with increasing moisture content. The enthalpy-entropy compensation theory was applied to the sorption isotherms and indicated an enthalpy-controlled sorption process. Glass transition temperature (Tg of Cape gooseberry was also determined by differential scanning calorimetry and modelled as a function of moisture content with the Gordon-Taylor, the Roos and the Khalloufi models, which proved to be excellent tools for predicting glass transition of Cape gooseberry.

  13. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    Science.gov (United States)

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  14. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Huelya [Forensic Medicine Foundation, Nasuhpasa Bath Street, No. 12, 16010 Heykel, Bursa (Turkey)]. E-mail: hkoyuncu@yyu.edu.tr; Kul, Ali Riza [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: alirizakul@yyu.edu.tr; Yildiz, Nuray [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: nyildiz@eng.ankara.edu.tr; Calimli, Ayla [Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100 Tandogan, Ankara (Turkey)]. E-mail: calimli@eng.ankara.edu.tr; Ceylan, Hasan [Yuzuncu Yil University, Faculty of Art and Science, Department of Chemistry, 65080 Van (Turkey)]. E-mail: hceylan@yyu.edu.tr

    2007-03-06

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy ({delta}G), the enthalpy ({delta}H) and the entropy change of sorption ({delta}S) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k {sub a} and k {sub d}) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K {sub geo} (k {sub a}/k {sub d}) from geometric approach.

  15. Equilibrium and kinetic studies for the sorption of 3-methoxybenzaldehyde on activated kaolinites

    International Nuclear Information System (INIS)

    Koyuncu, Huelya; Kul, Ali Riza; Yildiz, Nuray; Calimli, Ayla; Ceylan, Hasan

    2007-01-01

    The sorption of 3-methoxybenzaldehyde on activated kaolinites has been investigated at different temperatures. Two types of activation tests were performed. The sorption equilibrium was studied by sorption isotherms in the temperature range 303-333 K for natural (untreated), thermally and acid activated kaolinites. It was shown that the isotherm shapes were not affected by temperature and activation types of kaolinite. The absorbance data at 312 nm were fitted reasonably well with the Langmuir and Freundlich isotherm models and the model parameters were determined for different temperatures. Thermodynamic quantities such as Gibbs free energy (ΔG), the enthalpy (ΔH) and the entropy change of sorption (ΔS) were determined for natural, thermally and acid activated kaolinites. It was shown that the sorption processes were an endothermic reactions, controlled by physical mechanisms and spontaneously. Adsorption capacity of acid activated kaolinite for 3-methoxybenzaldehyde was higher compared to that of natural and thermally activated kaolinites at various temperatures. The adsorption and desorption rate constants (k a and k d ) were obtained separately by applying a geometric approach to the first order Langmuir model. This method provided good conformity between the K from Langmuir parameters and K geo (k a /k d ) from geometric approach

  16. Evaluation of Lagergren Kinetics Equation by Using Novel Kinetics Expression of Sorption of Zn2+ onto Horse Dung Humic Acid (HD-HA

    Directory of Open Access Journals (Sweden)

    Bambang Rusdiarso

    2016-12-01

    Full Text Available Extraction and purification of humic acid from dry horse dung powder (HD-HA was performed successfully and the purified HD-HA was then applied as sorbent to adsorb Zn2+. Extraction and purification were performed based on procedure of Stevenson (1994 under atmospheric air. Parameters investigated in this work consist of effect of medium sorption acidity, sorption rate (ka and desorption rate constant (kd, Langmuir (monolayer and Freundlich (multilayer sorption capacities, and energy (E of sorption. The ka and kd were determined according to the kinetic model of second order sorption reaching equilibrium, monolayer sorption capacity (b and energy (E were determined according to Langmuir isotherm model, and multilayer sorption capacity (B was determined based on Freundlich isotherm model. Sorption of Zn2+ on purified HD-HA was maximum at pH 5.0. The novel kinetic expression resulted from proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the equation revealed that the intercept of Lagergren equation, ln qe was more complex function of initial concentration of Zn2+ (a, Langmuir sorption capacity (b, and sorbed Zn2+ at equilibrium (xe.

  17. Alligator Rivers Analogue project. Uranium sorption. Final Report - Volume 13

    Energy Technology Data Exchange (ETDEWEB)

    Waite, T D; Payne, T E [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Davis, J A [United States Geological Survey, Water Resources Division, Menlo Park, CA (United States); Sekine, K [Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki (Japan)

    1993-12-31

    In this volume, the results of studies of uranium sorption (adsorption and desorption) to both single, well-defined mineral phases, and to selected natural (Koongarra) substrates are reported. The single phases included the amorphous iron oxide ferrihydrite, crystalline silica and two naturally occurring kaolinites, KGa-1 and Nichika. The surface properties of these materials were rigorously defined, and adsorption studies were conducted over a range of solution pH, ionic strength, carbonate content, adsorbent and adsorbate concentrations, and in the presence of uranium complexants and (potentially) competing adsorbates (such as phosphate and fluoride). The results of these studies were modelled using the `surface complexation` approach, with a diffuse layer description of the electrical double layer. The impacts of mineral phase transformations (specifically the aging of amorphous ferrihydrite to more crystalline forms) on the uptake and desorption of uranium are also reported. The amount of data obtained in this study, with a number of experimental parameters being varied over a wide range, has enabled more confidence to be placed in the modelling results. The derived model for ferrihydrite adequately accounts for the effect on U sorption of a number of parameters, most notably pH, pCO{sub 2} and total U present. Few (if any) of the models previously proposed are adequate in this respect. While the modelling of the data for the natural substrates is not as advanced, the U sorption data on the natural substrates show similar features to the U sorption on the model substrates. This suggests that the insights obtained in the modelling of the data for ferrihydrite will be valuable in deriving a model for the more complex natural substrates 87 refs., 27 tabs., 56 figs.

  18. Towards methodical modelling: Differences between the structure and output dynamics of multiple conceptual models

    Science.gov (United States)

    Knoben, Wouter; Woods, Ross; Freer, Jim

    2016-04-01

    Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.

  19. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  20. Effects of Citrate and Arginine on Sorption of Nickel to Yazd Sepiolite and Calcite

    Directory of Open Access Journals (Sweden)

    Ahmadreza Sheikhhosseini

    2017-03-01

    , and W was the mass (g of the sorbent. The Langmuir, Freundlich and linear isotherm models were fitted to sorption data using Graphpad prism 5.0. For kinetic study,30 mL of 0.01 M CaCl2 solution, with or without 0.1 mM citrate or arginine, containing Ni at a concentration corresponding to the maximum sorption capacity of each mineral (estimated from sorption isotherms were transferred into 50-ml polyethylene centrifuge tubes containing 0.3 g of sepiolite or calcite. The suspensions were shaken (180±2 rpm, 25 °C continuously and after 0.5, 1.5, 3, 6, 12, 18 and 24 hours, corresponding tubes were centrifuged (4000×g for 10 min and supernatants were analyzed for Ni concentration by atomic absorption spectrophotometer. Using Graphpad prism 5.0, kinetic data were fitted to Pseudo-first order, pseudo-second order and power function kinetic models. Results: With or without ligands, the Langmuir model was the best description of Ni sorption to sepiolite while the linear model was the best fit of calcite data showing the physical nature of Ni sorption by this mineral. Kinetics of Ni sorption to sepiolite and calcite were best described by power function model. In the presence of citrate, both capacity and rate of sorption of Ni to sepiolite decreased. There was no considerable change in sorption of Ni to calcite. In the presence of arginine, however, sorption capacity of minerals for Ni increased. Arginine enhanced the rate of Ni sorption on all three minerals. Citrate showed opposing effects on Ni sorption kinetics depending on the studied minerals. Totally, citrate and arginine had opposite effects on sorption of Ni to sepiolite and calcite. Conclusion: Organic ligands can change sorption characteristics of the minerals. It seems that citrate decreases sorption of Ni to sepiolite but its effect on Ni sorption to calcite is negligible, while arginine increases Ni sorption to both minerals. Our results suggested that presence of citrate and arginine in soil influence Ni

  1. Sorption of benzothiazoles onto sandy aquifer material under equilibrium and nonequlibrium conditions

    Directory of Open Access Journals (Sweden)

    Kragulj Marijana M.

    2014-01-01

    Full Text Available In this study, the sorption behaviour of 1,3-benzothiazole (BT and 2-(methylthiobenzothiazole (MTBT was investigated on Danube geosorbent under equilibrium and nonequilibrium conditions. All sorption isotherms fitted well with the Freundlich model (R2=0.932-0.993. The results showed that organic matter of the Danube geosorbent has a higher sorption affinity for the more hydrophobic MTBT compared to BT. However, sorption-desorption experiments showed that MTBT was more easily desorbed than BT molecules, which indicates the importance of absorption relative to adsorption in the overall sorption mechanism of MTBT. In general, molecules of BT and MTBT were more easily desorbed in the lower concentration range, which resulted in an increase in the hysteresis indices with increasing concentrations. Column experiments revealed that retention of the investigated compounds on the aquifer material followed the compound’s hydrophobicity. BT showed a lower retention, in accordance with its lower sorption affinity obtained in the static experiments, while MTBT showed a greater sorption affinity, and thus had a longer retention time on the column. Thus during transport BT represent greater risk for groundwaters than MTBT. These results have increased our understanding of benzothiazoles sorption and desorption process which represent one of the most important factors which influence the behaviour of organic compounds in the environment.

  2. Kinetics and thermodynamic for sorption of arsenate by Lanthanum-exchanged zeolite

    International Nuclear Information System (INIS)

    Mohd Jelas Haron; Saiful Adli Masdan; Mohd Zobir Hussein; Zulkarnain Zainal; Anuar Kassim

    2007-01-01

    Zeolites are crystalline, hydrated aluminosilicate containing exchangeable alkaline and alkaline earth cations in their structural frameworks. Since zeolites have permanent negative charges on their surfaces, they have no affinity for anions. However recent studies have shown that modification of zeolites with certain surfactants or metal cations yield sorbents with a strong affinity for many anions. In this paper, modification of zeolites (zeolite A, X and ZSM5) were performed by exchange of naturally occurring cations with lanthanum ion that forms low solubility arsenate salt. The exchanged zeolites were used to sorb arsenate from aqueous solution. Among parameters investigated were effect of pH, arsenate initial concentrations, contact time and temperature. The maximum exchanged capacity of La (III) ion was obtained when using solution with initial pH of 4. Zeolite X gives the highest La (III) exchanged capacity compared to other zeolites. The results showed that As (V) sorption by La-zeolites occurred at about pH 6.5 and increased as pH increased and reaching maximum at equilibrium pH about 7.8. On the other hand, almost no arsenate sorption occurred on un exchanged zeolites. This indicates that La (III) ion on the exchanged zeolites is taking part on the As(V) sorption via surface precipitation. The results also showed that the sorption capacities increased with increasing initial As (V) concentrations. The sorption followed Langmuir model with maximum sorption capacities of 0.41, 0.21 and 0.19 mmol/g at 25 degree Celsius for La exchanged zeolite X (La-ZX), La exchanged zeolite ZSM5 (La-ZSM) and La exchanged zeolite A (La-ZA), respectively. The amounts of sorption of As (V) by La exchanged zeolite increased as temperature increased from 25 to 70 degree Celsius indicating that the process is endothermic. The free energy changes ( ΔG degree) for the sorption at 25 degree Celsius were -10.25, -9.65 and -8.49 kJ/ mol for La-ZX, La-ZSM and La-ZA, respectively. The

  3. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  4. Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.; Goede, P.

    2014-01-01

    This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)

  5. A three-compartment model for micropollutants sorption in sludge: methodological approach and insights.

    Science.gov (United States)

    Barret, Maialen; Patureau, Dominique; Latrille, Eric; Carrère, Hélène

    2010-01-01

    In sludge resulting from wastewater treatment, organic micropollutants sorb to particles and to dissolved/colloidal matter (DCM). Both interactions may influence their physical and biological fate throughout the wastewater treatment processes. To our knowledge, sludge has never been considered as a three-compartment matrix, in which micropollutants coexist in three states: freely dissolved, sorbed-to-particles and sorbed-to-DCM. A methodology is proposed to concomitantly determine equilibrium constants of sorption to particles (K(part)) and to DCM (K(DCM)). Polycyclic Aromatic Hydrocarbons (PAHs) were chosen as model compounds for the experiments. The logarithm of estimated equilibrium constants ranged from 3.1 to 4.3 and their usual correlation to PAH hydrophobicity was verified. Moreover, PAH affinities for particles and for DCM could be compared. Affinity for particles was found to be stronger, probably due to their physical and chemical characteristics. This work provided a useful tool to assess the freely dissolved, sorbed-to-particles and sorbed-to-DCM concentrations of contaminants, which are necessary to accurately predict their fate. Besides, guidelines to investigate the link between sorption and the fundamental concept of bioavailability were proposed. (c) 2009 Elsevier Ltd. All rights reserved.

  6. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  7. Sorption properties of carbon nanostructures

    International Nuclear Information System (INIS)

    Eletskii, Aleksandr V

    2004-01-01

    The current status of research in sorption properties of carbon nanotubes (CNTs) is reviewed. The structural peculiarities of CNTs, determining their sorption characteristics, are considered. The mechanisms of sorption of gaseous and condensed substances by such structures are analyzed. Special attention is paid to the problem of using CNTs for storing hydrogen and other gaseous substances. Methods for filling CNTs with liquid materials, based on capillary phenomena and wetting the graphite surface of the CNT with liquids of various nature, are considered. Properties of 'peapods' formed as a result of filling single-walled CNTs with fullerene molecules are reviewed. Also considered are perspectives on the applied usage of the sorption properties of CNTs in electrochemical and fuel cells, and material storage devices, as well as for producing superminiature metallic conductors. (reviews of topical problems)

  8. Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research

    Science.gov (United States)

    Fried, Leanne; Mansfield, Caroline; Dobozy, Eva

    2015-01-01

    This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…

  9. Application of simplified desorption method to sorption study. (2) Sorption of neptunium (V) on montmorillonite-based mixtures

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko

    2013-01-01

    To elucidate the sorption behaviors of radionuclides in multi-mineral systems and the mutual effects of minerals on the sorption, this paper carried out the sorption and desorption experiments of neptunium(V) on montmorillonite-based two-mineral mixtures. The Np sorbed on montmorillonite at pH from 4 to 8 was desorbed with 1M KCl solutions, indicating that the sorption was cation exchange. The Np sorbed on apatite and calcite was nondesorbable with 1M KCl solutions, which is in harmony with the knowledge that Np forms strong complexes with the phosphate groups of apatite and the carbonate groups of calcite. This study utilized these clear distinguishes of the desorption behaviors for examining the two-mineral systems. In montmorillonite-apatite mixtures, the sorption on the montmorillonite was decreased and Np was accumulated on the apatite. In montmorillonite-calcite mixtures, the sorption on the montmorillonite was decreased due to the interference by the calcium and carbonate ions dissolved from calcite while no accumulation of Np to calcite was observed. (author)

  10. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  11. Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava Waste

    Directory of Open Access Journals (Sweden)

    Hui Deng

    2014-09-01

    Full Text Available Biochar (BC is a carbonaceous and porous product generated from the incomplete combustion of biomass and has been recognized as an efficient adsorbent. This study evaluated the ability of BC to sorb atrazine pesticide in tropical soil, and explored potential environmental values of BC on mitigating organic micro-pollutants. BC was produced from cassava waste via pyrolyzation under oxygen-limiting conditions at 350, 550, and 750 °C (MS350, MS550, and MS750, respectively. Three biochars were characterized and investigated as sorbents for the removal atrazine from tropical soil. BC pyrolyzed at higher temperatures more quickly reached equilibrium. The pseudo-second-order model perfectly simulated the sorption kinetics for atrazine with the coefficients R2 above 0.996, and the sorption amount at equilibrium (qe was 0.016 mg/g for MS350, 0.025 mg/g for MS550 and 0.050 mg/g for MS750. The isotherms of MS350 displayed relatively linear behavior, whereas the sorption of atrazine on MS550 and MS750 followed a nonlinear isotherm. The sorption data were well described by the Freundlich model with logKF of 0.476 for MS350, 0.771 for MS550, 1.865 for MS750. A thermodynamic study indicated that the sorption of atrazine in BC-added soil was a spontaneous and endothermic process and was primarily controlled by physisorption. In addition, lower pH was conducive to the sorption of atrazine in BC-added soil.

  12. Investigating the gas sorption mechanism in an rht -metal-organic framework through computational studies

    KAUST Repository

    Pham, Tony T.

    2014-01-09

    Grand canonical Monte Carlo (GCMC) simulations were performed to investigate CO2 and H2 sorption in an rht-metal-organic framework (MOF) that was synthesized with a ligand having a nitrogen-rich trigonal core through trisubstituted triazine groups and amine functional groups. This MOF was synthesized by two different groups, each reporting their own distinct gas sorption measurements and crystal structure. Electronic structure calculations demonstrated that the small differences in the atomic positions between each group\\'s crystal structure resulted in different electrostatic parameters about the Cu2+ ions for the respective unit cells. Simulations of CO2 sorption were performed with and without many-body polarization effects and using our recently developed CO2 potentials, in addition to a well-known bulk CO2 model, in both crystallographic unit cells. Simulated CO2 sorption isotherms and calculated isosteric heats of adsorption, Qst, values were in excellent agreement with the results reported previously by Eddaoudi et al. for both structures using the polarizable CO2 potential. For both crystal structures, the initial site for CO2 sorption were the Cu 2+ ions that had the higher positive charge in the unit cell, although the identity of this electropositive Cu2+ ion was different in each case. Simulations of H2 sorption were performed with three different hydrogen potentials of increasing anisotropy in both crystal structures and the results, especially with the highest fidelity model, agreed well with Eddaoudi et al.\\'s experimental data. The preferred site of H 2 sorption at low loading was between two Cu2+ ions of neighboring paddlewheels. The calculation of the normalized hydrogen dipole distribution for the polarizable model in both crystal structures aided in the identification of four distinct sorption sites in the MOF, which is consistent to what was observed in the experimental inelastic neutron scattering (INS) spectra. Lastly, while the

  13. Predictive models of circulating fluidized bed combustors: SO[sub 2] sorption in the CFB loop

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.; Therdthianwong, A. (Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering)

    1993-02-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Sorption of S0[sub 2] with calcined limestone was studied in a PYROFLOW type CFB loop at conditions approximating those found in a CFB combustor. Initially the CFB loop contained 150 micron CaO particles of a density of 3.3 g/cm[sup 3] and air at 1143[degrees]K and 3.25 atm. Atzero time, air containing 600 ppm SO[sub 2], was introduced into the riser bottom at 1143[degrees]K. The effect of gas velocity, sorbent inventory and inlet pressure on the sorption of SO[sub 2], were studied isothermally by running our hydrodynamic code with the S0[sub 2] sorption conservation of species equation. At a velocity of 5m/sec., reported to be a typical velocity by PYROPOWER, there is reasonably good S0[sub 2] removal. At 10 m/sec the S0[sub 2] removal is poor. The best SO[sub 2], removal is for a velocity of 5 m/s and a high bed inventory, initial bed height, H = 9m. Most of the S0[sub 2] is removed in the first two meters of the reactor. However, the S0[sub 2] removal is not complete at the bed outlet. This is due to mixing. At the left wall of the reactor (wall opposite the solids inlet) the S0[sub 2] removal was poor due to gas bypassing caused by the asymmetrical solids inlet. Simulation of the PYROPOWER loop with a symmetrical inlet gave us an order of magnitude improvement over the conventional PYROPOWER system. These results demonstrate the practical utility of the predictive model that we have developed over the last three years.

  14. Amide mediated enhancement of sorption efficiency of trivalent f-elements on functionalized carbon nanotube: evidence of physiosorption

    International Nuclear Information System (INIS)

    Gupta, Nishesh K.; Sengupta, Arijit; Rane, Vinayak G.; Kadam, R.M.

    2017-01-01

    Amide Functionalized multi-walled carbon nanotube (CNT-DHA) was found to enhance the sorption efficiency of trivalent lanthanides and actinides from aqueous acidic solution. Langmuir, Freundlich, Dubinin-Radushkevich (D-R) and Temkin isotherm models were employed to understand the sorption mechanism revealing the predominance of Fruendlich isotherm. The sorption energy evaluated from D-R isotherm revealed the sorption process is physisorption, which was confirmed by the no shift in the IR frequency of amide functionality of carbon nanotube on sorption. The EPR spectra of the Gd"3"+ sorbed on carbon nanotube also showed no perturbation on the local environment of Gd"3"+ on sorption again revealing the physisorption. Analysis of the sorption kinetics through Lagergren's first order kinetics, intra particle diffusion model and pseudo second order kinetics revealed that the sorption kinetics followed pseudo second order kinetics for Am"3"+ and Eu"3"+ with rate constants 4.04E-05mg g"-"1 min"-"1 and 8.27E-05 mg g"-"1 min"-"1 respectively. The radiolytic stability of CNT-DHA was evaluated and found to be satisfactory. EDTA was found to strip the trivalent lanthanides and actinides almost quantitatively. (author)

  15. Sorption of streptococcus faecium to glass

    International Nuclear Information System (INIS)

    Oerstavik, D.

    1977-01-01

    A method has been developed by which to study the sorption of Streptococcus faecium to soda-lime cover glasses. Conditions were chosen to minimize the influence on sorption of bacterial polymer production, passive sorption being studied rather than attachment mediated by metabolic activities. Sorption of S. faecium increased with increasing temperature (to 50degC), time, and cell concentration, but equilibrium apparently was not reached even after incubation for 8 hours or at a cell concentration of 3 x 10 10 per ml. Sorption increased with solute molarity up to 0.1 M concentration of NaCl and KCl, indicating an effect of the electrical double layers on the apposition of cells to the glass surface. Desorption of bacteria could be obtained after multiple washings of the glasses in buffer or by the action of Tween 80, but not if sorbed bacteria were left in distilled water, various salt solutions, urea, or in suspensions of unlabelled bacteria. It was concluded that sorption occurred as a result of chemical interactions between the glass and the cell surface. Tween 80 at a concentration of 1 per cent inhibited sorption to 26 per cent of buffer controls, 2 M urea was less effective, and 1 M NaCl was without effect. It is suggested that hydrophobic interactions may be of importance in the binding of S. faecium to glass. (author)

  16. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  17. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    International Nuclear Information System (INIS)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2010-11-01

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14 C, 129 I, 36 Cl, 94 Nb, 59 Ni, 93 Mo, 79 Se, 99 Tc, 230 Th, 90 Sr, 226 Ra, 135 Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites

  18. Conceptual and numerical modelling of radionuclide transport in near-surface systems at Forsmark. SR-Site Biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos21 Consulting S.L., Barcelona (Spain))

    2010-11-15

    In the framework of the SR-Site safety assessment, a conceptual and numerical modelling of radionuclide reactive transport in near-surface systems (including till and clay systems) at Forsmark has been carried out. The objective was to evaluate the retention capacity of the near-surface systems, composed of Quaternary deposits, which would be the last natural barrier for an eventual radionuclide release from the deep repository prior to reaching the biosphere. The studied radionuclides are 14C, 129I, 36Cl, 94Nb, 59Ni, 93Mo, 79Se, 99Tc, 230Th, 90Sr, 226Ra, 135Cs and U. Conceptual description and numerical simulations of radionuclide reactive transport show that cation exchange and surface complexation on illite are active processes for the retention of several radionuclides (U, Th, Ni, Cs, Sr, Ra). Surface complexation on iron hydroxide is an active process in the till system, able to effectively retain U and Ni. Another retention process of importance is the incorporation of the radionuclides into mineral phases, either by the precipitation of pure phases or solid solutions. Quantitative modelling has been useful to illustrate the incorporation of C and Sr in the carbonate solid solution in the considered model domains (till and clay), as well as the precipitation of uraninite in the clay sediments and the precipitation of native selenium and radiobarite in the till. Other mineral phases that could, a priori, retain U, Se, Nb and Tc do not precipitate in the simulations, either due to the pH-Eh conditions and/or because the dissolved concentration of the element is not high enough under the considered simulation conditions. It is important to keep in mind that changes in these parameters and in the boundary conditions could modify the predicted behaviour of these elements. The radionuclides that are most significantly retarded are Th, Ni and Cs, mainly through sorption onto illite. Therefore, if the amount of illite (or available sorption sites) decreases, the

  19. Nonlinear chemical sorption isotherms in the assessment of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Walker, J.R.; LeNeveu, D.M.

    1987-01-01

    Radionuclides emplaced in an underground disposal vault can possibly migrate from the vault, and through the geosphere, to enter Man's environment. Chemical sorption is a primary mechanism for retarding this migration. The effects of nonlinear chemical sorption isotherms on radionuclide transport are discussed. A method is given by which nonlinear isotherms can be approximated by the linear sorption isotherm used in the vault submodel. The relevance of nonlinear isotherms to transport in the geosphere is discussed, and it is shown that the linear isotherm model is conservative for deep geologic disposal. 22 refs

  20. Sorption of U(VI) species on hydroxyapatite

    International Nuclear Information System (INIS)

    Thakur, P.; Moore, R.C.; Choppin, G.R.

    2005-01-01

    The sorption of uranyl (UO 2 2+ ) cations to hydroxyapatite was studied as a function of the amount of sorbent, ionic strength, U(VI) concentration, pH and temperature. The rate of uranyl sorption on hydroxyapatite decreased with increased uranyl concentrations. The amount sorbed decreased with increased ionic strength and increased with pH to a maximum at 7-8. The sorption data for UO 2 2+ were fitted well by the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The anions Cl - , NO 3 - , SO 4 2- and CH 3 COO - decreased the sorption of uranium on hydroxyapatite while S 2 O 3 2- slightly increased it. The sorbed uranium was desorbed by 0.10 M and 1.00 M solutions of HCl and HNO 3 . The thermodynamic parameters for the sorption of UO 2 2+ were measured at temperatures of 298, 313, 323 and 333 K. The temperature dependence confirmed an endothermic heat of sorption. The activation energy for the sorption process was calculated to be +2.75±0.02 kJ/mol. (orig.)

  1. Modeling of radionuclide and heavy metal sorption around low and high pH waste disposal sites at Oak Ridge, Tennessee: Classification review package

    International Nuclear Information System (INIS)

    Saunders, J.A.

    1994-10-01

    Modeling of mineral precipitation and metal sorption reactions using MINTEQA2 and the iron oxyhydroxide diffuse-layer model has provided insights into geochemical processes governing contaminant migration from low-level radioactive waste disposal sites at the US Department of Energy's Oak Ridge National Laboratory and Y-12 Plant at Oak Ridge, Tennessee. Both acidic and basic nuclear-fuel reprocessing wastes, locally mixed with decontamination solvents, were disposed of in unlined trenches and lagoons. Model results show that as wastes move toward neutral pH due to reactions with surrounding soils and saprolite, mineral precipitation and sorption can limit the solubility of heavy metals and radionuclides. However, observed contaminant levels in monitoring wells indicate that at least locally, wastes are moving in faults and fractures and are not retarded by sorption reactions along such flow paths. Model results also support previous studies that have indicated organic complexing agents used in decontamination procedures can enhance radionuclide and heavy metal solubility when mixed with nuclear fuel reprocessing wastes. However, complex interactions between metal-organic complexes and mineral surfaces and natural organic matter, biodegradation, and fracture flow complicate the interpretation of contaminant mobility

  2. Isothermal, kinetic and thermodynamic studies on basic dye sorption ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... The isothermal data correlated with the Langmuir model better than the. Freundlich model. ... there were two intra-particle diffusion steps in the dye sorption processes. .... rated monolayer of sorbate molecule on the sorbent.

  3. A unifying conceptual model of entrepreneurial management

    DEFF Research Database (Denmark)

    Senderovitz, Martin

    This article offers a systematic analysis and synthesis of the area of entrepreneurial management. Through a presentation of two main perspectives on entrepreneurial management and a newly developed unifying conceptual entrepreneurial management model, the paper discusses a number of theoretical...

  4. Using Annotated Conceptual Models to Derive Information System Implementations

    Directory of Open Access Journals (Sweden)

    Anthony Berglas

    1994-05-01

    Full Text Available Producing production quality information systems from conceptual descriptions is a time consuming process that employs many of the world's programmers. Although most of this programming is fairly routine, the process has not been amenable to simple automation because conceptual models do not provide sufficient parameters to make all the implementation decisions that are required, and numerous special cases arise in practice. Most commercial CASE tools address these problems by essentially implementing a waterfall model in which the development proceeds from analysis through design, layout and coding phases in a partially automated manner, but the analyst/programmer must heavily edit each intermediate stage. This paper demonstrates that by recognising the nature of information systems, it is possible to specify applications completely using a conceptual model that has een annotated with additional parameters that guide automated implementation. More importantly, it will be argued that a manageable number of annotations are sufficient to implement realistic applications, and techniques will be described that enabled the author's commercial CASE tool, the Intelligent Develope to automated implementation without requiring complex theorem proving technology.

  5. Menthor Editor: An Ontology-Driven Conceptual Modeling Platform

    NARCIS (Netherlands)

    Moreira, João Luiz; Sales, Tiago Prince; Guerson, John; Braga, Bernardo F.B; Brasileiro, Freddy; Sobral, Vinicius

    2016-01-01

    The lack of well-founded constructs in ontology tools can lead to the construction of non-intended models. In this demonstration we present the Menthor Editor, an ontology-driven conceptual modelling platform which incorporates the theories of the Unified Foundational Ontology (UFO). We illustrate

  6. SORPTION OF Au(III BY Saccharomyces cerevisiae BIOMASS

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2010-07-01

    Full Text Available Au(III sorption by S. cerevisiae biomass extracted from beer waste industry was investigated. Experimentally, the sorption was conducted in batch method. This research involved five steps: 1 identification the functional groups present in the S. cerevisiae biomass by infrared spectroscopic technique, 2 determination of optimum pH, 3 determination of the sorption capacity and energy, 4 determination of the sorption type by conducting desorption of sorbed Au(III using specific eluents having different desorption capacity such as H2O (van der Waals, KNO3 (ion exchange, HNO3 (hydrogen bond, and tiourea (coordination bond, 5 determination of effective eluents in Au(III desorption by partial desorption of sorbed Au(III using thiourea, NaCN and KI. The remaining Au(III concentrations in filtrate were analyzed using Atomic Absorption Spectrophotometer. The results showed that: 1 Functional groups of S. cerevisiae biomass that involved in the sorption processes were hydroxyl (-OH, carboxylate (-COO- and amine (-NH2, 2 maximum sorption was occurred at pH 4, equal to 98.19% of total sorption, 3 The sorption capacity of biomass was 133.33 mg/g (6.7682E-04 mol/g and was involved sorption energy 23.03 kJ mol-1, 4 Sorption type was dominated by coordination bond, 5 NaCN was effective eluent to strip Au(III close to 100%.   Keywords: sorption, desorption, S. cerevisiae biomass, Au(III

  7. Modelling in Primary School: Constructing Conceptual Models and Making Sense of Fractions

    Science.gov (United States)

    Shahbari, Juhaina Awawdeh; Peled, Irit

    2017-01-01

    This article describes sixth-grade students' engagement in two model-eliciting activities offering students the opportunity to construct mathematical models. The findings show that students utilized their knowledge of fractions including conceptual and procedural knowledge in constructing mathematical models for the given situations. Some students…

  8. Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing 100085 (China); Parker, Jack C. [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brooks, Scott C.; Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6038 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States); Gu, Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6038 (United States)

    2010-06-15

    This study investigates uranium and technetium sorption onto aluminum and iron hydroxides during titration of acidic groundwater. The contaminated groundwater exhibits oxic conditions with high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U, Tc, and various metal cations. More than 90% of U and Tc was removed from the aqueous phase as Al and Fe precipitated above pH 5.5, but was partially resolublized at higher pH values. An equilibrium hydrolysis and precipitation reaction model adequately described variations in aqueous concentrations of metal cations. An anion exchange reaction model was incorporated to simulate sulfate, U and Tc sorption onto variably charged (pH-dependent) Al and Fe hydroxides. Modeling results indicate that competitive sorption/desorption on mixed mineral phases needs to be considered to adequately predict U and Tc mobility. The model could be useful for future studies of the speciation of U, Tc and co-existing ions during pre- and post-groundwater treatment practices.

  9. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV.

    Science.gov (United States)

    Czech, Bożena; Oleszczuk, Patryk

    2016-04-01

    The application of oxidation processes such as UV and/or H2O2 will change the physicochemical properties of carbon nanotubes (CNT). It may affect the sorption affinity of CNT to different contaminants and then affect their fate in the environment. In the present study the adsorption of two very common used pharmaceuticals (diclofenac and naproxen) onto CNT treated by UV, H2O2 or UV/H2O2 was investigated. Four different adsorption models (Freundlich, Langmuir, Temkin, Dubinin-Radushkevich) were tested. The best fitting of experimental data was observed for Freundlich or Langmuir model. The significant relationships between Q calculated from Langmuir model with O% and dispersity were observed. Kinetics of diclofenac and naproxen followed mainly pseudo-second order indicating for chemisorption limiting step of adsorption. The data showed that the mechanism of sorption was physical or chemical depending on the type of CNT modification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon

    Science.gov (United States)

    Fona, Z.; Habibah, U.

    2018-04-01

    Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.

  11. Sorption of radon-222 to natural sediments

    International Nuclear Information System (INIS)

    Wong, C.S.; Chin, Y.P.; Gschwend, P.M.

    1992-01-01

    The sorption of radon to sediments was investigated, since this may affect the use of porewater radon profiles for estimating bed irrigation rates. Batch experiments showed that radon has an organic-carbon-normalized sediment-water partition coefficient (K oc , L kg oc -1 ) of 21.1 ± 2.9 for a Boston Harbor sediment, 25.3 ± 2.1 for a Charles River sediment, and 22.4 ± 2.6 for a Buzzards Bay sediment. These values are in close agreement with predictions using radon's octanol-water partition coefficient (K ow ), which was measured to be 32.4 ± 1.5. Temperature and ionic strength effects on K oc were estimated to be small. Given rapid sorption kinetics, the authors suggest that slurry stripping techniques used by many investigators to measure 222 Rn in sediment samples collect both sorbed and dissolved radon. Sorption effects were included in a transport model to obtain revised estimates of irrigation rates from existing literature profiles. Irrigation rates had to be increased over previously reported values in proportion to the sediment organic matter content

  12. Conceptual Commitments of the LIDA Model of Cognition

    Science.gov (United States)

    Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard

    2013-06-01

    Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

  13. Conceptual models for cumulative risk assessment.

    Science.gov (United States)

    Linder, Stephen H; Sexton, Ken

    2011-12-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive "family" of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects.

  14. Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Pelin; Inan, Suleyman, E-mail: suleyman.inan@ege.edu.tr; Altas, Yuksel

    2014-04-01

    Highlights: • We model Sr{sup 2+} and UO{sub 2}{sup 2+} sorption onto Zr-Sb oxide/PAN composite. • Central composite design was separately employed for Sr{sup 2+} and UO{sub 2}{sup 2+} sorption. • The model F values indicate that both models are statistically significant. • All of the single factors were determined as significant for the sorption of Sr{sup 2+} and UO{sub 2}{sup 2+}. • Zr-Sb oxide/PAN can be used effectively for Sr{sup 2+} and UO{sub 2}{sup 2+} removal from acidic solutions. - Abstract: A study on the sorption of strontium (Sr{sup 2+}) and uranium (UO{sub 2}{sup 2+}) onto zirconium-antimony oxide/PAN (Zr-Sb oxide/PAN) composite was conducted. The zirconium-antimony oxide was synthesized and was then turned into composite spheres by mixing it with polyacrylonitrile (PAN). The single and combined effects of independent variables such as initial pH, temperature, initial ion concentration and contact time on the sorption of Sr{sup 2+} and UO{sub 2}{sup 2+} were separately analyzed using response surface methodology (RSM). Central composite design (CCD) was separately employed for Sr{sup 2+} and UO{sub 2}{sup 2+} sorption. Analysis of variance (ANOVA) revealed that all of the single effects found statistically significant on the sorption of Sr{sup 2+} and UO{sub 2}{sup 2+}. Probability F-values (F = 2.45 × 10{sup −08} and F = 9.63 × 10{sup −12} for Sr{sup 2+} and UO{sub 2}{sup 2+}, respectively) and correlation coefficients (R{sup 2} = 0.96 for Sr{sup 2+} and R{sup 2} = 0.98 for UO{sub 2}{sup 2+}) indicate that both models fit the experimental data well. At optimum sorption conditions Sr{sup 2+} and UO{sub 2}{sup 2+} sorption capacities of the composite were found as 39.78 and 60.66 mg/g, respectively. Sorption isotherm data pointed out that Langmuir model is more suitable for the Sr{sup 2+} sorption, whereas the sorption of UO{sub 2}{sup 2+} was correlated well with the Langmuir and Freundlich models. Thermodynamic parameters such as

  15. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.

    Science.gov (United States)

    Hossain, G S M; McLaughlan, R G

    2012-09-01

    Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.

  16. Model Based Control of Moisture Sorption in a Historical Interior

    Directory of Open Access Journals (Sweden)

    P. Zítek

    2005-01-01

    Full Text Available This paper deals with a novel scheme for microclimate control in historical exhibition rooms, inhibiting moisture sorption phenomena that are inadmissible from the preventive conservation point of view. The impact of air humidity is the most significant harmful exposure for a great deal of the cultural heritage deposited in remote historical buildings. Leaving the interior temperature to run almost its spontaneous yearly cycle, the proposed non-linear model-based control protects exhibits from harmful variations in moisture content by compensating the temperature drifts with an adequate adjustment of the air humidity. Already implemented in a medieval interior since 1999, the proposed microclimate control has proved capable of permanently maintaining constant a desirable moisture content in organic or porous materials in the interior of a building. 

  17. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    Science.gov (United States)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  18. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.

    Science.gov (United States)

    Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M

    2016-11-01

    To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.

  20. Limitations of sorption isotherms on modeling groundwater contaminant transport

    International Nuclear Information System (INIS)

    Silva, Eduardo Figueira da

    2007-01-01

    Design and safety assessment of radioactive waste repositories, as well as remediation of radionuclide contaminated groundwater require the development of models capable of accurately predicting trace element fate and transport. Adsorption of trace radionuclides onto soils and groundwater is an important mechanism controlling near- and far- field transport. Although surface complexation models (SCMs) can better describe the adsorption mechanisms of most radionuclides onto mineral surfaces by directly accounting for variability of system properties and mineral surface properties, isotherms are still used to model contaminant transport in groundwater, despite the much higher system dependence. The present work investigates differences between transport model results based on these two approaches for adsorption modeling. A finite element transport model is used for the isotherm model, whereas the computer program PHREEQC is used for the SCM approach. Both models are calibrated for a batch experiment, and one-dimensional transport is simulated using the calibrated parameters. At the lower injected concentrations there are large discrepancies between SCM and isotherm transport predictions, with the SCM presenting much longer tails on the breakthrough curves. Isotherms may also provide non-conservative results for time to breakthrough and for maximum concentration in a contamination plume. Isotherm models are shown not to be robust enough to predict transport behavior of some trace elements, thus discouraging their use. The results also illustrate the promise of the SCM modeling approach in safety assessment and environmental remediation applications, also suggesting that independent batch sorption measurements can be used, within the framework of the SCM, to produce a more versatile and realistic groundwater transport model for radionuclides which is capable of accounting more accurately for temporal and spatial variations in geochemical conditions. (author)

  1. Effect of glutamic acid on copper sorption onto kaolinite. Batch experiments and surface complexation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, Lotfallah; Barthen, Robert; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactive Transport; Stockmann, Madlen [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    In this work, we study the mobility behavior of Cu(II) under conditions related to an alternative, neutrophile biohydrometallurgical Cu(II) leaching approach. Sorption of copper onto kaolinite influenced by glutamic acid (Glu) was investigated in the presence of 0.01 M NaClO{sub 4} by means of binary and ternary batch adsorption measurements over a pH range of 4 to 9 and surface complexation modeling.

  2. Effect of glutamic acid on copper sorption onto kaolinite. Batch experiments and surface complexation modeling

    International Nuclear Information System (INIS)

    Karimzadeh, Lotfallah; Barthen, Robert; Gruendig, Marion; Franke, Karsten; Lippmann-Pipke, Johanna; Stockmann, Madlen

    2017-01-01

    In this work, we study the mobility behavior of Cu(II) under conditions related to an alternative, neutrophile biohydrometallurgical Cu(II) leaching approach. Sorption of copper onto kaolinite influenced by glutamic acid (Glu) was investigated in the presence of 0.01 M NaClO_4 by means of binary and ternary batch adsorption measurements over a pH range of 4 to 9 and surface complexation modeling.

  3. Parametric study of the sorption of Cs(I) and Sr(II) on mixture of bentonite and magnetite using SCM + IEXM

    International Nuclear Information System (INIS)

    Filipska, H.; Stamberg, K.

    2005-01-01

    Full text of publication follows: The behaviour and subsequent fate of released radionuclides in bentonite barrier surrounding the degraded canister is influenced mainly by sorption. We studied sorption processes in such system experimentally and we modelled and simulated them using surface-complexation (SCM) and ion exchange (IExM) models. Our experimental system consisted of: (1) synthetic granitic water with a given ionic strength (0.1 or 0.01 NaNO 3 ), (2) radionuclides studied (10 -6 mol/l CsCl or SrCl 2 .6H 2 O spiked with 137 Cs or 85 Sr), (3) bentonite pre-treated with the aim to remove carbonates, and magnetite as a representative of corrosion products of steel canister. The alkali-metric and acidimetric titrations under exclusion of CO 2 and the percentage of sorption as a function of pH under oxic conditions at room temperature for bentonite, magnetite and their mixtures under different conditions were determined. The resulting data were modelled and appropriate mathematical description was found: SCM non-electrostatic so called Chemical Model (CEM) for the description of sorption on edge sites and ion exchange model (IExM) for sorption on layer sites. Component Additivity Approach (CA) composed of weighted combination of models describing sorption on bentonite and magnetite was verified. In the course of evaluation procedures, the protonation constants, total concentrations of edge sites and layer sites, cation exchange constants and sorption constants for present Cs and Sr forms were obtained by fitting corresponding experimental data. Consequently, CEM+IExM models and the calculated model parameters were used for predictive (simulation) calculations and parametric study of the sorption of Cs(I) and Sr(II) on bentonite, magnetite and their mixtures. The parametric study covered the influence of pH, solid to liquid ratio, bentonite to magnetite ratio, initial concentrations of Cs and Sr, pCO 2 and ionic strength on the values of selectivity coefficients

  4. Isotherms and isosteric heat of sorption of two varieties of Peruvian quinoa

    OpenAIRE

    Pumacahua-Ramos, Augusto; Gomez Vieira, José Antonio; Telis- Romero, Javier; Villa-Vélez, Harvey Alexander; Lopes Filho, Jose Francisco

    2016-01-01

    The isosteric heats of sorption of two varieties of quinoa (Chenopodium quinoa Willd.) grain were determined by the static gravimetric method at four temperatures (40, 50, 60 and 70 °C) and in relative humidity environments provided by six saturated salt solutions. Six mathematical equations were used to model the experimental data:  GAB, Oswin, Henderson, Peleg, Smith and Halsey. The isosteric heat of sorption was determined using the parameters of the GAB model. All the equations were shown...

  5. Kinetics and reversibility of micropollutant sorption in sludge.

    Science.gov (United States)

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  6. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  7. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  8. Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models

    Science.gov (United States)

    Delgado, Cesar

    2015-04-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic

  9. The influence of Fe(II) competition on the sorption and migration of Ni(II) in MX-80 bentonite

    International Nuclear Information System (INIS)

    Pfingsten, Wilfried; Bradbury, Mike; Baeyens, Bart

    2011-01-01

    Highlights: → We model the diffusion of Ni(II) through bentonite using different sorption models. → We examine sorption competition of Fe(II) and Ni(II) at different concentrations. → Ni(II) breakthrough is 15 times earlier with Fe(II) sorption competition. → Ni(II) sorption is non-linear and depends on the Fe(II) concentration levels. → Sorption competition is important and has to be modelled by reactive transport codes. - Abstract: The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 x 10 -5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II) EQBM ) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II) EQBM level of 10 -7 M without Fe(II) competition, the reactive transport calculations using a constant K d approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II) EQBM (10 -5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant K d approach. When sorption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the

  10. A Conceptual Framework of Business Model Emerging Resilience

    OpenAIRE

    Goumagias, Nik; Fernandes, Kiran; Cabras, Ignazio; Li, Feng; Shao, Jianhao; Devlin, Sam; Hodge, Victoria Jane; Cowling, Peter Ivan; Kudenko, Daniel

    2016-01-01

    In this paper we introduce an environmentally driven conceptual framework of Business Model change. Business models acquired substantial momentum in academic literature during the past decade. Several studies focused on what exactly constitutes a Business Model (role model, recipe, architecture etc.) triggering a theoretical debate about the Business Model’s components and their corresponding dynamics and relationships. In this paper, we argue that for Business Models as cognitive structures,...

  11. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  12. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.

    Science.gov (United States)

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.

  13. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    Directory of Open Access Journals (Sweden)

    Yinghong Wu

    2014-01-01

    Full Text Available Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%, organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP, and humic acid (HA on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (Kdapp of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene Kdapp while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents.

  14. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  15. Binary Component Sorption of Cadmium, and Copper Ions onto Yangtze River Sediments with Different Particle Sizes

    Directory of Open Access Journals (Sweden)

    Jianxin Fan

    2017-11-01

    Full Text Available Sorption is a crucial process that influences immobilization and migration of heavy metals in an aqueous environment. Sediments represent one of the ultimate sinks for heavy metals discharged into water body. Moreover, the particle size of sediments plays an extremely important role in the immobilization of heavy metals. In this study, the sorption and desorption of cadmium (Cd and copper (Cu onto sediments with different particle sizes were investigated to predict the rate and capacity of sorption, to understand their environmental behaviors in an aqueous environment. Batch sorption and kinetic experiments were conducted to obtain the retained amount and rate of Cd and Cu in a binary system. Experimental data were simulated using sorption models to ascertain the sorption capacity and the kinetic rate. Results of European Communities Bureau of Reference (BCR sequential extraction showed the highest concentration of Cd (0.344 mg kg−1, and its distribution varied with sediment particle size and site. Furthermore, most of Cu (approximately 57% to 84% existed as a residual fraction. The sorption of Cu onto six sediments followed a pseudo-first order reaction, whereas that of Cd followed a pseudo-second order reaction. Additionally, the competitive Langmuir model fitted the batch sorption experimental data extremely well. The highest sorption capacities of Cd and Cu reach 0.641 mmol kg−1 and 62.3 mmol kg−1, respectively, on the smallest submerged sediment particles. The amounts of Cu and Cd desorbed (mmol kg−1 increased linearly with the initial concentration increasing. Thus, sediment texture is an important factor that influences the sorption of heavy metal onto sediments.

  16. [Impact of small-area context on health: proposing a conceptual model].

    Science.gov (United States)

    Voigtländer, S; Mielck, A; Razum, O

    2012-11-01

    Recent empirical studies stress the impact of features related to the small-area context on individual health. However, so far there exists no standard explanatory model that integrates the different kinds of such features and that conceptualises their relation to individual characteristics of social inequality. A review of theoretical publications on the relationship between social position and health as well as existing conceptual models for the impact of features related to the small-area context on health was undertaken. In the present article we propose a conceptual model for the health impact of the small-area context. This model conceptualises the location of residence as one dimension of social inequality that affects health through the resources as well as stressors which are inherent in the small-area context. The proposed conceptual model offers an orientation for future empirical studies and can serve as a basis for further discussions concerning the health relevance of the small-area context. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effects of oil dispersant on solubilization, sorption and desorption of polycyclic aromatic hydrocarbons in sediment–seawater systems

    International Nuclear Information System (INIS)

    Zhao, Xiao; Gong, Yanyan; O’Reilly, S.E.; Zhao, Dongye

    2015-01-01

    Highlights: • Oil dispersant enhances solubilization of PAHs more effectively than surfactants. • Dispersant and dispersed oil enhance sediment sorption of PAHs and induce hysteresis. • Partitioning to sediment-sorbed dispersant is the mechanism for enhanced PAH uptake. • Dual-mode models well simulate dispersant-facilitated sorption of PAHs on sediment. • Deepwater conditions reduce solubilization of PAHs and lessen dispersant effects. - Abstract: This work investigated effects of a prototype oil dispersant on solubilization, sorption and desorption of three model PAHs in sediment–seawater systems. Increasing dispersant dosage linearly enhanced solubility for all PAHs. Conversely, the dispersant enhanced the sediment uptake of the PAHs, and induced significant desorption hysteresis. Such contrasting effects (adsolubilization vs. solubilization) of dispersant were found dependent of the dispersant concentration and PAH hydrophobicity. The dual-mode models adequately simulated the sorption kinetics and isotherms, and quantified dispersant-enhanced PAH uptake. Sorption of naphthalene and 1-methylnaphthalene by sediment positively correlated with uptake of the dispersant, while sorption of pyrene dropped sharply when the dispersant exceeded its critical micelle concentration (CMC). The deepwater conditions diminished the dispersant effects on solubilization, but enhanced uptake of the PAHs, albeit sorption of the dispersant was lowered. The information may aid in understanding roles of dispersants on distribution, fate and transport of petroleum PAHs in marine systems

  18. Sorption of a branched nonylphenol isomer and perfluorooctanoic acid on geosorbents and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengliang

    2011-10-13

    As metabolites of organic surfactants, both nonylphenol (NP) and perfluorooctanoic acid (PFOA) are toxic and ubiquitous in the environment. Their sorption on soils and sediments is of importance for their fate and transport in the environment. Especially in China, there is still a lack of consolidated knowledge on the sorption behavior of NP and PFOA on geosorbents such as Yangtze River sediments. Thus, the present thesis investigates the sorption of a branched NP isomer [4-(1-ethyl-1, 3-dimethylpentyl) phenol] (NP111) and PFOA on Yangtze River sediments and their model components, i.e. a clay mineral (illite), metal oxides (goethite and {delta}-Al{sub 2}O{sub 3}) and organic matter (isolated from Yangtze River sediments and commercial organic matter) by both batch and dialysis techniques. NP111 is the most environmentally relevant NP isomer and its fate in the environment is unknown. Because PFOA is weakly adsorbed on geosorbents, multi-walled carbon nanotubes (MWCNTs) were studied as promising adsorbents. One of the MWCNTs studied contained traces of metal catalyst on the outer surface. Sorption isotherms of NP111 and PFOA on the sediments and their model components were fitted well by the Freundlich model. Sorption of NP111 on the sediments depended largely on their organic carbon content, resulting in organic carbon-normalized sorption coefficient (K{sub OC}) values between 6.3 x 10{sup 3} and 1.1 x 10{sup 4} L kg{sup -1}. The sorption of NP111 on {delta}-Al{sub 2}O{sub 3} and illite was comparable to that on sediments, but significantly lower than that on goethite. In contrast, the sorption of PFOA on the sediments was significantly lower. The affinity of PFOA to goethite and {delta}-Al{sub 2}O{sub 3} was slightly higher than to the sediments, but it was negligible to natural organic matter and illite. The results suggest that the organic carbon content of the sediments plays a dominant role in the sorption of NP111, whereas goethite acts as a potential sink

  19. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  20. MARKET ENTRY STRATEGIES TO EMERGING MARKETS: A CONCEPTUAL MODEL OF TURNKEY PROJECT DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Bistra Vassileva

    2016-11-01

    Full Text Available The main purpose of the paper is to analyse the international market entry strategies in the light of globalisation processes and to propose a conceptual model of turnkey projects as market entry mode. The specific research objectives are as follows: 1. to develop an integrated framework of the turnkey marketing process as a conceptual model; 2. to analyse BRICS countries as potential host countries for turnkey projects implementation; 3. to assess potential implications of proposed conceptual model for global market entry decisions.

  1. Conceptual Model of Climate Change Impacts at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  2. Sorption of Lead (Pb from Aqueous Solutions by Sepiolite and Bentonite Modified with Chitosan Biopolymers: Isotherms and Kinetics

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rafiei

    2016-07-01

    Full Text Available In this study, sepiolite and bentonite clay minerals were modified with a natural chitosan biopolymer and the modified-clays were characterized using XRF, XRD, FTIR, SEM, and TOC analyses. The isothermal and kinetic parameters of lead (Pb sorption by both the minerals and the modified-minerals were determined in a batch mode under various conditions such as different contact times and initial concentrations of Pb. It was found that the Freundlich model described well the isotherm experimental data of Pb sorption by the sorbents. Modification with chitosan, however, decreased the Pb adsorption capacity of sepiolite from 83 to 27 mg g-1 and that of bentonite from 56 to 29 mg g-1. Kinetic results showed that more than 24 hours was required for Pb sorption by the natural clays to reach equilibrium, while the equilibrium time reduced to 16 and 4 hours for Pb sorption on chitosan-sepiolite and chitosan–bentonite, respectively. The pseudo-second-order model well described the time-dependent Pb sorption data by sepiolite, chitosan-sepiolite, and chitosan-bentonite, suggesting that chemical sorption is the rate-limiting step of Pb adsorption mechanism. The Pb sorption data by bentonite showed the best fit with Elovich model.

  3. Simultaneous sorption and catalytic oxidation of trivalent antimony by Canna indica derived biochars.

    Science.gov (United States)

    Cui, Xiaoqiang; Ni, Qijun; Lin, Qiang; Khan, Kiran Yasmin; Li, Tingqiang; Khan, Muhammad Bilal; He, Zhenli; Yang, Xiaoe

    2017-10-01

    The simultaneous sorption and oxidation of Sb(III) on biochars were investigated using batch experiments. The biochars were derived from Canna indica at different pyrolysis temperatures (300-600 °C, referred as CIB300-CIB600), and characterized by FTIR, BET, XRD, SEM-EDS, EPR and Boehm titration. The Sb(III) sorption data could be well fitted by both the Langmuir and Freundlich models, and the pseudo-second order model is best for describing the kinetic data. The maximum Sb(III) sorption capacity of CIB300 was 16.1 mg g -1 , which was greater than that of other biochars. Inner-sphere complexation with oxygen-containing functional groups and coordination with π electrons are the possible sorption mechanisms. It is worthwhile to note that 4.7-32.3% of Sb(III) was oxidized to Sb(V) after sorption equilibration, demonstrating the occurrence of Sb(III) oxidation during the sorption process. Further study of oxidation under anoxic condition confirmed the catalytic role of biochar for Sb(III) oxidation, and free radicals in biochars were crucial for electron transfer. CIB400 exhibited the highest catalytic oxidative ability for Sb(III), which could be ascribe to its reserve of more electroactive polyphenolic macromolecule and less electroinactive cellulose. These results imply that biochars have good potential as a green effective sorbent for remediation of Sb(III) contaminated water, and simultaneously reduce the toxicity of Sb(III) by catalytic oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Conceptual models in man-machine design verification

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1985-01-01

    The need for systematic methods for evaluation of design concepts for new man-machine systems has been rapidly increasing in consequence of the introduction of modern information technology. Direct empirical methods are difficult to apply when functions during rare conditions and support of operator decisions during emergencies are to be evaluated. In this paper, the problems of analytical evaluations based on conceptual models of the man-machine interaction are discussed, and the relations to system design and analytical risk assessment are considered. Finally, a conceptual framework for analytical evaluation is proposed, including several domains of description: 1. The problem space, in the form of a means-end hierarchy; 2. The structure of the decision process; 3. The mental strategies and heuristics used by operators; 4. The levels of cognitive control and the mechanisms related to human errors. Finally, the need for models representing operators' subjective criteria for choosing among available mental strategies and for accepting advice from intelligent interfaces is discussed

  5. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  6. An Empirical Review of the Connection Between Model Viewer Characteristics and the Comprehension of Conceptual Process Models

    NARCIS (Netherlands)

    Mendling, Jan; Recker, Jan; Reijers, Hajo A.; Leopold, Henrik

    2018-01-01

    Understanding conceptual models of business domains is a key skill for practitioners tasked with systems analysis and design. Research in this field predominantly uses experiments with specific user proxy cohorts to examine factors that explain how well different types of conceptual models can be

  7. Sorption of copper, zinc and cobalt by oat and oat products.

    Science.gov (United States)

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  8. Motivation to Improve Work through Learning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Kueh Hua Ng

    2014-12-01

    Full Text Available This study aims to enhance our current understanding of the transfer of training by proposing a conceptual model that supports the mediating role of motivation to improve work through learning about the relationship between social support and the transfer of training. The examination of motivation to improve work through motivation to improve work through a learning construct offers a holistic view pertaining to a learner's profile in a workplace setting, which emphasizes learning for the improvement of work performance. The proposed conceptual model is expected to benefit human resource development theory building, as well as field practitioners by emphasizing the motivational aspects crucial for successful transfer of training.

  9. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  10. Investigation of solution chemistry effects on sorption behavior of radionuclide 64Cu(II) on illite

    International Nuclear Information System (INIS)

    Shitong Yang; Guodong Sheng; Zhiqiang Guo; Yubing Sun; Donglin Zhao

    2011-01-01

    In this work, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances and temperature on the sorption behavior of illite towards 64 Cu(II). The results indicated that 64 Cu(II) sorption on illite achieved equilibrium quickly. The pH- and ionic strength-dependent sorption suggested that 64 Cu(II) sorption on illite was dominated by ion exchange or outer-sphere surface complexation at pH 7. A positive effect of humic substances on 64 Cu(II) sorption was found at pH 6.5. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 64 Cu(II) at three different temperatures of 293, 313, and 333 K. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) of 64 Cu(II) sorption on illite were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption of 64 Cu(II) on illite was endothermic and spontaneous. From the experimental results, it is possible to conclude that illite has good potentialities for cost-effective treatments of 64 Cu(II)-contaminated wastewaters. (author)

  11. Models of sorption and migration of radionuclides in geologic media

    International Nuclear Information System (INIS)

    Fukui, Masami

    1987-01-01

    Full understanding of the transportation of nuclides by groundwater is essential in designing an underground radioactive waste disposal site. What is the most important is to clarify in detail the process of sorption of nuclides by rock and soil. This report outlines various theories and experimental data that are currently available. In addition, studies made in various countries are reviewed and some problems are pointed out. First, a review is made of studies that deal with adsorption and behaviors of contaminants in natural barriers (rock, soil). Next, migration models that have been developed in studying migration processes in the field of chemical engineering or behaviors of agricultural chemicals in the field of soil physics are examined to see if they can be applied to investigations of the migration of radioactive contaminants in a porous medium. Finally, a review is made of basic underground migration models that are used in various countries in studying deep underground disposal of long-life radionuclides. Some laboratory experiments on TRU nuclides in rock are also outlined. (Nogami, K.)

  12. Sorption of Cs, Eu and U(VI) onto rock samples from Nizhnekansky massive

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, V.; Vlasova, I.; Kalmykov, S. [Lomonosov Moscow State University (Russian Federation); Kuzmenkova, N. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Science (Russian Federation); Petrov, V.; Poluektov, V. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences - IGEM RAS (Russian Federation)

    2014-07-01

    The accepted in Russia concept for high level wastes (HLW) and spent nuclear fuel (SNF) disposal is based on their isolation into the deep underground crystalline rock formations. The 'Eniseysky' area (Nizhnekansky massive) is supposed as the most perspective location for the future HLW and SNF repository. Core materials from different areas of Nizhnekasnsky massive have been studied in terms of petrographic and mineralogical characterization; definition of filtration, elastic, petro-physical and strength properties; estimation of hydrothermal-metasomatic transformation of rocks. We used both undisturbed sliced cores and crushed material for the sorption experiments. Preliminary results of uranium sorption show some significant differences between used rock samples from different depth in sorption rate and pH-dependence. In all cases maximum sorption (more than 90%) is reached in 2-3 weeks. The pH-dependence of sorbed uranium fraction has typical hump-shape: increase of sorption percentage with increasing pH values to 6, plateau (90-98 % of uranium sorbed), decrease of sorption percentage with increasing pH values from 8 due to U(VI) hydrolysis. In the case of cesium the sorption maximum is reached within 10-12 days and in the case of europium - about 5 days. All radionuclides sorbed preferentially onto dark minerals. Local distribution and preferential sorption of cesium, europium and uranium (VI) onto different minerals within the sample were studied by radiography, SEM-EDX, etc. These data accompanying with rock sample composition will allow the development of quantitative model for Cs, Eu and U(VI) sorption onto investigated rocks. Document available in abstract form only. (authors)

  13. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  14. A Conceptual Culture Model for Design Science Research

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2016-03-01

    Full Text Available The aim of design science research (DSR in information systems is the user-centred creation of IT-artifacts with regard to specific social environments. For culture research in the field, which is necessary for a proper localization of IT-artifacts, models and research approaches from social sciences usually are adopted. Descriptive dimension-based culture models most commonly are applied for this purpose, which assume culture being a national phenomenon and tend to reduce it to basic values. Such models are useful for investigations in behavioural culture research because it aims to isolate, describe and explain culture-specific attitudes and characteristics within a selected society. In contrast, with the necessity to deduce concrete decisions for artifact-design, research results from DSR need to go beyond this aim. As hypothesis, this contribution generally questions the applicability of such generic culture dimensions’ models for DSR and focuses on their theoretical foundation, which goes back to Hofstede’s conceptual Onion Model of Culture. The herein applied literature-based analysis confirms the hypothesis. Consequently, an alternative conceptual culture model is being introduced and discussed as theoretical foundation for culture research in DSR.

  15. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  16. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1992-01-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  17. Equilibrium and kinetic studies of Pb(II, Cd(II and Zn(II sorption by Lagenaria vulgaris shell

    Directory of Open Access Journals (Sweden)

    Mitić-Stojanović Dragana-Linda

    2012-01-01

    Full Text Available The sorption of lead, cadmium and zinc ions from aqueous solution by Lagenaria vulgaris shell biosorbent (LVB in batch system was investigated. The effect of relevant parameters such as contact time, biosorbent dosage and initial metal ions concentration was evaluated. The Pb(II, Cd(II and Zn(II sorption equilibrium (when 98% of initial metal ions were sorbed was attained within 15, 20 and 25 min, respectively. The pseudo first, pseudo-second order, Chrastil’s and intra-particle diffusion models were used to describe the kinetic data. The experimental data fitted the pseudo-second order kinetic model and intra-particle diffusion model. Removal efficiency of lead(II, cadmium(II and zinc(II ions rapidly increased with increasing biosorbent dose from 0.5 to 8.0 g dm-3. Optimal biosorbent dose was set to 4.0 g dm-3. An increase in the initial metal concentration increases the sorption capacity. The sorption data of investigated metal ions are fitted to Langmuir, Freundlich and Temkin isotherm models. Langmuir model best fitted the equilibrium data (r2 > 0.99. Maximal sorption capacities of LVB for Pb(II, Cd(II and Zn(II at 25.0±0.5°C were 0.130, 0.103 and 0.098 mM g-1, respectively. The desorption experiments showed that the LVB could be reused for six cycles with a minimum loss of the initial sorption capacity.

  18. The one-dimensional transport code CHET2, taking into account nonlinear, element-specific equilibrium sorption

    International Nuclear Information System (INIS)

    Luehrmann, L.; Noseck, U.

    1996-03-01

    While the verification report on CHET1 primarily focused on aspects such as the correctness of algorithms with respect to the modeling of advection, dispersion and diffusion, the report in hand is intended to primarily deal with nonlinear sorption and numerical sorption modeling. Another aspect discussed is the correct treatment of decay within established radioactive decay chains. First, the physical fundamentals are explained of the processes determining the radionuclide transport in the cap rock, and hence are the basis of the program discussed. The numeric algorithms the CHET2 code is based are explained, showing the details of realisation and the function of the various defaults and corrections. The iterative coupling of transport and sorption computation is illustrated by means of a program flowchart. Furthermore, the actvities for verification of the program are explained, as well as qualitative effects of computations assuming concentration-dependent sorption. The computation of the decay within decay chains is verified, and application programming using nonlinear sorption isotherms as well as the entire process of transport calculations with CHET2 are shown. (orig./DG) [de

  19. Sorption of organic gases in residential bedrooms andbathrooms

    Energy Technology Data Exchange (ETDEWEB)

    Singer, B.C.; Hodgson, A.T.; Hotchi, T.; Ming, K.Y.; Sextro,R.G.; Wood, E.E.; Brown, N.J.

    2005-01-05

    Experiments were conducted to characterize organic gas sorption in residential bedrooms (n=4), bathrooms (n=2), and a furnished test chamber. Rooms were studied ''as-is'' with material surfaces and furnishings unaltered. Surface materials were characterized and areas quantified. Experiments included rapid volatilization of a volatile organic compound (VOC) mixture with the room closed and sealed for a 5-h Adsorb phase, followed by 30-min Flush and 2-h closed-room Desorb phases. The mixture included n-alkanes, aromatics, glycol ethers, 2-ethyl-1-hexanol, dichlorobenzene, and organophosphorus compounds. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at one surface sink and one potential embedded sink. The 2-parameter sink model tracked measurements for most compounds, but improved fits were obtained for some VOCs with a 3-parameter sink-diffusion or a 4-parameter two-sink model. Sorptive partitioning and initial adsorption rates increased with decreasing vapor pressure within each chemical class.

  20. Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres.

    Science.gov (United States)

    Alix, S; Colasse, L; Morvan, C; Lebrun, L; Marais, S

    2014-02-15

    The tensile properties of flax fibres might permit them to be used in composites as reinforcement in organic resin, as long as their mechanical properties are reproducible and their water sorption are reduced. In this study, to minimise the variability of mechanical properties, several samples of flax fibres were blended as a non-woven fabric. In order to reduce the water absorption of this non-woven technical fibres, an autoclave treatment was performed which was expected to remove the pectins and then to reduce the water sorption on their negative charges. The impact of autoclave pressure (0.5, 1 and 2 bars) on water sorption was investigated by using a gravimetric static equilibrium method. The Park model based on the three sorption modes: Langmuir, Henry's law and clustering, was successfully used to simulate the experimental sorption data. The lowest pressure treatments impacted only the Langmuir contribution while the 2 bar autoclave-treatment positively impacted the water resistance in the core of fibres by reducing Henry's absorption rate. This was shown to be related to the chemical modifications at the surface and in the core of fibres. A schematic model is presented relating the water sorption and the pectic composition of the fabric. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.

    Science.gov (United States)

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Conceptual basis for developing of trainig models in complex ...

    African Journals Online (AJOL)

    This paper presents conceptual basis for developing of training models of interactive assembling system for automatic building of application software systems, ... software generation, such as: program module compatibility, formalization of computer interaction and choosing of formal model for human machine interface.

  3. Sorption of uranyl species on zircon and zirconia

    International Nuclear Information System (INIS)

    Lomenech, C.; Drot, R.; Simoni, E.; Ehrhardt, J.J.; Mielczarski, J.

    2002-01-01

    The safety of a long-term storage of radioactive waste in deep geological repositories would be strongly affected by the migration properties of radionuclides through the different barriers to the surface of the earth. Since the main process involved in the retention of radioactive ions is their sorption at the water/ mineral interface, a quantitative description of the sorption reactions is needed. Macroscopic data have for a long time been the only source of information used to propose a modelling of sorption equilibria, although they bring no direct information on the nature of the sorbed species; a microscopic structural investigation of the surface complexes is difficult indeed, because of the small amount of matter sorbed. Thus, in this study, parallel to the macroscopic measurements, different complementary spectroscopic techniques have been used in order to determine the nature of the surface species. As the final purpose of such a study is the simulation of the experimental retention data, the precise structural identification of the sorption equilibria will then be very useful to constrain the data simulation code. In this work, we present the results of both macroscopic and microscopic studies of the sorption of uranyl species on zircon and zirconia. The first part of our macroscopic approach was the surface characterisation of the non-sorbed materials by the determination of the specific areas, of the pH of the isoelectric points, and of the sorption site numbers, while the second part aimed at obtaining the sorption isotherms (percentage of sorption versus pH), which was performed using alpha spectrometry, for different uranyl concentrations, media (NaClO 4 or KNO 3 ) and ionic strengths. The spectroscopic identification of the different surface complexes and sorption sites has been carried out using four different spectroscopies. Whereas tune-resolved laser spectro-fluorimetry gave a direct answer concerning the number of surface species (only for a

  4. Iodine sorption by microwave irradiated hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, S.P. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico); Instituto Politecnico Nacional, ESIQIE, C.P. 07738, Mexico, D.F. (Mexico); Fetter, G. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico)]. E-mail: geolarfetter@yahoo.com.mx; Bosch, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, C.P. 04510, Mexico, D.F. (Mexico); Bulbulian, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801, Mexico, D.F. (Mexico)

    2006-12-15

    Mg-Al hydrotalcite-like compounds (HT) were prepared by the microwave method on the one hand with ethoxide-acetylacetonate and on the other with acetylacetonate as precursors. They presented a maximum sorption capacity of 2.179 and 1.517 meq of {sup 131}I{sup -}/g of hydrotalcite respectively. When the hydrotalcites were calcined and rehydrated in a {sup 131}I{sup -} solution, iodine sorption decreased in both samples to 1.515 and 1.446, respectively. The corresponding value for nitrated hydrotalcite which was prepared by the conventional method for comparison purposes, was 0.570. The radionuclide content in hydrotalcites was determined by {gamma}-spectrometry. {sup 131}I{sup -} sorption is dependent on two main parameters: one is the type of the interlayer organic material and the second the surface area. It was found that hydrotalcites prepared with ethoxide-acetylacetonate were better sorbents for {sup 131}I{sup -} than those with acetylacetonate. Still, if the specific surface area increased, {sup 131}I{sup -}sorption increased as well; nitrated HT resulted in low specific surface area and a low sorption capacity. It is, therefore, concluded that organic residues present in the samples prepared by the microwave method favor the sorption of radioactive anions, in particular {sup 131}I{sup -} if compared with nitrated and/or carbonate interlayered hydrotalcites.

  5. Dynamic design of gas sorption J-T refrigerator

    International Nuclear Information System (INIS)

    Chan, C.K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts and is desirable for longterm sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance

  6. Dynamic design of gas sorption J-T refrigerator

    Science.gov (United States)

    Chan, C. K.

    1986-01-01

    A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.

  7. Applicability of microautoradiography to sorption studies

    International Nuclear Information System (INIS)

    Thompson, J.L.; Wolfsberg, K.

    1979-01-01

    The technique of microautoradiography was applied to the study of the sorption of uranium and americium on five rock types which exist at the Nevada Test Site. It was found that autoradiograms could be prepared in a few days which would allow the specific minerals responsible for sorption to be identified. Furthermore, the state of aggregation of the sorbed species was clearly indicated. It was concluded that microautoradiography was a useful adjunct to currently used methods for studying sorption of certain radionuclides

  8. Development of Web-based Software for Sorption Database

    International Nuclear Information System (INIS)

    Han, Byoung Sub; Lee, Jae Min; Seo, Min Seok; Kim, Dong Keon

    2009-08-01

    Sorption studies of radionuclides are important parts of research on radioactive waste disposal which is commonly faced in most countries where nuclear programs (power production, a variety of peaceful applications, and research) are implemented. The Sorption Database (DB) plays a very important role in the safety assessment of the radioactive waste disposal. The Sorption DB which is opened externally can be used as reference material of establishing a national policy by improving and changing the pre-developed Sorption program to be web-based. From the industrial point of view, if the Sorption DB is opened to the outside, the safety-related confidence can be achieved for nuclear industry. As the information of Sorption DB is opened, not only credibility can be provided to the administration, local governments and nearby residents, but also input of the collected information can be achieved by online. In addition, the reference material and external awareness/reliability about the domestic level of the Sorption DB management system and the current state can be achieved internationally. In order to provide the information of Sorption DB to users in more efficient way, the analysis and complement of management and search capability for the existing Sorption DB program have been performed and web-based management system has been built to provide services to users. In addition, by applying statistical techniques, it has been designed and implemented to display the accuracy and error of the information

  9. Elements of a flexible approach for conceptual hydrological modeling : 1. Motivation and theoretical development

    NARCIS (Netherlands)

    Fenicia, F.; Kavetski, D.; Savenije, H.H.G.

    2011-01-01

    This paper introduces a flexible framework for conceptual hydrological modeling, with two related objectives: (1) generalize and systematize the currently fragmented field of conceptual models and (2) provide a robust platform for understanding and modeling hydrological systems. In contrast to

  10. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  11. Artificial Weathering of Biotite and Uranium Sorption Characteristics

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon; Lee, Jae Kwang

    2009-01-01

    An experiment for uranium sorption onto fresh and weathered biotites was performed. After centrifugation, concentrations of uranium in the supernatants were analyzed using ICP-MS, and biotite samples were investigated using XRD and SEM. With powdered biotites (<3 mm in size), we have conducted uranium sorption experiments about fresh and weathered biotites to obtain uranium sorption amounts in various pH conditions. The uranium sorption was not high at a low pH (e.g., pH 3), but increased with increasing pH. There were lower uranium sorption by the weathered biotites than by the fresh ones, and the difference was much larger at higher pH (e.g., pH 11). The lower sorption values of uranium by the weathered biotites may be caused by a change of mineral surfaces and a chemical behavior of surrounding dissolved elements. It seems that the uranium-mineral interaction has been diminished, especially, in the weathered biotite by a destruction and dissolution of preferential sorption sites on the mineral surfaces and by the colloidal formation from dissolved elements.

  12. Field-scale predictions of soil contaminant sorption using visible–near infrared spectroscopy

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Hermansen, Cecilie; Knadel, Maria

    2016-01-01

    . By means of the vis–NIR spectra we were able to predict phenanthrene (R2 = 0.95, RMSECV = 31 L kg−1) and glyphosate (R2 = 0.79, RMSECV = 45 L kg−1) sorption capacities. A model using vis–NIR spectra plus pH values improved the prediction of glyphosate sorption capacity (R2 = 0.88, RMSECV = 34 L kg−1......) and glyphosate (sorbed on mineral fractions). Forty-five bulk soil samples were collected from an agricultural field in Estrup, Denmark, in a 15 m × 15 m grid. Samples were air-dried, sieved to 2 mm and analysed for selected soil properties. Sorption coefficients were obtained from a batch equilibration...

  13. Incorporating classic adsorption isotherms into modern surface complexation models: implications for sorption of radionuclides

    International Nuclear Information System (INIS)

    Kulik, D.A.

    2005-01-01

    Full text of publication follows: Computer-aided surface complexation models (SCM) tend to replace the classic adsorption isotherm (AI) analysis in describing mineral-water interface reactions such as radionuclide sorption onto (hydr) oxides and clays. Any site-binding SCM based on the mole balance of surface sites, in fact, reproduces the (competitive) Langmuir isotherm, optionally amended with electrostatic Coulomb's non-ideal term. In most SCM implementations, it is difficult to incorporate real-surface phenomena (site heterogeneity, lateral interactions, surface condensation) described in classic AI approaches other than Langmuir's. Thermodynamic relations between SCMs and AIs that remained obscure in the past have been recently clarified using new definitions of standard and reference states of surface species [1,2]. On this basis, a method for separating the Langmuir AI into ideal (linear) and non-ideal parts [2] was applied to multi-dentate Langmuir, Frumkin, and BET isotherms. The aim of this work was to obtain the surface activity coefficient terms that make the SCM site mole balance constraints obsolete and, in this way, extend thermodynamic SCMs to cover sorption phenomena described by the respective AIs. The multi-dentate Langmuir term accounts for the site saturation with n-dentate surface species, as illustrated on modeling bi-dentate U VI complexes on goethite or SiO 2 surfaces. The Frumkin term corrects for the lateral interactions of the mono-dentate surface species; in particular, it has the same form as the Coulombic term of the constant-capacitance EDL combined with the Langmuir term. The BET term (three parameters) accounts for more than a monolayer adsorption up to the surface condensation; it can potentially describe the surface precipitation of nickel and other cations on hydroxides and clay minerals. All three non-ideal terms (in GEM SCMs implementation [1,2]) by now are used for non-competing surface species only. Upon 'surface dilution

  14. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils

    International Nuclear Information System (INIS)

    Sastre, J.; Rauret, G.; Vidal, M.

    2006-01-01

    We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K d ) were determined in 0.02 eq l -1 CaCl 2 and in a solution that simulated the soil solution cationic composition. The K d values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K d values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K d versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl 2 medium in soils with a markedly different soil solution composition. - Sorption solution composition modifies metal sorption-desorption pattern in soils

  15. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1991-10-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes

  16. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    Science.gov (United States)

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one

  17. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Directory of Open Access Journals (Sweden)

    Oskar Modin

    Full Text Available New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC per g volatile suspend solids (VSS for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  18. Sorption of fluoride using chemically modified Moringa oleifera leaves

    Science.gov (United States)

    Dan, Shabnam; Chattree, Amit

    2018-05-01

    Contamination of drinking water due to fluoride is a severe health hazard problem. Excess of fluoride (> 1.5 mg/L) in drinking water is harmful to human health. Various treatment technologies for removing fluoride from groundwater have been investigated. The present study showed that the leaves of Moringa oleifera, a herbal plant is an effective adsorbent for the removal of fluoride from aqueous solution. Acid treated Moringa oleifera leaves powder showed good adsorption capacity than alkali treated Moringa oleifera leaves powder. Batch sorptive defluoridation was conducted under the variable experimental condition such as pH, contact time, adsorbent dose and initial fluoride ion concentration. Maximum defluoridation was achieved at pH 1. The percentage of fluoride removal increases with adsorbent dose. The equilibrium sorption data were fitted into Langmuir, Freundlich and Temkin isotherms. Of the three adsorption isotherms, the R 2 value of Langmuir isotherm model was the highest. The maximum monolayer coverage ( Q max) from Langmuir isotherm model was determined to be 1.1441 mg/g, the separation factor indicating a favorable sorption experiment is 0.035. It was also discovered that the adsorption did not conform to the Freundlich adsorption isotherm. The heat of sorption process was estimated from Temkin Isotherm model to be - 0.042 J/mol which vividly proved that the adsorption experiment followed a physical process.

  19. Analysis of three sets of SWIW tracer test data using a two-population complex fracture model for matrix diffusion and sorption

    International Nuclear Information System (INIS)

    Doughty, Christine; Chin-Fu Tsang

    2009-03-01

    This study has been undertaken to obtain a better understanding of the processes underlying retention of radionuclides in fractured rock by using different model conceptualisations when interpreting SWIW tests. In particular the aim is to infer the diffusion and sorption parameters from the SWIW test data by matching tracer breakthrough curves (BTC) with a complex fracture model. The model employs two populations for diffusion and sorption. One population represents the semi-infinite rock matrix and the other represents finite blocks that can become saturated, thereafter accepting no further diffusion or sorption. For the non-sorbing tracer uranine, both the finite and the semi-infinite populations play a distinct role in controlling BTC. For the sorbing tracers Cs and Rb the finite population does not saturate, but acts essentially semi-infinite, thus the BTC behaviour is comparable to that obtained for a model containing only a semi-infinite rock matrix. The ability to match BTC for both sorbing and non-sorbing tracers for these three different SWIW data sets demonstrates that the two-population complex fracture model may be useful to analyze SWIW tracer test data in general. One of the two populations should be the semi-infinite rock matrix and the other finite blocks that can saturate. The latter can represent either rock blocks within the fracture, a fracture skin zone or stagnation zones. Three representative SWIW tracer tests recently conducted by SKB have been analyzed with a complex fracture model employing two populations for diffusion and sorption, one population being the semi-infinite rock matrix and the other, finite blocks. The results show that by adjusting diffusion and sorption parameters of the model, a good match with field data is obtained for BTC of both conservative and non-conservative tracers simultaneously. For non-sorbing tracer uranine, both the finite and the semi-infinite populations play a distinct role in controlling BTC. At early

  20. Characterization of the sorption of uranium(VI) on different complexing resins

    Energy Technology Data Exchange (ETDEWEB)

    Pesavento, Maria; Biesuz, Raffaela; Alberti, Giancarla; Sturini, Michela [Dipartimento di Chimica Generale dell' Universita degli Studi di Pavia, Via Taramelli 12, 27100, Pavia (Italy)

    2003-08-01

    The sorption of uranium(VI) on two cationic resins containing different complexing groups, the iminodiacetic resin Chelex 100 and the weak carboxylic resin Amberlite CG-50, was investigated. The Gibbs-Donnan model was used to describe and to predict the sorption through the determination of the intrinsic complexation constants. These quantities, even though non-thermodynamic, characterize the sorption as being independent of experimental conditions. The sorption mechanism of the metal on the complexing resins was also studied by adding a competitive soluble ligand that shifts the sorption curves to higher pH values. The ligand competes with the resin for the complexation with the metal ion. Uranium is also strongly sorbed on Chelex 100 at very acid pH, through formation of two complexes in the resin phase: ML with log{beta}{sub 110i}=-1.16, in more acidic solution, and ML{sub 2}with log {beta}{sub 120i}=-5.72. Only the presence of the competitive ligand in solution makes the determination of the second complex possible. Also on Amberlite CG-50 the sorption is strong and involves the formation of the complex ML {sub 2}, in more acidic solution, with log {beta}{sub 120i}=-3.16. In the presence of the ligand EDTA, the complex ML {sub 2}(OH) {sub 2}was characterized with log {beta}{sub 12-2i}=-5.15. In all the experiments the hydrolysis reaction in the aqueous phase was quantitatively considered. (orig.)

  1. Characterization of the sorption of uranium(VI) on different complexing resins

    International Nuclear Information System (INIS)

    Pesavento, Maria; Biesuz, Raffaela; Alberti, Giancarla; Sturini, Michela

    2003-01-01

    The sorption of uranium(VI) on two cationic resins containing different complexing groups, the iminodiacetic resin Chelex 100 and the weak carboxylic resin Amberlite CG-50, was investigated. The Gibbs-Donnan model was used to describe and to predict the sorption through the determination of the intrinsic complexation constants. These quantities, even though non-thermodynamic, characterize the sorption as being independent of experimental conditions. The sorption mechanism of the metal on the complexing resins was also studied by adding a competitive soluble ligand that shifts the sorption curves to higher pH values. The ligand competes with the resin for the complexation with the metal ion. Uranium is also strongly sorbed on Chelex 100 at very acid pH, through formation of two complexes in the resin phase: ML with logβ 110i =-1.16, in more acidic solution, and ML 2 with log β 120i =-5.72. Only the presence of the competitive ligand in solution makes the determination of the second complex possible. Also on Amberlite CG-50 the sorption is strong and involves the formation of the complex ML 2 , in more acidic solution, with log β 120i =-3.16. In the presence of the ligand EDTA, the complex ML 2 (OH) 2 was characterized with log β 12-2i =-5.15. In all the experiments the hydrolysis reaction in the aqueous phase was quantitatively considered. (orig.)

  2. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-11-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 m g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great as those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  3. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-07-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 ml g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great at those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland Cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  4. Organizational intellectual capital and the role of the nurse manager: A proposed conceptual model.

    Science.gov (United States)

    Gilbert, Jason H; Von Ah, Diane; Broome, Marion E

    Nurse managers must leverage both the human capital and social capital of the teams they lead in order to produce quality outcomes. Little is known about the relationship between human capital and social capital and how these concepts may work together to produce organizational outcomes through leadership of nurses. The purpose of this article was to explore the concepts of human capital and social capital as they relate to nursing leadership in health care organizations. Specific aims included (a) to synthesize the literature related to human capital and social capital in leadership, (b) to refine the conceptual definitions of human capital and social capital with associated conceptual antecedents and consequences, and (c) to propose a synthesized conceptual model guiding further empirical research of social capital and human capital in nursing leadership. A systematic integrative review of leadership literature using criteria informed by Whittemore and Knafl (2005) was completed. CINAHL Plus with Full Text, Academic Search Premier, Business Source Premier, Health Business FullTEXT, MEDLINE, and PsychINFO databases were searched for the years 1995 to 2016 using terms "human capital," "social capital," and "management." Analysis of conceptual definitions, theoretical and conceptual models, antecedents and consequences, propositions or hypotheses, and empirical support for 37 articles fitting review criteria resulted in the synthesis of the proposed Gilbert Conceptual Model of Organizational Intellectual Capital. The Gilbert Conceptual Model of Organizational Intellectual Capital advances the propositions of human capital theory and social capital theory and is the first model to conceptualize the direct and moderating effects that nurse leaders have on the human capital and social capital of the teams they lead. This model provides a framework for further empirical study and may have implications for practice, organizational policy, and education related to nursing

  5. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Michelle H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaplan, Daniel I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions. this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.

  6. Strontium sorption on Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1984-12-01

    A laboratory study of strontium-85 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that strontium sorption is most strongly a function of pH. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence strontium sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect. Ferrous ion, added to groundwater to simulate the conditions of water at the bottom of waste trenches, did not account for low strontium sorption observed with some trench waters

  7. Study of the radium sorption/desorption on goethite

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Mallet, C.; Lefebvre, C.; Ferreux, J.-M.

    2000-01-01

    The oxi-hydroxides, present at trace level in uranium mill tailings, are responsible of about 70% of the 226 radium sorption, half being fixed on crystallized forms. This radionuclide (half time=1622y), present at high level (50 to 100kBq.kg -1 ), can be released in groundwater, involving a possible contamination of the food chain (actual concentration limit=0.37Bq.1 -1 ). So, it is very important to point out the mechanisms of the radium sorption/desorption on crystallized oxi-hydroxides as a function of chemical conditions of the system. The radium sorption on synthetic goethite α-FeOOH has been studied as a function of contact time, initial radium activity, pH, sodium and calcium concentrations. The results show that, after one hour of contact time (necessary to reach equilibrium), the radium sorption increases widely in a pH range 6-7. The increase of Na + concentration is without influence on the radium sorption, indicating the low interactions between sodium and surface sites. At the opposite, the presence of calcium in solution decreases widely the radium sorption, that indicates a competition between calcium and radium for the same kind of sorption sites of the oxi-hydroxide surface. The percentage of radium desorbed increases widely with time, from 1 to 120h and becomes constant at a time higher than 120h. This long equilibrium time for desorption in comparison with sorption one can be explain by a local evolution of the sorption sites of the solid, which become less accessible for the solution in contact. (author)

  8. [Self-Determination in Medical Rehabilitation - Development of a Conceptual Model for Further Theoretical Discussion].

    Science.gov (United States)

    Senin, Tatjana; Meyer, Thorsten

    2018-01-22

    Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Technologies for conceptual modelling and intelligent query formulation

    CSIR Research Space (South Africa)

    Alberts, R

    2008-11-01

    Full Text Available The aim of the project is to devise and evaluate algorithms, methodologies, techniques and interaction paradigms to build a tool for conceptual modelling and query management of complex data repositories based on a framework with solid formal...

  10. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    Science.gov (United States)

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-valuesoil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  12. Sorption isolation of strontium from seawater

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Zheleznov, V.V.; Kaplun, E.V.; Sokol'nitskaya, T.A.; Yukhkam, A.A.

    2001-01-01

    Sorption isolation of strontium from seawater is considered and prospects of use of selective adsorbents for purification of seawater or liquid radioactive wastes mixed with seawater from 90 Sr are discussed. Comparative analysis of sorptive properties of adsorbents of different nature is done. It is shown that sorption-reagent materials developed by authors can to afford effective separation of 90 Sr from seawater. Possible mechanism of strontium sorption by these adsorbents is considered. The prospect of their use for purification of liquid radioactive wastes from strontium is shown [ru

  13. Effects of nitrate, fulvate, phosphate, phthalate, salicylate and catechol on the sorption of uranyl onto SiO2. A comparative study

    International Nuclear Information System (INIS)

    Zhang Hongxia; Wen Chuanxi; Tao Zuyi; Wu Wangsuo

    2011-01-01

    We have performed a large number of batch sorption experiments of uranyl onto SiO 2 and examined the effects of nitrate or ionic strength, phosphate, fulvic acid(FA), phthalic acid (PH), salicylic acid (SA), and catechol (CA) on the uranyl sorption onto SiO 2 . Three sorption edges and three sorption isotherms at ionic strengths 0.05, 0.1, and 0.5 mol/L KNO 3 were used to investigate the effect of ionic strength or nitrate on the sorption and the Langmuir, Freundlich, and Dubinin-Radushkevich models are used to simulate the sorption isotherms, respectively. Five sorption edges in the presence of phosphate, FA, PH, SA, and CA were compared with that in the absence of complexing ligand. The results suggest that the effect of complexation of uranyl with nitrate on the uranyl sorption can be negligible and the sorption can be described Freundlich and D-R model very well. The positive effect of phosphate on the uranyl sorption was found, though the extent of effect was decreased with increasing pH. The positive effect and the negative effect of FA on the uranyl sorption were found at low pH and high pH ranges, respectively. The sorption edge of uranyl sorption remained unaffected in the presence of PH in the pH 2-10. In the presence of SA, the no effect and the negative effect on the uranyl sorption were, respectively, found at low pH and high pH ranges. The negative effect of CA on the uranyl sorption was found in the pH 2-10. (author)

  14. Conceptual models of microseismicity induced by fluid injection

    Science.gov (United States)

    Baro Urbea, J.; Lord-May, C.; Eaton, D. W. S.; Joern, D.

    2017-12-01

    Variations in the pore pressure due to fluid invasion are accountable for microseismic activity recorded in geothermal systems and during hydraulic fracturing operations. To capture this phenomenon on a conceptual level, invasion percolation models have been suggested to represent the flow network of fluids within a porous media and seismic activity is typically considered to be directly related to the expansion of the percolated area. Although such models reproduce scale-free frequency-magnitude distributions, the associated b-values of the Gutenberg-Richter relation do not align with observed data. Here, we propose an alternative conceptual invasion percolation model that decouples the fluid propagation from the microseismic events. Instead of a uniform pressure, the pressure is modeled to decay along the distance from the injection site. Wet fracture events are simulated with a stochastic spring block model exhibiting stick-slip dynamics as a result of the variations of the pore pressure. We show that the statistics of the stick-slip events are scale-free, but now the b-values depend on the level of heterogeneity in the local static friction coefficients. Thus, this model is able to reproduce the wide spectrum of b-values observed in field catalogs associated with fluid induced microseismicity. Moreover, the spatial distribution of microseismic events is also consistent with observations.

  15. Sorption of Uranium(VI and Thorium(IV by Jordanian Bentonite

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2013-01-01

    Full Text Available Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature, and column techniques at 25.0∘C and . The highest rate of metal ions uptake was observed after 18 h of shaking, and the uptake has increased with increasing pH and reached a maximum at . Bentonite has shown high metal ion uptake capacity toward uranium(VI than thorium(IV. Sorption data were evaluated according to the pseudo- second-order reaction kinetic. Sorption isotherms were studied at temperatures 25.0∘C, 35.0∘C, and 45.0∘C. The Langmuir, Freundlich, and Dubinin-Radushkevich (D-R sorption models equations were applied and the proper constants were derived. It was found that the sorption process is enthalpy driven for uranium(VI and thorium(IV. Recovery of uranium(VI and thorium(IV ions after sorption was carried out by treatment of the loaded bentonite with different concentrations of HNO3 1.0 M, 0.5 M, 0.1 M, and 0.01 M. The best percent recovery for uranium(VI and thorium(IV was obtained when 1.0 M HNO3 was used.

  16. A Conceptual Model to Identify Intent to Use Chemical-Biological Weapons

    Directory of Open Access Journals (Sweden)

    Mary Zalesny

    2017-10-01

    Full Text Available This paper describes a conceptual model to identify and interrelate indicators of intent of non-state actors to use chemical or biological weapons. The model expands on earlier efforts to understand intent to use weapons of mass destruction by building upon well-researched theories of intent and behavior and focusing on a sub-set of weapons of mass destruction (WMD to account for the distinct challenges of employing different types of WMD in violent acts. The conceptual model is presented as a first, critical step in developing a computational model for assessing the potential for groups to use chemical or biological weapons.

  17. Imidacloprid sorption and transport in cropland, grass buffer and riparian buffer soils

    Science.gov (United States)

    Satkowski, Laura E.; Goyne, Keith W.; Anderson, Stephen H.; Lerch, Robert N.; Allen, Craig R.; Snow, Daniel D.

    2018-01-01

    An understanding of neonicotinoid sorption and transport in soil is critical for determining and mitigating environmental risk associated with the most widely used class of insecticides. The objective of this study was to evaluate mobility and transport of the neonicotinoid imidacloprid (ICD) in soils collected from cropland, grass vegetative buffer strip (VBS), and riparian VBS soils. Soils were collected at six randomly chosen sites within grids that encompassed all three land uses. Single-point equilibrium batch sorption experiments were conducted using radio-labeled (14C) ICD to determine solid–solution partition coefficients (Kd). Column experiments were conducted using soils collected from the three vegetation treatments at one site by packing soil into glass columns. Water flow was characterized by applying Br− as a nonreactive tracer. A single pulse of 14C-ICD was then applied, and ICD leaching was monitored for up to 45 d. Bromide and ICD breakthrough curves for each column were simulated using CXTFIT and HYDRUS-1D models. Sorption results indicated that ICD sorbs more strongly to riparian VBS (Kd = 22.6 L kg−1) than crop (Kd = 11.3 L kg−1) soils. Soil organic C was the strongest predictor of ICD sorption (p < 0.0001). The column transport study found mean peak concentrations of ICD at 5.83, 10.84, and 23.8 pore volumes for crop, grass VBS, and riparian VBS soils, respectively. HYDRUS-1D results indicated that the two-site, one-rate linear reversible model best described results of the breakthrough curves, indicating the complexity of ICD sorption and demonstrating its mobility in soil. Greater sorption and longer retention by the grass and riparian VBS soils than the cropland soil suggests that VBS may be a viable means to mitigate ICD loss from agroecosystems, thereby preventing ICD transport into surface water, groundwater, or drinking water resources.

  18. Sorption studies of radioelements on geological materials

    International Nuclear Information System (INIS)

    Berry, John A.; Yui, Mikazu; Kitamura, Akira

    2007-11-01

    Batch sorption experiments have been carried out to study the sorption of uranium, technetium, curium, neptunium, actinium, protactinium, polonium, americium and plutonium onto bentonite, granodiorite and tuff. Mathematical modelling using the HARPHRQ program and the HATCHES database was carried out to predict the speciation of uranium and technetium in the equilibrated seawater, and neptunium, americium and plutonium in the rock equilibrated water. Review of the literature for thermodynamic data for curium, actinium, protactinium and polonium was carried out. Where sufficient data were available, predictions of the speciation and solubility were made. This report is a summary report of the experimental work conducted by AEA Technology during April 1991-March 1998, and the main results have been presented at Material Research Society Symposium Proceedings and published as proceedings of them. (author)

  19. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  20. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica)

    International Nuclear Information System (INIS)

    Lahsasni, S.; Kouhila, M.; Mahrouz, M.

    2004-01-01

    The equilibrium moisture contents were determined for prickly pear fruit using the gravimetric static method at t=30, 40 and 50 deg. C over a range of relative humidities from 0.05 to 0.9. The sorption curves of prickly pear fruit decreased with increase in temperature at constant relative humidity. The hysteresis effect was observed. The GAB, modified Halsey, modified Chung-Pfost, modified Oswin and modified Henderson models were tested to fit the experimental data. The GAB model was found to be the most suitable for describing the sorption curves. The monolayer moisture content values for the sorption at different temperatures are calculated using a modified BET equation. The isosteric heats of desorption and adsorption of water were determined from the equilibrium data at different temperatures

  1. Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Kouhila, M. E-mail: kouhila@hotmail.com; Mahrouz, M

    2004-01-01

    The equilibrium moisture contents were determined for prickly pear fruit using the gravimetric static method at t=30, 40 and 50 deg. C over a range of relative humidities from 0.05 to 0.9. The sorption curves of prickly pear fruit decreased with increase in temperature at constant relative humidity. The hysteresis effect was observed. The GAB, modified Halsey, modified Chung-Pfost, modified Oswin and modified Henderson models were tested to fit the experimental data. The GAB model was found to be the most suitable for describing the sorption curves. The monolayer moisture content values for the sorption at different temperatures are calculated using a modified BET equation. The isosteric heats of desorption and adsorption of water were determined from the equilibrium data at different temperatures.

  2. Sorption studies of uranium in sediment-groundwater systems from the natural analogue sites of Needle's Eye and Broubster

    International Nuclear Information System (INIS)

    Higgo, J.J.; Falck, W.E.; Hooker, P.J.

    1990-01-01

    This report describes the results of sorption experiments designed to provide essential data for migration modelling. Sorption of 233 U from natural ground-water onto peat from Broubster and silt from Needle's Eye was studied under atmospheric conditions and different pH regimes. The temperature was maintained at 10 0 C and, in the case of Needle's Eye silt, the kinetics of sorption were followed. The results were analyzed in conjunction with speciation modelling in an attempt to understand the sorption mechanisms and to extrapolate the findings to cover the range of conditions likely to be met in the field. This work is part of the CEC project Mirage - Second phase, research area 'Natural analogues'

  3. Sorption of strontium on bentonites from Slovak deposits

    International Nuclear Information System (INIS)

    Kufcakova, J.; Galambos, M.; Rajc, P.

    2005-01-01

    Sorption on bentonite from different Slovak deposits / Jelsovy potok, Kopernica and Lieskove has been investigated under various experimental conditions, such as contact time, pH, sorbate concentrations, presence of complementary cation. The sorption of strontium from aqueous solutions was investigated using a radiometric determination of distribution coefficient, Kd. The individual solutions were labelled with radiotracer. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites /tab.l/ , which can be explained by the increase of specific surface and change of solubility of the irradiated samples of bentonite. The presence of complementary cations, Na + , K + , NH 4 + , Ca 2+ , Mg 2+ and Ba 2+ depresses the sorption of Sr on bentonite. In the case of bentonite Kopernica the effectiveness in reducing the sorption of strontium by cations followed the order K + 4 + + 2+ 2+ 2+ . Results indicate that the sorption of Sr + on bentonite will be affected by the presence of high concentrations of various salts in the waste water effluents. (author)

  4. Isotherms and isosteric heat of sorption of two varieties of Peruvian quinoa

    OpenAIRE

    Augusto Pumacahua-Ramos; José Antonio Gomez Vieira; Javier Telis-Romero; Harvey Alexander Villa-Vélez; Jose Francisco Lopes Filho

    2016-01-01

    The isosteric heats of sorption of two varieties of quinoa (Chenopodium quinoaWilld.) grain were determined by the static gravimetric method at four temperatures (40, 50, 60 and 70 °C) andin relative humidity environments provided by six saturated salt solutions. Six mathematical equations were used to model the experimental data: GAB, Oswin, Henderson, Peleg, Smith and Halsey. The isosteric heat of sorption was determined using the parameters ...

  5. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter.

    Science.gov (United States)

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-05-02

    Microplastics have a great potential to sorb organic pollutants from the adjacent environment. In this study, the sorption of tetracycline, a polar and ionizable antibiotic, on three types of microplastics (polyethylene (PE), polypropylene (PP) and polystyrene (PS)) were investigated in batch sorption experiments. The sorption isotherms were well fitted by the Langmuir model, indicating that not only hydrophobic interactions but also other interactions (e.g. electrostatic interactions) played important roles in the sorption process. PS had the maximum sorption capacity, following the order PS > PP > PE, which can be attributed to polar interactions and π-π interactions. The sorption of tetracycline on microplastics was significantly influenced by pH, with sorption capacity increasing gradually, peaking at pH 6.0 and then decreasing, likely due to the influence of tetracycline speciation with the change of pH. Fulvic acid was selected as representative dissolved organic matter (DOM) to examine the effect on sorption. The increasing concentration of fulvic acid inhibited the sorption of tetracycline on three microplastics, decreasing them by more than 90% at the fulvic acid concentration of 20 mg/L, which implied a greater affinity of tetracycline to fulvic acid than to microplastics. Increasing salinity from 0.05 to 3.5% had negligible effects on the sorption of tetracycline on the three microplastics. Our results highlight the importance of pH and DOM on the sorption of tetracycline on microplastics, and suggest the relatively minor role of microplastics in the fate and transport of tetracycline in the aquatic environment in the presence of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  7. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  8. Sorption of organic water pollutants on dead vegetable biomass; Sorption organischer Wasserschadstoffe an abgestorbene pflanzliche Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Kraeuter, A.

    2001-03-01

    Hemp-derived biological sorption agents were produced, and their physical, chemical and sorptive characteristics were tested in batch and filter tests. The experiments were accompanied by model calculations. In the natural state, the sorption agents had a kation exchange capacity of 0.1-0.3 mmol/g, modified sorption agents had about 2 mmol/g. Kationized hemp had values of 0.34 mmol/g and thermally modified hemp absorption agents absorbed more than 1.2 mmol/g of dichlorophenol. In the case of a liquid effluent from a textile dyeing plant, only a discoloration effect was achieved. The absorption agents can be regenerated, combusted or composted after use. [German] Im Rahmen dieser Arbeit wurden naturbelassene und modifizierte Billig-Biosorbentien aus Hanfschaeben zur Entfernung organischer Schadstoffe aus Waessern hergestellt und ihre physikalischen, chemischen und sorptiven Eigenschaften in Batch- und Filterversuchen untersucht. Wegen der Komplexheit des Systems ''Biosorption organischer Wasserschadstoffe'' wurden die ermittelten Sorptionsisothermen mit den Ansaetzen nach Langmuir und Freundlich beschrieben. Die Sorptionskinetik und das Durchbruchsverhalten wurde ebenfalls mit einfachen Ansaetzen modelliert. Naturbelassene Hanfschaeben erreichten Kationenaustauschkapazitaeten von 0,1-0,3 mmol/g, entsprechend modifizierte Hanfschaeben ca. 2 mmol/g. Kationisierte Hanfschaeben dagegen erreichten Anionenaustauschkapazitaeten von 0,34 mmol/g und thermisch modifizierte Hanfschaeben sorbierten bis ueber 1,2 mmol/g Dichlorphenol. Bei der Behandlung eines Abwassers aus einer Textilfaerberei beschraenkte sich die Reinigungsleistung der hergestellten Biosorbentien auf eine Entfaerbung. Nach Schadstoffbeladung koennen die Hanfschaeben regeneriert, thermisch verwertet oder kompostiert werden. (orig.)

  9. Sorption interactions of heavy metals with biochar in soil remediation studies

    Science.gov (United States)

    Fristak, Vladimir; Friesl-Hanl, Wolfgang; Wawra, Anna; Soja, Gerhard

    2015-04-01

    The search for new materials in soil remediation applications has led to new conversion technologies such as carbonization and pyrolysis. Biochar represents the pyrolytic product of different biomass input materials processed at 350-1000°C and anoxic conditions. The pyrolysis temperature and feedstock have a considerable influence on the quality of the charred product and also its main physico-chemical properties. Biochar as porous material with large specific surface and C-stability is utilized in various environmental and agricultural technologies. Carbon sequestration, increase of soil water-holding capacity and pH as well as sorption of different xenobiotics present only a fraction of the multitude of biochar application possibilities. Heavy metals as potential sources of ecotoxicological risks are characterized by their non-degradability and the potential transfer into the food chain. Carbonaceous materials have been used for a long time as sorbents for heavy metals and organic contaminants in soil and water technologies. The similarity of biochar with activated carbon predetermines this material as remediation tool which plays an important role in heavy metal immobilization and retention with a parallel reduction in the risk of ground water and food crop contamination. In all this processes the element-specific sorption behaviour of biochar creates new conditions for pollutant binding. Sorption interaction and separation of contaminants from soil solution or waste effluent can be affected by wide-ranging parameters. In detail, our study was based on batch-sorption comparisons of two biochars produced from wood chips and green waste residues. We observed that sorption efficiency of biochar for model bivalent heavy metals (Cd, Zn, Cu) can be influenced by equilibrium parameters such as pH, contact time, initial concentration of metal in reaction solutions, presence of surfactants and chemical modification by acid hydrolysis, esterification and methylation. The

  10. A Conceptual Model of eLearning Adoption

    Directory of Open Access Journals (Sweden)

    Muneer Abbad

    2011-05-01

    Full Text Available Internet-based learning systems are being used in many universities and firms but their adoption requires a solid understanding of the user acceptance processes. The technology acceptance model (TAM has been used to test the acceptance of various technologies and software within an e-learning context. This research aims to discuss the main factors of a successful e-learning adoption by students. A conceptual research framework of e-learning adoption is proposed based on the TAM model.

  11. The sorption behavior of DDT onto sediment in the presence of surfactant cetyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Cao Xiaoyan; Han Huayu; Yang Guipeng; Gong Xiaofei; Jing Jianning

    2011-01-01

    Highlights: → The sorption behavior of a complex system consists of DDT and CTAB onto marine sediment was studied. → Batch experiments were carried out to investigate the kinetics and thermodynamics. → The presence of CTAB could remarkably accelerate and enhance the sorption of DDT. → The sorption of DDT had relatively more negative ΔG 0 and ΔH 0 in the presence of CTAB. - Abstract: The sorption behavior of p,p'- and o,p'-dichlorodiphenyltrichloroethane (DDT) in the presence of a cationic surfactant cetyltrimethylammonium bromide (CTAB) on sediment was studied. Batch experiments were carried out to investigate the kinetics and thermodynamics of the process. The kinetic behavior of these three chemicals on sediment was described by pseudo-second-order kinetic equations, and the isotherms followed the Freundlich model well. The presence of CTAB was able to remarkably accelerate and enhance the sorption of DDT, whereas DDT showed no effect on the sorption of CTAB in our considered concentration ranges. The thermodynamic parameters, such as standard enthalpy change (ΔH 0 ), standard entropy change (ΔS 0 ) and standard Gibbs free energy change (ΔG 0 ) showed that the sorption process of p,p'- and o,p'-DDT was physical, spontaneous and exothermic, and the randomness at the solid-liquid interface increased during the process. In the presence of CTAB, the sorption of DDT showed significantly negative ΔG 0 and ΔH 0 values.

  12. Business Model Innovation: An Integrative Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Bernd Wirtz

    2017-01-01

    Full Text Available Purpose: The point of departure of this exploratory study is the gap between the increasing importance of business model innovation (BMI in science and management and the limited conceptual assistance available. Therefore, the study identi es and explores scattered BMI insights and deduces them into an integrative framework to enhance our understanding about this phenomenon and to present a helpful guidance for researchers and practitioners. Design/Methodology/Approach: The study identi es BMI insights through a literature-based investigation and consolidates them into an integrative BMI framework that presents the key elements and dimensions of BMI as well as their presumed relationships. Findings: The study enhances our understanding about the key elements and dimensions of BMI, presents further conceptual insights into the BMI phenomenon, supplies implications for science and management, and may serve as a helpful guidance for future research. Practical Implications: The presented framework provides managers with a tool to identify critical BMI issues and can serve as a conceptual BMI guideline. Research limitations: Given the vast amount of academic journals, it is unlikely that every applicable scienti c publication is included in the analysis. The illustrative examples are descriptive in nature, and thus do not provide empirical validity. Several implications for future research are provided. Originality/Value: The study’s main contribution lies in the unifying approach of the dispersed BMI knowledge. Since our understanding of BMI is still limited, this study should provide the necessary insights and conceptual assistance to further develop the concept and guide its practical application.

  13. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    Energy Technology Data Exchange (ETDEWEB)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu

    2015-12-15

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  14. The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment

    International Nuclear Information System (INIS)

    Sangster, Jodi L.; Oke, Hugues; Zhang, Yun; Bartelt-Hunt, Shannon L.

    2015-01-01

    Highlights: • Two sediments were used to evaluate the effects of particle size on steroid sorption. • Sorption capacity did not increase with decreasing particle size for all steroids. • Particle interactions affect the distribution of steroids within the whole sediments. • Preferential sorption to fine particles was observed. - Abstract: There is growing concern about the biologic effects of steroid hormones in impacted waterways. There is increasing evidence of enhanced transport and biological effects stemming from steroid hormones associated with soils or sediments; however, there are limited studies evaluating how steroid hormone distribution between various particle sizes within whole sediments affects steroid fate. In this study, sorption of 17β-estradiol, estrone, progesterone, and testosterone was evaluated to different size fractions of two natural sediments, a silty loam and a sandy sediment, to determine the steroid sorption capacity to each fraction and distribution within the whole sediment. Sorption isotherms for all steroid hormones fit linear sorption models. Sorption capacity was influenced more by organic carbon content than particle size. Interactions between size fractions were found to affect the distribution of steroids within the whole sediments. All four steroids preferentially sorbed to the clay and colloids in the silty loam sediment at the lowest aqueous concentration (1 ng/L) and as aqueous concentration increased, the distribution of sorbed steroid was similar to the distribution by weight of each size fraction within the whole sediment. In the sandy sediment, preferential sorption to fine particles was observed.

  15. Sorption of Np(V) by synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Moore, R.C.; Holt, K.; Zhao, H.; Hasan, A.; Awwad, N.; Gasser, M.; Sanchez, C.

    2003-01-01

    The sorption of Np(V) to synthetic hydroxyapatite was determined in batch experiments in a 0.1 M NaClO 4 solution. The hydroxyapatite used was of high purity as determined by SEM, EDS, XRD, FT-IR and ICP-MS analysis. Results from kinetic experiments with an initial Np(V) concentration of 1 x 10 -7 to 1 x 10 -6 M indicate the sorption process is relatively fast with more than 90% of the Np(V) being sorbed in approximately 3 hours. Equilibrium experiments performed over the pH range of 6 to 11 indicated sorption is strongly pH dependent with distribution coefficients, K d values (mL/g), increasing from 123 L/mole at pH 6 to 69 200 L/mole at pH 8.5. K d values are observed to decrease as pH further increases. Data points over a range of Np(V) concentrations were collected at pH 8 and fitted to the Langmuir isotherm model for simple adsorption. The Langmuir equation gave an excellent representation of the data. Langmuir parameters were determined to be C a = 0.032 mole/mole and K = 1.22 x 10 6 L/mole, indicating the high affinity of hydroxyapatite for Np(V) adsorption. (orig.)

  16. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  17. Technetium sorption by stibnite from natural water

    International Nuclear Information System (INIS)

    Peretroukhine, V.; Sergeant, C.; Deves, G.; Poulain, S.; Vesvres, M.H.; Thomas, B.; Simonoff, M.

    2006-01-01

    The sorption of technetium by powdered and polished mineral stibnite Sb 2 S 3 has been investigated in simulated and natural underground waters from the Meuse/Haute-Marne region (France). The sorption by powdered stibnite has been found to be complete under both aerobic and anaerobic conditions in batch experiments. The sorption rate is higher in the absence of oxygen than under aerobic condition. Increasing the temperature from 30 C to 60 C results in a rise of the sorption rate by 9.1 and 27 times under anaerobic and aerobic conditions, respectively. The observed differences in sorption kinetics in the presence and in absence of oxygen are explained by the interaction of oxygen with sulfide ion in aerobic conditions and by the reduction of technetium(VII) by iron(II) and by other impurities present in natural water and in the mineral, and by the subsequent sorption of Tc(IV) on stibnite under anaerobic conditions. The sorption on a polished mineral surface resulted in the formation of a technetium film, probably Tc 2 S 7 , with a thickness of 1-3 μg Tc/cm 2 pH 3-6 and 4-12 μg Tc/cm 2 at 9-12. The simultaneous formation of stibnite colloids with adsorbed technetium occurs at pH 9-12. The study of the technetium film on the mineral by proton induced X-ray emission analysis showed it to be at least one order of magnitude thinner on the SiO 2 impurities than on the main Sb 2 S 3 component and the iron impurities. (orig.)

  18. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    Science.gov (United States)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  19. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  20. A conceptual and disease model framework for osteoporotic kyphosis.

    Science.gov (United States)

    Bayliss, M; Miltenburger, C; White, M; Alvares, L

    2013-09-01

    This paper presents a multi-method research project to develop a conceptual framework for measuring outcomes in studies of osteoporotic kyphosis. The research involved literature research and qualitative interviews among clinicians who treat patients with kyphosis and among patients with the condition. Kyphosis due to at least one vertebral compression fracture is prevalent among osteoporotic patients, resulting in well-documented symptoms and impact on functioning and well-being. A three-part study led to development of a conceptual measurement framework for comprehensive assessment of symptoms, impact, and treatment benefit for kyphosis. A literature-based disease model (DM) was developed and tested with physicians (n = 10) and patients (n = 10), and FDA guidelines were used to develop a final disease model and a conceptual framework. The DM included signs, symptoms, causes/triggers, exacerbations, and functional status associated with kyphosis. The DM was largely confirmed, but physicians and patients added several concepts related to impact on functioning, and some concepts were not confirmed and removed from the DM. This study confirms the need for more comprehensive assessment of health outcomes in kyphosis, as most current studies omit key concepts.

  1. Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity

    International Nuclear Information System (INIS)

    Tachi, Y.; Yotsuji, K.; Suyama, T.; Seida, Y.; Yui, M.; Nakazawa, T.; Yamada, N.; Ochs, M.

    2010-01-01

    Diffusion and sorption of radionuclides in compacted bentonite/montmorillonite are key processes in the safe geological disposal of radioactive waste. In this study, the effects of carbonate and salinity on neptunium(V) diffusion and sorption in compacted sodium montmorillonite were investigated by experimental and modeling approaches. Effective diffusion coefficients (D e ) and distribution coefficients (K d ) of 237 Np(V) in sodium montmorillonite compacted to a dry density of 800 kg m -3 were measured under four chemical conditions with different salinities (0.05/0.5 M NaCl) and carbonate concentrations (0.0.01 M NaHCO 3 ). D e values for carbonate-free conditions were of the order of 10 -10 -10 -11 m 2 s -1 and decreased as salinity increased, and those for carbonate conditions were of the order of 10 -11 -10 -12 m 2 s -1 and showed the opposite dependence. Diffusion-derived K d values for carbonate-free conditions were higher by one order of magnitude than those for carbonate conditions. Diffusion and sorption behaviors were interpreted based on mechanistic models by coupling thermodynamic aqueous speciation, thermodynamic sorption model (TSM) based on ion exchange, and surface complexation reactions, and a diffusion model based on electrical double layer (EDL) theory in homogeneous narrow pores. The model predicted the experimentally observed tendency of D e and K d qualitatively, as a result of the following mechanisms; 1) the dominant aqueous species are NpO 2 + and NpO 2 CO 3 - for carbonate-free and carbonate conditions, respectively, 2) the effects of cation excess and anion exclusion result in opposite tendencies of D e for salinity, 3) higher carbonate in solution inhibits sorption due to the formation of carbonate complexes. (orig.)

  2. River City High School Guidance Services: A Conceptual Model.

    Science.gov (United States)

    American Coll. Testing Program, Iowa City, IA.

    This model describes how the guidance staff at a hypothetical high school communicated the effectiveness of the guidance program to students, parents, teachers, and administrators. A description of the high school is presented, and guidance services and personnel are described. A conceptual model responding to student needs is outlined along with…

  3. A conceptual and calculational model for gas formation from impure calcined plutonium oxides

    International Nuclear Information System (INIS)

    Lyman, John L.; Eller, P. Gary

    2000-01-01

    Safe transport and storage of pure and impure plutonium oxides requires an understanding of processes that may generate or consume gases in a confined storage vessel. We have formulated conceptual and calculational models for gas formation from calcined materials. The conceptual model for impure calcined plutonium oxides is based on the data collected to date

  4. Sorption and Transport of Sildenafil in Natural Soils

    Science.gov (United States)

    Boudinot, F. G.; Vulava, V. M.

    2013-12-01

    Pharmaceutical Chemicals (PCs) mainly enter our ecosystems from discharges of treated wastewater and have direct effects on the ecological health of that area. Sildenafil citrate (Viagra) is one such PC, whose presence has been reported in stream waters. Although one study has shown that sildenafil is not harmful in bacterial and fungal environments, there remains much unknown about its fate elsewhere in ecosystems. Sildenafil is a complex organic molecule with two amino functional groups that result in pKa's of 7.27 and 5.97. It also has a high solubility of 3.5 g/L. Given that sildenafil consumption (and concurrently disposal) is on the rise, it is essential that its behavior in the natural environment be better understood. The goal of this study was to quantify the sorption and transport behavior of sildenafil in differing natural soils with varying compositions. Pristine A- and B- horizon soil samples from several soil series were collected in a managed forest near Charleston, SC and used for these studies. The soils were characterized for physical and chemical properties: soil organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 4-5. These soils were then used to perform kinetic reaction, sorption, and column transport experiments. Batch kinetic experiments showed a fast reaction rate in both clay-rich and organic-rich soils and an equilibration time of less than 24 hours. Batch reactor sorption experiments provided data for sorption isotherms (plot of sildenafil in solution, C vs. sildenafil sorbed in soil, q) which were nonlinear. The isotherms were fit using Freundlich model (q=KfCn, where Kf and n are fitting parameters). Sildenafil sorbed more strongly to clay-rich soils compared with organic-rich soils with less clay. It is hypothesized that permanent negative charge on clay mineral surfaces form ionic bonds with positively charged amines in sildenafil in acidic pHs. Transport experiments were conducted using

  5. 3.3. Sorption activity of cross-linked polymers of ethynyl-piperidol

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption activity of cross-linked polymers of ethynyl-piperidol was studied. The bilirubin sorption was studied as well. The kinetic of bilirubin sorption and human serum albumin at their joint presence in hydrogel solutions was defined. Bilirubin sorption and change of albumin composition was considered. The sorption of middle molecular peptides was considered as well. The sorption of endogenous toxin by means of ethynyl-piperidol polymers was done.

  6. Study of sorption of technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen Dong; Fan Xianhua; Su Xiguang; Zeng Jishu

    2001-01-01

    The sorption behaviors of technetium on pyrrhotine are studied with batch experiment and dilute sulfuric acid is used to dissolve the technetium adsorbed on pyrrhotine. Sorption and desorption experiment are performed under aerobic and anaerobic conditions (inert gas box). The results show that a significant sorption of technetium on pyrrhotine is found under aerobic and anaerobic conditions, and the sorption on the mineral is supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 ·nH 2 O. Desorption process of the sorbed technetium into dilute sulfuric acid is found to be different under aerobic and anaerobic conditions. On addition of H 2 O 2 to the leach solution a sudden increase of the technetium concentration is observed

  7. Characteristics of and sorption to biochars derived from waste material

    Science.gov (United States)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 waste material and exhibiting high mineral

  8. Patient-Clinician Communication About Pain: A Conceptual Model and Narrative Review.

    Science.gov (United States)

    Henry, Stephen G; Matthias, Marianne S

    2018-02-01

    Productive patient-clinician communication is an important component of effective pain management, but we know little about how patients and clinicians actually talk about pain in clinical settings and how it might be improved to produce better patient outcomes. The objective of this review was to create a conceptual model of patient-clinician communication about noncancer pain, review and synthesize empirical research in this area, and identify priorities for future research. A conceptual model was developed that drew on existing pain and health communication research. CINAHL, EMBASE, and PubMed were searched to find studies reporting empirical data on patient-clinician communication about noncancer pain; results were supplemented with manual searches. Studies were categorized and analyzed to identify crosscutting themes and inform model development. The conceptual model comprised the following components: contextual factors, clinical interaction, attitudes and beliefs, and outcomes. Thirty-nine studies met inclusion criteria and were analyzed based on model components. Studies varied widely in quality, methodology, and sample size. Two provisional conclusions were identified: contrary to what is often reported in the literature, discussions about analgesics are most frequently characterized by patient-clinician agreement, and self-presentation during patient-clinician interactions plays an important role in communication about pain and opioids. Published studies on patient-clinician communication about noncancer pain are few and diverse. The conceptual model presented here can help to identify knowledge gaps and guide future research on communication about pain. Investigating the links between communication and pain-related outcomes is an important priority for future research. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  10. Competitive sorption and desorption of heavy metals by individual soil components

    International Nuclear Information System (INIS)

    Covelo, E.F.; Vega, F.A.; Andrade, M.L.

    2007-01-01

    Knowledge of sorption and desorption of heavy metals by individual soil components should be useful for modelling the behaviour of soils of arbitrary composition when contaminated by heavy metals, and for designing amendments increasing the fixation of heavy metals by soils polluted by these species. In this study the competitive sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by humified organic matter, Fe and Mn oxides, kaolinite, vermiculite and mica were investigated. Due to the homogeneity of the sorbents, between-metal competition for binding sites led to their preferences for one or another metal being much more manifest than in the case of whole soils. On the basis of k d100 values (distribution coefficients calculated in sorption-desorption experiments in which the initial sorption solution contained 100 mg L -1 of each metal), kaolinite and mica preferentially sorbed and retained chromium; vermiculite, copper and zinc; HOM, Fe oxide and Mn oxide, lead (HOM and Mn oxide also sorbed and retained considerable amounts of copper). Mica only retained sorbed chromium, Fe oxide sorbed cadmium and lead, and kaolinite did not retain sorbed copper. The sorbents retaining the greatest proportions of sorbed metals were vermiculite and Mn oxide, but the ratios of k d100 values for retention and sorption suggest that cations were least reversibly bound by Mn oxide, and most reversibly by vermiculite

  11. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    Science.gov (United States)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  12. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  13. Regionalising Parameters of a Conceptual Rainfall-Runoff Model for ...

    African Journals Online (AJOL)

    IHACRES, a lumped conceptual rainfall-runoff model, was calibrated to six catchments ranging in size from 49km2 to 600 km2 within the upper Tana River basin to obtain a set of model parameters that characterise the hydrological behaviour within the region. Physical catchment attributes indexing topography, soil and ...

  14. Sorption and diffusion of Cs and I in concrete

    International Nuclear Information System (INIS)

    Andersson, K.; Torstenfelt, B.; Allard, B.

    1983-01-01

    Concrete has been suggested as a possible encapsulation material for long-term storage of low and medium level radioactive waste. At an underground storage of concrete encapsulated waste, a slow release of radioactive elements into the groundwater by diffusion through the concrete must be considered in the safety analysis. The diffusion may be delayed by sorption reactions on the solid. A wide range of long-lived radionuclides may be present in the low and medium level radioactive waste. Here, the sorption and diffusion of iodide and cesium on slag cement paste and concrete has been studied. The influence of four different water phases (pore water, groundwater, Baltic Sea water and sea water) as well as the influence of some added species (carbonate, sulphate and magnesium) has been investigated. A significant sorption of iodide on cement paste in contact with pore water was observed, indicating that the diffusion may be expected to be retarded in this medium. For cesium the highest sorption was found for concrete and groundwater. This means that the sorption increases as the concrete is weathered. Low or insignificant sorption was found for the cement paste, indicating that the ballast is responsible for the Cs-sorption. Carbonatization enhances the Cs-sorption by about a factor of 3. The diffusivity of Cs in concrete and cement paste was determined to between 2x10 - 14 and 8x10 - 14 m 2 /s in pore water (where an insignificant sorption was observed). The choice of ballast as well as addition of suitable getters with high sorption of the long-lived radionuclides might decrease the mass transfer rate through the cement. (Authors)

  15. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  16. Study of sorption processes of copper on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Ometakova, J.; Rajec, P.; Caplovicova, M.

    2012-01-01

    The sorption of copper on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite sample prepared by a wet precipitation process was of high crystallinity with Ca/P ratio of 1.688. The sorption of copper on hydroxyapatite was pH independent ranging from 4 to 6 as a result of buffering properties of hydroxyapatite. The adsorption of copper was rapid and the percentage of Cu sorption was >98% during the first 15-30 min of the contact time. The experimental data for sorption of copper have been interpreted in the term of Langmuir isotherm. The sorption of Cu 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Zn 2+ , Fe 2+ and Pb 2+ towards Cu 2+ sorption was stronger than that of Co 2+ , Ni 2+ and Ca 2+ ions. The ability of the bivalent cations to depress the sorption of copper on hydroxyapatite was in the following order Pb 2+ > Fe 2+ > Zn 2+ > Co 2+ ∼ Ni 2+ . (author)

  17. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  18. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    Science.gov (United States)

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  19. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    Science.gov (United States)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from

  20. Advertisement Effectiveness for Print Media: A Conceptual Model

    OpenAIRE

    Prateek Maheshwari; Nitin Seth; Anoop Kumar Gupta

    2015-01-01

    The objective of present research paper is to highlight the importance of measuring advertisement effectiveness in print media and to develop a conceptual model for advertisement effectiveness. The developed model is based on dimensions on which advertisement effectiveness depends and on the dimensions which are used to measure the effectiveness. An in-depth and extensive literature review is carried out to understand the concept of advertisement effectiveness and its var...

  1. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    the determination of the sorption/desorption enthalpies which gives insight into the sorbent-sorbate interactions. In order to attain sorption/desorption equilibrium, all the samples were pulverized to shorten the laboratory experimental time. The sorbate losses were carefully monitored and considered in the isotherm calculation. Additionally, release of native phenanthrene was also investigated at different temperatures and compared with the freshly spiked samples to investigate the aging effect. The batch results show that for all individual temperature steps sorption and desorption isotherms coincide. Furthermore, the solubility-normalized sorption/desorption isotherms at different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked equilibrium sorption isotherms. The absolute values of sorption/desorption isosteric heats ({delta}H) determined are in a range of 19 - 35 kJ mol{sup -1}, which is higher than the heat of aqueous solution of subcooled phenanthrene but much less than the heat of condensation of solid phenanthrene from water. No significant difference of the enthalpies between sorption and desorption was observed. Furthermore, the desorption enthalpy of the native phenanthrene was not significantly higher than expected from the sorption experiments with spiked samples. Sorption and desorption kinetics were monitored in on-line column experiments with stepwise increases of temperature. An intraparticle diffusion model was used to simulate the desorption profile in order to get the apparent diffusion coefficients of phenanthrene from the carbonaceous materials. Desorption activation energies were calculated by Arrhenius relationship based on the high-resolution measurement of concentration increases at each temperature step. The activation energies determined range from 58 - 71 kJ mol{sup -1}. No significant trend of increasing

  2. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    determination of the sorption/desorption enthalpies which gives insight into the sorbent-sorbate interactions. In order to attain sorption/desorption equilibrium, all the samples were pulverized to shorten the laboratory experimental time. The sorbate losses were carefully monitored and considered in the isotherm calculation. Additionally, release of native phenanthrene was also investigated at different temperatures and compared with the freshly spiked samples to investigate the aging effect. The batch results show that for all individual temperature steps sorption and desorption isotherms coincide. Furthermore, the solubility-normalized sorption/desorption isotherms at different temperatures collapse to unique overall isotherms. Leaching of native phenanthrene occurred at much lower concentrations but was well predicted by extrapolation of the spiked equilibrium sorption isotherms. The absolute values of sorption/desorption isosteric heats ({delta}H) determined are in a range of 19 - 35 kJ mol{sup -1}, which is higher than the heat of aqueous solution of subcooled phenanthrene but much less than the heat of condensation of solid phenanthrene from water. No significant difference of the enthalpies between sorption and desorption was observed. Furthermore, the desorption enthalpy of the native phenanthrene was not significantly higher than expected from the sorption experiments with spiked samples. Sorption and desorption kinetics were monitored in on-line column experiments with stepwise increases of temperature. An intraparticle diffusion model was used to simulate the desorption profile in order to get the apparent diffusion coefficients of phenanthrene from the carbonaceous materials. Desorption activation energies were calculated by Arrhenius relationship based on the high-resolution measurement of concentration increases at each temperature step. The activation energies determined range from 58 - 71 kJ mol{sup -1}. No significant trend of increasing desorption activation

  3. Study on sorption capacity of synthetic zeolite for simulated nuclide Cs+

    International Nuclear Information System (INIS)

    Wang Jinming; Yi Facheng

    2006-01-01

    For the sake of understanding the functionary order of simulated nuclide Cs + and Synthetic Zeolite (ZF), the sorption equilibrium time and sorption capacity of simulated nuclide Cs + on ZF are studied with the intermittence method. The difference of temperature, pH value, Cs + concentration and medium on sorption capacity and sorption ratio are investigated. The results show that the sorption complexion of simulated nuclide Cs + on ZF in the same concentration solution are sorption equilibrium quantity in range of 155-190 mg/g in different temperatures and that in range of 165-190 mg/g in different pH values and that in range of 120-210 mg/g in different media; and changing order of equilibrium adsorption ratio is the same to that of sorption equilibrium quantity, but their changing range are wider than that of sorption equilibrium quantity; equilibrium adsorption quantity in range of 180-380 mg/g in different concentration solutions, and changing order of equilibrium adsorption ratio is opposite to that of sorption equilibrium quantity, and more-over, their changing range are wider than that of the sorption equilibrium quantity. Sorption equilibrium time of simulated nuclide Cs + on ZF is about ten to fifteen days. So the changing range of sorption capacity of simulated nuclide Cs + on ZF with conditions effects is smaller and the sorption equilibrium time is also less and ZF preferably absorbs Cs in radiation wastes and thus consumedly reduces the effect of radwaste on the environment. (authors)

  4. Sorption and direct speciation of neptunium(V) on aluminium oxide and montmorillonite

    International Nuclear Information System (INIS)

    Wendt, Sonja

    2009-01-01

    This study comprised batch experiments, direct speciation studies via EXAFS, and modelling with the 2SPNE SC/CE model to elucidate the mechanisms of Np(V) sorption on montmorillonite and, for reference, on γ-Al 2 O 3 . The sorption of pM 239 Np(V) and μM 237 Np(V) on montmorillonite (STx-1, 4 g/L) and γ-Al 2 O 3 (0.5 g/L) was studied at room temperature in the presence and absence of ambient CO 2 covering a pH-range from 2.5 (STx-1) or 5 (γ-Al 2 O 3 ) to 10.5 with 0.01 or 0.1M NaClO 4 as background electrolyte. The Np(V) uptake was determined by γ spectroscopy of the supernatants and calculated as percentage as well as distribution coefficient K d . Sorption starts from pH ∼6 and, under exclusion of CO 2 , increases continuously, while, in the presence of ambient air, it reaches a maximum at pH ∝8.5 (γ-Al 2 O 3 : logK d max ∼ 4 mL/g; STx-1: logK d max ∼ 2.7 mL/g). Beyond that it decreases again due to the formation of aqueous neptunium carbonate complexes. Furthermore, neptunium sorption on montmorillonite is influenced by ionic strength at pH <6 through ion exchange processes pointing towards the formation of outer-sphere surface complexes there. Isotherms measured at the sorption maximum showed the precipitation of presumably neptunium carbonate complexes above 3.10 -5 M under ambient air conditions. Additionally, they indicated progressive saturation of the sorption sites of γ-Al 2 O 3 . At selected pH (STx-1: 5.0, 7.0, 8.0, 8.5, 9.0, 9.5; γ-Al 2 O 3 : 8.5, 9.5) EXAFS samples were prepared as wet pastes with μM 237 Np and measured at room temperature in fluorescence mode at ANKA and ESRF. Several spectra were averaged and analysed with EXAFSPAK and FEFF 8.20 employing models of NaNpO 2 (CO 3 ) or soddyite, (UO 2 ) 2 SiO 4 .2(H 2 O). The shorter atomic distances of the neptunyl ion at pH 5 compared to the others hinted at the retention of the hydration shell and, thus, at outer-sphere sorption. On average the bond lengths for Np(V) sorbed on STx

  5. Yucca Mountain Project far-field sorption studies and data needs

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-09-01

    Batch sorption experiments in which radionuclides dissolved in groundwaters from Yucca Mountain were sorbed onto samples of crushed tuff have resulted in a substantial database of sorption coefficients for radionuclides of interest to the repository program. Although this database has been useful in preliminary evaluations of Yucca Mountain as a potential site for a nuclear waste repository, the database has limitations that must be addressed before it can be used for performance assessment calculations in support of a license application for a waste repository. The purpose of this paper is to: review the applicability of simple (constant) sorption coefficients in transport calculations; review and evaluate alternative methods for the derivation of sorption coefficients; summarize and evaluate the present YMP sorption database to identify areas of data sufficiency and significant data gaps; summarize our current understanding of pertinent sorption mechanisms and associated kinetic parameters; evaluate the significance to the YMP of potential problems in the experimental determination and field application of sorption coefficients as enumerated by the NRC (Nuclear Regulatory Commission, 1987) in its technical position paper on sorption; formulate and evaluate strategies for the resolution of NRC concerns regarding experimental problems; and formulate a position on the sorption coefficient database and the level of understanding of sorption mechanisms likely to be required in the licensing application. 75 refs., 1 fig., 2 tabs

  6. Boron removal from aqueous solutions by ion-exchange resin: Column sorption-elution studies

    International Nuclear Information System (INIS)

    Koese, T. Ennil; Oztuerk, Nese

    2008-01-01

    A column sorption-elution study was carried out by using a strong base anion-exchange resin (Dowex 2 x 8) for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of feed flow rate and the total and breakthrough capacity values of the resin were calculated. The boron on the resin was quantitatively eluted with 0.5 M HCl solution at different flow rates. Three consecutive sorption-elution-washing-regeneration-washing cycles were applied to the resin in order to investigate the reusability of the ion-exchange resin. Total capacity values remained almost the same after three sorption-elution-regeneration cycles. The Thomas and the Yoon-Nelson models were applied to experimental data to predict the breakthrough curves and to determine the characteristic column parameters required for process design. The results proved that the models would describe the breakthrough curves well

  7. A conceptual model specification language (CMSL Version 2)

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1992-01-01

    Version 2 of a language (CMSL) to specify conceptual models is defined. CMSL consists of two parts, the value specification language VSL and the object spercification language OSL. There is a formal semantics and an inference system for CMSL but research on this still continues. A method for

  8. Three-parameter modeling of the soil sorption of acetanilide and triazine herbicide derivatives.

    Science.gov (United States)

    Freitas, Mirlaine R; Matias, Stella V B G; Macedo, Renato L G; Freitas, Matheus P; Venturin, Nelson

    2014-02-01

    Herbicides have widely variable toxicity and many of them are persistent soil contaminants. Acetanilide and triazine family of herbicides have widespread use, but increasing interest for the development of new herbicides has been rising to increase their effectiveness and to diminish environmental hazard. The environmental risk of new herbicides can be accessed by estimating their soil sorption (logKoc), which is usually correlated to the octanol/water partition coefficient (logKow). However, earlier findings have shown that this correlation is not valid for some acetanilide and triazine herbicides. Thus, easily accessible quantitative structure-property relationship models are required to predict logKoc of analogues of the these compounds. Octanol/water partition coefficient, molecular weight and volume were calculated and then regressed against logKoc for two series of acetanilide and triazine herbicides using multiple linear regression, resulting in predictive and validated models.

  9. Sorption of radionuclides on inorganic sorbents

    International Nuclear Information System (INIS)

    Rajec, P.; Matel, L.

    1995-01-01

    The sorption of cesium, strontium, plutonium and americium from water solution on natural zeolite, clay minerals, synthetic zeolites and ferrocyanides in silica gel matrix was studied. The same experiments but with synthetic zeolites irradiated by the dose 100 kGy proved no change in sorption properties. 1 tab., 4 refs

  10. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    H{sub 2} with Nb{sub 2}O{sub 5} is much larger than the standard wet ball milled MgH{sub 2} with Nb{sub 2}O{sub 5} and the corresponding sorption behavior is also much improved. Furthermore, a simple model is built up in which the key parameter is main specific surface area and it follows the experimental desorption results quite well. (orig.)

  11. Conceptual Model for Effective Sports Marketing in Nigeria | Akarah ...

    African Journals Online (AJOL)

    Conceptual Model for Effective Sports Marketing in Nigeria. ... that are influenced by the sports market mix and sports consumers that are influenced by psychological factors and notes that; ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  12. Penerapan Model Pembelajaran Conceptual Understanding Procedures (CUPS sebagai Upaya Mengatasi Miskonsepsi Matematis Siswa

    Directory of Open Access Journals (Sweden)

    Asri Gita

    2018-01-01

    Full Text Available Kesalahan dalam memahami konsep menjadi salah satu faktor yang menyebabkan miskonsepsi pada pelajaran matematika. Miskonsepsi pada materi bangun datar disebabkan oleh cara belajar siswa yang hanya menghafalkan bentuk dasar tanpa memahami hubungan antar bangun datar dan sifat-sifatnya. Upaya yang dilakukan dalam mengatasi miskonsepsi tersebut adalah dengan menerapkan pembelajaran konstruktivis. Salah satu model pembelajaran konstruktivis adalah Conceptual Understanding Procedures (CUPs. Tujuan dari penelitian ini adalah untuk mengetahui penerapan model pembelajaran Conceptual Understanding Procedures (CUPs sebagai upaya mengatasi miskonsepsi matematis siswa pada materi sifat-sifat bangun datar segiempat. Subjek penelitian adalah 12 orang siswa SMP yang mengalami miskonsepsi pada materi sifat-sifat bangun datar segiempat. Teknik pengumpulan data pada penelitian ini melalui tes, video, observasi, dan wawancara. Validitas dan reliabilitas data melalui credibility, dependability, transferability, dan confirmability. Hasil dari penelitian ini menunjukkan bahwa penerapan model pembelajaran Conceptual Understanding Procedures (CUPs yang terdiri dari fase individu, fase kelompok triplet, dan fase interpretasi seluruh kelas dapat mengatasi miskonsepsi siswa pada materi sifat-sifat bangun datar segiempat. Perubahan miskonsepsi siswa juga dapat dilihat dari nilai tes yang mengalami peningkatan nilai berdasarkan nilai tes awal dan tes akhir siswa. Kata Kunci: Conceptual Understanding Procedures (CUPs, miskonsepsi, segiempat.   ABSTRACT Mistakes in understanding the concept became one of the factors that led to misconceptions in mathematics. The misconceptions in plane shapes are caused by the way of learning of students who only memorize the basic form without understanding the relationship between the plane shapes and its properties. Efforts made in overcoming these misconceptions is to apply constructivist learning. One of the constructivist learning

  13. A study of sorption of cadmium by goethite in aqueous solution

    Directory of Open Access Journals (Sweden)

    N. Salami

    2002-06-01

    Full Text Available Investigation has been carried out on the potential of a locally sourced goethite for the removal of cadmium ion from aqueous solutions using batch equilibration technique. The maximum uptake of cadmium is 6.4  10-2 mg/g-goethite. The sorption kinetics appears to be rapid as equilibrium was attained within a period of 1 hour. The highest sorption capacity was obtained for particle size with diameter (Φ 0.09 mm. Both infrared spectrophotometric and X-ray diffraction (XRD techniques have also provided evidence for cadmium fixation on to the surface of the goethite. The sorption mechanism appears to follow Langmuir adsorption isotherm model. The Langmuir constants K and Xm (mass of Cd2+ required to form monolayer on the entire surface of the goethite were 0.096 mg/g-goethite and 0.075 mg/g-goethite, respectively.

  14. A conceptual model of political market orientation

    DEFF Research Database (Denmark)

    Ormrod, Robert P.

    2005-01-01

    . The remaining four constructs are attitudinal, designed to capture the awareness of members to the activities and importance of stakeholder groups in society, both internal and external to the organisation. The model not only allows the level of a party's political market orientation to be assessed, but also......This article proposes eight constructs of a conceptual model of political market orientation, taking inspiration from the business and political marketing literature. Four of the constructs are 'behavioural' in that they aim to describe the process of how information flows through the organisation...

  15. The NEA sorption data base (SDB)

    International Nuclear Information System (INIS)

    Ruegger, B.; Ticknor, K.

    1992-01-01

    The current NEA Sorption Data Base is developed to replace the former International Sorption Information Retrieval System (ISIRS) initiated at Pacific Northwest Laboratory and contains about 11,000 distribution coefficients with corresponding experimental condition parameters describing sorption of key nuclides for a large variety of solid and liquid phases. The SDB is designed to run on a micro-computer using the commercially available database software dBASE III Plus. For each recorded sorption experiment, the SDB provides a bibliographical reference, the most complete characterization of the solid and liquid phases available, a description of the experimental conditions and the distribution coefficient or retardation factor for each element studied. When available, parameters such as temperature, initial radionuclide concentration, pH, Eh, contact time, solid to solution ratio, sample origin, oxidation state and type of solution are included. The SDB provides information for a wide variety of rocks or geological materials, buffer backfill candidates, concretes/cements, elements (Am, Cs, Co, I, Np, Pu, Ra, Sr, Se, Tc, U and, to a lesser extent, Ag, Ba, C, Ce, Eu, Fe, Mn, Mo, Na, Nb, Ni, Pd, Pm, Ru, Sb, Sn, Y, Zn, and Zr), or radioisotopes. A compilation of sorption data like SDB provide a readily available source of data for radioactive waste repository performance assessments when site specific data are not available or essential, for example, during a site selection phase. 2 appendices

  16. Sorption of uranium and cesium by Hanford basalts and associated secondary smectite

    International Nuclear Information System (INIS)

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.; Salter, P.F.

    1982-01-01

    Three characterized basalts and an associated secondary smectite were used in comparative uranium and cesium sorption studies. Experiments utilizing two synthetic characteristic basalt groundwaters at 23 and 60 0 C allowed comparison of increased temperature and carbonate concentration effects on Cs and U sorption. The sorption data were fitted to the Dubinin-Radushkevich (D-R) isotherm, and loading maxima and energetics derived. An increase in temperature caused a decrease in Cs sorption maxima on all solids from all groundwaters studied and an increase in U sorption maxima, especially from the higher-carbonate-content groundwater. Sorption energies were characteristic of ion exchange for both Cs and U sorption processes. Basalt U sorption maxima were relatively insignificant, but smectite U sorption maxima surpassed Cs sorption maxima in both groundwaters at 60 0 C. The uranyl carbonate complexes thus may be relatively temperature-sensitive. Upon removal of excess Fe-oxides from the secondary smectite, U sorption decreased and the D-R isotherm reverted to a normal Freundlich sorption isotherm. Removal of excess Fe-oxides from the basalts and secondary smectite would probably result in Freundlich sorption isotherms for both Cs and U. (Auth.)

  17. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    Science.gov (United States)

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  18. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    Science.gov (United States)

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  19. The sorption behaviour of 99Tc on activated carbon

    International Nuclear Information System (INIS)

    Xia Deying; Zeng Jishu

    2004-01-01

    The sorption behaviour of 99 Tc on apricot-pit activated carbon with batch experiment is studied. The influence of such factors as sorbent particle size, temperature, pH value on sorption ratio, and the Freundlich sorption isotherms are reported in this paper. (author)

  20. A Conceptual Model of Technology Transfer for Public Universities in Mexico

    Directory of Open Access Journals (Sweden)

    Hugo Necoechea

    2013-12-01

    Full Text Available Technology transfer from academic and scientific institutions has been transformed into a strategic variable for companies and nations who wish to cope with the challenges of a global economy. Since the early 1970s, many technology transfer models have tried to introduce key factors in the process. Previous studies have shown that technology transfer is influenced by various elements. This study is based on a review of two recent technology transfer models that we have used as basic concepts for developing our own conceptual model. Researcher–firm networks have been considered as key elements in the technology transfer process between public universities and firms. The conceptual model proposed could be useful to improve the efficiency of existing technology transfer mechanisms.