WorldWideScience

Sample records for sorption behavior electronic

  1. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy.

    Science.gov (United States)

    Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey

    2018-05-10

    Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .

  2. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Natalia Pushilina

    2018-05-01

    Full Text Available Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85 on microstructure and hydrogen sorption behavior of electron beam melted (EBM Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA. Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH.

  3. Sorption behavior of neptunium on bentonite -- Effect of calcium ion on the sorption

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Muraoka, Susumu

    1995-01-01

    The sorption behavior of neptunium on bentonite was studied with batch type sorption and desorption experiments over a pH range of 2 to 8. A series of parallel studies using Na-smectite, Ca-smectite and admixtures of Na-smectite and calcite quantified the capacity of Ca 2+ (which occurs in bentonite as an exchangeable cation of smectite and as a component of calcite) to inhibit the sorption of neptunium. The distribution coefficient (K d ) of neptunium for bentonite was constant from pH 2 to 7, while for pure Na-smectite K d increased below pH 5 due to specific sorption of neptunium on Na-smectite. Specific sorption was defined as occurring when neptunium could be desorbed by a strong acid (1 M HCl) but was stable in the presence of 1 M KCl. It was found that the quantity of neptunium sorbed on Na-smectite was inversely proportional to the concentration of Ca 2+ in solution, an effect most pronounced at pH 2+ limits the specific sorption capacity of Na-smectite for neptunium. Similarly, in the mixture of Na-smectite and calcite, sufficient Ca 2+ was solubilized to depress neptunium sorption. This investigation demonstrates that Ca 2+ contained in bentonite as exchangeable cation and released from calcite reduces the specific sorption of neptunium

  4. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  5. Sorption behavior of thorium onto montmorillonite and illite

    International Nuclear Information System (INIS)

    Iida, Yoshihisa; Barr, Logan; Yamaguchi, Tetsuji; Hemmi, Ko

    2016-01-01

    Thorium (Th)-229 is one of the important radionuclides for the performance assessment calculations for high-level radioactive waste repositories. The sorption behavior of Th onto montmorillonite and illite were investigated by batch sorption experiments. Experiments were carried out under variable pH and carbonate concentrations. The sorbability of montmorillonite was higher than that of illite. Distribution coefficients, K d (m 3 kg -1 ), decreased with increased carbonate concentrations and showed the minimal value at around pH 10. The sorption behaviors of Th were analyzed by the non-electrostatic surface complex model with PHREEQC computer program. The model calculations were able to explain the experimental results reasonably well. The decreases of K d was likely due to the stabilization of aqueous species by hydroxo-carbonate complexations in the solutions. (author) [ja

  6. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    Science.gov (United States)

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  7. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  8. The sorption behavior of DDT onto sediment in the presence of surfactant cetyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Cao Xiaoyan; Han Huayu; Yang Guipeng; Gong Xiaofei; Jing Jianning

    2011-01-01

    Highlights: → The sorption behavior of a complex system consists of DDT and CTAB onto marine sediment was studied. → Batch experiments were carried out to investigate the kinetics and thermodynamics. → The presence of CTAB could remarkably accelerate and enhance the sorption of DDT. → The sorption of DDT had relatively more negative ΔG 0 and ΔH 0 in the presence of CTAB. - Abstract: The sorption behavior of p,p'- and o,p'-dichlorodiphenyltrichloroethane (DDT) in the presence of a cationic surfactant cetyltrimethylammonium bromide (CTAB) on sediment was studied. Batch experiments were carried out to investigate the kinetics and thermodynamics of the process. The kinetic behavior of these three chemicals on sediment was described by pseudo-second-order kinetic equations, and the isotherms followed the Freundlich model well. The presence of CTAB was able to remarkably accelerate and enhance the sorption of DDT, whereas DDT showed no effect on the sorption of CTAB in our considered concentration ranges. The thermodynamic parameters, such as standard enthalpy change (ΔH 0 ), standard entropy change (ΔS 0 ) and standard Gibbs free energy change (ΔG 0 ) showed that the sorption process of p,p'- and o,p'-DDT was physical, spontaneous and exothermic, and the randomness at the solid-liquid interface increased during the process. In the presence of CTAB, the sorption of DDT showed significantly negative ΔG 0 and ΔH 0 values.

  9. Sorption and desorption behaviors of diuron in soils amended with charcoal.

    Science.gov (United States)

    Yu, Xiang-Yang; Ying, Guang-Guo; Kookana, Rai S

    2006-11-01

    Charcoal derived from the partial combustion of vegetation is ubiquitous in soils and sediments and can potentially sequester organic contaminants. To examine the role of charcoal in the sorption and desorption behaviors of diuron pesticide in soil, synthetic charcoals were produced through carbonization of red gum (Eucalyptus spp.) wood chips at 450 and 850 degrees C (referred to as charcoals BC450 and BC850, respectively, in this paper). Pore size distribution analyses revealed that BC850 contained mainly micropores (pores approximately 0.49 nm mean width), whereas BC450 was essentially not a microporous material. Short-term equilibration (diuron in a soil amended with various amounts of charcoals of both types. The sorption coefficients, isotherm nonlinearity, and apparent sorption-desorption hysteresis markedly increased with increasing content of charcoal in the soil, more prominently in the case of BC850, presumably due to the presence of micropores and its relatively higher specific surface area. The degree of apparent sorption-desorption hystersis (hysteresis index) showed a good correlation with the micropore volume of the charcoal-amended soils. This study indicates that the presence of small amounts of charcoal produced at high temperatures (e.g., interior of wood logs during a fire) in soil can have a marked effect on the release behavior of organic compounds. Mechanisms of this apparent hysteretic behavior need to be further investigated.

  10. Radionuclide sorption behavior in particulate matter in near coastal marine environments

    International Nuclear Information System (INIS)

    Hansen, A.M.; Ortega-Lara, V.; Leckie, J.O.

    1997-01-01

    Full text: In order to evaluate the migration behavior of radioactive cesium and strontium while transported from continental aquatic systems to marine environments, the sorption behaviors for these metals were evaluated in several different environments. Laboratory experiments using radioactive tracers, and equilibrium as well as time dependent modeling were used to evaluate and quantify the distribution of the two elements as a function of element chemistry, solid substrate characteristics and solution composition. The experimental conditions reflected salinities ranging from those found in rivers and lakes through estuaries to the ocean. Adsorption constants were obtained for strontium in natural sediments from these aquatic environments. The strontium specification was evaluated in solution as well as in the adsorbed state. Sorption of strontium occurred mainly as outer sphere complexes. Major cations, ligands (soluble and particulate), ionic strength, and pH were among parameters that affected the distribution of cesium and strontium between adsorbed and dissolved forms. Time-dependent sorption behaviors were observed under study dissolved salt and suspended sediment conditions. Desorption occurred to some degree for all sediment types. Cesium was exchanged with potassium and sodium in clay minerals and was therefore less desorbed than would be expected. The results allowed the description of migration behaviors of two important pollutants from the atomic energy industry

  11. Sorption behavior of cesium on various soils under different pH levels

    International Nuclear Information System (INIS)

    Giannakopoulou, F.; Haidouti, C.; Chronopoulou, A.; Gasparatos, D.

    2007-01-01

    In the present study we investigated the sorption behavior of Cs in four different soils (sandyloam, loam, clayloam and clay) by using batch experiment. Cs sorption characteristics of the studied soils were examined at 4 mg L -1 Cs concentration, at various pH levels, at room temperature and with 0.01 M CaCl 2 as a background electrolyte. Among different soils the decrease of k d (distribution coefficient) of cesium, at all pH levels, followed the sequence sandyloam > loam > clayloam > clay, indicating that the particle size fractions and especially the clay content plays predominant role on sorption of Cs. The effect of pH on cesium sorption displays a similar pattern for all soils, depending on soil type. At acid pH levels less cesium was sorbed, due to a greater competition with other cations for available sorption sites. The maximum sorption of Cs was observed at pH 8, where the negative charge density on the surface of the absorbents was the highest. For all soils was observed significantly lower Cs sorption at pH 10

  12. Behavior of Cs in Grimsel granodiorite. Sorption on main minerals and crushed rock

    Energy Technology Data Exchange (ETDEWEB)

    Muuri, Eveliina; Ikonen, Jussi; Matara-aho, Minja; Voutilainen, Mikko; Siitari-Kauppi, Marja [Helsinki Univ. (Finland). Dept. of Chemistry; Lindberg, Antero [Geological Survey of Finland, Espoo (Finland); Holgersson, Stellan [Chalmers University of Technology, Goeteborg (Sweden). Dept. of Chemical and Biological Engineering, Nuclear Chemistry; Martin, Andrew [Nagra (National Cooperative for the Disposal of Radioactive Waste), Wettingen (Switzerland)

    2016-11-01

    In this study the sorption of cesium was investigated on four different minerals; quartz, plagioclase, potassium feldspar and biotite as well as granodiorite obtained from the Grimsel test site in Switzerland. The experiments were conducted in the presence of the weakly saline Grimsel groundwater simulant by determining the distribution coefficients using batch sorption experiments and PHREEQC-modelling across a large concentration range. In addition, the purity of the minerals was measured by XRD and the specific surface areas by BET method using krypton. The distribution coefficients of cesium were largest on biotite (0.304±0.005 m{sup 3}/kg in 10{sup -8} M). Furthermore, the sorption of cesium on quartz was found to be negligibly small in all investigated concentrations and the sorption of cesium on potassium feldspar and plagioclase showed similar behavior against a concentration isotherm with distribution coefficients of 0.0368±0.0004 m{sup 3}/kg and 0.18±0.04 m{sup 3}/kg in 10{sup -8} M. Finally, cesium sorption behavior on crushed granodiorite followed the trend of one of its most abundant mineral, plagioclase with distribution coefficient values of 0.107±0.003 m{sup 3}/kg in 10{sup -8} M. At low concentrations (<1.0.10{sup -6} M) cesium was sorbed on the frayed edge sites of biotite and once these sites are fully occupied cesium sorbs additionally to the Type II and Planar sites. As a consequence, the sorption of cesium on biotite is decreased at concentrations >1.0.10{sup -6} M. Secondly cesium sorption on potassium feldspar and plagioclase showed similar non-linear behavior with varying concentration. The results were used to assist the interpretation of cesium diffusion process in the 2.5 year in-situ experiment carried out in the underground laboratory at Grimsel test site in Switzerland (2007-2009).

  13. Behavior of Samarium III during the sorption process

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia G, N.; Garcia R, G.

    2004-01-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  14. Migration behavior and sorption mechanisms of radionuclides in sedimentary sand stones

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Kamiyama, Hideo; Sriyotha, K.

    1993-05-01

    The influence of crushed particle size and weathering of sedimentary rock on migration behavior and sorption mechanisms of 60 Co, 85 Sr and 137 Cs has been investigated by using the fresh sand stones (classified into two particle size ranges of 1 ∼ 3 mm and 2 , KCl, NH 2 OH-HCl, K-oxalate and H 2 O 2 solutions were carried out, to elucidate their dominated sorption mechanisms. Distribution coefficient values of the all three radionuclides, Kds, for the sand stone of 1 ∼ 3 mm was smaller than that of 85 Sr, and the same irreversible sorptions as the selective sorption of Co onto manganese oxides and fixation of Cs by the layer silicate for 60 Co and 137 Cs, respectively. Larger sorbability of the weathered sand stone was explained to be related to an increase of amounts of the effective sorption site, such as cation exchangeable site, calcite, smectite and manganese oxides, which was possibly caused from metamorphism induced by weathering the fresh sand stone. (author)

  15. Sorption behavior of nonylphenol (NP) on sewage-irrigated soil: Kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Liao, Xiaoping; Zhang, Caixiang; Yao, Linlin; Li, Jiale; Liu, Min; Xu, Liang; Evalde, Mulindankaka

    2014-01-01

    The reuse of wastewater for irrigation of agricultural land is a well established resources management practice but has the disadvantage of inputting various forms of contaminants into the terrestrial environment including nonylphenol (NP), a well known endocrine disrupting substance. To elucidate the environmental fate and transport of NP, the sorption behavior on sewage-irrigated soil was studied by batch experiment. It was found that sorption processes of NP on different sorbents (soil, humic acid (HA) and silica) could be expressed well using two compartment pseudo first-order model, where both surface and intra-particle diffusion were probable rate-controlling processes. Linear model could better express the sorption of NP on soil, black carbon (BC) and mineral (e.g., SiO 2 ) except HA than Freundlich model. The large value of distribution coefficients of normalized organic carbon (K oc ) on soils indicated that NP was limited to migrate to deep soil. The higher desorption partition coefficient of NP on soil showed enhanced hysteresis. According to the experimental data, the calculated thermodynamic parameters implied that the sorption reaction on sewage-irrigation was spontaneous, exothermic and entropy decreasing process. The amount of soil organic matter (SOM) dominated the sorption capacity, whereas the sorption behavior of NP on soil showed no significant correlation with ionic strength. - Highlights: • Both surface and intra-particle diffusion were rate-controlling processes. • Soil composition influences the partition activity of NP. • Soil organic matter has dominated the sorption capacity of NP on soil. • NP molecule was limited to migrate to deep soil in sewage-irrigated area

  16. Comparative sorption and desorption behaviors of PFHxS and PFOS on sequentially extracted humic substances

    Institute of Scientific and Technical Information of China (English)

    Lixia Zhao; Yifeng Zhang; Shuhong Fang; Lingyan Zhu; Zhengtao Liu

    2014-01-01

    The sorption and desorption behaviors of two perfluoroalkane sulfonates (PFSAs),including perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) on two humic acids (HAs) and humin (HM),which were extracted from a peat soil,were investigated.The sorption kinetics and isotherms showed that the sorption of PFOS on the humic substances (HSs) was much higher than PFHxS.For the same PFSA compound,the sorption on HSs followed the order of HM > HA2 > HA1.These suggest that hydrophobic interaction plays a key role in the sorption of PFSAs on HSs.The sorption capacities of PFSAs on HSs were significantly related to their aliphaticity,but negatively correlated to aromatic carbons,indicating the importance of aliphatic groups in the sorption of PFSAs.Compared to PFOS,PFHxS displayed distinct desorption hysteresis,probably due to irreversible pore deformation after sorption of PFHxS.The sorption of the two PFSAs on HSs decreased with an increase in pH in the solution.This is ascribed to the electrostatic interaction and hydrogen bonding at lower pH.Hydrophobic interaction might also be stronger at lower pH due to the aggregation of HSs.

  17. Sorption behavior of Sn(II) onto Haro river sand from aqueous acidic solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Khurshid, S.J.

    1999-01-01

    The sorption behavior of Sn(II) onto Haro river sand has been examined with respect to nature of electrolyte, agitation time, dosage of sorbent and concentration of sorbate. Maximum sorption (95.5%) has been achieved from 0.034M hydrochloric acid solution after equilibrating sorbate (2 x 10 -5 M) and sorbent (50 mg) for 120 minutes at a V/W ratio of 90 cm 3 x g -1 . The kinetic data have been subjected to Morris-Weber and Lagergren equations. The kinetics of sorption proceeds a two stage process consisting of a relatively slow initial uptake followed by a much rapid increase in the sorption. The rate constant of intraparticle transport, K d , comes out to be 8.75 x 10 -8 mol x g -1 x min -1/2 and the first order rate constant for sorption is 0.0416 min -1 . The sorption data of Sn(II) onto Haro river sand followed Langmuir, Freundlich and Dubinin-Radushkevich (D-R) type isotherms. The Langmuir constant, Q, related to sorption capacity and, b, related to sorption energy are computed to be 10.6±1.1 μmol x g -1 and 1123±137 dm 3 x mol -1 , respectively. The D-R isotherm yields the values of C m = 348±151 μmol x g -1 and β = -0.01044±0.0008 mol 2 x kJ -2 and of E = 6.9±0.3 kJ x mol -1 . In all three isotherms correlation factor (γ) is ≥ 0.99. The influence of common anions and cations on the sorption has been investigated. Zn(II), Mg(II), oxalate, Pb(II), Mn(II) and tartrate reduce the sorption significantly whereas Fe(II) causes substantial increase in the sorption. (author)

  18. Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers

    NARCIS (Netherlands)

    Raaijmakers, Michiel; Ogieglo, Wojciech; Wiese, M.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2015-01-01

    Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally

  19. Investigation of solution chemistry effects on sorption behavior of radionuclide 64Cu(II) on illite

    International Nuclear Information System (INIS)

    Shitong Yang; Guodong Sheng; Zhiqiang Guo; Yubing Sun; Donglin Zhao

    2011-01-01

    In this work, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances and temperature on the sorption behavior of illite towards 64 Cu(II). The results indicated that 64 Cu(II) sorption on illite achieved equilibrium quickly. The pH- and ionic strength-dependent sorption suggested that 64 Cu(II) sorption on illite was dominated by ion exchange or outer-sphere surface complexation at pH 7. A positive effect of humic substances on 64 Cu(II) sorption was found at pH 6.5. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 64 Cu(II) at three different temperatures of 293, 313, and 333 K. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) of 64 Cu(II) sorption on illite were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption of 64 Cu(II) on illite was endothermic and spontaneous. From the experimental results, it is possible to conclude that illite has good potentialities for cost-effective treatments of 64 Cu(II)-contaminated wastewaters. (author)

  20. Sorption behavior of cobalt on manganese dioxide, smectite and their mixture

    International Nuclear Information System (INIS)

    Ohnuki, T.; Kozai, N.

    1995-01-01

    The sorption behavior of cobalt on manganese dioxide, the clay mineral smectite and mixtures of the two was studied by batch type sorption/desorption experiments at neutral pH. Sorption behavior was examined by sequential extraction, in which the sorbents were contacted first with a 1 M CH 3 COONH 4 solution and then with a hydroxylamine solution (NH 2 OH of 1 M with 25 weight % CH 3 COOH). More than 70% of the sorbed cobalt was desorbed from smectite with a 1 M CH 3 COONH 4 solution: about 15% of the cobalt remained on the smectite after treatment with the hydroxylamine solution. Less than 1% of the remaining cobalt was desorbed from manganese dioxide with a 1 M CH 3 COONH 4 solution; with the hydroxylamine solution, all was desorbed. In mixtures of MnO 2 and smectite that were formulated to sorb equal amounts of cobalt regardless of the MnO 2 /smectite ratio in the mixture, less than 5% of the sorbed cobalt was desorbed by treatment with 1 M CH 3 COONH 4 . The fraction of the cobalt desorbed by treatment with the hydroxylamine solution increased with increased MnO 2 in the mixtures. The fraction of the cobalt sorbed on MnO 2 in the mixture was estimated from the desorption experiments. The results showed that higher fractions were sorbed onto MnO 2 than were estimated by the weighted averages of distribution coefficients for MnO 2 and smectite. Therefore, in minerals of the mixture, manganese dioxide is a more important component than smectite for the sorption of cobalt. (orig.)

  1. Sorption and diffusion behavior of palladium in bentonite, granodiorite and tuff

    International Nuclear Information System (INIS)

    Tachi, Yukio; Shibutani, Tomoki; Sato, Haruo; Shibata, Masahiro

    1999-06-01

    Sorption and diffusion behavior palladium, which has been identified as one of the hazardous radionuclides in performance assessment of HLW disposal, in bentonite, granodiorite and tuff was studied in order to make reliable data set for the performance assessment. Sorption experiments of Pd on bentonite, granodiorite and tuff were conducted as functions of pH, ionic strength and liquid to solid ratio by batch method under aerobic conditions at room temperature. The distribution coefficients(K d ) of Pd on these solids were almost in the range of 10 -1 to 10 2 m 3 /kg and were in the order of bentonite > granodiorite ≅ tuff. The sorption trends with change in pH, ionic strength and liquid to solid ratio are very similar between three solids. The K d values were the highest pH 5 and decreased with increasing pH between 5 and 11. The effect of ionic strength on K d was not found in a range of 10 -2 to 10 -1 , but K d values increased with increasing liquid to solid ratio. The width of variation in K d was one order of magnitude in a liquid to solid ratio of 0.1 to 1 m 3 /kg. Sorption behavior of Pd is different from that of divalent metal ions such as Ni and Co etc. and chemical analogy may be inappropriate. The dominant aqueous species of Pd in the experimental conditions studied is estimated to be neutral species, Pd(OH) 2 (aq) by the thermodynamic calculations. The K d values of Pd on three solids were relatively high and uncharged complexes may be more strongly sorbed. The pH dependency of K d values suggests that Pd sorption is most likely to be occurring onto positively charged S-OH 2 2 type site which are progressively removed (to form SOH and SO - sites) at higher pH values. Diffusion behavior of Pd in bentonite was also studied by in-diffusion method as a function of dry density. The D a values obtained based on the instantaneous planar source model were in the orders of 10 -13 to 10 -12 m 2 /s and decreased with increasing dry density of bentonite. The K d

  2. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging.

    Science.gov (United States)

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H

    The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/ n exponents, and K d values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

  3. Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers.

    Science.gov (United States)

    Raaijmakers, Michiel J T; Ogieglo, Wojciech; Wiese, Martin; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck E

    2015-12-09

    Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompanied by dilation, or swelling, of the polymer material. In turn, this dilation can result in penetrant induced plasticization and physical aging that affect the nonequilibrium status of the polymer. Here, we investigate the dilation and sorption behavior of ultrathin membrane layers of a hybrid inorganic-organic network material that consists of alternating polyhedral oligomeric silsesquioxane and imide groups, upon exposure to compressed carbon dioxide and methane. The imide precursor contains fluoroalkene groups that provide affinity toward carbon dioxide, while the octa-functionalized silsesquioxane provides a high degree of cross-linking. This combination allows for extremely high sorption capacities, while structural rearrangements of the network are hindered. We study the simultaneous uptake of gases and dilation of the thin films at high pressures using spectroscopic ellipsometry measurements. Ellipsometry provides the changes in both the refractive index and the film thickness, and allows for accurate quantification of sorption and swelling. In contrast, gravimetric and volumetric measurements only provide a single parameter; this does not allow an accurate correction for, for instance, the changes in buoyancy because of the extensive geometrical changes of highly swelling films. The sorption behavior of the ultrathin hybrid layers depends on the fluoroalkene group content. At low pressure, the apparent molar volume of the gases is low compared to the liquid molar volume of carbon dioxide and methane, respectively. At high gas concentrations in the polymer film, the apparent molar volume of carbon dioxide and methane exceeds that of the liquid molar volume, and

  4. Sorption Behavior of Strontium-85 Onto Colloids of Silica and Smectite

    International Nuclear Information System (INIS)

    Lu, N.; Triay, I.R.; Mason, C.F.V.; Longmire, P.A.

    1998-01-01

    Strontium-90 is one of the sizable radioactive contaminants found in DP Canyon at Los Alamos, New Mexico. Radioactive surveys found the 90 Sr is present in surface and groundwater in DP Canyon and Los Alamos Canyon. Colloids may influence the transport of this radionuclide in surface water and groundwater environments in both canyons. In this study, we investigated the sorption/desorption behavior of Sr on colloids of smectite and silica. Laboratory batch sorption experiments were conducted using 85 Sr as a surrogate to 90 Sr. Groundwater, collected from DP Canyon and from Well J-13 at Yucca Mountain, Nevada, and deionized water were used in this study. Our results show that 92% to 100% of 85 Sr was rapidly adsorbed onto smectite colloids in all three waters. The concentrations of Ca 2+ significantly influence the adsorption of 85 Sr onto silica colloids. Desorption of 85 Sr from smectite colloids is much slower than the sorption process. Desorption of 85 Sr from silica colloids was rapid in DP groundwater and slow using J-13 groundwater and deionized water

  5. Sorption and diffusion behavior of palladium in bentonite, granodiorite and tuff

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Yukio; Shibutani, Tomoki; Sato, Haruo [Radiochemistry Group, Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Shibata, Masahiro [Barrier Performance Group, Waste Isolation Research Division, Waste Management and Fuel Cycle Research Center, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    1999-06-01

    Sorption and diffusion behavior palladium, which has been identified as one of the hazardous radionuclides in performance assessment of HLW disposal, in bentonite, granodiorite and tuff was studied in order to make reliable data set for the performance assessment. Sorption experiments of Pd on bentonite, granodiorite and tuff were conducted as functions of pH, ionic strength and liquid to solid ratio by batch method under aerobic conditions at room temperature. The distribution coefficients(K{sub d}) of Pd on these solids were almost in the range of 10{sup -1} to 10{sup 2} m{sup 3}/kg and were in the order of bentonite > granodiorite {approx_equal} tuff. The sorption trends with change in pH, ionic strength and liquid to solid ratio are very similar between three solids. The K{sub d} values were the highest pH 5 and decreased with increasing pH between 5 and 11. The effect of ionic strength on K{sub d} was not found in a range of 10{sup -2} to 10{sup -1}, but K{sub d} values increased with increasing liquid to solid ratio. The width of variation in K{sub d} was one order of magnitude in a liquid to solid ratio of 0.1 to 1 m{sup 3}/kg. Sorption behavior of Pd is different from that of divalent metal ions such as Ni and Co etc. and chemical analogy may be inappropriate. The dominant aqueous species of Pd in the experimental conditions studied is estimated to be neutral species, Pd(OH){sub 2}(aq) by the thermodynamic calculations. The K{sub d} values of Pd on three solids were relatively high and uncharged complexes may be more strongly sorbed. The pH dependency of K{sub d} values suggests that Pd sorption is most likely to be occurring onto positively charged S-OH{sub 2}{sup 2} type site which are progressively removed (to form SOH and SO{sup -} sites) at higher pH values. Diffusion behavior of Pd in bentonite was also studied by in-diffusion method as a function of dry density. The D{sub a} values obtained based on the instantaneous planar source model were in the

  6. Sorption and migration of neptunium in porous sedimentary materials

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki; Nakayama, Shinichi

    2005-01-01

    Column migration experiments of neptunium were conducted for porous sedimentary materials: coastal sand, tuffaceous sand, ando soil, reddish soil, yellowish soil and loess, and migration behavior, sorption mechanisms and chemical formation of Np were investigated. The migration behavior of Np in each material was much different each other, due to chemical formation in solution and/or sorption mechanism of Np. Mathematical models of different concepts were applied to the experimental results to interpret the sorption mechanism and the migration behavior. It can be concluded that both of instantaneous equilibrium sorption and sorption-desorption kinetics have to be considered to model the Np migration in sedimentary materials. (author)

  7. CHARACTERIZING SOIL/WATER SORPTION AND DESORPTION BEHAVIOR OF BTEX AND PAHS USING SELECTIVE SUPERCRITICAL FLUID EXTRACTION (SFE); TOPICAL

    International Nuclear Information System (INIS)

    Steve Hawthorne

    1998-01-01

    The first goal of the proposed study was to generate initial data to determine the ability of selective SFE behavior to mimic the soil/water sorption and desorption behavior of BTEX (benzene, toluene, and xylenes) and PAHs (polycyclic aromatic hydrocarbons).Samples generated by Professor Bill Rixey's column sorption studies (aged for 2 weeks to 8 months) and desorption studies (six weeks desorption of the aged soil columns with pure water) were extracted using sequentially-stronger SFE conditions to selectively remove different fractions of each BTEX and PAH component which range from loosely to tightly bound in the soil matrices. The selective SFE results parallel the sorption/desorption leaching behavior and mechanisms determined by Professor Rixey's investigations (under separate funding) using water desorption of soil columns previously aged with BTEX and PAHs. These results justify more intensive investigations of the use of selective SFE to mimic soil/water sorption and desorption of organic pollutants related to fossil fuels which will be performed under separate funding. The second goal of the study was to determine if selective SFE extraction behavior parallels the remediation behavior displayed by PAHs currently undergoing in-situ bioremediation at a manufactured gas plant (MGP) site. Based on soil analyses of several individual PAHs (as well as total PAHs) before remediation began, and after 147 days of remediation, selective SFE successfully mimicked remediation behavior. These results strongly support the use of selective SFE to predict remediation behavior of soils contaminated with PAHs, and are expected to provide a powerful and rapid analytical tool which will be useful for determining the remediation endpoints which are necessary for environmental protection. Based on the initial success found in the present study, additional investigations into the use of SFE for predicting and monitoring the remediation behavior of PAH-contaminated soils will be

  8. Application of simplified desorption method to sorption study. (2) Sorption of neptunium (V) on montmorillonite-based mixtures

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko

    2013-01-01

    To elucidate the sorption behaviors of radionuclides in multi-mineral systems and the mutual effects of minerals on the sorption, this paper carried out the sorption and desorption experiments of neptunium(V) on montmorillonite-based two-mineral mixtures. The Np sorbed on montmorillonite at pH from 4 to 8 was desorbed with 1M KCl solutions, indicating that the sorption was cation exchange. The Np sorbed on apatite and calcite was nondesorbable with 1M KCl solutions, which is in harmony with the knowledge that Np forms strong complexes with the phosphate groups of apatite and the carbonate groups of calcite. This study utilized these clear distinguishes of the desorption behaviors for examining the two-mineral systems. In montmorillonite-apatite mixtures, the sorption on the montmorillonite was decreased and Np was accumulated on the apatite. In montmorillonite-calcite mixtures, the sorption on the montmorillonite was decreased due to the interference by the calcium and carbonate ions dissolved from calcite while no accumulation of Np to calcite was observed. (author)

  9. The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media.

    Science.gov (United States)

    Giti, Rashin; Vojdani, Mahroo; Abduo, Jaafar; Bagheri, Rafat

    2016-06-01

    Structural integrity and dimensional stability are the key factors that determine the clinical success and durability of luting cements in the oral cavity. Sorption and solubility of self-adhesive resin luting cements in food-simulating solutions has not been studied sufficiently. This study aimed to compare the sorption and solubility of 2 conventional and 2 self-adhesive resin-based luting cements immersed in four different storage media. A total of 32 disc-shaped specimens were prepared from each of four resin luting cements; seT (SDI), Panavia F (Kuraray), Clearfil SA Cement (Kuraray), and Choice 2 (Bisco). Eight specimens of each material were immersed in all tested solutions including n-heptane 97%, distilled water, apple juice, or Listerine mouth wash. Sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed by SPSS version 18, using two-way ANOVA and Tukey's HSD test with p≤ 0.05 set as the level of significance. There was a statistically significant interaction between the materials and solutions. The effect of media on the sorption and solubility was material-dependent. While seT showed the highest values of the sorption in almost all solutions, Choice 2 showed the least values of sorption and solubility. Immersion in apple juice caused more sorption than other solutions (p≤ 0.05). The sorption and solubility behavior of the studied cements were significantly affected by their composition and the storage media. The more hydrophobic materials with higher filler content like Choice 2 resin cement showed the least sorption and solubility. Due to their lower sorption and solubility, these types of resin-based luting cements are recommended to be used clinically.

  10. Sorption of humic acid to functionalized multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Fei; Yao, Jun; Chen, Huilun; Yi, Zhengji; Xing, Baoshan

    2013-01-01

    The environmental behavior of carbon nanotubes (CNTs) and humic acid (HA) is a prominent concern, but effect of functionalities on their sorption is not clear yet. Functionalized multi-walled CNTs (MCNT15) and HA were used to study their sorption behavior. Sorption rate of HA to MCNTs was dominantly controlled by its diffusion from liquid-MCNT boundary to MCNT surfaces. The sorption is in the sequence of MCNT15 > MCNT15-NH 2 > MCNT15-OH > MCNT15-COOH > MCNT15-Ni, which was dependent on their surface area and meso- and macro-pore volume. The functionalities of MCNTs regulated the sorption by affecting their interaction mechanisms (i.e., H-bonding, π–π, and hydrophobic interaction). Additionally, the amount of these functionalities on the MCNT surface reduced indirectly the sorption sites due to the steric hindrance. Electrostatic repulsion deceased the sorption of HA by MCNTs with increasing pH. This study demonstrated the importance of functionalities on the MCNTs for the sorption of HA. -- Highlights: •HA sorption kinetics was well fitted using Lagergren pseudo second-order model. •Sorption rate of HA was controlled by diffusion from liquid-MCNT boundary to MCNT surfaces. •Sorption was dependent on their surface area and meso- and macro-pore volume. •Functionalities of MCNTs regulated the sorption by affecting interaction mechanisms. -- The functionalities of MCNTs regulated the sorption behavior between MCNTs and HA

  11. Sorption and desorption of remazol yellow by a Fe-zeolitic tuff

    International Nuclear Information System (INIS)

    Solache R, M. J.; Villalva C, R.; Diaz N, M. C.

    2010-01-01

    The adsorption of remazol yellow from aqueous solution was evaluated using a Fe-zeolitic tuff. The adsorbent was characterized by scanning electron microscopy, IR spectroscopy and X-ray diffraction. Sorption kinetic and isotherms were determined and the adsorption behavior was analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results, indicating chemisorption on a heterogeneous material. The regeneration of the material was best accomplished by using a H 2 O 2 solution. The sorption capacity of the Fe-zeolitic tuff increased when the saturated samples were treated with a H 2O2 or FeCl 3 solution. (Author)

  12. Sorption and desorption of remazol yellow by a Fe-zeolitic tuff

    Energy Technology Data Exchange (ETDEWEB)

    Solache R, M. J. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Villalva C, R.; Diaz N, M. C., E-mail: marcos.solache@inin.gob.m [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico)

    2010-07-01

    The adsorption of remazol yellow from aqueous solution was evaluated using a Fe-zeolitic tuff. The adsorbent was characterized by scanning electron microscopy, IR spectroscopy and X-ray diffraction. Sorption kinetic and isotherms were determined and the adsorption behavior was analyzed. Kinetic pseudo-second order and Langmuir-Freundlich models were successfully applied to the experimental results, indicating chemisorption on a heterogeneous material. The regeneration of the material was best accomplished by using a H{sub 2}O{sub 2} solution. The sorption capacity of the Fe-zeolitic tuff increased when the saturated samples were treated with a H{sub 2O2} or FeCl{sub 3} solution. (Author)

  13. Neptunium redox behavior and sorption onto goethite and hematite in the presence of humic acids with different hydroquinone content

    International Nuclear Information System (INIS)

    Khasanova, A.B.; Kalmykov, St.N.; Perminova, I.V.; Clark, S.B.

    2007-01-01

    The effect of humic acids (HA) on neptunium redox behavior and sorption onto hematite, α-Fe 2 O 3 , and goethite, α-FeOOH, colloids was established in batch sorption experiments that were carried out in broad pH interval. The sorption isotherms were provided for two samples of HA: commercial sample of leonardite humic acid and its hydroquinone-enriched derivative obtained using formaldehyde copolycondensation. The distribution of Np fitted the distribution of hydroquinone-enriched HA at low pH values in case of both solids while the influence of parent HA on Np sorption was negligible. This is due to Np(V) reduction upon interaction with hydroquinone-enriched derivative having higher reducing capacity compared to the parent HA. The order of components addition was found to be significant for Np retention

  14. Sorption behavior of cesium, cobalt and europium radionuclides onto hydroxyl magnesium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Mostafa M.; Holiel, M.; Ahmed, I.M. [Atomic Energy Authority, Cairo (Egypt). Hot Laboratories and Waste Management Center

    2016-07-01

    The radioactive wastes from different activities have to be safely disposed of and isolated from the human environment. The retardation of radioactive materials by designed barriers is originally controlled by the sorption ability of the mineral compositions. In this work, a naturally available mineral composite, a hydroxyl magnesium silicate (HMS) was investigated as potential natural inorganic sorbent for the retention of long-lived radionuclides ({sup 134}Cs, {sup 60}Co and {sup 152+154}Eu) from aqueous solutions. The factors affecting the sorption process, such as contact time and pH were evaluated. Furthermore X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential thermal and thermogravimetry analyses (DTA/TGA) measurements were examined in order to assess the physicochemical properties of the magnesium silicate mineral. Langmuir and Freundlich isotherms fitted the result s substantially better than the Flory-Huggins isotherm and the sorption was found to follow pseudo-first order kinetic model. The proposed mineral has been successfully applied for the sorption of {sup 134}Cs, {sup 60}Co and {sup 152+154}Eu radionuclides from real radioactive waste. The results indicated that about 97.4-99% of {sup 134}Cs, {sup 60}Co and {sup 152+154}Eu radionuclides were efficiently retained onto the HMS mineral. Based on the results obtained, it can be concluded that the HMS mineral is an economic and efficient retaining material for environmental hazardous migration and/or leakage of some radionuclides such as {sup 134}Cs, {sup 60}Co and {sup 152+154}Eu and trivalent actinide ({sup 241}Am, {sup 242m}Am and {sup 243}Am) ions. Therefore, this study could be used as a starting point to establish and consider that mineral as an engineered barrier around the disposal facilities at the nuclear activity centres.

  15. Neptunium(V) sorption on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Amayri, S.; Jermolajev, A.; Reich, T. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2011-07-01

    The sorption behavior of neptunium(V) onto the clay mineral kaolinite was studied in batch experiments under different experimental conditions: [Np(V)] = 7 x 10{sup -12}-8 x 10{sup -6} M, solid-to-liquid ratio 2-20 g L{sup -1}, I = 0.1 and 0.01 M NaClO{sub 4}, pH = 6-10, ambient air and Ar atmosphere. The short-lived isotope {sup 239}Np (T{sub 1/2} = 2.36 d) was used instead of {sup 237}Np (T{sub 1/2} = 2.14 x 10{sup 6} a) to study the sorption behavior of Np(V) at environmentally-relevant concentrations, i.e., 7 x 10{sup -12} M Np. In addition, {sup 239}Np(V) served as tracer to measure sorption isotherms over six orders of magnitude in Np concentration (4.8 x 10{sup -12}-1.0 x 10{sup -4} M). The results show that Np(V) sorption on kaolinite is strongly influenced by pH, CO{sub 2}, and ionic strength. The sorption of 8 x 10{sup -6} M Np(V) at pH 9.0, and ionic strength of 0.1 M NaClO{sub 4} was proportional to the solid-to-liquid ratio of kaolinite in the range of 2-10 g L{sup -1}. In the absence of CO{sub 2}, the Np(V) uptake increased continuously with increasing pH value up to 97% at pH 10. Under ambient CO{sub 2}, the sorption of Np decreased above pH 8 up to zero at pH 10. An increase of Np(V) concentration from 7 x 10{sup -12} to 8 x 10{sup -6} M resulted in a shift of the sorption pH edge by up to one pH unit to higher pH values. The ionic strength influenced the Np(V) sorption onto kaolinite only in the presence of ambient CO{sub 2}. Under Ar atmosphere the sorption of Np(V) was independent from ionic strength, indicating the formation of inner-sphere complexes of Np(V) with kaolinite. Time-dependent batch experiments at pH 9.0 under ambient CO{sub 2} showed that the sorption of Np(V) on kaolinite is fast and fully reversible over six orders in Np(V) concentration. (orig.)

  16. Understanding mechanisms to predict and optimize biochar for agrochemical sorption

    Science.gov (United States)

    Hall, Kathleen; Gámiz, Beatriz; Cox, Lucia; Spokas, Kurt; Koskinen, William

    2017-04-01

    The ability of biochars to bind various organic compounds has been widely studied due to the potential effects on pesticide fate in soil and interest in the adoption of biochar as a "low-cost" filter material. However, the sorptive behaviors of biochars are extremely variable and much of the reported data is limited to specific biochar-chemical interactions. The lack of knowledge regarding biochar sorption mechanisms limits our current ability to predict and optimize biochar's use. This work unveils mechanistic drivers of organic pesticide sorption on biochars through targeted alteration of biochar surface chemistry. Changes in the quantity and type of functional groups on biochars and other black carbon materials were achieved through treatments with H2O2, and CO2, and characterized using Fourier transform infrared spectroscopy and scanning electron microscope (SEM/EDX). The sorption capacities of these treated biochars were subsequently measured to evaluate the effects of different surface moieties on the binding of target herbicides cyhalofop acid ((R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionic acid) and clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-1,2-oxazolidin-3-one). Sorption of both herbicides on the studied biochars increased following H2O2 activation; however, the influence of the H2O2 activation on sorption was more pronounced for cyhalofop acid (pKa = 3.9) than clomazone, which is non-ionizable. Increased cyhalofop acid sorption on H2O2 treated biochars can be attributed to the increase in oxygen containing functional groups as well as the decrease in biochar pH. In contrast, CO2 activation reduced the sorption of cyhalofop acid compared to untreated biochar. FTIR data suggest the reduced sorption on CO2 -treated biochar was due to the removal of surface carboxyl groups, further supporting the role of specific functionality in the sorption of ionizable herbicides. Results from this work offer insight into the mechanisms of sorption and

  17. Silylation of leached-vermiculites following reaction with imidazole and copper sorption behavior

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Saloana S.G.; Pereira, Mariana B.B. [Chemistry Department of Paraíba Federal University, João Pessoa, Paraíba (Brazil); Almeida, Ramon K.S. [Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13083-970 Campinas, São Paulo (Brazil); Souza, Antônio G. [Chemistry Department of Paraíba Federal University, João Pessoa, Paraíba (Brazil); Fonseca, Maria G., E-mail: mgardennia@quimica.ufpb.br [Chemistry Department of Paraíba Federal University, João Pessoa, Paraíba (Brazil); Jaber, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d' archéologie moléculaire et structurale (LAMS), Boîte courrier 225, 4 place Jussieu, 75005 Paris (France)

    2016-04-05

    Highlights: • Silylated vermiculites reacted covalently with imidazole. • Modified vermiculites adsorbed copper from aqueous solution. • Copper retention in all solids occurred at rapid time of 80 min. • Higher organic content on the solid improved the copper adsorption. - Abstract: Organically modified vermiculites were synthesized by previous silylation of three leached vermiculites, V0.3Cl, V0.5Cl and V0.8Cl, under anhydrous conditions following reaction with imidazole (Im), which acted as chelating agent for copper retention. Elemental analysis, X-ray diffraction, infrared spectroscopy, scanning electronic microscopy, transmission electron microscopy, {sup 29}Si and {sup 13}C NMR and nitrogen adsorption/desorption measurements were used to characterize pristine, leached and organofunctionalized solids. X-ray photoelectron spectroscopy (XPS) was used to evaluate the surface after copper sorption. Parameters such as contact time, pH and initial cation concentration for the adsorption of Cu(II) ions were investigated. The adsorption equilibrium data were fitted using the Langmuir isotherm model and the monolayer adsorption capacities were 2.38, 2.52 and 2.69 mmol g{sup −1} for V0.5Cl-Im, V0.3Cl-Im and V0.8Cl-Im, respectively, at pH 6.0 and 298 K for a time reaction of 80 min. The sorption rates were described by pseudo-second-order kinetics. The chloropropyl imidazole vermiculites are promising adsorbents for the rapid removal of Cu(II) ions from aqueous solution.

  18. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Guo Xueyan; Luo Lei; Ma Yibing; Zhang Shuzhen

    2010-01-01

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13 C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  19. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.

    Science.gov (United States)

    Latta, Drew E; Bachman, Jonathan E; Scherer, Michelle M

    2012-10-02

    The reaction of Fe(II) with Fe(III) oxides and hydroxides is complex and includes sorption of Fe(II) to the oxide, electron transfer between sorbed Fe(II) and structural Fe(III), reductive dissolution coupled to Fe atom exchange, and, in some cases mineral phase transformation. Much of the work investigating electron transfer and atom exchange between aqueous Fe(II) and Fe(III) oxides has been done under relatively simple aqueous conditions in organic buffers to control pH and background electrolytes to control ionic strength. Here, we investigate whether electron transfer is influenced by cation substitution of Al(III) in goethite and the presence of anions such as phosphate, carbonate, silicate, and natural organic matter. Results from (57)Fe Mössbauer spectroscopy indicate that both Al-substitution (up to 9%) and the presence of common anions (PO(4)(3-), CO(3)(2-), SiO(4)(4-), and humic acid) does not inhibit electron transfer between aqueous Fe(II) and Fe(III) in goethite under the conditions we studied. In contrast, sorption of a long-chain phospholipid completely shuts down electron transfer. Using an enriched isotope tracer method, we found that Al-substitution in goethite (10%), does, however, significantly decrease the extent of atom exchange between Fe(II) and goethite (from 43 to 12%) over a month's time. Phosphate, somewhat surprisingly, appears to have little effect on the rate and extent of atom exchange between aqueous Fe(II) and goethite. Our results show that electron transfer between aqueous Fe(II) and solid Fe(III) in goethite can occur under wide range of geochemical conditions, but that the extent of redox-driven Fe atom exchange may be dependent on the presence of substituting cations such as Al.

  20. Sorption mechanisms and sorption models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.; Duc, M.; Neskovic, C.; Milonjic, S.

    2004-01-01

    Sorption at the solid-liquid interfaces play a major role in many phenomena and technologies: chemical separations, catalysis, biological processes, transport of toxic and radioactive species in surface and underground waters. The long term safety of radioactive waste repositories is based on artificial and natural barriers, intended to sorb radionuclides after the moment when the storage matrixes and containers will be corroded. Predictions on the efficiency of sorption for more than 10 6 years have to be done in order to demonstrate the safety of such depositories, what is a goal never encountered in the history of sciences and technology. For all these purposes, and, especially for the long term prediction, acquiring of sorption data constitutes only a first step of studies. Modeling based on a very good knowledge of sorption mechanisms is needed. In this review, we shall examine the main approaches and models used to quantify sorption processes, including results taken from the literature and from our own studies. We shall compare sorption models and examine their adequacy with sorption mechanisms. The cited references are only a few examples of the numerous articles published in that field. (orig.)

  1. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    Science.gov (United States)

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-valuesoil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization of the sorption behavior of trivalent actinides on zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Eibl, Manuel; Huittinen, Nina [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Virtanen, S.; Merilaeinen, S.; Lehto, J. [Helsinki Univ. (Finland); Rabung, T. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The uptake of trivalent Eu and Cm on zirconium(IV) oxide was investigated in batch sorption and TRLFS studies, respectively. Sorption of Eu{sup 3+} was found to start at a pH-value of 4. Based on TRLFS results, sorption of Cm{sup 3+} was assigned to occur through innersphere complex formation at the zirconia surface. A deconvolution of the TRLFS emission spectra gave three different sorption species with strong red-shifts of the peak positions (600.3 nm, 604.3 nm and 608.2 nm) compared to similar systems.

  3. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  4. Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers.

    Science.gov (United States)

    Rengasamy, R S; Das, Dipayan; Karan, C Praba

    2011-02-15

    This article reports on oil sorption behavior of fiber assemblies made up of single natural and synthetic fibers as well as blend of natural and synthetic fibers when tested with high density oil and diesel oil. A series of filled fiber assemblies were prepared from 100% polypropylene, kapok, and milkweed fibers and another series of bonded structured fiber assemblies were prepared from a 70/30 blend of kapok and polypropylene fibers and a 70/30 blend of milkweed and polypropylene fibers. It was observed that the porosity of the fiber assemblies played a very important role in determining its oil sorption capacity. The polypropylene fiber assembly exhibited the highest sorption capacity (g/g) followed by the kapok and milkweed fiber assemblies at porosity milkweed fibers have intra fiber porosities of 0.81 and 0.83, respectively. All the fiber assemblies showed higher oil sorption capacity with the high density oil as compared to the diesel oil. As the kapok and milkweed fiber have low cellulose content, hence their slow degradation is an advantage in fresh and marine water applications. The good sorption capacity of kapok and milkweed fiber assemblies along with their bio-degradable nature offer great scope for structuring them into fiber assemblies with large porosity and uniform pores to have efficient oil sorbents. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils.

    Science.gov (United States)

    Leal, Rafael Marques Pereira; Alleoni, Luis Reynaldo Ferracciú; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges

    2013-08-01

    Animal production is a leading economic activity in Brazil and antibiotics are widely used. However, the occurrence, behavior, and impacts of antibiotics in Brazilian soils are still poorly known. We evaluated the sorption behavior of four fluoroquinolones (norfloxacin, ciprofloxacin, danofloxacin, and enrofloxacin) and five sulfonamides (sulfadiazine, sulfachloropyridazine, sulfamethoxazole, sulfadimidine, and sulfathiazole) in 13 Brazilian soils with contrasting physical, chemical, and mineralogical properties. Fluoroquinolone sorption was very high (Kd≥544 L kg(-1)) whereas sulfonamide sorption ranged from low to high (Kd=0.7-70.1 L kg(-1)), consistent with previous reports in the literature. Soil texture and cation exchange capacity were the soil attributes that most affected sorption. Cation exchange was the most important sorption mechanism for the fluoroquinolones in highly weathered tropical soils, although cation bridging and ion pairing could not be ruled out. Hydrophobic partition played an important role in the sorption of the sulfonamides, but sorption was also affected by non-hydrophobic interactions with organic and/or mineral surfaces. Sorption for both compound classes tended to be higher in soils with high Al and Fe oxihydroxide contents, but they were not correlated with Kd values. No direct effect of soil pH was seen. The fluoroquinolones are not expected to leach even in worst-case scenarios (soils rich in sand and poor in organic carbon), whereas soil attributes dictate leaching potential for the sulfonamides. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Behavior of the sorption of 60 Co in aqueous solution on inorganic materials as function of p H

    International Nuclear Information System (INIS)

    Granados, F.; Bulbulian, S.; Solache R, M.; Bertin, V.

    2004-01-01

    The sorption of the 60 Co is evaluated in aqueous solution on Mg O, MnO 2 , TiO 2 , Sn O, activated carbon and hydrotalcite calcined as a function of the p H, using the method for lots and quantifying at the 60 Co for gamma spectrometry. Likewise it was explained the one behavior of the sorption of the 60 Co in the materials with base in the chemical species of this radioactive isotope in aqueous solution. The chemical species of the 60 Co in solution were identified by electrophoresis of high voltage for the different p H values. It was found that under the experimental conditions, the 60 Co showed a significant sorption on MnO 2 , TiO 2 and activated carbon. On the other hand, in Mg O, Sn O and calcined hydrotalcite also was observed a sorption, although in smaller quantities. The studied hydrated metallic oxides retained the 60 Co for ion exchange via. It was found that the 60 Co was present as a cationic specie to p H 1, 3, 5 and 7 and like a neutral specie to alkaline p H. (Author)

  7. Study of sorption of technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen Dong; Fan Xianhua; Su Xiguang; Zeng Jishu

    2001-01-01

    The sorption behaviors of technetium on pyrrhotine are studied with batch experiment and dilute sulfuric acid is used to dissolve the technetium adsorbed on pyrrhotine. Sorption and desorption experiment are performed under aerobic and anaerobic conditions (inert gas box). The results show that a significant sorption of technetium on pyrrhotine is found under aerobic and anaerobic conditions, and the sorption on the mineral is supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 ·nH 2 O. Desorption process of the sorbed technetium into dilute sulfuric acid is found to be different under aerobic and anaerobic conditions. On addition of H 2 O 2 to the leach solution a sudden increase of the technetium concentration is observed

  8. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  9. Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species.

    Science.gov (United States)

    Lin, Ligang; Zhang, Yuzhong; Li, Hong

    2010-10-01

    Polyethylene glycol (PEG)-CuY zeolite hybrid membranes were prepared for sulfur removal from gasoline feed. The sorption and diffusion behavior of typical gasoline components through the hybrid membranes has been investigated by systematic studies of dynamic sorption curves. Influencing factors including feed temperature, permeate pressure, and zeolite content in the membranes on membrane performance have been evaluated. Immersion experiments results showed the preferential sorption of thiophene, which is key in fulfilling the separation of thiophene/hydrocarbon mixtures. The sorption, diffusion, and permeation coefficients of gasoline components in filled membranes are higher than those in unfilled membranes. Pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the discussions on dynamic sorption curves. PV experiments showed that lower permeate pressure meant higher separation performance. The optimum temperature occurred at 383K, and an Arrhenius relationship existed between permeation flux and operating temperature. The CuY zeolite filling led to a significant increase of flux since the porous zeolite provides for more diffusion for small molecules in mixed matrix membranes. The sulfur enrichment factor increased first and then decreased with the increasing zeolite content, which was attributed to the combined influence of complexation force between CuY and thiophenes as well as the trade-off phenomenon between flux and selectivity. At 9 wt% CuY content, a higher permeation flux (3.19 kg/(m(2) h)) and sulfur enrichment factor (2.95) were obtained with 1190 microg/g sulfur content level in gasoline feed. Copyright 2010 Elsevier Inc. All rights reserved.

  10. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    International Nuclear Information System (INIS)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian; Jin, Yongdong

    2014-01-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g −1 under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed

  11. Artificial Weathering of Biotite and Uranium Sorption Characteristics

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon; Lee, Jae Kwang

    2009-01-01

    An experiment for uranium sorption onto fresh and weathered biotites was performed. After centrifugation, concentrations of uranium in the supernatants were analyzed using ICP-MS, and biotite samples were investigated using XRD and SEM. With powdered biotites (<3 mm in size), we have conducted uranium sorption experiments about fresh and weathered biotites to obtain uranium sorption amounts in various pH conditions. The uranium sorption was not high at a low pH (e.g., pH 3), but increased with increasing pH. There were lower uranium sorption by the weathered biotites than by the fresh ones, and the difference was much larger at higher pH (e.g., pH 11). The lower sorption values of uranium by the weathered biotites may be caused by a change of mineral surfaces and a chemical behavior of surrounding dissolved elements. It seems that the uranium-mineral interaction has been diminished, especially, in the weathered biotite by a destruction and dissolution of preferential sorption sites on the mineral surfaces and by the colloidal formation from dissolved elements.

  12. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines.

    Science.gov (United States)

    Oliver, Danielle P; Kookana, Rai S; Quintana, Belen

    2005-08-10

    The sorption behavior of diuron, imidacloprid, and thiacloprid was investigated using 22 soils collected in triplicate from temperate environments in Australia and tropical environments in Australia and the Philippines. Within the temperate environment in Australia, the soils were selected from a range of land uses. The average KOC values (L/kg) for imidacloprid were 326, 322, and 336; for thiacloprid, the values were 915, 743, and 842; and for diuron, the values were 579, 536, and 618 for the Ord (tropical), Mt. Lofty (temperate), and Philippines (tropical) soils, respectively. For all soils, the sorption coefficients decreased in the following order: thiacloprid > diuron > imidacloprid. There were no significant differences in sorption behavior between the tropical soils from the Philippines and the temperate soils from Australia. Sorption was also not significantly related with soil characteristics, namely, organic carbon (OC) content, clay content, and pH, for any of the three chemicals studied. When the data were sorted into separate land uses, the sorption of all three chemicals was highly correlated (P soils from the Philippines. Sorption coefficients for all three chemicals were highly correlated with OC in temperate, native soils only when one extreme value was removed. The relationships between sorption of all three chemicals and OC in temperate, pasture soils were best described by a polynomial. Sorption coefficients for imidacloprid and thiacloprid determined in the temperate pasture soils remained fairly consistent as the OC content increased from 3.3 to 5.3%, indicating that, although the total OC in the pasture soils was increasing, the component of OC involved with sorption of these two compounds may have been remaining constant. This study demonstrated that the origin of the soils (i.e., temperate vs tropical) had no significant effect on the sorption behavior, but in some cases, land use significantly affected the sorption behavior of the three

  13. Sorption of 237Pu by the diatom Asterionella formosa

    International Nuclear Information System (INIS)

    Conway, H.L.; Wahlgren, M.A.; Peterson, N.; Nelson, D.M.

    1976-01-01

    Knowledge of the behavior of the man-made radionuclide plutonium within aquatic environments is of fundamental importance in assessing its potential hazards and ecological impact. The sorption of plutonium by phytoplankton and other algae is the dominant factor in the biological transport of plutonium in the aquatic environment, and it has been suggested that sorption by phytoplankton may be responsible for the seasonal loss of plutonium from the epilimnion of Lake Michigan. A unialgal diatom culture was spiked with 237 Pu tracer solution in an attempt to simulate the behavior of fallout plutonium observed in field studies. The results were encouraging in that the 237 Pu in the filtered lake water medium exhibited strongly anionic properties similar to fallout plutonium in Lake Michigan, with limited sorption on container walls. The purpose of the present study was to extend the investigations of the sorption of plutonium by phytoplankton in a controlled environment using continuous culture techniques

  14. Behavior of Samarium III during the sorption process; Comportamiento del Samario-III durante el proceso de sorcion

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E.; Garcia G, N.; Garcia R, G. [ININ, Carr. Mexico-Toluca Km 36.5, Salazar, Estado de Mexico (Mexico)]. e-mail: edo@nuclear.inin.mx

    2004-07-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  15. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  16. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  17. Sorption of radioactive technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen, D.; Fan, X.H.; Su, X.G.; Zeng, J.S.; Dong, Y.

    2002-01-01

    The sorption behavior of technetium on pyrrhotine was studied with batch experiments and diluted sulfuric acid (less than 2.88 mol/l) was used to dissolve the technetium adsorbed on pyrrhotine. A significant sorption of technetium on pyrrhotine was observed under aerobic and anaerobic conditions, and the sorption on the mineral was supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 x nH 2 O. Sorbed technetium on the mineral could be desorbed by diluted sulfuric acid. The maximum desorption ratio under aerobic conditions was much higher than that of under anaerobic conditions, meanwhile, the desorption rates under anaerobic conditions were higher than that of under aerobic conditions in the initial stage of the experiments. (author)

  18. A study on the uranium sorption properties of a domestic granite

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Kang, Mun Ja; Keum, Dong Kwon; Hahn, Pil Soo

    2003-01-01

    In this report, we selected a domestic granite rock as a studying medium. Granite rock is considered as candidate rock for a high-level radioactive waste repository site and as a representative system of the composite mineral systems. We performed sorption experiments for crushed particles, intact rock surfaces, and natural fracture surfaces of the domestic granite rock and investigated the effects of important geochemical parameters such as pH, ionic strength, carbonate concentration. Fracture surfaces showed higher sorption capacities than intact rock surfaces due to the higher content of secondary minerals and the amount of sorbed uranium was greatly dependent on pH, surface types, and carbonate concentration but little on ionic strength. Besides, we tried to investigate the nuclide sorption behaviors of composite mineral systems in terms of mineralogy in order to evaluate the contribution of constituent minerals and to analyze the sorption properties using sequential chemical extraction and XRD, and EPMA methods. It was found that one dominant mineral(mica in case of intact rock surfaces and chlorite in case of fracture surfaces) controls the uranium sorption and nuclide sorption behavior of composite mineral systems are quite different with that of single mineral systems.

  19. Water vapor sorption thermodynamics of the Nafion ionomer membrane.

    Science.gov (United States)

    Wadsö, Lars; Jannasch, Patric

    2013-07-18

    The water interactions of polymer electrolyte membranes are of significant interest when these materials are used in, for example, fuel cells. We have therefore studied the sorption thermodynamics of Nafion with a sorption calorimeter that simultaneously measures the sorption isotherm and the mixing (sorption) enthalpy. This unique method is suitable for investigating the sorption thermodynamics of ionic polymers. The measurements were made at 25 °C on a series of samples dried at different temperatures from 25 to 120 °C. The sorption isotherms indicate that the samples dried at 120 °C lost about 0.8 more water molecules per sulfonic group during the drying than did the samples dried at 25 °C, and this result was verified gravimetrically. The mixing enthalpies showed several peaks or plateaus for the samples dried at 60-120 °C. This behavior was seen up to about 2 water molecules per sulfonic group. As these peaks were not directly related to any feature in the sorption isotherm, they probably have their origin in a secondary process, such as a reorganization of the polymer.

  20. Sorption of chromium with struvite during phosphorus recovery.

    Science.gov (United States)

    Rouff, Ashaki A

    2012-11-20

    Struvite (MgNH(4)PO(4)·6H(2)O; MAP) precipitation is a viable means of phosphorus (P) recovery from animal and human wastes. The behavior of metal contaminants such as chromium (Cr) during struvite precipitation, however, requires consideration. Here the influence of both Cr concentration and oxidation state on sorption is assessed. The Cr content of struvite precipitated in the presence of 1-100 μM Cr as Cr(III) (22.3-3030.1 mg/kg) was higher than that of solids from Cr(VI) (4.5-5.1 mg/kg) solutions. For 1-20 μM Cr(III) solids, scanning electron microscopy (SEM) revealed etch pit formation on struvite crystal surfaces, indicative of a surface interaction. The formation of an adsorbate was confirmed by X-ray absorption fine structure spectroscopy (XAFS). At initial concentrations ≥20 μM Cr(III), XAFS confirmed the formation of a Cr(OH)(3)·nH(2)O(am) precipitate. Fourier transform infrared (FT-IR) spectroscopy revealed that both Cr(III) and Cr(VI) sorption resulted in distortion of the PO(4)(3-) tetrahedra in the mineral structure. This, combined with SEM results revealed that even at low sorbed concentrations, the Cr impurity can affect the mineral surface and structure. Thus, the initial Cr concentration and oxidation state in wastes targeted for P recovery will dictate the final Cr content, the mechanism of sorption, and impact on the struvite structure.

  1. Oscillatory water sorption test for determining water uptake behavior in bread crust

    NARCIS (Netherlands)

    Nieuwenhuijzen, N.H. van; Tromp, R.H.; Hamer, R.J.; Vliet, T. van

    2007-01-01

    In this work, water sorption kinetics of bread crust are described using an oscillatory sorption test in combination with a Langmuir type equation. Both kinetic and thermodynamic information could be obtained at the same time. An advantage of applying a Langmuir type equation for a quantitative

  2. Neptunium(V) sorption on quartz and albite in aqueous suspension

    International Nuclear Information System (INIS)

    Kohler, M.; Leckie, J.O.

    1991-10-01

    The behavior of neptunium in the subsurface environment is of interest since neptunium isotopes are included in nuclear waste. Previous work investigated the sorption behavior of Np onto α-Fe 2 O 3 (hematite), an accessory mineral of the Yucca Mountain repository. The work reported herein involves the much more abundant silicate minerals quartz and albite, and is a logical continuation of the ongoing task. In previous work increased sorption was observed in systems containing hematite and EDTA, a ligand which acts as a surrogate for organic complexing agents. In addition, increased partial pressures of CO 2 are common in many ground waters and the effects of carbonate on sorption of radionuclides have to be studied as well. At concentration levels of 10 -7 M, Np(V) does not adsorb strongly on quartz and albite up to pH values of approximately 9 at solid/solution ratios of 30 to 40 g/l. Significant adsorption (> 20%) occurs on both minerals only at pH > 9. Pretreatment of albite affects the sorption behavior of this mineral at pH > 9, possibly due to the formation of secondary mineral phases at the albite surface. EDTA does not adsorb on quartz at concentrations of 10 -6 M. In the presence of 50 μM EDTA, Np(V) sorption seems to be restricted. EDTA at the 10 -6 M level adsorbs onto albite to an appreciable degree at pH values 3 - is the predominant solution species

  3. Positron Spectroscopy of Nanodiamonds after Hydrogen Sorption

    Directory of Open Access Journals (Sweden)

    Lyudmila Nikitina

    2018-01-01

    Full Text Available The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation.

  4. Changes in redox properties of humic acids upon sorption to alumina

    Science.gov (United States)

    Subdiaga, Edisson; Orsetti, Silvia; Jindal, Sharmishta; Haderlein, Stefan B.

    2016-04-01

    1. Introduction A prominent role of Natural Organic Matter (NOM) in biogeochemical processes is its ability to act as an electron shuttle, accelerating rates between a bulk electron donor and an acceptor. The underlying processes are reversible redox reactions of quinone moieties.1 This shuttling effect has been studied in two major areas: transformation of redox active pollutants and microbial respiration.2-3 Previous studies primarily compared effects in the presence or absence of NOM without addressing the redox properties of NOM nor its speciation. The interaction between humic acids (HA) and minerals might change properties and reactivity of organic matter. Specifically, we investigate whether changes in the redox properties of a HA occur upon sorption to redox inactive minerals. Since fractionation and conformational rearrangements of NOM moieties upon sorption are likely to happen, the redox properties of the NOM fractions upon sorption might differ as well. 2. Materials and methods Elliot Soil Humic Acid (ESHA), Pahokee Peat Humic Acid (PPHA) and Suwannee River Humic Acid (SRHA) were used as received from IHSS. Aluminum oxide (Al2O3) was suspended in 0.1M KCl. Sorption was studied at pH 7.0 in duplicate batch experiments for several HA/Al2O3 ratios. For the suspension (mineral + sorbed HA, plus dissolved HA), the filtrate (0.45μm) and the HA stock solution, the electron donating and accepting capacities (EDC and EAC) were determined following established procedures.4 3. Results All studied HA-Al2O3 systems showed similar behavior with regard to changes in redox properties. There was a significant increase in the EDC of the whole suspension compared to the stock solutions and the non-sorbed HA in the filtrate (up to 300% for PPHA). This effect was more pronounced with increasing amounts of sorbed HA in the suspension. Although ESHA had the highest sorption capacity on Al2O3 (~ 6 times higher than PPHA & SRHA), it showed the smallest changes in redox

  5. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  6. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.

  7. Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon

    Science.gov (United States)

    Fona, Z.; Habibah, U.

    2018-04-01

    Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.

  8. Sorption kinetics of diuron on volcanic ash derived soils.

    Science.gov (United States)

    Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente

    2013-10-15

    Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Influence of smectite hydration and swelling on atrazine sorption behavior.

    Science.gov (United States)

    Chappell, Mark A; Laird, David A; Thompson, Michael L; Li, Hui; Teppen, Brian J; Aggarwal, Vaneet; Johnston, Cliff T; Boyd, Stephen A

    2005-05-01

    Smectites, clay minerals commonly found in soils and sediments, vary widely in their ability to adsorb organic chemicals. Recent research has demonstrated the importance of surface charge density and properties of exchangeable cations in controlling the affinity of smectites for organic molecules. In this study, we induced hysteresis in the crystalline swelling of smectites to test the hypothesis that the extent of crystalline swelling (or interlayer hydration status) has a large influence on the ability of smectites to adsorb atrazine from aqueous systems. Air-dried K-saturated Panther Creek (PC) smectite swelled less (d(001) = 1.38 nm) than never-dried K-PC (d(001) = 1.7 nm) when rehydrated in 20 mM KCl. Correspondingly, the air-dried-rehydrated K-PC had an order of magnitude greater affinity for atrazine relative to the never-dried K-PC. Both air-dried-rehydrated and never-dried Ca-PC expanded to approximately 2.0 nm in 10 mM CaCl2 and both samples had similar affinities for atrazine that were slightly lower than that of never-dried K-PC. The importance of interlayer hydration status in controlling sorption affinity was confirmed by molecular modeling, which revealed much greater interaction between interlayer water molecules and atrazine in a three-layer hydrate relative to a one-layer hydrate. The entropy change on moving atrazine from a fully hydrated state in the bulk solution to a partially hydrated state in the smectite interlayers is believed to be a major factor influencing sorption affinity. In an application test, choice of background solution (20 mM KCl versus 10 mM CaCl2) and air-drying treatments significantly affected atrazine sorption affinities for three-smectitic soils; however, the trends were not consistent with those observed for the reference smectite. Further, extending the initial rehydration time from 24 to 240 h (prior to adding atrazine) significantly decreased the soil's sorption affinity for atrazine. We conclude that interlayer

  10. Sorption of Np (Ⅴ) on Beishan granite fracture filling materials

    International Nuclear Information System (INIS)

    Jiang Tao; Wang Bo; Bao Liangjin; Zhou Duo; Long Haoqi; Song Zhixin; Chen Xi

    2012-01-01

    The sorption behaviors of Np (Ⅴ) on the granite fracture filling materials were studied by batch experiments under anaerobic in Beishan groundwater. The impact of pH of groundwater, CO 3 2- , humic acid and different components of granite fracture filling materials on sorption of Np (Ⅴ) was investigated. The results show that the granite fracture filling materials have strong capacity of Np (Ⅴ) adsorption. The value of K d , for Np (Ⅴ) sorption on the granite fracture filling materials is 843 mL/g. With the increase of pH, the value of K d increases at first and then decreases. K d of Np sorption on granite fracture filling materials in the presence of CO 3 2- and humic acid decreases. The chlorite and feldspar are major contributors to the sorption of Np (Ⅴ) on Beishan granite fracture filling materials. (authors)

  11. Comparative evaluation for the sorption capacity of four carbonaceous sorbents to phenol

    Directory of Open Access Journals (Sweden)

    Ding Feng Jin

    2016-10-01

    Full Text Available Sorption kinetics and isotherms of phenol by four carbonaceous sorbents (activated carbon (AC, mesoporous carbon (MPC, bamboo biochar (BBC and oak wood biochar (OBC were compared in this study. MPC has the fastest sorption rate and initial sorption potential, which were indicated by sorption rate constants and initial sorption rate “h” in a pseudo-second-order kinetic model. The ordered and straight pore structure of MPC facilitated the accessibility of phenol. The AC showed the greatest sorption capacity towards phenol with maximum sorption of 123 mg/g as calculated by the Langmuir model. High surface area, complexity of pore structure, and the strong binding force of the π–π electron-donor-acceptor interaction between phenol molecules and AC were the main mechanisms. The BBC and OBC had much slower sorption and lower sorption capacity (33.04 and 29.86 mg/g, respectively, compared to MPC (73.00 mg/g and AC, indicating an ineffective potential for phenol removal from water.

  12. Sorption of organic gases in a furnished room

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Revzan, Kenneth L.; Hotchi, Toshifumi; Hodgson, Alfred T.; Brown, Nancy J.

    2003-11-30

    We present experimental data and semi-empirical models describing the sorption of organic gases in a simulated indoor residential environment. Two replicate experiments were conducted with 20 volatile organic compounds (VOCs) in a 50-m{sup 3} room finished with painted wallboard, carpet and cushion, draperies and furnishings. The VOCs span a wide volatility range and include ten Hazardous Air Pollutants. VOCs were introduced to the static chamber as a pulse and their gas-phase concentrations were measured during a net adsorption period and a subsequent net desorption period. Three sorption models were fit to the measured concentrations for each compound to determine the simplest formulation needed to adequately describe the observed behavior. Sorption parameter values were determined by fitting the models to adsorption period data then checked by comparing measured and predicted behavior during desorption. The adequacy of each model was evaluated using a goodness of fit parameter calculated for each period. Results indicate that sorption usually does not greatly affect indoor concentrations of methyl-tert-butyl ether, 2-butanone, isoprene and benzene. In contrast, sorption appears to be a relevant indoor process for many of the VOCs studied, including C{sub 8}-C{sub 10} aromatic hydrocarbons (HC), terpenes, and pyridine. These compounds sorbed at rates close to typical residential air change rates and exhibited substantial sorptive partitioning at equilibrium. Polycyclic aromatic HCs, aromatic alcohols, ethenylpyridine and nicotine initially adsorbed to surfaces at rates of 1.5 to >6 h{sup -1} and partitioned 95 to >99% in the sorbed phase at equilibrium.

  13. Competitive sorption of heavy metals by water hyacinth roots.

    Science.gov (United States)

    Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing

    2016-12-01

    Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sorption mechanism of solvent vapors to coals; Sekitan eno yobai joki no shuchaku kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Takanohashi, T.; Iino, M. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    With an objective to clarify the interactions between micropore structure of coal and solvent reagents, a sorption experiment was carried out under solvent saturated vapor pressure. Low-volatile bituminous coal, Pocahontas No. 3 coal, has the aromatic ring structure developed, and makes solvent more difficult to diffuse into coal, hence sorption amount is small. Methanol has permeated since its polarity is high. High-volatile bituminous coal, Illinois No. 6 coal, makes solvent penetrate easily, and the sorption amount was large with both of aromatic and polar solvents. Since brown coal, Beulah Zap coal, contains a large amount of oxygen, and hydrogen bonding is predominant, sorption amount of cyclohexane and benzene having no polarity is small. Methanol diffuses while releasing hydrogen bond due to its polarity, and its sorption amount is large. A double sorption model is available, which expresses the whole sorption amount as a sum of physical sorption amount and amount of permeation into coal. This model was applied when it explained successfully the sorption behavior of the solvents relative to coals, excepting some of the systems. However, also observed were such abnormal behavior as sorption impediment due to interactions between coal surface and solvents, and permeation impediment due to hydroxyl groups inside the coals. 1 ref., 10 figs., 2 tabs.

  15. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    International Nuclear Information System (INIS)

    Powell, Brian; Schlautman, Mark; Rao, Linfeng; Nitsche, Heino; Gregorich, Kenneth

    2016-01-01

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gaps still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in

  16. Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Schlautman, Mark [Clemson Univ., SC (United States); Rao, Linfeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nitsche, Heino [Univ. of California, Berkeley, CA (United States); Gregorich, Kenneth [Univ. of California, Berkeley, CA (United States)

    2016-02-02

    The objective of this research is to examine mechanisms and thermodynamics of actinide sorption to engineered barrier materials (iron (oxyhydr)oxides and bentonite clay) for nuclear waste repositories under high temperature and high ionic strength conditions using a suite of macroscopic and microscopic techniques which will be coupled with interfacial reaction models. Gaining a mechanistic understanding of interfacial processes governing the sorption/sequestration of actinides at mineral-water interfaces is fundamental for the accurate prediction of actinide behavior in waste repositories. Although macroscale sorption data and various spectroscopic techniques have provided valuable information regarding speciation of actinides at solid-water interfaces, significant knowledge gaps still exist with respect to sorption mechanisms and the ability to quantify sorption, particularly at high temperatures and ionic strengths. This objective is addressed through three major tasks: (1) influence of oxidation state on actinide sorption to iron oxides and clay minerals at elevated temperatures and ionic strengths; (2) calorimetric titrations of actinide-mineral suspensions; (3) evaluation of bentonite performance under repository conditions. The results of the work will include a qualitative conceptual model and a quantitative thermodynamic speciation model describing actinide partitioning to minerals and sediments, which is based upon a mechanistic understanding of specific sorption processes as determined from both micro-scale and macroscale experimental techniques. The speciation model will be a thermodynamic aqueous and surface complexation model of actinide interactions with mineral surfaces that is self-consistent with macroscopic batch sorption data, calorimetric and potentiometric titrations, X-ray absorption Spectroscopy (XAS, mainly Extended X-ray Absorption Fine Structure (EXAFS)), and electron microscopy analyses. The novelty of the proposed work lies largely in

  17. Determination of 60Co sorption in natural clinoptilolite

    International Nuclear Information System (INIS)

    Hernandez B, E.; Granados C, F.

    1997-01-01

    It was studied the clinoptilolite behavior coming from a deposit in Taxco, Guerrero in hydration and stabilization conditions with sodium for determining its sorption properties. The ion exchange process was carried out through gamma spectrometry using a CoCl 2 solution marked with 60 Co at p H 6.5 in different contact times. It was observed a maximum sorption of 0.408 m eq Co +2 /g mineral, from 0.314 m eq Co +2 /g mineral correspond at ion exchange. (Author)

  18. Development of a microminiature sorption cooler

    NARCIS (Netherlands)

    Burger, Johannes; Holland, Harry; ter Brake, Marcel; Rogalla, Horst; Wade, Larry

    1997-01-01

    The development of a microcooler for operations below 80 K, for low temperature electronic devices requiring small cooling powers of the order of 10 mW is described. A sorption compressor combined with Joule-Thomson (JT) expansion was selected for miniaturization. The advantage of the system is

  19. Sorption/Desorption Behavior and Mechanism of NH4(+) by Biochar as a Nitrogen Fertilizer Sustained-Release Material.

    Science.gov (United States)

    Cai, Yanxue; Qi, Hejinyan; Liu, Yujia; He, Xiaowei

    2016-06-22

    Biochar, the pyrolysis product of biomass material with limited oxygen, has the potential to increase crop production and sustained-release fertilizer, but the understanding of the reason for improving soil fertility is insufficient, especially the behavior and mechanism of ammonium sulfate. In this study, the sorption/desorption effect of NH4(+) by biochar deriving from common agricultural wastes under different preparation temperatures from 200 to 500 °C was studied and its mechanism was discussed. The results showed that biochar displayed excellent retention ability in holding NH4(+) above 90% after 21 days under 200 °C preparation temperature, and it can be deduced that the oxygen functional groups, such as carboxyl and keto group, played the primary role in adsorbing NH4(+) due to hydrogen bonding and electrostatic interaction. The sorption/desorption effect and mechanism were studied for providing an optional way to dispose of agricultural residues into biochar as a nitrogen fertilizer sustained-release material under suitable preparation temperature.

  20. Understanding the sorption behavior of Pu{sup 4+} on poly(amidoamine) dendrimer functionalized carbon nanotube. Sorption equilibrium, mechanism, kinetics, radiolytic stability, and back-extraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Parveen [Indian Institute of Technology, Himachal Pradesh (India); Sengupta, Arijit [Bahbha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Deb, Ashish Kumar Singha; Ali, S. Musharaf [Bahbha Atomic Research Centre, Mumbai (India). Chemical Engineering Div.; Homi Bhabha National Institute, Mumbai (India); Dasgupta, Kinshuk [Bhabha National Institute, Mumbai (India). Mechanical Metallurgy Div.

    2017-07-01

    Poly(amidoamine) dendrimer functionalized carbon nanotube was demonstrated as highly efficient sorbent of the Pu{sup 4+} from radioactive waste solution. The second generation dendrimer was found to have more efficiency as compared to the 1{sup st} generation might be due to the availability of more functionality for coordinating to the Pu{sup 4+} ion. Analysis of different isotherm models revealed that, Langmuir isotherm was predominantly operating through chemi-sorption (with the sorption energy 10.07 and 16.95 kJ mol{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer) with the sorption capacity 89.22 mg g{sup -1} and 92.48 mg g{sup -1} for 1{sup st} and 2{sup nd} generation dendrimer, respectively. Analysis of different sorption kinetics model revealed that the sorption proceeded via pseudo 2{sup nd} order reaction. The 2{sup nd} generation dendrimer was found to be radiolytically more stable while oxalic acid was found to be suitable for quantitative back extraction of Pu{sup 4+}.

  1. Ofloxacin sorption in soils after long-term tillage: The contribution of organic and mineral compositions

    International Nuclear Information System (INIS)

    Zhou, Dandan; Chen, Bingfa; Wu, Min; Liang, Ni; Zhang, Di; Li, Hao; Pan, Bo

    2014-01-01

    Intensive human activities in agricultural areas resulted in significant alteration of soil properties, which consequently change their interactions with various contaminants. This process needs to be incorporated in contaminant behavior prediction and their risk assessment. However, the relevant study is missing. This work was designed to examine the change of soil properties and ofloxacin (OFL) sorption after tillage. Soil samples were collected in Yuanyang, Mengzi, and Dianchi areas with different agricultural activities. Although the mineral compositions of soils from Yuanyang and Dianchi differed greatly, these compositions are similar after tillage, especially for paddy soils. Soil pH decreased generally after OFL sorption, suggesting that ion exchange of OFL with protons in soil organic matter (SOM) was important for OFL sorption. However, a positive relationship between SOM and OFL sorption was not observed. On the contrary, increased SOM decreased OFL sorption when soils from the same geological location were compared. Generally speaking, tillage activities or dense vegetations greatly decreased OFL sorption. The higher OFL sorption in B horizon than A horizon suggested limited leaching of OFL through soil columns. The summed sorption calculated based on the sorption of individual soil components and their percentages in soils was higher than the intact soil. This phenomenon may be understood from the interactions between soil components, such as the coating of SOM on mineral particles. This study emphasizes that soil should be treat as a dynamic environmental matrix when assessing antibiotic behaviors and risks, especially in the area with intense human activities. - Highlights: • Mineral compositions tend to be similar after tillage. • Increased SOM decreases OFL sorption for soils from the same geological location. • Tillage activities or dense vegetations greatly decrease OFL sorption. • The summed sorption of individual soil components is

  2. Effect made by the colloids to the sorption behavior of strontium on granite fracture-fillings

    Science.gov (United States)

    Wang, L.; Zuo, R.

    2017-12-01

    The objective of this study was to investigate the effects made by the colloid to the sorption capacity of colloids in granite fracture-fillings in aqueous solutions. The granite fracture-fillings were collected from three different depth of the research mine in Gansu province. According to the composition of the local soil and groundwater, two colloids were chosen to investigate this sorption process. Batch tests had been investigated at 27° under the air atmosphere as a function of pH(3 11), initial uranium concentration(5 400 mg/L) and water-rock ratio on the sorption of Sr on granite fracture-fillings. The batch experimental results showed that the sorption capacity presented a positive relationship with pH value, which may be caused by the hydrolytic adsorption raised by the reaction between Sr(OH)+ and OH- groups on the surface on the adsorbent. Initial strontium concentration also showed a positive relationship with sorption capacity when the concentration was lower than 200mg/mL, when the concentration was higher than 200mg/ml sorption reached the equilibrium. Sorption percentage showed a positive relationship with water/solid ratios, when the ratio was lower than 1:100 the system got equilibrium. When other experiment parameters were fixed and only the solid-liquid ratio changed, the adsorption capacity increased with the increasing solid-water ratio. The reason was that the total amount of Sr in the adsorption system remained unchanged, the adsorption sites increased with the solid-liquid ratio, and the adsorption capacity increased gradually with the increasing adsorption sites. The experiments data were interpreted in terms of Freundlich and Langmuir isotherms and the data fitted the former better. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of colloid.

  3. Kinetics and equilibrium studies for sorption of Cu (II) and Cr (VI) ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The sorption behavior of Cu (II) and Cr (VI) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, complexing agent concentration, resin weight and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu (II) and Cr (VI) onto polymeric composite resins. The equilibrium data could be fitted by the frendlich adsorption isotherm equation

  4. Influence of the temperature in the uranium (Vi) sorption in zirconium diphosphate

    International Nuclear Information System (INIS)

    Garcia G, N.; Solis, D.; Ordonez R, E.

    2012-10-01

    In the present work was evaluated the uranium (Vi) sorption at 10, 20, 30, 40 and 60 C on the zirconium diphosphate (ZrP 2 O 7 ). They were carried out kinetic and isotherms using the method by lots, these will allow to fix the sorption time (kinetic) and to explain the behavior of this sorption in different ph conditions and temperature (isotherm). The quantity of retained uranium in the surface was quantified by means of the fluorescence technique. (Author)

  5. Description of the phosphorus sorption and desorption processes in lowland peaty clay soils

    NARCIS (Netherlands)

    Schoumans, O.F.

    2013-01-01

    To determine phosphorus (P) losses from agricultural land to surface water, information is needed about the behavior of P in soils. In this study, the sorption and desorption characteristics of lowland peaty clay soils are described based on experimental laboratory studies. The maximum P sorption

  6. Studies of Dye Sensitisation Kinetics and Sorption Isotherms of Direct Red 23 on Titania

    Directory of Open Access Journals (Sweden)

    Peter J. Holliman

    2008-01-01

    Full Text Available Sorption kinetics and isotherms have been measured for a commercial dye (Direct Red 23 on different samples of powdered Titania, and the data were analysed to better understand the dye sensitization process for dye sensitised solar cells (DSSCs. For the sorption kinetics, the data show rapid initial sorption (<1 hour followed by slower rate of increasing uptake between 1 and 24 hours. While higher initial concentrations of dye correspond to higher sorption overall, less dye is absorbed from higher initial dye concentrations when considered as percentage uptake. The correlation between the sorption data and model isotherms has been considered with time. The Langmuir model shows better correlations compared to the Freundlich isotherm. The dye uptake data has also been correlated with Titania characterization data (X-ray diffraction, scanning electron microscopy, BET and zero point charge analysis. Kinetic data show significantly better fits to second-order models compared to first order. This suggests that chemisorption is taking place and that the interaction between the dye sorbate and the Titania sorbent involves electron sharing to form an ester bond.

  7. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures

    International Nuclear Information System (INIS)

    Zheng, Hao; Wang, Zhenyu; Zhao, Jian; Herbert, Stephen; Xing, Baoshan

    2013-01-01

    Sorption of sulfonamides on biochars is poorly understood, thus sulfamethoxazole (SMX) sorption on biochars produced at 300–600 °C was determined as a function of pH and SMX concentration, as well as the inorganic fractions in the biochars. Neutral SMX molecules (SMX 0 ) were dominant for sorption at pH 1.0–6.0. Above pH 7.0, although biochars surfaces were negatively-charged, anionic SMX species sorption increased with pH and is regulated via charge-assisted H-bonds. SMX 0 sorption at pH 5.0 was nonlinear and adsorption-dominant for all the biochars via hydrophobic interaction, π–π electron donor–acceptor interaction and pore-filling. The removal of inorganic fraction reduced SMX sorption by low-temperature biochars (e.g., 300 °C), but enhanced the sorption by high-temperature biochars (e.g., 600 °C) due to the temperature-dependent inorganic fractions in the biochars. These observations are useful for producing designer biochars as engineered sorbents to reduce the bioavailability of antibiotics and/or predict the fate of sulfonamides in biochar-amended soils. -- Highlights: •Sulfamethoxazole (SMX) sorption on biochars at pH 5.0 was adsorption-dominant. •Removal of inorganic fractions in low-temperature biochars reduced SMX sorption. •Removal of inorganic fractions in high-temperature biochars enhanced SMX sorption. •Anionic SMX was adsorbed on negatively charged biochar via charge-assisted H-bond. -- Solution pH and biochar property control the sorption amount and mechanisms of antibiotic sulfamethoxazole

  8. Sorption-Desorption Behavior of Newly synthesized N-(1H-Benzimidazole -2 ylmethyl) Acetamide (ABNZ) on Selected Soils and its Antifungal activity

    International Nuclear Information System (INIS)

    Ahmad, K. S.; Rashid, N.

    2015-01-01

    A batch equilibrium method has been utilized to investigate the adsorption-desorption behavior of a versatile commercially available fungicide N-(1H-benzimidazole-2ylmethyl) acetamide (ABNZ) on four Pakistani soils geographically distant, from hilly to desert areas. Both qualitative and quantitative analysis has been done for sorption-desorption behavior of ABNZ. These analyses are done in the different concentration of fungicide (0-0.25, 0.25-0.5, 0.5-0.75). Based on statistical analysis ABNZ execute the Freundlich adsorption isotherm in all four tested soils having values of slope n<1 resembling the L-type curve. The distribution co-efficient K/sub d(ads)/ ranges from (2.66 to 12.42 ml/meu g/sup -1/) indicating low adsorption of ABNZ overall. Sorption increases with soil organic carbon content, exhibited greater degree of adsorption for hilly soil and least adsorption on sandy soil of Multan, Punjab. Desorption studies reveal that the adsorbed fungicide is firmly retained by soil particles and present a certain degree of irreversibility. The results indicate that the soil organic matters followed by clay content are the most important soil properties governing the fungicide sorption capacity. Compound N-(1H- benzimidazole -2-ylmethyl) acetamide (ABNZ) showed maximum antifungal activity compared to rest of the tested compound. This anti-fungal activity is substantial in comparison to other pesticides. It causes 40% inhibition of Microsporum canis and Fusarium solani. (author)

  9. Sorption behavior of Zn(II) ions on synthetic apatitic calcium phosphates

    Science.gov (United States)

    Sebei, Haroun; Pham Minh, Doan; Nzihou, Ange; Sharrock, Patrick

    2015-12-01

    The synthesis, characterization and the reactivity of apatitic calcium phosphates (Ca-HA, chemical formula Ca10(PO4)6(OH)2) is reported. Calcium carbonate (CaCO3) and potassium dihydrogen orthophosphate (KH2PO4) were selected as economical starting materials for the synthesis of Ca-HA under atmospheric conditions. Monocalcium phosphate monohydrate (MCPM), dicalcium phosphate dihydrate (DCPD), and octacalcium phosphate pentahydrate (OCP) were identified as the main intermediates of the synthesis reaction. The product obtained after 48 h of reaction contains mainly low-crystalline Ca-HA and small amounts of other calcium phosphates such as octacalcium phosphate (OCP), B-type carbonate apatite (CAP), as well as unreacted calcium carbonate. This Ca-HA was found to be active for the removal of Zn2+ from an aqueous solution. Its sorption capacity reached up to 120 mg of Zn2+ per g of Ca-HA powder after 24 h of reaction. The monitoring of soluble Zn, Ca and P during the sorption experiment allowed characterizing the mechanism of Zn uptake. Dissolution-precipitation, ionic exchange and surface complexation are the three main mechanisms involved in the sorption processes. The contribution of these mechanisms is discussed in detail.

  10. Cadmium removal by bioclastic granules (Lithothamnium calcareum): batch and fixed-bed column systems sorption studies.

    Science.gov (United States)

    Veneu, Diego Macedo; Schneider, Claudio Luiz; de Mello Monte, Marisa Bezerra; Cunha, Osvaldo Galvão Caldas; Yokoyama, Lídia

    2017-06-19

    The potential of Bioclastic Granules - BG (calcium-carbonate-based material) using the algae Lithothamnium calcareum as sorbent for the removal of Cd(II) from aqueous solutions by sorption was evaluated through batch and continuous systems tests using a fixed-bed column. Sorption process variables, in particular pH (2-7), particle size (<38-300 μm), initial BG concentration (0.1-1.0 g L -1 ), initial Cd(II) concentrations (5-400 mg L -1 ) and contact time (5-240 min), were evaluated. Adsorption isotherm profiles of Cd(II) per BG were similar to an L-type, or Langmuir type, with the adsorption forming a monolayer of approximately 0.61 μm, with a q max of 188.74 mg g -1 and k L of 0.710 L mg -1 . Thomas's model considers that sorption is not limited to a chemical reaction but is controlled by mass transfer at the interface. In the present study, the obtained value of k Th was 0.895 mL h -1  mg -1 , reaching a sorption capacity q o of 124.4 mg g -1 . For the Yoon-Nelson model, it was possible to obtain two important parameters to describe the behavior of the column, the rate constant (k YN ), obtaining a value of 0.09 h -1 and an τ of 82.12 h corresponding to the time required for sorption to occur of 50% of the solute in the rupture curve. X-ray diffraction and scanning electron microscopy analyses coupled to the X-ray dispersive energy system (SEM/EDS) of the BG after the Cd(II) ion sorption tests evidenced the formation of crystals with the prevalence of a new mineral phase (otavite).

  11. Sorption equilibrium of mercury onto ground-up tree fern.

    Science.gov (United States)

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  12. Sorption equilibrium of mercury onto ground-up tree fern

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Wang, C.-C.

    2008-01-01

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as ΔG o , ΔH o , and ΔS o , were calculated and compared with the sorption of mercury by other sorbents

  13. Sorption equilibrium of mercury onto ground-up tree fern

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Y.-S. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)], E-mail: ysho@isu.edu.tw; Wang, C.-C. [Department of Chemical Engineering, I-Shou University, No. 1, Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung County 840, Taiwan (China)

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o}, and {delta}S{sup o}, were calculated and compared with the sorption of mercury by other sorbents.

  14. Strontium (Sr) separation from seawater using titanate adsorbents: Effects of seawater matrix ions on Sr sorption behavior

    Science.gov (United States)

    Ryu, Jungho; Hong, Hye-jin; Ryu, Taegong; Park, In-Su

    2017-04-01

    Strontium (Sr) which has many industrial applications such as ferrite magnet, ceramic, and fire works exists in seawater with the concentration of approximately 7 mg/L. In previous report estimating economic potential on recovery of various elements from seawater in terms of their commercial values and concentrations in seawater, Sr locates upper than approximate break-even line, which implies Sr recovery from seawater can be potentially profitable. Recently, Sr separation from seawater has received great attention in the environmental aspect after Fukushima Nuclear Power Plant (NPP) accident which released much amount of radioactive Sr and Cs. Accordingly, the efficient separation of radioactive elements released to seawater has become critical as an important technological need as well as their removal from radioactive wastes. So far, it has been introduced to separate Sr from aqueous media by various methods including solvent extraction, adsorption by solid materials, and ion exchange. Among them, the adsorption technique using solid adsorbents is of great interest for selectively separating Sr from seawater with respect to low concentration level of Sr. In this study, we synthesized titanate nanotube (TiNT) by simple hydrothermal reaction, characterized its physicochemical properties, and systematically evaluated Sr sorption behavior under various reaction conditions corresponding to seawater environment. The synthesized TiNT exhibited the fibril-type nanotube structure with high specific surface area of 260 m2/g. The adsorption of Sr on TiNT rapidly occurred following pseudo-second-order kinetic model, and was in good agreement with Langmuir isotherm model, indicating maximum adsorption capacity of 97 mg/g. Based on Sr uptake and Na release with stoichiometric balance, sorption mechanism of Sr on TiNT was found to be ion-exchange between Na in TiNT lattice and Sr in solution phase, which was also confirmed by XRD and Raman analysis. Among competitive ions, Ca

  15. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reversibility of sorption of plutonium-239 onto hematite and goethite colloids

    International Nuclear Information System (INIS)

    Lu, N.; Cotter, C.R.; Kitten, H.D.; Bentley, J.; Triay, I.R.

    1998-01-01

    Laboratory batch sorption experiments were conducted to evaluate: (1) sorption of plutonium-239 ( 239 Pu) on different iron oxide colloids (hematite and geothite), (2) sorption kinetics of colloidal Pu(IV) and soluble Pu(V) onto these two colloids, and (3) desorption of colloidal Pu(IV) and soluble Pu(V) from 239 Pu-loaded colloids as a function of time. Natural groundwater and carbonate-rich synthetic groundwater were used in this study. To examine the possible influence of bicarbonate on 239 Pu sorption, an additional set of experiments was conducted in sodium nitrate (NaNO 3 ) solutions under carbon dioxide free environments. Our results show that colloidal Pu(IV) as well as soluble Pu(V) was rapidly adsorbed by hematite and goethite colloids in both natural and synthetic groundwater. The amount of 239 Pu adsorbed by both iron oxide colloids in synthetic groundwater was higher than in natural groundwater. The presence of carbonate did not influence the sorption of 239 Pu. While sorption of soluble Pu(V) is a slow process, sorption of colloidal Pu(IV) occurs rapidly. Desorption of Pu from iron oxide colloids is much slower than the sorption processes. Our findings suggest that different sorption and desorption behaviors of 239 Pu by iron oxide colloids in groundwater may facilitate the transport of 239 Pu along potential flowpaths from the areas contaminated by radionuclide and release to the accessible environment. (orig.)

  17. Spectroscopic investigations on sorption of uranium onto suspended bentonite. Effects of pH, ionic strength and complexing anions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Parveen Kumar; Pathak, Priyanath; Mohapatra, Manoj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Yadav, Ashok Kumar; Jha, Sambhunath; Bhattacharyya, Dibyendu [Bhabha Atomic Research Centre, Mumbai (India). Atomic and Molecular Physics Div.

    2015-06-01

    Batch sorption experiments were carried out under aerobic conditions to understand the sorption behavior of U(VI) onto bentonite clay under varying pH (2-8) and ionic strength (I = 0.01 - 1 M (NaClO{sub 4})) conditions. The influences of different complexing anions (1 x 10{sup -4} M) such as oxalic acid (ox), carbonate (CO{sub 3}{sup 2-}), citric acid (cit), and humic acid (HA, 10 mg/L) on the sorption behavior were also investigated. The sorption of U(VI) increased with increasing pH up to pH 6 beyond which a decrease was attributed to the formation of anionic carbonate species. Marginal influence of the change in the ionic strength of the medium on the sorption profile of uranium suggested inner-sphere complexation onto the bentonite surface. The presence of humic acid showed interesting sorption profile with varying pH. Initially, there was an enhancement in the sorption with increased pH followed by a plateau and finally a decrease thereafter due to the formation of aqueous U(VI)-humate complexes. Spectroscopic studies such as UV spectrophotometry, luminescence and extended X-ray absorption fine structure (EXAFS) measurements were also performed to understand the changes in aqueous speciation of U(VI) ion. The luminescence yields of different aqueous U(VI) species followed the order: U(VI){sub Hydroxy} > U(VI){sub HumicAcid} > U(VI){sub carbonate} > U(VI){sub citrate}. The lower luminescence yield of U(VI)carbonate complex can be attributed to the strong dynamic quenching by carbonate at room temperature. The U(VI) samples shows two distinct life-time suggesting the presence of the different luminescent U(VI) species. Similar trend was observed for U(VI)-bentonite suspension in presence/absence of the complexing ligands. There was luminescence quenching for the sorbed U(VI) due to surface complexation. These observations were further supported by spectrophotometric measurements. EXAFS spectra of U(VI) samples were recorded in luminescence mode at the U L{sub 3

  18. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch

    International Nuclear Information System (INIS)

    Wang Zuohua; Xiang Bo; Cheng Rumei; Li Yijiu

    2010-01-01

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g -1 , respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g -1 ) > AO10 (0.592 mmol g -1 ) > AR18 (0.411 mmol g -1 ) > AG25 (0.047 mmol g -1 ). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  19. Effect of Suez Canal Marine Sediment on Sorption of Cesium

    International Nuclear Information System (INIS)

    Hassan, H.B.

    2016-01-01

    Suez Canal is surrounded by navigation, industrial, agricultural activities and suffers from high rate of population growth that discharging waste into Suez Canal. The Suez Canal coastal waters are influenced by a complex variety of physical, geochemical and biological processes, which influence the behavior, transport and fate of containments released into the marine environment. Sorption of releasing containment such as cesium in Suez Canal water is investigated because of its toxic effect on the marine environment. The object of present study is to determine the effects some of physical and chemical characteristics of collected sediment samples from the three important locations on Suez Canal (Suez Bay, Bitter Lakes and El- Temsah Lake beaches) on sorption behavior of cesium by using batch experiment. Batch experiment was used to study the sorption of the cesium ion. The sorption process is dependent on mineral constituents of Suez Canal sediment and their characteristics. Analytical methods which included particle size and X-ray diffraction (XRD) analyses found that particle size of Suez Canal sediment samples is characterized by sand to fine sand and quartz is the main mineralogical species. Distribution coefficient (K d ) which represent geochemical processes and particle size of these sediment samples effect on the degree of cesium sorption to the sediment. Also (K d ) increase with increase cation exchangeable capacity (CEC). The Suez Canal sediment samples have low (K d ) values which effected by their physical and chemical properties. Sample (2) has highest distribution coefficient (K d ) between measured samples due to containing ratio 30% of fine sand and high ratio of organic matter.

  20. Simultaneous sorption and catalytic oxidation of trivalent antimony by Canna indica derived biochars.

    Science.gov (United States)

    Cui, Xiaoqiang; Ni, Qijun; Lin, Qiang; Khan, Kiran Yasmin; Li, Tingqiang; Khan, Muhammad Bilal; He, Zhenli; Yang, Xiaoe

    2017-10-01

    The simultaneous sorption and oxidation of Sb(III) on biochars were investigated using batch experiments. The biochars were derived from Canna indica at different pyrolysis temperatures (300-600 °C, referred as CIB300-CIB600), and characterized by FTIR, BET, XRD, SEM-EDS, EPR and Boehm titration. The Sb(III) sorption data could be well fitted by both the Langmuir and Freundlich models, and the pseudo-second order model is best for describing the kinetic data. The maximum Sb(III) sorption capacity of CIB300 was 16.1 mg g -1 , which was greater than that of other biochars. Inner-sphere complexation with oxygen-containing functional groups and coordination with π electrons are the possible sorption mechanisms. It is worthwhile to note that 4.7-32.3% of Sb(III) was oxidized to Sb(V) after sorption equilibration, demonstrating the occurrence of Sb(III) oxidation during the sorption process. Further study of oxidation under anoxic condition confirmed the catalytic role of biochar for Sb(III) oxidation, and free radicals in biochars were crucial for electron transfer. CIB400 exhibited the highest catalytic oxidative ability for Sb(III), which could be ascribe to its reserve of more electroactive polyphenolic macromolecule and less electroinactive cellulose. These results imply that biochars have good potential as a green effective sorbent for remediation of Sb(III) contaminated water, and simultaneously reduce the toxicity of Sb(III) by catalytic oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Sorption data bases and mechanistic sorption studies

    International Nuclear Information System (INIS)

    Bradbury, M.H.

    2000-01-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  2. U(VI) and Eu(III) ion sorption in the interface solution-phosphate solids: Structural study and mechanisms

    International Nuclear Information System (INIS)

    Drot, Romuald

    1998-01-01

    As part of the storage of nuclear wastes in a deep underground disposal, radionuclides sorption on geological or engineered barriers is one of the most important factor which could enhance retardation. Thus, the knowledge of such mechanisms is needed. For this purpose, we chose to experimentally define sorption equilibria before performing simulation of retention data. Several phosphate compounds are potential candidates as engineered barrier additives. We considered Th 4 (PO 4 ) 4 P 2 O 7 , Zr 2 O(PO 4 ) 2 which allow to study the effect of PO 4 and P 2 O 7 groups separately. Eu(III) and U(IV) ions were used as structural probes in order to simulate actinides (III) and (VI) behavior. X-ray powder diffraction, IR spectroscopy and electron probe microanalysis were used to characterized the synthesized solids. Electrophoretic measurements showed an amphoteric behavior of surface sites. Moreover, laser spectro-fluorimetry experiments indicated that no diffusion phenomena of the sorbed ion inside the solid occurs. Thus, we considered that a surface complexation model should be applied. Laser spectro-fluorimetry and XPS allowed to determine the nature of surface sites. ZrP 2 O 7 presents only one single site (P 2 O 7 groups) whereas Th 4 (PO 4 ) 4 P 2 O 7 and Zr 2 O(PO 4 ) 2 admit two types of sites (PO 4 /P 2 O 7 and PO 4 /oxo groups, respectively). Sorbed species were identified using laser spectro-fluorimetry which indicate that, in KNO 3 0.5 M medium and for a known surface site, there are two surface complexes for U(VI) (sorption of UO 2+ 2 et de UO 2 NO + 3 species) and only one for Eu(III) (sorption of EuNO 2+ 3 ). They are linked to the substrate as bidentate inner sphere complexes (EXAFS study). Surface acidity constants were determined by simulation of potentiometric titration curves obtained for each solid suspension using FITEQL code (CCM). As sorption equilibria were defined, experimental retention data simulation was performed with respect to structural

  3. Development of Surface-Modified Polyacrylonitrile Fibers and Their Selective Sorption Behavior of Precious Metals

    Directory of Open Access Journals (Sweden)

    Areum Lim

    2016-11-01

    Full Text Available The purpose of this study was to design a powerful fibrous sorbent for recovering precious metals such as Pd(II and Pt(IV, and moreover for identifying its selectivity toward Pd(II or Pt(IV from a binary metal solution. For the development of the sorbent, polyacrylonitrile (PAN was selected as a model textile because its morphological property (i.e., thin fiber form is suitable for fast adsorption processes, and a high amount of PAN has been discharged from industrial textile factories. The PAN fiber was prepared by spinning a PAN–dimethylsulfoxide mixture into distilled water, and then its surface was activated through amidoximation so that the fiber surface could possess binding sites for Pd(II and Pt(IV. Afterwards, by Fourier-transform infrared (FT-IR and scanning electron microscopy (SEM analyses, it was confirmed that the amidoximation reaction successfully occurred. The surface-activated fiber, designated as PAN–oxime fiber, was used to adsorb and recover precious metals. In the experiment results, it was clearly observed that adsorption capacity of PAN–oxime fiber was significantly enhanced compared to the raw material form. Actually, the raw material does not have sorption capacity for the metals. In a comparison study with commercial sorbent (Amberjet™ 4200, it was found that adsorption capacity of PAN–oxime was rather lower than that of Amberjet™ 4200, however, in the aspects of sorption kinetics and metal selectivity, the new sorbent has much faster and better selectivity.

  4. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  5. The impact of solution chemistry of electrolyte on the sorption of pentachlorophenol and phenanthrene by natural hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Fanfeng; He, Yan, E-mail: yhe2006@zju.edu.cn; Lian, Zhenghua; Xu, Jianming, E-mail: jmxu@zju.edu.cn

    2014-01-01

    Hematite nanoparticles (NPs) were studied as a sorbent for hydrophobic organic contaminants (OCs) under natural ambient conditions through specially designed contrasting solution chemistry of electrolyte. Ionizable pentachlorophenol (PCP) and non-ionizable phenanthrene (PHE) were selected as representative OCs. The sorption capacities of PCP and PHE were pH-dependent, and a larger amount of PCP was sorbed at pH values below its pK{sub a} (4.75). However, the PHE sorption capacity was higher at relatively high or low pHs (e.g. below 4.0 and above 10.0), possibly due to the larger available surface area of the hematite NPs, caused by the higher values of net charges and charge density. Changes in pH might thus affect the sorption of OCs by hematite NPs, through modification of the surface characteristics of the sorbent and the electronic properties of the sorbate molecules. The influence of different ionic strengths indicated that the amounts of PCP and PHE sorbed by hematite NPs decreased as a concentration function of different types of ions (e.g. Na{sup +}, K{sup +}, Mg{sup 2 +} and Ca{sup 2 +}), with the underlying mechanism possibly being due to four interactions i.e. hydrogen-bonding, competitive sorption by ions in the ambient solution, screening effects and aggregation effects. The results confirmed that the surface chemistry of hematite NPs, the chemical properties of PCP and PHE, and solution chemistry (e.g. pH and ionic strength) of the electrolyte all played an important role in PCP and PHE sorption by hematite NPs. By comparison of both sorption capacity and ecologic advantages, our results suggested that natural hematite NPs would be more competitive and efficient for PCP and PHE sorption than engineered NPs. This finding increases our knowledge regarding the environmental function of natural NPs (such as hematite NPs) for OC remediation through manipulating their interfacial behavior. - Highlights: •Hematite NPs was tested for PCP/PHE sorption under

  6. Effect of canopy structures and their steric interactions on CO2 sorption behavior of liquid-like nanoparticle organic hybrid materials

    KAUST Repository

    Park, Youngjune; Petit, Camille; Han, Patrick; Alissa Park, Ah-Hyung

    2014-01-01

    Liquid-like NOHMs with different grafting densities of polymeric canopy were synthesized to evaluate their solvating properties as CO2 solvents. The in situ ATR FT-IR study of NOHMs with linear and branched canopies revealed distinct CO2 capture and corresponding swelling behaviors. These observations suggested that the entropic contribution for CO2 sorption in NOHMs can be tuned via the canopy design. © The Royal Society of Chemistry.

  7. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Sorption of lead onto two gram-negative marine bacteria in seawater

    Science.gov (United States)

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  9. Sorption behavior of human bone powder towards 60 Co and 65 Zn

    International Nuclear Information System (INIS)

    Abdel-Fattah, A.T.; Essa, M.W.A.; Mohamed, S.A.; Molokhia, M.K.

    1990-01-01

    Human bone powder 30-40 Μ in diameter was prepared from human bone femurs as fat-free (FFB), protein-free (PFB) or left untreated as raw bone powder (RB). The sorption behavior of human bone powder towards 60 Co and 65 Zn was studied. The uptake changed with the type of bone powder to be : PFB>FFB>RB. The increase in the concentration of cobalt(from 10 -6 to 10 -1 Mole/litre)and of zinc (from 10 -7 to 10 -4 M/1) increased the uptake of 60 Co and 65 Zn. Freunclich-type isotherm was successfully applied on the uptake data of both ions and the slopes of these isotherms were, nearly, directly proportional to their uptake values. The uptake was found to be less influenced by the PH. In case of cobalt the uptake increased till PH 4, followed by a plateau till PH 8 while in case of zinc the PH effect is much less pronounced

  10. Sorption and Transport of Sildenafil in Natural Soils

    Science.gov (United States)

    Boudinot, F. G.; Vulava, V. M.

    2013-12-01

    Pharmaceutical Chemicals (PCs) mainly enter our ecosystems from discharges of treated wastewater and have direct effects on the ecological health of that area. Sildenafil citrate (Viagra) is one such PC, whose presence has been reported in stream waters. Although one study has shown that sildenafil is not harmful in bacterial and fungal environments, there remains much unknown about its fate elsewhere in ecosystems. Sildenafil is a complex organic molecule with two amino functional groups that result in pKa's of 7.27 and 5.97. It also has a high solubility of 3.5 g/L. Given that sildenafil consumption (and concurrently disposal) is on the rise, it is essential that its behavior in the natural environment be better understood. The goal of this study was to quantify the sorption and transport behavior of sildenafil in differing natural soils with varying compositions. Pristine A- and B- horizon soil samples from several soil series were collected in a managed forest near Charleston, SC and used for these studies. The soils were characterized for physical and chemical properties: soil organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 4-5. These soils were then used to perform kinetic reaction, sorption, and column transport experiments. Batch kinetic experiments showed a fast reaction rate in both clay-rich and organic-rich soils and an equilibration time of less than 24 hours. Batch reactor sorption experiments provided data for sorption isotherms (plot of sildenafil in solution, C vs. sildenafil sorbed in soil, q) which were nonlinear. The isotherms were fit using Freundlich model (q=KfCn, where Kf and n are fitting parameters). Sildenafil sorbed more strongly to clay-rich soils compared with organic-rich soils with less clay. It is hypothesized that permanent negative charge on clay mineral surfaces form ionic bonds with positively charged amines in sildenafil in acidic pHs. Transport experiments were conducted using

  11. Carbon dioxide sorption in a nanoporous octahedral molecular sieve

    Science.gov (United States)

    Williamson, Izaak; Nelson, Eric B.; Li, Lan

    2015-08-01

    We have performed first-principles density functional theory calculations, incorporated with van der Waals interactions, to study CO2 adsorption and diffusion in nanoporous solid—OMS-2 (Octahedral Molecular Sieve). We found the charge, type, and mobility of a cation, accommodated in a porous OMS-2 material for structural stability, can affect not only the OMS-2 structural features but also CO2 sorption performance. This paper targets K+, Na+, and Ba2+ cations. First-principles energetics and electronic structure calculations indicate that Ba2+ has the strongest interaction with the OMS-2 porous surface due to valence electrons donation to the OMS-2 and molecular orbital hybridization. However, the Ba-doped OMS-2 has the worst CO2 uptake capacity. We also found evidence of sorption hysteresis in the K- and Na-doped OMS-2 materials.

  12. Sorption data bases and mechanistic sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H

    2000-07-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  13. Applicability of sorption data determined by laboratory experiments for evaluation of strontium-85 mobility in subsurface field

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Applicability of laboratory measurements to radionuclide transport in a natural environment was studied using the data from the field tests. The K d values obtained in the laboratory experiments were input into the instantaneous equilibrium sorption model, which simulates the migration of 85 Sr in the unsaturated loess. This simulation managed to reproduce results of the aforementioned field tests. To evaluate more accurately migration behavior of 85 Sr, based on the sorption data obtained by the laboratory experiments, the hybrid sorption model consisting of the equilibrium sorption process and the kinetic sorption process was proposed. When compared with predictions using the K d -based equilibrium sorption model, the results of the field migration tests of 85 Sr were more successfully reproduced by introducing the hybrid sorption model. (author)

  14. Sorption of heavy metals by the soil fungi 'Aspergillus niger' and Mucor rouxii

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, M.D.; Wolf, D.C.; Beveridge, T.J.; Bailey, G.W.

    1992-01-01

    Sorption of the nitrate salts of cadmium(II), copper(II), lanthanum(III) and silver(I) by two fungi, Aspergillus niger and Mucor rouxii, was evaluated using Freundlich adsorption isotherms and energy dispersive X-ray electron microscopy. The linearized Freundlich isotherm described the metal sorption data well for metal concentrations of 5 microM-1 mM metal. Differences in metal binding were observed among metals, as well as between fungal species. Calculated Freundlich K values indicated that metal binding decreased in the order La(3+) > or = Ag(+) > Cu(2+) > Cd(2+). However, sorption of Ag(+) was greater than that of La(3+) from solutions of 0.1 and 1 mM metal and likely due to precipitation at the cell wall surface. At the 1 mM initial concentration, there were no significant differences between the two fungi in metal sorption, except for Ag(+) binding. At the 5 microM concentration, there was no difference between the fungi in their sorption capacities for the four metals. Electron microscopy-energy dispersive X-ray analysis indicated that silver precipitated onto cells as colloidal silver. The results indicate that Freundlich isotherms may be useful for describing short-term metal sorption by fungal biomass and for comparison with other soil constituents in standardized systems. (Copyright (c) 1992 Pergamon Press plc.)

  15. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2013-01-01

    Based on the sorption distribution coefficients (K d ) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K d values of Cs onto Mizunami granite carried out by JAEA with the K d values predicted by the model, the effect of the ionic strength on the K d values of Cs onto granite was evaluated. It was found that K d values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10 -2 to 5 x 10 -1 mol/dm 3 . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  16. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    Soederlund, M.; Lusa, M.; Lehto, J.; Hakanen, M.; Vaaramaa, K.

    2011-01-01

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO 4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  17. Sorption of agrochemical model compounds by sorbent materials containing beta-cyclodextrin.

    Science.gov (United States)

    Wilson, Lee D; Mohamed, Mohamed H; Guo, Rui; Pratt, Dawn Y; Kwon, Jae Hyuck; Mahmud, Sarker T

    2010-04-01

    Polymeric sorbent materials that incorporate beta-cyclodextrin (CD) have been prepared and their sorption behavior toward two model agrochemical contaminant compounds, p-nitrophenol (PNP) and methyl chloride examined. The sorption of PNP was studied in aqueous solution using ultraviolet-visible (UV-Vis) spectroscopy, whereas the sorption of methyl chloride from the gas phase was studied using a Langmuir adsorption method. The sorption results for PNP in solution were compared between granular activated carbon (GAC), modified GAC, CD copolymers, and CD-based mesoporous silica hybrid materials. Nitrogen porosimetry at 77 K was used to estimate the surface area and pore structure properties of the sorbent materials. The sorbents displayed variable surface areas as follows: copolymers (36.2-157 m(2)/g), CD-silica materials (307-906 m(2)/g), surface modified GAC (657 m(2)/g), and granular activated carbon (approximately 10(3) m(2)/g). The sorption capacities for PNP and methyl chloride with the different sorbents are listed in descending order as follows: GAC > copolymers > surface modified GAC > CD-silica hybrid materials. In general, the differences in the sorption properties of the sorbents were related to the following: (i) surface area of the sorbent, (ii) CD content and accessibility, (iii) and the chemical nature of the sorbent material.

  18. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  19. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    International Nuclear Information System (INIS)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-01-01

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  20. Modeling approaches of competitive sorption and transport of trace metals and metalloids in soils: a review.

    Science.gov (United States)

    Selim, H M; Zhang, Hua

    2013-01-01

    Competition among various heavy metal species for available adsorption sites on soil matrix surfaces can enhance the mobility of contaminants in the soil environment. Accurate predictions of the fate and behavior of heavy metals in soils and geologic media requires the understanding of the underlying competitive-sorption and transport processes. In this review, we present equilibrium and kinetic models for competitive heavy metal sorption and transport in soils. Several examples are summarized to illustrate the impact of competing ions on the reactivities and mobility of heavy metals in the soil-water environment. We demonstrate that equilibrium Freundlich approaches can be extended to account for competitive sorption of cations and anions with the incorporation of competition coefficients associated with each reaction. Furthermore, retention models of the multiple-reaction type including the two-site nonlinear equilibrium-kinetic models and the concurrent- and consecutive-multireaction models were modified to describe commonly observed time-dependent behaviors of heavy metals in soils. We also show that equilibrium Langmuir and kinetic second-order models can be extended to simulate the competitive sorption and transport in soils, although the use of such models is limited due to their simplifying assumptions. A major drawback of the empirically based Freundlich and Langmuir approaches is that their associated parameters are specific for each soil. Alternatively, geochemical models that are based on ion-exchange and surface-complexation concepts are capable of quantifying the competitive behavior of several chemical species under a wide range of environmental conditions. Such geochemical models, however, are incapable of describing the time-dependent sorption behavior of heavy metal ions in competitive systems. Further research is needed to develop a general-purpose model based on physical and chemical mechanisms governing competitive sorption in soils. Copyright

  1. Sorption of 60 Co on inorganic solids

    International Nuclear Information System (INIS)

    Granados C, F.; Bulbulian G, S.; Mardel V, B.

    2003-01-01

    The behavior of sorption of the 60 Co in aqueous solution under static conditions to different values of pH of the aqueous solution (1, 3, 5, 7, and 10) on MgO, MnO 2 , SnO, TiO 2 , activated carbon and calcinate hydrotalcite was investigated. It was found that the best sorbents of the 60 Co was the MnO 2 , activated carbon and TiO 2 whose sorption was incremented when increasing the pH value of the aqueous solutions, in the one case of the hydrated oxides, the 60 Co interacted with the electrically charged surface of the sorbents that depends on the pH of the solution and of the point of zero charge (zpc) of the sorbent. (Author)

  2. Sorption of phenanthrene and benzene on differently structural kerogen: Important role of micropore-filling

    International Nuclear Information System (INIS)

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-01-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (V o,d ) initially increase and then decrease. The V o,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The V o,d of phenanthrene and benzene on the kerogen samples accounts for 23–46% and 36–65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling. -- Highlights: • The microporosity estimated by benzene vapor differs greatly from that by N 2 . • The micropore volume changes with kerogen maturation. • The phenanthrene or benzene sorption is related to the microporosity of kerogen. • Higher adsorption volume for benzene than for phenanthrene suggests molecular sieve effect. • The pore-filling plays an important role in the sorption of phenanthrene and benzene. -- The sorption behaviors of benzene and phenanthrene are related to the microporosity of the differently matured kerogen, indicating the importance of pore-filling

  3. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  4. Sorption behavior of bensulfuron-methyl on andisols and ultisols volcanic ash-derived soils: Contribution of humic fractions and mineral-organic complexes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Jeannette; Fuentes, Edwar [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile); Baez, Maria E., E-mail: mbaez@ciq.uchile.c [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Olivos 1007, Casilla 233, Santiago (Chile)

    2009-12-15

    Bensulfuron-methyl sorption was studied in Andisol and Ultisol soils in view of their characteristic physical and chemical properties, presenting acidic pH and variable charge. Humic and fulvic acids (HA and FA) and humin (HUM) contributions were established. Sorption was studied by using two synthetic sorbents, an aluminum-silicate with iron oxide coverage and the same sorbent coated with humic acid. Freundlich model described Bensulfuron-methyl behavior in all sorbents (R{sup 2} 0.969-0.998). K{sub f} for soils (8.3-20.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}) were higher than those reported in the literature. Organic matter, halloysite or kaolinite, and specific surface area contributed to the global process. The highest K{sub f} for HA, FA and HUM were 539.5, 82.9, and 98.7 mug{sup 1-1/n} mL{sup 1/n} g{sup -1}. Model sorbents described the participation of variable charge materials with high adsorption capacity. The constant capacitance model was used to assess effects of Bensulfuron-methyl adsorption on the distribution of SOH, SOH{sub 2}{sup +} and SO{sup -} sites of sorbents. - Organic matter, phyllosilicates, variable charge minerals and organo-mineral complexes contribute to bensulfuron-methyl sorption on volcanic ash-derived soils.

  5. Uranium sorption on tezontle volcanic rock

    International Nuclear Information System (INIS)

    Lopez M, B. E.; Duran B, J. M.; Iturbe G, J. L.; Olguin G, M. T.

    2009-01-01

    It is described a study that demonstrates that hexavalent uranium ions were sorbed by the naturally occurring mineral using a batch technique. This mineral is found in abundant quantities in Mexico. Our study focused on the separation of U Vi from synthetic aqueous systems of both H 2 O-UO 2 (NO 3 ) 2 .6H 2 O (acid) and H 2 O-Na 4 [UO 2 (CO 3 ) 3 ] (basic). The chemical speciation was performed by using high voltage electrophoresis, and the uranium content was determined by UV-Vis spectroscopy. The quantified U(Vi) sorption by tezontle from acidic and basic systems was 2.72 and 1.68 μmol/g, respectively, and the sorption behavior is discussed considering the surface charge of the tezontle at different ph values based on the point of zero charge characteristic of this material. (Author)

  6. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S., E-mail: nagasas@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2013-07-01

    Based on the sorption distribution coefficients (K{sub d}) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K{sub d} values of Cs onto Mizunami granite carried out by JAEA with the K{sub d} values predicted by the model, the effect of the ionic strength on the K{sub d} values of Cs onto granite was evaluated. It was found that K{sub d} values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10{sup -2} to 5 x 10{sup -1} mol/dm{sup 3} . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  7. Sorption and diffusion of FE(II) in bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Tournassat, C.; Hadi, J.; Greneche, J.-M.

    2014-02-01

    . Qualitatively, the sorption of the radioactive 55 Fe on all the clays shows the same type of behaviour, i.e. sorption increases with increasing pH. In the measurements with the bentonite purified at VTT, the sorption occurs at a higher pH than in the measurements carried out with bentonite purified at BRGM. The sorption experiments in the acetate buffer of pH 5 show decreasing sorption of 55 Fe as a function of the increasing concentration of the added Fe(II). A general model for the investigated clays is proposed where Fe sorption is due to adsorption on exchange sites, strong and weak complexation sites and electron transfer with the structural Fe. All mechanisms identified apply to all clay samples but with variations in CEC values, structural Fe redox potential and strong and weak sites' surface density. The measured diffusivities show rather low values (10 -15 - 10 -16 m 2 /s) at pH 8 and 5. At pH 8, the diffusion curve calculated with a reactive transport model on the basis of the sorption matches fairly well the experimental results. At pH 5, the model predicts a much longer diffusion distance than found in the experiment. The reason for this discrepancy is not yet understood. A possible explanation could be a slow redox/sorption process which does not appear in the short batch sorption measurements. (orig.)

  8. Sorption and diffusion of FE(II) in bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Muurinen, A. [VTT Technical Research Centre of Finland, Espoo (Finland); Tournassat, C.; Hadi, J. [BRGM, Orleans (France); Greneche, J.-M. [LPCE, Le Mans (France)

    2014-02-15

    . Qualitatively, the sorption of the radioactive {sup 55}Fe on all the clays shows the same type of behaviour, i.e. sorption increases with increasing pH. In the measurements with the bentonite purified at VTT, the sorption occurs at a higher pH than in the measurements carried out with bentonite purified at BRGM. The sorption experiments in the acetate buffer of pH 5 show decreasing sorption of {sup 55}Fe as a function of the increasing concentration of the added Fe(II). A general model for the investigated clays is proposed where Fe sorption is due to adsorption on exchange sites, strong and weak complexation sites and electron transfer with the structural Fe. All mechanisms identified apply to all clay samples but with variations in CEC values, structural Fe redox potential and strong and weak sites' surface density. The measured diffusivities show rather low values (10{sup -15} - 10{sup -16} m{sup 2}/s) at pH 8 and 5. At pH 8, the diffusion curve calculated with a reactive transport model on the basis of the sorption matches fairly well the experimental results. At pH 5, the model predicts a much longer diffusion distance than found in the experiment. The reason for this discrepancy is not yet understood. A possible explanation could be a slow redox/sorption process which does not appear in the short batch sorption measurements. (orig.)

  9. Radionuclide sorption kinetics and column sorption studies with Columbia River basalts

    International Nuclear Information System (INIS)

    Barney, G.S.

    1983-09-01

    The kinetics of radionuclide sorption and desorption reactions in basalt-groundwater systems were evaluated at 60 degrees C using a batch equilibration method. It was found that many sorption reactions on surfaces of fresh (unaltered) basalt from the Umtanum and Cohassett flows are slow. Some reactions require more than 50 days to reach a steady state. Sorption of neptunium and uranium in oxidizing (air saturated) groundwater appears to be controlled by slow reduction of these elements by the basalt surfaces. The resulting lower oxidation states are more strongly sorbed. Technetium and selenium, which are anionic under oxidizing conditions, are not measurably sorbed on fresh basalt surfaces, but are slightly sorbed on the altered surfaces of flow top basalt. Under reducing conditions, where the groundwater contains dilute hydrazine, sorption is faster for neptunium, uranium, technetium, selenium, and lead. Plutonium sorption rates were not affected by the groundwater Eh. It was shown that radium was precipitated rather than sorbed under the conditions of these experiments. Umtanum flow top material sorbed radionuclides much faster than fresh basalt surfaces due to its greater surface area and cation exchange capacity. Desorption rates for plutonium, uranium, neptunium, technetium, and selenium were generally much less than sorption rates (especially for reducing conditions). These radionuclides are irreversibly sorbed on the basalts. 25 refs., 20 figs., 19 tabs

  10. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    Science.gov (United States)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  11. Preparation, characterization of electrospun meso-hydroxylapatite nanofibers and their sorptions on Co(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hualin, E-mail: hlwang@hfut.edu.cn [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Peng; Ma, Xingkong; Jiang, Suwei; Huang, Yan; Zhai, Linfeng [School of Chemical Technology, Hefei University of Technology, Hefei, Anhui 230009 (China); Jiang, Shaotong [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2014-01-30

    Highlights: • PVA/HA nanofibers could change into meso-HA nanofibers by calcination process. • Sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. • Sorption kinetic data were well fitted by the pseudo-second-order rate equation. • Sorption isotherms could be well described by the Langmuir model. • Sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic. -- Abstract: In this work, mesoporous hydroxylapatite (meso-HA) nanofibers were prepared via calcination process with polyvinyl alcohol/HA (PVA/HA) hybrid nanofibers fabricated by electrospinning technique as precursors, and the removal efficiency of meso-HA nanofibers toward Co(II) was evaluated via sorption kinetics and sorption isotherms. Furthermore, the sorption behaviors of Co(II) on meso-HA nanofibers were explored as a function of pH, ionic strength, and thermodynamic parameters. There existed hydrogen bonds between HA and PVA matrix in precursor nanofibers which could change into meso-HA nanofibers with main pore diameter at 27 nm and specific surface area at 114.26 m{sup 2}/g by calcination process. The sorption of Co(II) on meso-HA was strongly dependent on pH and ionic strength. Outer-sphere surface complexation or ion exchange was the main mechanisms of Co(II) adsorption on meso-HA at low pH, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH. The sorption kinetic data were well fitted by the pseudo-second-order rate equation. The sorption isotherms could be well described by the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms suggested that the sorption process of Co(II) on meso-HA nanofibers was spontaneous and endothermic.

  12. Experimental study and modelling of selenite sorption onto illite and smectite clays.

    Science.gov (United States)

    Missana, T; Alonso, U; García-Gutiérrez, M

    2009-06-15

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated (from 1x10(-10) to 1x10(-3) M); and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions, as follows: (a) 30% illite-70% smectite and (b) 43% illite-57% smectite. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data, separately obtained in the single mineral systems, were modeled using both a one- and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. Although the use of a two-site model slightly improved the fit of data at a pH below 4, the simpler one-site model reproduced satisfactorily all the sorption data from pH 3 to 8. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/smectite mixtures; the model's predictions were consistent with the experimental adsorption data.

  13. Thermodynamics of imidacloprid sorption in Croatian soils

    Science.gov (United States)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  14. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  15. Radionuclide distributions and sorption behavior in the Susquehanna--Chesapeake Bay System

    International Nuclear Information System (INIS)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.; McLean, R.I.; Domotor, S.L.

    1989-01-01

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout 137 Cs; reactor-released 137 Cs, 134 Cs, 65 Zn, 60 Co, and 58 Co; and naturally occurring 7 Be and 210 Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioning among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs

  16. Nature of transition element ions sorption by AN-61 and ANKB-10 ionites

    International Nuclear Information System (INIS)

    Mekvabishvili, T.V.; Kotov, Yu.I.; Kopylova, V.D.; Kachevskij, O.V.; Saldadze, K.M.

    1983-01-01

    The results of investigations into nature of sorption of iron (3), copper (2), zinc (2) cobalt (2), uranyl ions at contact of their salt solutions with AN-61 and ANKB-10 ionites using the; methods of IR-spectroscopy and potentiometry as well as experimental data on sorption properties of ionites are presented. Investigation into the nature of sorption of transition metals by AN-61 and ANKB-10 ionites has revealed that sorption of transition metals takes place at the expense of coordination and ion bonds formation between ions of the metals and functional groups of ionites. The effect of ion force of the solution on electro-donating properties of AN-61 and ANKB-10 ionites hous disclosed. Increase of ion force of the solution results in improvement of electron-donating properties in anionite and it does not practically affect ampholyte

  17. Uranium sorption on tezontle volcanic rock

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, B. E.; Duran B, J. M.; Iturbe G, J. L.; Olguin G, M. T., E-mail: beatriz.lopez@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    It is described a study that demonstrates that hexavalent uranium ions were sorbed by the naturally occurring mineral using a batch technique. This mineral is found in abundant quantities in Mexico. Our study focused on the separation of U Vi from synthetic aqueous systems of both H{sub 2}O-UO{sub 2}(NO{sub 3}){sub 2}.6H{sub 2}O (acid) and H{sub 2}O-Na{sub 4}[UO{sub 2}(CO{sub 3}){sub 3}] (basic). The chemical speciation was performed by using high voltage electrophoresis, and the uranium content was determined by UV-Vis spectroscopy. The quantified U(Vi) sorption by tezontle from acidic and basic systems was 2.72 and 1.68 mumol/g, respectively, and the sorption behavior is discussed considering the surface charge of the tezontle at different ph values based on the point of zero charge characteristic of this material. (Author)

  18. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures

    International Nuclear Information System (INIS)

    Zhang Guixiang; Zhang Qing; Sun Ke; Liu Xitao; Zheng Wenjuan; Zhao Ye

    2011-01-01

    Simazine sorption to corn straw biochars prepared at various temperatures (100-600 deg. C) was examined to understand its sorption behavior as influenced by characteristics of biochars. Biochars were characterized via elemental analysis, BET-N 2 surface area (SA), FTIR and 13 C NMR. Freundlich and dual-mode models described sorption isotherms well. Positive correlation between log K oc values and aromatic C contents and negative correlation between log K oc values and (O + N)/C ratios indicate aromatic-rich biochars have high binding affinity to simazine (charge transfer (π-π*) interactions) and hydrophobic binding may overwhelm H-bonding, respectively. Dual-mode model results suggest adsorption contribution to total sorption increases with carbonization degree. Positive correlation between amounts of adsorption (Q ad ) and SA indicates pore-filling mechanism. Comparison between our results and those obtained with other sorbents indicates corn straw biochars produced at higher temperature can effectively retain simazine. These observations will be helpful for designing biochars as engineered sorbents to remove triazine herbicides. - Highlights: → Biochars were characterized via elemental analysis, BET-N 2 , FTIR and 13 C NMR. → Freundlich and dual-mode models described sorption isotherms well. → Biochar produced at higher temperature had larger sorption capacity for simazine. → Aromatic-rich biochars have high binding affinity to simazine. → Dual-mode model results suggest adsorption contribution to total sorption. - The corn straw biochar prepared at higher temperature with stronger hydrophobicity, more aromatic C and larger surface area had higher sorption capacity for simazine.

  19. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  20. Influence of sorption competition on sorption data for MX-80 bentonite used in performance assessment

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Marques Fernandes, M.

    2012-01-01

    Document available in extended abstract form only. In order to obtain a (quasi) mechanistic understanding of radionuclide uptake on clay minerals and argillaceous rocks, the majority of sorption experiments have been carried out on purified clay minerals such as montmorillonite and illite at trace concentrations (sorption edges), or as a function of concentration (sorption isotherms), with a single radionuclide under well-defined conditions in simple background electrolytes. As a result of such studies the 2 site proto-lysis non electrostatic surface complexation cation exchange (2SPNE SC/CE) sorption model, was developed and has been successfully applied to quantitatively describe the uptake of numerous radionuclides of differing valences as a function of pH and concentration on montmorillonite. In a deep geological repository for high level waste, stable impurities arise from many sources: they are present in the pore waters, in the tunnel back fill materials and host rock formations, they arise from the corrosion of the carbon steel canister and finally they are dissolved from the spent fuel and vitrified high level waste simultaneously with the radionuclides. These impurities, which are an integral part of a realistic repository system, can potentially compete with radionuclides for the sorption sites on the backfill materials and host rock and thus reduce their uptake on them. The influence of competitive sorption is not intrinsically included (or only partly so) in the sorption model. It is clearly an inherently important issue to quantify the influence of sorption competition on the transport of released radionuclides through the multi-barrier system in a deep repository. In this study an extreme case of a competitive sorption scenario in the near field of a HLW repository is presented. Two factors are considered: one associated with the high concentrations and the other with competitive sorption effects. The tendency in both cases is to cause a reduction in

  1. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample.

    Science.gov (United States)

    Wang, Xilong; Guo, Xiaoying; Yang, Yu; Tao, Shu; Xing, Baoshan

    2011-03-15

    The sorption behavior of organic compounds (phenanthrene, lindane, and atrazine) to sequentially extracted humic acids and humin from a peat soil was examined. The elemental composition, XPS and (13)C NMR data of sorbents combined with sorption isotherm data of the tested compounds show that nonspecific interactions govern sorption of phenanthrene and lindane by humic substances. Their sorption is dependent on surface and bulk alkyl carbon contents of the sorbents, rather than aromatic carbon. Sorption of atrazine by these sorbents, however, is regulated by polar interactions (e.g., hydrogen bonding). Carboxylic and phenolic moieties are key components for H-bonding formation. Thermal analysis reveals that sorption of apolar (i.e., phenanthrene and lindane) and polar (i.e., atrazine) compounds by humic substances exhibit dissimilar relationships with condensation and thermal stability of sorption domains, emphasizing the major influence of domain spatial arrangement on sorption of organic compounds with distinct polarity. Results of pH-dependent sorption indicate that reduction in sorption of atrazine by the tested sorbents is more evident than phenanthrene with increasing pH, supporting the dependence of organic compound sorption on its polarity and structure. This study highlights the different interaction mechanisms of apolar and polar organic compounds with humic substances.

  2. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    Science.gov (United States)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged

  3. Review of the sorption of actinides on natural minerals

    International Nuclear Information System (INIS)

    Beall, G.W.

    1981-01-01

    Over the past few years, a large body of data concerning sorption of actinides on geologic media has been built in connection with high-level-waste disposal. The primary aim of the work has been to allow predictions of the migration behavior of these radionuclides in the case of a breach of the repository that allowed groundwater flow through the repository. As a result of this work, some new backfill materials specifically tailored for the actinides have also been designed. Several major mechanisms of sorption that appear to dominate the sorption of actinides have emerged from these studies. These mechanisms can be divided into solution reactions dominated by hydrolysis, chemisorption reactions, and oxidation-reduction reactions. Each of these mechanisms will be discussed in detail, with experimental examples. Surprisingly, one mechanism, cation exchange, does not play an important role; why it fails to operate in any significant way in the environmental pH region will be discussed. The implications of the sorption mechanisms for waste forms and backfill materials will be discussed in detail. These discussions will center primarily around the valence state of the actinide in various waste forms and the effect of various anions on leachability from waste forms and backfill materials

  4. U(VI) and Eu(III) ion sorption in the interface solution-phosphate solids: Structural study and mechanisms; Sorption des ions U(VI) et Eu(III) a l`interface solution - solides phosphates: Etude structurale et mechanismes

    Energy Technology Data Exchange (ETDEWEB)

    Drot, Romuald [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1998-09-18

    As part of the storage of nuclear wastes in a deep underground disposal, radionuclides sorption on geological or engineered barriers is one of the most important factor which could enhance retardation. Thus, the knowledge of such mechanisms is needed. For this purpose, we chose to experimentally define sorption equilibria before performing simulation of retention data. Several phosphate compounds are potential candidates as engineered barrier additives. We considered Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}, Zr{sub 2}O(PO{sub 4}){sub 2} which allow to study the effect of PO{sub 4} and P{sub 2}O{sub 7} groups separately. Eu(III) and U(IV) ions were used as structural probes in order to simulate actinides (III) and (VI) behavior. X-ray powder diffraction, IR spectroscopy and electron probe microanalysis were used to characterized the synthesized solids. Electrophoretic measurements showed an amphoteric behavior of surface sites. Moreover, laser spectro-fluorimetry experiments indicated that no diffusion phenomena of the sorbed ion inside the solid occurs. Thus, we considered that a surface complexation model should be applied. Laser spectro-fluorimetry and XPS allowed to determine the nature of surface sites. ZrP{sub 2}O{sub 7} presents only one single site (P{sub 2}O{sub 7} groups) whereas Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7} and Zr{sub 2}O(PO{sub 4}){sub 2} admit two types of sites (PO{sub 4}/P{sub 2}O{sub 7} and PO{sub 4}/oxo groups, respectively). Sorbed species were identified using laser spectro-fluorimetry which indicate that, in KNO{sub 3} 0.5 M medium and for a known surface site, there are two surface complexes for U(VI) (sorption of UO{sup 2+}{sub 2} et de UO{sub 2}NO{sup +}{sub 3} species) and only one for Eu(III) (sorption of EuNO{sup 2+}{sub 3}). They are linked to the substrate as bidentate inner sphere complexes (EXAFS study). Surface acidity constants were determined by simulation of potentiometric titration curves obtained for each solid

  5. Sorption of per- and polyfluoroalkyl substances (PFASs) on filter media: implications for phase partitioning studies.

    Science.gov (United States)

    Chandramouli, Bharat; Benskin, Jonathan P; Hamilton, M Coreen; Cosgrove, John R

    2015-01-01

    Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are ubiquitous in the environment. Investigations into their fate and potential phase-partitioning behavior require separating solid from aqueous phases via filtration. However, sorption of aqueous-phase PFASs on filtration media may lead to underestimation of PFAS concentrations in the aqueous phase. The authors investigated the sorption of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids (PFPiAs), polyfluoroalkyl phosphate monoesters, polyfluoroalkyl phosphate diesters (diPAPs), fluorotelomer sulfonates, and perfluorooctane sulfonamide on filtration media. The effects of concentration (3 spiking levels), filter media (4 types), matrix (4 matrices), and compound structure on sorption are reported. Glass fiber filtration resulted in the least sorption, whereas polytetrafluoroethylene filters resulted in the most sorption (up to 98%). Analyte concentration had no significant effect. Sorption was generally consistent across matrix types except for samples affected by aqueous film forming foam deployment, which displayed high sorption of PFOS on nylon filters. Sorption usually increased with an increasing number of carbon or fluorine atoms and was most pronounced for PFPiAs and diPAPs (30–75% sorption). Overall, glass fiber filters are more recommended than nylon filters in environmental samples when phase separation is required. Use of filtration media for PFAS must be preceded by matrix-specific testing to account for unpredictable effects. (C)2014 SETAC

  6. Annealing effect reversal by water sorption-desorption and heating above the glass transition temperature-comparison of properties.

    Science.gov (United States)

    Saxena, A; Jean, Y C; Suryanarayanan, R

    2013-08-05

    Our objective is to compare the physical properties of materials obtained from two different methods of annealing reversal, that is, water sorption-desorption (WSD) and heating above glass transition temperature (HAT). Trehalose was annealed by storing at 100 °C for 120 h. The annealing effect was reversed either by WSD or HAT, and the resulting materials were characterized by differential scanning calorimetry (DSC), water sorption studies, and positron annihilation spectroscopy (PAS). While the products obtained by the two methods of annealing reversal appeared to be identical by conventional characterization methods, they exhibited pronounced differences in their water sorption behavior. Positron annihilation spectroscopy (PAS), by measuring the fractional free volume changes in the processed samples, provided a mechanistic explanation for the differences in the observed behavior.

  7. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-10-12

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs.

  8. Experimental Study and modelling of the Sorption of Selenite and Europium Onto Smectite and Illite Clays

    International Nuclear Information System (INIS)

    Missana, T.; Alonso, U.; Garcia-Gutierrez, M.

    2009-01-01

    This study provides a large set of experimental selenite sorption data for pure smectite and illite. Similar sorption behavior existed in both clays: linear within a large range of the Se concentrations investigated and independent of ionic strength. Selenite sorption was also analysed in the illite/smectite system with the clays mixed in two different proportions. The objective of the study was to provide the simplest model possible to fit the experimental data, a model also capable of describing selenite sorption in binary illite/smectite clay systems. Selenite sorption data were modeled using both a one-and a two-site non-electrostatic model that took into account the formation of two complexes at the edge sites of the clay. The complexation constants obtained by fitting sorption data of the individual minerals were incorporated into a model to predict the adsorption of selenium in the illite/ smectite mixtures; the models predictions were consistent with the experimental adsorption data. (Author) 42 refs

  9. Sorption of actinides onto nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Shiryaev, Andrei [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry; Kalmykov, Stepan [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Vernadsky Institute of Geochemistry and Analytical Chemistry

    2015-06-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  10. Sorption of actinides onto nanodiamonds

    International Nuclear Information System (INIS)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna; Shiryaev, Andrei; Russian Academy of Sciences, Moscow; Kalmykov, Stepan; Russian Academy of Sciences, Moscow; Russian Academy of Sciences, Moscow

    2015-01-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  11. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    International Nuclear Information System (INIS)

    Choi, Hyeok; Al-Abed, Souhail R.

    2009-01-01

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K F (L kg -1 ) spanned several orders of magnitude, ranging from log K F of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  12. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K{sub F} (L kg{sup -1}) spanned several orders of magnitude, ranging from log K{sub F} of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  13. Mechanistic role of citric acid in the sorption of Eu(III) at titania - water interface

    International Nuclear Information System (INIS)

    Kumar, Sumit; Kasar, Sharayu; Tomar, B.S.

    2014-01-01

    In view of the deep underground disposal strategy of nuclear high level waste, environmental behavior of long lived radionuclides, such as, trivalent actinides Am(III) and Cm(III), attract significant scientific attention. Interaction of trivalent actinides with anatase (TiO 2 ) in presence of citric acid has been investigated in the present work using Eu(III) batch sorption studies and the role of citric acid in influencing sorption of Eu(III) on anatase was delineated using surface speciation of Eu(III) and citric acid on anatase surface. Results from ATR-FTIR spectroscopic study have been invoked to determine the binding of citric acid on anatase surface. Eu(III) sorption on anatase increases sharply to quantitative value over pH 3- 6 and remains at 100% upto pH 10. In presence of citric acid, there is no change in Eu(III) sorption in the pH range 2-5 whereas significant lowering in Eu(III) sorption percentage was obtained in the pH range 5-8. Above pH 8 the sorption percentage reached quantitative value

  14. Sorption Behavior of CO2 and CH4 of Glassy Polymeric Membranes and Analytical Discussion of Partial Immobilization Model

    Directory of Open Access Journals (Sweden)

    M. Mahdavian

    2007-06-01

    Full Text Available Among various reported membrane-based gas separation processes, the best explanation is generally achieved by the solution-diffusion model. The main factors in this model are the solubility and diffusivity of permeationcomponents through the membrane. The prediction of permeability and diffusivity in multicomponent gas permeation as well as the separation evaluation equilibrium and kinetic interactions requires a proper explanation of sorption and diffusion phenomena in the polymer matrix. Investigation made by various researchers in this area shows that the equilibrium interaction (sorption step plays the key role in determining diffusion and permeation in multicomponent system. Therefore, the proper description of sorption behaviour of gas mixture in the polymer is an essential task. The dual-mode sorption (Langmuir-Henry is usually used for the description of equilibrium isotherm of gases in glassy polymers based on this model; the diffusive behaviour of the system is subsequently analyzed by the partial immobilization model. In this study, the equilibrium sorption of CO2/CH4 mixture in various polymers was modelled using the experimental data available in the literature. The differences in the mechanism of adsorption for CO2 and CH4 were analyzed by considering variations in mode of sorption for each adsorbed component at different pressures. By introducing a new adsorption parameter, P50/50, (the pressure at which the portion of two modes in sorption are equal the contribution of each adsorbed component in occupying Langmuir sites was evaluated. The results indicate that the relative significance of sorption mode for each component is a function of pressure and it is different for various polymers.

  15. Sorption of Uranium(VI and Thorium(IV by Jordanian Bentonite

    Directory of Open Access Journals (Sweden)

    Fawwaz I. Khalili

    2013-01-01

    Full Text Available Purification of raw bentonite was done to remove quartz. This includes mixing the raw bentonite with water and then centrifuge it at 750 rpm; this process is repeated until white purified bentonite is obtained. XRD, XRF, FTIR, and SEM techniques will be used for the characterization of purified bentonite. The sorption behavior of purified Jordanian bentonite towards and Th4+ metal ions in aqueous solutions was studied by batch experiment as a function of pH, contact time, temperature, and column techniques at 25.0∘C and . The highest rate of metal ions uptake was observed after 18 h of shaking, and the uptake has increased with increasing pH and reached a maximum at . Bentonite has shown high metal ion uptake capacity toward uranium(VI than thorium(IV. Sorption data were evaluated according to the pseudo- second-order reaction kinetic. Sorption isotherms were studied at temperatures 25.0∘C, 35.0∘C, and 45.0∘C. The Langmuir, Freundlich, and Dubinin-Radushkevich (D-R sorption models equations were applied and the proper constants were derived. It was found that the sorption process is enthalpy driven for uranium(VI and thorium(IV. Recovery of uranium(VI and thorium(IV ions after sorption was carried out by treatment of the loaded bentonite with different concentrations of HNO3 1.0 M, 0.5 M, 0.1 M, and 0.01 M. The best percent recovery for uranium(VI and thorium(IV was obtained when 1.0 M HNO3 was used.

  16. Cs sorption to potential host rock of low-level radioactive waste repository in Taiwan: experiments and numerical fitting study.

    Science.gov (United States)

    Wang, Tsing-Hai; Chen, Chin-Lung; Ou, Lu-Yen; Wei, Yuan-Yaw; Chang, Fu-Lin; Teng, Shi-Ping

    2011-09-15

    A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site

  17. Sorption Behavior of Cu(II From Acidic SolutionUsing Weathered Basalt Andesite Products

    Directory of Open Access Journals (Sweden)

    Rajesh Singh

    2007-01-01

    Full Text Available Wastewater discharged from electroplating industry pose a serioushazard due to their heavy metal load. The objective of this work is to evaluatethe removal of Cu(II from acidic solution by sorption onto Weathered BasaltAndesite Products (WBAP. WBAP has been characterized and utilized forremoval of copper from aqueous solution over wide range of initial metal ionconcentration (25 mg/L to 500 mg/L, contact duration (0-8 h, sorbent dose(5-35 g/L, pH (1.0 to 6.0, and temperature (276 K to 333 K. The sorptionpattern of Cu ions onto WBAP followed Langmuir, Freundlich, and Dubinin-Kaganer-Radushkevich isotherms. The thermodynamic parameters (∆H0, ∆S0,and ∆G0 for Cu sorption onto WBAP were also determined.

  18. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    International Nuclear Information System (INIS)

    Koudelkova, M.; Vinsova, H.; Konirova, R.; Ernestova, M.; Jedinakova-Krizova, V.; Tereesha, M.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing condition. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ ) with bentonite, the effect of solid: aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. The 8 days kinetics of the perrhenate and pertechnetate sorption on bentonite was described mathematically with a tendency to predict long-term behavior of studied systems. (authors)

  19. Web-based sorption database (KAERI-SDB)

    International Nuclear Information System (INIS)

    Lee, Jae Kwang; Baik, Min Hoon

    2010-10-01

    Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the accessibility to the nuclide sorption database is limited. The web-based sorption database (KAERI-SDB) was developed to provide sorption data in a convenient way. The development of the KAERI-SDB was achieved by improving the performance of pre-existing sorption DB programme (SDB-21C) and incorporating the user requirement. The KAERI-SDB was designed that users can access it by using a web browser. Main functions of the KAERI-SDB include (1) log-in/join, (2) search and store of sorption data and (3) scatter plot chart and index chart. It is expected that the KAERI-SDB is widely applied to the safety assessment of radioactive waste disposal by enhancing the accessibility to experts and practitioner related the nuclear industry and governmental administration. It is also expected that reliabilities for the radioactive waste disposal increased by opening the web-based sorption DB to public

  20. Sorption of uranyl species on zircon and zirconia

    International Nuclear Information System (INIS)

    Lomenech, C.; Drot, R.; Simoni, E.; Ehrhardt, J.J.; Mielczarski, J.

    2002-01-01

    The safety of a long-term storage of radioactive waste in deep geological repositories would be strongly affected by the migration properties of radionuclides through the different barriers to the surface of the earth. Since the main process involved in the retention of radioactive ions is their sorption at the water/ mineral interface, a quantitative description of the sorption reactions is needed. Macroscopic data have for a long time been the only source of information used to propose a modelling of sorption equilibria, although they bring no direct information on the nature of the sorbed species; a microscopic structural investigation of the surface complexes is difficult indeed, because of the small amount of matter sorbed. Thus, in this study, parallel to the macroscopic measurements, different complementary spectroscopic techniques have been used in order to determine the nature of the surface species. As the final purpose of such a study is the simulation of the experimental retention data, the precise structural identification of the sorption equilibria will then be very useful to constrain the data simulation code. In this work, we present the results of both macroscopic and microscopic studies of the sorption of uranyl species on zircon and zirconia. The first part of our macroscopic approach was the surface characterisation of the non-sorbed materials by the determination of the specific areas, of the pH of the isoelectric points, and of the sorption site numbers, while the second part aimed at obtaining the sorption isotherms (percentage of sorption versus pH), which was performed using alpha spectrometry, for different uranyl concentrations, media (NaClO 4 or KNO 3 ) and ionic strengths. The spectroscopic identification of the different surface complexes and sorption sites has been carried out using four different spectroscopies. Whereas tune-resolved laser spectro-fluorimetry gave a direct answer concerning the number of surface species (only for a

  1. A new safety assessment model for shallow land burial of LLW based on multicomponent sorption theory

    International Nuclear Information System (INIS)

    Katoh, N.; Asano, T.; Tasaka, H.

    1984-01-01

    A new model on the radionuclide migration in underground environment is developed based on ''multicomponent sorption theory''. The model is capable of predicting the behaviors of the coexisting materials in soil-ground water system as ''multicomponent sorption phenomena'' and also predicting the radinuclide migration affected by the changes of concentrations of coexisting materials. The model is not a ''statistical model'' but a ''chemical model'' based on the ''ion exchange theory'' and ''adsorption theory''. Additionally, the model is a ''kinetic model'' capable of estimating the effect of ''rate of sorption'' on the radionuclide migration. The validity of the model was checked by the results of column experiments for sorption. Finally, sample calculations on the radionuclide migration in reference shallow land burial site were carried out for demonstration

  2. Surface modification to improve the sorption property of U(VI) on mesoporous silica

    International Nuclear Information System (INIS)

    Lijuan Song; Yulong Wang; Lu Zhu; Bolong Guo; Suwen Chen; Wangsuo Wu

    2014-01-01

    Polyoxometalates K 7 [α-PW 11 O 39 ]·14H 2 O (PW11) modified mesoporous silica (MCM-48) with cubic structure, was prepared by impregnation and calcination methods. The modified mesoporous silica sorbent (PW11/MCM-48) was studied as a potential adsorbent for U(VI) from aqueous solutions. MCM-48 and PW11/MCM-48 were confirmed by X-ray diffraction and nitrogen physisorption techniques. The results indicate the original keggin structure of PW11 and mesoporous structure of MCM-48 are maintained after supporting PW11 on mesoporous silica MCM-48. The effects of contact time, solid-to-liquid ratio (m/V), solution pH and ionic strength on U(VI) sorption behaviors of the pure and modified mesoporous silicas were also studied. Typical sorption isotherms such as Langmuir and Freundlich isotherms were determined for sorption process. The results suggest that the sorption of U(VI) on MCM-48 or PW11/MCM-48 are strongly dependent on pH values but independent of ionic strength. The sorption capacity of PW11/MCM-48 for U(VI) is about ten times more than that of MCM-48. (author)

  3. Sorption and Migration Mechanisms of 237 Np through Sandy Soil

    International Nuclear Information System (INIS)

    Chantaraprachoom, Nanthavan; Tanaka, Tadao

    2003-06-01

    In order to evaluate migration behavior of radioactive nuclides in the disposal of low-level radioactive waste into a shallow land burial, the sorption characteristic and migration behavior of 237 Np through sandy soil was studied. Two experimental methods were performed by using batch and column systems. The distribution coefficients (K d ) obtained from the adsorption and desorption process are rather small about 16 and 21 cm 3 /g respectively. Size distribution of 237 Np species in the influent solution was measured by ultra-filtration technique. Migration mechanism of 237 Np was studied by column experiments. The experimental condition was the influence of volume of eluting solution; 100, 300, 500, 1000 and 2000 ml respectively. The result from five column experiments confirm that the sorption characteristics of 237 Np are mainly controlled by a reversible ion-exchange reaction and the migration of 237 Np in the sandy soil can be estimated by using the K d concept

  4. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  5. Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava Waste

    Directory of Open Access Journals (Sweden)

    Hui Deng

    2014-09-01

    Full Text Available Biochar (BC is a carbonaceous and porous product generated from the incomplete combustion of biomass and has been recognized as an efficient adsorbent. This study evaluated the ability of BC to sorb atrazine pesticide in tropical soil, and explored potential environmental values of BC on mitigating organic micro-pollutants. BC was produced from cassava waste via pyrolyzation under oxygen-limiting conditions at 350, 550, and 750 °C (MS350, MS550, and MS750, respectively. Three biochars were characterized and investigated as sorbents for the removal atrazine from tropical soil. BC pyrolyzed at higher temperatures more quickly reached equilibrium. The pseudo-second-order model perfectly simulated the sorption kinetics for atrazine with the coefficients R2 above 0.996, and the sorption amount at equilibrium (qe was 0.016 mg/g for MS350, 0.025 mg/g for MS550 and 0.050 mg/g for MS750. The isotherms of MS350 displayed relatively linear behavior, whereas the sorption of atrazine on MS550 and MS750 followed a nonlinear isotherm. The sorption data were well described by the Freundlich model with logKF of 0.476 for MS350, 0.771 for MS550, 1.865 for MS750. A thermodynamic study indicated that the sorption of atrazine in BC-added soil was a spontaneous and endothermic process and was primarily controlled by physisorption. In addition, lower pH was conducive to the sorption of atrazine in BC-added soil.

  6. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Constanze

    2015-11-05

    A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca{sup 2+} on U(VI) uptake on the minerals was studied. The

  7. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    International Nuclear Information System (INIS)

    Richter, Constanze

    2015-01-01

    A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca 2+ on U(VI) uptake on the minerals was studied. The

  8. Characteristics of and sorption to biochars derived from waste material

    Science.gov (United States)

    Sun, Huichao; Kah, Melanie; Sigmund, Gabriel; Hofmann, Thilo

    2015-04-01

    Biochars can exhibit a high sorption potential towards heavy metals and organic contaminants in various environmental matrices (e.g., water, soil). They have therefore been proposed for environmental remediation purposes to sequester contaminants. To date, most studies have focused on the physicochemical and sorption properties of mineral phases poor biochars, which are typically produced from plant residues. Only little knowledge is available for biochars derived from human and animal waste material, which are typically characterized by high mineral contents (e.g., sewage sludge, manure). Using human and animal waste as source material to produce biochars would support the development of attractive combined strategies for waste management and remediation. The potential impact of mineral phases on the physicochemical and sorption properties of biochars requires further studies so that the potential as sorbent material can be evaluated. With this purpose, different source material biochars were produced at 200°C, 350°C and 500°C, to yield a series of biochars representing a range of mineral content. The derived biochars from wood shavings (sludge (50-70% ash) and pig manure (30-60% ash), as well as a commercial biochar derived from grain husks (40% ash), were extensively characterized (e.g., element composition, surface area, porosity, Fourier transform infrared spectroscopy). The contents of potentially toxic elements (i.e., heavy metals and polycyclic aromatic hydrocarbons) of all materials were within the guidelines values proposed by the International Biochar Initiative, indicating their suitability for environmental application. Single point sorption coefficients for the model sorbate pyrene were measured to investigate the effect of mineral content, feedstock, pyrolysis temperature, particle size fractions and acid demineralization on sorption behavior. Overall, sorption of pyrene was strong for all materials (4 waste material and exhibiting high mineral

  9. Sorption, desorption and extraction of uranium from some sands under dynamic conditions

    International Nuclear Information System (INIS)

    Palagyi, S.; Laciok, A.

    2006-01-01

    Sorption, desorption and extraction behavior of uranium in various fluvial sands of domestic origin were investigated in continuous dynamic column experiments. For the sorption of U(VI) an aqueous 10 -4 M UO 2 (NO 3 ) 2 solution was used at a flow rate of about 0.3 cm 3 /min. Desorption was carried out with demineralized water, and the extraction with 10 -2 M Na 2 CO 3 solution following desorption. The retardation coefficients (R) and hydrodynamic dispersion coefficients (D d ), were determined using an ADE equation. From the experimentally determined values of R, bulk density and porosity, the distribution coefficients (K d ) of the UO 2 2+ species have been calculated for the respective processes. The extent of U sorption in sands, as well as the proportion of desorbed and extracted U from these sands, was also calculated. (author)

  10. Sorption isotherms modeling approach of rice-based instant soup mix stored under controlled temperature and humidity

    Directory of Open Access Journals (Sweden)

    Yogender Singh

    2015-12-01

    Full Text Available Moisture sorption isotherms of rice-based instant soup mix at temperature range 15–45°C and relative humidity from 0.11 to 0.86 were determined using the standard gravimetric static method. The experimental sorption curves were fitted by five equations: Chung-Pfost, GAB, Henderson, Kuhn, and Oswin. The sorption isotherms of soup mix decreased with increasing temperature, exhibited type II behavior according to BET classification. The GAB, Henderson, Kuhn, and Oswin models were found to be the most suitable for describing the sorption curves. The isosteric heat of sorption of water was determined from the equilibrium data at different temperatures. It decreased as moisture content increased and was found to be a polynomial function of moisture content. The study has provided information and data useful in large-scale commercial production of soup and have great importance to combat the problem of protein-energy malnutrition in underdeveloped and developing countries.

  11. Sorption of diesel oil from polyurethane composite reinforced with palm fiber

    International Nuclear Information System (INIS)

    Dantas, I.R.; Cipriano, J.P.; Costa, I.L.M.; Mulinari, D.R.

    2016-01-01

    One of the methods to contain the diesel oil spill is the application of materials polymeric sorbents and the polyurethane is an option of porous sorbents. In this way, the objective of this study was to evaluate the use of polyurethane composites derivative of castor oil reinforced with palm fibers to sorption of diesel oil and compare with pure polyurethane. The composites were reinforced with 5 to 20% w/w of fibers. Subsequently, the sorption capacity of the composite in function of inserted fiber content in the matrix was analyzed. The physical and morphological characteristics were evaluated by scanning electron microscopy techniques (SEM) and diffraction X-ray (XRD) and the contact angle. The results showed that the composite with 20% w /w showed higher sorption capacity oil diesel compared to pure PU and other composites this fact was due to the heterogeneity of the pores and dispersion of fiber in the matrix. (author)

  12. Sorption of ferrous iron by EPS from the acidophilic bacterium Acidiphilium Sp.: A mechanism proposal

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, J.M.; MuNoz, J.; Gonzlez, F.; Blazquez, M.L.; Ballester, A.

    2016-07-01

    The aim of this work was to assess the uptake of Fe(II) by extracellular polymeric substances (EPS) from the acidophilic bacterium Acidiphillium 3.2Sup(5). These EPS were extracted using EDTA. EPS of A. 3.2Sup(5) loaded in sorption tests with Fe(II), were characterized using the following experimental techniques: scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results indicate that EPS adsorb ferrous iron according to Freundlich model with a metal sorption uptake of K = 1.14 mg1−1/n L1/n g−1 and a sorption intensity of 1/n = 1.26. In addition, ferrous iron sorption by EPS took place by preferential interaction with the carboxyl group which promotes the formation of ferrous iron oxalates (FeC2O4). Since the interaction reaction was reversible (Log K = 0.77 ± 0.33), that means that the cation sorption can be reversed at convenience. (Author)

  13. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II and Pb(II

    Directory of Open Access Journals (Sweden)

    Shengye Wang

    2016-09-01

    Full Text Available Alginate and algal-biomass (Laminaria digitata beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine (PEI was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM coupled with energy dispersive X-ray analysis (EDX: the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads, the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions.

  14. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  15. Sorption mechanisms of perfluorinated compounds on carbon nanotubes

    International Nuclear Information System (INIS)

    Deng Shubo; Zhang Qiaoying; Nie Yao; Wei Haoran; Wang Bin; Huang Jun; Yu Gang; Xing Baoshan

    2012-01-01

    Sorption of perfluorinated compounds (PFCs) on carbon nanotubes (CNTs) is critical for understanding their subsequent transport and fate in aqueous environments, but the sorption mechanisms remain largely unknown. In this study, the sorption of six PFCs on CNTs increased with increasing C-F chain length when they had a same functional group, and the CNTs with hydroxyl and carboxyl groups had much lower adsorbed amount than the pristine CNTs, indicating that hydrophobic interaction dominated the sorption of PFCs on the CNTs. Electrostatic repulsion suppressed the sorption of PFCs on the CNTs, resulting in the lower sorption with increasing pH. Hydrogen bonding interaction was negligible. The hydrophobic C-F chains can be closely adsorbed on the CNTs surface in parallel to the axis or along the curvature, making it impossible to form micelles on the CNT surface, leading to the lower sorption than other adsorbents. Highlights: ► Sorption capacities of PFOA on different CNTs are less than that on activated carbon and resins. ► Hydrophobic interaction is principally involved in the sorption of PFCs on CNTs. ► Electrostatic repulsion suppresses the sorption of PFCs on CNTs. - Hydrophobic interaction dominated the sorption of perfluorinated compounds on carbon nanotubes, while electrostatic repulsion suppressed their sorption.

  16. Characteristics, kinetics and thermodynamics of Congo Red bio sorption by activated sulfidogenic sludge from an aqueous solution

    International Nuclear Information System (INIS)

    Rasool, K.; Lee, D. S.

    2015-01-01

    The kinetics and thermodynamics of the bio sorption of textile dye Congo Red on anaerobic activated sulfidogenic sludge were examined. The influence of different adsorption parameters such as p H, temperature, contact time and initial dye concentrations on the bio sorption capacity was also investigated. The sulfidogenic sludge showed a maximum bio sorption density of 238.90 mg dye/g cell for Congo Red at an initial dye concentration of 1,000 mg/L, p H 3.5 and 22 C, which is higher than that of many other adsorbents reported in the literature. The bio sorption processes obeyed the Langmuir isotherm and exhibited pseudo-second-order rate kinetics. The thermodynamic parameters indicated the spontaneous and exothermic nature of Congo Red bio sorption. The Fourier transform infrared spectra revealed the dye interaction with the biomass. Scanning electron microscopy showed significant changes in the surface morphology of the sludge after dye bio sorption. These results showed that sulfidogenic sludge biomass is an attractive alternative low-cost bio sorbent for the removal of the dye from aqueous media.

  17. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  18. Metal sorption on kaolinite

    International Nuclear Information System (INIS)

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-01-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs + , Sr 2+ , and Ba 2+ ) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba 2+ to Sr 2+ to Cs + , with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs + also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs + is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals

  19. Control of Surface Functional Groups on Pertechnetate Sorption on Activated Carbon

    International Nuclear Information System (INIS)

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-01-01

    99 Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO 4 - ). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K d ) varying from 9.5 x 10 5 to 3.2 x 10 3 mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K d remaining more or less constant (1.1 x 10 3 - 1.8 x 10 3 mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO 4 - can be improved by enhancing the formation of carboxylic subgroups A and B during material processing

  20. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides; Contribution a l'etude des mecanismes de sorption aux interfaces solide-liquide: application aux cas des apatites et des oxy-hydroxydes

    Energy Technology Data Exchange (ETDEWEB)

    Duc, M

    2002-11-15

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  1. Electronic Word of Behavior

    DEFF Research Database (Denmark)

    Kunst, Katrine

    It is widely recognized that the transition from Word-of-mouth (WOM) to electronic word-of-mouth (eWOM) allows for a wider and faster spread of information. However, little attention has been given to how digital channels expand the types of information consumers share. In this paper, we argue...... that recent years have seen a social media-facilitated move from opinion-centric eWOM (e.g. reviews) to behavior-centric (e.g. information about friends’ music consumption on Spotify). A review of the concepts of WOM and eWOM and a netnographic study reveal that the current definitions and understandings...... of the concepts do not capture this new kind of consumer-to-consumer information transfer about products and services. Consequently, we suggest an extension of those concepts: Electronic Word of Behavior....

  2. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  3. Sorption properties of wool

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Strict ecological legislation, especially in highly developed countries, imposed requirements for the purification of industrial effluents and the need for efficient oil clean up after sea and inland water spills. Although numerous processes have been developed, the application of sorbents is still one of the most efficient methods to remove heavy metal ions, dyes and crude oil from water. Recently, special attention was paid to sorbents based on natural fibres. A review of studies concerning the sorption properties of wool is presented in this paper. The presence of various functional groups on the wool fibre surface contributes to the efficient sorption of heavy metal ions and dyes. A hydrophobic, scaly surface and fibre crimp strongly influence the high sorption capacity of wool for oil. Wool has great sorption potential even as a recycled material. Accordingly, it can be used as a viable substitute to commercially available synthetic sorbents that show poor biodegradab ility.

  4. Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Klamer, Morten; Venås, Thomas Mark

    2010-01-01

    The complex wood-water relationship has been the topic of numerous studies. Sorption isotherms – in particular – have been derived for hundreds of wood species, their sap- and heartwood sections as well as for decayed, engineered and modified wood materials. However, the traditional methods...... for obtaining sorption isotherms are very time consuming. With new dynamic vapour sorption (DVS) instrumentation, the acquisition of data for constructing sorption isotherms is suddenly dramatically lowered. Where the traditional methods often required months, data can now be obtained in a matter of days...... depending on the number of data points required. The fast data acquisition makes DVS a useful tool in studying the sorption properties of wood, and especially in studying the effect of different modification treatments on these properties. This study includes an investigation of the sorption properties...

  5. Prediction of metal sorption in soils

    International Nuclear Information System (INIS)

    Westrich, Henry R.; Anderson, Harold L. Jr.; Arthur, Sara E.; Brady, Patrick V.; Cygan, Randall T.; Liang, Jianjie; Zhang, Pengchu; Yee, N.

    2000-01-01

    Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K D approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K D 's), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs + , Sr 2+ and Ba 2+ (analogue for Ra 2+ ) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba 2+ and Sr 2+ onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr 2+ sorbs weakly onto geothite and quartz, and is pH-dependent. Sr 2+ sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba 2+ is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba 2+ and the mineral substrate. This suggests that Ba 2+ adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed

  6. Water Absorption Behavior of Hemp Hurds Composites

    Science.gov (United States)

    Stevulova, Nadezda; Cigasova, Julia; Purcz, Pavol; Schwarzova, Ivana; Kacik, Frantisek; Geffert, Anton

    2015-01-01

    In this paper, water sorption behavior of 28 days hardened composites based on hemp hurds and inorganic binder was studied. Two kinds of absorption tests on dried cube specimens in deionized water bath at laboratory temperature were performed. Short-term (after one hour water immersion) and long-term (up to 180 days) water absorption tests were carried out to study their durability. Short-term water sorption behavior of original hemp hurds composites depends on mean particle length of hemp and on binder nature. The comparative study of long-term water sorption behavior of composites reinforced with original and chemically modified hemp hurds in three reagents confirmed that surface treatment of filler influences sorption process. Based on evaluation of sorption curves using a model for composites based on natural fibers, diffusion of water molecules in composite reinforced with original and chemically modified hemp hurds is anomalous in terms of the Fickian behavior. The most significant decrease in hydrophility of hemp hurds was found in case of hemp hurds modified by NaOH and it relates to change in the chemical composition of hemp hurds, especially to a decrease in average degree of cellulose polymerization as well as hemicellulose content.

  7. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.

    Science.gov (United States)

    Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li

    2013-01-01

    Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Mixed-Penetrant Sorption in Ultrathin Films of Polymer of Intrinsic Microporosity PIM-1.

    Science.gov (United States)

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2017-11-02

    Mixed-penetrant sorption into ultrathin films of a superglassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultrathin (12-14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane, and ethanol and were chosen on the basis of their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water/n-hexane or ethanol/n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents, or catalysts. Mixed-penetrant effects are typically very challenging to study directly, and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in a pure component environment.

  9. Understanding Electronic Word of Behavior

    DEFF Research Database (Denmark)

    Kunst, Katrine; Vatrapu, Ravi

    2018-01-01

    The widespread digitization of consumers’ daily lives entails a plethora of digital traces of consumers’ behaviors. These traces can be turned into meaningful communicative and observable content by the services that possess the trace data. While extant research has empirically showed this to have...... a significant impact on consumer choices we argue that the phenomenon is undertheorized. In this theoretical paper, we conceptualize this kind of observable behavior-based information as ‘Electronic Word of Behavior’ (eWOB) and define it as “published accounts of behavior, based on the unobservable digital...... traces of consumers’ behaviors”. We characterize eWOB as an instantiation of Digital Trace Data and situate it within the established concepts of Social Interactions and Electronic Word of Mouth (eWOM). By drawing on extant empirical research and constructs from Digital Trace Data, Social Interactions...

  10. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.

    Science.gov (United States)

    Kah, Melanie; Sigmund, Gabriel; Xiao, Feng; Hofmann, Thilo

    2017-11-01

    The sorption of ionic and ionizable organic compounds (IOCs) (e.g., pharmaceuticals and pesticides) on carbonaceous materials plays an important role in governing the fate, transport and bioavailability of IOCs. The paradigms previously established for the sorption of neutral organic compounds do not always apply to IOCs and the importance of accounting for the particular sorption behavior of IOCs is being increasingly recognized. This review presents the current state of knowledge and summarizes the recent advances on the sorption of IOCs to carbonaceous sorbents. A broad range of sorbents were considered to evaluate the possibility to read across between fields of research that are often considered in isolation (e.g., carbon nanotubes, graphene, biochar, and activated carbon). Mechanisms relevant to IOCs sorption on carbonaceous sorbents are discussed and critically evaluated, with special attention being given to emerging sorption mechanisms including low-barrier, charge-assisted hydrogen bonds and cation-π assisted π-π interactions. The key role played by some environmental factors is also discussed, with a particular focus on pH and ionic strength. Overall the review reveals significant advances in our understanding of the interactions between IOCs and carbonaceous sorbents. In addition, knowledge gaps are identified and priorities for future research are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  12. Binary Component Sorption of Cadmium, and Copper Ions onto Yangtze River Sediments with Different Particle Sizes

    Directory of Open Access Journals (Sweden)

    Jianxin Fan

    2017-11-01

    Full Text Available Sorption is a crucial process that influences immobilization and migration of heavy metals in an aqueous environment. Sediments represent one of the ultimate sinks for heavy metals discharged into water body. Moreover, the particle size of sediments plays an extremely important role in the immobilization of heavy metals. In this study, the sorption and desorption of cadmium (Cd and copper (Cu onto sediments with different particle sizes were investigated to predict the rate and capacity of sorption, to understand their environmental behaviors in an aqueous environment. Batch sorption and kinetic experiments were conducted to obtain the retained amount and rate of Cd and Cu in a binary system. Experimental data were simulated using sorption models to ascertain the sorption capacity and the kinetic rate. Results of European Communities Bureau of Reference (BCR sequential extraction showed the highest concentration of Cd (0.344 mg kg−1, and its distribution varied with sediment particle size and site. Furthermore, most of Cu (approximately 57% to 84% existed as a residual fraction. The sorption of Cu onto six sediments followed a pseudo-first order reaction, whereas that of Cd followed a pseudo-second order reaction. Additionally, the competitive Langmuir model fitted the batch sorption experimental data extremely well. The highest sorption capacities of Cd and Cu reach 0.641 mmol kg−1 and 62.3 mmol kg−1, respectively, on the smallest submerged sediment particles. The amounts of Cu and Cd desorbed (mmol kg−1 increased linearly with the initial concentration increasing. Thus, sediment texture is an important factor that influences the sorption of heavy metal onto sediments.

  13. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  14. Glyphosate sorption/desorption on biochars – Interactions of physical and chemical processes

    Science.gov (United States)

    BACKGROUND: Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350°C t...

  15. Modification of zirconium diphosphate with salicylic acid and its effect on the uranium (Vi) sorption

    International Nuclear Information System (INIS)

    Almazan T, M. G.; Garcia G, N.; Simoni, E.

    2014-10-01

    The surface of zirconium diphosphate (ZrP 2 O 7 ) was modified with salicylic acid and its effect was evaluated on the uranium (Vi) sorption. The modified surface of the material was analyzed with different analytical techniques among which are included the atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. This analysis allowed showing that the salicylic acid is being held on the surface of the zirconium diphosphate. The reactivity of modified zirconium diphosphate compared with uranium (Vi) was investigated using the classical method of batch sorption. The analysis of sorption isotherms shows that the salicylic acid has an important effect in the uranium (Vi) sorption. According to the study conducted, the interaction among the uranium (Vi) and the surface of zirconium diphosphate modified with the salicylic acid most likely leads to the complexes formation of binary (U(Vi)/ZrP 2 O 7 ) and ternary (U(Vi)/salicylate/ZrP 2 O 7 ) surface. (Author)

  16. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  17. Detection of tritium sorption on four soil materials

    International Nuclear Information System (INIS)

    Teng Yanguo; Zuo Rui; Wang Jinsheng; Hu Qinhong; Sun Zongjian; Zeng Ni

    2011-01-01

    In order to measure groundwater age and design nuclear waste disposal sites, it is important to understand the sorption behavior of tritium on soils. In this study, batch tests were carried out using four soils from China: silty clays from An County and Jiangyou County in Sichuan Province, both of which could be considered candidate sites for Very Low Level Waste disposal; silty sand from Beijing; and loess from Yuci County in Shanxi Province, a typical Chinese loess region. The experimental results indicated that in these soil media, the distribution coefficient of tritium is slightly influenced by adsorption time, water/solid ratio, initial tritium specific activity, pH, and the content of humic and fulvic acids. The average distribution coefficient from all of these influencing factors was about 0.1-0.2 mL/g for the four types of soil samples. This relatively modest sorption of tritium in soils needs to be considered in fate and transport studies of tritium in the environment. - Research highlights: → In this study, batch sorption tests validate the adsorption of tritium on all of the four tested soil samples collected in China, and the distribution coefficient is found to be non-zero and less than 0.4 mL/g. The experimental results indicated that in these soil media, the distribution coefficient of tritium is slightly influenced by adsorption time, water/solid ratio, initial tritium specific activity, pH, and the content of humic and fulvic acids. This relatively modest sorption of tritium in soils needs to be considered in fate and transport studies of tritium in the environment.

  18. Sorption properties of carbon nanostructures

    International Nuclear Information System (INIS)

    Eletskii, Aleksandr V

    2004-01-01

    The current status of research in sorption properties of carbon nanotubes (CNTs) is reviewed. The structural peculiarities of CNTs, determining their sorption characteristics, are considered. The mechanisms of sorption of gaseous and condensed substances by such structures are analyzed. Special attention is paid to the problem of using CNTs for storing hydrogen and other gaseous substances. Methods for filling CNTs with liquid materials, based on capillary phenomena and wetting the graphite surface of the CNT with liquids of various nature, are considered. Properties of 'peapods' formed as a result of filling single-walled CNTs with fullerene molecules are reviewed. Also considered are perspectives on the applied usage of the sorption properties of CNTs in electrochemical and fuel cells, and material storage devices, as well as for producing superminiature metallic conductors. (reviews of topical problems)

  19. Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers.

    Science.gov (United States)

    Thilagavathi, G; Praba Karan, C; Das, Dipayan

    2018-08-01

    This work reports on a series of thermally-bonded, hybrid and oil-sorbent nonwovens developed from binary and tertiary mixing of cotton, kapok, and three varieties of milkweed fibers (Asclepias Syriaca, Calotropis Procera and Calotropis Gigantea) and polypropylene fibers. The physical and chemical properties of the fibers were investigated to examine their oleophilic character. It was observed that all the fiber surfaces were covered with natural wax. Further, kapok and milkweed fibers were found to have less cell wall thickness and high void ratio. Oil sorption and retention characteristics of these fibers were studied in loose fibrous form as well as in structured assembly form (thermally-bonded nonwovens) using high density oil and diesel oil. The effects of fiber diameter, fiber cross-sectional shape, fiber surface area and porosity on the oil sorption behavior were discussed. An excellent and a selective oil sorption behavior of milkweed fibers (Calotropis Procera and Calotropis Gigantea) blended with cotton and polypropylene fibers were observed. The maximum oil sorption capacity of the developed thermal bonded nonwoven was 40.16 g/g for high density (HD) oil and 23.00 g/g for diesel oil. Further, a high porosity combined with high surface area played a major role in deciding the oil sorption and retention characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  1. Sorption of streptococcus faecium to glass

    International Nuclear Information System (INIS)

    Oerstavik, D.

    1977-01-01

    A method has been developed by which to study the sorption of Streptococcus faecium to soda-lime cover glasses. Conditions were chosen to minimize the influence on sorption of bacterial polymer production, passive sorption being studied rather than attachment mediated by metabolic activities. Sorption of S. faecium increased with increasing temperature (to 50degC), time, and cell concentration, but equilibrium apparently was not reached even after incubation for 8 hours or at a cell concentration of 3 x 10 10 per ml. Sorption increased with solute molarity up to 0.1 M concentration of NaCl and KCl, indicating an effect of the electrical double layers on the apposition of cells to the glass surface. Desorption of bacteria could be obtained after multiple washings of the glasses in buffer or by the action of Tween 80, but not if sorbed bacteria were left in distilled water, various salt solutions, urea, or in suspensions of unlabelled bacteria. It was concluded that sorption occurred as a result of chemical interactions between the glass and the cell surface. Tween 80 at a concentration of 1 per cent inhibited sorption to 26 per cent of buffer controls, 2 M urea was less effective, and 1 M NaCl was without effect. It is suggested that hydrophobic interactions may be of importance in the binding of S. faecium to glass. (author)

  2. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  3. Sorption of U(VI) species on hydroxyapatite

    International Nuclear Information System (INIS)

    Thakur, P.; Moore, R.C.; Choppin, G.R.

    2005-01-01

    The sorption of uranyl (UO 2 2+ ) cations to hydroxyapatite was studied as a function of the amount of sorbent, ionic strength, U(VI) concentration, pH and temperature. The rate of uranyl sorption on hydroxyapatite decreased with increased uranyl concentrations. The amount sorbed decreased with increased ionic strength and increased with pH to a maximum at 7-8. The sorption data for UO 2 2+ were fitted well by the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The anions Cl - , NO 3 - , SO 4 2- and CH 3 COO - decreased the sorption of uranium on hydroxyapatite while S 2 O 3 2- slightly increased it. The sorbed uranium was desorbed by 0.10 M and 1.00 M solutions of HCl and HNO 3 . The thermodynamic parameters for the sorption of UO 2 2+ were measured at temperatures of 298, 313, 323 and 333 K. The temperature dependence confirmed an endothermic heat of sorption. The activation energy for the sorption process was calculated to be +2.75±0.02 kJ/mol. (orig.)

  4. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides

    International Nuclear Information System (INIS)

    Duc, M.

    2002-11-01

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  5. SORPTION OF Au(III BY Saccharomyces cerevisiae BIOMASS

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2010-07-01

    Full Text Available Au(III sorption by S. cerevisiae biomass extracted from beer waste industry was investigated. Experimentally, the sorption was conducted in batch method. This research involved five steps: 1 identification the functional groups present in the S. cerevisiae biomass by infrared spectroscopic technique, 2 determination of optimum pH, 3 determination of the sorption capacity and energy, 4 determination of the sorption type by conducting desorption of sorbed Au(III using specific eluents having different desorption capacity such as H2O (van der Waals, KNO3 (ion exchange, HNO3 (hydrogen bond, and tiourea (coordination bond, 5 determination of effective eluents in Au(III desorption by partial desorption of sorbed Au(III using thiourea, NaCN and KI. The remaining Au(III concentrations in filtrate were analyzed using Atomic Absorption Spectrophotometer. The results showed that: 1 Functional groups of S. cerevisiae biomass that involved in the sorption processes were hydroxyl (-OH, carboxylate (-COO- and amine (-NH2, 2 maximum sorption was occurred at pH 4, equal to 98.19% of total sorption, 3 The sorption capacity of biomass was 133.33 mg/g (6.7682E-04 mol/g and was involved sorption energy 23.03 kJ mol-1, 4 Sorption type was dominated by coordination bond, 5 NaCN was effective eluent to strip Au(III close to 100%.   Keywords: sorption, desorption, S. cerevisiae biomass, Au(III

  6. Long-term studies on the leachability of cemented and non-cemented iodine-129 loaded sorption material

    International Nuclear Information System (INIS)

    Kaempffer, R.; Furrer, J.

    1989-01-01

    Leaching tests on the load AC 6120 iodine sorption material (12 wt.% Ag) in water and salt brines were performed over a rather long period of time to allow better judgement of the behavior of radioactive waste disposed of in a salt dome. The utilization of capacity of the loaded iodine sorption material from the Karlsruhe reprocessing plant (WAK) was 95% related to the amount of silver added. The result of the stationary leaching tests has been a leaching rate of the material not embedded in cement of < 0.1%, whereas the leaching rate of the iodine sorption material embedded in cement has been < 0.01% of the total iodine-129 inventory. After addition of carbon steel to the sorption material embedded in cement the same leaching rates were measured as for material not embedded in cement. The addition of stainless steel exerted but little influence on the leaching rate. (orig.)

  7. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  8. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C

    2018-01-16

    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  9. Mixed-Penetrant Sorption in Ultra-Thin Films of Polymer of Intrinsic Microporosity PIM-1

    KAUST Repository

    Ogieglo, Wojciech; Furchner, Andreas; Ghanem, Bader; Ma, Xiao-Hua; Pinnau, Ingo; Wessling, Matthias

    2017-01-01

    Mixed penetrant sorption into ultra-thin films of a super-glassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in-situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultra-thin (12 - 14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane and ethanol and were chosen based on their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water / n-hexane or ethanol / n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers' behavior in applications such as high-performance membranes, adsorbents or catalysts. Mixed-penetrant effects are typically very challenging to study directly and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in pure component environment.

  10. Mixed-Penetrant Sorption in Ultra-Thin Films of Polymer of Intrinsic Microporosity PIM-1

    KAUST Repository

    Ogieglo, Wojciech

    2017-10-12

    Mixed penetrant sorption into ultra-thin films of a super-glassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in-situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultra-thin (12 - 14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane and ethanol and were chosen based on their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water / n-hexane or ethanol / n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers\\' behavior in applications such as high-performance membranes, adsorbents or catalysts. Mixed-penetrant effects are typically very challenging to study directly and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in pure component environment.

  11. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Influence of organic matter type and medium composition on the sorption affinity of C12-benzalkonium cation

    International Nuclear Information System (INIS)

    Chen, Yi; Hermens, Joop L.M.; Droge, Steven T.J.

    2013-01-01

    We used the 7-μm polyacrylate ion-exchange SPME fibers to investigate C12-benzalkonium sorption to 10 mg/L natural organic matter at concentrations well below the cation-exchange capacity. C12-BAC sorption at constant medium conditions differed within 0.4 log units for two humic acids (Aldrich, Leonardite) and peat (Sphagnum, Pahokee), with similar nonlinear sorption isotherms (K F ∼ 0.8). Sorption to the SPME fibers and Aldrich humic acid (AHA) was reduced at both low pH and high electrolyte concentration, and reduced more strongly by Ca 2+ compared with Na + at similar concentrations. Sorption isotherms for AHA (5–50–500 mM Na + , pH 6) was modeled successfully by the NICA-Donnan approach, resulting in an intrinsic sorption coefficient of 5.35 (C aq = 1 nM). The NICA-Donnan model further explained the stronger specific binding of Ca 2+ compared to Na + by differences in Boltzmann factors. This study provides relevant information to interpret bioavailability of quaternary ammonium compounds, and possibly for other organic cations. -- Highlights: •The ion-exchange SPME was used to investigate C12-benzalkonium sorption behavior. •Sorption to different organic matter differed within 0.4 log units (5 mM Ca 2+ , pH6). •Sorption to AHA was reduced at both low pH and high electrolyte concentration. •The NICA-Donnan approach lead to an intrinsic log D OC,IE of 5.35 (C aq = 1 nM). •The Boltzmann factors in NICA-Donnan model explained the specific binding of Ca 2+ . -- C12-BAC sorption to the four organic matter samples were investigated by the ion-exchange SPME and the NICA-Donnan model explained the different sorption affinities caused by Na + and Ca 2+

  13. Electronic Word of Behavior

    DEFF Research Database (Denmark)

    Kunst, Katrine; Vatrapu, Ravi; Hussain, Abid

    2017-01-01

    In this research in progress-paper, we introduce the notion of ‘Electronic Word of Behavior’ (eWOB) to describe the phenomenon of consumers’ product-related behaviors increasingly made observable by online social environments. We employ Observational Learning theory to conceptualize the notion of e......WOB and generate hypotheses about how consumers influence each other by means of behavior in online social environments. We present a conceptual framework for categorizing eWOB, and propose a novel research design for a randomized controlled field experiment. Specifically, the ongoing experiment aims to analyze...... how the presence of individual-specific behavior-based social information in a movie streaming service affects potential users’ attitude towards and intentions to use the service....

  14. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires.

    Science.gov (United States)

    Nambo, Apolo; He, Juan; Nguyen, Tu Quang; Atla, Veerendra; Druffel, Thad; Sunkara, Mahendra

    2017-06-14

    In this paper, the Li 4 SiO 4 nanowires (NWs) were shown to be promising for CO 2 capture with ultrafast kinetics. Specifically, the nanowire powders exhibited an uptake of 0.35 g g -1 of CO 2 at an ultrafast adsorption rate of 0.22 g g -1 min -1 at 650-700 °C. Lithium silicate (Li 4 SiO 4 ) nanowires and nanopowders were synthesized using a "solvo-plasma" technique involving plasma oxidation of silicon precursors mixed with lithium hydroxide. The kinetic parameter values (k) extracted from sorption kinetics obtained using NW powders are 1 order of magnitude higher than those previously reported for the Li 4 SiO 4 -CO 2 reaction system. The time scales for CO 2 sorption using nanowires are approximately 3 min and two orders magnitude faster compared to those obtained using lithium silicate powders with spherical morphologies and aggregates. Furthermore, Li 4 SiO 4 nanowire powders showed reversibility through sorption-desorption cycles indicating their suitability for CO 2 capture applications. All of the morphologies of Li 4 SiO 4 powders exhibited a double exponential behavior in the adsorption kinetics indicating two distinct time constants for kinetic and the mass transfer limited regimes.

  15. Kinetics and reversibility of micropollutant sorption in sludge.

    Science.gov (United States)

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  16. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  17. The effect of MWCNT treatment by H2O2 and/or UV on fulvic acids sorption.

    Science.gov (United States)

    Czech, Bożena

    2017-05-01

    The carbon nanotubes (CNT) present in the wastewater subjected to treatment will possess altered physico-chemical properties. The changed properties will result in the unknown behavior of CNT in the environment after disposal; and it is expected to differ from their pristine analogues. In the present paper the effect of sorption of dissolved organic matter with fulvic acids (FA) as representatives onto UV and/or H 2 O 2 treated CNT was tested. Both kinetics and mechanism of sorption was estimated. The chemical adsorption was a rate limiting step and a pseudo-second order kinetics described the sorption of FA onto UV and/or H 2 O 2 treated CNT. The treating increased affinity towards FA and treating by UV and H 2 O 2 simultaneously possessed greater impact on k 2 than UV and H 2 O 2 separately. The greatest effect on CNT sorption capacity revealed H 2 O 2 . The sorption mechanism was described by Temkin (CNT-H 2 O 2 ) and Dubinin-Radushkevich model. The increase in CNT surface disorder caused by UV and/or H 2 O 2 treatment favored sorption of FA via π-π interactions (exfoliated surface and disordered CNT walls). FA sorption occurred between aromatic rings of FA and CNT and hydrogen bonds formed with the oxygen functional groups. The results indicate that UV and/or H 2 O 2 treatment affected the sorption capacity and affinity of CNT towards FA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  19. Plutonium sorption to nanocast mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Parsons-Moss, Tashi; Wang, Deborah; Jones, Stephen; Olive, Daniel; Nitsche, Heino [California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Div.; Tueysuez, Harun [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Nuclear Science Div.; Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2014-09-01

    Nanocast ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes. This paper compares Pu uptake, added as Pu(VI), to both untreated and chemically oxidized CMK-(carbon molecular sieves from KAIST) type mesoporous carbon with that to a commercial amorphous activated carbon. The CMK was synthesized via nanocasting by using cubic ordered mesoporous silica KIT-6 as a hard template, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption. A portion of the CMK was oxidized by treatment with nitric acid, and will be called OX CMK. The three carbon powders have similar particle morphology, and high BET surface areas. The activated carbon is disordered, while the CMK materials show large domains of ordered cubic mesostructure. The CMK material seems to have more oxygen-containing functional groups than the activated carbon, and the oxidation of the CMK increased the density of these groups, especially - COOH, thus lowering the point of zero charge (PZC) of the material. Batch studies of all 3 materials with plutonium solutions, in a 0.1 M NaClO{sub 4} matrix were performed to investigate pH dependence, sorption kinetics, Pu uptake capacities, competition with ethylenediaminetetraacetic acid (EDTA) in solution, and Pu desorption. Both CMK materials demonstrated high Pu sorption from solutions of pH 3 or greater, and the oxidized CMK also showed high sorption from pH 2 solutions. The activated carbon bound less Pu, and at a much slower rate than CMK. All other batch experiments were carried out in pH 4 solutions. The Pu uptake from low-concentration solutions was faster for the oxidized CMK than for untreated CMK, but in more concentrated samples (∝ 250 μM Pu), the Pu uptake kinetics and apparent capacity were the same for oxidized and untreated CMK. The 23-h Pu uptake capacity of the CMK

  20. Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes.

    Science.gov (United States)

    Cai, Nan; Larese-Casanova, Philip

    2014-07-15

    Graphene nanosheet materials represent a potentially new high surface area sorbent for the treatment of endocrine disrupting compounds (EDCs) in water. However, sorption behavior has been reported only for laboratory graphene prepared by a laborious and hazardous graphite exfoliation process. A careful examination of commercially available, clean, high-volume produced graphene materials should reveal whether they are appropriate for sorbent technologies and which physicochemical properties most influence sorption performance. In this study, three commercially available graphene oxide powders of various particle sizes, specific surface areas, and surface chemistries were evaluated for their sorption performance using carbamazepine and nine other EDCs and were compared to that of conventional granular activated carbon (GAC) and multi-walled carbon nanotubes (MWCNTs). Sorption kinetics of carbamazepine on graphene oxide powders was rapid and reversible with alcohol washing, consistent with π-π interactions. The various sorption extents as described by Freundlich isotherms were best explained by available surface area, and only the highest surface area graphene oxide (771 m(2)/g) out-performed GAC and MWCNTs. Increasing pH caused more negative surface charge, a twofold decrease in sorption of anionic ibuprofen, a onefold increase in sorption of cationic atenolol, and no change for neutral carbamazepine, highlighting the role of electrostatic interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Investigating the gas sorption mechanism in an rht -metal-organic framework through computational studies

    KAUST Repository

    Pham, Tony T.

    2014-01-09

    Grand canonical Monte Carlo (GCMC) simulations were performed to investigate CO2 and H2 sorption in an rht-metal-organic framework (MOF) that was synthesized with a ligand having a nitrogen-rich trigonal core through trisubstituted triazine groups and amine functional groups. This MOF was synthesized by two different groups, each reporting their own distinct gas sorption measurements and crystal structure. Electronic structure calculations demonstrated that the small differences in the atomic positions between each group\\'s crystal structure resulted in different electrostatic parameters about the Cu2+ ions for the respective unit cells. Simulations of CO2 sorption were performed with and without many-body polarization effects and using our recently developed CO2 potentials, in addition to a well-known bulk CO2 model, in both crystallographic unit cells. Simulated CO2 sorption isotherms and calculated isosteric heats of adsorption, Qst, values were in excellent agreement with the results reported previously by Eddaoudi et al. for both structures using the polarizable CO2 potential. For both crystal structures, the initial site for CO2 sorption were the Cu 2+ ions that had the higher positive charge in the unit cell, although the identity of this electropositive Cu2+ ion was different in each case. Simulations of H2 sorption were performed with three different hydrogen potentials of increasing anisotropy in both crystal structures and the results, especially with the highest fidelity model, agreed well with Eddaoudi et al.\\'s experimental data. The preferred site of H 2 sorption at low loading was between two Cu2+ ions of neighboring paddlewheels. The calculation of the normalized hydrogen dipole distribution for the polarizable model in both crystal structures aided in the identification of four distinct sorption sites in the MOF, which is consistent to what was observed in the experimental inelastic neutron scattering (INS) spectra. Lastly, while the

  2. Investigating the sorption behavior of cadmium from aqueous solution by potassium permanganate-modified biochar: quantify mechanism and evaluate the modification method.

    Science.gov (United States)

    Fan, Zixi; Zhang, Qian; Li, Meng; Niu, Dongyuan; Sang, Wenjiao; Verpoort, Francis

    2018-03-01

    In this work, a KMnO 4 -modified-biochar-based composite material with manganese oxide produced at 600 °C was fabricated to investigate the sorption mechanism of Cd(II) and to comprehensively evaluate the effect of the modification on biochar properties. Cd(II) adsorption mechanisms were mainly controlled by interaction with minerals, complexation with oxygen-containing functional groups, and cation-π interaction. The sorption capacity was significantly reduced after a deash treatment of biochar, almost shrunk by 3 and 3.5 times for pristine biochar (PBC) and modified biochar (MBC). For deashed PBC, oxygen-containing functional groups were the main contributor toward Cd(II) adsorption while interaction with minerals was significantly compromised and became negligible. The sorption capacity was also apparently decreased after the deash treatment of MBC; however, for deashed MBC, interaction with minerals still was the main contributor to the sorption ability, which could be attributed to the mechanism of interaction of Cd(II) with loaded MnO x on biochar. Cation-π interaction in MBC was notably enhanced compared to PBC due to the oxidation of KMnO 4 on biomass. Also, sorption performance by oxygen-containing functional groups was also enhanced. Hence, the modification by KMnO 4 has a significant effect on the Cd(II) sorption performance of biochar.

  3. Gas Sorption, Diffusion, and Permeation in Nafion

    KAUST Repository

    Mukaddam, Mohsin Ahmed

    2015-12-22

    The gas permeability of dry Nafion films was determined at 2 atm and 35 °C for He, H2, N2, O2, CO2, CH4, C2H6, and C3H8. In addition, gas sorption isotherms were determined by gravimetric and barometric techniques as a function of pressure up to 20 atm. Nafion exhibited linear sorption uptake for low-solubility gases, following Henry’s law, and convex behavior for highly sorbing condensable gases, indicating rubber-like behavior at 35 °C. XRD results demonstrated that Nafion contains bimodal amorphous chain domains with average d-spacing values of 2.3 and 5.3 Å. Only helium and hydrogen showed relatively high gas permeability of 37 and 7 barrers, respectively; all other gases exhibited low permeability that decreased significantly as penetrant size increased. Dry Nafion was characterized by extraordinarily high selectivities: He/H2 = 5.2, He/CH4 = 445, He/C2H6 = 1275, He/C3H8 = 7400, CO2/CH4 = 28, CO2/C2H6 = 79, CO2/C3H8 = 460, H2/CH4 = 84, H2/C2H6 = 241, and H2/C3H8 = 1400. These high selectivities could make Nafion a potential candidate membrane material for dry feeds for helium recovery and carbon dioxide separation from natural gas and removal of higher hydrocarbons from hydrogen-containing refinery gases.

  4. Integrated sorption and diffusion model for bentonite. Part 1. Clay-water interaction and sorption modeling in dispersed systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael

    2014-01-01

    To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)

  5. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions.

    Science.gov (United States)

    Ashraf, Anam; Bibi, Irshad; Niazi, Nabeel Khan; Ok, Yong Sik; Murtaza, Ghulam; Shahid, Muhammad; Kunhikrishnan, Anitha; Li, Dongwei; Mahmood, Tariq

    2017-07-03

    In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L -1 and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g -1 , respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R 2 = 0.97) and O-mont (R 2 = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the -OH, -COOH, -NH 2 , and for O-mont intercalated amines and -OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.

  6. Sorption of fission nuclides on model milk components. II. Sorption of radiostrontium on hydroxyapatite in milk and whey

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.

    1999-01-01

    In this work the whey was chosen as a model solution of liquid phase for sorption study of strontium on hydroxyapatite. The whey was obtained using two methods - ultracentrifugation and precipitation of casein. The sorption was studied at a different pH and at a different concentration of calcium. The sorption of strontium on hydroxyapatite from milk was studied, too. (authors)

  7. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  8. Study of sorption and diffusion of 137Cs in compacted bentonite saturated with saline water at 60degC

    International Nuclear Information System (INIS)

    Suzuki, Satoru; Haginuma, Masashi; Suzuki, Kazunori

    2007-01-01

    The effect of compaction of bentonite on the sorption behavior of 137 Cs was studied for the safety assessment of the high level radioactive waste. The diffusion coefficients (effective D e and apparent D a ) and the distribution coefficient for sorption K d for 137 Cs in compacted and dispersed bentonite saturated with saline water were investigated at 60degC by four different sorption and diffusion experiments: the in-diffusion, through-diffusion, reservoir-depletion and batch sorption experiments. The system of the through-diffusion experiment was carefully designed to maintain the boundary conditions of constant concentration at each end of the specimen. D e and D a were found to be reproducible and showed good consistency among three of the diffusion experiments (through-diffusion, in-diffusion and reservoir depletion). K d of 137 Cs in compacted bentonite determined from the three types of diffusion experiments was in good accordance with that determined by the batch sorption experiment for dispersed bentonite. (author)

  9. Influence of temperature on pentavalent Np Sorption and desorption onto Goethite, Montmorillonite

    International Nuclear Information System (INIS)

    Vial, M.A.; Sherman, C; Czerwinski, K.R.; Reed, D.

    2002-01-01

    Yucca Mountain Site has been selected by the United States Department of Energy as the repository for disposing the US HLW. The performance allocation analysis on a multi-barrier system for high-level radioactive waste disposal has pointed 237 Np as the dominant hazard at the inlet of the biosphere [1J. 2JNp is present in high-level radioactive wastes (HLW), although in smaller amounts in comparison to other radionuclides. Because of its long half-life of 2.14 million years and its mobile nature under aerobic conditions due to the high chemical stability of its pentavalent state, it is considered a possible long-term pollutant of the ecosystem. Understanding Np behavior is required in order to quantitatively describe its transport in surface groundwater systems. In the repository, many components are known to play an important role in Np and other actinides speciation through adsorption-, complexation-, dissolution-, precipitation- and, colloids or pseudocolloids generation reactions [1]. Inorganic Ligands (C0 3 - , OH - ), present in nearly all natural water at various degree, and organic ligands (humic acid) can react with Np and consequently affect its leachability through the formation of numerous compounds. The solubility limits of radionuclides may act as an initial barrier to radionuclide migration from the potential repository at Yucca Mountain for some radionuclides. However, once radionuclides have dissolved in water infiltrating the site, sorption of these radionuclides onto the surrounding mineral phases becomes a potentially important second barrier. The study of retardation of Np and other key actinides is of major importance in assessing the performance of the potential repository. Among the soil of interest montmorillonite and iron-based materials have generated lots of researches. Nagasaki et al. [2] recent researches on sorption equilibrium and kinetics of NpO 2 + on dispersed particles of Na-montmorillonite and Na-illite (batch experiments at p

  10. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    Science.gov (United States)

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  11. Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption

    Science.gov (United States)

    Zhao, Donglin; Zhu, Hongyu; Wu, Changnian; Feng, Shaojie; Alsaedi, Ahmed; Hayat, Tasawar; Chen, Changlun

    2018-06-01

    A novel magnetic Fe3O4/graphene composite (FGC) was fabricated by a facile one-step reaction route and shown to be effective for sorbing U(VI) from aqueous solution. The structure, properties and application of the prepared FGC composite were well evaluated. The high saturation magnetization (45.6 emu/g) made FGC easier to be separated from the media within several seconds under an external magnetic. Effects of different ambient conditions (i.e., pH and ionic strength, contact time, temperatures) on sorption behaviors of U(VI) on FGC were carried out by batch experiments. According to the calculation of Langmuir model, the maximum sorption capacity of U(VI) on the FGC at pH 5.5 and 298 K was 176.47 mg/g. The sorption was correlated with the effects of pH, contact time, and temperature. X-ray photoelectron spectroscopy analysis revealed that U(VI) was sorbed on FGC via oxygen-containing functional groups. This work demonstrated that FGC could be recycled and used as an effective recyclable sorbent for sorption of U(VI).

  12. Development of JAEA sorption database (JAEA-SDB). Update of sorption/QA data in FY2015

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro

    2016-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in these barrier materials is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop databases compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in bentonites and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on improving and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting and mechanistic sorption model development. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on statistical data evaluation and grouping of data related to potential perturbations. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 11,206 K d data from 83 references were added, total number of K d values in the JAEA-SDB reached about 58,000. The QA/classified K d data reached about 60% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to

  13. Iodine sorption by microwave irradiated hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, S.P. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico); Instituto Politecnico Nacional, ESIQIE, C.P. 07738, Mexico, D.F. (Mexico); Fetter, G. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico)]. E-mail: geolarfetter@yahoo.com.mx; Bosch, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, C.P. 04510, Mexico, D.F. (Mexico); Bulbulian, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801, Mexico, D.F. (Mexico)

    2006-12-15

    Mg-Al hydrotalcite-like compounds (HT) were prepared by the microwave method on the one hand with ethoxide-acetylacetonate and on the other with acetylacetonate as precursors. They presented a maximum sorption capacity of 2.179 and 1.517 meq of {sup 131}I{sup -}/g of hydrotalcite respectively. When the hydrotalcites were calcined and rehydrated in a {sup 131}I{sup -} solution, iodine sorption decreased in both samples to 1.515 and 1.446, respectively. The corresponding value for nitrated hydrotalcite which was prepared by the conventional method for comparison purposes, was 0.570. The radionuclide content in hydrotalcites was determined by {gamma}-spectrometry. {sup 131}I{sup -} sorption is dependent on two main parameters: one is the type of the interlayer organic material and the second the surface area. It was found that hydrotalcites prepared with ethoxide-acetylacetonate were better sorbents for {sup 131}I{sup -} than those with acetylacetonate. Still, if the specific surface area increased, {sup 131}I{sup -}sorption increased as well; nitrated HT resulted in low specific surface area and a low sorption capacity. It is, therefore, concluded that organic residues present in the samples prepared by the microwave method favor the sorption of radioactive anions, in particular {sup 131}I{sup -} if compared with nitrated and/or carbonate interlayered hydrotalcites.

  14. Theory of molecular hydrogen sorption for hydrogen storage

    Science.gov (United States)

    Zhang, Shengbai

    2011-03-01

    Molecular hydrogen (H2) sorption has the advantage of fast kinetics and high reversibility. However, the binding strength is often too weak to be operative at near room temperatures. Research into such hydrogen sorption materials has branched into the study of pure van der Waals (vdW) physisorption and that of weak chemisorption (known to exist in the so-called Kubas complexes). In either case, however, theoretical tools to describe such weak interactions are underdeveloped with error bars that often exceed the strength of the interaction itself. We have used quantum-chemistry (QC) based approaches to benchmark the various available DFT methods for four classes of weak chemisorption systems [Sun et al., Phys. Rev. B 82, 073401 (2010)]. These involve complexes containing Li, Ca, Sc, and Ti with increased strength of H2 binding from predominantly vdW to mostly Kubas-like. The study reveals that most of the DFT functionals within the generalized gradient approximation underestimate the binding energy, oppose to overestimating it. The functionals that are easy to use yet yielding results reasonably close to those of accurate QC are the PBE and PW91. I will also discuss the effort of implementing vdW interaction into the currently available density functional methods [Sun, J. Chem. Phys. 129, 154102 (2008)]. The rationale is that while the true vdW is an electron-electron correlation, a DFT plus classical dispersion approach may be too simple and unnecessary within the DFT. A local pseudopotential approach has been developed to account for the core part of the polarizability of the elements. Applications to a number of benchmark systems yield good agreement with QC calculations. The application of this method and the QC methods to vdW hydrogen binding will also be discussed. Work supported by DOE/BES and DOE/EERE Hydrogen Sorption Center of Excellence under RPI subcontracts No. J30546/J90336.

  15. Applicability of microautoradiography to sorption studies

    International Nuclear Information System (INIS)

    Thompson, J.L.; Wolfsberg, K.

    1979-01-01

    The technique of microautoradiography was applied to the study of the sorption of uranium and americium on five rock types which exist at the Nevada Test Site. It was found that autoradiograms could be prepared in a few days which would allow the specific minerals responsible for sorption to be identified. Furthermore, the state of aggregation of the sorbed species was clearly indicated. It was concluded that microautoradiography was a useful adjunct to currently used methods for studying sorption of certain radionuclides

  16. Development of Web-based Software for Sorption Database

    International Nuclear Information System (INIS)

    Han, Byoung Sub; Lee, Jae Min; Seo, Min Seok; Kim, Dong Keon

    2009-08-01

    Sorption studies of radionuclides are important parts of research on radioactive waste disposal which is commonly faced in most countries where nuclear programs (power production, a variety of peaceful applications, and research) are implemented. The Sorption Database (DB) plays a very important role in the safety assessment of the radioactive waste disposal. The Sorption DB which is opened externally can be used as reference material of establishing a national policy by improving and changing the pre-developed Sorption program to be web-based. From the industrial point of view, if the Sorption DB is opened to the outside, the safety-related confidence can be achieved for nuclear industry. As the information of Sorption DB is opened, not only credibility can be provided to the administration, local governments and nearby residents, but also input of the collected information can be achieved by online. In addition, the reference material and external awareness/reliability about the domestic level of the Sorption DB management system and the current state can be achieved internationally. In order to provide the information of Sorption DB to users in more efficient way, the analysis and complement of management and search capability for the existing Sorption DB program have been performed and web-based management system has been built to provide services to users. In addition, by applying statistical techniques, it has been designed and implemented to display the accuracy and error of the information

  17. Experimental study of water sorption and clays swelling by environmental scanning electron microscopy (ESEM) and digital image analysis

    International Nuclear Information System (INIS)

    Montes-Hernandez, G.

    2002-10-01

    This work deals with the study of water sorption and clays swelling (MX80 bentonite and Paris basin argilites). A new approach by environmental scanning electron microscopy (ESEM) coupled to digital image analysis is proposed to estimate the swelling with time and the relative humidity. The ESEM is a new generation tool, not much used in the clays domain, which allows to study hydrated materials in different conditions of relative humidity. In this work, it is shown that qualitative and quantitative information about clays swelling at the aggregate scale can be obtained. The study of the kinetics allows to identify three swelling steps which are described by a first order kinetic model. The study of water sorption by raw bentonite and the exchange of different cation (Na + , Li + , K + , Ca 2+ , Mg 2+ ) has permitted to analyze the cation influence on the swelling potential. The adsorption kinetics, described by a second order model, depends directly on the relative humidity, on the mass of the sample and on the compensating cation. The study of the texture of the compacted MX80 bentonite in dry and humid conditions has permitted to observe the morphological evolution of the porous network (macro-porosity) during the hydration/dehydration. From different analytical approaches, a diminution of the macro-pores and/or meso-pores size and the opening of inter-aggregate pores is observed when the apparent density increases. The study of the influence of the instantaneous water condensation/evaporation on the argilites shows that the sensitiveness to water increases when the proportion of clay increases. In particular, it is characterized by a cracking partially reversible or irreversible after several condensation/evaporation cycles. (J.S.)

  18. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  19. Geochemical modelling of the sorption of tetravalent radioelements

    International Nuclear Information System (INIS)

    Bond, K.A.; Tweed, C.J.

    1991-05-01

    The results of an experimental study of the sorption of a range of tetravalent radioelements, plutonium (IV), tin (IV), thorium(IV) and uranium(IV), onto clay at pH8 and pH11 have been successfully simulated using a triple layer sorption model. The model has been incorporated into HARPHRQ, a geochemical program based on PHREEQE. The model has been parameterised using data for sorption onto ferric oxyhydroxide and goethite. The effects of hydroxycarboxylic acids on the sorption process have also been investigated experimentally. It was generally observed that in the presence of 2x10 -3 M gluconate, sorption was reduced by up two orders of magnitude. The model has satisfactorily simulated these lower sorptivities, through assuming competing sorption and complexation reactions. This work, therefore, further confirms the need to take account of such organic materials in safety assessment modelling. (author)

  20. Radionuclide sorption on crushed and intact granitic rock

    International Nuclear Information System (INIS)

    Eriksen, Tryggve E.; Locklund, Birgitta

    1989-05-01

    The specific surface areas and distribution ratios for sorption of 85 Sr, 137 Cs and 152 Eu were measured for crushed and intact granite rock. The experimental data can be accommodated by a sorption model encompassing sorption on outer and inner surface. It is clearly demonstrated that the time required to obtain reliable Kd-values for the sorption of strongly sorbing radionuclides like 152 Eu is very long due to solution depletion and slow diffusion into the rock. A combination of surface area measurements and batch sorption with small particles may therefore be preferable when studying strongly sorbing nuclides. (authors) (17 figs., 6 tabs.)

  1. Sorption of uranyl ions on hydrous oxides

    International Nuclear Information System (INIS)

    Gupta, A.R.; Venkataramani, B.

    1988-01-01

    Sorption of uranyl ions on hydrous titanium oxide (HTiO), magnetite (MAG), and hydrous thorium oxide (HThO) has been studied as a function of pH. Hydrous oxides have been characterized by their pH-titration curves, intrinsic dissociation constants (pK ai * ) and point of zero charge (pH pzc ). The fraction of protonated surface hydroxyl groups as well as the surface pH (pH surf ) as a function of solution pH have been computed. The distribution of various hydrolyzed species of uranyl ions with solution pH have been compared with uranyl sorption isotherm on these oxides. Sorption edge in all the cases occurs when free hydroxyl groups are available on the surface and pH surf is sufficiently high to favor the formation of dimer-like species on the surface. A new model for the sorption process, called surface hydrolysis model, which explains these and other features of uranyl sorption on hydrous oxides has been proposed. The model visualizes the sorption process as linking of uranyl ions with two adjacent free surface hydroxyl groups without deprotonation (provided the surface pH is high for the hydrolysis of uranyl ions) and formation of dimer-like structures on the surface. The new model has been successfully applied to the present and other available data on uranyl ion sorption on hydrous oxides. (author)

  2. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils

    International Nuclear Information System (INIS)

    Sastre, J.; Rauret, G.; Vidal, M.

    2006-01-01

    We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K d ) were determined in 0.02 eq l -1 CaCl 2 and in a solution that simulated the soil solution cationic composition. The K d values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K d values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K d versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl 2 medium in soils with a markedly different soil solution composition. - Sorption solution composition modifies metal sorption-desorption pattern in soils

  3. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    International Nuclear Information System (INIS)

    Sheng Guangyao; Yang Yaning; Huang Minsheng; Yang Kai

    2005-01-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs ∼3.0 and ∼7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH ∼7.0 than at pH ∼3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH ∼7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH ∼3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH ∼3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides

  4. Influence of pH on pesticide sorption by soil containing wheat residue-derived char

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Guangyao [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States)]. E-mail: gsheng@uark.edu; Yang Yaning [Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Huang Minsheng [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China); Yang Kai [Department of Environmental Science and Technology, East China Normal University, Shanghai 200062 (China)

    2005-04-01

    Field burning of crop residues incorporates resulting chars into soil and may thus influence the environmental fate of pesticides in the soil. This study evaluated the influence of pH on the sorption of diuron, bromoxynil, and ametryne by a soil in the presence and absence of a wheat residue-derived char. The sorption was measured at pHs {approx}3.0 and {approx}7.0. Wheat char was found to be a highly effective sorbent for the pesticides, and its presence (1% by weight) in soil contributed >70% to the pesticide sorption (with one exception). The sorption of diuron was not influenced by pH, due to its electroneutrality. Bromoxynil becomes dissociated at high pHs to form anionic species. Its sorption by soil and wheat char was lower at pH {approx}7.0 than at pH {approx}3.0, probably due to reduced partition of the anionic species of bromoxynil into soil organic matter and its weak interaction with the carbon surface of the char. Ametryne in its molecular form at pH {approx}7.0 was sorbed by char-amended soil via partitioning into soil organic matter and interaction with the carbon surface of the char. Protonated ametryne at pH {approx}3.0 was substantially sorbed by soil primarily via electrostatic forces. Sorption of protonated ametryne by wheat char was also significant, likely due not only to the interaction with the carbon surface but also to interactions with hydrated silica and surface functional groups of the char. Sorption of ametryne by char-amended soil at pH {approx}3.0 was thus influenced by both the soil and the char. Environmental conditions may thus significantly influence the sorption and behavior of pesticides in agricultural soils containing crop residue-derived chars. - Wheat char was effective for adsorption of pesticides in soil, with efficacy varying with pH and particular pesticides.

  5. The effect of TTNT nanotubes on hydrogen sorption using MgH2

    Directory of Open Access Journals (Sweden)

    Mariana Coutinho Brum

    2013-06-01

    Full Text Available Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH2 with the addition of TTNT (TiTanate NanoTubes. The MgH2-TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (% on the hydrogen capacity was evaluated. The milling of pure MgH2 was performed for 24 hours and afterwards the MgH2-TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM and Scanning Electron Microscopy (SEM were used to evaluate the nanotube synthesis and show the particle morphology of the MgH2-TTNT composite, respectively. The Differential Scanning Calorimetry (DSC examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%.

  6. The effect of TTNT nanotubes on hydrogen sorption using MgH2

    International Nuclear Information System (INIS)

    Brum, Mariana Coutinho; Jardim, Paula Mendes; Conceicao, Monique Osorio Talarico da; Santos, Dilson Silva dos

    2013-01-01

    Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH 2 with the addition of TTNT (TiTanate nanotubes). The MgH 2 -TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (%)) on the hydrogen capacity was evaluated. The milling of pure MgH 2 was performed for 24 hours and afterwards the MgH 2 -TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to evaluate the nanotube synthesis and show the particle morphology of the MgH 2 -TTNT composite, respectively. The Differential Scanning Calorimetry (DSC) examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%). (author)

  7. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-11-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 m g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great as those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  8. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-07-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 ml g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great at those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland Cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  9. Sorption of cesium and uranium to Feldspar

    International Nuclear Information System (INIS)

    Wijland, G.C.; Pennders, R.M.J.

    1990-07-01

    Within safety assessment studies, for nuclear waste disposal in deep geologic formations, calculation for the migration of radionuclides through the geosphere are often carried out with models taking sorption into account. In the past 8 years the insight grew that other physico-chemical processes, besides sorption, could affect migration behaviour. While the currently used transport models were being improved taking either linear or non-linear sorption into account, the coupling of geochemical and transport models came into scope. In spite of these developments models which are still based on the sorption theory are frequently applied in studying migration behaviour of radionuclides. This is caused by the necessity of making preliminary pronouncements, while coupled models are still in stage of development and thermodynamic data are very limited available. Therefore one has to obtain insight in the reliability of the models based on the sorption theory. within the sorption database there is a lack of knowledge about mineralogy, composition of the fluid and the experimental conditions underlying the data. Therefore the Expert Group on geochemical Modelling supported by the Finnish proposal in order to obtain insight in the possible deviation of the sorption coefficients that can be estimated from experiments performed with standard samples, fluid composition and experimental conditions. Nine laboratories from OECD membership countries took part in this intercalibration study. In the framework of the Dutch safety assessment studies the Dutch National Institute of Public health and Environmental protection (RIVM) has decided to participate in this exercise. In this report the results are presented of sorption experiments for cesium and natural Uranium to Feldspar. (H.W.). 4 refs.; 1 fig.; 7 tabs

  10. Sorption of a branched nonylphenol isomer and perfluorooctanoic acid on geosorbents and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengliang

    2011-10-13

    As metabolites of organic surfactants, both nonylphenol (NP) and perfluorooctanoic acid (PFOA) are toxic and ubiquitous in the environment. Their sorption on soils and sediments is of importance for their fate and transport in the environment. Especially in China, there is still a lack of consolidated knowledge on the sorption behavior of NP and PFOA on geosorbents such as Yangtze River sediments. Thus, the present thesis investigates the sorption of a branched NP isomer [4-(1-ethyl-1, 3-dimethylpentyl) phenol] (NP111) and PFOA on Yangtze River sediments and their model components, i.e. a clay mineral (illite), metal oxides (goethite and {delta}-Al{sub 2}O{sub 3}) and organic matter (isolated from Yangtze River sediments and commercial organic matter) by both batch and dialysis techniques. NP111 is the most environmentally relevant NP isomer and its fate in the environment is unknown. Because PFOA is weakly adsorbed on geosorbents, multi-walled carbon nanotubes (MWCNTs) were studied as promising adsorbents. One of the MWCNTs studied contained traces of metal catalyst on the outer surface. Sorption isotherms of NP111 and PFOA on the sediments and their model components were fitted well by the Freundlich model. Sorption of NP111 on the sediments depended largely on their organic carbon content, resulting in organic carbon-normalized sorption coefficient (K{sub OC}) values between 6.3 x 10{sup 3} and 1.1 x 10{sup 4} L kg{sup -1}. The sorption of NP111 on {delta}-Al{sub 2}O{sub 3} and illite was comparable to that on sediments, but significantly lower than that on goethite. In contrast, the sorption of PFOA on the sediments was significantly lower. The affinity of PFOA to goethite and {delta}-Al{sub 2}O{sub 3} was slightly higher than to the sediments, but it was negligible to natural organic matter and illite. The results suggest that the organic carbon content of the sediments plays a dominant role in the sorption of NP111, whereas goethite acts as a potential sink

  11. Strontium sorption on Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1984-12-01

    A laboratory study of strontium-85 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that strontium sorption is most strongly a function of pH. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence strontium sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect. Ferrous ion, added to groundwater to simulate the conditions of water at the bottom of waste trenches, did not account for low strontium sorption observed with some trench waters

  12. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings

    Science.gov (United States)

    Smalling, Kelly; Hladik, Michelle; Sanders, Corey; Kuivila, Kathryn

    2018-01-01

    Seed coatings are a treatment used on a variety of crops to improve production and offer protection against pests and fungal outbreaks. The leaching of the active ingredients associated with the seed coatings and the sorption to soil was evaluated under laboratory conditions using commercially available corn and soybean seeds to study the fate and transport of these pesticides under controlled conditions. The active ingredients (AI) included one neonicotinoid insecticide (thiamethoxam) and five fungicides (azoxystrobin, fludioxonil, metalaxyl, sedaxane thiabendazole). An aqueous leaching experiment was conducted with treated corn and soybean seeds. Leaching potential was a function of solubility and seed type. The leaching of fludioxonil, was dependent on seed type with a shorter time to equilibrium on the corn compared to the soybean seeds. Sorption experiments with the treated seeds and a solution of the AIs were conducted using three different soil types. Sorption behavior was a function of soil organic matter as well as seed type. For most AIs, a negative relationship was observed between the aqueous concentration and the log Koc. Sorption to all soils tested was limited for the hydrophilic pesticides thiamethoxam and metalaxyl. However, partitioning for the more hydrophobic fungicides was dependent on both seed type and soil properties. The mobility of fludioxonil in the sorption experiment varied by seed type indicating that the adjuvants associated with the seed coating could potentially play a role in the environmental fate of fludioxonil. This is the first study to assess, under laboratory conditions, the fate of pesticides associated with seed coatings using commercially available treated seeds. This information can be used to understand how alterations in agricultural practices (e.g., increasing use of seed treatments) can impact the exposure (concentration and duration) and potential effects of these chemicals to aquatic and terrestrial organisms.

  13. Study of the radium sorption/desorption on goethite

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Mallet, C.; Lefebvre, C.; Ferreux, J.-M.

    2000-01-01

    The oxi-hydroxides, present at trace level in uranium mill tailings, are responsible of about 70% of the 226 radium sorption, half being fixed on crystallized forms. This radionuclide (half time=1622y), present at high level (50 to 100kBq.kg -1 ), can be released in groundwater, involving a possible contamination of the food chain (actual concentration limit=0.37Bq.1 -1 ). So, it is very important to point out the mechanisms of the radium sorption/desorption on crystallized oxi-hydroxides as a function of chemical conditions of the system. The radium sorption on synthetic goethite α-FeOOH has been studied as a function of contact time, initial radium activity, pH, sodium and calcium concentrations. The results show that, after one hour of contact time (necessary to reach equilibrium), the radium sorption increases widely in a pH range 6-7. The increase of Na + concentration is without influence on the radium sorption, indicating the low interactions between sodium and surface sites. At the opposite, the presence of calcium in solution decreases widely the radium sorption, that indicates a competition between calcium and radium for the same kind of sorption sites of the oxi-hydroxide surface. The percentage of radium desorbed increases widely with time, from 1 to 120h and becomes constant at a time higher than 120h. This long equilibrium time for desorption in comparison with sorption one can be explain by a local evolution of the sorption sites of the solid, which become less accessible for the solution in contact. (author)

  14. Influence of selected factors on strontium sorption on bentonites

    International Nuclear Information System (INIS)

    Galambos, M.; Kufcakova, J.; Rajec, P.

    2007-01-01

    Sorption on bentonite will play an important role in retarding the migration of radionuclides from a waste repository. Bentonite is a natural clay and one of the most promising candidates for use as a buffer material in the geological disposal systems for high-level nuclear waste. It is intended to isolate metal canisters with highly radioactive waste products from the surrounding rocks because of its ability to retard the movement of radionuclides by sorption. Bentonite is characterized by low permeability, water swelling capability and excellent sorption potential for cationic radionuclides. To correctly assess the sorption potential of radionuclides on bentonite is essential for the development of predictive migration models. The sorption of strontium on bentonite from different Slovak deposits - Jelsovy potok, Kopernica and Lieskovec has been investigated under various experimental conditions, such as contact time, sorbate concentrations, presence of complementary cation. Sorption was studied using the batch technique. The uptake of Sr was rapid and equilibrium was reached almost instantaneously. The instantaneous uptake may be due to adsorption and/or exchange of the metal with some ions on the surface of the adsorbent. The best sorption characteristics distinguish bentonite Kopernica, sorption capacity for Sr of the fraction under 45 mm is 0,48 mmol·g -1 for Sr. The highest values of distribution coefficient were reached for the bentonite Jelsovy potok. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites, which can be explained by the increase of specific surface of the bentonite samples. The presence of complementary cations depresses the sorption of Sr on bentonite. Cations Ca 2+ exhibit higher effect on cesium sorption than the Na 2+ ions. Results indicate that the sorption of Sr 2+ on bentonite will be affected by the presence of high concentrations of various salts in the waste water

  15. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  16. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  17. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    International Nuclear Information System (INIS)

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-01-01

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  18. Behavioral-Progress Monitoring Using the Electronic Daily Behavioral Report Card (e-DBRC) System

    Science.gov (United States)

    Burke, Mack D.; Vannest, Kimberly J.

    2008-01-01

    In this article, the authors present an overview of a Web-based electronic system for behavioral-progress monitoring. Behavioral-progress monitoring is necessary to evaluate responsiveness to behavioral interventions, the effects of positive behavioral support, and the attainment of individualized education program goals and objectives. The…

  19. Sorption of plutonium and americium on repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Tweed, C.J.; Williams, S.J.

    1995-01-01

    An integrated program of batch sorption experiments and mathematical modeling has been carried out to study the sorption of plutonium and americium on a series of repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura. The sorption of plutonium and americium on samples of concrete, mortar, sand/bentonite, tuff, sandstone and cover soil has been investigated. In addition, specimens of bitumen, cation and anion exchange resins, and polyester were chemically degraded. The resulting degradation product solutions, alongside solutions of humic and isosaccharinic acids were used to study the effects on plutonium sorption onto concrete, sand/bentonite and sandstone. The sorption behavior of plutonium and americium has been modeled using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database

  20. Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms

    International Nuclear Information System (INIS)

    Ozaki, T.; Kimura, T.; Ohnuki, T.; Yoshida, Z.; Gillow, J.B.; Francis, A.J.

    2004-01-01

    We investigated the association of europium(III) and curium(III) with the microorganisms Chlorella vulgaris, Bacillus subtilis, Pseudomonas fluorescens, Halomonas sp., Halobacterium salinarum, and Halobacterium halobium. We determined the kinetics and distribution coefficients (K d ) for Eu(III) and Cm(III) sorption at pH 3-5 by batch experiments, and evaluated the number of water molecules in the inner-sphere (N H 2 O ) and the degree of strength of ligand field (R E/M ) for Eu(III) by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Exudates from C. vulgaris, Halomonas sp., and H. halobium had an affinity for Eu(III) and Cm(III). The log K d of Eu(III) and Cm(III) showed that their sorption was not fully due to the exchange with three protons on the functional groups on cell surfaces. The halophilic microorganisms (Halomonas sp., Halobacterium salinarum, H. halobium) showed almost no pH dependence in log K d , indicating that an exchange with Na + on the functional groups was involved in their sorption. The ΔN H 2 O (= 9 - N H 2 O ) for Eu(III) on C. vulgaris was 1-3, while that for the other microorganisms was over 3, demonstrating that the coordination of Eu(III) with C. vulgaris was predominantly an outer-spherical process. The R E/M for Eu(III) on halophilic microorganisms was 2.5-5, while that for non-halophilic ones was 1-2.5. This finding suggests that the coordination environment of Eu(III) on the halophilic microorganisms is more complicated than that on the other three non-halophilic ones. (orig.)

  1. Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, T.; Kimura, T.; Ohnuki, T.; Yoshida, Z. [Advanced Science Research Center, Japan Atomic Energy Research Inst., Ibaraki (Japan); Gillow, J.B.; Francis, A.J. [Environmental Sciences Dept., Brookhaven National Lab., Upton, NY (United States)

    2004-07-01

    We investigated the association of europium(III) and curium(III) with the microorganisms Chlorella vulgaris, Bacillus subtilis, Pseudomonas fluorescens, Halomonas sp., Halobacterium salinarum, and Halobacterium halobium. We determined the kinetics and distribution coefficients (K{sub d}) for Eu(III) and Cm(III) sorption at pH 3-5 by batch experiments, and evaluated the number of water molecules in the inner-sphere (N{sub H{sub 2}O}) and the degree of strength of ligand field (R{sub E/M}) for Eu(III) by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Exudates from C. vulgaris, Halomonas sp., and H. halobium had an affinity for Eu(III) and Cm(III). The log K{sub d} of Eu(III) and Cm(III) showed that their sorption was not fully due to the exchange with three protons on the functional groups on cell surfaces. The halophilic microorganisms (Halomonas sp., Halobacterium salinarum, H. halobium) showed almost no pH dependence in log K{sub d}, indicating that an exchange with Na{sup +} on the functional groups was involved in their sorption. The {delta}N{sub H{sub 2}O} (= 9 - N{sub H{sub 2}O}) for Eu(III) on C. vulgaris was 1-3, while that for the other microorganisms was over 3, demonstrating that the coordination of Eu(III) with C. vulgaris was predominantly an outer-spherical process. The R{sub E/M} for Eu(III) on halophilic microorganisms was 2.5-5, while that for non-halophilic ones was 1-2.5. This finding suggests that the coordination environment of Eu(III) on the halophilic microorganisms is more complicated than that on the other three non-halophilic ones. (orig.)

  2. Neptunium(V) sorption onto kaolinite in the absence and presence of CO2

    International Nuclear Information System (INIS)

    Amayri, S.; Reich, Ta.; Reich, T.

    2005-01-01

    Full text of publication follows: The adsorption of heavy metals on clay minerals such as kaolinite is an important process that affects the migration and retardation of neptunium and other actinides in the geosphere. The sorption of Np(V) onto the reference clay mineral kaolinite KGa-1b was investigated both by batch experiments and EXAFS measurements. The aim of our study was to combine macroscopic studies (batch experiments) with microscopic techniques (EXAFS) to study the Np(V) speciation at the kaolinite surface. The batch experiments were done under relevant environmental conditions with Np(V) concentrations of 10 -11 and 10 -12 mol/L. Sorption samples were prepared in 0.1 mol/L NaClO 4 , 4 g/L kaolinite, pH 6.0 to 10.5, presence and absence of ambient CO 2 , and 60-h equilibration. The sorption curves for 10 -11 and 10 -12 mol/L Np(V) obtained in the presence and absence of CO 2 , respectively, show that the adsorption edge occurs at pH 8.5. The uptake of Np(V) by kaolinite strongly increased above pH 7.0 and reached its sorption maximum (70 %) at pH 9.0. Above pH 9.0, the amount of Np(V) sorbed onto kaolinite decreased and reached ca. 30 % at pH 10.5 due to the formation of Np(V) carbonato species in the aqueous solution. In the CO 2 -free system, the sorption of Np(V) increased continuously with pH until the sorption maximum of 100 % was reached at pH 10.5. The same sorption behavior was found in batch experiments in the CO 2 equilibrated system with Np concentrations ranging from 1 μmol/L to 10 μmol/L. EXAFS experiments on some of these batch samples indicated the formation of Np(V) carbonato species at the kaolinite surface at pH 9.0 where the uptake of Np(V) by kaolinite reaches its maximum [1]. [1] T. Reich, S. Amayri, Ta. Reich, J. Drebert, A. Jermolajev, P. Thoerle, N. Trautmann, C. Hennig, S. Sachs, Feasibility of EXAFS experiments at the Np L-edge to investigate neptunium sorption on kaolinite, Institut fuer Kernchemie, Universitaet Mainz, Annual

  3. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  4. Sorption isolation of strontium from seawater

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Zheleznov, V.V.; Kaplun, E.V.; Sokol'nitskaya, T.A.; Yukhkam, A.A.

    2001-01-01

    Sorption isolation of strontium from seawater is considered and prospects of use of selective adsorbents for purification of seawater or liquid radioactive wastes mixed with seawater from 90 Sr are discussed. Comparative analysis of sorptive properties of adsorbents of different nature is done. It is shown that sorption-reagent materials developed by authors can to afford effective separation of 90 Sr from seawater. Possible mechanism of strontium sorption by these adsorbents is considered. The prospect of their use for purification of liquid radioactive wastes from strontium is shown [ru

  5. Sorption and Transport of Ranitidine in Natural Soils

    Science.gov (United States)

    Gaynor, A. J.; Vulava, V. M.

    2013-12-01

    Increasing levels of pharmaceuticals and their degradants are being discovered in natural water systems all over the world. These chemicals are reported to be discharged from wastewater treatment plants, sewage overflow, and leaking septic tanks. Ranitidine is an example of one such pharmaceutical chemical found in municipal drinking water, streams, and streambed sediments. It is a histamine H2-receptor antagonist, which inhibits the production of stomach acid and is commonly used to treat peptic ulcers and gastro esophageal reflux disease. Ranitidine is a complex organic compound; it is acidic, highly polar, and has two pKa values of approximately 8.2 and 2.7 because of the amine functional groups. When administered orally 25 - 30% of unchanged ranitidine has been shown to expel through urine. The objective of this research is to establish sorption and transport patterns of ranitidine in natural soils and to determine which soil properties influence these patterns the most. Laboratory experiments were preformed on A-horizon and B-horizon soil samples collected from the relatively undisturbed Francis Marion National Forest, a managed forest near Charleston, SC. The soils were characterized for chemical and physical properties: ranges of clay content = 6-20%, total organic content = 1-8%, and pH = 3.6-4.9. Kinetic reaction rates and equilibrium sorption isotherms were measured using batch experiments, whereas column experiments were used to quantify transport behavior. The reaction rates were -0.22/day and -0.33/day for organic-rich and clay-rich soils, respectively. The kinetic reaction rates were used to determine equilibration times for further equilibrium batch reactor experiments, which have soil solutions spiked with concentrations of ranitidine ranging from 0.1 mg/L to 100 mg/L. The concentration remaining in solution (C, mg/L) was plotted against the concentration in the soil (q, mg/kg) to create sorption isotherms. Ranitidine was more strongly sorbed to B

  6. Pesticide sorption and leaching potential on three Hawaiian soils.

    Science.gov (United States)

    Hall, Kathleen E; Ray, Chittaranjan; Ki, Seo Jin; Spokas, Kurt A; Koskinen, William C

    2015-08-15

    On the Hawaiian Islands, groundwater is the principal source of potable water and contamination of this key resource by pesticides is of great concern. To evaluate the leaching potential of four weak acid herbicides [aminocyclopyrachlor, picloram, metsulfuron-methyl, biologically active diketonitrile degradate of isoxaflutole (DKN)] and two neutral non-ionizable herbicides [oxyfluorfen, alachlor], their sorption coefficients were determined on three prevalent soils from the island of Oahu. Metsulfuron-methyl, aminocylcopyrachlor, picloram, and DKN were relatively low sorbing herbicides (K(oc) = 3-53 mL g(-1)), alachlor was intermediate (K(oc) = 120-150 mL g(-1)), and oxyfluorfen sorbed very strongly to the three soils (K(oc) > 12,000 mL g(-1)). Following determination of K(oc) values, the groundwater ubiquity score (GUS) indices for these compounds were calculated to predicted their behavior with the Comprehensive Leaching Risk Assessment System (CLEARS; Tier-1 methodology for Hawaii). Metsulfuron-methyl, aminocyclopyrachlor, picloram, and DKN would be categorized as likely leachers in all three Hawaiian soils, indicating a high risk of groundwater contamination across the island of Oahu. In contrast, oxyfluorfen, regardless of the degradation rate, would possess a low and acceptable leaching risk due to its high sorption on all three soils. The leaching potential of alachlor was more difficult to classify, with a GUS value between 1.8 and 2.8. In addition, four different biochar amendments to these soils did not significantly alter their sorption capacities for aminocyclopyrachlor, indicating a relatively low impact of black carbon additions from geologic volcanic inputs of black carbon. Due to the fact that pesticide environmental risks are chiefly dependent on local soil characteristics, this work has demonstrated that once soil specific sorption parameters are known one can assess the potential pesticide leaching risks. Published by Elsevier Ltd.

  7. Sorption of strontium on bentonites from Slovak deposits

    International Nuclear Information System (INIS)

    Kufcakova, J.; Galambos, M.; Rajc, P.

    2005-01-01

    Sorption on bentonite from different Slovak deposits / Jelsovy potok, Kopernica and Lieskove has been investigated under various experimental conditions, such as contact time, pH, sorbate concentrations, presence of complementary cation. The sorption of strontium from aqueous solutions was investigated using a radiometric determination of distribution coefficient, Kd. The individual solutions were labelled with radiotracer. Radiation stability has been investigated, the higher sorption parameters were observed for the irradiated bentonites /tab.l/ , which can be explained by the increase of specific surface and change of solubility of the irradiated samples of bentonite. The presence of complementary cations, Na + , K + , NH 4 + , Ca 2+ , Mg 2+ and Ba 2+ depresses the sorption of Sr on bentonite. In the case of bentonite Kopernica the effectiveness in reducing the sorption of strontium by cations followed the order K + 4 + + 2+ 2+ 2+ . Results indicate that the sorption of Sr + on bentonite will be affected by the presence of high concentrations of various salts in the waste water effluents. (author)

  8. Electronic behavioral interventions for headache: a systematic review.

    Science.gov (United States)

    Minen, Mia Tova; Torous, John; Raynowska, Jenelle; Piazza, Allison; Grudzen, Corita; Powers, Scott; Lipton, Richard; Sevick, Mary Ann

    2016-01-01

    There is increasing interest in using electronic behavioral interventions as well as mobile technologies such as smartphones for improving the care of chronic disabling diseases such as migraines. However, less is known about the current clinical evidence for the feasibility and effectiveness of such behavioral interventions. To review the published literature of behavioral interventions for primary headache disorders delivered by electronic means suitable for use outside of the clinician's office. An electronic database search of PubMed, PsycINFO, and Embase was conducted through December 11, 2015. All eligible studies were systematically reviewed to examine the modality in which treatment was delivered (computer, smartphone, watch and other), types of behavioral intervention delivered (cognitive behavioral therapy [CBT], biofeedback, relaxation, other), the headache type being treated, duration of treatment, adherence, and outcomes obtained by the trials to examine the overall feasibility of electronic behavioral interventions for headache. Our search produced 291 results from which 23 eligible articles were identified. Fourteen studies used the internet via the computer, 2 used Personal Digital Assistants, 2 used CD ROM and 5 used other types of devices. None used smartphones or wearable devices. Four were pilot studies (N ≤ 10) which assessed feasibility. For the behavioral intervention, CBT was used in 11 (48 %) of the studies, relaxation was used in 8 (35 %) of the studies, and biofeedback was used in 5 (22 %) of the studies. The majority of studies (14/23, 61 %) used more than one type of behavioral modality. The duration of therapy ranged from 4-8 weeks for CBT with a mean of 5.9 weeks. The duration of other behavioral interventions ranged from 4 days to 60 months. Outcomes measured varied widely across the individual studies. Despite the move toward individualized medicine and mHealth, the current literature shows that most studies using

  9. Sorption of mercury on chemically synthesized polyaniline

    International Nuclear Information System (INIS)

    Remya Devi, P.S.; Verma, R.; Sudersanan, M.

    2006-01-01

    Sorption of inorganic mercury (Hg 2+ ) and methyl mercury, on chemically synthesized polyaniline, in 0.1-10N HCl solutions has been studied. Hg 2+ is strongly sorbed at low acidities and the extent of sorption decreases with increase in acidity. The sorption of methyl mercury is very low in the HCl concentration range studied. Sorption of Hg 2+ on polyaniline in 0.1-10N LiCl and H 2 SO 4 solutions has also been studied. The analysis of the data indicates that the sorption of Hg 2+ depends on the degree of protonation of polyaniline and the nature of mercury(II) chloride complexes in solution. X-ray photoelectron spectroscopy analysis (XPS) of polyaniline sorbed with mercury show that mercury is bound as Hg 2+ . Sorbed mercury is quantitatively eluted from polyaniline with 0.5N HNO 3 . Polyaniline can be used for separation and pre-concentration of inorganic mercury from aqueous samples. (author)

  10. Moisture sorption of Thai red curry powder

    Directory of Open Access Journals (Sweden)

    Sudathip Inchuen

    2009-12-01

    Full Text Available Moisture sorption study was conducted on Thai red curry powder prepared by two different drying methods, viz. microwave and hot-air drying. Moisture sorption isotherms of the red curry powder at 30 C and water activity in the range of 0.113-0.970 were determined by a static gravimetric method. The isotherms exhibited Type III behaviour. The moisture sorption data were fitted to several sorption models and a non-linear regression analysis method was used to evaluate the constants of the sorption equations. The fit was evaluated using the coefficient of determination (R2, the reduced chi-square (2 and the root mean square error (RMSE. The GAB model followed by the Lewiski-3 model gave the best fit to the experimental data. The monolayer moisture content, taken as the safe minimum moisture level in the red curry powder, was determined using the BET equation and was found to range between 0.080 - 0.085 gram water per gram dry matter.

  11. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    Science.gov (United States)

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enhanced PCBs sorption on biochars as affected by environmental factors: Humic acid and metal cations

    International Nuclear Information System (INIS)

    Wang Yu; Wang Lei; Fang Guodong; Herath, H.M.S.K.; Wang Yujun; Cang Long; Xie Zubin; Zhou Dongmei

    2013-01-01

    Biochar plays an important role in the behaviors of organic pollutants in the soil environment. The role of humic acid (HA) and metal cations on the adsorption affinity of polychlorinated biphenyls (PCBs) to the biochars in an aqueous medium and an extracted solution from a PCBs-contaminated soil was studied using batch experiments. Biochars were produced with pine needles and wheat straw at 350 °C and 550 °C under anaerobic condition. The results showed that the biochars had high adsorption affinity for PCBs. Pine needle chars adsorbed less nonplanar PCBs than planar ones due to dispersive interactions and separation. Coexistence of HA and metal cations increased PCBs sorption on the biochars accounted for HA adsorption and cation complexation. The results will aid in a better understanding of biochar sorption mechanism of contaminants in the environment. - Highlights: ► Application of the biochars for PCBs sorption was a new and effective way. ► The biochars had higher adsorption affinity for PCBs in the soil extracted solution. ► Pine needle chars adsorbed less nonplanar PCBs than planar ones. ► Coexisting humic acid or metal cations increased PCBs sorption on the biochars. - The biochars had higher adsorption affinity for PCBs in the extracted soil solution because coexisting humic acid and metal cations increased their sorption.

  13. Sorption of metaldehyde using granular activated carbon

    Directory of Open Access Journals (Sweden)

    S. Salvestrini

    2017-09-01

    Full Text Available In this work, the ability of granular activated carbon (GAC to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

  14. Carbon dioxide sorption on EDTA modified halloysite

    Directory of Open Access Journals (Sweden)

    Waszczuk Patrycja

    2016-01-01

    Full Text Available In this paper the sorption study of CO2 on EDTA surface modified halloysite was conducted. In the paper chemical modification of halloysite from the Dunino deposit (Poland and its influence on sorption of CO2 are presented. A halloysite samples were washed with water-EDTA 1% solution, centrifuged to separate liquid and impurities and dried. The samples were tested for the sorption capacity using a manometric method with pressure up to 3 MPa. A Langmuir adsorption model was fitted to the data. The results showed that EDTA had a limited effect on the increase of sorption potential at low pressure and the samples exhibited similar results to that ones treated solely with the water solution.

  15. Geochemical behavior of Cs, Sr, Tc, Np, and U in saline groundwaters: Sorption experiments on shales and their clay mineral components: Progress report

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Ho, P.C.; Case, F.I.; O'Kelley, G.D.

    1987-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). In support of this program, preliminary studies were carried out on sorption of cesium, strontium, technetium, neptunium, and uranium onto Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales under oxic conditions (air present). Three simulated groundwaters were used. One of the groundwaters was a synthetic brine made up to simulate highly saline groundwaters in the Pumpkin Valley Shale. The second was a 100/1 dilution of this groundwater and the third was 0.03 M NaHCO 3 . Moderate to significant sorption was observed under most conditions for all of the tested radionuclides except technetium. Moderate technetium sorption occurred on Upper Dowelltown Shale, and although technetium sorption was low on the other shales, it was higher than expected for Tc(VII), present as the anion TcO 4 - . Little sorption of strontium onto the shales was observed from the concentrated saline groundwater. These data can be used in a generic fashion to help assess the sorption characteristics of shales in support of a national survey. 10 refs., 4 figs., 23 tabs

  16. Effect of natural organic materials on cadmium and neptunium sorption

    International Nuclear Information System (INIS)

    Kung, K.S.; Triay, I.R.

    1994-01-01

    In a batch sorption study of the effect of naturally occurring organic materials on the sorption of cadmium and neptunium on oxides and tuff surfaces, the model sorbents were synthetic goethite, boehmite, amorphous silicon oxides, and a crushed tuff material from Yucca Mountain, Nevada. An amino acid, 3-(3,4-dihydroxypheny)-DL-alanine (DOPA), and an aquatic-originated fulvic material, Nordic aquatic fulvic acid (NAFA), were used as model organic chemicals. Sorption isotherm results showed that DOPA sorption followed the order aluminum oxide > iron oxide > silicon oxide and that the amount of DOAP sorption for a given sorbent increased as the solution pH was raised. The sorption of cadmium and neptunium on the iron oxide was about ten times higher than that on the aluminum oxide. The sorption of cadmium and neptunium on natural tuff material was much lower than that on aluminum and iron oxides. The sorption of cadmium on iron and aluminum oxides was found to be influenced by the presence of DOPA, and increasing the amount of DOPA coating resulted in higher cadmium sorption on aluminum oxide. However, for iron oxide, cadmium sorption decreased with increasing DOPA concentration. The presence of the model organic materials DOPA and NAFA did not affect the sorption of neptunium on tuff material or on the iron and aluminum oxides. Spectroscopic results indicate that cadmium complexes strongly with DOPA. Therefore, the effect of the organic material, DOPA, on the cadmium sorption is readily observed. However, neptunium is possibly complexed weakly with organic material. Thus, DOPA and NAFA have little effect on neptunium sorption on all sorbents selected for study

  17. Ionic π-Conjugated Polymer Networks by Catalyst-Free Polymerization, Photoluminescence and Gas Sorption Behavior

    Czech Academy of Sciences Publication Activity Database

    Faukner, T.; Zukal, Arnošt; Brus, Jiří; Zedník, J.; Sedláček, J.

    2016-01-01

    Roč. 217, č. 17 (2016), s. 1886-1898 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA15-09637S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : conjugated polyacetylene * ethanol vapors * gas sorption Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.500, year: 2016

  18. Technetium sorption by stibnite from natural water

    International Nuclear Information System (INIS)

    Peretroukhine, V.; Sergeant, C.; Deves, G.; Poulain, S.; Vesvres, M.H.; Thomas, B.; Simonoff, M.

    2006-01-01

    The sorption of technetium by powdered and polished mineral stibnite Sb 2 S 3 has been investigated in simulated and natural underground waters from the Meuse/Haute-Marne region (France). The sorption by powdered stibnite has been found to be complete under both aerobic and anaerobic conditions in batch experiments. The sorption rate is higher in the absence of oxygen than under aerobic condition. Increasing the temperature from 30 C to 60 C results in a rise of the sorption rate by 9.1 and 27 times under anaerobic and aerobic conditions, respectively. The observed differences in sorption kinetics in the presence and in absence of oxygen are explained by the interaction of oxygen with sulfide ion in aerobic conditions and by the reduction of technetium(VII) by iron(II) and by other impurities present in natural water and in the mineral, and by the subsequent sorption of Tc(IV) on stibnite under anaerobic conditions. The sorption on a polished mineral surface resulted in the formation of a technetium film, probably Tc 2 S 7 , with a thickness of 1-3 μg Tc/cm 2 pH 3-6 and 4-12 μg Tc/cm 2 at 9-12. The simultaneous formation of stibnite colloids with adsorbed technetium occurs at pH 9-12. The study of the technetium film on the mineral by proton induced X-ray emission analysis showed it to be at least one order of magnitude thinner on the SiO 2 impurities than on the main Sb 2 S 3 component and the iron impurities. (orig.)

  19. Sorption of radionuclides by tertiary clays

    International Nuclear Information System (INIS)

    Wagner, J.F.; Czurda, K.A.

    1990-01-01

    The sorption capacity of different clay types for some metals (Co, Cs, Sr and Zn), occurring as common radionuclides in radioactive waste deposits, had been analysed by a static (batch technique) and a dynamic method (percolation tests, in which the driving force is a hydraulic gradient). Sorption capacity generally increased with an increasing pH of solution. A decrease of sorption capacity had been observed in the order Zn > Cs ≥ Co > Sr for the batch and Cs > Zn > Sr > Co for the percolation tests. Clay marls showed a distinctly higher sorption respectively retention capacity as pure clays. Sorption capacity depends on solution parameters like type and concentration of radionuclide, pH, salt concentration, etc., and on rock parameters like mineral content (e.g. swelling clay minerals and carbonates), organic material, rock pH, micro fabric, etc. A third parameter of great influence is the contact time between clay and solution. The adsorption isotherms reflect two different adsorption mechanisms: a very rapid adsorption (a few minutes) on the external surfaces of clay minerals and a slow adsorption process (weeks and longer), due to the diffusion of metal ions into the interlayer space of clay minerals. 12 refs., 9 figs., 1 tab

  20. Sorption of fission nuclides on model milk components. I. Sorption of radiostrontium on hydroxyapatite in aqueous solutions

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.; Kristin, J.

    1999-01-01

    Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 is a mineral widely spread in nature as a main constituent of phosphate rocks, and also as the major inorganic component of bones and teeth. It was found that sorption process occurs by an ion exchange reaction mechanism between strontium ions in solution and calcium ions in apatite. Ca 2+ → Sr 2+ substitution in hydroxyapatite is important since it explains the mechanism of incorporation of beta-active Sr-90 of atomic debris into the human skeletal system. The strontium uptake at 100 grad C is done by adsorption and diffusion while at 25 grad C it is done by the process of adsorption only. The hydroxyapatite was prepared from aqueous solutions and characterized by standard analytical methods. Some samples of hydroxyapatite were modified by heating after its precipitation from aqueous solution. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. Also, commercial hydroxy-apatites were used. Sorption of strontium ions on synthetic hydroxyapatite was examined using batch method and sorption depends on the method of preparation of hydroxyapatite. In generally, sorption of strontium decreases with the increase in the particle size of hydroxyapatite and decreases with the increase in the pH ( hydroxyapatite surface is amphoteric and acts as a buffer in a wide pH range). The sorption of strontium increases with the increase in [Sr 2+ ] or [Ca 2+ ] in solution to ∼ 10 -5 mol · dm -3 for the hydroxyapatite prepared by heating. The experimental data for sorption of strontium has been fitted with Langmuir-adsorption isotherm. (authors)

  1. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    Science.gov (United States)

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  2. 3.3. Sorption activity of cross-linked polymers of ethynyl-piperidol

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption activity of cross-linked polymers of ethynyl-piperidol was studied. The bilirubin sorption was studied as well. The kinetic of bilirubin sorption and human serum albumin at their joint presence in hydrogel solutions was defined. Bilirubin sorption and change of albumin composition was considered. The sorption of middle molecular peptides was considered as well. The sorption of endogenous toxin by means of ethynyl-piperidol polymers was done.

  3. Sorption of graphites at high temperatures. Progress report, February 1, 1976--January 31, 1977

    International Nuclear Information System (INIS)

    Pyecha, T.D.; Zumwalt, L.R.

    1977-01-01

    Preliminary to mixed isotherm studies, one additional cesium isotherm was obtained with a finned-rod H-451 graphite sample at 1100 0 C. The results indicated that not only are long times required to reach saturation, but also there is a hysteresis effect at low vapor pressures and concentrations and that under these conditions sorption of cesium in graphite is not readily reversible. Several cesium isotherms (at 1000 0 C) were obtained of H-451 graphite which had been pre-impregnated with selected concentrations of Sr-85-tagged strontium. The runs were of long duration to attain equilibrium. The data obtained showed a substantial effect of the presence (concentration) of strontium on cesium sorption. End-of-run cesium and strontium concentration profiles were obtained. As yet the data on the mixed-sorption behavior, relative to possible models, has not been analyzed in depth. As a preliminary to the mixed-sorption studies, strontium impregnation in the absence of cesium was studied and a few experiments on the effect of concentration on strontium diffusion were carried out with interesting results. Finally a few experiments on sample characterization and on the microdistribution of cesium and strontium were conducted. It was found difficult to obtain distributions at the concentration levels characteristic of our experiments

  4. Radionuclide sorption on granitic drill core material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Locklund, B.

    1987-11-01

    Distribution ratios were determined for Sr-85, Cs-134 and Eu-152 on crushed granite and fissure coating/filling material from Stripa mines. Measurements were also carried out on intact fissure surfaces. The experimental data for Sr-85, Cs-134 on crushed material can be accomodated by a sorption model based on the assumption that the crushed material consists of porous spheres with outer and inner surfaces available for sorption. In the case of Eu-152 only sorption on the outer surfaces of the crushed material was observed. The absence of sorption on inner surfaces is most probably due to high depletion of the more strongly sorbed Eu-152 in the water phase and very low diffusivity of Eu-152 in the sorbed state. (orig./HP)

  5. Recent progress in sorption mechanisms and models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.

    2005-01-01

    Full text of publication follows: Sorption-desorption phenomena play an important role in the migration of radioactive species in surface and underground waters. In order to predict the transport of these species, we need a good knowledge of sorption processes and data, together with reliable models able to be included in transport calculation. Traditional approaches based on experimentally determined distribution coefficients (Kd) and sorption isotherms have a limited predictive capability, since they are very sensitive to the numerous parameters characterizing the solution and the solid. Models based on thermodynamic equilibria were developed to account for the influence these parameters: the ion exchange model and the surface complexation models (2-pK mono-site, 1-pK multi-site, with several different electrostatic models: CCM, DLM, BSM, TLM,...). Although these models are very useful, studies performed in recent years showed that they have important theoretical and experimental limitations, which result in the fact that we must be very careful when we use them for extrapolating sorption data to long term and to large natural systems. Among all problems which can be found are: the possibility to fit a set of experimental data with different models, sometimes bad adequacy with the real sorption processes, some theoretical limitations such as a rigorous definition of reference and standard states in surface equilibria, slow kinetics which prevent from equilibrium achievement, irreversibility, solubility and evolution of solid phases... Through the increase of the number of sensitive spectroscopic methods, we are now able to know more about sorption processes at the atomic scale. Models such as the 1-pK CD-MUSIC model can account for the influence of orientation of the faces of the solid. More and more examples of the influence of this orientation on the sorption properties are known. Calculations performed by 'ab initio' modeling is also useful to predict the

  6. Modelling of a diffusion-sorption experiment on sandstone

    International Nuclear Information System (INIS)

    Smith, P.A.

    1989-11-01

    The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs

  7. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).

    Science.gov (United States)

    Jiménez-Cedillo, M J; Olguín, M T; Fall, C; Colin-Cruz, A

    2013-03-15

    The sorption of As(III) and As(V) from aqueous solutions onto iron-modified Petroselinum crispum (PCFe) and iron-modified carbonaceous material from the pyrolysis of P. crispum (PCTTFe) was investigated. The modified sorbents were characterized with scanning electron microscopy. The sorbent elemental composition was determined with energy-dispersive X-ray spectroscopy (EDS). The principal functional groups from the sorbents were determined with FT-IR. The specific surfaces and points of zero charge (pzc) of the materials were also determined. As(III) and As(V) sorption onto the modified sorbents were performed in a batch system. After the sorption process, the As content in the liquid and solid phases was determined with atomic absorption and neutron activation analyses, respectively. After the arsenic sorption processes, the desorption of Fe from PCFe and PCTTFe was verified with atomic absorption spectrometry. The morphology of PC changed after iron modification. The specific area and pzc differed significantly between the iron-modified non-pyrolyzed and pyrolyzed P. crispum. The kinetics of the arsenite and arsenate sorption processes were described with a pseudo-second-order model. The Langmuir-Freundlich model provided the isotherms with the best fit. Less than 0.02% of the Fe was desorbed from the PCFe and PCTTFe after the As(III) and As(V) sorption processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Sorption of samarium in iron (II) and (III) phosphates in aqueous systems

    International Nuclear Information System (INIS)

    Diaz F, J.C.

    2006-01-01

    The radioactive residues that are stored in the radioactive confinements its need to stay isolated of the environment while the radioactivity levels be noxious. An important mechanism by which the radioactive residues can to reach the environment, it is the migration of these through the underground water. That it makes necessary the investigation of reactive materials that interacting with those radionuclides and that its are able to remove them from the watery resources. The synthesis and characterization of materials that can be useful in Environmental Chemistry are very important because its characteristics are exposed and its behavior in chemical phenomena as the sorption watery medium is necessary to use it in the environmental protection. In this work it was carried out the sorption study of the samarium III ion in the iron (II) and (III) phosphate; obtaining the sorption isotherms in function of pH, of the phosphate mass and of the concentration of the samarium ion using UV-visible spectroscopy to determine the removal percentage. The developed experiments show that as much the ferrous phosphate as the ferric phosphate present a great affinity by the samarium III, for what it use like reactive material in contention walls can be very viable because it sorption capacity has overcome 90% to pH values similar to those of the underground and also mentioning that the form to obtain these materials is very economic and simple. (Author)

  9. The effect of TTNT nanotubes on hydrogen sorption using MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Mariana Coutinho; Jardim, Paula Mendes; Conceicao, Monique Osorio Talarico da; Santos, Dilson Silva dos, E-mail: monique@metalmat.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEMM/COPPEP/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2013-11-01

    Nanotubes are promising materials to be used with magnesium hydride, as catalysts, in order to enhance hydrogen sorption. A study was performed on the hydrogen absorption/desorption properties of MgH{sub 2} with the addition of TTNT (TiTanate nanotubes). The MgH{sub 2} -TTNT composite was prepared by ball milling and the influence of the TTNT amount (1.0 and 5.0 wt. (%)) on the hydrogen capacity was evaluated. The milling of pure MgH{sub 2} was performed for 24 hours and afterwards the MgH{sub 2} -TTNT composite was milled for 20 minutes. Transmission Electronic Microscopy (TEM) and Scanning Electron Microscopy (SEM) were used to evaluate the nanotube synthesis and show the particle morphology of the MgH{sub 2} -TTNT composite, respectively. The Differential Scanning Calorimetry (DSC) examination provided some evidence with the shifting of the peaks obtained when the amount of TTNT is increased. The hydrogen absorption/desorption kinetics tests showed that the TTNT nanotubes can enhance hydrogen sorption effectively and the total hydrogen capacity obtained was 6.5 wt. (%). (author)

  10. Radionuclide sorption from the safety evaluation perspective

    International Nuclear Information System (INIS)

    1992-01-01

    Research and development directed towards the assessment of the long-term performance of radioactive waste disposal systems has been recognised as a priority area with a strong need for international co-operation and co-ordination. The ultimate aims is to promote the quality and credibility of safety assessment techniques for radioactive waste disposal. Sorption in the geosphere is one of the key processes for retarding the transport of radionuclide from the underground disposal facility to the biosphere. In many cases, sorption in the near field and in the biosphere is also important. A workshop, organised to favor discussion around a small number of invited papers, was held in October 1991: - to evaluate critically the way sorption processes are incorporated in performance assessment models; - to identify open issues of high priority, and; - to propose future activities to resolve these issues. These proceedings reproduce the invited papers and the conclusions and recommendations adopted by the workshop. Eight papers are in the INIS SCOPE. The main subjects studied are: sorption database comparison, sorption database development and three case studies, experimental techniques, adsorption models

  11. Sorption and diffusion of Cs and I in concrete

    International Nuclear Information System (INIS)

    Andersson, K.; Torstenfelt, B.; Allard, B.

    1983-01-01

    Concrete has been suggested as a possible encapsulation material for long-term storage of low and medium level radioactive waste. At an underground storage of concrete encapsulated waste, a slow release of radioactive elements into the groundwater by diffusion through the concrete must be considered in the safety analysis. The diffusion may be delayed by sorption reactions on the solid. A wide range of long-lived radionuclides may be present in the low and medium level radioactive waste. Here, the sorption and diffusion of iodide and cesium on slag cement paste and concrete has been studied. The influence of four different water phases (pore water, groundwater, Baltic Sea water and sea water) as well as the influence of some added species (carbonate, sulphate and magnesium) has been investigated. A significant sorption of iodide on cement paste in contact with pore water was observed, indicating that the diffusion may be expected to be retarded in this medium. For cesium the highest sorption was found for concrete and groundwater. This means that the sorption increases as the concrete is weathered. Low or insignificant sorption was found for the cement paste, indicating that the ballast is responsible for the Cs-sorption. Carbonatization enhances the Cs-sorption by about a factor of 3. The diffusivity of Cs in concrete and cement paste was determined to between 2x10 - 14 and 8x10 - 14 m 2 /s in pore water (where an insignificant sorption was observed). The choice of ballast as well as addition of suitable getters with high sorption of the long-lived radionuclides might decrease the mass transfer rate through the cement. (Authors)

  12. Sorption of a nonionic surfactant Tween 80 by minerals and soils

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Soyoung, E-mail: soyoung@pusan.ac.kr; Jeong, Hoon Young, E-mail: hjeong@pusan.ac.kr

    2015-03-02

    Highlights: • Tween 80 sorption varies significantly among soil minerals. • Sorption mechanisms and atomic compositions explain to mineral-specific sorption. • Clay minerals and SOM in soils are the key contributors to Tween 80 sorption. • Hysteresis suggests the potential difficulty in removing residual surfactants. - Abstract: Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina–water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclase < vermiculite < kaolinite. This results from the relative reactivity among surface sites: ≡NaOH, ≡CaOH << ≡SiOH < ≡AlOH. Experiments using dry- and wet-sieved soils reveal that fine-grained clay minerals, difficult to separate by dry-sieving, contribute significantly to Tween 80 sorption. The greater sorption by untreated soils than H{sub 2}O{sub 2}-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization.

  13. Effect of the strong metal-support interaction on hydrogen sorption kinetics of Pd-capped switchable mirrors

    NARCIS (Netherlands)

    Borgschulte, A.; Westerwaal, R.J.; Rector, J.H.; Dam, B.; Griessen, R.P.; Schoenes, J.

    2004-01-01

    The morphology and electronic structure of Pd clusters grown on oxidized yttrium surfaces are investigated by scanning tunneling microscopy and ultraviolet photoelectron spectroscopy. The hydrogen sorption mediated by the Pd clusters is determined from the optically monitored switching kinetics of

  14. Study of sorption processes of copper on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Ometakova, J.; Rajec, P.; Caplovicova, M.

    2012-01-01

    The sorption of copper on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite sample prepared by a wet precipitation process was of high crystallinity with Ca/P ratio of 1.688. The sorption of copper on hydroxyapatite was pH independent ranging from 4 to 6 as a result of buffering properties of hydroxyapatite. The adsorption of copper was rapid and the percentage of Cu sorption was >98% during the first 15-30 min of the contact time. The experimental data for sorption of copper have been interpreted in the term of Langmuir isotherm. The sorption of Cu 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Zn 2+ , Fe 2+ and Pb 2+ towards Cu 2+ sorption was stronger than that of Co 2+ , Ni 2+ and Ca 2+ ions. The ability of the bivalent cations to depress the sorption of copper on hydroxyapatite was in the following order Pb 2+ > Fe 2+ > Zn 2+ > Co 2+ ∼ Ni 2+ . (author)

  15. Fluoride ions sorption of the water using natural and modified hematite with aluminium hydroxide

    International Nuclear Information System (INIS)

    Teutli S, E. A.

    2011-01-01

    Fluorine is a mineral known for its dental benefits, but fluoride ions can cause fluoro sis in excessive quantities. There are many epidemiological studies on possible adverse effects resulting from prolonged ingestion of fluoride through drinking water. These studies demonstrate that fluoride mainly affects the bone tissue (bones and teeth), may produce an adverse effect on tooth enamel and can cause mild dental fluoro sis at concentrations from 0.9 to 1.2 mg/L in drinking water. In several states of Mexico, water contaminated with fluoride ions can be found, such as Aguascalientes, Chihuahua, Coahuila, Durango, Guanajuato, Sonora, Zacatecas, San Luis Potosi and Jalisco, where the fluoride ions levels are higher than 1.5 mg/L, established by the Mexican Official Standard (NOM-127-Ssa-2000) which sets the permissible limits of water for human use and consumption. Currently, several technologies have been proposed to remove fluoride ions from water such as precipitation methods which are based on the addition of chemicals to water and sorption methods to removed fluoride ions by sorption or ion exchange reactions by some suitable substrate capable of regenerate and reuse. In this work, the sorption of fluoride ions using unmodified and modified hematite with aluminum hydroxide to remove fluoride ions from water by bath experiments was studied. The hematite was modified by treating it with aluminum hydroxide, NaOH and Al 2 (SO 4 ) 3 solutions. The characterization of hematite before and after modification with aluminum hydroxide was studied by X-ray diffraction, scanning electron microscopy, EDS and Bet. The effect of ph, contact time, concentration of fluoride ions, and the dose of sorbent on the sorption of fluoride ions by the modified hematite were studied. Equilibrium was reached within 48 hours of contact time and the maximum sorption of fluoride ions were in the range pH eq between 2.3 and 6.2. Sorption capacities of fluoride ions as a function of dose of

  16. Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria

    International Nuclear Information System (INIS)

    Tao, Yuqiang; Li, Wei; Xue, Bin; Zhong, Jicheng; Yao, Shuchun; Wu, Qinglong

    2013-01-01

    Highlights: • Low level of Cu 2+ inhibited but high level of Cu 2+ facilitated the sorption of Phe. • Cation–π interaction between Cu 2+ and PAH facilitated the sorption of Phe. • Phenanthrene sorption rebounding did not occur in the presence of high level Cd 2+ . • Both Cd 2+ and PO 4 3− inhibited the sorption of Phe, but had various mechanisms. -- Abstract: Due to the large surface area and high organic carbon content of cyanobacteria, organic contaminants can be readily sorbed on cyanobacteria during algal blooms, and then be transferred to the food web. This process is likely to be affected by the coexisting metals and nutrients, however, the possible impacts remain unclear. Effects of Cu 2+ , Cd 2+ , and phosphate on the sorption of phenanthrene on cyanobacterial biomass collected from an algal bloom were therefore studied. Continuous decrease in phenanthrene sorption was observed in the presence of low concentrations of Cu 2+ , and Cd 2+ ( −1 ), because Cu 2+ and Cd 2+ were coadsorbed with phenanthrene on the surface of cyanobacteria as suggested by scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) analyses. Phenanthrene sorption began to increase with the further increase in Cu 2+ concentration, but remained lower than that in the absence of Cu 2+ . This increase in sorption was ascribed to the cation–π interaction between Cu 2+ and phenanthrene, as suggested by the enhanced ultraviolet absorbance at 251 nm. In contrast, sorption rebounding of phenanthrene did not occur in the presence of higher concentrations of Cd 2+ . The different effects of Cu 2+ and Cd 2+ on phenanthrene sorption were attributed to that Cd 2+ required much more energy than Cu 2+ to form cation–π complexes with phenanthrene in the solutions. Phenanthrene sorption decreased continuously with the increase in phosphate concentration. Phosphate blocked the binding sites, modified the cell morphology, and increased the

  17. Sorption of Cu(II) Ions on Chitosan-Zeolite X Composites: Impact of Gelling and Drying Conditions.

    Science.gov (United States)

    Djelad, Amal; Morsli, Amine; Robitzer, Mike; Bengueddach, Abdelkader; di Renzo, Francesco; Quignard, Françoise

    2016-01-19

    Chitosan-zeolite Na-X composite beads with open porosity and different zeolite contents were prepared by an encapsulation method. Preparation conditions had to be optimised in order to stabilize the zeolite network during the polysaccharide gelling process. Composites and pure reference components were characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); N₂ adsorption-desorption; and thermogravimetric analysis (TG). Cu(II) sorption was investigated at pH 6. The choice of drying method used for the storage of the adsorbent severely affects the textural properties of the composite and the copper sorption effectiveness. The copper sorption capacity of chitosan hydrogel is about 190 mg·g(-1). More than 70% of this capacity is retained when the polysaccharide is stored as an aerogel after supercrititcal CO₂ drying, but nearly 90% of the capacity is lost after evaporative drying to a xerogel. Textural data and Cu(II) sorption data indicate that the properties of the zeolite-polysaccharide composites are not just the sum of the properties of the individual components. Whereas a chitosan coating impairs the accessibility of the microporosity of the zeolite; the presence of the zeolite improves the stability of the dispersion of chitosan upon supercritical drying and increases the affinity of the composites for Cu(II) cations. Chitosan-zeolite aerogels present Cu(II) sorption properties.

  18. Study on sorption capacity of synthetic zeolite for simulated nuclide Cs+

    International Nuclear Information System (INIS)

    Wang Jinming; Yi Facheng

    2006-01-01

    For the sake of understanding the functionary order of simulated nuclide Cs + and Synthetic Zeolite (ZF), the sorption equilibrium time and sorption capacity of simulated nuclide Cs + on ZF are studied with the intermittence method. The difference of temperature, pH value, Cs + concentration and medium on sorption capacity and sorption ratio are investigated. The results show that the sorption complexion of simulated nuclide Cs + on ZF in the same concentration solution are sorption equilibrium quantity in range of 155-190 mg/g in different temperatures and that in range of 165-190 mg/g in different pH values and that in range of 120-210 mg/g in different media; and changing order of equilibrium adsorption ratio is the same to that of sorption equilibrium quantity, but their changing range are wider than that of sorption equilibrium quantity; equilibrium adsorption quantity in range of 180-380 mg/g in different concentration solutions, and changing order of equilibrium adsorption ratio is opposite to that of sorption equilibrium quantity, and more-over, their changing range are wider than that of the sorption equilibrium quantity. Sorption equilibrium time of simulated nuclide Cs + on ZF is about ten to fifteen days. So the changing range of sorption capacity of simulated nuclide Cs + on ZF with conditions effects is smaller and the sorption equilibrium time is also less and ZF preferably absorbs Cs in radiation wastes and thus consumedly reduces the effect of radwaste on the environment. (authors)

  19. Effects of sorption behaviour on contaminant migration

    International Nuclear Information System (INIS)

    Melnyk, T.W.

    1985-11-01

    The effects of sorption behaviour on contaminant migration in groundwater systems are varied. Retardation of migration and dispersive effects can vary widely and contaminant concentration profiles can take a number of different shapes. This report examines the nature of some of these effects, especially those due to sorption behaviours that are dependent on the concentration of the contaminant in the groundwater. The effects are calculated using, in most cases, analytical solutions to the chemical equations imbedded in a simple reaction-cell or box-model transport algorithm. The hydrogeological parameters are held constant, and radioactive decay and hydrodynamic dispersion are excluded. A general discussion of the role of sorption equations in transport modelling is followed by presentation of migration results for a number of models of sorption behaviour varying from linear isotherms, Langmuir, Freundlich and ion-exchange isotherms, to precipitation reactions and multiple-site sorption reactions. The results are compared and general conclusions are drawn about the various migration behaviours calculated. The conclusions are that equilibrium sorption of trace contaminants can be modelled with linear isotherms (constant distribution coefficients or constant retardation factors) but the evaluation and extrapolation of the distribution coefficient are not easy. Nonlinear isotherms lead to unsymmetrical migration fronts. A comparison of Freundlich and linear isotherms is made. Sorption/desorption kinetic factors can be significant on the time scale of laboratory experiments and can cause large dispersive effects. Slow but important reactions can be missed altogether. Precipitation or mineralization behaviour cannot be modelled with constant distribution coefficients. Also, mineralization reactions can be kinetically slow even on the geological time scale. 89 refs

  20. Assessing the Portion of the Crack Length Contributing to Water Sorption in Concrete Using X-ray Absorption

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Couch, Jon; Geiker, Mette Rica

    2009-01-01

    While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify the in......-ray absorption measurements over time. The effect cracks have on sorption is discussed and compared to the behavior of pristine concrete. In addition, the maximum water sorption depth after one hour of exposure is compared to crack lengths determined by the cracked hinge model.......While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify...... the influence of cracks with varying width and length on water sorption in concrete. Concrete wedge splitting specimens, conditioned to 50% relative humidity, were loaded to varying crack openings. Water sorption was monitored for ponded specimens with varying crack widths and lengths by taking multiple x...

  1. Yucca Mountain Project far-field sorption studies and data needs

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-09-01

    Batch sorption experiments in which radionuclides dissolved in groundwaters from Yucca Mountain were sorbed onto samples of crushed tuff have resulted in a substantial database of sorption coefficients for radionuclides of interest to the repository program. Although this database has been useful in preliminary evaluations of Yucca Mountain as a potential site for a nuclear waste repository, the database has limitations that must be addressed before it can be used for performance assessment calculations in support of a license application for a waste repository. The purpose of this paper is to: review the applicability of simple (constant) sorption coefficients in transport calculations; review and evaluate alternative methods for the derivation of sorption coefficients; summarize and evaluate the present YMP sorption database to identify areas of data sufficiency and significant data gaps; summarize our current understanding of pertinent sorption mechanisms and associated kinetic parameters; evaluate the significance to the YMP of potential problems in the experimental determination and field application of sorption coefficients as enumerated by the NRC (Nuclear Regulatory Commission, 1987) in its technical position paper on sorption; formulate and evaluate strategies for the resolution of NRC concerns regarding experimental problems; and formulate a position on the sorption coefficient database and the level of understanding of sorption mechanisms likely to be required in the licensing application. 75 refs., 1 fig., 2 tabs

  2. Sorption kinetics of Cs and Sr in sediments of a Savannah River Site reservoir

    International Nuclear Information System (INIS)

    Stephens, J.A.

    1997-07-01

    Laboratory measurements of the sorption and desorption of 134 Cs and 85 Sr to sediments were conducted. These sediments were sampled from the profundal zone of Par Pond at the Savannah River Site, Aiken, South Carolina. The isotopes 134 Cs and 85 Sr were used to trace the sorption properties of the main contaminants found in the reservoir which are 137 Cs and 90 Sr respectively. The sorption behavior of these two elements was studied using spiked sediment/water slurries of a known mass to volume ratio. The results reveal that Sr undergoes significant reversible sorption while a fraction of Cs irreversibly sorbs to the sediment. The calculated distribution coefficient Kd at equilibrium was (3 ± 0.6) x 10 3 for 134 Cs after 60 d and (1 ± 0.2) x 10 3 for 85 Sr after 7 d at pH ∼ 6 and slurry ratio of 1:1000 g/ml. The K d for 134 Cs ranged from 2 x 10 2 to 3 x 10 4 depending on pH and conductivity. The 85 Sr reached equilibrium in a few days, while 134 Cs reached an apparent equilibrium in 1--2 months. The K d for 134 Cs was a function of the slurry ratio, pH, conductivity, and contact time. These factors were interrelated since the sediments released ions to the slurry mixture which decreased the pH and increased the conductivity. A sorption isotherm measured for 134 Cs was linear at water concentrations from 60 mBq/ml to 20 Bq/ml. A kinetic model was proposed to describe the basic sorption of 134 Cs to Par Pond sediments under homogeneous laboratory conditions

  3. Sorption of cesium on montmorillonite and effect of salt concentration

    International Nuclear Information System (INIS)

    Atun, G.; Bilgin, B.; Mardinli, A.

    1996-01-01

    The sorption behavior of cesium on montmorillonite type[e clay was studied by using radioactivity measurements. Concentrations of Cs + ions ranged from 10 -6 to 10 -2 M. Cesium retention reduced with increasing salt concentration which was varied between 10 -4 and 10 -1 M. Selectivity coefficients K CsNa for the exchange between Cs and Na were calculated for different equivalent fractions of Cs on the solid phase. Using the K CsNa values, free energy change was found to be 7.8 kJ/mol. The data could be fitted to a Freundlich isotherm, and empirical Freundlich parameters enabled the generation of a site distribution function. By fitting the data to the Dubinin-Radushkevich (D-R) isotherm, a mean energy of sorption of 8.6kJ/mole was calculated which corresponds to the energy of ion exchange reactions. The values of energy changes calculated by using two different methods were in good agreement. (author)

  4. Sorption of radionuclides on inorganic sorbents

    International Nuclear Information System (INIS)

    Rajec, P.; Matel, L.

    1995-01-01

    The sorption of cesium, strontium, plutonium and americium from water solution on natural zeolite, clay minerals, synthetic zeolites and ferrocyanides in silica gel matrix was studied. The same experiments but with synthetic zeolites irradiated by the dose 100 kGy proved no change in sorption properties. 1 tab., 4 refs

  5. The NEA sorption data base (SDB)

    International Nuclear Information System (INIS)

    Ruegger, B.; Ticknor, K.

    1992-01-01

    The current NEA Sorption Data Base is developed to replace the former International Sorption Information Retrieval System (ISIRS) initiated at Pacific Northwest Laboratory and contains about 11,000 distribution coefficients with corresponding experimental condition parameters describing sorption of key nuclides for a large variety of solid and liquid phases. The SDB is designed to run on a micro-computer using the commercially available database software dBASE III Plus. For each recorded sorption experiment, the SDB provides a bibliographical reference, the most complete characterization of the solid and liquid phases available, a description of the experimental conditions and the distribution coefficient or retardation factor for each element studied. When available, parameters such as temperature, initial radionuclide concentration, pH, Eh, contact time, solid to solution ratio, sample origin, oxidation state and type of solution are included. The SDB provides information for a wide variety of rocks or geological materials, buffer backfill candidates, concretes/cements, elements (Am, Cs, Co, I, Np, Pu, Ra, Sr, Se, Tc, U and, to a lesser extent, Ag, Ba, C, Ce, Eu, Fe, Mn, Mo, Na, Nb, Ni, Pd, Pm, Ru, Sb, Sn, Y, Zn, and Zr), or radioisotopes. A compilation of sorption data like SDB provide a readily available source of data for radioactive waste repository performance assessments when site specific data are not available or essential, for example, during a site selection phase. 2 appendices

  6. Sorption of uranium and cesium by Hanford basalts and associated secondary smectite

    International Nuclear Information System (INIS)

    Ames, L.L.; McGarrah, J.E.; Walker, B.A.; Salter, P.F.

    1982-01-01

    Three characterized basalts and an associated secondary smectite were used in comparative uranium and cesium sorption studies. Experiments utilizing two synthetic characteristic basalt groundwaters at 23 and 60 0 C allowed comparison of increased temperature and carbonate concentration effects on Cs and U sorption. The sorption data were fitted to the Dubinin-Radushkevich (D-R) isotherm, and loading maxima and energetics derived. An increase in temperature caused a decrease in Cs sorption maxima on all solids from all groundwaters studied and an increase in U sorption maxima, especially from the higher-carbonate-content groundwater. Sorption energies were characteristic of ion exchange for both Cs and U sorption processes. Basalt U sorption maxima were relatively insignificant, but smectite U sorption maxima surpassed Cs sorption maxima in both groundwaters at 60 0 C. The uranyl carbonate complexes thus may be relatively temperature-sensitive. Upon removal of excess Fe-oxides from the secondary smectite, U sorption decreased and the D-R isotherm reverted to a normal Freundlich sorption isotherm. Removal of excess Fe-oxides from the basalts and secondary smectite would probably result in Freundlich sorption isotherms for both Cs and U. (Auth.)

  7. The sorption behaviour of 99Tc on activated carbon

    International Nuclear Information System (INIS)

    Xia Deying; Zeng Jishu

    2004-01-01

    The sorption behaviour of 99 Tc on apricot-pit activated carbon with batch experiment is studied. The influence of such factors as sorbent particle size, temperature, pH value on sorption ratio, and the Freundlich sorption isotherms are reported in this paper. (author)

  8. Sorption of redox-sensitive elements: critical analysis

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH - , CO -- 3 ) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states

  9. Sorption of redox-sensitive elements: critical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strickert, R.G.

    1980-12-01

    The redox-sensitive elements (Tc, U, Np, Pu) discussed in this report are of interest to nuclear waste management due to their long-lived isotopes which have a potential radiotoxic effect on man. In their lower oxidation states these elements have been shown to be highly adsorbed by geologic materials occurring under reducing conditions. Experimental research conducted in recent years, especially through the Waste Isolation Safety Assessment Program (WISAP) and Waste/Rock Interaction Technology (WRIT) program, has provided extensive information on the mechanisms of retardation. In general, ion-exchange probably plays a minor role in the sorption behavior of cations of the above three actinide elements. Formation of anionic complexes of the oxidized states with common ligands (OH/sup -/, CO/sup - -//sub 3/) is expected to reduce adsorption by ion exchange further. Pertechnetate also exhibits little ion-exchange sorption by geologic media. In the reduced (IV) state, all of the elements are highly charged and it appears that they form a very insoluble compound (oxide, hydroxide, etc.) or undergo coprecipitation or are incorporated into minerals. The exact nature of the insoluble compounds and the effect of temperature, pH, pe, other chemical species, and other parameters are currently being investigated. Oxidation states other than Tc (IV,VII), U(IV,VI), Np(IV,V), and Pu(IV,V) are probably not important for the geologic repository environment expected, but should be considered especially when extreme conditions exist (radiation, temperature, etc.). Various experimental techniques such as oxidation-state analysis of tracer-level isotopes, redox potential measurement and control, pH measurement, and solid phase identification have been used to categorize the behavior of the various valence states.

  10. β-Zeolite modified by ethylenediamine for sorption of Th(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Wu, Hanyu; Yuan, Ni; Yin, Zhuoxin; Pan, Duoqiang; Wu, Wangsuo [Lanzhou Univ. (China). Radiochemistry Lab.; Ministry of Education, Lanzhou (China). Key Lab. of Special Function Materials and Structure Design

    2017-08-01

    β-Zeolite-EDA was modified with ethylenediamine (EDA) after synthesized. The synthesized material was characterized and used for removal of Th(IV) from aqueous solutions. The influences of pH, ionic strength, contact time, temperature and humic acid (HA) on Th(IV) sorption onto synthesized β-zeolite-EDA was studied by batch technique. The dynamic process showed that the sorption of Th(IV) onto β-zeolite-EDA matched the pseudo-second-order kinetics model. The sorption of Th(IV) on β-zeolite-EDA was significantly dependent on pH values, the sorption percentage increased markedly at pH 3.5-4.5, and then maintained a steady state as pH values increased. Through simulating the sorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich (D-R) models, it could be seen respectively that the sorption pattern of Th(IV) on β-zeolite-EDA was mainly controlled by surface complexation, and that the sorption processes was endothermic and spontaneous. The presence of HA increased Th(IV) sorption on β-zeolite-EDA.

  11. Experimental studies of Cs, Sr, Ni, and Eu sorption on Na-illite and the modelling of Cs sorption

    International Nuclear Information System (INIS)

    Poinssot, C.; Baeyens, B.; Bradbury, M.H.

    1999-08-01

    A natural illite (illite du Puy) was purified and converted to the homo-ionic Na-form. The conditioned Na-illite was characterised in terms of its mineralogy, chemical inventory and physico-chemical properties. The structural formula was determined from energy dispersive spectroscopic analyses (SEM/TEM-EDS) and bulk chemistry measurements. A cation exchange capacity of 127 meq kg -1 was determined by the 22 Na isotope dilution method at neutral pH. The Na-CEC was also measured as a function of pH. The stability of Na-illite as a function of pH in the range between 3 and 6 was investigated. At low pH values partial dissolution of the illite occurs releasing the structural elements Al, Si, Mg, and K into solution. The presence of Ca and Sr in solution was interpreted as being due to desorption from cation exchange sites. All of these elements are also present at neutral pH but at considerably lower levels. Such effects cannot be avoided and must be considered in the interpretation of the sorption measurements. The main focus of the experimental work presented here is on the sorption behaviour of Cs, Sr, Ni and Eu on conditioned Na-illite as a function of NaClO 4 background electrolyte concentration (0.1 and 0.01 M), nuclide concentration and pH in the range between 3 and 11. Sorption edge data (R d versus pH) and sorption isotherms (quantity of nuclide sorbed versus equilibrium nuclide concentration) are presented for these four elements. Prior to beginning these experiments, sorption kinetics were measured. The broad based pool of sorption measurements generated from this work will provide the source data sets for subsequent modelling. So far only the Cs sorption measurements have been modelled. A two site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two site types were termed 'frayed edge sites' (FES, high affinity/low capacity) and 'type II sites' (low affinity/high capacity). Selectivity

  12. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  13. Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents.

    Science.gov (United States)

    Paulauskiene, Tatjana

    2018-04-01

    This work aimed to evaluate the sorption capacity of natural sorbents (wool, moss, straw, peat) and their composites during the sorption of crude oil and of diesel overspread on the water surface. The work presents the research results of the maximum sorption capacity of the sorbents/their composites using crude oil/diesel; the sorption capacity of the sorbents/their composites when crude oil/diesel is spilled on the water surface; and the research results of the unrealized part of the crude oil/diesel in the sorbents. The results of the analysis showed that all the sorbents and their composites have their selectivity to crude oil less than 50%. Also the results showed that the distribution of diesel and water in the sorbents and their composites is very different compared with the distribution of crude oil during the sorption analyses. In total, the diesel in the liquid mass absorbed by the straw and the peat amounted to 17 and 20%, respectively. This shows that these sorbents are much more selective for water but not for diesel. A larger part of the diesel was in the liquid amount absorbed by the composites-up to 33%. Accordingly, the use of these composites in watery environments is much more effective than the use of individual sorbents. The composition of sorbents in the composite enhanced both the hydrophobic and the oleophilic properties; as a result, a more effective removal of the diesel and oil from the water surface was achieved.

  14. Compilation of radionuclide sorption coefficients for performance assessment

    International Nuclear Information System (INIS)

    Carbol, P.; Engkvist, I.

    1997-09-01

    The report presents four possible site-specific conditions in Sweden. The different sorption mechanisms applicable to the studied elements together with the K d concept are shortly summarised. The influence of organic substances present in the groundwater on the element's sorption and mobility is also discussed. Criteria for selection of K d values are presented together with sensitivity of the values to pH, E h and salinity. Sorption coefficients are recommended for elements in the repository with half-life above 5.3 years. The elements reviewed are: Cs, Sr, Ra, Ln, Ac, Th, Pa, U, Np, Pu, Am, Cm, Co, Ni, Cd, Zr, Nb, Tc, Pd, Ag, Sn, C, I, Cl, Se and Kr. For every element there is a recommendation of a realistic K d value with an uncertainty limit. The selection is based on experimental investigations or chemical analogues. In some cases few or no K d data were found, and it is recommended that sorption studies be performed on elements such as Cd, Pa, Cm, Zr, Nb, Pd, Ag and Sn. The recommended K d values for the different element's sorption on granitic rock, serve as a guidance of the sorption performance

  15. Sorption and Transport of Diphenhydramine in Natural Soils

    Science.gov (United States)

    Rutherford, C. J.; Vulava, V. M.

    2013-12-01

    Pharmaceutical and related chemicals have been detected in streams and ground water sources throughout the world, as a result of sewage overflows, runoff, or sewage treatment facilities unequipped to remove trace levels of pharmaceuticals. Diphenhydramine- an antihistamine that is used to treat allergy and common cold symptoms, induce sleep, suppress cough, and treat motion sickness- is prominent among them. Diphenhydramine has a complex, highly polar organic structure including two benzene rings and an amine functional group. It has a solubility of 3.06 g/L and a pKa of 8.98. Recent studies have shown that diphenhydramine in streams disrupts the ecology by affecting the algal and bacterial biofilms present on the streambed. In streams, photosynthesis has been found to decrease by up to 99% and plant respiration has been inhibited. Diphenhydramine has also altered the types and numbers of bacteria found in streams. Its presence in contaminated stream bodies can result in contact with soils and sediment in the stream floodplain. The objective of this study is to measure sorption and transport behavior of diphenhydramine in natural soils and determine reactivity of soil components. These studies were conducted in the laboratory using natural soil collected from the Francis Marion National Forrest. Soil samples from A and B horizons of several soil series were characterized for physical and chemical properties: organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 3.7-4.9. The B-horizon soils contain a higher amount of clay than the organic-rich A-horizon soils. Equilibrium sorption isotherms and reaction kinetic rates were measured using batch reactor experiments and chromatographic column experiments were conducted to measure transport behavior. Kinetic experiments showed that diphenhydramine sorbed more strongly to the clay-rich soils and reached equilibrium after seven days, compared to ten days in organic-rich soils. The

  16. Sorption of radionuclides on mesoporous Sn(IV) silicate: a new sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrian, H. [Jaber Ibn Hayan Research Labs., Nuclear Science and Technology Research Inst., AEOI, Tehran (Iran); Dept. of Applied Chemistry, Univ. of Tarbiat Moallem, Tehran (Iran); Yavari, R.; Ghannadi Maragheh, M. [Jaber Ibn Hayan Research Labs., Nuclear Science and Technology Research Inst., AEOI, Tehran (Iran); Husain, S.W. [Dept. of Applied Chemistry, Univ. of Tarbiat Moallem, Tehran (Iran)

    2008-07-01

    Four different samples of mesoporous Sn(IV) silicate with varying mole ratio of Si/Sn have been used to study the sorption behavior of 18 radionuclides on these materials. Ion-exchange capacity, SEM, distribution coefficient and chemical stability have been studied and discussed. Separation of Tl(I) from Th(IV), Cs(I) from Th(IV) and Cs(I) from Zr(IV) have been developed on columns of this sorbent. (orig.)

  17. Sorption of radionuclides on mesoporous Sn(IV) silicate: a new sorbent

    International Nuclear Information System (INIS)

    Sepehrian, H.; Yavari, R.; Ghannadi Maragheh, M.; Husain, S.W.

    2008-01-01

    Four different samples of mesoporous Sn(IV) silicate with varying mole ratio of Si/Sn have been used to study the sorption behavior of 18 radionuclides on these materials. Ion-exchange capacity, SEM, distribution coefficient and chemical stability have been studied and discussed. Separation of Tl(I) from Th(IV), Cs(I) from Th(IV) and Cs(I) from Zr(IV) have been developed on columns of this sorbent. (orig.)

  18. Factors affecting the sorption of cesium in a nutrient-poor boreal bog

    International Nuclear Information System (INIS)

    Lusa, M.; Bomberg, M.; Virtanen, S.; Lempinen, J.; Aromaa, H.; Knuutinen, J.; Lehto, J.

    2015-01-01

    135 Cs is among the most important radionuclides in the long-term safety assessments of spent nuclear fuel, due to its long half-life of 2.3 My and large inventory in spent nuclear fuel. Batch sorption experiments were conducted to evaluate the sorption behavior of radiocesium ( 134 Cs) in the surface moss, peat, gyttja, and clay layers of 7-m-deep profiles taken from a nutrient-poor boreal bog. The batch distribution coefficient (K d ) values of radiocesium increased as a function of sampling depth. The highest K d values, with a geometric mean of 3200 L/kg dry weight (DW), were observed in the bottom clay layer and the lowest in the 0.5–1.0 m peat layer (50 L/kg DW). The maximum sorption in all studied layers was observed at a pH between 7 and 9.5. The in situ K d values of 133 Cs in surface Sphagnum moss, peat and gyttja samples were one order of magnitude higher than the K d values obtained using the batch method. The highest in situ K d values (9040 L/kg DW) were recorded for the surface moss layer. The sterilization of fresh surface moss, peat, gyttja and clay samples decreased the sorption of radiocesium by 38%, although the difference was not statistically significant. However, bacteria belonging to the genera Pseudomonas, Paenibacillus, Rhodococcus and Burkholderia isolated from the bog were found to remove radiocesium from the solution under laboratory conditions. The highest biosorption was observed for Paenibacillus sp. V0-1-LW and Pseudomonas sp. PS-0-L isolates. When isolated bacteria were added to sterilized bog samples, the removal of radiocesium from the solution increased by an average of 50% compared to the removal recorded for pure sterilized peat. Our results demonstrate that the sorption of radiocesium in the bog environment is dependent on pH and the type of the bog layer and that common environmental bacteria prevailing in the bog can remove cesium from the solution phase. - Highlights: • pH and the type of the bog layer affect

  19. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  20. Computer simulation of molecular sorption in zeolites

    International Nuclear Information System (INIS)

    Calmiano, Mark Daniel

    2001-01-01

    The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computational studies where we show our work to be in good agreement. In Chapter 5 we present a systematic study of the sorption of oxygen and nitrogen in five lithium substituted zeolites using a transferable interatomic potential that we have developed from ab initio calculations. We show increased loading of nitrogen compared to oxygen in all five zeolites studied as expected and simulate adsorption isotherms, which we compare to experimental and simulated data in the literature. In Chapter 6 we present work on the sorption of ferrocene in the zeolite NaY. We show that a simulated, low energy sorption site for ferrocene is correctly located by comparing to X-ray powder diffraction results for this same system. The thesis concludes with some overall conclusions and discussion of opportunities for future work. (author)

  1. Migration and sorption phenomena in packaged foods.

    Science.gov (United States)

    Gnanasekharan, V; Floros, J D

    1997-10-01

    Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.

  2. Influence of the temperature in the uranium (Vi) sorption in zirconium diphosphate; Influencia de la temperatura en la sorcion de uranio (VI) en difosfato de circonio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, N.; Solis, D. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Ordonez R, E., E-mail: nidgg@yahoo.com.mx [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    In the present work was evaluated the uranium (Vi) sorption at 10, 20, 30, 40 and 60 C on the zirconium diphosphate (ZrP{sub 2}O{sub 7}). They were carried out kinetic and isotherms using the method by lots, these will allow to fix the sorption time (kinetic) and to explain the behavior of this sorption in different ph conditions and temperature (isotherm). The quantity of retained uranium in the surface was quantified by means of the fluorescence technique. (Author)

  3. Sorption behaviour of well-defined oxidation states

    International Nuclear Information System (INIS)

    Allard, B.; Olofsson, U.; Torstenfelt, B.; Kipatsi, H.

    1983-05-01

    The sorption of the actinides Am(III), Th(IV), Np(V), Pa(V), U(VI) and Pu has been studied as a function of pH (2-12) for two nuclide concentrations (10 -7 -10 -9 M) (only one for Pa and U) in the systems Al 2 0 3 - 0.01 M NaCl0 4 and Si0 2 - 0.01 M NaCl0 4 . Distribution coefficients have been determined by a batch technique after various contact times (6h - 6w) at constant temperature (25degreeC) in systems equilibrated with air. The observed sorption behaviour indicates a predominantly physical adsorption mechanism, where pH of the aqueous phase is the principal chemical parameter of influence. The sorption is highly related to the degree of hydrolysis, with a maximum in the pH-region where neutral species dominate and with a reduction of the sorption under conditions when anionic species (hydroxides or carbonates) would exist in solution. This is particularly the case for U(VI) at pH above 7-8 when anionic carbonate complexes would be formed. Plutonium is predominantly tetravalent under the present conditions, as indicated by the sorption behaviour. (authors)

  4. Response to the comments of Y. S. Ho to the paper 'Sorption of radionickel to goethite. Effect of water quality parameters and temperature'

    International Nuclear Information System (INIS)

    Baowei Hu; ShaoXing University, ShaoXing, Zhejiang; Wen Cheng; Hui Zhang; Guodong Sheng; Chinese Academy of Sciences, Hefei

    2011-01-01

    In our published paper entitled 'Sorption of radionickel to goethite: effect of water quality parameters and temperature' published in JRNC 285 (2010) 389-398 [1], the sorption of radionickel to goethite as affected by various environmental conditions such as pH, humic substances, ionic strength and temperature on radionickel sorption has been investigated by using batch technique. The sorption mechanism of radionickel on goethite was discussed according to the experimental data and the fitting results of sorption isotherms by Langmuir, Freundlich and D-R models. Kinetic sorption data was fitted by a pseudo-second-order rate equation. Ho et al. firstly reported the pseudo-second-order rate equation [2, 3], and then further developed this frame work in their following works [4, 5]. In our previous research, we had ever cited the original paper about the sorption isotherms such as Langmuir or Freundlich models. However, the reviewers gave the comments that the models had been widely used and it was not necessary for us to cite the original paper about the sorption isotherm. Similar condition can be also observed for carbon nanotubes that there are a lot of papers about carbon nanotubes not citing the original paper reported by Iijima [6]. In our published paper [1], we think that the pseudo-second-order rate equation has been widely applied and the equation is now a famous model to fit the sorption kinetic data. However, it is essential for us to cite all the relative references accurately so as to transmit scientific knowledge more effectively. We are so sorry to the fact that the original papers [2, 3] were not cited in our published paper [1], but it is not meant to show the disrespect to the author Ho [2]. In our future work, we wish to cite the papers published by Ho whose work are interesting and useful to simulate the sorption kinetic data of metal ions at solid-water interfaces. The physicochemical behavior of radionickel in environment is quite important to

  5. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    Science.gov (United States)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a

  6. A study of selenium and tin sorption on granite and geothite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, [TDS], natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was, low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in [DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (orig.)

  7. Experimental measurements and integrated modelling studies of actinide sorption onto cement

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Baston, G.M.N.

    2003-01-01

    An Integrated Cement Sorption Model (ICSM) for actinides onto Ordinary Portland Cement (OPC) is developed. The experimental measurements using the batch sorption technique for actinides onto cement and constituent minerals, which were considered in the modelling calculations, are also described. The actinide elements studied (thorium, uranium, neptunium, plutonium and americium) were strongly sorbed onto OPC. An initial comparison of the experimental data relating the sorption values of actinides onto cement-component phases with those onto OPC is carried out. The results suggest that the Calcium Silicate Hydrate (C-S-H) phases were found to be the most likely candidates to be the dominant-sorbing phases in order to describe the sorption of a actinides onto OPC. An approach to develop the integrated cement sorption model, based on a thermodynamic surface complexation model, is described with discussions on the possible mineralogy and phase distribution of OPC. Another approach than sorption, assuming that co-precipitation on the surface of the cement phase dominates 'sorption', is proposed and discussed. A scoring system is introduced to assess the applicability of the proposed ICSMs. It is suggested that the thermodynamic sorption model is recommended for the sorption of ionic species and the surface co-precipitation model is recommended for the sorption of neutral species though the sorption model is still recommended to be used to model OPC-based systems. (author)

  8. A study of selenium and tin sorption on granite and goethite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, (TDS), natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in (DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (author)

  9. Sorption Characteristics of 137Cs and 90Sr into Rembang and Sumedang Soils

    Directory of Open Access Journals (Sweden)

    Budi Setiawan

    2016-12-01

    Full Text Available In order to understand the sorption behavior of 137Cs and 90Sr into soil sample from Rembang and Subang, it is important to estimate the effect of contact time, ionic strength and concentration of metal ion in the solution. For this reason, the interaction of 137Cs and 90Sr with soil sample has been examined. The study performed at trace concentration (~10-8 M of CsCl and SrCl2, and batch method was used. NaCl has been selected as a representative of the ionic strength with 0.1; 0.5 and 1.0 M concentrations. Concentration of 10-8~10-4 M CsCl and SrCl2 were used for study the effect of Cs and Sr concentrations in solution. Apparent distribution coefficient was used to predict the sorption behavior. The sorption equilibrium of 137Cs and 90Sr into soil was attained after 5 days contacted with Kd value around 3300-4200 mL/g, where Kd was defined as the ratio of number of radionuclide activity absorbed in solid phase per-unit mass to the number of radionuclide activity remains is solution per-unit volume. Presence of NaCl as background salt in the solution affected Kd values due to competition among metal ions into soil samples. Increase of Cs or Sr concentration in solution made Kd value decreased drastically. This information is expected could provide an important input for the planning and design of radioactive waste disposal system in Java Island in the future.

  10. Development of JAEA sorption database (JAEA-SDB). Update of data evaluation functions and sorption/QA data

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael; Ganter, Charlotte

    2011-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop database compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in buffer materials (bentonite) and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on developing and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on multi-parameter dependence, operating method, PA-related applications of the web-based JAEA-SDB. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 4,250 K d data from 32 references are added, total K d values in the JAEA-SDB are about 28,540. The QA/classified K d data are about 39% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to have suitable access to the respective data

  11. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.

    Science.gov (United States)

    Baik, Min Hoon; Lee, Seung Yeop; Jeong, Jongtae

    2013-12-01

    The sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions were investigated as a function of pH, Se(IV) concentration, and Fe(II) concentration under an anoxic condition. The sorption of Se(IV) onto chlorite surfaces followed the Langmuir isotherm regardless of the presence of Fe(II) ions in the solution. The Se(IV) sorption was observed to be very low at all pH values when the solution was Fe(II)-free or the concentration of Fe(II) ions was as low as 0.5 mg/L. However, the Se(IV) sorption was enhanced at a pH > 6.5 when the Fe(II) concentration was higher than 5 mg/L because of the increased sorption of Fe(II) onto the chlorite surfaces. XANES (X-ray absorption near edge structure) spectra of the Se K-edge showed that most of the sorbed Se(IV) was reduced to Se(0) by Fe(II) sorbed onto the chlorite surfaces, especially at pH > 9. The combined results of field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) also showed that elemental selenium and goethite were formed and precipitated on the chlorite surfaces during the sorption of selenite. Consequently it can be concluded that Se(IV) can be reduced to Se(0) in the presence of Fe(II) ions by the surface catalytic oxidation of Fe(II) into Fe(III) and the formation of goethite at neutral and particularly alkaline conditions. Thus the mobility of selenite in groundwater is expected to be reduced by the presence of a relatively higher concentration of Fe(II) in subsurface environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Compilation of radionuclide sorption coefficients for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P.; Engkvist, I. [PI Chemical Consulting HB, Landvetter (Sweden)

    1997-09-01

    The report presents four possible site-specific conditions in Sweden. The different sorption mechanisms applicable to the studied elements together with the K{sub d} concept are shortly summarised. The influence of organic substances present in the groundwater on the element`s sorption and mobility is also discussed. Criteria for selection of K{sub d} values are presented together with sensitivity of the values to pH, E{sub h} and salinity. Sorption coefficients are recommended for elements in the repository with half-life above 5.3 years. The elements reviewed are: Cs, Sr, Ra, Ln, Ac, Th, Pa, U, Np, Pu, Am, Cm, Co, Ni, Cd, Zr, Nb, Tc, Pd, Ag, Sn, C, I, Cl, Se and Kr. For every element there is a recommendation of a realistic K{sub d} value with an uncertainty limit. The selection is based on experimental investigations or chemical analogues. In some cases few or no K{sub d} data were found, and it is recommended that sorption studies be performed on elements such as Cd, Pa, Cm, Zr, Nb, Pd, Ag and Sn. The recommended K{sub d} values for the different element`s sorption on granitic rock, serve as a guidance of the sorption performance 87 refs, 18 tabs

  13. Sorption isotherms, GAB parameters and isosteric heat of sorption

    NARCIS (Netherlands)

    Quirijns, E.J.; Boxtel, van A.J.B.; Loon, van W.K.P.; Straten, van G.

    2005-01-01

    The diffusion-sorption drying model has been developed as a physics-based way to model the decreasing drying rate at low moisture contents. This new model is founded on the existence of different classes of water: free and bound water. The transition between these classes and the corresponding

  14. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    Science.gov (United States)

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components ( i.e. , smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (Δ G *), activation enthalpy (Δ H *), and activation entropy (Δ S *) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10 -2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals

  15. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    Full text: Use of selective sorbents in liquid radioactive waste (LRW) management is widely spread in the field of nuclear power objects liquid waste decontamination, since the main objective there is to remove long-lived radionuclides of the nuclear cycle. The latter include, first of all, cesium-137, strontium-90, cobalt-60 and a number of α-irradiators. In this case LRW composition for most of the nuclear power objects is rather simple, except acidic deactivation solutions. At the same time, liquid radioactive wastes of different research centers have a variable chemical and radiochemical composition depending on objectives and tasks of a given center research activities. As a result, application of sorption technologies in such waste decontamination determines special requirements to these sorbents selectivity: a wide spectrum of radionuclides that can be removed and fairly high selectivity enabling to remove radionuclides from solutions of complex chemical composition (containing surfactants, complexing agents etc.). This paper is concerned with studying properties of new materials selective to different radionuclides. These materials are capable to interact with solution components whether already contained in the waste or deliberately added into resulting solution. Such sorption-reagent materials combine universal character of co-precipitation methods with simplicity of sorption methods. In this work we studied sorption-reagent inorganic ion-exchange materials interacting with sulfate-, carbonate-, oxalate-, sulfide-, and permanganate-ions. Insoluble compounds formed as a result of this interaction increase tens- and hundreds-fold the sorption selectivity of different radionuclides - strontium, cobalt, mercury, iron, and manganese as compared to conventional ion-exchange system. By means of X-ray phase analysis, IR-spectroscopy, chemical and radiochemical analysis, we have studied the mechanism of radionuclide sorption on different sorption

  16. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2

    Science.gov (United States)

    Chaban, M. O.; Rozhdestvenska, L. M.; Palchyk, O. V.; Dzyazko, Y. S.; Dzyazko, O. G.

    2018-04-01

    A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.

  17. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  18. Sorption properties of bentonite clays towards Pu(IV), U(VI), Np(V) and Cs: experimental and surface complexation study

    Energy Technology Data Exchange (ETDEWEB)

    Sabodina, M.N. [Institute of Physical Chemistry of Russian Academy of Science, Moscow 119192 (Russian Federation); Kalmykov, St.N.; Sapozhnikov, Yu.A. [Radiochemistry div., Chemistry dept., Lomonosov Moscow State University, Moscow 119992, (Russian Federation); Gupalo, T.A.; Beigul, V.P. [VNIPI Promtechnology, Moscow (Russian Federation)

    2005-07-01

    Full text of publication follows: Sorption of radionuclides, their diffusion in bentonite as well as its solubility are the major factors that define bentonite as a geochemical barrier. Sorption of cations by bentonite could be governed by two mechanisms including ion exchange with interlayer cations and formation of surface complexes with either silanol or aluminol groups. The aim of this work was to study mechanisms of {sup 137}Cs, Pu(IV), Np(V) and U(VI) sorption by bentonite and their solubility in bentonite pore waters. Bentonite (Khakassiya deposit) used in the experiments was taken in Na-form and characterized by powder X-ray diffraction, scanning electron microscopy, potentiometric titration. The cation exchange capacities of bentonite at pH=6 were measured by isotopic exchange with {sup 22}Na{sup +} and Cs{sup +} saturation. Sorption experiments were performed in N{sub 2} atmosphere in plastic vials. Bentonite samples were left in the working solutions to swell for few days before sorption experiments were performed. After the desired concentration of radionuclide ({sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 237}Np, {sup 239}Np, {sup 238}U) was added to the suspension, the required pH values are established and samples were left until the equilibrium was reached. Separation of solution after the sorption was performed using micro- and ultrafiltration techniques. The sorption of Pu(IV), U(VI) and Np(V) was highly pH dependent that indicates predominant surface complexation mechanism of sorption. For {sup 137}Cs the pH dependence of sorption was less pronounced and significant decrease of sorption occurs at pH<1.7 that indicate the ion exchange as the major mechanism. The equilibrium constant of Na{sup +}/Cs{sup +} exchange was calculated form sorption isotherms and pH dependence of sorption. It is established using micro- and ultra-filtrations, that sorption of radionuclides onto bentonite nano colloids is essential. Surface complexation modeling exercises

  19. Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yuqiang, E-mail: yqtao@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Wei [Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717-1303 (United States); Xue, Bin; Zhong, Jicheng; Yao, Shuchun; Wu, Qinglong [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-10-15

    Highlights: • Low level of Cu{sup 2+} inhibited but high level of Cu{sup 2+} facilitated the sorption of Phe. • Cation–π interaction between Cu{sup 2+} and PAH facilitated the sorption of Phe. • Phenanthrene sorption rebounding did not occur in the presence of high level Cd{sup 2+}. • Both Cd{sup 2+} and PO{sub 4}{sup 3−} inhibited the sorption of Phe, but had various mechanisms. -- Abstract: Due to the large surface area and high organic carbon content of cyanobacteria, organic contaminants can be readily sorbed on cyanobacteria during algal blooms, and then be transferred to the food web. This process is likely to be affected by the coexisting metals and nutrients, however, the possible impacts remain unclear. Effects of Cu{sup 2+}, Cd{sup 2+}, and phosphate on the sorption of phenanthrene on cyanobacterial biomass collected from an algal bloom were therefore studied. Continuous decrease in phenanthrene sorption was observed in the presence of low concentrations of Cu{sup 2+}, and Cd{sup 2+} (<0.04 mmol L{sup −1}), because Cu{sup 2+} and Cd{sup 2+} were coadsorbed with phenanthrene on the surface of cyanobacteria as suggested by scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) analyses. Phenanthrene sorption began to increase with the further increase in Cu{sup 2+} concentration, but remained lower than that in the absence of Cu{sup 2+}. This increase in sorption was ascribed to the cation–π interaction between Cu{sup 2+} and phenanthrene, as suggested by the enhanced ultraviolet absorbance at 251 nm. In contrast, sorption rebounding of phenanthrene did not occur in the presence of higher concentrations of Cd{sup 2+}. The different effects of Cu{sup 2+} and Cd{sup 2+} on phenanthrene sorption were attributed to that Cd{sup 2+} required much more energy than Cu{sup 2+} to form cation–π complexes with phenanthrene in the solutions. Phenanthrene sorption decreased continuously with the increase

  20. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.

    Science.gov (United States)

    Deng, Shubo; Ting, Yen Peng

    2005-11-01

    Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.

  1. Sorption of Europium in zirconium silicate

    International Nuclear Information System (INIS)

    Garcia R, G.

    2004-01-01

    Some minerals have the property of sipping radioactive metals in solution, that it takes advantage to manufacture contention barriers that are placed in the repositories of nuclear wastes. The more recent investigations are focused in the development of new technologies guided to the sorption of alpha emissors on minerals which avoid their dispersion in the environment. In an effort to contribute to the understanding of this type of properties, some studies of sorption of Europium III are presented like homologous of the americium, on the surface of zirconium silicate (ZrSiO 4 ). In this work the results of sorption experiences are presented as well as the interpretation of the phenomena of the formation of species in the surface of the zirconium silicate. (Author)

  2. Suitability of Moshi Pumice for Phosphorus Sorption in Constructed ...

    African Journals Online (AJOL)

    The study of Moshi Pumice's phosphorus sorption behaviours and properties was carried out in laboratory scale where by 1-2 mm, 2-4 mm and 4-8 mm grains were tested using batch experiments. The results show that Moshi Pumice has high phosphorus sorption capacity. The sorption capacity for the Moshi Pumice was ...

  3. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    International Nuclear Information System (INIS)

    Vinsova, H.; Koudelkova, M.; Konirova, R.; Vecernik, P.; Jedinakova-Krizova, V.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. It is generally known that bentonite materials show an excellent cation-exchange capacity and, on the other hand, a poor uptake of anions. Technetium occurs under aerobic conditions in its most stable oxidation state (+VII) as pertechnetate, which makes a question of its sorption on bentonite more complex when compared with e.g. Cs + or Sr 2+ . To increase the K d values for technetium sorption on bentonite, it is necessary to carry out the experiments under anaerobic conditions in the presence of reducing agent, which is capable to lower the oxidation state of technetium which enables its successful immobilization. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing conditions. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ , Fe) with bentonite, the effect of solid:aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. (authors)

  4. Electronic health records: eliciting behavioral health providers' beliefs.

    Science.gov (United States)

    Shank, Nancy; Willborn, Elizabeth; Pytlikzillig, Lisa; Noel, Harmonijoie

    2012-04-01

    Interviews with 32 community behavioral health providers elicited perceived benefits and barriers of using electronic health records. Themes identified were (a) quality of care, (b) privacy and security, and (c) delivery of services. Benefits to quality of care were mentioned by 100% of the providers, and barriers by 59% of providers. Barriers involving privacy and security concerns were mentioned by 100% of providers, and benefits by 22%. Barriers to delivery of services were mentioned by 97% of providers, and benefits by 66%. Most providers (81%) expressed overall positive support for electronic behavioral health records.

  5. Sorption of curium by silica colloids: Effect of humic acid

    International Nuclear Information System (INIS)

    Kar, Aishwarya Soumitra; Kumar, Sumit; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Sorption of curium by silica colloids has been studied as a function of pH and ionic strength using 244 Cm as a tracer. The sorption was found to increase with increasing pH and reach a saturation value of ∼95% at pH beyond 5.3. The effect of humic acid on the sorption of 244 Cm onto silica was studied by changing the order of addition of the metal ion and humic acid. In general, in the presence of humic acid (2 mg/L), the sorption increased at lower pH (<5) while it decreased in the pH range 6.5-8 and above pH 8, the sorption was found to increase again. As curium forms strong complex with humic acid, its presence results in the enhancement of curium sorption at lower pH. At higher pH the humic acid present in the solution competes with the surface sites for curium thus decreasing the sorption. The decrease in the Cm sorption in presence of humic acid was found to be less when humic acid was added after the addition of curium. Linear additive model qualitatively reproduced the profile of the Cm(III) sorption by silica in presence of humic acid at least in the lower pH region, however it failed to yield quantitative agreement with the experimental results. The results of the present study evidenced the incorporation of Cm into the silica matrix.

  6. Implementation of the Agitated Behavior Scale in the Electronic Health Record.

    Science.gov (United States)

    Wilson, Helen John; Dasgupta, Kritis; Michael, Kathleen

    The purpose of the study was to implement an Agitated Behavior Scale through an electronic health record and to evaluate the usability of the scale in a brain injury unit at a rehabilitation hospital. A quality improvement project was conducted in the brain injury unit at a large rehabilitation hospital with registered nurses as participants using convenience sampling. The project consisted of three phases and included education, implementation of the scale in the electronic health record, and administration of the survey questionnaire, which utilized the system usability scale. The Agitated Behavior Scale was found to be usable, and there was 92.2% compliance with the use of the electronic Electronic Agitated Behavior Scale. The Agitated Behavior Scale was effectively implemented in the electronic health record and was found to be usable in the assessment of agitation. Utilization of the scale through the electronic health record on a daily basis will allow for an early identification of agitation in patients with traumatic brain injury and enable prompt interventions to manage agitation.

  7. Sorption of chromium(VI) and chromium(III) on aluminium hydroxide

    International Nuclear Information System (INIS)

    Music, S.

    1986-01-01

    Factors that influence the sorption of Cr(VI) and Cr(III) on aluminium hydroxide were investigated. The sorption of chromates decreases as the pH of the suspension increases. The mechanism of CrOsub(4)sup(2-) sorption was interpreted in terms of reactions between chromates and -OH and/or Hsub(2)O groups at the hydroxide/liquid interface. It was shown that chromates are more tightly sorbed on aluminium hydroxide compared to other anions, e.g. chlorides. On the other hand, specifically absorbed anions, such as molybdates, compete strongly with chromates for the sorption sites. The sorption of chromium(III) increases with the pH of the suspension. Also, the sorption of chromium(III) is suppressed in the presence of citrate ions. The best conditions for the fixation of Cr(VI) and Cr(III) by aluminium hydroxide are presented. (author)

  8. Investigation of metal ions sorption of brown peat moss powder

    Science.gov (United States)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  9. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  10. Experimental study of strontium sorption on fissure filling material

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, T E; Cui, Daqing [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemistry

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs.

  11. Experimental study of strontium sorption on fissure filling material

    International Nuclear Information System (INIS)

    Eriksen, T.E.; Cui, Daqing

    1994-12-01

    We have carried out a comparative study of sorption and desorption of strontium in groundwater on separated magnetic and size fractions of fissure filling material taken from natural fissures in granitic rock. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficients Rd. The sorption was found to be strongly pH dependent in the range 3-11. The pH effect can be accommodated in the sorption model by considering the surface areas and surface charges of the minerals in the fissure filling material. 20 refs, 9 figs, 3 tabs

  12. Interaction of antimicrobial preservatives with blow-fill-seal packs: correlating sorption with solubility parameters.

    Science.gov (United States)

    Amin, Aeshna; Dare, Manish; Sangamwar, Abhay; Bansal, Arvind Kumar

    2012-01-01

    The aim of this work was to study the interaction of four commonly used ophthalmic antimicrobial preservatives [benzyl alcohol (BA), chlorbutol (CBL), benzalkonium chloride (BKC), and chlorhexidine gluconate (CG)] with Blow-Fill-Seal (BFS) packs. Effect of packaging material [low-density polyethylene (LDPE), polypropylene (PP)], humidity (25% RH, 75% RH) and concentration (0.5, 1.0, 2.0 mM BA/CBL in LDPE) was studied. BKC and CG gave negligible loss (<4%) in BFS packs over a period of 3 months. BA and CBL, however, gave marked losses in LDPE (ca. 70-90%) and PP (ca. 7-25%) packs. Humidity did not have any effect on the sorption loss of any preservative. Loss of BA switched from Case II to anomalous behavior with increasing initial concentration. A two-stage sorption behavior was inherent at all concentrations. Loss of CBL followed anomalous behavior with biphasic kinetics of loss. It was concluded that all the four preservatives were appropriate for use in PP BFS packs. However, only BKC and CG were amenable to be used in LDPE BFS packs. Lastly, an empirical expression consisting of the "solubility parameter distance" and "molar volume" of preservatives was developed to correlate the preservative loss in LDPE with the physicochemical properties of the preservatives.

  13. Radionuclide sorption database for Swiss safety assessment

    International Nuclear Information System (INIS)

    McKinley, I.G.; Hadermann, J.

    1984-10-01

    Recommended sorption data for use in transport models for a Swiss High-Level Waste repository are presented. The models used in 'Project Gewaehr 1985' assume linear sorption isotherms and require elemental partition coefficient (Kd) data. On the basis of a literature search 'realistic' Kd data for 22 elements have been selected for weathered crystalline rock and sediments in contact with a reducing groundwater and also sediments with a less reducing groundwater. In an appendix sorption data for 28 elements on bentonite backfill are given. These data are supplemented with 'conservative' estimates taken to represent minimum reasonable values. Available data are discussed for each element clearly exhibiting (i) the large gaps in knowledge, (ii) their unbalanced distribution between different elements and, hence, (iii) the need for further experiments in the laboratory, the field and analogue studies. An overview of the theoretical concepts of sorption, experimental methodology and data interpretation is given in order to put the values into context. General problem areas are identified. (Auth.)

  14. INFLUENCES OF SOIL PROPERTIES ON CHROMIUM (III SORPTION

    Directory of Open Access Journals (Sweden)

    R. Salmasi, F. Salmasi

    2007-07-01

    Full Text Available Soil adsorbing properties reduce sorption ability of the metal, which in turn may influence decision for remediation at contaminated sites. The objective of this study is presentation of a model based on soil properties to estimate the sorption of Cr(III in chromium contaminated soils. Twenty uncontaminated soil samples, with properties similar to the contaminated soils were selected from around of city of Tabriz and treated with Cr as CrCl3. A multiple regression analysis with statgraph software was used to drive an expression that related Cr sorption to common soil properties. The results showed that four soil properties were important in determining the amount of Cr adsorbed by the soils including pH, cation exchange capacity, total inorganic carbon and clay content with nearly 80% variability in Cr sorption and a reasonable level of confidence by this model. The obtained model suggested that Cr(III sorption was enhanced by higher soil pH, more total inorganic carbon, more clay, and higher cation exchange capacity.

  15. Influence of light-weight organic matters on strontium sorption to bentonite

    International Nuclear Information System (INIS)

    Wang, Tsing-Hai; Wu, Ding-Chiang; Teng, Shi-Ping

    2010-01-01

    Document available in extended abstract form only. Light-weight organic matters were frequently observed in groundwater. Their existence had significant influence on the transport of radionuclides. In this study, light-weight organic acid species including oxalic (MW 90), succinic (MW 118), adipic (MW 146), azelaic (MW 188), eicosanedioic (MW 306), benzoic (MW 122), salicylic (MW 138), and gallic (MW 170) were selected as the surrogate of natural organic matters. Their effects on strontium sorption to bentonite were evaluated by using a surface complexation model MINEQL+. Under this framework, three sorption mechanisms were considered: 1. structure sorption sites, 2. edge sorption sites, 3. further hydration of adsorbed Sr 2+ . The presence of organic species had no influence on Sr cation sorption to structure sorption sites. However, Sr cation sorption to edge sorption was affected by the organics to certain extent. For example, sorption capability of edge sites toward Sr was increased by the gallic species. Furthermore, hydration of adsorbed Sr was significantly affected by the presence of organic species. This might relate to that adsorbed Sr would become the bridge associating organic species on bentonite surfaces, but this argument required more solid spectral evidences to support. Some preliminary observations on Sr sorption to bentonite were obtained in this work; however, further experiments are still required by conducting experiments with more variety of organic species. By doing a comprehensive study, it would be much beneficial to make a more accurate evaluation of the influence of organic matters on Sr sorption

  16. Mathematical Modeling of Moisture Sorption Isotherms and Determination of Isosteric Heats of Sorption of Ziziphus Leaves

    Directory of Open Access Journals (Sweden)

    Amel Saad

    2014-01-01

    Full Text Available Desorption and adsorption equilibrium moisture isotherms of Ziziphus spina-christi leaves were determined using the gravimetric-static method at 30, 40, and 50°C for water activity (aw ranging from 0.057 to 0.898. At a given aw, the results show that the moisture content decreases with increasing temperature. A hysteresis effect was observed. The experimental data of sorption were fitted by eight models (GAB, BET, Henderson-Thompson, modified-Chung Pfost, Halsey, Oswin, Peleg, and Adam and Shove. After evaluating the models according to several criteria, the Peleg and Oswin models were found to be the most suitable for describing the sorption curves. The net isosteric heats of desorption and adsorption of Ziziphus spina-christi leaves were calculated by applying the Clausius-Clapeyron equation to the sorption isotherms and an expression for predicting these thermodynamic properties was given.

  17. Experimental determination of sorption in fractured flow systems

    Science.gov (United States)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  18. Correlational study between sorption and goo apparent organoclays

    International Nuclear Information System (INIS)

    Silva, D.L.; Silva, M.R.O.; Ferreira, H.S.; Brasileiro, C.T.

    2016-01-01

    The sorption of surfactants in bentonite clay can occur through the mechanism of adsorption and absorption, this being a very supple phenomenon according clay and surfactant utilized. Thus the more surfactant sorbed at the organoclay it becomes, and can be used in various applications, including in oil drilling fluid. This study aimed to correlate the sorption of surfactants with the rheological properties of non-aqueous fluids (oil base). In organophilization process was used Bentongel clay which had its concentration varied from 3.16 to 7.16% by weight of clay. It was used to organophilization an ionic surfactant Praepagem WB with 75% of active matter, where its concentration ranged from 127-181 mEq. After organophilizated the clays were filtered, dried in an oven for 48 hours and passed in ABNT sieve No. 200, to be so characterized. Sorption was calculated from mathematical equations. Non-aqueous fluids were prepared according to standard Petrobras (EP-1EP-00023A) for rheological testing. Correlating the sorption of surfactant, and the rheological properties of non-aqueous fluid, obtained satisfactory results where observed through the scatter plots there is a strong correlation between the variables sorption and apparent viscosity, it should also be noted that the viscosity is a variable which increases with an increase in sorption, confirming that the surfactant concentration influences the viscosity. (author)

  19. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    International Nuclear Information System (INIS)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P.

    2010-01-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO 2 uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO 2 for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO 2 sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO 2 induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO 2 desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO 2 sequestration. (author)

  20. Attenuation of polychlorinated biphenyl sorption to charcoal by humic acids

    NARCIS (Netherlands)

    Koelmans, A.A.; Meulman, B.; Meijer, T.; Jonker, M.T.O.

    2009-01-01

    Strong sorption to black carbon may limit the environmental risks of organic pollutants, but interactions with cosorbing humic acid (HA) may interfere. We studied the attenuative effect of HA additions on the sorption of polychlorinated biphenyls (PCBs) to a charcoal. "Intrinsic" sorption to

  1. Sorption of microamount of colloidal silver iodide on hydrated iron(III) oxide

    International Nuclear Information System (INIS)

    Kepak, F.; Nova, J.

    1975-01-01

    Sorption of a microamount of colloidal silver iodide labelled with 131 I on hydrated iron/III/ oxide suspension was studied. The sorption dependence upon pH, sorbent amount, and inert electrolyte concentration has revealed that sorption of silver iodide reaches no more than 63%. The sorption lasted one hour during which the maximum value was reached. Desorption time was one hour, as well. Except for measuring the sorption dependence on pH, the sorption pH was 7.0, temperature 24+-2 0 C. (F.G.)

  2. SORPTION AND SOLUBILITY OF LOW-SHRINKAGE RESIN-BASED DENTAL COMPOSITES

    Directory of Open Access Journals (Sweden)

    Sevda Yantcheva

    2016-04-01

    Full Text Available Background: Resin-based composites are well-established restorative materials. However, these materials may absorb significant amounts of water when exposed to aqueous environments. Sorption and solubility are affecting composite restorations by two different mechanisms; the first is the up taking of water producing an increased weight and the second is the dissolution of materials in water, leading to a weight reduction of the final conditioned samples. Objective: To measure the water sorption and solubility of different low-shrinkage resin-based composites. Six materials were selected: Filtek P60, Filtek Ultimate, SonicFill, Filtek Silorane, Kalore and Venus Diamond. Materials and methods: Five disc specimens were prepared of each material and polymerized with diode light-curing unit. Water sorption and solubility of the different materials were were calculated by means of weighting the samples before and after water immersion and desiccation. Data were statistically analyzed using Shapiro-Wilk One Way Analysis of Variance followed by the Holm-Sidak comparison test . Results: There were significant differences (p<=0.001 between materials regarding sorption and solubility. Regarding sorption F. Silorane showed lowest values, followed by SonicFill, without significant difference between them. Statistical significant differences exist between F. Silorane and F.P60, F. Ultimate, Kalore. Significant differences exist between SonicFill and F. Ultimate. F.Silorane (-0.018 and Kalore (-0.010 showed lowest values of solubility but there were marginal difference among all composites investigated. Conclusions: 1.The material with lowest values of sorption and solubility was F.Silorane. 2. The attained sorption and solubility values for composites are influenced by the differences in resin matrix composition and filler contend. 3. Modifications of dimethacrylate matrix did not minimize significantly sorption and solubility of composites. 4. Besides water

  3. On the derivation of a sorption database

    International Nuclear Information System (INIS)

    Ewart, F.T.; Haworth, A.; Wisbey, S.J.

    1992-01-01

    The safety arguments in support of many radioactive waste repository concepts are heavily dependent on the existence of a sorption reaction. Such a reaction will, in the near field, reduce the magnitude of the release of a number of hazardous radionuclides so that their release to the geosphere is dispersed in time. In the geosphere, the sorption reactions provide a mechanism whereby the migration of the elements released from the repository is retarded and the radioisotopes then subsequently decay. The processes involved in sorption cannot in many cases be satisfactorily represented in thermodynamic terms such as are employed in the description of dissolution and precipitation. Experiments that investigate these reactions are not easy to perform. The sorption parameters that are obtained experimentally for the near field relate, in the UK case, to sorption on to a cementitious surface. These surfaces, since they consist substantially of calcium hydroxide or calcium silicate hydrates, control the aqueous chemistry, do not permit pH changes to be made and limit the range of concentrations of sorbate that may be used. In the far field, on the other hand, the surfaces are not in general so active with respect to the solution chemistry and data can be obtained across a wide spectrum of aqueous chemistries. These data, although they may be useful in testing and parameterizing models, may not have validity under field conditions since the minerals will, inevitably, react to the changes in water chemistry, over geological timescales. The uncertainties in the experimental data are, for many elements and solids, balanced by a reasonable agreement between workers in the values of the parameters used to describe sorption. 22 refs., 1 fig., 1 tab

  4. Study of the factors affecting the sorption and fixation of radiocesium on some egyptian soil sediments

    International Nuclear Information System (INIS)

    Kamel, N.H.M.

    1996-01-01

    The present work with studying the use of egyptian soil samples for the sorption and fixation of low level activity wastes containing Cs-134 isotope. This radioactive isotope is one of the most important radionuclides found in low and intermediate level waste streams, as a fission product. The sorption process of radiocesium by the soil samples is governed by a number of variables such as the physical, mineralogical and chemical composition of the samples, effect of carrier ion concentrations,contact time, saturation with different cations and heat treatment of the soil samples . The effect of these variables had been investigated. The sorption behavior of Cs has been explained by applying Freundlich, Langmuir and Dubinin-Raduskevich equations. sorption of Cs can also be described on a laboratory time scale by more than one kinetic process. About 30 soil samples, supplied from the institute of metallurgy and the geological survey administration in egypt, were brought from different locations from the egyptian desert. These samples represent areas from Fayom, Wadi El-Rayan, Cairo Fayom Road, Quasr El-Sagha, North of the Eastern desert (egyptian vermiculite) and cairo - alexandria desert road(at 46 - 48 km from cairo). A pure german sample was used as a reference smectite clay for comparing the physical, chemical and mineralogical properties

  5. Selection of sorption material for tests of pesticide permeation through protective clothing fabrics.

    Science.gov (United States)

    Krzemińska, Sylwia; Nazimek, Teresa

    2004-01-01

    The paper presents the results of studies on selecting a solid sorption material for absorbing liquid crop protection agents which permeate samples of protective clothing fabrics. The sorption materials were investigated and selected with an assumption that they should have a high recovery coefficient for biologically active substances, used as active ingredients in crop protection agents, at a presumed, acceptably high level. The selected substances were determined with a gas chromatograph equipped with an electron capture detector (dichlorvos, cypermethrin and 2,4-D) and a nitrogen-phosphorus detector (carbofuran). The tests demonstrated that polypropylene melt-blown type unwoven cloth had high recovery coefficients for all 4 active ingredients proposed for the study. The highest recovery coefficient, -.97, was obtained for carbofuran. The recovery coefficients obtained for the 3 remaining substances were lower: .89 for cypermethrin and 2,4-D, and .84 for dichlorvos.

  6. Comparison of neptunium sorption results using batch and column techniques

    International Nuclear Information System (INIS)

    Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J.; Bish, D.L.

    1996-08-01

    We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases

  7. Understanding the H 2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn)

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; Banerjee, Rahul; Orcajo, Gisela; Eckert, Juergen; Space, Brian

    2015-01-01

    © 2014 American Chemical Society. Electronic structure calculations and simulations of H2 sorption were performed in four members of the M-MOF-74 series: Mg-MOF-74, Ni-MOF-74, Co-MOF-74, and Zn-MOF-74. Notable differences were observed in the partial charge and polarizability of the metal ions derived from the electronic structure calculations. The modeling parameters obtained from the electronic structure calculations were found to influence certain features in the experimentally observed H2 sorption trends in the M-MOF-74 series. The simulations were performed with the inclusion of explicit many-body polarization, which was required to reproduce the experimental H2 sorption observables (i.e., sorption isotherms and isosteric heats of adsorption (Qst)) and the H2-metal interaction in all four MOFs using classical molecular simulation. Consistent with experimental measurements, the simulations captured the following trend for the H2-metal interaction strength: Ni-MOF-74 > Co-MOF-74 > Mg-MOF-74 > Zn-MOF-74. The calculations revealed that stronger H2-metal interactions within the M-MOF-74 series corresponded to shorter H2-metal distances and higher induced dipoles on the metal-sorbed H2 molecules. In addition, it was observed that there was a strong correlation between the H2-metal interaction and the polarization contribution. Although Mg-MOF-74 has the highest calculated partial charge for the metal ion within the series, the Mg2+ ion has a very low polarizability compared to the other M2+ ions; this explains why the H2-metal interaction in this MOF is weaker compared to those for Ni-MOF-74 and Co-MOF-74. The sterics interactions, reflected in the crystal structure for all four MOFs, also played a role for the observed H2 sorption trends. Zn-MOF-74 has the lowest H2 uptakes and Qst within the series due to an unfavorable geometric environment for the Zn2+ ions within the ZnO5 clusters. Lastly, the two-dimensional quantum rotational levels were calculated for the H

  8. Understanding the H 2 Sorption Trends in the M-MOF-74 Series (M = Mg, Ni, Co, Zn)

    KAUST Repository

    Pham, Tony

    2015-01-15

    © 2014 American Chemical Society. Electronic structure calculations and simulations of H2 sorption were performed in four members of the M-MOF-74 series: Mg-MOF-74, Ni-MOF-74, Co-MOF-74, and Zn-MOF-74. Notable differences were observed in the partial charge and polarizability of the metal ions derived from the electronic structure calculations. The modeling parameters obtained from the electronic structure calculations were found to influence certain features in the experimentally observed H2 sorption trends in the M-MOF-74 series. The simulations were performed with the inclusion of explicit many-body polarization, which was required to reproduce the experimental H2 sorption observables (i.e., sorption isotherms and isosteric heats of adsorption (Qst)) and the H2-metal interaction in all four MOFs using classical molecular simulation. Consistent with experimental measurements, the simulations captured the following trend for the H2-metal interaction strength: Ni-MOF-74 > Co-MOF-74 > Mg-MOF-74 > Zn-MOF-74. The calculations revealed that stronger H2-metal interactions within the M-MOF-74 series corresponded to shorter H2-metal distances and higher induced dipoles on the metal-sorbed H2 molecules. In addition, it was observed that there was a strong correlation between the H2-metal interaction and the polarization contribution. Although Mg-MOF-74 has the highest calculated partial charge for the metal ion within the series, the Mg2+ ion has a very low polarizability compared to the other M2+ ions; this explains why the H2-metal interaction in this MOF is weaker compared to those for Ni-MOF-74 and Co-MOF-74. The sterics interactions, reflected in the crystal structure for all four MOFs, also played a role for the observed H2 sorption trends. Zn-MOF-74 has the lowest H2 uptakes and Qst within the series due to an unfavorable geometric environment for the Zn2+ ions within the ZnO5 clusters. Lastly, the two-dimensional quantum rotational levels were calculated for the H

  9. Sorption data bases for generic Swiss argillaceous rock systems

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.; Thoenen, T.

    2010-09-01

    In Switzerland the site selection procedure for both high level waste (HLW) and low and intermediate level waste (L/ILW) repositories is specified by the Swiss Federal Office of Energy in the Sectoral Plan for Deep Geological Repositories. In the forthcoming stage 2 of this plan, potential sites will be identified within regions previously selected based on the presence of suitable host rocks, namely Opalinus Clay, 'Brauner Dogger', Effingen Member and Helvetic Marl. Preliminary safety analyses are an integral part of this procedure, and require, amongst other information, the radionuclide sorption properties of the host rock. This report describes a methodology to develop a Generic Rock Sorption Data Base (GR-SDB) for argillaceous rocks. The method will be used to compile specific SDBs for the above mentioned host rocks. Arguments are presented that the main factor influencing sorption on argillaceous rocks is the phyllosilicate mineral content. These minerals are particularly effective at binding metals to their surfaces by cation exchange and surface complexation. Generally, the magnitude of sorption is directly correlated with the phyllosilicate content (2:1 type clays: illite/smectite/illitesmectite mixed layers), and this parameter best reflects the sorption potential of a given mineral assembly. Consequently, sorption measurements on illite were preferably used as source data for the GR-SDB. The second component influencing radionuclide sorption is the porewater chemistry. In the present report, generic water compositions were extracted from the analytical ranges of deep ground waters in various sedimentary formations in Switzerland. In order to cover the range of ionic strength (I) and pH values of Swiss ground waters in argillaceous rocks, five types of generic water compositions were defined, combining low, intermediate and high values of ionic strength and pH. The GR-SDB for in situ conditions was derived using conversion factors (CF). As the name

  10. Effect of humic acid (HA) on sulfonamide sorption by biochars

    International Nuclear Information System (INIS)

    Lian, Fei; Sun, Binbin; Chen, Xi; Zhu, Lingyan; Liu, Zhongqi; Xing, Baoshan

    2015-01-01

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. - Highlights: • Effect of quantity and fractionation of coated HA on sorption of sulfonamides by BC was studied. • Fractionation of coated HA is tailored by surface properties of BC. • Roles of HA in BC sorption depend on interaction between HA adlayer and sorbate. • Roles of HA in sulfonamide sorption by BC also depend on HA aqueous concentration. - The quantity and fractionation of adsorbed HA play a major role in sulfonamide sorption by biochars

  11. Determination of {sup 60}Co sorption in natural clinoptilolite; Determinacion de la sorcion de {sup 60}Co en clinoptilolita natural

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez B, E.; Granados C, F. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    It was studied the clinoptilolite behavior coming from a deposit in Taxco, Guerrero in hydration and stabilization conditions with sodium for determining its sorption properties. The ion exchange process was carried out through gamma spectrometry using a CoCl{sub 2} solution marked with {sup 60} Co at p H 6.5 in different contact times. It was observed a maximum sorption of 0.408 m eq Co{sup +2}/g mineral, from 0.314 m eq Co{sup +2}/g mineral correspond at ion exchange. (Author)

  12. Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents

    International Nuclear Information System (INIS)

    Trigo, Carmen; Cox, Lucia; Spokas, Kurt

    2016-01-01

    Azimsulfuron is an acidic herbicide with a high water solubility which makes risk of groundwater contamination a concern. Various wood based biochars produced at different pyrolysis temperatures were characterized along with their sorption capacity for the herbicide azimsulfuron. In addition, we compared sorption on biochars with sorption on mineral sorbents such as clay minerals and iron oxides. In biochar formed at high temperatures (500 °C and 700 °C), FT-IR studies confirmed the increase in aromaticity. Scanning electron microscope (SEM) images of the biochars showed differences in the macroporous structure and lower size pores at higher temperatures. SSA (Specific Surface Area) of the biochars increased with pyrolysis temperature and, for all different biochars, this resulted in higher sorption of azimsulfuron. In the case of mineral sorbents, sorption is not related to SSA. Higher sorption is observed in a montmorillonite, of lower SSA, than in mixture of clay minerals with 30% smectite (w/w). On the contrary as with the clays, sorption on the two iron oxyhydroxides increased with SSA. Desorption studies showed hysteresis. Leaching studies showed no effect on azimsulfuron retention on soil column amended with apple wood biochar, while a reduction of azimsulfuron in leachates in soil columns amended with the modified montmorillonite and alder wood biochar (500 °C). Total retention was shown for alder wood biochar. - Highlights: • Use of biochars and mineral sorbents to mitigate azimsulfuron water contamination • Sorption relates with SSA for biochar and iron oxyhydroxide but not for clays. • Higher sorption values for biochar pyrolysis at 700 °C than mineral sorbents • Different effects on leaching for apple wood biochar, SW-Fe and alder wood biochar

  13. Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, Carmen, E-mail: carmentrigo1@gmail.com [Department of Soil, Water & Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108 (United States); Cox, Lucia, E-mail: lcox@irnase.csic.es [Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNASE-CSIC), P.O. Box 1052, 41080 Seville (Spain); Spokas, Kurt, E-mail: kurt.spokas@ars.usda.gov [USDA-Agricultural Research Service, 1991 Upper Buford Circle, Rm. 439, St. Paul, MN 55108 (United States)

    2016-10-01

    Azimsulfuron is an acidic herbicide with a high water solubility which makes risk of groundwater contamination a concern. Various wood based biochars produced at different pyrolysis temperatures were characterized along with their sorption capacity for the herbicide azimsulfuron. In addition, we compared sorption on biochars with sorption on mineral sorbents such as clay minerals and iron oxides. In biochar formed at high temperatures (500 °C and 700 °C), FT-IR studies confirmed the increase in aromaticity. Scanning electron microscope (SEM) images of the biochars showed differences in the macroporous structure and lower size pores at higher temperatures. SSA (Specific Surface Area) of the biochars increased with pyrolysis temperature and, for all different biochars, this resulted in higher sorption of azimsulfuron. In the case of mineral sorbents, sorption is not related to SSA. Higher sorption is observed in a montmorillonite, of lower SSA, than in mixture of clay minerals with 30% smectite (w/w). On the contrary as with the clays, sorption on the two iron oxyhydroxides increased with SSA. Desorption studies showed hysteresis. Leaching studies showed no effect on azimsulfuron retention on soil column amended with apple wood biochar, while a reduction of azimsulfuron in leachates in soil columns amended with the modified montmorillonite and alder wood biochar (500 °C). Total retention was shown for alder wood biochar. - Highlights: • Use of biochars and mineral sorbents to mitigate azimsulfuron water contamination • Sorption relates with SSA for biochar and iron oxyhydroxide but not for clays. • Higher sorption values for biochar pyrolysis at 700 °C than mineral sorbents • Different effects on leaching for apple wood biochar, SW-Fe and alder wood biochar.

  14. [Impact of biochar amendment on the sorption and dissipation of chlorantraniliprole in soils].

    Science.gov (United States)

    Wang, Ting-Ting; Yu, Xiang-Yang; Shen, Yaen; Zhang, Chao-Lan; Liu, Xian-Jin

    2012-04-01

    The effects of biochar amendment on sorption and dissipation of chlorantraniliprole (CAP) in 5 different agricultural soils were studied. Red gum wood (Eucalyptus spp.) derived biochar was amended into a black soil, a yellow soil, a red soil, a purplish soil, and a fluvo-aquic soil at the rate of 0.5% (by weight). The sorption and dissipation behaviors of CAP in soils with and without biochar amendment were measured by batch equilibration technique and dissipation kinetic experiment, respectively. The objective was to investigate the impact of biochar application on the environmental fate of pesticides in agricultural soils with different physical-chemical properties, and evaluate the potential ecological impacts of field application of biochar materials. The results showed that biochar application in soils could enhance the sorption of CAP, but the magnitudes were varied among soils with different properties. Amendment of 0.5% (by weight) biochar in the black soil, which have high content of organic matter (4.59%), resulted in an increase of sorption coefficient (K(d)) by 2.17%; while for the fluvo-aquic soil with organic matter content of 1.16%, amendment of biochar at the same level led to an increase of 139.13%. The sorption capacity of biochar was partially suppressed when biochar was mixed with soils. The calculated K(Fbiochar) of biochar after mixed in the black soil, yellow soil, red soil, purplish soil, and fluvo-aquic soil were decreased by 96.94%, 90.6%, 91.31%, 68.26%, and 34.59%, respectively, compared to that of the original biochar. The half-lives of CAP in black soil, yellow soil, red soil, purplish soil, and fluvo-aquic soil were 115.52, 133.30, 154.03, 144.41 and 169.06 d, respectively. In soils amended with biochar, the corresponding half-lives of CAP were extended by 20.39, 35.76, 38.51, 79.19, and 119.75 d, respectively. Similar to the effects of biochar on CAP sorption, in soil with higher content of organic matter, the retardation of CAP

  15. Characterizing the sorption of polybrominated diphenyl ethers (PBDEs) to cotton and polyester fabrics under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Amandeep [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Rauert, Cassandra [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Simpson, Myrna J. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada); Harrad, Stuart [School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Diamond, Miriam L., E-mail: miriam.diamond@utoronto.ca [Department of Earth Sciences, 22 Russell Street, University of Toronto, Toronto, ON M5S 3B1 (Canada); Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military trail, Toronto, ON M1C 1A4 (Canada)

    2016-09-01

    Cotton and polyester, physically and chemically different fabrics, were characterized for sorption of gas-phase polybrominated diphenyl ethers (PBDEs). Scanning electron microscopic (SEM) images and BET specific surface area (BET-SSA) analysis showed cotton's high microsurface area; NMR analysis showed richness of hexose- and aromatic-carbon in cotton and polyester, respectively. Cotton and polyester sorbed similar concentrations of gas-phase PBDEs in chamber studies, when normalized to planar surface area. However, polyester concentrations were 20–50 times greater than cotton when normalized to BET-SSA, greater than the 10 times difference in BET-SSA. The difference in sorption between cotton and polyester is hypothesized to be due to ‘dilution’ due to cotton's large BET-SSA and/or greater affinity of PBDEs for aromatic-rich polyester. Similar fabric-air area normalized distribution coefficients (K'{sub D}, 10{sup 3} to 10{sup 4} m) for cotton and polyester support air-side controlled uptake under non-equilibrium conditions. K'{sub D} values imply that 1 m{sup 2} of cotton or polyester fabrics would sorb gas-phase PBDEs present in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume at room temperature over one week, assuming similar air flow conditions. Sorption of PBDEs to fabrics has implications for their fate indoors and human exposure. - Highlights: • Sorption of gas-phase PBDEs by cotton and polyester fabrics • Similar sorption to cotton and polyester per unit planar surface area • Greater sorption by polyester/BET-SSA; cotton's dilution or polyester’s affinity • 1 m{sup 2} fabric sorbs PBDEs in 10{sup 3} to 10{sup 4} m{sup 3} of equivalent air volume • Clothing likely a large indoor sink of PBDEs and influence human exposure.

  16. SORPTION OF Cu2+ IONS ONTO DIATOMITE CONSTITUENTS

    Directory of Open Access Journals (Sweden)

    Vasile Rusu

    2009-06-01

    Full Text Available Studies of the sorption capacity towards Cu2+ ions of diatomite from the Ghidirim location of RM, as well as of the extracted clay phase are presented. Separated clay fraction from diatomic material is clean enough, and especially is rich in montmorillonite. Maximum sorption capacity for studied clay fraction is achieved by rising the temperature of calcination treatment up to 200oC. At higher temperatures the lattice of montmorillonite is contracted and its sorption capacity towards Cu2+ ions decreases strongly.

  17. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  18. Sorption of radionickel to goethite: Effect of water quality parameters and temperature

    International Nuclear Information System (INIS)

    Baowei Hu; ShaoXing University, ShaoXing; Wen Cheng; Hui Zhang; Guodong Sheng; Chinese Academy of Sciences, Hefei

    2010-01-01

    In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na + /H + on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. (author)

  19. Insights into the attenuated sorption of organic compounds on black carbon aged in soil.

    Science.gov (United States)

    Luo, Lei; Lv, Jitao; Chen, Zien; Huang, Rixiang; Zhang, Shuzhen

    2017-12-01

    Sorption of organic compounds on fresh black carbons (BCs) can be greatly attenuated in soil over time. We examined herein the changes in surface properties of maize straw-derived BCs (biochars) after aged in a black soil and their effects on the sorptive behaviors of naphthalene, phenanthrene and 1,3-dinitrobenzene. Dissolved fulvic and humic acids extracted from the soil were used to explore the role of dissolved organic carbon (DOC) in the aging of biochars. Chromatography analysis indicated that DOC molecules with relatively large molecular weight were preferentially adsorbed on the biochars during the aging processes. DOC sorption led to blockage of the biochar's micropores according to N 2 and CO 2 adsorption analyses. Surface chemistry of the biochars was also substantially modified, with more O-rich functional groups on the aged biochars compared to the original biochars, as evidenced by Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The changes in both the physical and chemical surface properties of biochars by DOC led to significant attenuation of the sorption capacity and nonlinearity of the nonionic organic compounds on the aged biochars. Among the tested organic compounds, phenanthrene was the most attenuated in its sorption by the aging treatments, possibly because of its relatively large molecular size and hydrophobicity. The information can help gain a mechanistic understanding of interactions between BCs and organic compounds in soil environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A mechanistic approach to the generation of sorption databases

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1992-01-01

    Sorption of radionuclides in the near and far fields of an underground nuclear waste repository is one of the most important processes retarding their release to the environment. In the vast majority of cases sorption data have been presented in terms of empirical parameters such as distribution coefficients and isotherm equations. A consequence of this empirical methodology is that the sorption data are only strictly valid under the experimental conditions at which they were measured. Implicit in this approach is the need to generate large amounts of data and fitting parameters necessary for an empirical description of sorption under all realistically conceivable conditions which may arise in space and time along the migration pathway to Man. An alternative approach to the problem is to try to understand, and develop model descriptions of, underlying retention mechanisms and to identify those systems parameters which essentially determine the extent of sorption. The aim of this work is to see to what extent currently existing mechanistic models, together with their associated data, can be applied to predict sorption data from laboratory experiments on natural systems. This paper describes the current status of this work which is very much in an early stage of development. An example is given whereby model predictions are compared with laboratory results for the sorption of Np at trace concentrations under oxidizing conditions on a series of minerals relevant to granite formations. 31 refs., 11 figs., 5 tabs

  1. Sericitization of illite decreases sorption capabilities for cesium

    Science.gov (United States)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction

  2. Sorption and desorption of insecticides in Brazilian soils

    International Nuclear Information System (INIS)

    Luchini, L.C.; Lord, K.A.; Ruegg, E.F.

    1980-01-01

    The sorption from aqueous solution of ten Brazilian soil types of four organochlorine, two organophosphorus and one carbamate insecticide was determined in the laboratory using gas chromatographic and radiometric techniques. Measurements showed that soils richest in organic matter, sorbed all substances except aldrin more strongly than the other soils. DDT was the most and aldrin the least sorbed organochlorine pesticide, being dieldrin sorbed two to four times more strongly than aldrin. Sorption of lindane varied in different soils. The organophosphate insecticides malathion and parathion were strongly sorbed in the soils richest in organic matter and weakly sorbed in the poorest soils heing moderately sorbed by the other soils. Sorption of carbaryl by all soils is small. Lindane was desorbed from the soil richest in organic matter and the extent of desorption was dependent on the sorption time. (Author) [pt

  3. Sorption of neptunium(V) on opalinus clay under aerobic/anaerobic conditions

    International Nuclear Information System (INIS)

    Froehlich, D.R.; Amayri, S.; Drebert, J.; Reich, T.

    2011-01-01

    The interaction between neptunium(V) and a natural argillaceous rock (Opalinus Clay (OPA), Mont Terri, Switzerland) has been investigated in batch sorption experiments by varying pH (6-10), Np(V) concentration (10 -12 -10 -4 M), solid-to-liquid ratio (2-20 g/L), and partial pressure of CO 2 (10 -3.5 and 10 -2.3 atm) under aerobic/anaerobic conditions in saturated calcite solution. All batch experiments were carried out using well characterized aerobic and anaerobic dry powders of OPA. The results show a great influence of pH on Np(V) sorption. Under aerobic conditions sorption increases with increasing pH until maximum sorption is reached between pH 8-9. At pH > 9 sorption decreases due to the formation of negatively charged Np(V)-carbonate complexes. By increasing p CO 2 from 10 -3.5 to 10 -2.3 atm, the sorption edge is shifted ∼ 0.5 units to lower pH values. Under anaerobic conditions stronger sorption of 8 x 10 -6 M Np(V) was found, possibly due to partial reduction of Np(V) to Np(IV). The sorption of 8 x 10 -6 M Np(V) under aerobic conditions at pH 8.2 in saturated calcite solution increases continuously with increasing solid-to-liquid ratio of OPA in the range of 2-20 g/L with a constant K d value of 126 ± 13 L/kg. The sorption isotherm was measured over seven orders of magnitude in Np(V) concentration using 239 Np as tracer. The sorption isotherm could be divided in a part of linear sorption behaviour between 10 -13 -10 -9 M Np(V) and non-linear behaviour in the range of 10 -9 -10 -4 M Np(V). (orig.)

  4. Sorption of perfluoroalkyl substances to two types of minerals.

    Science.gov (United States)

    Hellsing, Maja S; Josefsson, Sarah; Hughes, Arwel V; Ahrens, Lutz

    2016-09-01

    The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sorption of Co2+ on modified inorganic materials

    International Nuclear Information System (INIS)

    Hanzel, R.; Rajec, P.

    1999-01-01

    The aim of this study was preparation and characterization of sorbents on the base a silica-gel matrix with immobilized functional group (imidazole or crown-ether). Sorption of cobalt from aqueous solutions on prepared sorbents in static conditions (by 'batch' method) in the dependence of concentration, pH value,, as well as kinetics of sorption were studied. The influence of heavy or toxic metals [Hg(II), Cd(II), Mn(II), Zn(II), Cu(II), Fe(III), Cr(III), Al(III), Na and K] on sorption of cobalt was studied, too

  6. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  7. suitability of murram for phosphorus sorption in constructed wetlands

    African Journals Online (AJOL)

    Mimi

    sorption isotherms, determination of Phosphorus sorption capacity of the substrates, determination of. Phosphorus sorption as the function of time and determination of effect of temperature on the ... (Na2O + K2O) % SiO2. %. P2O5. %. TiO2. %. LOI. %. 19.2. 1.3. 0.69. 5.13. 0.05. 6.7. 61.9. 0.04. 0.51. 4.4. As presented in ...

  8. Influence of the redox state on the neptunium sorption under alkaline conditions. Batch sorption studies on titanium dioxide and calcium silicate hydrates

    International Nuclear Information System (INIS)

    Tits, Jan; Laube, Andreas; Wieland, Erich; Gaona, Xavier

    2014-01-01

    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO 2 ) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO 2 was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO 2 R d values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, R d values for the three redox states are also identical at pH = 10. While the R d values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the R d values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO 2 whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar R d values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic repulsion, allows the weaker sorption of the

  9. Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity

    International Nuclear Information System (INIS)

    Tachi, Y.; Yotsuji, K.; Suyama, T.; Seida, Y.; Yui, M.; Nakazawa, T.; Yamada, N.; Ochs, M.

    2010-01-01

    Diffusion and sorption of radionuclides in compacted bentonite/montmorillonite are key processes in the safe geological disposal of radioactive waste. In this study, the effects of carbonate and salinity on neptunium(V) diffusion and sorption in compacted sodium montmorillonite were investigated by experimental and modeling approaches. Effective diffusion coefficients (D e ) and distribution coefficients (K d ) of 237 Np(V) in sodium montmorillonite compacted to a dry density of 800 kg m -3 were measured under four chemical conditions with different salinities (0.05/0.5 M NaCl) and carbonate concentrations (0.0.01 M NaHCO 3 ). D e values for carbonate-free conditions were of the order of 10 -10 -10 -11 m 2 s -1 and decreased as salinity increased, and those for carbonate conditions were of the order of 10 -11 -10 -12 m 2 s -1 and showed the opposite dependence. Diffusion-derived K d values for carbonate-free conditions were higher by one order of magnitude than those for carbonate conditions. Diffusion and sorption behaviors were interpreted based on mechanistic models by coupling thermodynamic aqueous speciation, thermodynamic sorption model (TSM) based on ion exchange, and surface complexation reactions, and a diffusion model based on electrical double layer (EDL) theory in homogeneous narrow pores. The model predicted the experimentally observed tendency of D e and K d qualitatively, as a result of the following mechanisms; 1) the dominant aqueous species are NpO 2 + and NpO 2 CO 3 - for carbonate-free and carbonate conditions, respectively, 2) the effects of cation excess and anion exclusion result in opposite tendencies of D e for salinity, 3) higher carbonate in solution inhibits sorption due to the formation of carbonate complexes. (orig.)

  10. Sorption of lanthanoids by polymer-supported diaza-18-crown-6

    International Nuclear Information System (INIS)

    Bel'tyukova, S.I.; Malinka, E.V.; Kravchenko, T.B.; Roska, A.S.; Zitsmanis, A.Kh.

    1990-01-01

    Sorption of thenoyltrifluoroacetonates of rare earths on polymeric sorbent (copolymer of styrene-divinylbenzene) containing the functional groups of macrocyclic polyether diazo-18-crown-6 is studied. Sorption capacity of a sorbent and sorption coefficients are calculated. It is shgown that Eu 3+ , Sm 3+ and Gd 3+ are sorbed most of all, and Ce 3+ , Pr 3+ , Yb 3+ , Lu 3+ - worst of all. Luminescence properties of the sorption europium adduct is studied. The Eu detection limit in the sorbent is 0.00005 μg/ml, Sm - 0.01 μg/ml

  11. The sorption of polonium, actinium and protactinium onto geological materials

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-01-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results

  12. The sorption of polonium, actinium and protactinium onto geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-07-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results.

  13. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    Science.gov (United States)

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  14. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  15. The sorption of silver by poorly crystallized manganese oxides

    Science.gov (United States)

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  16. Behavior of sorption and thermal desorption of fission products from loaded metal oxide exchangers

    International Nuclear Information System (INIS)

    Buerck, J.

    1986-08-01

    A new sublimation method for the concentration and purification of 99 Mo, produced by the fission of 235 U with thermal neutrons, has been developed to replace the present final decontamination steps in the various well established 99 Mo separation processes. A distinct simplification and shortening of the actual procedure is obtained by combining the chromatographic sorption on the SnO 2 -exchanger with the direct thermal desorption of the Mo product from the oxide. (orig./PW) [de

  17. Comparison of sorption measurements on argillaceous rocks and bentonite with predictions using the SGT-E2 approach to derive sorption data bases

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M. H.; Baeyens, B; Marques Fernandes, M.

    2014-11-15

    In Stage 1 of the Sectoral Plan for Deep Geological Repositories, four rock types have been identified as being suitable host rocks for a radioactive waste repository, namely, Opalinus Clay for a high-level (HLW) and a low- and intermediate-level (L/ILW) repository, and 'Brauner Dogger', Effingen Member and Helvetic Marls for a L/ILW repository. Sorption data bases (SDBs) for all of these host rocks are required for the provisional safety analyses, including all of the bounding porewater and mineralogical composition combinations. In addition, SDBs are needed for the rock formations lying below Opalinus Clay (lower confining units) and for the bentonite backfill in the HLW repository. A detailed procedure was developed for deriving SDBs for argillaceous rocks (and bentonite) based on sorption edge measurements on illite (and montmorillonite), the hypothesis that 2:1 clay minerals are the dominant sorbents and a series of so called conversion factors which take into account the different radionuclide speciations in the different porewaters. Since this methodology for generating SDBs is relatively new, a validation and demonstration of the robustness and reliability of the sorption values derived was required. This report describes an extensive piece of work in which blind predictions of sorption values were compared with measured ones. Sorption isotherms were measured for the following metal ions Cs(I), Co(II), Ni(II), Eu(III), Th(IV) and U(VI) in a range of realistic porewater chemistries for a range of host rock mineralogies. In the end 53 isotherm data sets were measured. For each of these isotherms a prediction was made of the sorption at trace concentrations using the SDB derivation methodology. A comparison between measured and predicted values for each case was then made. This validation study shows that the methodology used for the derivation of the sorption data bases for argillaceous rocks and bentonite produces reliable sorption values. (authors)

  18. Sorption of radioiodine in organo-clays and -soils

    International Nuclear Information System (INIS)

    Bors, J.

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R D -value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY + ) and benzethonium (BE + ) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R D -values were found after cation exchange with hexadecyltrimethylammonium (HDTMA + ), while the applications of trimethylphenylammonium (TMPA + ) and tetramethylammonium (TMA + ) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.)

  19. Sorption of fomesafen in Brazilian soils

    OpenAIRE

    Silva,G.R.; D'Antonino,L.; Faustino,L.A.; Silva,A.A.; Ferreira,F.A.; Texeira,C.C.

    2013-01-01

    The study of the dynamics of a herbicide in the soil focus on the interactions with environmental components to obtain agronomic efficiency, ensuring selectivity to the culture and risk reduction of environmental impact. This study evaluated the sorption process of fomesafen in the Brazilian soils Ultisol, Cambisol, and Organosol. Besides soil, washed sand was used as an inert material for determination of the sorption ratio of fomesafen in the soil. The bioassay method was applied, using Sor...

  20. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity

    Science.gov (United States)

    Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.

    2000-01-01

    The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.

  1. Behavior of the sorption of {sup 60} Co in aqueous solution on inorganic materials as function of p H; Comportamiento de la sorcion del {sup 60} Co en solucion acuosa sobre materiales inorganicos como una funcion del pH

    Energy Technology Data Exchange (ETDEWEB)

    Granados, F.; Bulbulian, S.; Solache R, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Bertin, V. [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    The sorption of the {sup 60} Co is evaluated in aqueous solution on Mg O, MnO{sub 2}, TiO{sub 2}, Sn O, activated carbon and hydrotalcite calcined as a function of the p H, using the method for lots and quantifying at the {sup 60} Co for gamma spectrometry. Likewise it was explained the one behavior of the sorption of the {sup 60} Co in the materials with base in the chemical species of this radioactive isotope in aqueous solution. The chemical species of the {sup 60} Co in solution were identified by electrophoresis of high voltage for the different p H values. It was found that under the experimental conditions, the {sup 60} Co showed a significant sorption on MnO{sup 2}, TiO{sup 2} and activated carbon. On the other hand, in Mg O, Sn O and calcined hydrotalcite also was observed a sorption, although in smaller quantities. The studied hydrated metallic oxides retained the {sup 60} Co for ion exchange via. It was found that the {sup 60} Co was present as a cationic specie to p H 1, 3, 5 and 7 and like a neutral specie to alkaline p H. (Author)

  2. Sorption of thiabendazole in sub-tropical Brazilian soils.

    Science.gov (United States)

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  3. Phosphorus sorption in relation to soil grain size and geochemical ...

    African Journals Online (AJOL)

    By using stepwise regression, the combination of Al, Fe, clay and Ca predicted more than 94% of the variation in the P sorption capacity of soils samples from Simiyu and Kagera basins. These four soil properties, which are strongly related to P sorption, could therefore be used as quick tests for predicting the P sorption ...

  4. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22 0 C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90 0 C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22 0 C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables

  5. Arsenic Sorption on Mechanically Activated Magnetite and Olivine

    Directory of Open Access Journals (Sweden)

    Zdenka Bujňáková

    2012-12-01

    Full Text Available Arsenic sorption on mechanically activated minerals such as magnetite Fe3O4 (Kiruna, Sweden and olivine (Mg,Fe2SiO4 (Ǻheim,Norway has been studied and compared in this work. Experiments were carried out with non-activated and mechanically activatedsamples. The activation of both minerals was performed in a planetary mill at different milling conditions. The specific surface areaand consequent sorption activity were enhanced by mechanical activation. The using of olivine seems to be better than magnetite fromthe point of view of milling time, which is necessary for achievement of the same sorption effect.

  6. Sorption of chromium(III) and chromium(VI) on lead sulfide

    International Nuclear Information System (INIS)

    Music, S.

    1985-01-01

    The sorption of chromium(III) and chromium(VI) on lead sulfide was investigated in dependence on pH, time of sorption, and on the concnetrations of sorbate and sorbent. The mechanisms of the sorption of Crsup(3+) and CrOsub(4)sup(2-) traces on lead sulfide are discussed; a difference between CrOsub(4)sup(2-) sorption on PbS and α-Fesub(2)Osub(3) was found. Sulfates and molybdates affect the removal of chromates from aqueous solutions. Lead sulfide carrier prepared in this work was also used for the preconcentration of chromium(III) and chromium(VI) from tap water. (author)

  7. 2.6. Sorption of serum albumin by ethynyl-piperidol hydrogels

    International Nuclear Information System (INIS)

    Khalikov, D.Kh.

    2012-01-01

    The sorption of serum albumin by ethynyl-piperidol hydrogels was studied in this article. Albumins adsorption on the surface of solids was considered. The capacity of cross-linked ethynyl piperidol polymers to the serum albumin was considered as well. The kinetic curves of sorption of human serum albumin by triple copolymer of isopropenyl trimethyl ethynyl piperidol were constructed. Sorption activity of ethynyl-piperidol polymers depending on ph of solution of human serum albumin were defined. Influence of solution ionic strength on sorption of human serum albumin was defined as well. The desorption of human serum albumin from the complexes with hydrogels was examined.

  8. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Study of sorption of two sulfonylurea type of herbicides and their additives on soils and soil components.

    Science.gov (United States)

    Földényi, Rita; Tóth, Zoltán; Samu, Gyöngyi; Érsek, Csaba

    2013-01-01

    The sorption of two sulfonylurea type herbicides (chlorsulfuron: (1-(2-chlorophenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea; tribenuron methyl: (methyl-2-[N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3-(methyl-ureido)-sulfonyl]-benzoate) was studied on sand and chernozem soil adsorbents. Experimental results for solutions prepared from the pure ingredients were compared to those prepared from the appropriate formulated commercial products. At small concentrations, the extent of adsorption of the active ingredient was higher than from the formulation containing solutions. Environmental fate and effects of the forming agents are less investigated because they rarely have concentration limits recommended by authorities. In addition to the adsorption of active ingredients, therefore, the sorption behavior of a widely used additive Supragil WP (sodium diisopropyl naphthalene sulphonate) was also studied. This dispersant is an anionic forming agent applied in a lot of pesticide formulations. Using three different soils (sand, brown forest, chernozem) as adsorbents two-step isotherms were obtained. The role of the soil organic matter (OM) was significant in the adsorption mechanism because the adsorbed amounts of the dispersant correlated with the specific surface area as well as with the total organic carbon (TOC) content of the soils. The sorption behavior indicates the operation of hydrophobic interaction mechanism between the soil OM and the dispersant. These results are supported by our further sorption experiments on clays, too. Zeta potential measurements seem to be promising for the interpretation of multi-step isotherms. The application of this technique proved that higher concentrations of the anionic forming agent assisted the peptization of soil organic matter (SOM) resulting in stable colloidal solution dominated by negative charges. Since the pesticides investigated are also anionic at the studied pH (7 and 8.3) the dissolved organics lead to the

  10. Role of interlayer hydration in lincomycin sorption by smectite clays.

    Science.gov (United States)

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  11. Fast sorption measurements of volatile organic compounds on building materials: Part 1 – Methodology developed for field applications

    Directory of Open Access Journals (Sweden)

    M. Rizk

    2016-03-01

    Full Text Available A Proton Transfer Reaction-Mass Spectrometer (PTR-MS has been coupled to the outlet of a Field and Laboratory Emission Cell (FLEC, to measure volatile organic compounds (VOC concentration during a sorption experiments (Rizk et al., this issue [1]. The limits of detection of the PTR-MS for three VOCs are presented for different time resolution (2, 10 and 20 s. The mass transfer coefficient was calculated in the FLEC cavity for the different flow rates. The concentration profile obtained from a sorption experiment performed on a gypsum board and a vinyl flooring are also presented in comparison with the profile obtained for a Pyrex glass used as a material that do not present any sorption behavior (no sink. Finally, the correlation between the concentration of VOCs adsorbed on the surface of the gypsum board at equilibrium (Cse and the concentration of VOCs Ce measured in the gas phase at equilibrium is presented for benzene, C8 aromatics and toluene.

  12. Sorption, Photodegradation, and Chemical Transformation of Naproxen and Ibuprofen in Soils and Water

    Science.gov (United States)

    Vulava, V. M.; Cory, W. C.; Murphey, V.; Ulmer, C.

    2015-12-01

    Trace levels of pharmaceutically active compounds (PhACs) are increasingly being found in municipal drinking water and natural streams around the world. PhACs enter natural water systems after passing through wastewater treatment plants that have proven to be relatively inefficient at removing them. Once they are released into the environment, they can undergo (1) soil sorption, (2) photodegradation, and/or (3) chemical transformation into structurally similar compounds. The overarching goal of this study is to understand the geochemical fate of common PhACs in the environment. Here we report on our studies with naproxen (NAP) and ibuprofen (IBP) in soils and water. Both compounds are complex nonpolar (aromatic) organic molecules with polar (carboxylic acid) functional groups. The carboxylic functional groups are likely to be deprotonated at environmentally relevant pHs (~4-8). Sorption studies of both compounds were conducted in clean and relatively acidic (soil pH ~4.5-6.5) natural soils that contained varying levels of organic matter (OM), clay minerals, and Fe oxides. OM was observed to play an important role in each of the above three processes. Sorption was observed to be stronger and nonlinear in higher OM soils, while weaker but still significant in lower OM, higher clay soils; the amphiphilic nature of NAP and IBP combined with the complex charged and nonpolar surfaces available in the soil was observed to control the sorption behavior. Both NAP and IBP underwent rapid photodegradation in aqueous suspensions when exposed to simulated sunlight. The degradation rates were observed to change in the presence of humic acid or fulvic acid. During sorption and photodegradation experiments, common transformation products were observed for both NAP and IBP. The transformation products produced were indicative of chemical transformation and not biological factors. Concentrations of the transformation products were significantly higher in the photoexposed aqueous

  13. Geochemistry of REE in Acid Mine Drainage: Sorption onto Basaluminite and Schwertmannite.

    Science.gov (United States)

    Lozano Letellier, A.; Ayora, C.; Fernandez-Martinez, A.

    2017-12-01

    The geochemistry of Rare Earth Elements (REE) has been investigated in natural streams and in mine areas during the last decades. Most of these studies agree that REE are mobile in acidic waters and they transferred to a solid phase when pH increases. However, there is no agreement on the pH range, on which precipitates can retain REE and the mechanisms responsible for the retention. Thus, whereas some authors determined that hydrous ferric oxides (HFOs) scavenge REE from pH 3, other authors observed REE retention by hydrous aluminum oxides (HAOs) from pH 4 to 6.1. A field survey conducted in the Odiel River in the SW Spain showed that pH values higher than 5, REE, Cu, Al and Fe concentrations in the river were lower than expected from a theoretical mixture because they were trapped in the precipitates. For pH below 4, however, only schwertmannite (Fe8O8OH6SO4) and no basaluminite (Al4SO4OH10·5H2O) precipitated. Then, REE, Cu and Al behaved conservatively and Fe does not, indicating that REE are trapped in the Al but not in the Fe solid phase. These observations are perfectly consistent with the REE accumulation in the Al-rich precipitates in the AMD treatment systems. Taking into account these observations, sorption experiments with synthetic basaluminite and schwertmannite at different pH were performed in the laboratory. For Lanthanides and Yttrium, sorption edge took place at pH higher than 5, whereas Sc sorption started at pH 4. A surface complexation model is proposed to explain the retention mechanism onto these two precipitates. Both minerals, schwertmannite and basaluminite showed similar sorption behavior. However, as schwertmannite formation occurs at pH lower than 4, no REE elements are sorbed on it.

  14. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.

    Science.gov (United States)

    Chen, Hong; Chen, Shuo; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2008-12-01

    Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil-water distribution coefficients (K(oil)). The resulting oil-contaminated soil-water distribution coefficients (K(d)) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (C(oil)) but sorption-reducing (competitive) effects at intermediate C(oil) (approximately 1 g kg(-1)). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in K(d) at C(oil) above approximately 1 g kg(-1) were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.

  15. Thermodynamic parameters and sorption of U(VI) on ACSD

    International Nuclear Information System (INIS)

    Donat, R.; Cilgi, G.K.; Cetisli, H.; Aytas, S.

    2009-01-01

    This paper discusses the sorption properties for U(VI) by alginate coated CaSO 4 x 2H 2 O sepiolite and calcined diatomite earth (Kieselguhr) (ACSD). The removal of U(VI) from aqueous solution by sorption onto ACSF in a single component system with various contact times, pH, temperatures, and initial concentrations of U(VI) was investigated. The sorption patterns of uranium on the composite adsorbent followed the Langmuir, Freundlich and Dubinin-Radushkhevic (D-R) isotherms. The Freundlich, Langmuir, and D-R models have been applied and the data correlated well with Freundlich model and that the sorption was physical in nature (sorption energy, E a = 17.05 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK 0 vs. 1/T plots. Thermodynamic parameters (ΔH ads = 31.83 kJ/mol, ΔS ads = 167 J/mol x K, ΔGdeg ads (293.15 K) = -17.94 kJ/mol) showed the endothermic heat of sorption and the feasibility of the process. The thermodynamics of U(VI) ion/ACSD system indicates the spontaneous and endothermic nature of the process. It was noted that an increase in temperature resulted in a higher uranium loading per unit weight of the adsorbent. (author)

  16. Sorption of radioiodine in organo-clays and -soils

    Energy Technology Data Exchange (ETDEWEB)

    Bors, J. (Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany, F.R.))

    1990-01-01

    In the framework of investigations on the sorption of radioiodine to natural and artificially altered soil components, a number of clay minerals and natural soils were treated with quaternary alkylammonium ions to replace the exchangeable metal cations. With help of batch experiments the resulting organo-clays were tested with respect to their sorption capability of radioiodine quantified by the distribution ratio (R{sub D}-value). Treatment of bentonite, vermiculite and cretaceous clay as well as of samples from natural horizons of chernozem soil with hexadecylpyridinium (HDPY{sup +}) and benzethonium (BE{sup +}) exhibited sorptions rates and amounts, which are several orders of magnitude higher than those of the respective untreated samples. Moderate increases of the R{sub D}-values were found after cation exchange with hexadecyltrimethylammonium (HDTMA{sup +}), while the applications of trimethylphenylammonium (TMPA{sup +}) and tetramethylammonium (TMA{sup +}) were ineffective. Considerable sorption of radioiodine was observed with the commercially available Bentone. (orig.).

  17. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  18. Sorption of radionuclides on geologic media - A literature survey. I: Fission Products

    International Nuclear Information System (INIS)

    Andersson, K.; Allard, B.

    1983-01-01

    The fission products investigated were cobalt, nickel, strontium, cesium, technetium and iodine. Parameters of importance to sorption have been identified and a tabulation of distribution coefficients for groundwater conditions (pH 7-9, low to medium ionic strength) is included in the report. For cobalt and nickel the sorption is related to hydrolysis. High sorption is observed at a pH where hydrolysis become important and the sorption is high as long as cationic hydrolysis products are formed. When pH is increased or negatively charged hydrolysis products may be formed and the sorption decreases. For strontium hydrolysis is of no importance at the normal pH of groundwater, but in groundwater above pH 9 carbonate complexation may occur. For most minerals, the sorption is low, ususally with a pronounced pH dependence. Other important parameters are ionic strength and CEC. A nonselective sorption due to electrostatic interactions between negatively charged mineral surfaces and Sr 2+ seems to occur. For cesium no hydrolysis may be expected and pH has less importance than for Sr. For most minerals, however, the sorption of Cs is higher than for Sr. Important parameters are nuclide concentration and ionic strength. A selective for Cs-sorption is found for some minerals, mostly sheet-silicates. For technetium sorption is due to a reduction of TcO 4 - TcO 2 (s) and as anions are poorly sorbed, the sorption is dependent on the redox potential. Iodine is also anionic and poorly sorbed. Minerals containing ions capable of forming iodides with low solubility (Ag, Mg, Pb etc) are, however, sorbing I - . (Author)

  19. Comparing uranyl sorption complexes on soil and reference clays

    International Nuclear Information System (INIS)

    Chisholm-Brause, C.J.; Berg, J.M.; Conradson, S.D.; Morris, D.E.; McKinley, J.P.; Zachara, J.M.

    1993-01-01

    Clay minerals and other components in natural soils may play a key role in limiting the mobility of uranium in the environment through the formation of sorption complexes. Reference clays are frequently used as models to study sorption processes because they have well-known chemical and physical properties, but they may differ chemically and morphologically from clays derived from natural soils. Therefore, inferences based on reference clay data have been questioned. The authors have used luminescence and x-ray absorption spectroscopies to characterize the sorption complexes of aqueous uranyl (UO 2 2+ ) species on two soil smectites from the Kenoma and Ringold formations, and compared these results to those obtained on reference smectite clays. The pH dependence of uptake suggests that the ratio of sorption on amphoteric edge sites is greater for the soil smectites than for reference clays such as Wyoming montmorillonite (SWy-1). The luminescence spectra for uranyl sorbed to the soil clays are very similar to those for uranyl sorbed principally to the edge sites of SWy-1. This observation supports the solution data suggesting that adsorption to amphoteric sites is a more important mechanism for soil clays. However, the spectral data indicate that the sorption complexes on natural and reference clays are quite similar. Furthermore, as with the reference clays, the authors have found that the chemistry of the solution plays a greater role in defining the sorption complex than does the clay matrix. Thus, if differences in surface properties are adequately taken into account, the reference clays may serve as useful analogs for soil clays in investigations of metal-ion sorption

  20. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    Science.gov (United States)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  1. Sorption behaviour of perfluoroalkyl substances in soils.

    Science.gov (United States)

    Milinovic, Jelena; Lacorte, Silvia; Vidal, Miquel; Rigol, Anna

    2015-04-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonic acid (PFBS), was studied in six soils with contrasting characteristics, especially in the organic carbon content. Sorption isotherms were obtained by equilibrating the soil samples with 0.01 mol L(-1) CaCl2 solutions spiked with increasing concentrations of the target PFAS. The sorption reversibility of PFASs was also tested for some of the samples. Liquid chromatography coupled to tandem mass spectrometry was used to quantify the target PFASs in the solutions. Both the Freundlich and linear models were appropriate to describe the sorption behaviour of PFASs in soils, and enabled us to derive solid-liquid distribution coefficients (Kd) for each compound in each soil. Kd values increased from 19 to 295 mL g(-1) for PFOS, from 2.2 to 38 mL g(-1) for PFOA and from 0.4 to 6.8 mL g(-1) for PFBS, and were positively correlated with the organic carbon content of the soil. KOC values obtained from the correlations were 710, 96 and 17 mL g(-1) for PFOS, PFOA and PFBS, respectively. Whereas Kd values decreased in the sequence PFOS>PFOA>PFBS, desorption yields were lower than 13% for PFOS, from 24 to 58% for PFOA, and from 32 to 60% for PFBS. This shows that the physicochemical characteristics of PFASs, basically their hydrophobicity, controlled their sorption behaviour in soils, with PFOS being the most irreversibly sorbed PFAS. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Transport and sorption of volatile organic compounds and water vapor in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tsair-Fuh [Univ. of California, Berkeley, CA (United States)

    1995-07-01

    To gain insight on the controlling mechanisms for VOC transport in porous media, the relations among sorbent properties, sorption equilibrium and intraparticle diffusion processes were studied at the level of individual sorbent particles and laboratory columns for soil and activated carbon systems. Transport and sorption of VOCs and water vapor were first elucidated within individual dry soil mineral grains. Soil properties, sorption capacity, and sorption rates were measured for 3 test soils; results suggest that the soil grains are porous, while the sorption isotherms are nonlinear and adsorption-desorption rates are slow and asymmetric. An intragranular pore diffusion model coupled with the nonlinear Freundlich isotherm was developed to describe the sorption kinetic curves. Transport of benzene and water vapor within peat was studied; partitioning and sorption kinetics were determined with an electrobalance. A dual diffusion model was developed. Transport of benzene in dry and moist soil columns was studied, followed by gaseous transport and sorption in activated carbon. The pore diffusion model provides good fits to sorption kinetics for VOCs to soil and VOC to granular activated carbon and activated carbon fibers. Results of this research indicate that: Intraparticle diffusion along with a nonlinea sorption isotherm are responsible for the slow, asymmetric sorption-desorption. Diffusion models are able to describe results for soil and activated carbon systems; when combined with mass transfer equations, they predict column breakthrough curves for several systems. Although the conditions are simplified, the mechanisms should provide insight on complex systems involving transport and sorption of vapors in porous media.

  3. Investigation of rare earths sorption from sulfuric- and hydrochloric media

    International Nuclear Information System (INIS)

    Nikonov, V.N.; Mikhlin, E.B.; Norina, T.M.; Afonina, T.A.

    1978-01-01

    A rate of equilibrium attainment has been studied during REE sorption from sulfuric and hydrochloric acid solutions and pulps. It has been shown that equilibrium upon sorption from hydrochloric acid solutions is attained faster than from sulfuric acid solutions. Equilibrium upon sorption from pulps is attained considerably slower than upon sorption from solutions. In all cases REM of cerium subgroup are sorbed better. An effect has been studied of the medium acidity on sorbability of REM and elements of iron and calcium impurities. It has been established that sorbability of these elements decreases with increasing acid concentration. Selectivity of REM sorption from sulfuric acid solutions decreases with a rise in H 2 SO 4 concentration in the solution. For hydrochloric acid solutions it remains constant in a wide range of HCl concentrations. Sorption leaching of REM from concentrates and cakes of sulfuric and hydrochloric acids in the presence of KU-2 leads to high technical and economic indexes: extraction with respect to the total amount of REM and yttrium into a commercial product is 76-86% for sulfuric acid solutions and 81-90% for hydrochloric solutions

  4. Sorption of V and VI group metalloids (As, Sb, Te on modified peat sorbents

    Directory of Open Access Journals (Sweden)

    Ansone-Bertina Linda

    2016-01-01

    Full Text Available The present work investigates arsenic, antimony and tellurium sorption using iron modified peat. The results were obtained using batch tests and the sorption was studied as a function of initial metalloid concentration, pH and sorption time, as well as the presence of competing substances. The obtained results indicate that modification of peat with Fe compounds significantly enhances the sorption capacity of the sorbents used for sorption of arsenic, antimony and tellurium. The optimal pH interval for the sorption of Sb(III is 6.5–9 and for As(V and Sb(V – 3–6, while As(III and tellurium sorption using Fe-modified peat is favourable in a wider interval of 3–9. The presence of competing ions as well as HA affect sorption of metalloids on Fe-modified peat. A minor impact on the reduction of metalloid sorption was detected in the presence of nitrate, sulphate, carbonate and tartrate ions, while in the presence of phosphate and HA the sorption ability of metalloids can be considerably reduced. The obtained results of kinetic experiments indicate that sorption of metalloids on Fe-modified peat mainly occurs relying on mechanisms of physical sorption processes.

  5. Copper foliar sorption: study of cuticular uptake and penetration

    International Nuclear Information System (INIS)

    Chamel, Andre; Bougie, Bernadette

    1977-01-01

    Results show that copper is easily retained by enzymatically isolated cuticles from pear leaves discs. The sorption is very rapid during the first hour, then progressively slower with increasing time. Upper and lower cuticles exhibit the same sorption when immersed, but the sorption by the upper internal surface is greater than that by the external surface. Sorption depends on the dates of sampling of the leaves and vegetal species. The variation of the process with concentrations is hyperbolic. The retained copper may be partially exchanged: from 16 to 95% after 24 hours of exchange in a cupric solution, as the Cu concentration increases from 10 -6 to 10 -2 M. The penetration of copper through astomatous cuticular discs is extremely reduced if there is pure water in the receiver unit [fr

  6. Sorption behaviour of cobalt-60 on Suez Canal bottom sediments

    International Nuclear Information System (INIS)

    Abdel Gawad, S.A.; El-Shinawy, R.M.K.; Abdel Malik, W.E.Y.

    1981-01-01

    Mineralogical, elemental analysis and sorption behaviour of the Suez Canal bottom sediments in the Port Said area were investigated. It was found that the bottom sediment consist mainly of quartz, feldspars and traces of calcite mineral. The cation-exchange capacity was found to increase as the particle size of the sediment decreased. Sorption of 60 Co by the bottom sediment increased with contact time up to 6 h. Variation of the solution pH from 4 to 9 showed limited increase in the sorption of 60 Co. As carrier concentrations increase from 10 -7 N to 10 -3 N, sorption of Co was found to increase linearly following Freundlich isotherm. The presence of Mg 2+ and Fe 3+ in solution depressed the sorption of 60 Co by the sediments. The desorption of 60 Co from bottom sediment with distilled and Suez Canal water was found to increase with contact time. (author)

  7. Tritium sorption on protective coatings for concrete

    International Nuclear Information System (INIS)

    Miller, J.M.; Senohrabek, J.A.; Allsop, P.A.

    1992-11-01

    Because of the high sorption level of tritium on unprotected concrete, a program to examine the effectiveness of various concrete coatings and sealants in reducing tritium sorption was undertaken, and various exposure conditions were examined. Coatings of epoxy, polyurethane, bituminous sealant, bituminous sealant covered with polyvinylidene chloride wrap, alkyd paint, and sodium silicate were investigated with tritium (HTO) vapor concentration, humidity and contact time being varied. An exposure to HT was also carried out, and the effect of humidity on the tritium desorption rate was investigated. The relative effectiveness of the coatings was in the order of bituminous sealant + wrap > bituminous sealant > solvent-based epoxy > 100%-solids epoxy > alkyd paint > sodium silicate. The commercially available coatings for concrete resulted in tritium sorption being reduced to less than 7% of unprotected concrete. This was improved to ∼0.1% with the use of the Saran wrap (polyvinylidene chloride). The amount of tritium sorbed was proportional to tritium concentration. The total tritium sorbed decreased with an increase in humidity. A saturation effect was observed with increasing exposure time for both the coated and unprotected samples. Under the test conditions, complete saturation was not achieved within the maximum 8-hour contact time, except for the solvent-based epoxy. The desorption rate increased with a higher-humidity air purge stream. HT desorbed more rapidly than HTO, but the amount sorbed was smaller. The experimental program showed that HTO sorption by concrete can be significantly reduced with the proper choice of coating. However, tritium sorption on concrete and proposed coatings will continue to be a concern until the effects of the various conditions that affect the adsorption and desorption of tritium are firmly established for both chronic and acute tritium release conditions. Material sorption characteristics must also be considered in

  8. Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms.

    Science.gov (United States)

    Zhang, Liwen; Dong, Deming; Hua, Xiuyi; Guo, Zhiyong

    2018-06-01

    Natural biofilms have strong affinities for organic contaminants, and their extracellular polymeric substances (EPS) have been thought to control the sorption process. However, the role of EPS in the sorption of antibiotics, an emerging concern, is poorly understood. Here, soluble (SEPS) and bound EPS (BEPS) were extracted from intact biofilms incubated at different lengths of time to obtain SEPS- and BEPS-free biofilms. Batch sorption experiments and infrared spectroscopy were used to investigate the role of EPS in the sorption of ofloxacin (OFL) by natural biofilms. The sorption capacities of OFL onto intact biofilms were lower than that those onto SEPS-free and BEPS-free biofilms. Partition and Langmuir adsorption contributed to the sorption of OFL onto these biofilms. SEPS and BEPS suppressed partitioning of OFL into biofilm organic matter. Meanwhile, the formation of hydrogen bonds could affect the Langmuir adsorption of OFL onto BEPS-free biofilms. These sorption mechanisms occurred simultaneously and enhanced the sorption capacities of biofilms after EPS removal. The information obtained in this study is beneficial for understanding the interaction mechanisms between antibiotics and natural biofilms. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of sorption properties of nickel on chitosan; Studium sorpcnych vlastnosti niklu na chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Pivarciova, L; Rosskopfova, O; Galambos, M [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    Sorption of nickel on the selected sorbent was studied by a batch method. The effect of contact time and pH to reach sorption equilibrium was studied. During sorption of Ni{sup 2+} ions there proceed predominantly ion-exchange reactions on its surface. Time to reach sorption equilibrium of nickel on chitosan was 14 hours. Sorption percentage after 14 hours reached a value of 84 %. Solutions with starting pH value between 3.9 and 8.1 were used for sorption of nickel. A sorption of nickel on chitosan was > 97% in monitored interval of pH after 24 hours of contact . At an initial pH from 3.9 to 6.4 was the final pH 6.6 due to protonisation of amino groups. A pH value was 6.4 after sorption of 7.1. Sorption of nickel is reduced by increasing of concentrations of Ni{sup 2+} ions in the solution. Langmuir isotherm was used for interpretation of nickel sorption on chitosan. A maximum sorption capacity for chitosan was 2,67 {center_dot} 10{sup -3} mol/g{sup -}1. (authors)

  10. Sorption of radionuclides on hard rocks

    International Nuclear Information System (INIS)

    Berry, J.A.; Bourke, P.J.; Green, A.; Littleboy, A.K.

    1987-09-01

    Methods for measuring sorption on hard rocks, particularly of strontium, caesium, neptunium and americium on Darley Dale sandstone and Welsh slate have been investigated. The methods tried included batch tests with crushed rock and tests of simultaneous diffusion and convection with sorption on intact rock. High pressures (800m H 2 O) were used in the convective tests to pump water quickly through the rock samples and to measure high sorptivities in times shorter than those needed in the diffusive methods with intact samples. (author)

  11. Pollution and pollution tolerance as regards the sorption of organic chemicals in urban soils; Sorption organischer Chemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Wu Qinglan; Strehl, M. [Kiel Univ. (Germany). Inst. fuer Pflanzenernaehrung und Bodenkunde; Abend, S. [Kiel Univ. (Germany). Inst. fuer Anorganische Chemie; Rexilius, L. [Pflanzenschutzamt des Landes Schleswig-Holstein, Kiel (Germany); Schleuss, U. [Kiel Univ. (Germany). Oekologie-Zentrum]|[Zentrum fuer Agrarlandschafts- und Landnutzungsforschung Muencheberg (Germany)

    1997-12-31

    The behaviour of pollutants in soils concerning, for example, their immobilisation, transport, biodegradation, or uptake by useful plants is to large degree determined by the sorption properties of the soil in question. The degree of sorption is an all-important parameter in any model description of the behaviour of pollutants in soils. The aim of the present part-project was to estimate by means of simple field methods the binding capacity of anthropogenic urban soils for environmentally consequential organic chemicals and to assess the results with regard to soil and water protection. [Deutsch] Das Verhalten von Schadstoffen in Boeden, wie z.B. Immobilisierung, Transport, biologischer Abbau, Aufnahme durch Kulturpflanzen, wird von den Sorptionseigenschaften im Boden wesentlich beeinflusst. Bei allen Modellbeschreibungen ueber das Verhalten von Schadstoffen in Boeden ist die Staerke der Sorption ein unersetzbarer Parameter. Ziel dieses Teilprojektes war es, das Bindungsvermoegen der anthropogenen Stadtboeden fuer umweltrelevante organische Chemikalien mittels einfacher Feldmethoden abzuschaetzen und im Hinblick auf Boden- und Gewaesserschutz zu bewerten. (orig./SR)

  12. CO2 sorption of a ceramic separation membrane

    NARCIS (Netherlands)

    Wormeester, Herbert; Benes, Nieck Edwin; Spijksma, G.I.; Verweij, H.; Poelsema, Bene

    2004-01-01

    The ellipsometric characterization of the CO2 sorption of a silica membrane provides a fast and accurate technique for the characterization of maximum sorption and the heat of adsorption. Both parameters are evaluated for the 73 nm thick silica layer as well as the 1650 nm thick supporting γ-layer.

  13. Status report on SIRS: sorption information retrieval system

    International Nuclear Information System (INIS)

    Hostetler, D.D.; Serne, R.J.; Baldwin, A.J.; Petrie, G.M.

    1980-11-01

    Two major uses were identified for the Sorption Information Retrieval System: (1) to aid geochemists in the elucidation of sorption mechanisms; and (2) to aid safety assessment modelers in selection of Kds for any given scenerio. Other benefits such as providing an auditable vehicle for the Kd selection were also discussed

  14. Study of the sorption properties of the peat for removal of heavy metals

    International Nuclear Information System (INIS)

    Hayrapetyan, S.S.; Gevorgyan, S.A.; Hayrapetyan, L.S.; Bareghamyan, S.F.; Pirumyan, G.P.

    2016-01-01

    The processes of sorption of several heavy metals on peat samples taken from basin of lake Sevan (near Vardenis Gegharkunik region of Armenia) were investigated. The peat samples were taken from different locations from 1 m depth. The sorption processes have been done in the static mode. The peat samples were used without any modification, i.e. the sorption properties of natural raw peat were studied. The studies were conducted on the basis of synthetic solution containing ions of these following metals - Ni, Co, As, U, Ba. The sorption properties of peat were estimated by ICP-MS. Thus, peat can be a very effective sorption medium for removal of heavy metals from water. Most of them are absorbed in the first minutes of peat exposure to aqueous solution. For the sorption of barium, uranium, arsenic peat exhibits very high sorption efficiency. For comparison, their relative sorption values about 10 times more than those of cobalt, nickel and zinc.

  15. Review of sorption models, and their suitability for use in performance assessments

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-02-01

    The sorption of radionuclides on mineral surfaces is an important mechanism for retarding the movement of radionuclides from a geological nuclear fuel disposal vault, through the geosphere, to the biosphere. Sorption processes are known to increase the travel times for some radionuclides by 103 to 106 times relative to the groundwater flow, and this delay can provide the opportunity for radioactive decay before the radionuclide enters the biosphere. Sorption models are, or can be, used as a means of including the effects of sorption in the transport equations which describe the movement of radionuclides through the geosphere. Sorption models are, or could be, based on sorption isotherms, such as the Langmuir and Freundlich isotherms, ion-exchange models, surface-complexation models, or parametric models that are, essentially, interpolated databases. All national nuclear fuel waste disposal programs currently assume the linear adsorption isotherm, which states that the degree of sorption on a surface is a linear function of the concentration of sorbing ion in solution. The sorption models that are, or could be, applied to the movement of radionuclides in the geosphere are reviewed. It is concluded that, at the present state of knowledge, no single model has been demonstrated to provide an adequate description of radionuclide sorption. Reasons for this inadequacy vary, ranging from lack of data, through restricted ability to describe sorption under a variety of conditions, to current levels of development of the models. It is concluded that a parametric model, associated with a linear sorption isotherm, is currently the most practical choice that can be made. Following the completion of an earlier draft of this report, a new approach to surface complexation modelling, the 'discrete-log-K-spectrum' model, was published. This model appears to have the potential to achieve a synthesis of many of the concepts used in sorption modelling. For this reason, a description of

  16. Interim report on modeling sorption with EQ3/6

    International Nuclear Information System (INIS)

    Viani, B.

    1988-01-01

    Reversible, equilibrium models of sorption to be incorporated into the EQ3/6 geochemical modeling package are summarized. Empirical sorption models as formulated in linear, Langmuir, and Freundlich isotherms will be developed as options to EQ3/6. This work will be done at LLNL. Options for modeling sorption using surface- complexation constructs (diffuse, constant capacitance, and triple-layer models) will also be developed. Development of the surface-complexation options will require part of the work be done under contract. 27 refs., 1 fig

  17. Implementation of sorption hysteresis in multi-Fickian moisture transport

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Svensson, Staffan

    2007-01-01

    In the cellular structure of wood, bound-water diffusion and water-vapor diffusion interact via sorption in a complex moisture-transportation system. At low relative humidities, moisture transport may be modeled by a Fickian diffusion equation with a good approximation. At higher relative......-35% in moisture content. Hence, for a precise moisture content computation, sorption hysteresis must be taken into account. The present paper explains the relation between sorption hysteresis and multi-Fickian moisture transport, and clarifies how models for the two phenomena are coupled. To illustrate...

  18. 3D characterization of coal strains induced by compression, carbon dioxide sorption, and desorption at in-situ stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pone, J. Denis N.; Halleck, Phillip M.; Mathews, Jonathan P. [Department of Energy and Mineral Engineering and The EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-01

    Sequestration of carbon dioxide in unmineable coal seams is an option to combat climate change and an opportunity to enhance coalbed methane production. Prediction of sequestration potential in coal requires characterization of porosity, permeability, sorption capacity and the magnitude of swelling due to carbon dioxide uptake or shrinkage due to methane and water loss. Unfortunately, the majority of data characterizing coal-gas systems have been obtained from powdered, unconfined coal samples. Little is known about confined coal behavior during carbon dioxide uptake and methane desorption. The present work focuses on the characterization of lithotype specific deformation, and strain behavior during CO{sub 2} uptake at simulated in-situ stress conditions. It includes the evaluation of three-dimensional strain induced by the confining stress, the sorption, and the desorption of carbon dioxide. X-ray computed tomography allowed three-dimensional characterization of the bituminous coal deformation samples under hydrostatic stress. The application of 6.9 MPa of confining stress contributes an average of - 0.34% volumetric strain. Normal strains due to confining stress were - 0.08%, - 0.15% and - 0.11% along the x, y and z axes respectively. Gas injection pressure was 3.1 MPa and the excess sorption was 0.85 mmol/g. Confined coal exposed to CO{sub 2} for 26 days displays an average volumetric expansion of 0.4%. Normal strains due to CO{sub 2} sorption were 0.11%, 0.22% and 0.11% along x, y and z axes. Drainage of the CO{sub 2} induced an average of - 0.33% volumetric shrinkage. Normal strains due to CO{sub 2} desorption were - 0.23%, - 0.08% and - 0.02% along x, y and z axes. Alternating positive and negative strain values observed along the sample length during compression, sorption and desorption respectively emphasized that both localized compression/compaction and expansion of coal will occur during CO{sub 2} sequestration. (author)

  19. Enhanced chlorophenol sorption of soils by rice-straw-ash amendment

    International Nuclear Information System (INIS)

    Liu, Jen-Chyi; Tzou, Yu-Min; Lu, Yi-Hsien; Wu, Jeng-Tzung; Cheng, Mei-Ping; Wang, Shan-Li

    2010-01-01

    Rice-straw burning is a common post-harvest practice on rice paddy land, which results in the accumulation of rice-straw ash (RSA) in paddy soil. Because the occurrence of RSA in soil may affect the fate and transport of contaminants, this study investigated the sorption of 3-chlorophenol (3-CP) on RSA and RSA amended soils to evaluate the sorptive properties of RSA in soils. The results showed that the sorption of 3-CP to RSA proceeds through a surface reaction rather than through partitioning and that the neutral form of 3-CP is preferentially sorbed to the surface when compared to the deprotonated anionic form of 3-CP. The addition of RSA to the soils enhanced the overall 3-CP sorption, indicating that RSA amendment may be applied to retard the movement of 3-CP in contaminated soils. As the RSA content in the soils was increased from 0% to 2%, the Langmuir sorption maximum of the soils increased from 18-80 to 256-274 mg kg -1 . Thus, RSA contributed more to the total sorption of the soils than other major components in the soils. Nonetheless, the 3-CP sorption of the soils containing RSA was less than the combination of pure RSA and the soils, thereby indicating that the 3-CP sorption of RSA was suppressed. This may be attributed to the competition of organic matter or other soil components for the surface binding sites of RSA.

  20. Associating Physical and Chemical Properties to Evaluate Buffer Materials by Th and U Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Lin; Chen, Tzu-Yun; Cheng, Hwai-Ping; Hsu, Chun-Nan; Tseng, Chia-Liang; Wei,Yuan-Yaw; Yang, Jen-Yan; Ke, Cheng-Hsiung; Chuang, Jui-Tang; Teng, Shi-Ping

    2003-02-27

    The physical and chemical properties of buffer materials to be used for a radwaste disposal repository should be evaluated prior to use. In a conventional approach, independent studies of physical and/or chemical characteristics are conducted. This study investigated the relationship between the plastic index (PI) and distribution ratio (Rd) of buffer materials composed of varying ratios of quartz sand and bentonite. Thorium (Th) and Uranium (U) were the nuclides of interest, and both synthetic groundwater and seawater were used as the liquid phases to simulate conditions representative of deep geological disposal within an island. Atterberg tests were used to determine PI values, and batch sorption experiments were employed to measure Rd values. The results show that Th reached maximum sorption behavior when the bentonite content exceeded 30 % of the mixture. Contrariwise, the sorption of U increased linearly with bentonite content, up to bentonite contents of 100%, and this correlation was present regardless of the liquid phase used. A further result is that U has a better additivity with respect to Rd than Th in both synthetic groundwater and synthetic seawater. These results will allow a determination of more effective buffer material composition, and improved estimates of the overall Rd of the buffer material mixture from the Rd of each mineral component.

  1. A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.

    Science.gov (United States)

    Shaheen, Sabry M; Tsadilas, Christos D; Rinklebe, Jörg

    2013-12-01

    Knowledge about the behavior and reactions of separate soil components with trace elements (TEs) and their distribution coefficients (Kds) in soils is a key issue in assessing the mobility and retention of TEs. Thus, the fate of TEs and the toxic risk they pose depend crucially on their Kd in soil. This article reviews the Kd of TEs in soils as affected by the sorption system, element characteristics, and soil colloidal properties. The sorption mechanism, determining factors, favorable conditions, and competitive ions on the sorption and Kd of TEs are also discussed here. This review demonstrates that the Kd value of TEs does not only depend on inorganic and organic soil constituents, but also on the nature and characteristics of the elements involved as well as on their competition for sorption sites. The Kd value of TEs is mainly affected by individual or competitive sorption systems. Generally, the sorption in competitive systems is lower than in mono-metal sorption systems. More strongly sorbed elements, such as Pb and Cu, are less affected by competition than mobile elements, such as Cd, Ni, and Zn. The sorption preference exhibited by soils for elements over others may be due to: (i) the hydrolysis constant, (ii) the atomic weight, (iii) the ionic radius, and subsequently the hydrated radius, and (iv) its Misono softness value. Moreover, element concentrations in the test solution mainly affect the Kd values. Mostly, values of Kd decrease as the concentration of the included cation increases in the test solution. Additionally, the Kd of TEs is controlled by the sorption characteristics of soils, such as pH, clay minerals, soil organic matter, Fe and Mn oxides, and calcium carbonate. However, more research is required to verify the practical utilization of studying Kd of TEs in soils as a reliable indicator for assessing the remediation process of toxic metals in soils and waters. © 2013 Elsevier B.V. All rights reserved.

  2. Design and development of a four-cell sorption compressor based J-T cooler using R134a as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, R. N. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076, India and Government Engineering College Bharuch, Gujarat - 392002 (India); Bapat, S. L.; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai - 400076 (India)

    2014-01-29

    The need of a cooler with no electromagnetic interference and practically zero vibration has led to sorption compressor based Joule-Thomson (J-T) coolers. These are useful for sophisticated electronic, ground based and space borne systems. In a Sorption compressor, adsorbed gases are desorbed into a confined volume by raising temperature of the sorption bed resulting in an increase in pressure of the liberated gas. In order to have the system (compressor) functioning on a continuous basis, with almost a constant gas flow rate, multiple cells are used with the adaptation of Temperature Swing Adsorption (TSA) process. As the mass of the desorbed gas dictates the compressor throughput, a combination of sorbent material with high adsorption capacity for a chosen gas or gas mixture has to be selected for efficient operation of the compressor. Commercially available (coconut-shell base) activated carbon has been selected for the present application. The characterization study for variation of discharge pressure is used to design the Four-cell sorption compressor based cryocooler with a desired output. Apart from compressor, the system includes a) After cooler b) Return gas heat exchanger c) capillary tube as the J-T expansion device and d) Evaporator.

  3. Insights into an intriguing gas sorption mechanism in a polar metal–organic framework with open-metal sites and narrow channels

    KAUST Repository

    Forrest, Katherine A.

    2014-01-01

    Simulations of H2 and CO2 sorption were performed in the metal-organic framework (MOF), [Cu(Me-4py-trz-ia)]. This MOF was recently shown experimentally to exhibit high uptake for H2 and CO2 sorption and this was reproduced and elucidated through the simulations performed herein. Consistent with experiment, the theoretical isosteric heat of adsorption, Qst, values were nearly constant across all loadings for both sorbates. The simulations revealed that sorption directly onto the open-metal sites was not observed in this MOF, ostensibly a consequence of the low partial positive charges of the Cu2+ ions as determined through electronic structure calculations. Sorption was primarily observed between adjacent carboxylate oxygen atoms (site 1) and between nearby methyl groups (site 2) of the organic linkers. In addition, saturation of the most energetically favorable sites (site 1) is possible only after filling a nearby site (site 2) first due to the MOF topology. This suggests that the lack of dependence on loading for the Qst is due to the concurrent filling of sites 1 and 2, leading to an observed average Qst value. © 2014 the Partner Organisations.

  4. Sorption of radionuclides from spent fuel in crystalline rocks

    International Nuclear Information System (INIS)

    Nikula, A.

    1982-10-01

    The safe disposal of spent nuclear fuel or reprocessed waste is an essential element in the expansion of the nuclear power industry. Stable rock formations e.g. granite are considered to be potential sites for disposal. A major factor in evaluating the degree of safety of the disposal is the sorption of radionuclides in rock, which affects their retardation. The report considers the chemical forms of the hazardous radionuclides of spent nuclear fuel in groundwater and the effects of the water's properties on them. In the groundwater near the Olkiluoto power plant site cesium, strontium and radium are in cationic form, iodine as I - . Technetium would occur as TcO +2 , but the pertechnetate form is also possible. Uranium most probably would be as U(VI) plutonium and neptunium as Np(IV) or Np(V). The valences for thorium, americium and curium are not changed in this groundwater and would be +4, +3 and +3, respectively. The actinides in groundwater are all in hydrated or complex form. An increase on the ionic stregth of the groundwater in most instances causes a decrease in the sorption of nuclides since the ion exchange capacity of the rock is limited. Anionic ligands also decrease sorption of cations by complex formation. In some case, on the other hand, high salt concentrations may cause formation of radiocolloids of lanthanides and neptunium and thus increase sorption. In all cases the degree of sorption described by the distribution ratio Ksub(d) was influenced by the pH of the groundwater. Sorption of cesium and strontium increased with growing pH. The sorption behaviour of actinides was in positive correlation with formation of hydroxide complexes at different pH values. The Ksub(d) values of Cs, Sr, Co, Ni and Am for Olkiluoto granites were found to agree with Swedish values, also determined at ambient atmospheric conditions

  5. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  6. Thallium(I) sorption using Prussian blue immobilized in alginate capsules.

    Science.gov (United States)

    Vincent, Thierry; Taulemesse, Jean-Marie; Dauvergne, Agnès; Chanut, Thomas; Testa, Flaviano; Guibal, Eric

    2014-01-01

    Prussian blue (PB) was immobilized in alginate capsules. The composite sorbent was used for the recovery of Tl(I) ions from slightly acidic solutions: optimum pH being close to 4. The sorption isotherm can be described by the bi-site Langmuir sorption isotherm. This means that the metal ion can be bound through two different sorption sites: one having a strong affinity for Tl(I) (probably PB), the other having a lower affinity (probably the encapsulating material). The kinetics are described by either the pseudo-second order rate equation or the Crank's equation (resistance to intraparticle diffusion). The ionic strength (increased by addition of NaCl, KCl or CaCl₂) slightly decreased sorption capacity. The SEM-EDX analysis of PB-alginate capsules (before and after Tl(I) sorption) shows that the PB is homogeneously distributed in the capsules and that all reactive groups remain available for metal binding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    Science.gov (United States)

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  8. Impact of water quality parameters on the sorption of U(VI) onto hematite

    International Nuclear Information System (INIS)

    Zhao Donglin; Wang Xianbiao; Yang Shitong; Guo Zhiqiang; Sheng Guodong

    2012-01-01

    In this study, the sorption of U(VI) from aqueous solution on hematite was studied as a function of various water quality parameters such as contact time, pH, ionic strength, soil humic acid (HA) or fulvic acid (FA), solid content and temperature by using a batch technique. The results demonstrated that the sorption of U(VI) was strongly dependent on ionic strength at pH 6.0 and the sorption was mainly dominated by inner-sphere surface complexation. The presence of HA/FA increases U(VI) sorption at low pH, whereas decreases U(VI) sorption at high pH. The thermodynamic parameters (ΔH 0 , ΔS 0 , and ΔG 0 ) were calculated from the temperature dependent sorption isotherms, and the results suggested that U(VI) sorption was a spontaneous and endothermic process. The results might be important for the application of hematite in U(VI) pollution management. Highlights: ► The sorption of U(VI) was strongly dependent on ionic strength at pH 6.0. ► A positive effect of HA/FA on U(VI) sorption was found at low pH, whereas a negative effect was observed at high pH. ► U(VI) sorption was a spontaneous and endothermic process. ► The results are quite important for the application of hematite in U(VI) pollution management.

  9. Sorption of molybdenum by cellulose polyphosphate from acid solutions

    International Nuclear Information System (INIS)

    Luneva, N.K.; Oputina, A.G.; Ermolenko, I.N.

    1985-01-01

    The sorption of molybdenum on cellulose polyphosphate from acid solutions of ammonium molybdate depending on the phosphorus content in samples, concentration and pH of the solution, sorption time is studied. It is shown that a maximum molybdenum content on the cellulose samples with different phosphorus content is pointed out at an ammonium molybdate concentration 0.02 M. Saturation of the sorption curve is attained at molar ratio of adsrbed molybdenum to phosphorus 1:4. In case of small fillings the compound with molybdenum to phosphorus ratio 1:10 is formed

  10. Evaluation of sorption affinity of cadmium(II) on Haro river sand from aqueous solutions

    International Nuclear Information System (INIS)

    Hasany, S.M.; Chaudhary, M.H.

    2001-01-01

    The sorption of Cd(II) on Haro river sand from deionized water is reported. The sorption system obeyed according to the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich parameters 1/n = 0.67±0.05 and of A = 1.38±1.14 mmole x g -1 have been ascertained. D-R isotherm yields the values of β = -0.003741±0.000321 kJ 2 x mole -2 , X m = 0.23±0.21 μmole x g -1 and of E = 11.6±0.5 kJ x mole -1 . The influence of common anions and cations on the sorption was examined. Trivalent Bi enhances the sorption whereas Fe, Cr, Al and chromate ions reduce the sorption significantly. Hf(IV) and Ag(I) indicate substantial sorption (61-98%) whereas Gd(III), Re(VII) and Sc(III) show low sorption (<5%). The elements having low sorption can be separated from elements indicating higher sorption using Haro river sand column. (author)

  11. Sorption-desorption characteristics of benzimidazole based fungicide 2-(4-fluorophenyl)-1h-benzimidazole on physicochemical properties of selected pakistani soils

    International Nuclear Information System (INIS)

    Ahmad, K.S.

    2014-01-01

    A batch equilibrium method has been utilized to investigate the sorption-desorption behavior of a versatile cost-effective fungicide2-(4-fluorophenyl)-1H-benzimidazole) FBNZ on four Pakistani soils geographically distant, from hilly to desert areas. FBNZ is a newly synthesized fungicide prepared in the laboratory and is cost effective than the commercially available fungicides. The adsorption and desorption data were fitted to the Freundlich equation, with values of na = 1, which points to a C-type isotherm. Sorption increases with soil organic carbon content, with greater degree of adsorption for hilly soil and least adsorption on sandy soil of Multan, Punjab. Desorption studies reveal that the adsorbed fungicide are firmly retained by soil particles and present a certain degree of irreversibility. The results indicate that the soil organic matters followed by clay content are the most important soil properties governing the fungicide sorption capacity. (author)

  12. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Science.gov (United States)

    Saha, Asit; Pal, Nikhil; Chatterjee, Prasanta

    2014-10-01

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  13. Dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Rangpo, East-Sikkim 737136 (India); Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India); Pal, Nikhil; Chatterjee, Prasanta, E-mail: asit-saha123@rediffmail.com, E-mail: prasantachatterjee1@rediffmail.com [Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan-731235 (India)

    2014-10-15

    The dynamic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas with superthermal electrons and positrons has been investigated in the framework of perturbed and non-perturbed Kadomtsev-Petviashili (KP) equations. Applying the reductive perturbation technique, we have derived the KP equation in electron-positron-ion magnetoplasma with kappa distributed electrons and positrons. Bifurcations of ion acoustic traveling waves of the KP equation are presented. Using the bifurcation theory of planar dynamical systems, the existence of the solitary wave solutions and the periodic traveling wave solutions has been established. Two exact solutions of these waves have been derived depending on the system parameters. Then, using the Hirota's direct method, we have obtained two-soliton and three-soliton solutions of the KP equation. The effect of the spectral index κ on propagations of the two-soliton and the three-soliton has been shown. Considering an external periodic perturbation, we have presented the quasi periodic behavior of ion acoustic waves in electron-positron-ion magnetoplasmas.

  14. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2012-01-01

    Highlights: ► Organic pollutants are present as complex mixtures in the marine environment. ► The competitive sorption of phenanthrene and DDT in a bi-solute system was investigated onto PVC and PE. ► DDT outcompeted phenanthrene for sorption onto plastic. ► DDT also appeared to have a negative effect on the sorption of phenanthrene onto plastic when added at high concentration. - Abstract: Plastics are known to sorb persistent organic pollutants from seawater. However, studies to quantify sorption rates have only considered the affinity of chemicals in isolation, unlike the conditions in the environment where contaminants are present as complex mixtures. Here we examine whether phenanthrene and 4,4′-DDT, in a mixture, compete for sorption sites onto PVC with no added additives (unplasticised PVC or uPVC) and Ultra-High Molecular Weight polyethylene. Interactions were investigated by exposing particles of uPVC and UHMW PE to mixtures of 3H and 14C radiolabelled Phe and DDT. Changes in sorption capacity were modelled by applying a Freundlich binding sorption isotherms. An Extended Langmuir Model and an Interaction Factor Model were also applied to predict equilibrium concentrations of pollutants onto plastic. This study showed that in a bi-solute system, DDT exhibited no significantly different sorption behaviour than in single solute systems. However, DDT did appear to interfere with the sorption of Phe onto plastic, indicating an antagonistic effect.

  15. The sorption of uranium and technetium on bentonite, tuff and granodiorite

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Cowper, M.M.; Heath, T.G.; Tweed, C.J.

    1995-01-01

    A combined experimental and modeling study of the sorption of uranium and technetium on geological materials has been carried out as part of the PNC program to increase confidence in the performance assessment for a high-level radioactive waste (HLW) repository in Japan. Batch sorption experiments have been performed in order to study the sorption of uranium and technetium onto bentonite, tuff and granodiorite from both equilibrated seawater and de-ionized water under strongly-reducing and non-reducing conditions. A preliminary study of the sorption of uranium on mineral surfaces in granodiorite has also been undertaken using a nuclear microprobe. Mathematical modeling using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database has been carried out in order to interpret the results of the sorption experiments

  16. Fe(III)-EDDHA and -EDDHMA sorption on Ca-montmorillonite, ferrihydrite, and peat.

    Science.gov (United States)

    Hernández-Apaolaza, L; Lucena, J J

    2001-11-01

    The effectiveness of Fe chelates as Fe sources and carriers in soil can be severely limited by the adsorption of Fe chelates or chelating agents in the solid phase. To study this phenomenon, well-characterized peat, Ca-montmorillonite, and ferrihydrite were used as model compounds, and the adsorption of Fe-EDDHA and Fe-EDDHMA chelates were studied. Sorption isotherms for the meso and racemic isomers of these chelates on the soil materials are described. The variability of sorption with pH in peat and ferrihydrite was also determined because both have variable surface charge at different pH values. In montmorillonite, at low concentrations, the retention of Fe from the Fe-EDDHMA chelate is greater than the one of the Fe-EDDHA chelate. As well as the concentration increased, the inverse situation occurs. The behavior of both meso and racemic isomers of chelates in contact with Ca-montmorillonite is similar. The Fe-meso-EDDHA isomer was highly adsorbed on ferrihydrite, but the racemic isomer is not significantly retained by this oxide. For Fe-EDDHMA isomers, the racemic isomer was more retained by the oxide, but a small sorption of the racemic isomer was also observed. Results suggest that Fe-EDDHA chelates were more retained in peat than Fe-EDDHMA chelates. The most retained isomer of Fe-EDDHA was the meso isomer. For Fe-EDDHMA, the adsorption was very low for both racemic and meso isomers.

  17. Sorption of Triangular Silver Nanoplates on Polyurethane Foam

    Science.gov (United States)

    Furletov, A. A.; Apyari, V. V.; Garshev, A. V.; Volkov, P. A.; Tolmacheva, V. V.; Dmitrienko, S. G.

    2018-02-01

    The sorption of triangular silver nanoplates on polyurethane foam is investigated as a procedure for creating a nanocomposite sensing material for subsequent use in optical means of chemical analysis. Triangular silver nanoplates are synthesized and characterized, and a simple sorption technique for the formation of a composite material based on these nanoplates is proposed.

  18. Sorption of cesium, strontium, and technetium onto organic-extracted shales

    International Nuclear Information System (INIS)

    Ho, P.C.

    1992-01-01

    The sorption of Cs(I), Sr(II), and Tc(VII) onto organic-extracted shales from synthetic brine groundwaters and from 0.03-M NaHCO 3 solution under oxid conditions at room temperature has been studied. The shale samples used in this study were Pumpkin Valley, Upper Dowelltown, Pierre and Green River Formation Shales. The organic content of these shales ranges from less than 2 wt% to 13 wt%. Soxhlet extraction with chloroform and a mixture of chloroform and methanol removed 0.07 to 5.9 wt% of the total organic matter from these shales. In comparison with the results of sorption of these three metal ions onto the corresponding untreated shales, it was observed that there were moderate to significant sorption decreases of Cs(I) and Sr(II) on all four organic-extracted shale samples and moderate sorption decrease of Tc(VII) on the organic-extracted Pumpkin Valley, Pierre, and Green River Shale samples, but only moderate sorption increases of Tc(VII) on the organic-extracted Upper Dowelltown Shale samples from the brine groundwaters. Nevertheless, sorption of Cs(I), Sr(II), and Tc(VII) on all four organic-extracted shale samples from the bicarbonate solution in most cases did not show a consistent pattern. (orig.)

  19. Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms

    International Nuclear Information System (INIS)

    Salvestrini, Stefano; Leone, Vincenzo; Iovino, Pasquale; Canzano, Silvana; Capasso, Sante

    2014-01-01

    Highlights: • Different methods to derive sorption thermodynamic parameters have been discussed. • ΔG° and, ΔS° values depend on the selected standard states. • Isosteric heat values help in evaluating the applicability of the sorption models. -- Abstract: This is a comparative analysis of popular methods currently in use to derive sorption thermodynamic parameters from temperature dependence of sorption isotherms. It is emphasized that the standard and isosteric thermodynamic parameters have sharply different meanings. Moreover, it is shown with examples how the sorption model adopted conditions the standard state and consequently the value of ΔG° and ΔS°. These trivial but often neglected aspects should carefully be considered when comparing thermodynamic parameters from different literature sources. An effort by the scientific community is needed to define criteria for the choice of the standard state in sorption processes

  20. Water sorption and transport in dry crispy bread crust

    NARCIS (Netherlands)

    Meinders, M.B.J.; Nieuwenhuijzen, van N.H.; Tromp, R.H.; Hamer, R.J.; Vliet, van T.

    2010-01-01

    Water sorption and dynamical properties of bread crust have been studied using gravimetric sorption experiments. Water uptake and loss were followed while relative humidity (RH) was stepwise in- or decreased (isotherm experiment) or varied between two adjusted values (oscillatory experiment).

  1. Sorption of uranyl ions on hydrous silicon dioxide

    International Nuclear Information System (INIS)

    Lieser, K.H.; Quandt-Klenk, S.; Thybusch, B.

    1992-01-01

    Sorption of uranyl ions on SiO 2 .χH 2 O (silica gel) is investigated in absence and in presence of carbonate as function of pH. The curves obtained are very similar to those observed for sorption of uranyl ion on TiO 2 .χH 2 O, indicating the dominating influence of the uranium species in solution. Between pH 2 and 5 the sorption ratio R s increases with hydrolysis of uranyl ions (formation of UO 2 OH + ), around pH 7 it is nearly independent of pH, and at higher pH it decreases again. The equilibrium constants are calculated for these ranges. In presence of carbonate R s decreases drastically above pH 6, due to the formation of carbonato complexes in solution. Sorption of uranyl ions on SiO 2 .χH 2 O, on TiO 2 .χH 2 O, and on cryst. SiO 2 and Al 2 O 3 is compared. The problems of 'surface complexation' modelling are discussed. (orig.)

  2. Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI, Cu(II and Zn(II—Hydrazide Derivative of Glycine-Grafted Chitosan

    Directory of Open Access Journals (Sweden)

    Mohammed F. Hamza

    2017-05-01

    Full Text Available A new magnetic functionalized derivative of chitosan is synthesized and characterized for the sorption of metal ions (environmental applications and metal valorization. The chemical modification of the glycine derivative of chitosan consists of: activation of the magnetic support with epichlorohydrin, followed by reaction with either glycine to produce the reference material (i.e., Gly sorbent or glycine ester hydrochloride, followed by hydrazinolysis to synthesize the hydrazide functionalized sorbent (i.e., HGly sorbent. The materials are characterized by titration, elemental analysis, FTIR analysis (Fourrier-transform infrared spectrometry, TGA analysis (thermogravimetric analysis and with SEM-EDX (scanning electron microscopy coupled to energy dispersive X-ray analysis. The sorption performances for U(VI, Cu(II, and Zn(II are tested in batch systems. The sorption performances are compared for Gly and HGly taking into account the effect of pH, the uptake kinetics (fitted by the pseudo-second order rate equation, and the sorption isotherms (described by the Langmuir and the Sips equations. The sorption capacities of the modified sorbent reach up to 1.14 mmol U g−1, 1.69 mmol Cu g−1, and 0.85 mmol Zn g−1. In multi-metal solutions of equimolar concentration, the chemical modification changes the preferences for given metal ions. Metal ions are desorbed using 0.2 M HCl solutions and the sorbents are re-used for five cycles of sorption/desorption without significant loss in performances.

  3. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  4. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  5. Effect of pH on the sorption properties of bentonite Kopernica

    International Nuclear Information System (INIS)

    Galambos, M.; Paucova, V.

    2009-01-01

    In this work sorption of strontium-85 on Slovak bentonites was studied. Sorption experiments that were conducted at four different values of pH = 2, 4, 6 and 8 showed that by increasing of pH in the solution an increasing of values of percentage of sorption and of distribution relationships occur. Value approaching 99% was achieved during the sorption of strontium cations from the bentonite deposits Kopernica only at pH = 8. It can be concluded that in addition to the basic mechanism of sorption, which is ion exchange, complex-forming reactions with surface groups of bentonite take place there at higher values. The increase in value attributable to R 'hydrolytic' adsorption, because there is a reaction between Sr(OH) + and OH-groups and H + ion competition is stifled. At pH = 2 in the whole studied range of concentrations low values of sorption percent, distribution ratio and adsorbed amount of strontium were observed. It can be attributed to a significant competitive impact of hydrogen ions and disruption of the structure of bentonite.

  6. Removal of cobalt and strontium from groundwater by sorption onto fishbone

    International Nuclear Information System (INIS)

    Younjin Park; Won Sik Shin; Sang-June Choi

    2013-01-01

    Fishbone as a main backfill material of permeable reactive barrier to remediate groundwater contaminated with Co and Sr was investigated through single- and bi-solute competitive sorptions. The single-solute sorption data were fitted by Freundlich, Langmuir and Dubinin-Radushkevich models. The coefficients of determination (R 2 > 0.91) indicated that all models fitted well. Maximum sorption capacities (q mL ) of Co and Sr predicted by the Langmuir model were 0.55 mmol/g and 0.50 mmol/g, respectively. The bi-solute competitive sorption of the metals was analyzed by the Langmuir, competitive Langmuir, Sheindorf-Rebhun-Sheintuch (SRS) and P-factor models. The sorbed amount of one solute in bi-solute system decreased due to competition with the other solute. Langmuir model parameters for single- (q mL and b L ) and bi-solute (q mL * and b L * ) competitive sorptions were compared to analyze the effect of competition between the metals. The competitive Langmuir, SRS and P-factor models predicted the bi-solute competitive sorption data well (R 2 > 0.93). (author)

  7. Autoradiographic studies of actinide sorption in groundwater systems

    International Nuclear Information System (INIS)

    O'Kelley, G.D.; Beall, G.W.; Allard, B.

    1980-01-01

    Autoradiography is a convenient and sensitive technique for the study of spacial distributions of alpha radioactive nuclides on slabs of rock or on other planar surfaces. The autoradiographic camera contains an arrangement for placing in firm contact Polaroid sheet film, a plastic scintillator screen, and the radioactive face of the specimen. As an example of the use of the autoradiographic method, a series of sorption experiments were carried out in which synthetic groundwater solutions of americium, neptunium, uranium, and plutonium were contacted with Climax Stock granite under aerated and anoxic conditions at pH 8 to 9. The sorption observed at specific mineral sites was correlated with data on sorption of these actinides on pure minerals

  8. Dinamics of BF3 sorption on activated carbons

    International Nuclear Information System (INIS)

    Polevoj, A.S.; Petrenko, A.E.

    1989-01-01

    The dynamics of BF 3 sorption on BAUAG-3 and SKT-4A carbons is studied by recording the curve of BF 3 concentration change in time at the outlet from the column filled with activated carbon when blowing it with a current of BF 3 and helium mixture. The effect of sorbent type, temperature and pressure of the gaseous mixture, BF 3 content in it and its partial pressure, BF 3 consumption on the width of sorption zone is studied. The results of studies can be used to calculate and optimize the conditions of sorption processes connected with the absorption of BF 3 by carbons from the gaseous flows in the dynamic mode

  9. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Manley-Harris, Merilyn

    2013-01-01

    We investigated the effect of soil pH, organic carbon, ionic strength and steroid hormones on the sorption of sulfamethoxazole (SMO) and sulfachloropyridazine (SCP) in three pastoral soils of New Zealand. A model linking sorbate speciation with species-specific sorption coefficients describing the pH dependence of the apparent sorption coefficients was used to derive the fraction of each species of SMO. All soils displayed a decrease in sorption when pH was increased, with SMO exhibiting the highest sorption at pH 2. The cationic form of SMO appeared to sorb more close to pH ≥ pK a1 and, when pH ≥ pK a2 (6.5, 7.5 and 8.5) the anionic species seems to dominate, however, its sorption affinity to all soils was low. SMO sorption was affected by ionic strengths and organic carbon content, while the presence of hormones showed only a subtle decrease in SCP sorption in a selected model pasture soil. -- Highlights: •The effect of OC content on sulfamethoxazole sorption is nullified by the pH effect. •Steroid hormone has a subtle influence on the sulfachloropyridazine sorption in pastoral soil. •Increased hormone concentrations decrease sulfachloropyridazine sorption in soils. -- Sorption affinity of SMO and SCP are strongly governed by multitude of factors, and variations in these factors can be significant when manure and fertilisers are added to soil

  10. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons

    Directory of Open Access Journals (Sweden)

    Pietrzyk Andżelika

    2017-01-01

    Full Text Available The article rated removal efficiency of organic matter in the processes of sorption and sono-sorption of underground water grasped for municipal purposes. The studies were conducted in laboratory scale and verified in pilot scale at the Water Treatment Plant Tarnobrzeg-Jeziórko. In the research used granular activated carbons, ie. WD-Extra, WG-12, Norit Row 0.8 and Filtrasorb 300. The processes efficiency was evaluated on the basis of changes in the following parameters, ie.: total organic carbon (TOC, permanganate index, UV absorbance, turbidity and colour. The ultrasounds were generated by means of disintegrator Sonics&Materials VCX 130, using the sonication time of 1 and 5 minutes. The results obtained for the batch tests allowed to observe a beneficial effect of ultrasound on the efficiency of the removal of organic material in the sorption process. The combination of sonication and sorption on activated carbon increased the efficiency of the removal of organic matter by 6–37% for TOC, and 18.6–27.9% for permanganate index, depending on the sorbent used. The positive laboratory results were not confirmed in a pilot scale. In the flow conditions the sonication process did not affect the efficiency of removal of organic matter on the filter model with a bed of activated carbon.

  11. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments

    International Nuclear Information System (INIS)

    Zhong Huan; Wang Wenxiong

    2009-01-01

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments. - Mercury-particle sorption was more important than mercury-organic matter and organic matter-particle sorption in controlling the partitioning of Hg or MeHg in sediments

  12. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Huan [Atmospheric, Marine and Coastal Environment Program and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong [Atmospheric, Marine and Coastal Environment Program and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)], E-mail: wwang@ust.hk

    2009-03-15

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments. - Mercury-particle sorption was more important than mercury-organic matter and organic matter-particle sorption in controlling the partitioning of Hg or MeHg in sediments.

  13. Sorption of technetium on composite chitosan-hydroxyapatite from aqueous solutions

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2013-01-01

    Biomaterials such as natural polymers (chitosan) and hydroxyapatite have an important application in material for bone replacement. Most of chitosan/hydroxyapatite composites are prepared by mixing hydroxyapatite particles with chitosan matrices. Another method of preparation of chitosan/hydroxyapatite composite is in-situ generation of nano-hydroxyapatite in chitosan matrix. The most common biomaterial used in the past years in hard tissue regeneration was hydroxyapatite, owing to its properties as biocompatibility, bioactivity, non-toxicity, non-immunogenicity etc. Chitosan is a polyaminosacharide, partially deacetylated product of chitin. Chitosan can be used in combination with other materials to enhance bone growth such as bone filling paste. The aims of this work were: the influence of the contact time on sorption of pertechnate anions on chitosan/hydroxyapatite composites; the effect of pH on sorption of pertechnate anions on chitosan/hydroxyapatite composites; the effect of foreign ions on sorption of pertechnate anions on chitosan/hydroxyapatite composites. The author concluded: the percentage of technetium sorption after 1 hour of contact time was > 97 %. In the initial pH range of 2.9-10.2, the percentage of technetium sorption on chitosan/hydroxyapatite composites CH/HA(A), CH/HA(B), CH/HA 30:70, ZCH was > 98 % and on CH/HA 50:50 was > 94%. The competition effect of Fe 2+ towards TcO 4 :- sorption is stronger than competition effect of other observed cations for all examined composites with the same weight ratio. The percentage of the technetium sorption was the same for all composites with the weight ratio of 30:70. (authors)

  14. An update of the sorption database. Correction and addition of published literature data

    International Nuclear Information System (INIS)

    Saito, Yoshihiko; Suyama, Tadahiro; Kitamura, Akira; Shibata, Masahiro; Sasamoto, Hiroshi; Ochs, Michael

    2007-07-01

    Japan Nuclear Cycle Development Institute (JNC) had developed the sorption database (JNC-SDB) which includes distribution coefficient (K d ) data of important radioactive elements for bentonite and rocks in order to define a dataset to evaluate the safety function of retardation by natural barrier and engineered barrier in the H12 report. Then, JNC added to the database the sorption data from 1998 to 2003 collected by literature survey. In this report, Japan Atomic Energy Agency (JAEA) has updated the sorption database: (1) JAEA has widely collected the sorption data in order to extend the sorption database. The JNC-SDB has been added the published data which are not registered in the sorption database so far. (2) For the convenience of users the JNC-SDB was partially improved such as the automatic graph function. (3) Moreover, errors during data input in the part of the JNC-SDB were corrected on the basis of reviewing data in the database according to the guideline; 'evaluating and categorizing the reliability of distribution coefficient values in the sorption database'. In this updated JNC-SDB, 3,205 sorption data for 23 elements, which are important for performance assessment were included. The frequency of K d for some elements was clearly shown by addition of the sorption data. (author)

  15. Sorption of {sup 60} Co on inorganic solids; Sorcion de {sup 60} Co en solidos inorganicos

    Energy Technology Data Exchange (ETDEWEB)

    Granados C, F.; Bulbulian G, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Mardel V, B. [UAM-I, 09340 Mexico D.F. (Mexico)

    2003-07-01

    The behavior of sorption of the {sup 60} Co in aqueous solution under static conditions to different values of pH of the aqueous solution (1, 3, 5, 7, and 10) on MgO, MnO{sub 2}, SnO, TiO{sub 2}, activated carbon and calcinate hydrotalcite was investigated. It was found that the best sorbents of the {sup 60} Co was the MnO{sub 2}, activated carbon and TiO{sub 2} whose sorption was incremented when increasing the pH value of the aqueous solutions, in the one case of the hydrated oxides, the {sup 60} Co interacted with the electrically charged surface of the sorbents that depends on the pH of the solution and of the point of zero charge (zpc) of the sorbent. (Author)

  16. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  17. Simulation of long-term dynamic behavior of runaway electrons

    International Nuclear Information System (INIS)

    Wang Yulei; Liu Jian; Zhang Ruili; He Yang

    2015-01-01

    The secular dynamics of runaway electrons in Tokamak electromagnetic field is studied. The radiation effect is added into a relativistic volume-preserving algorithm to gain long-term stability of calculation. The results shows that the method we used is able to reveal the behavior of a runaway electron in configuration space. (author)

  18. Determination of Sorption Coefficient of Phosphorus Applied for Sugarcane Production in Southwestern Florida.

    Science.gov (United States)

    Muwamba, A; Nkedi-Kizza, P; Morgan, K T

    2016-09-01

    Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. A suggested approach toward measuring sorption and applying sorption data to repository performance assessment

    International Nuclear Information System (INIS)

    Rundberg, R.S.

    1991-01-01

    The sorption of radioisotopes in relation to geologic disposal of radioactive wastes is discussed. Properties of the radioactive materials, rocks, and minerals, and the chemistry involved are described. 51 refs., 12 figs. CBS

  20. Synchronous behavior of two coupled electronic neurons

    International Nuclear Information System (INIS)

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-01-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society

  1. Sorption of benzothiazoles onto sandy aquifer material under equilibrium and nonequlibrium conditions

    Directory of Open Access Journals (Sweden)

    Kragulj Marijana M.

    2014-01-01

    Full Text Available In this study, the sorption behaviour of 1,3-benzothiazole (BT and 2-(methylthiobenzothiazole (MTBT was investigated on Danube geosorbent under equilibrium and nonequilibrium conditions. All sorption isotherms fitted well with the Freundlich model (R2=0.932-0.993. The results showed that organic matter of the Danube geosorbent has a higher sorption affinity for the more hydrophobic MTBT compared to BT. However, sorption-desorption experiments showed that MTBT was more easily desorbed than BT molecules, which indicates the importance of absorption relative to adsorption in the overall sorption mechanism of MTBT. In general, molecules of BT and MTBT were more easily desorbed in the lower concentration range, which resulted in an increase in the hysteresis indices with increasing concentrations. Column experiments revealed that retention of the investigated compounds on the aquifer material followed the compound’s hydrophobicity. BT showed a lower retention, in accordance with its lower sorption affinity obtained in the static experiments, while MTBT showed a greater sorption affinity, and thus had a longer retention time on the column. Thus during transport BT represent greater risk for groundwaters than MTBT. These results have increased our understanding of benzothiazoles sorption and desorption process which represent one of the most important factors which influence the behaviour of organic compounds in the environment.

  2. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  3. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  4. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  5. Sorption of heteropoly acids by polyurethane foam

    International Nuclear Information System (INIS)

    Dmitreinko, S.G.; Goncharova, L.V.; Runov, V.K.; Zakharov, V.N.; Aslanova, L.A.

    1997-01-01

    Sorption of oxidized and reduced forms of molybdosilicic, molybdophosphoric and molybdovanadophosphoric acids by polyurethane foam based on ethers and esters is studied. On the basis of sorption dependence on solution pH, polyurethane foam type and spectral characteristics of sorbates the suggestion has been made that in the polyurethane foam phase there are two main types of sorbent-sorbate interaction: electrostatic (ion-ion) and with hydrogen bond formation: and it is impossible to determine the contribution of every interaction

  6. Kinetics of strontium sorption in calcium phosphate

    International Nuclear Information System (INIS)

    Bacic, S.; Komarov, V.F.; Vukovic, Z.

    1989-01-01

    Kinetics of strontium sorption by highly dispersed solids: tricalcium phosphate (Ca 3 (PO 4 ) 2 , TCP) and hydroxyapatite (Ca 5 (PO 4 ) 3 )H, HAP) were investigated. Analysis of sorption data was made taking into consideration composition and morphology of ultra micro particles. Conclusion is that the isomorphous strontium impurity is structurally sensitive element for calcium phosphate. It was determined that the beginning of strontium desorption corresponds to the beginning of transformation of the TCP - HAP (author)

  7. Sorption behaviour of radioactive technetium in soils

    International Nuclear Information System (INIS)

    Xia Deying

    1996-01-01

    The sorption behaviour of technetium in different soils has been studied by batch experiments under aerobic conditions. The soil samples have been taken to study the characteristics and to derive the pH-Eh values. In addition, the activated carbon and reduced iron powder have been selected as additives to the JAERI sand according to the former research work, so that the technetium sorption behaviour in the artificial soils can be studied under similar conditions. The experimental results show that all these soil samples except for the gluey soil have a very small distribution coefficient for Tc, while the artificial soils have a very large distribution coefficient for Tc. Besides, for artificial soils, the distribution coefficient (R d ) values will become larger and larger when more additive is added and more contact time is allowed. The physico-chemical fixation processes and possible sorption modes have been discussed as well

  8. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  9. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry

    2015-07-01

    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  10. Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.; Goede, P.

    2014-01-01

    This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)

  11. Sorption Properties of Some Romanian Gingerbread

    Directory of Open Access Journals (Sweden)

    Tulbure Anca

    2014-06-01

    Full Text Available Water activity of gingerbread is very important for keeping the product freshness and shelf life. Water activity is influenced by composition, water content and temperature. The water content of gingerbread could vary according with storage condition. i.e. rH. 11 gingerbread samples were analysed. The water content and water activity lies between 7.0 and 12.6% and respectively 0.590 and 0.715. The sorption isotherms were determined at 30°C by gravimetric method. The moisture sorption is influenced by composition, especially sweeteners and humectants. Honey and invert sugar have the same impact on gingerbread higroscopicity.

  12. Influence of the evaporation rate and the evaporation mode on the hydrogen sorption kinetics of air-exposed magnesium films

    International Nuclear Information System (INIS)

    Leon, A.; Knystautas, E.J.; Huot, J.; Schulz, R.

    2006-01-01

    It has been shown that the hydrogen sorption properties of air-exposed magnesium films are influenced by the deposition parameters such as the evaporation rate or the evaporation mode used during their preparation. As the evaporation rate increases, the structure of the film tends to be highly oriented along the [002] direction and the kinetics of hydrogen absorption and desorption are faster. Moreover, the hydrogen sorption kinetics of magnesium films prepared with an electron beam source under a high vacuum are faster by almost a factor of two compared to those prepared using resistive heating under low vacuum. These two parameters reduce drastically the activation and the incubation period during hydrogen absorption and desorption, respectively

  13. The sorption of acids in cellular side of apple pressing

    International Nuclear Information System (INIS)

    Asoev, M.G.; Mukhiddinov, Z.K.

    1994-01-01

    Equilibrium swell of sample refuse after separation of water is use for study of sorption of hydrochloric acid. Quantity adsorb acids set a price to difference her concentration before and after equilibrium sorption

  14. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Abdullah Al, E-mail: mamun@toki.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Morita, Masao, E-mail: masao.swimer@akane.waseda.jp [Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Matsuoka, Mitsuaki, E-mail: m-matsuoka@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Tokoro, Chiharu, E-mail: tokoro@waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2017-07-15

    Highlights: • Coprecipitation showed twice the sorption density of simple adsorption at pH 5. • Mechanism shift from outer- to inner-sphere surface complexation at high Cr/Fe. • In coprecipitation the mechanism shift occurs at lower Cr/Fe ratios than adsorption. • Higher-molar-ratio bidentate binuclear Cr−Fe bonds; yielded ferrihydrite expansion. - Abstract: Hexavalent chromium (Cr(VI)) attracted researchers’ interest for its toxicity, natural availability and removal difficulty. Nevertheless, its sorption mechanism is not clearly understood yet. In this work, we elucidated the sorption mechanism of the co-precipitation of chromates with ferrihydrite through quantitative analysis. The influence of Cr/Fe molar ratio on sorption was investigated by zeta potential measurements, X-ray diffraction (XRD) and X-ray adsorption fine-structure analysis (XAFS). Coprecipitation at pH 5 showed almost twice the sorption density of adsorption at pH 5. In co-precipitation, a shift of the XRD peak due to inner-sphere sorption of chromate was observed at Cr/Fe molar ratio 0.5. For adsorption, the same peak shift was confirmed at Cr/Fe molar ratio of 1. Zeta potential at pH 5 suggested that the sorption mechanism changed at Cr/Fe molar ratio 0.25 for coprecipitation and at Cr/Fe molar ratio of 1 for adsorption. Fitting of Cr and Fe K-edge extended X-ray adsorption fine-structure suggested that ferrihydrite immobilized Cr(VI) via outer sphere surface complexation for lower Cr/Fe ratios and via inner-sphere surface complexation for higher molar ratios. At higher molar ratios, bidentate binuclear Cr−Fe bonds were well established, thus resulting in the expansion of the ferrihydrite structure.

  15. Effect of temperature on kinetics of phosphorus isotope sorption by soils

    International Nuclear Information System (INIS)

    Osztoics, E.; Konya, J.; Nagy, N.; Varallyay, L.

    1994-01-01

    Sorption of water soluble P by soils may be approximated by a rapid plus a slow processes. The rapid process of P sorption was studied on samples of five characteristic Hungarian soil types (meadow soil from Hajduboszormeny, brown forest soil from Keszthely, chernozem soil from Oroshaza and sandy soil from Orbottyan), using 32 P isotope technique. Kinetics of 32 P sorption and the effect of temperature (0, 25, and 40 o C) on the processes were investigated. The kinetic data were evaluated using the Christiansen equation. The activation energy and activation entropy of the processes were calculated from the temperature-dependence of the kinetic constants. The following conclusions were drawn: 1. The amount of sorbed P increases with increasing temperature, the increase is different in different soil types depending on soil characteristics. 2. Two processes of different velocity may be distinguished in the rapid P sorption under our experimental conditions. 3. The activation energy of the faster process is 25-50 kJ/mol. This suggests that film diffusion of phosphorus is the rate-limiting process in the first step of P sorption. 4. The activation energy of the slower process of rapid sorption is less than that of the faster process. 5. In contrast, the activation entropy of the slower process is twice as high (in absolute values) as that of the first, instantaneous process. The slower process is probably connected with a structural rearrangement of the sorption layer, i.e. the phosphorus becomes more firmly held. 6. This rearrangement is supported also by our previous studies on the reversibility of 32 P sorption. (author)

  16. Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil

    Directory of Open Access Journals (Sweden)

    Jaqueline Alves de Almeida Calábria

    2017-11-01

    Full Text Available Abstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDX, atomic absorption spectrometry (AAS, scanning electron microscopy (SEM, and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH, which are expected to be worse sorbents for alkaline elements (e.g., Cs than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs.

  17. Sorption behavior of congo red on different plant leaves (abstract)

    International Nuclear Information System (INIS)

    Khan, M.I.; Mirza, M.L.; Zafar, S.; Khalid, N.

    2011-01-01

    Batch adsorption studies were carried out to evaluate the potential of different plant leaves (Bougainvillaea Glabra and Citrus Sinensis) for the removal of Congo red dye from aqueous solution by optimizing different parameters such as effect of shaking time, adsorbent dose, initial adsorbate concentration, temperature etc. The experimental data was subjected to different types of isotherm models such as Freundlich, Langmuir and Dubinin-Radushkevich. The maximum adsorption capacity was calculated and was comparable for both the leaves through Freundlich isotherm by using the optimized parameters of weight and time at room temperature. The sorption mean free energy from Dubinin-Radushkevich isotherm was also determined and compared. Pseudo-first and Pseudo-second order kinetics models were tested for the adsorption of Congo red on plant leaves powder. The experimental data fitted well for Pseudo-second order model. The uptake of Congo red was also studied with the variation of temperature. Thermodynamic parameters have been calculated. The results indicate that the plant leaves of Bougainvilia Glabra and Citrus Sinensis are efficient adsorbents for Congo red dye from aqueous solutions and can be used for wastewater management. (author)

  18. The measurement and estimation method of the sorption of lead onto cementitious materials

    International Nuclear Information System (INIS)

    Nakanishi, Kiyoshi; Tsukamoto, Masaki; Fujita, Tomonari; Sugiyama, Daisuke

    2002-01-01

    Cementitious material is a potential waste packaging material for radioactive waste disposal, and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cementitious material is a very important parameter when considering the release of radionuclides from radioactive waste. In this study, sorption of lead, onto hydrated Ordinary Portland Cement (OPC), OPC/Blast Furnace Slag blended cement (BFS), Highly containing Flyash and Silica Fume Cement (HFSC) and cement constituent minerals (portlandite, ettringite, hydrotalcite and C-S-H gels (Ca/Si = 0.9 and 1.65)) was measured using the batch sorption technique. Lead is one of the important nuclides for safety assessment. The obtained distribution ratios, Rd values, for sorption of lead onto hydrated (freshly cured) OPC and HFSC are very high:>1000 cm3g-1. The distribution ratio for sorption of lead onto OPC/BFS could not be determined quantitatively due to the precipitation of PbS. Comparing the Rd values onto cements and minerals, it was suggested the sorption onto C-S-H gel phases dominate the sorption for lead onto hydrated cements. Once a cementitious material is altered in the disposal environment, its sorption ability may be affected. The sorption of lead onto degraded OPC and degraded HFSC, which were altered in the presence of distilled water, was also measured. It was observed that the alteration did not cause changes that decreased the sorption of lead onto OPC and HFSC. An approach, in which it is assumed that each of the component phases contributes to the composite material, is proposed and discussed to describe the sorption of lead onto cement using a knowledge of the phase components in a linear additive manner. The results showed reasonably good agreement between the predicted and measured Rd values for lead onto freshly cured and altered cements. (author)

  19. Sorption of short-lived radionuclides in a layer of sorbent with spherical granules

    International Nuclear Information System (INIS)

    Karlin, Yu.V.

    1993-01-01

    Sorption methods have found wide application in the purification of liquid radioactive wastes. The working element in sorption methods for this purpose is usually a sorption column with a fixed layer of sorbent. Continuous-action equipment with a moving layer of sorbent is very seldom used. When a fixed layer of sorbent is used its wear and prolonged mixing in the sorption column are reduced to a minimum, and maximum purification is achieved due to the advantages of the dynamic method of sorption over the static method. The time of protective action of the sorbent layer is determined by the time taken for the radionuclide to pass through the sorption column, and for the majority of radionuclides is determined by numerous parameters, including the type of sorbent and radionuclide, the rate of flow through the sorbent, the size of the sorbent granules, etc. The physical and chemical aspects of this process have been investigated in detail, and numerous methods for modeling it mathematically have been developed and have been used to develop methods of designing sorption column apparatus. The specific nature of the radionuclides as unstable materials enables the hypothetical case of a open-quotes perpetualclose quotes sorption filter to be represented. In fact, to achieve this it is only necessary to assume that the half-life of the radionuclide is so small that the rate of decay of the radionuclide in the sorption column (both in the sorbed state and in the aqueous phase of the sorption layer) is equal to the rate that it is fed into the column in the flow of liquid radioactive waste. In this case the sorption front of the radionuclide in the column wall remains fixed after a certain initial period. In this paper, a mathematical model of such a hypothetical filter for the case of spherical sorbent granules is considered

  20. Study of sorption of platinum metals, gold and silver by phosphonium hydroxide antonite

    International Nuclear Information System (INIS)

    Khudaybergenov, U.; Tajibaev, D.; Yuldasheva, K.T.

    2002-01-01

    The aim of the work was to study and to use a phosphonium hydroxide anionite for concentrating of trace amounts of platinum metals, gold and silver from the mixed solutions composed of copper, nickel, cobalt, iron and zinc. The experiments were done using radionuclides of determined and interfered elements. Conditions for sorption concentrating of the noble metals by phosphonium hydroxide were determined by the selectivity of the phosphonium hydroxide to the noble metals from acid solutions. A noble metal sorption degree was observed from the experiments to be rather high at the acid concentration level of 0.1-0.5 M. At higher than 0.5 M acid concentration sorption activity decreased. With increase of chlorine acid-concentration sorption of palladium was observed to considerably decrease, while iridium sorption was increased. The latter fact can be caused by lowering of hydration of iridium ions. A considerable decrease of capability of the noble metal sorption from nitric acid solutions was observed. It is possible that HNO 3 anions are strongly bound with the anionite functional group. Thus, nitric acid reduces sorption of the noble metals in the following order: Ir>Ru>Pd>Pt>Os, and it does not have effect on the sorption activity of Au and Ag. Increase of H 2 SO 4 concentration in the solution has slightly reduced noble metal sorption activity. Copper, nickel, iron and other metals accompanying the noble metals, at concentration ratio of 1:1000 have resulted in decrease of sorption activity of the noble metals, although sorption of iridium was increased in the presence of copper, silver and nickel. We suggest that copper, silver and nickel have formed the complex functional compounds, which can probably undergo an anion exchange